WO2015060629A1 - 토크 프리 링키지 유니트 - Google Patents

토크 프리 링키지 유니트 Download PDF

Info

Publication number
WO2015060629A1
WO2015060629A1 PCT/KR2014/009918 KR2014009918W WO2015060629A1 WO 2015060629 A1 WO2015060629 A1 WO 2015060629A1 KR 2014009918 W KR2014009918 W KR 2014009918W WO 2015060629 A1 WO2015060629 A1 WO 2015060629A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
joint
disposed
bevel gear
unit
Prior art date
Application number
PCT/KR2014/009918
Other languages
English (en)
French (fr)
Inventor
송재복
김휘수
민재경
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140052726A external-priority patent/KR20150047076A/ko
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2015060629A1 publication Critical patent/WO2015060629A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0008Balancing devices
    • B25J19/0016Balancing devices using springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2021Undercarriages with or without wheels comprising means allowing pivoting adjustment around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/044Balancing means for balancing rotational movement of the undercarriage

Definitions

  • the present invention relates to a gravity compensator, which mechanically compensates gravity torque generated in a rotating joint due to the weight of the link, so that the motor torque required to support the weight when the link is stopped or rotated becomes zero. It is about.
  • Gravity compensation mechanisms developed to date are mainly made up of weights and springs and wires.
  • a suitable weight is installed opposite the point of action of the force.
  • the method using the spring can be manufactured in a relatively small volume and weight compared to the conventional method, it is easy to apply to a small mechanism such as a service robot arm.
  • a motor and a reducer capable of sufficiently supporting the gravity torque applied to the joint should be used.
  • the torque required for the operation of the robot is remarkably reduced by offsetting the gravity torque applied from the weight of the robot, so that the robot arm can be configured even with a low capacity motor and reducer. have.
  • Patent Document 1 KR10-0760846 B
  • An object of the present invention is to solve the above problems, by developing a new multi-degree of freedom gravity compensator that improves the durability and reliability of the existing wire-based gravity compensator, occurs in all joints according to the posture during the operation of the robot arm It is possible to compensate the torque caused by the weight.
  • variable gravity compensation that can change the compensation torque in real time, it is possible to maximize the performance of the robot by compensating not only the weight of the robot but also the weight of the gripped object.
  • the present invention for achieving the above object provides a link that can maintain a posture at any position by compensating the torque generated by the link weight, and a structure and gravity compensation device having the same.
  • the present invention is a base link; And a first link having one end rotatably connected to the base link to form a first joint and having a center of gravity spaced apart from the first joint, wherein the first link has one end connected to the first joint. And a first counter balancer disposed at the other end along a length direction of the first link to compensate gravity of the first link when the first link rotates about the first joint.
  • the counter balancer may include: a first spring block which transmits an applied rotational force to the first link and is spaced apart from a first reference part disposed on the base link, the first spring block movable along a length direction of the first link, and one end of the first balance block;
  • the first link is rotatably disposed on the first spring block side, and the other end is rotatably disposed to be spaced apart from the rotation center of the first joint on the first reference side.
  • a first connecting rod configured to move the first spring block as the center of the first joint moves, and a first compression spring disposed between the first spring block and the first reference part. Provides free linkage unit.
  • the first link is disposed to face each other with the first spring block and the first compression spring interposed therebetween, the first link being disposed between the first reference portion and the first compression spring.
  • a first link plate including a first link plate B part in which the first spring block is disposed between the first link plate A part and the first compression spring, and a first link plate disposed between the first link plate.
  • a first link shaft, the first connecting rod is disposed through the first link plate A part of the first link plate, and the first compression spring is disposed at an outer circumference of the first link shaft along a longitudinal direction of the first link shaft. It may be arranged.
  • the first counter balancer includes a first road block disposed on one side of the first spring block toward the first link plate A part in a moving direction of the first spring block. It may be connected to the other end of the first connecting rod rotatably.
  • the first counter balancer may further include a rod adjuster for adjusting an arrangement position of one end of the first connecting rod.
  • an adjustment lead screw disposed radially from a center of the first joint and adjustable in a longitudinal direction on the first reference portion side, and the adjustment lead screw along a length direction of the adjustment lead screw. According to the rotation of the position can be provided in the radial adjustment direction from the center of the first joint, the adjustment block is mounted so that one end of the first connecting rod is rotatable.
  • the base link is provided with a first driver for forming a rotational force of the first link, the first driver;
  • a first link motor generating a rotational force about a rotation axis perpendicular to the longitudinal direction of the first link, and disposed between the first link motor and the first link side to provide a rotational force of the first link motor to the first link motor; It may be provided with a first link power transmission for transmitting to the link side to form a relative rotation of the first link.
  • the first link power transmission unit includes: a first pinion gear connected to the first link motor, and a first ring fixedly mounted to the first link side and engaged with the first pinion gear. It may be provided with a gear.
  • the first link is provided with a second link having one end rotatably connected to the first link and having a center of gravity spaced apart from the second joint, wherein the second link includes: A second counter balancer, one end of which is disposed in the second joint and the other end of which is disposed along the longitudinal direction of the second link to compensate for gravity of the second link when the second link pivots about the second joint. It may be provided.
  • the second counter balancer is spaced apart from a second reference portion rotatably disposed at an end of the second link forming the second joint along a length direction of the second link.
  • a movable second spring block one end of which is pivotally spaced apart from the rotational center of the second joint on the second reference part side, and the other end of which is rotatably mounted on the second spring block side
  • a second connecting rod configured to move the second spring block as the second reference part rotates, and a second compression spring disposed between the second spring block and the second reference part.
  • the second link includes: a second spring block and a second compression spring disposed to face each other, the second link being disposed between the second reference portion and the second compression spring.
  • a second link plate including a second link plate part B and a second link plate part B disposed between the second link plate A part and the second compression spring, and a second link plate disposed between the second link plate.
  • a second link shaft may be provided, and the second connecting rod may be disposed through the second link plate A part, and the second compression spring may be disposed at an outer circumference along a length direction of the second link shaft.
  • the second counter balancer includes a second road block disposed on one side of the second spring block toward the second link plate A part in a moving direction of the second spring block. It may be connected rotatably with the other end of the second connecting rod.
  • the second counter balancer may further include a rod adjuster for adjusting an arrangement position of one end of the second connecting rod.
  • an adjustment lead screw radially disposed from the center of the first joint and rotatably adjustable in the longitudinal direction, and the adjustment lead screw along the longitudinal direction of the adjustment lead screw According to the rotation of the position may be provided in the radial direction from the center of the second joint, the adjustment block is mounted so that one end of the second connecting rod is rotatable.
  • the first link is provided with a second driving portion for forming a rotational force of the second link, the second driving portion;
  • a second motor generating a rotational force about a rotation axis perpendicular to the longitudinal direction of the second link, and disposed between the second motor and the second link side to transmit the rotational force of the second motor to the second link side. It may be provided with a second link power transmission for transmitting to form a relative rotation of the second link.
  • the second link power transmission unit includes: a second pinion gear connected to the second motor, and a second ring gear fixedly mounted to the second link side and engaged with the second pinion gear. It may be provided.
  • a first link is formed on the first link so as to be rotatably connected to the first link, and a second link having a center of gravity spaced apart from the second joint is provided to form the second joint.
  • a second reference part rotatably disposed at an end of the second link;
  • a parallelogram gear unit having a first parallelogram shaft, one end of which is fitted to the first reference unit and the other end of which is fitted to the second reference unit.
  • a double parallelogram unit for forming the second reference part and the rotation angle reference of the first reference part to be the same, wherein the second reference part is perpendicular to the rotation axis of the first reference part and the first parallel part. It may be arranged opposite to the arrangement area of the first reference portion about the plane including the rotation center of the gram shaft.
  • the first reference portion is formed of a first reference bevel gear of a bevel gear type
  • the second reference portion is formed of a second reference bevel gear of a bevel gear type
  • the first parallel program The shaft includes: a first small bevel gear A meshed with the first reference bevel gear, a first small bevel gear B meshed with the second reference bevel gear, and one end of the first small bevel gear A;
  • the first small bevel gear B may be provided with a first rotating shaft.
  • the second link has one end disposed at the second joint and the other end disposed along a length direction of the second link such that the second link rotates about the second joint.
  • a second counter balancer for compensating gravity of the second link is provided, and a third reference part for forming a third joint parallel to the second joint is disposed at the other end of the second link, and the double parallelogram
  • the parallelogram gear portion has one end joined to the second reference portion and the other end.
  • a second parallelogram shaft meshed with the third reference portion, wherein the third reference portion is perpendicular to a rotation axis of the second reference portion and includes a rotational center of the second parallelogram shaft. Focusing on may be disposed on the other side with the second reference portion arrangement region.
  • the second reference portion is formed of a second reference bevel gear of a bevel gear type
  • the third reference portion is formed of a third reference bevel gear of a bevel gear type
  • the second parallelogram The shaft includes: a second small bevel gear A meshed with the second reference bevel gear, a second small bevel gear B meshed with the third reference bevel gear, and one end of the second small bevel gear A; It may be provided with a second rotating shaft on which the second small bevel gear B is arranged.
  • one end of the third reference portion is rotatably connected to the second link to form the third joint, and the third link having the center of gravity spaced apart from the third joint. It may be provided.
  • the third link has one end disposed at the third joint and the other end disposed along a length direction of the third link so that the third link rotates about the third joint.
  • a third counter balancer for compensating gravity of the third link wherein the third counter balancer comprises: a third spring block spaced apart from the third reference part and movable along the longitudinal direction of the third link; One end is rotatably spaced apart from the rotational center of the third joint on the third reference portion side, and the other end is rotatably mounted on the third spring block side to rotate the third reference portion.
  • a third connecting rod for operating the third spring block and a third compression spring disposed between the third spring block and the third reference part side may be provided.
  • the third link is provided with a third driver for forming a rotational force of the third link, the third driver;
  • a third motor generating a rotational force about a rotation axis perpendicular to the longitudinal direction of the third link, and disposed between the third motor and the second link side to transmit the rotational force of the third motor to the second link side. It may be provided with a third link power transmission for transmitting to form a relative rotation of the third link.
  • the third link power transmission unit includes: a third pinion gear connected to the third motor, and a third ring gear fixedly mounted to the second link side and engaged with the third pinion gear. It may be provided.
  • the present invention is a base link; A first link having one end rotatably connected to the base link to form a first joint, and having a center of gravity spaced apart from the first joint; And a second link having one end rotatably connected to the first link and having a center of gravity spaced apart from the second joint, wherein the first link has one end connected to the first joint. And a first counter balancer disposed at the other end along a length direction of the first link to compensate gravity of the first link when the first link rotates about the first joint.
  • a torque free linkage unit which is disposed opposite to an arrangement area of the first reference part about a plane including a rotation center of a gram shaft.
  • the first reference portion is formed of a first reference bevel gear of a bevel gear type
  • the second reference portion is formed of a second reference bevel gear of a bevel gear type
  • the first parallel program The shaft includes: a first small bevel gear A meshed with the first reference bevel gear, a first small bevel gear B meshed with the second reference bevel gear, and one end of the first small bevel gear A;
  • the first small bevel gear B may be provided with a first rotating shaft.
  • the second link has one end disposed at the second joint and the other end disposed along a length direction of the second link such that the second link rotates about the second joint.
  • a second counter balancer for compensating gravity of the second link is provided, and a third reference part for forming a third joint parallel to the second joint is disposed at the other end of the second link, and the double parallelogram
  • the parallelogram gear portion has one end joined to the second reference portion and the other end.
  • a second parallelogram shaft meshed with the third reference portion, wherein the third reference portion is perpendicular to a rotation axis of the second reference portion and includes a rotational center of the second parallelogram shaft. Focusing on may be disposed on the other side with the second reference portion arrangement region.
  • the torque free linkage unit according to the present invention having the configuration as described above has the following effects.
  • the torque free linkage unit of the present invention mechanically compensates torque generated by gravity in a weight unit such as a link unit, for example, a link of a robot, and thus does not receive gravity torque from the motor. This reduces the load that must be generated, which allows the same motor to be used for larger loads or for smaller motors for a given load.
  • the torque free linkage unit of the present invention by implementing a variable gravity compensation easily in the present invention, it is possible to compensate not only the link, for example the weight of the robot but also the weight of the object gripped by the robot, the payload of the robot Can be maximized.
  • the torque free linkage unit of the present invention solves the durability and reliability problems that may occur when using a conventional wire by implementing a multiple degree of gravity compensation device using a slider-crank mechanism and a bevel gear. .
  • the torque free linkage unit of the present invention can significantly reduce the capacity of the motor and the reducer if the present invention is applied to the actual multi-axis joint robot can significantly lower the price of the robot, it is possible to improve the collision safety.
  • Figure 1 is a one degree of freedom robot arm for showing the gravity torque.
  • Fig. 2 is a block diagram showing the principle of the counter balancer of the slider-crank mechanism type of the torque free linkage unit according to the embodiment of the present invention.
  • FIG. 3 is a block diagram of a counter balancer utilizing a slider-crank mechanism of a torque free linkage unit according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of a counter balancer utilizing a slider-crank mechanism of a torque free linkage unit according to an embodiment of the present invention.
  • 5 is a graph showing a change in compensation torque according to the variable gravity compensation device.
  • FIG. 6 is a diagram showing enlarged and partial views showing gravity compensation of a torque free linkage unit according to an embodiment of the present invention.
  • FIG. 7 is a conceptual diagram of a bevel gear based double parallel program unit of a torque free linkage unit according to an embodiment of the present invention.
  • Fig. 8 is a conceptual diagram of a parallelogram mechanism showing the principle of a double parallelogram unit of a torque free linkage unit according to an embodiment of the present invention.
  • FIG. 9 is a configuration diagram of a multiple degree of freedom link structure of the prior art.
  • FIG. 10 is a block diagram showing the operation principle of a multi-degree of freedom gravity compensation device having a double parallelogram unit using a bevel gear-based double parallelogram mechanism of the torque free linkage unit according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a torque free linkage unit according to an embodiment of the present invention, in which a three degree of freedom counter balancer is mounted.
  • FIG. 12 is an exploded view for explaining the structure of a first link of a torque free linkage unit according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram for describing a gravity compensating device of a first link of a torque free linkage unit according to an exemplary embodiment of the present invention.
  • FIG. 14 is an exploded view illustrating the structure of a second link of a torque free linkage unit according to an embodiment of the present invention.
  • 15 is a schematic diagram for explaining a gravity compensating device of a second link of a torque free linkage unit according to an embodiment of the present invention.
  • 16 is an exploded view for explaining the structure of the third link of the torque free linkage unit according to an embodiment of the present invention.
  • the torque free linkage unit of the present invention is implemented in the form of a robotic arm, which may be a mechanical structure that does not require additional driving force as an example for explaining the present invention, and may form a plurality of continuous link arrangement structures other than the singular link arrangement structure.
  • a robotic arm which may be a mechanical structure that does not require additional driving force as an example for explaining the present invention, and may form a plurality of continuous link arrangement structures other than the singular link arrangement structure.
  • the torque free linkage unit of the present invention will be described with reference to a case implemented with a robot arm having a plurality of continuously arranged link structures.
  • torque free linkage unit of the present invention may be provided with all of the counter balancer and / or the double parallelogram unit to be described for each link, or may be variously configured in an alternative or combination manner.
  • the torque free linkage unit 10 of the present embodiment includes a base link 110, a first link 100, a second link 200, and a third link 300, and is provided at an end of the third link 300.
  • An end effector (not shown), which may be implemented by a roll motor or a gripper, may have a more deployable structure.
  • the torque free linkage unit 10 includes a counter balancer as a gravity compensator for compensating for torque caused by a weight change caused by a change in the position of a link. Describe the operation process and characteristics.
  • the counter balancer provided in the torque free linkage unit 10 of the present invention forms a slider crank mechanism structure.
  • the counter balancers 150, 240, and 240 effectively offset the gravity torque generated by the weight of the link, joint, and other motors of the drive unit such that the actual required torque is close to zero.
  • the driving part is minimized to form a compact structure.
  • the present invention includes a counter balancer as a gravity compensator of a slider-crank mechanism type.
  • FIG. 2 (b) is shown a modified slider-crank mechanism (Inverse slider-crank mechanism), in this case the crank is fixed, the slider is moved forward or backward by the connecting rod in accordance with the rotation of the link.
  • a modified slider-crank mechanism Inverse slider-crank mechanism
  • the present invention utilizes such a modified slider crank mechanism to insert a spring inside the link (between the slider and the fixing part) as shown in FIG. 2 (c) and fix the configuration corresponding to the crank to position the link.
  • the counter balancer is implemented as a gravity compensator that can generate a compensating torque for the rotating joint due to the spring compression force.
  • FIG. 1 The conceptual structural diagram of the counter balancer which is the slider-crank type gravity compensator of the present invention is shown in FIG.
  • the arm as a link is pivotally mounted on a fixed base, the spring is elastically deformed between the spring block and the other fixing part mounted on the link, one end of the connecting rod is pivotally mounted to the spring block, and the other end of the connecting rod is It is arranged spaced apart from the center in the following reference portion.
  • the other end of the connecting rod is directly connected to the reference part, but may be connected to the reference part integrally or extended, but may be connected through a component that is fixed without relative rotation to the reference part.
  • the crank corresponding to the base link side constitutes a rotationally fixed structure and that the frame from the link rotation axis of the base to the connecting rod joint separated by R is a crank, the connecting rod of length l cr is connected to the link according to the rotation of the link.
  • a spring block moving forward and backward along a guide disposed above is compressed and a spring of stiffness k is compressed by s.
  • is the angle between the connecting rod and the link
  • s o is the initial compression distance of the spring
  • the distance l m between the connecting rod and the rotation center O can be calculated as follows.
  • the component force F rod acts on the connecting rod joint as follows according to ⁇ .
  • the compensation torque T c occurs as follows.
  • the gravity compensation device that can properly compensate the target gravity torque was designed.
  • the compensating torque as close as possible to the gravity torque can be generated, so that the required torque at the time of joint rotation can be set to a value of 0 substantially or can be operated within a range that can be supported by an actuator such as a motor. have.
  • the torque free linkage unit including the counter balancer which is the slider-crank-based gravity compensation device of the present invention may adjust the magnitude of the compensation torque generated through the counter balancer.
  • the rod adjustment part structure which adjusts the arrangement position of one end of a connecting rod.
  • the rod adjuster of the present invention takes the lead-screw mechanism as shown in FIG.
  • the rod adjusting part includes an adjusting lead screw and an adjusting block, the adjusting lead screw is disposed radially from the center of rotation O of the robot arm as a link, and the adjusting block is disposed on the adjusting lead screw to lead the screw through a predetermined operation.
  • the position of the connecting rod is rotatable and the adjustment block is rotatably mounted.
  • An adjustment slit may be arranged outside the adjustment lead screw to guide stable linear movement of the adjustment block.
  • the position of the adjusting block is changed by the rotation of the adjusting lead screw, so that the magnitude of the compensation torque generated by the counter balancer can be changed.
  • FIG. 5 shows the change of the compensation torque according to the position of the adjustment block.
  • additional self-weight is added to the linkage unit, for example, when the linkage unit is configured as a robot, gravity torque applied from the weight of the object when the robot grasps the object. By compensating up to, the payload of the robot can be maximized.
  • Appropriate design variables for generating the gravitational compensation torque targeted by the torque free linkage unit of the present invention may set target values through predetermined experiments or simulations.
  • the counter-balancer a slider-crank-based gravity compensator, makes it possible to bring the necessary torque close to zero to compensate for gravity in the rotation of the link implemented by the robot arm.
  • the torque free linkage unit of the present invention may be provided with a double parallel unit (DPU), the double parallel unit (DPU) transfers the change caused by the linkage structure of a plurality of connected links to match the criteria. Compensation torque can be adjusted accordingly.
  • DPU double parallel unit
  • the conventional single degree of freedom gravity compensator shown in FIG. 1 is installed only on the shoulder joint that requires the most torque in the robot.
  • FIG. 9 shows a diagram of a multi-degree of freedom link mechanism, that is, a gravity compensation mechanism mounted on a multi-degree of freedom robot arm.
  • the spring is based on a fixed surface (robot body) disposed perpendicular to the ground. It can be equipped with a predetermined gravity compensation on the first link connected to the first joint.
  • the angle (ground reference angle) of the second link which is the reference point of the second joint, changes together with the rotation of the first link, so that the second link generated by the rotation of the first link Gravity compensation for the required torque required by the position change is no longer possible.
  • the DPM includes a pulley 1 fixed to the base and a non-rotating pulley 1 and a rotatable pulley 2 mounted on the joint 2 and a wire connecting the two pulleys.
  • pulley 2 of joint 2 is always parallel to pulley 1 of joint 1.
  • rotation of joint 1 creates another reference plane that is at an angle to the ground. That is, a reference plane perpendicular to the ground is generated regardless of the position of the joint 1 through the parallelogram mechanism, and when the spring is mounted based on this, the gravity compensation for the joint 2 is possible.
  • the present inventors propose a new configuration in the present invention that supplements the durability and reliability problems caused by the configuration of the wire.
  • the double parallelogram unit of the present invention is constructed based on the bevel gear structure without the wire.
  • the double parallel program unit of the present invention can be extended to a multiple degree of freedom structure in which the one degree of freedom gravity compensation device forms a plurality of links in a continuous arrangement.
  • the double parallelogram unit of the torque free linkage unit of the present invention has a bevel gear structure.
  • a bevel gear is fixed to a first pitch joint (base) to form a reference portion, and a bevel gear is formed to freely rotate each other to adjacent or consecutive other pitch joint (s). Is installed.
  • the bevel gears as the respective reference portions interlock with each other through a meshing structure, and a parallelogram gear portion is disposed between the reference portions implemented in each bevel gear.
  • the parallelogram gear portion includes a parallelogram shaft and a reference bevel gear, wherein the reference bevel gear is disposed at both ends of the parallelogram shaft and meshes with a reference portion formed by the bevel gear.
  • each reference unit has the same rotation angle reference, so that even the position change caused by the individual drive of the continuous link structure can reflect the reference change caused by the change of the rotation position on the base link side through the same reference formation, the counter balancer It is possible to form a smooth continuous interlocking torque compensation structure through.
  • Such a bevel gear type double parallelogram unit is not limited to the counter balancer of the gear structure, and can be applied to various counterbalancers of the present wire type counter balancer.
  • the parallelogram gear portion has a configuration including a first link rotatably disposed on the base link side and a second link connected to the first link. .
  • the reference plane 1 of the first reference part is disposed at the first joint, which is the center of rotation of the base link and the first link.
  • the reference plane 2 of the second reference part is disposed in the second joint, which is the center of rotation of the first link and the second link.
  • a third joint which is a separate center of rotation, is disposed and a reference plane 3 as a third reference portion is disposed at the third joint, each of which forms a bevel gear structure, between which the parallelogram gear portion is disposed. do.
  • Each of the parallelogram gears is arranged on the first link and the second link, wherein the parallelogram shaft is disposed on each link and reference bevel gears are disposed on both ends of the parallelogram shaft, respectively. It is fitted with the 2nd reference part and the 3rd reference part, respectively.
  • the reference bevel gears implemented as a small bevel gear are connected to each other as shown in FIG. 7 (a) through a parallax shaft, in consideration of the rotational direction of the bevel gear formed of a reference portion engaged with the reference bevel gear. Irrespective of the movement of the robot, in order to generate a reference plane having a constant angle on the ground at all times, as shown in FIG.
  • the position of the reference part is alternately arranged, for example, the first reference part disposed in the first joint formed by the base link and the first link.
  • the first reference part With respect to the axis of rotation of the first reference portion and to the center of the plane including the center of rotation of the first parallelogram shaft opposite to the arrangement area of the first reference portion.
  • the third reference part is a second parallel to the second reference part disposed on the second joint formed by the second reference part, the first link and the second link, and perpendicular to the rotation axis of the second reference part and disposed on the second link. It is arranged on the same side as the first reference portion so as to be disposed opposite to the arrangement area of the second reference portion about the plane including the rotational center of the gram shaft.
  • a reference plane perpendicular to the ground is always generated regardless of the rotation of each joint and the posture of the link constituting the robot.
  • a counter balancer is used for each joint, and in this embodiment, a slider-crank-based gravity
  • FIG. 7 and 9 (b) show a case of extending to a bevel gear-based single parallelogram mechanism parallelogram unit and a double parallelogram unit (DPU) for applying it to a plurality of continuous links.
  • the bevel gear as the third reference part in the joint 3 is omitted, which is interlocked with the second reference part in the joint 2 through the second parallelogram gear part as shown in FIG. 7.
  • the parallelogram mechanisms (joints 1 to 2 and joints 2 to 3) as the parallelogram unit share a bevel gear as the second reference part located at the joint 2 for space efficiency.
  • Figure 9 (b) shows the driving of the DPM-based multi-degree of freedom compensation device described above.
  • a gravity compensation structure may be formed through the second counter balancer.
  • 11 to 16 show an example of a torque free linkage unit having a slider-crank mechanism type counter balancer and a bevel gear-based DPU of the present invention described above and implemented with a three degree of freedom gravity-compensated robot arm.
  • the torque free linkage unit implemented by the robot arm is composed of three pitch joints as shown in FIG.
  • Bevel gear-based DPUs are installed at each joint of the torque-free linkage unit, which is implemented as a robot arm. Based on this, a counter balancer as a slider-crank-based gravity compensator is constructed.
  • the bevel gear-based double parallel program unit may have a structure that is combined with a wire type counter balancer, but the present invention will be described based on the combination with a slider crank-based counter balancer.
  • the torque free linkage unit 10 of the present invention includes a base link 110, a first link 100, a second link 200, and a third link 300.
  • the torque free linkage unit 10 may have a structure in which an end effector (not shown), which may be implemented as a roll motor or a gripper, may be disposed at the end of the third link 300. The description is omitted.
  • torque free linkage unit of the present invention is described based on a multi-axis multi-degree of freedom structure, but may be configured in various ways without being limited to the number of links, such as may take a single link structure.
  • the torque free linkage unit 10 of the present invention includes a base link 110, a first link 100, a second link 200, and a third link 300.
  • the first joint J1 is connected between the base link 110 and the first link 100
  • the second joint J2 is connected between the first link 100 and the second link 200
  • the second link A third joint J3 is formed and disposed between the 200 and the third link 300.
  • the base link 110 may take a position fixing structure.
  • a separate base joint J0 vertically intersecting with the first joint J1 may be further provided, and the base link 110 may form a predetermined rotation state around the base joint J0.
  • the first reference part 132, the second reference part 231, and the third reference part 311 are disposed in the third joint between the three links 300, respectively.
  • the first counter balancer 150 is disposed on the first link 100
  • the second counter balancer 240 is disposed on the second link 200
  • the third counter balancer 340 is disposed on the third link 300.
  • Bevel gear-based DPU is disposed on the first link, the second link and the third link.
  • the base link 110 includes a left base frame 111 and a right base frame 112, and the left base frame 111 and the right base frame 112 take a structure that can be mounted externally.
  • the torque free linkage unit 10 is arranged with a counter balancer of a slider crank structure and a double parallel unit of a bevel gear structure.
  • the counter balancer is arranged on the right side of the link and the double parallel unit is arranged on the left side.
  • the double parallel unit is arranged on the left side.
  • the left base frame 111 and the right base frame 112 form a structure connected to the first link base joint connection bodies 123 and 142 of the first link 100.
  • the left base frame 111 and the right base frame 112 form a structure facing each other.
  • the left base frame 111 and the right base frame 112 are assembled to face each other to form a predetermined internal space, and the first driving unit 120 is disposed on the base link 110 and the first link 100.
  • the first driving unit 120 is disposed in the base link 110, and in the inner space of the base link 110, the first driving unit 120 generates a rotational force for rotating the first link.
  • the first link motor 125 is disposed.
  • the first link motor 125 provides a rotational force for rotating the first link about the rotation axis of the first joint.
  • the first link motor 125 is simply expressed, but may have a structure in which a reducer is built in, or in some cases, may be configured such that a separate reducer may be connected.
  • the first driving unit 120 includes first link power transmission units 124 and 126, wherein the first link power transmission units 124 and 126 are disposed between the first link motor 125 and the first link 100 side.
  • the rotational force of the first link motor 125 is transmitted to the first link 100 to form a relative rotation of the first link 100.
  • the first link power transmission unit 124, 126 includes a first ring gear 124 and a first pinion gear 126.
  • the first pinion gear 126 is connected to the rotation shaft of the first link motor 125 and meshes with the first ring gear 124.
  • One end of the first link 100 is rotatably connected to the base link 110 to form a first joint J1, and a center of gravity of the first link 100 is spaced apart from the first joint J1.
  • the first link 100 includes first link plates 161 and 165 and a first link shaft 164.
  • First link base joint connecting portions 123, 140; 141, 142 and 143 and first link second link joint connecting portions 171, 172, and 173 may be disposed at end portions of the first link, respectively.
  • the first link plates 161 and 165 include a first link plate A part 161 and a first link plate B part 165.
  • the first link plates 161 and 163 are disposed to face each other with the first spring block 154 and the first compression spring 163 of the first counter balancer 150 described below.
  • the first link plate A part 161 of the first link plates 161 and 163 is disposed between the first reference portion 132 and the first compression spring 163 that are positioned and fixed to the base link 110.
  • the first link plate B part 165 allows the first spring block 154 to be disposed between the first compression spring 163 and the first compression spring 163.
  • First link base joint connecting portions 123 and 143 are disposed in the first link plate A part 161, and first link second link joint connecting portions 171, 172 and 173 are disposed in the first link plate B part 163 and spaced apart from each other.
  • a first link shaft 164 is disposed between the first link plate A part 161 and the first link plate B part 163 to form the first link plate A part 161 and the first link plate B part 163. Connect it.
  • the first link shaft 164 is embodied as a hollow shaft in the present embodiment, and enables a through arrangement of the parallel diagram shaft of the double parallel unit.
  • the first link base joint connecting portions 123 and 142 forming the first joint J1 together with the base link 110 are disposed, and the first link base joint connecting portions 123 and 142 are provided.
  • the first link-1 123 inserts the first cross roller bearing 121 to support the moment applied to the torque free linkage unit implemented by the robot arm.
  • the outer ring and the inner ring of the first cross roller bearing 121 are press-fixed to the first link-1 123 by the first push flange 122 and the second push flange 131, respectively.
  • the first link-1 123 is connected to the first link plate A part 161 of the first link plates 161 and 165 of the first link 100 described below.
  • the other side of the first link plate A part 161 is connected to the first link-3 142, and the first link-3 142 is rotatably disposed on the right base frame 112.
  • the first link-3 142 is assembled through the deep groove ball bearing 2 (141), and the third pressing flange 143 presses and fixes the inner ring of the deep groove ball bearing 2 (141).
  • the first link-3 142 is coupled to the first link plate A part 161 so that the first link 100 can be rotatably mounted to the base link 110 together with the first link-1 123. do.
  • a first ring gear 124 is fixedly mounted on the first link-1 123, and the first ring gear 124 is formed in an arc of a C type to prevent interference with the first small bevel gear A 133. Is formed.
  • the first pinion gear 126 is connected to the first link motor 125 fixed to the right base frame 112.
  • the first pinion gear 126 is meshed with the first ring gear 124 to transmit the rotational force when the first link motor 125 is operated so that the first pinion gear 126 may move the first ring gear 124. By rotating, the first link 100 rotates about the first joint J1.
  • the first link-1 123 is coupled to the first link plate A part 161, and the first link plate A part 161 is spaced apart from the first link plate B part 164 by a first link.
  • the shaft 164 is disposed, and the first compression spring 163 and the first spring block 154 of the first counter balancer 150 are disposed on the outer circumference of the first link shaft 164.
  • the present invention is provided with a reference portion used in the counter balancer and the double parallel unit, in this embodiment the first reference portion 132 is assembled with the second pressing flange 131 fixed to the left base frame 111 position And is mounted to allow relative rotation between the first reference unit 132 and the first link 100.
  • the first parallel program gear unit 130 of the double parallel program unit described below includes first parallel program shafts 133, 134, and 136.
  • the first parallelogram shaft 133, 134, 136 includes a first small bevel gear A 133, a first small bevel gear B 134, and a first rotating shaft 136.
  • the first reference portion 132 fixedly mounted on the left base frame 111 is engaged with the first small bevel gear A 133, and the first small bevel gear A 133 is one end of the first rotating shaft 136.
  • the first small bevel gear B 134 is connected to the other end of the first rotary shaft 136.
  • Spacer 1 135 is disposed on the side of the first small bevel gear A 133 to match the assembly tolerance generated when the first small bevel gear A 133 is assembled with the first reference portion 132.
  • the first small bevel gear A 133 is assembled with the first small bevel gear B 134 through the first rotating shaft 136 and is fixed to the position of the first reference part 132 when the first link 100 is rotated. It transmits rotation that occurs through relative rotation.
  • the first rotary shaft 136 together with the first link plate A part 161 and the first link plate B part 165, respectively, the first-second link joint connection parallel connection unit 171 of the first link second link joint connection unit 171 It is supported by the deep groove bearing 1 (137, 138, 139) fixed to the, as described above, the first link shaft 164 is formed of a hollow shaft and the first rotary shaft 136 is a first link shaft ( 164 is disposed through.
  • the first base link joints 123, 140; 141, 142 and 143 forming the first joint J1 are disposed on the right base frame 112 to form a connection with the base link 110 of the first link 100, and the first link.
  • the components of the first counter balancer are disposed on the right side of the 100.
  • the first counter balancer 150 includes a first spring block 154, a first compression spring 163, and a first connecting rod 151, and the first spring block 154 is disposed on the base link 110. It is spaced apart from the first reference portion 132 is movable along the longitudinal direction of the first link (100).
  • One end of the first connecting rod 151 is rotatably spaced apart from the rotation center with respect to the first joint J1 on the first reference portion 132 side and the other end of the first spring block 154. It is rotatably mounted on the side to move the first spring block 154 as the first link 100 rotates about the first joint (J1).
  • the first compression spring 163 is disposed between the first spring block 154 and the first reference unit 132, one end of which is in contact with the first spring block 154, and the other end thereof is the first link of the first link 100.
  • the first spring block 154 may be elastically supported in contact with the first link plate A part of the plate, and thereby gravity compensation of the first link may be achieved through a predetermined elastic force.
  • the first spring block 154 is disposed through the first link shaft 164, and a total of four first link shafts 164 are disposed in the present embodiment, and the first spring block 154 has a first opening in the through hole of the first spring block 154.
  • the linear bush 153 is formed to enable smooth operation on the first link shaft 164.
  • the first link shaft 164 is disposed between the first link plate A part 161 and the first link plate B part 165, and the first compression spring 163 is an outer circumference of the first link shaft 154. Is disposed in the elastic support for the first spring block 154.
  • first link shafts 164 may be provided, and tolerances are observed to maintain four straightness.
  • first link shaft 164 may be formed in a hollow shaft structure, and wiring of the motor may be made therein. Such a structure may be combined using a hollow bolt.
  • the first link plate B part 165 is provided with a first link second link joint connection unit 170 connected to the second link 200 to form a second joint J2.
  • the first link second link joint connection unit 170 is connected to the first link plate B part 165, the first link link parallel connection 171 and the first link link parallel connection 171 It is connected to the second link (J2) centered relative to the second link 200 to be connected to the second link 200, the first link link parallel connection extending portion 172 and the first link link connection (1-2) 173).
  • the first rotary shaft 136 of the double parallel unit (DPU) is penetrated by the deep groove bearings 1 (137, 138, and 139) in the 1-2 link joint connecting parallel connection part 171.
  • the first link 100 on which the first counter balancer 150 is disposed includes a first spring module 160, and the first spring module 160 includes a first link shaft on which the first compression spring 163 is disposed.
  • a first counter balancer cover 162 covering the outside of the 164 is included.
  • connection structure with the first spring block 154 side to which the other end of the first connecting rod 152 is connected may form a direct connection with the first spring block 154, but the first counter balancer 150 of the present embodiment Includes a first road block 152.
  • the first rod block 152 is connected to the first spring block 154 on one side of the first spring block 154 and the other side is disposed to face the first link plate A part 161 in the movable direction and the first rod
  • the other side of the block 152 is rotatably connected to the other end of the first connecting rod 152.
  • a through hole is formed in the first link plate A part 161 and the first connecting rod 152 is movably disposed through the through hole formed in the first link plate A part 161.
  • two deep groove ball bearings 3 155 may be inserted and connected in parallel to sufficiently support the spring compression force.
  • a structure that is connected at the center with the first spring block 154 by using the connection structure through the first road block 152 may be formed to effectively distribute the force.
  • the length of the first connecting rod 152 is limited to form a constraint.
  • the first rod block 152 and the first spring block 154 connected to the other side of the first connecting rod 152 move along the first link shaft 164 in the longitudinal direction of the first link 100.
  • the rod adjuster has an adjusting lead screw, an adjusting lead screw and an adjusting block.
  • the adjustment lead screw is arranged radially from the center of the first joint J1 on the side of the first reference portion and can be pivotally adjusted in the longitudinal direction.
  • the adjustment block is positionally adjustable in the radial direction from the center of the first joint J1 according to the rotation of the adjustment lead screw along the longitudinal direction of the adjustment lead screw, and one end of the first connecting rod 152 is rotatably mounted.
  • the structure can be taken.
  • the second link 200 may be arranged to be connected through the first link second link joint connection unit 170 of the first link 100 illustrated in FIG. 12.
  • One end of the second link 200 is rotatably connected to the first link 100 to form a second joint J2 and form a link connection structure in which a center of gravity is spaced apart from the second joint J2.
  • the second link 200 includes a second counter balancer 240.
  • the second counter balancer 240 has a configuration that is formed in the second link 200 and the first counter balancer 150. It takes about the same structure.
  • One end of the second counter balancer 240 is disposed at the second joint J2 and the other end is disposed along the length of the second link 200 so that the second link 200 is centered on the second joint J2.
  • one end of the second link 200 is connected to one end of the first link 100, that is, one end of the first link second link joint connection unit 170.
  • One end of the second link 200 is rotatably connected to the first link 100 to form the second joint J2, and the center of gravity of the second link 200 is spaced apart from the second joint J2.
  • the second link 200 includes second link plates 251 and 254 and second link shafts 252, and second link first link joints 171, 172 and 173 and second link agents are formed at ends of the second link, respectively.
  • Three link joints 260; 261 and 263 may be disposed.
  • the second link plates 251 and 254 include a second link plate A part 251 and a second link plate B part 254.
  • the second link plates 251 and 254 are disposed to face each other with the second spring block 245 and the second compression spring 253 of the second counter balancer 240 described below.
  • the second link plate A part 251 of the second link plates 251 and 253 is fixed to the first joint J1 connected between the second link 200 and the first link 100 and is disposed in a fixed position. 231 and the second compression spring 253 is disposed.
  • the second link plate B part 254 allows the second spring block 245 to be disposed between the second compression spring 253 and the second compression plate 253.
  • Second link first link joints 211 and 220 are disposed on the second link plate A part 251.
  • a second link third link joint connection part 260 (261, 262) is disposed on the second link plate B part 253.
  • a second link shaft 252 is disposed between the second link plate A part 251 and the second link plate B part 253 spaced apart from each other so that the second link plate A part 251 and the second link plate B part ( 253).
  • the second link shaft 252 is embodied as a hollow shaft in the present embodiment, and allows the parallel arrangement of the parallelogram shaft of the double parallelogram unit described below.
  • the second link plate A part 251 is provided with a through hole that allows penetration of the second connecting rod of the second counter balancer as in the case of the first link.
  • One end of the second link 200 is provided with second link first link joints 211 and 220 forming a second joint J2 together with the first link 100.
  • the second reference part 231 is mounted on the second-first link joint connecting parallel connection 220 of the second link first link joint connecting parts 211 and 220, and the angular is attached to the second-first link joint connecting parallel connection 220.
  • the contact bearing 221 is disposed.
  • the outer ring of the angular contact bearing 221 is fixed to the 1-2 link joint connecting parallel connection extension 172 by the fourth pressing flange 222, and the inner ring of the angular contact bearing 221 is the 1-2 link. It is connected to the 2-1 link joint connection parallel connection link 223 through a fixing bolt 224 passing through the joint connection parallel connection extension portion 172, the 2-1 link joint connection parallel connection link 223 is It is mounted so that relative rotation is possible with respect to the 1-2 link joint connection parallel connection extension part 172.
  • the second reference part 231 is fixedly mounted to the second link joint connection parallel connection link 223 so that the second reference part 231 is implemented with a 1-2 link joint connection parallel connection extension part ( 172) can be rotated relative to each other to achieve independent free rotation.
  • the second reference unit 231 is shown to be close to the 1-2 link joint connection parallel connection extension unit 172 for smooth recognition in the figure.
  • the bevel gear is implemented and meshed with the first small bevel gear B 233 of the first parallax gear part to rotate in the same direction by matching the rotation direction with the first reference part 132.
  • the second reference part 231 is a plane perpendicular to the axis of rotation of the first reference part 132 and includes a rotational center of the first axis of rotation 136 of the first parallelogram shaft so that the reference positions are aligned to be parallel to each other.
  • the structure is alternately arranged so as to be arranged opposite to the arrangement area of the first reference portion 132 with reference to (see FIG. 7B).
  • the second link-3 211 is connected to the second link plate A part 251 of the second link plates 251 and 254 of the second link 200, and the second link-3 211 is the first link. It is rotatably arranged at the -2 link joint connection drive connection (173).
  • the second link-3 211 is connected through the cross roller bearing 2 (213), the inner ring of the cross roller bearing 2 (213) is connected to the second link-3 (211).
  • the outer ring of the cross roller bearing 2 (213) is connected to the 1-2 link joint connection drive connecting portion 173 through the fifth push flange 212.
  • a second link joint connection cover 217 is disposed outside the 1-2 link joint connection driving connector 173.
  • the second link-3 211 is coupled to the second link plate A part 251 to allow the second link 200 to be rotatably mounted to the first link 100.
  • the second ring gear 215 of the second driving unit 210 is fixedly mounted to the second link-3 211.
  • the operation range of the second joint J2 is a second criterion in which the second small bevel gear B 233 and the second small bevel gear A 232 are implemented as the bevel gears of the second joint. While engaging with the unit 231 is limited to the range that does not interfere with each other.
  • the second link connection limiting unit 238 may be provided to support or limit the rotation of the second joint.
  • the second pinion gear 216 is connected to the second link motor 214 of the second driving unit 210 mounted on the 1-2 link connecting connection driving connector 173.
  • the second pinion gear 216 is meshed with the second ring gear 215 to transfer the rotational force when the second link motor 214 is operated, so that the second pinion gear 216 receives the second ring gear 215. By rotating, the second link 200 rotates about the second joint J2.
  • the second link shaft 252 is disposed between the second link plate A part 251 of the second link 200 and the second link plate B part 252 spaced apart from each other.
  • the second compression spring 253 and the second spring block 245 of the second counter balancer 240 are disposed on the outer circumference of the second link shaft 252.
  • the second parallelogram gear portion 230 of the double parallel unit includes a second parallelogram shafts 232, 233, and 235, and the second parallelogram shafts 232, 233, and 235 have a second small bevel gear A (232). And a second small bevel gear B 233 and a second rotating shaft 235.
  • the second reference part 231 fixedly mounted to the 2-1 link joint connection parallel connection link 223 mounted relatively rotatable with respect to the 1-2 link joint connection parallel connection extension part 172 is of a second type.
  • Bevel gear A (232) is meshed with, the second small bevel gear A (232) is connected to one end of the second rotary shaft 235, the second small bevel gear B (233) is the other end of the second rotary shaft 235 Is connected to.
  • Spacer 2 234 is disposed on the side of the second small bevel gear A 232 to match the assembly tolerance generated when the second small bevel gear A 232 and the second reference portion 231 are assembled.
  • the second small bevel gear A 232 is assembled with the second small bevel gear B 233 through the second rotating shaft 235 to the second reference portion 231 fixed in position when the second link 200 rotates. It transmits rotation that occurs through relative rotation.
  • the second rotating shaft 235 is supported by the deep groove bearings 2 (236, 237) fixed to the second link plate A part 251 and the second link plate B part 254, respectively, as described above.
  • the shaft 252 is formed of a hollow shaft and the second rotation shaft 235 is disposed through the second link shaft 252.
  • Components of the second counter balancer are disposed on the right side of the second link 200, and the second counter balancer 240 includes the second spring block 245, the second compression spring 253, and the second connecting rod 241. ).
  • the second spring block 245 is spaced apart from the second reference part 231 disposed on the second joint J2 of the second link 200 and movable along the longitudinal direction of the second link 200.
  • One end of the second connecting rod 241 is rotatably spaced apart from the rotation center with respect to the second joint J2 on the side of the second reference part 231, and the other end thereof is the second spring block 245. Is rotatably mounted on the side to move the second spring block 245 as the second link 200 is rotated about the second joint (J2).
  • the second compression spring 253 is disposed between the second spring block 245 and the second reference portion 231, one end of which is in contact with the second spring block 245, and the other end thereof is the second link of the second link 200.
  • the second spring block 245 is elastically supported in contact with the second link plate A part of the plate, and thereby gravity compensation of the second link may be achieved through a predetermined elastic force.
  • the second spring block 245 is disposed through the second link shaft 252, and a total of four second link shafts 252 are disposed in the present embodiment, and the second spring block 245 is disposed in the through hole of the second spring block 245.
  • a linear bush 244 is formed to enable smooth operation on the second link shaft 252.
  • the second link shaft 252 is disposed between the second link plate A part 251 and the second link plate B part 254, and the second compression spring 253 is an outer circumference of the second link shaft 245. Is disposed in the elastic support for the second spring block 245.
  • second link shafts 252 may be provided, and tolerances are observed to maintain four straightness.
  • the wiring of the motor can be made therein.
  • Such a structure can be coupled using a hollow bolt.
  • the second link plate B part 254 is disposed with a second link third link joint 260 connected to the third link 300 to form a third joint J3.
  • the second link third link joint connection unit 260 connects the second link joint connection parallel connection unit 262 and the second link joint connection drive connection unit 261 connected to the second link plate B part 254. Include.
  • a second rotation shaft 235 of the double parallel unit (DPU) supported by the deep groove bearing 2 (237) is disposed therethrough.
  • the second link 200 on which the second counter balancer 240 is disposed includes a second spring module 250, and the second spring module 250 includes a second link shaft on which the second compression spring 253 is disposed. And a second counter balancer cover (255, 256) covering the outside of the (252).
  • connection structure with the side of the second spring block 245 to which the other end of the second connecting rod 241 is connected may form a direct connection with the second spring block 245, but the second counter balancer 240 of the present embodiment ) Includes a second road block 243.
  • the second road block 243 is connected to the second spring block 245 on one side of the second spring block 245 and the other side is disposed to face the second link plate A part 251 in the movable direction and the second rod
  • the other side of the block 243 is connected to the other end of the second connecting rod 241 so as to be relatively rotatable.
  • a through hole is formed in the second link plate A part 251 and the second connecting rod 241 is movably disposed through the through hole formed in the second link plate A part 251.
  • the deep groove ball bearing 4 (242) can be taken so as to fully support the spring compression force.
  • a structure that is connected at the center with the second spring block 245 by using the connection structure through the second road block 243 is formed can be effectively distributed the force.
  • the length of the second connecting rod 241 is limited to form a constrained condition, whereby the second connecting rod ( The second road block 243 and the second spring block 245 connected to the other side of the 241 can move along the second link shaft 252 in the longitudinal direction of the second link 200 to compress and form a predetermined elastic force. This can minimize the amount of torque required to compensate for the torque caused by the weight of the second link to compensate for the weight of the second link.
  • a rod adjustment unit may further include a connection position between the second reference portion formed with the bevel gear and the second connecting rod.
  • the third link 300 may be disposed at the end of the second link 200, the third link 300 is connected to one end rotatably connected to the second link 200, the third joint (J3 ) And the center of gravity is spaced apart from the third joint (J3).
  • the third reference part 311 of the third parallelogram gear part 310 is disposed at a position where the third joint J3 is formed at the other end of the second link 200, that is, at one end of the third link 300.
  • the third reference part 311 may also be implemented as a third reference bevel gear having a bevel gear structure.
  • the third reference unit 311 forms an alternating arrangement structure with respect to the second reference unit 231 similarly to the alternating arrangement structure of the first reference unit and the second reference unit. That is, the third reference unit 311 is disposed opposite to the arrangement area of the second reference unit about a plane perpendicular to the axis of rotation of the second reference unit 231 and including the rotation center of the second parallelogram shaft.
  • the third link 300 includes third link bodies 320; 321, 322, 324, 326 and 327, and a third link shaft 345, and third link second link joints 312 are disposed at ends of the third link. Can be.
  • the third link second link joint connection unit 312 is rotatably connected to the second link third link joint connection unit 260 (261, 262).
  • Deep groove ball bearings 5 313 are disposed in the second--3 link joint connection parallel connection 262 of the second link third link joint connection unit 260; 261 and 262.
  • the 3-2 link joint connection parallel connection parts 312 and 314 are connected to the inner ring of the deep groove ball bearing 5 313 and are supported at both sides of the 2-3 link joint connection parallel connection part 262.
  • the 3-2 link joint connection parallel connection unit 312 and 314 includes a 3-2 link joint connection parallel connection unit A 312 and a 3-2 link joint connection parallel connection unit B 314.
  • the third reference part 311 implemented in the third reference bevel gear is disposed in the third-second link joint connection parallel connection part A 312.
  • the third reference part 311 is connected to the third link body side A 321 so as to be relatively rotatable through the deep groove bearing 7 323.
  • the third reference unit 311 may be connected to the 3-2 link joint connection parallel connection B (314) through the 3-2 link joint connection parallel connection A (312) to form a rotation state together.
  • the 3-2 link joint connection parallel connection part B 314 has a radius from the center of rotation of the third connecting rod 341 and the 3-2 link joint connection parallel connection part B 314 of the third counter balancer 340 described below. Relatively connected at a position spaced in the direction.
  • the bent brain has a third reference portion 311 which rotates in the same direction by matching the rotational direction with the first reference portion 132 and the second reference portion, thereby matching the reference position to achieve parallelism.
  • the third reference part 311 is disposed opposite to the arrangement area of the second reference part about a plane perpendicular to the rotation axis of the second reference part and including the rotation center of the second rotation axis of the second parallelogram shaft. To form a structure arranged alternately (see Fig. 7 (b)).
  • the third link bodies 320; 321, 322, 324 and 326 may include the third link body side A 321, the third link body side B 324, the third link body front 322, the third link body upper 326, and the third.
  • Link body bottom 327 is included.
  • the third link bodyside A 321, the third link bodyside B 324, the third link body upper 326, and the third link body bottom 327 are connected to the third link body front 322.
  • a third link shaft 345 is disposed along the length of the third link in the third link bodyside B 324, and a third counter balancer 340 is disposed in the third link bodyside B 324.
  • the third counter balancer 340 includes a third spring block 343, a third compression spring 346, and a third connecting rod 341.
  • a third spring block 343 is spaced apart from the third reference portion 311 in the third link shaft 345 to be movable along the longitudinal direction of the third link 300.
  • a third compression spring 346 is disposed between the third spring block 343 and the third reference unit 311 around the third link shaft 345, and one end of the third connecting rod 341 is formed.
  • 3 reference part 311 side more specifically, relative to the third reference part 311 relative to the third joint (J3) of the 3-2 link joint connection parallel connection B (314) is connected to coaxial rotation. It is spaced apart from the rotation center in the radial direction and is rotatably disposed, and the other end is rotatably mounted on the third spring block 343 side to move the third spring block 343 as the third reference unit 311 rotates. Let's do it.
  • a third compression spring 346 is disposed between the third spring block 343 and the third reference unit 311 to elastically support the third spring block 343.
  • An end of the third connecting rod 341 is rotatably connected to the third spring block 343 through the deep groove ball bearing 6 342.
  • the third driving unit 330 includes a third link motor 331 and third link power transmission units 332 and 333.
  • the third link motor 331 generates a rotational force about a rotation axis perpendicular to the longitudinal direction of the third link 300.
  • the third link power transmission units 332 and 333 are disposed between the third link motor 331 and the second link 200 to transfer the rotational force generated by the third link motor 331 to the second link 200. To form a relative rotation of the third link 300.
  • the third link power transmission unit 332, 333 includes a third pinion gear 332 and a third ring gear 333, and the third pinion gear 332 is connected to the rotation shaft of the third link motor 331.
  • the third ring gear 333 is fixedly mounted to the second link 200 side, more specifically, to the second to third link joint connection driving connection part 261 of the second link 200, and the third pinion gear 332. ) Is matched with).
  • the third pinion gear 332 is rotated by the rotational force of the third link motor 331, the third ring gear 331 to be engaged is also rotated together.
  • the third link 300 makes a relative rotation with respect to the second link 200 about the third joint J3.
  • Torque-free linkage unit of the present invention is not in the form of a robot arm, such as a delivery mechanism device for the transfer of parcels, shipments, baggage, etc. It can be used in various mechanical configurations of the slider crank based counterbalancer or bevel gear based, such as a mechanical structure that does not require additional driving force, and a plurality of continuous link arrangement structure in addition to the singular link arrangement structure, etc. Various modifications are possible in the range including the double parallel unit.
  • the torque free linkage unit of the present invention can be applied to a variety of robotic devices such as industrial, home, medical, etc., and can be applied to a mechanical element that implements a gravity compensation function by a predetermined self-weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

본 발명은, 베이스링크; 및 상기 베이스링크에 일단이 회동 가능하게 연결 배치되어 제1관절을 형성하고 무게중심이 상기 제1관절로부터 이격되는 제1링크;를 구비하고, 상기 제1링크는, 일단이 상기 제1관절에 배치되고 타단이 상기 제1링크의 길이 방향을 따라 배치되어 상기 제1링크가 상기 제1관절을 중심으로 회동하는 경우 상기 제1링크의 중력을 보상하는 제1카운터밸런서를 구비하고, 상기 제1카운터밸런서는: 인가되는 회전력을 상기 제1링크에 전달하고 상기 베이스링크에 배치되는 제1기준부와 이격되어, 상기 제1링크의 길이 방향을 따라 가동가능한 제1스프링블록과, 일단이 상기 제1기준부 측의 상기 제1관절에 대한 회전 중심으로부터 반경 방향으로 이격되어 회동 가능하게 배치되고, 타단이 상기 제1스프링블록 측에 회동 가능하게 장착되어 상기 제1링크가 상기 제1관절을 중심으로 회동함에 따라 상기 제1스프링블록을 가동시키는 제1커넥팅로드와, 상기 제1스프링블록과 상기 제1기준부 사이에 배치되는 제1압축스프링을 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트를 제공한다.

Description

토크 프리 링키지 유니트
본 발명은 중력보상기구에 관한 것으로, 링크의 자중으로 인하여 회동 관절에 발생하는 중력토크를 기계적으로 보상하여, 링크가 정지 또는 회전 시에 자중을 지지하는 데 필요한 모터토크가 0이 되도록 하는 구조에 관한 것이다.
대부분의 관절 및 링크로 구성된 직렬 구조를 갖는 장치의 경우(예, 로봇 머니퓰레이터), 각 관절에 장착된 모터 토크의 대부분은 링크의 무게를 지지하기 위하여 사용된다.
이 때 중력을 보상하는 데 필요한 모터토크는 장치의 움직임에 따라서 계속 변하게 되므로, 복잡한 동역학 방정식을 풀어야만 필요한 토크가 산출된다. 따라서 다양한 형태의 중력보상기구를 개발함으로써, 자중으로 인하여 인가되는 중력토크를 적절히 보상하여 기구부의 자세를 유지하거나 움직이는데 소요되는 모터토크를 최소화할 수 있다.
이를 통하여 필요한 모터의 용량을 최소화하거나, 동일한 모터를 사용하더라도 장치가 수행하는 작업에 더욱 큰 힘을 제공할 수 있는 기구를 개발할 수 있다.
또한 이를 다자유도로 확장함으로써 모든 관절에 인가되는 중력토크를 보상할 수 있게 한다.
현재까지 개발된 중력보상 기구는 크게 무게 추를 사용한 방법과 스프링 및 와이어를 사용한 방법이 주를 이루고 있다.
특히, 산업용 기기에서는 장비의 무게중심을 유지하고, 자중을 보상하기 위하여 힘의 작용점 반대쪽에 적당한 무게 추를 설치한다.
그러나 이와 같은 방법은 기구부 전체의 질량과 부피를 증가시킴으로써, 경량화/소형 설계 및 충돌 안전 등이 중요한 로봇 팔 등에는 사용하기 힘들다.
이를 해결하기 위하여 스프링의 압축력 및 인장력을 사용하는 방법이 제안되었다. 이 방법은 링크에 연결된 와이어가 링크의 회전 시에 스프링을 인장 또는 압축시킴으로써 발생하는 스프링 반발력을 사용하여 링크의 무게를 보상한다.
이와 같은 스프링을 사용하는 방법은 기존의 방법에 비하여 비교적 작은 부피 및 무게로 제작이 가능하므로, 서비스 로봇팔과 같은 소형 기구부에 적용이 용이하다.
그러나 본 방법은 장기간 사용 시에 와이어가 늘어나거나 또는 끊어지는 등의 파손이 발생하여 성능이 감소되고 안전이 위협 받는 등의 문제가 발생될 가능성이 크다.
그러므로 개발된 중력보상장치의 실용화 및 상용화를 위해서는 기존 와이어 기반의 중력보상장치를 대체할 수 있는 신뢰성 및 내구성이 높은 새로운 다자유도 중력보상장치의 개발이 필요하다.
본 발명에 구비되는 카운터밸런서의 기본 동작 개념은 도 1에 도시되는 바와 같다.
도 1(a)와 같이 질량 m, 무게중심까지의 거리 l인 링크로 구성된 일반적인 1자유도 링크가 θ만큼 회전하는 경우, 관절에는 다음과 같이 중력토크 Tg가 인가된다.
Figure PCTKR2014009918-appb-I000001
따라서 일반적으로는 링크를 회전시키거나 자세를 유지하기 위해서 관절에 인가되는 중력토크를 충분히 지지할 수 있는 모터 및 감속기를 사용해야 한다.
이러한 링크의 경우, 도 1(a)에 도시된 바와 같이 기준면과 링크 사이에 적절한 스프링을 삽입함으로써, 링크의 자중에 의하여 일정한 위치에서 인가되는 중력토크를 보상할 수 있으나 링크의 회전변위에 따라 도 1(b)와 같이 중력토크가 변하게 되므로, 도 1(c)와 같이 완전한 중력보상을 위해서는 각도에 따라 변하는 토크를 적절하게 보상하여 모든 변위에서 필요토크가 0이 되도록 할 수 있는 중력보상장치가 필요하다.
이러한 중력보상장치를 로봇팔에 탑재하는 경우, 로봇의 무게로부터 인가되는 중력토크를 상쇄하여, 로봇의 동작에 필요한 토크를 현저하게 감소시키므로, 낮은 용량의 모터 및 감속기로도 로봇팔을 구성할 수 있다.
이와 같은 중력보상을 위해 스프링을 사용한 다양한 중력보상장치가 개발되었다.
그러나 대부분의 기존 중력보상장치의 경우, 와이어를 통해 스프링을 압축함으로써 보상토크를 생성하는 방식이었으나, 상용화 단계에서 와이어에 대한 내구성 및 안정성 등의 문제가 지속적으로 제기되었다.
(특허문헌 1) KR10-0760846 B
본 발명의 목적은 상기 문제점을 해소하기 위한 것으로서, 기존 와이어 기반의 중력보상장치의 내구성 및 신뢰성을 개선한 새로운 다자유도 중력보상장치를 개발하여, 로봇팔 동작 시에 자세에 따른 모든 관절에 발생하는 자중에 의한 토크를 보상할 수 있게 한다.
이를 위하여 슬라이더-크랭크 기구 등 비교적 신뢰성 높은 기구요소를 사용하여 스프링을 압축시킴으로써 적절한 보상토크를 생성할 수 있는 중력보상장치를 개발하였고, 더불어 베벨기어를 사용하여 이중 평행사변형 기구를 구현함으로써, 개발된 중력보상장치를 다자유도로 확장시켰다.
이를 통하여 모든 구성에서 와이어를 배제함으로써, 중력보상장치의 신뢰성 및 수명을 개선시키고, 실용성을 향상시킬 수 있게 하였다.
더불어, 보상토크를 실시간으로 변화시킬 수 있는 가변 중력보상을 구현함으로써, 로봇의 자중뿐만이 아니라, 파지되는 물체의 무게까지 보상하여 로봇의 성능을 극대화할 수 있게 한다.
전술한 목적을 달성하기 위한 본 발명은, 링크 자중에 의해 발생되는 토크를 보상함으로써 어느 위치에서도 자세를 유지할 수 있는 링크 및 이를 구비하는 구조 및 중력 보상 장치를 제공한다.
본 발명의 일면에 따르면, 본 발명은 베이스링크; 및 상기 베이스링크에 일단이 회동 가능하게 연결 배치되어 제1관절을 형성하고 무게중심이 상기 제1관절로부터 이격되는 제1링크;를 구비하고, 상기 제1링크는, 일단이 상기 제1관절에 배치되고 타단이 상기 제1링크의 길이 방향을 따라 배치되어 상기 제1링크가 상기 제1관절을 중심으로 회동하는 경우 상기 제1링크의 중력을 보상하는 제1카운터밸런서를 구비하고, 상기 제1카운터밸런서는: 인가되는 회전력을 상기 제1링크에 전달하고 상기 베이스링크에 배치되는 제1기준부와 이격되어, 상기 제1링크의 길이 방향을 따라 가동가능한 제1스프링블록과, 일단이 상기 제1기준부 측의 상기 제1관절에 대한 회전 중심으로부터 반경 방향으로 이격되어 회동 가능하게 배치되고, 타단이 상기 제1스프링블록 측에 회동 가능하게 장착되어 상기 제1링크가 상기 제1관절을 중심으로 회동함에 따라 상기 제1스프링블록을 가동시키는 제1커넥팅로드와, 상기 제1스프링블록과 상기 제1기준부 사이에 배치되는 제1압축스프링을 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트를 제공한다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제1링크는: 상기 제1스프링블록 및 상기 제1압축스프링을 사이에 두고 대향하여 배치되되, 상기 제1기준부와 상기 제1압축스프링 사이에 배치되는 제1링크플레이트A파트와, 상기 제1압축스프링과의 사이에 상기 제1스프링블록이 배치되는 제1링크플레이트B파트를 포함하는 제1링크플레이트와, 상기 제1링크플레이트의 사이에 배치되는 제1링크샤프트를 구비하고, 상기 제1커넥팅로드는 상기 제1링크플레이트의 상기 제1링크플레이트A파트를 관통하여 배치되고, 상기 제1압축스프링은 상기 제1링크샤프트의 길이 방향을 따라 외주에 배치될 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제1카운터밸런서는, 상기 제1스프링블록의 일측에 상기 제1스프링블록의 가동 방향으로 상기 제1링크플레이트A파트를 향하여 배치되는 제1로드블록을 포함하고, 상기 제1커넥팅로드의 타단과 회동 가능하게 연결될 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제1카운터밸런서는 상기 제1커넥팅로드의 일단의 배치 위치를 조정하는 로드 조정부를 더 구비할 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제1기준부 측에는 상기 제1관절의 중심으로부터 반경 방향으로 배치되고 길이 방향으로 회동 조정 가능한 조정 리드 스크류와, 상기 조정 리드 스크류의 길이 방향을 따라 상기 조정 리드 스크류의 회동에 따라 상기 제1관절의 중심으로부터 반경 방향 상에서 위치 조정 가능하고, 상기 제1커넥팅로드의 일단이 회동 가능하게 장착되는 조정 블록을 구비할 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 베이스링크에는 상기 제1링크의 회전력 형성하는 제1구동부가 구비되고, 상기 제1구동부는; 상기 제1링크의 길이 방향에 수직하는 회전축을 중심으로 회전력을 생성하는 제1링크모터와, 상기 제1링크모터와 상기 제1링크 측 사이에 배치되어 상기 제1링크모터의 회전력을 상기 제1링크 측에 전달하여 상기 제1링크의 상대 회동을 형성하는 제1링크 동력전달부를 구비할 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제1링크 동력전달부는: 상기 제1링크모터에 연결되는 제1피니언기어와, 상기 제1링크 측에 고정 장착되고 상기 제1피니언기어와 치합되는 제1링기어를 구비할 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제1링크에 일단이 회동 가능하게 연결 배치되는 제2관절을 형성하고 무게중심이 상기 제2관절로부터 이격되는 제2링크를 구비하고, 상기 제2링크는, 일단이 상기 제2관절에 배치되고 타단이 상기 제2링크의 길이 방향을 따라 배치되어 상기 제2링크가 상기 제2관절을 중심으로 회동하는 경우 상기 제2링크의 중력을 보상하는 제2카운터밸런서를 구비할 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제2카운터밸런서는: 상기 제2관절을 형성하는 상기 제2링크의 단부에 회전가능하게 배치되는 제2기준부와 이격되어 상기 제2링크의 길이 방향을 따라 가동가능한 제2스프링블록과, 일단이 상기 제2기준부 측의 상기 제2관절에 대한 회전 중심으로부터 반경 방향으로 이격되어 회동 가능하게 배치되고, 타단이 상기 제2스프링블록 측에 회동 가능하게 장착되어 상기 제2기준부가 회동함에 따라 상기 제2스프링블록을 가동시키는 제2커넥팅로드와, 상기 제2스프링블록과 상기 제2기준부 사이에 배치되는 제2압축스프링을 구비할 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제2링크는: 상기 제2스프링블록 및 상기 제2압축스프링을 사이에 두고 대향하여 배치되되, 상기 제2기준부와 상기 제2압축스프링 사이에 배치되는 제2링크플레이트A파트와, 상기 제2압축스프링과의 사이에 상기 제2스프링블록이 배치되는 제2링크플레이트B파트를 포함하는 제2링크플레이트와, 상기 제2링크플레이트의 사이에 배치되는 제2링크샤프트를 구비하고, 상기 제2커넥팅로드는 상기 제2링크플레이트A파트를 관통하여 배치되고, 상기 제2압축스프링은 상기 제2링크샤프트의 길이 방향을 따라 외주에 배치될 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제2카운터밸런서는, 상기 제2스프링블록의 일측에 상기 제2스프링블록의 가동 방향으로 상기 제2링크플레이트A파트를 향하여 배치되는 제2로드블록을 포함하고, 상기 제2커넥팅로드의 타단과 회동 가능하게 연결될 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제2카운터밸런서는 상기 제2커넥팅로드의 일단의 배치 위치를 조정하는 로드 조정부를 더 구비할 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제2기준부 측에는 상기 제1관절의 중심으로부터 반경 방향으로 배치되고 길이 방향으로 회동 조정 가능한 조정 리드 스크류와, 상기 조정 리드 스크류의 길이 방향을 따라 상기 조정 리드 스크류의 회동에 따라 상기 제2관절의 중심으로부터 반경 방향 상에서 위치 조정 가능하고, 상기 제2커넥팅로드의 일단이 회동 가능하게 장착되는 조정 블록을 구비 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제1링크에는 상기 제2링크의 회전력 형성하는 제2구동부가 구비되고, 상기 제2구동부는; 상기 제2링크의 길이 방향에 수직하는 회전축을 중심으로 회전력을 생성하는 제2모터와, 상기 제2모터와 상기 제2링크 측 사이에 배치되어 상기 제2모터의 회전력을 상기 제2링크 측에 전달하여 상기 제2링크의 상대 회동을 형성하는 제2링크 동력전달부를 구비할 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제2링크 동력전달부는: 상기 제2모터에 연결되는 제2피니언기어와, 상기 제2링크 측에 고정 장착되고 상기 제2피니언기어와 치합되는 제2링기어를 구비할 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제1링크에 일단이 회동 가능하게 연결 배치되는 제2관절을 형성하고 무게중심이 상기 제2관절로부터 이격되는 제2링크가 구비되고, 상기 제2관절을 형성하는 상기 제2링크의 단부에 회전가능하게 배치되는 제2기준부; 및 일단이 상기 제1기준부에 치합되고 타단이 상기 제2기준부에 치합되는 제1패러렐로그램샤프트를 포함하는 패러렐로그램기어부;를 포함하고, 상기 제1관절 및 상기 제2관절을 이루는 상기 제2기준부와 상기 제1기준부의 회전각도 기준을 동일하게 형성시키는 더블패러렐로그램 유니트를 더 구비하고, 상기 제2기준부는, 상기 제1기준부의 회전축에 수직하고 상기 제1패러렐로그램샤프트의 회동 중심을 포함하는 평면을 중심으로 상기 제1기준부의 배치 영역과 반대편에 배치될 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제1기준부는 베벨 기어 타입의 제1기준베벨기어로 형성되고, 상기 제2기준부는 베벨 기어 타입의 제2기준베벨기어로 형성되고, 상기 제1패러렐로그램샤프트는: 상기 제1기준베벨기어와 치합되는 제1소형베벨기어A와, 상기 제2기준베벨기어와 치합되는 제1소형베벨기어B와, 일단에 상기 제1소형베벨기어A가 그리고 타단에 상기 제1소형베벨기어B가 배치되는 제1회전축을 구비할 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제2링크는, 일단이 상기 제2관절에 배치되고 타단이 상기 제2링크의 길이 방향을 따라 배치되어 상기 제2링크가 상기 제2관절을 중심으로 회동하는 경우 상기 제2링크의 중력을 보상하는 제2카운터밸런서를 구비하고, 상기 제2링크의 타단에는 상기 제2관절과 평행한 제3관절을 형성하는 제3기준부가 배치되고, 상기 더블 패러렐로그램 유니트는 상기 제3기준부의 지면에 대한 회전각도 기준도 상기 제2기준부 및 상기 제1기준부와 동일하게 형성하기 위하여, 상기 패러렐로그램기어부는, 일단이 상기 제2기준부에 치합되고 타단이 상기 제3기준부에 치합되는 제2패러렐로그램샤프트를 포함하고, 상기 제3기준부는, 상기 제2기준부의 회전축에 수직하고 상기 제2패러렐로그램샤프트의 회동 중심을 포함하는 평면을 중심으로 상기 제2기준부의 배치 영역과 반대편에 배치될 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제2기준부는 베벨 기어 타입의 제2기준베벨기어로 형성되고, 상기 제3기준부는 베벨 기어 타입의 제3기준베벨기어로 형성되고, 상기 제2패러렐로그램샤프트는: 상기 제2기준베벨기어와 치합되는 제2소형베벨기어A와, 상기 제3기준베벨기어와 치합되는 제2소형베벨기어B와, 일단에 상기 제2소형베벨기어A가 그리고 타단에 상기 제2소형베벨기어B가 배치되는 제2회전축을 구비할 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제3기준부의 외측에는, 상기 제2링크에 일단이 회동 가능하게 연결 배치되어 상기 제3관절을 형성하고 무게중심이 상기 제3관절로부터 이격되는 제3링크를 구비할 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제3링크는, 일단이 상기 제3관절에 배치되고 타단이 상기 제3링크의 길이 방향을 따라 배치되어 상기 제3링크가 상기 제3관절을 중심으로 회동하는 경우 상기 제3링크의 중력을 보상하는 제3카운터밸런서를 구비하고, 상기 제3카운터밸런서는: 상기 제3기준부와 이격되어 상기 제3링크의 길이 방향을 따라 가동가능한 제3스프링블록과, 일단이 상기 제3기준부 측의 상기 제3관절에 대한 회전 중심으로부터 반경 방향으로 이격되어 회동 가능하게 배치되고, 타단이 상기 제3스프링블록 측에 회동 가능하게 장착되어 상기 제3기준부가 회동함에 따라 상기 제3스프링블록을 가동시키는 제3커넥팅로드와, 상기 제3스프링블록과 상기 제3기준부 측 사이에 배치되는 제3압축스프링을 구비할 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제3링크에는 상기 제3링크의 회전력 형성하는 제3구동부가 구비되고, 상기 제3구동부는; 상기 제3링크의 길이 방향에 수직하는 회전축을 중심으로 회전력을 생성하는 제3모터와, 상기 제3모터와 상기 제2링크 측 사이에 배치되어 상기 제3모터의 회전력을 상기 제2링크 측에 전달하여 상기 제3링크의 상대 회동을 형성하는 제3링크 동력전달부를 구비할 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제3링크 동력전달부는: 상기 제3모터에 연결되는 제3피니언기어와, 상기 제2링크 측에 고정 장착되고 상기 제3피니언기어와 치합되는 제3링기어를 구비할 수도 있다.
본 발명의 다른 일면에 따르면, 본 발명은 베이스링크; 상기 베이스링크에 일단이 회동 가능하게 연결 배치되어 제1관절을 형성하고 무게중심이 상기 제1관절로부터 이격되는 제1링크; 및 상기 제1링크에 일단이 회동 가능하게 연결 배치되는 제2관절을 형성하고 무게중심이 상기 제2관절로부터 이격되는 제2링크가 구비되고, 상기 제1링크는, 일단이 상기 제1관절에 배치되고 타단이 상기 제1링크의 길이 방향을 따라 배치되어 상기 제1링크가 상기 제1관절을 중심으로 회동하는 경우 상기 제1링크의 중력을 보상하는 제1카운터밸런서를 구비하고, 상기 베이스링크에 위치 고정 배치되어 회동이 제한되는 제1기준부; 상기 제2관절을 형성하는 상기 제2링크의 단부에 회전가능하게 배치되는 제2기준부; 및 일단이 상기 제1기준부에 치합되고 타단이 상기 제2기준부에 치합되는 제1패러렐로그램샤프트를 포함하는 패러렐로그램기어부;를 포함하고, 상기 제1관절 및 상기 제2관절을 이루는 상기 제2기준부와 상기 제1기준부의 회전각도 기준을 동일하게 형성시키는 더블패러렐로그램 유니트를 더 구비하고, 상기 제2기준부는, 상기 제1기준부의 회전축에 수직하고 상기 제1패러렐로그램샤프트의 회동 중심을 포함하는 평면을 중심으로 상기 제1기준부의 배치 영역과 반대편에 배치되는 것을 특징으로 하는 토크 프리 링키지 유니트를 제공한다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제1기준부는 베벨 기어 타입의 제1기준베벨기어로 형성되고, 상기 제2기준부는 베벨 기어 타입의 제2기준베벨기어로 형성되고, 상기 제1패러렐로그램샤프트는: 상기 제1기준베벨기어와 치합되는 제1소형베벨기어A와, 상기 제2기준베벨기어와 치합되는 제1소형베벨기어B와, 일단에 상기 제1소형베벨기어A가 그리고 타단에 상기 제1소형베벨기어B가 배치되는 제1회전축을 구비할 수도 있다.
상기 토크 프리 링키지 유니트에 있어서, 상기 제2링크는, 일단이 상기 제2관절에 배치되고 타단이 상기 제2링크의 길이 방향을 따라 배치되어 상기 제2링크가 상기 제2관절을 중심으로 회동하는 경우 상기 제2링크의 중력을 보상하는 제2카운터밸런서를 구비하고, 상기 제2링크의 타단에는 상기 제2관절과 평행한 제3관절을 형성하는 제3기준부가 배치되고, 상기 더블 패러렐로그램 유니트는 상기 제3기준부의 지면에 대한 회전각도 기준도 상기 제2기준부 및 상기 제1기준부와 동일하게 형성하기 위하여, 상기 패러렐로그램기어부는, 일단이 상기 제2기준부에 치합되고 타단이 상기 제3기준부에 치합되는 제2패러렐로그램샤프트를 포함하고, 상기 제3기준부는, 상기 제2기준부의 회전축에 수직하고 상기 제2패러렐로그램샤프트의 회동 중심을 포함하는 평면을 중심으로 상기 제2기준부의 배치 영역과 반대편에 배치될 수도 있다.
상기한 바와 같은 구성을 갖는 본 발명에 따른 토크 프리 링키지 유니트는 다음과 같은 효과를 갖는다.
첫째, 본 발명의 토크 프리 링키지 유니트는, 링크 유니트, 예를 들어 로봇의 링크와 같이 무게를 가지는 부품에서 중력으로 인해 발생하는 토크를 기계적으로 보상하여 모터로부터 중력토크를 제공받지 않음으로써, 모터가 발생하여야 하는 하중을 줄여주고, 이로 인하여 동일한 모터를 사용하여 보다 큰 하중을 감당하거나 주어진 하중에 대하여 작은 모터를 사용할 수 있게 한다.
둘째, 본 발명의 토크 프리 링키지 유니트는, 본 발명에서는 용이하게 가변 중력보상을 구현함으로써, 링크, 예를 들어 로봇의 자중뿐만 아니라 로봇이 파지하는 물체의 무게까지 보상이 가능하여, 로봇의 가반하중을 극대화시킬 수 있다.
셋째, 본 발명의 토크 프리 링키지 유니트는, 본 발명은 슬라이더-크랭크 메커니즘 및 베벨기어를 사용하여 다자유도 중력보상장치를 구현함으로써, 기존의 와이어를 사용할 때 발생할 수 있는 내구성 및 신뢰성 문제를 해결하였다.
넷째, 본 발명의 토크 프리 링키지 유니트는, 본 발명을 실제 다축관절 로봇으로 적용하면 모터와 감속기의 용량을 크게 줄일 수 있으므로 로봇의 가격을 획기적으로 낮출 수 있으며, 충돌 안전성을 향상시킬 수 있다.
본 발명은 도면에 도시된 실시 예들을 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허 청구 범위의 기술적 사상에 의해 정해져야 할 것이다.
도1은 중력토크를 나타내기 위한 1자유도 로봇팔이다.
도2는 본 발명의 일실시예에 따른 토크 프리 링키지 유니트의 슬라이더-크랭크 기구 타입의 카운터밸런서의 원리를 나타내는 구성도이다.
도3은 본 발명의 일실시예에 따른 토크 프리 링키지 유니트의 슬라이더-크랭크 기구를 활용한 카운터밸런서의 구성도이다.
도4는 본 발명의 일실시예의 변형예에 따른 토크 프리 링키지 유니트의 슬라이더-크랭크 기구를 활용한 카운터밸런서의 구성도
도5는 가변 중력보상장치에 따른 보상토크의 변화를 보여주는 그래프이다.
도6은 본 발명의 일실시예에 따른 토크 프리 링키지 유니트의 중력보상을 나타내는 선도 및 부분 확대도이다.
도7은 본 발명의 일실시예에 따른 토크 프리 링키지 유니트의 베벨기어 기반의 더블패러랠로그램유니트에 대한 개념도이다.
도8은 본 발명의 일실시예에 따른 토크 프리 링키지 유니트의 더블패러랠로그램유니트의 원리를 나타내는 평행사변형 기구에 대한 개념도이다.
도 9는 종래 기술의 다자유도 링크 구조의 구성도이다.
도 10는 본 발명의 일실시예에 따른 토크 프리 링키지 유니트의 베벨기어 기반의 이중 평행사변형 기구를 활용한 더블패러랠로그램유니트를 구비하는 다자유도 중력보상장치의 동작원리를 보여주는 구성도이다.
도 11은 다자유도 카운터밸런서가 탑재된 3자유도 본 발명의 일실시예에 따른 토크 프리 링키지 유니트의 구상도이다.
도 12은 본 발명의 일실시예에 따른 토크 프리 링키지 유니트의 제1링크의 구조 설명을 위한 분해도이다.
도 13는 본 발명의 일실시예에 따른 토크 프리 링키지 유니트의 제1링크의 중력보상장치 설명을 위한 구상도이다.
도 14은 본 발명의 일실시예에 따른 토크 프리 링키지 유니트의 제2링크의 구조 설명을 위한 분해도이다.
도 15는 본 발명의 일실시예에 따른 토크 프리 링키지 유니트의 제2링크의 중력보상 장치 설명을 위한 구상도이다.
도 16는 본 발명의 일실시예에 따른 토크 프리 링키지 유니트의 제3링크의 구조 설명을 위한 분해도이다.
이하에서는 본 발명에 따른 토크 프리 링키지 유니트에 대하여 도면을 참조하여 설명하기로 한다.
본 발명의 토크 프리 링키지 유니트는 로봇 팔의 형태로 구현되나, 이는 본 발명을 설명하는 일예로서 추가적인 구동력이 요하지 않는 기구적 구조를 이룰 수도 있고 단수 링크 배치 구조 이외 복수 개의 연속적 링크 배치 구조를 이룰 수도 있는 등 다양한 구성이 가능하나, 본 발명의 토크 프리 링키지 유니트는 복수 개의연속 배치되는 링크 구조의 로봇 팔로 구현되는 경우를 중심으로 설명한다.
또한 본 발명의 토크 프리 링키지 유니트는 각 링크 별로 하기되는 카운터밸런서 및/또는 더블패러랠로그램 유니트를 모두 구비하거나 택일 내지 조합 방식으로 다양한 구성이 가능하다.
본 실시예의 토크 프리 링키지 유니트(10)는 베이스 링크(110), 제1링크(100), 제2링크(200) 및 제3링크(300)를 구비하고, 제3링크(300)의 단부에 롤모터 또는 그립퍼 등으로 구현될 수 있는 엔드이펙터(미도시)가 더 배치 가능한 구조를 취할 수 있다.
기본적으로 본실시 예에 따른 토크 프리 링키지 유니트(10)는 링크의 위치 변화에 따라 발생하는 자중에 의한 토크를 보상하기 위한 중력보상기구로서 카운터 밸런서를 구비하는데, 이와 같은 중력보상기구에 대한 기구적 작동 과정 및 특성을 설명한다.
본 발명의 토크 프리 링키지 유니트(10)가 구비하는 카운터밸런서는 슬라이더 크랭크 기구 구조를 형성한다.
카운터밸런서(150,240,240)은 링크, 관절 및 기타 구동부의 모터 등의 무게에 의해서 발생하는 중력토크를 효과적으로 상쇄시켜서 실제 필요 토크가 0에 가깝도록 한다.
이 때, 링크의 위치에 따라서 중력토크의 크기가 계속 변하지만, 이를 효과적으로 상쇄시켜 자중에 의하여 발생하는 토크를 보상하기 위하여 필요 토크를 제거 내지 최소화시켜 필요 동력을 최소화시킴으로써 구동부에 의하여 생성되는 동력의 활용성을 증대시키거나 또는 동일 동작을 구현함에 있어 구동부를 최소화시켜 컴팩트한 구조 형성을 가능하게 한다.
또한, 중력보상기구를 다자유도로 확장시킴으로써, 모든 관절에 대한 중력보상도 가능하도록 하였다.
본 발명은 슬라이더-크랭크 기구 타입의 중력보상장치로서의 카운터밸런서를 구비한다.
본 발명에 구비되는 카운터밸런서의 기본 동작 개념은 도 2에 도시되는 바와 같다.
일반적으로 크랭크, 커넥팅 로드 및 슬라이더용 가이드를 포함한 링크로 구성된 슬라이더-크랭크 메커니즘의 경우, 도 2의 (a)과 같이 크랭크의 회전에 따라 일정한 길이의 커넥팅로드에 의해 슬라이더가 전, 후진하게 된다.
도 2의 (b)에는 변형된 형태의 슬라이더-크랭크 메커니즘(Inverse slider-crank mechanism)가 도시되는데, 이 경우 크랭크가 고정되어 있으므로, 링크의 회전에 따라 커넥팅로드에 의해 슬라이더가 전진 또는 후진한다.
본 발명은 이와 같은 변형된 슬라이더 크랭크 메커니즘을 활용하여 도 2의 (c)에 도시된 바와 같이 링크 내부(슬라이더와 고정부 사이)에 스프링을 삽입하고 크랭크에 대응하는 구성을 위치 고정시켜, 링크의 회전에 따라 커넥팅로드에 의해 이동하는 슬라이더가 스프링을 압축하게 함으로써, 스프링 압축력으로 인하여 회전 관절에 적절한 보상토크를 생성할 수 있는 중력보상장치로서의 카운터밸런서를 구현하였다.
본 발명의 슬라이더-크랭크 타입의 중력보상장치인 카운터밸런서의 개념 구조도는 도 3에 도시된 바와 같다.
링크로서의 아암이 고정된 베이스에 회동 가능하게 장착되고 스프링이 스프링 블록과 링크에 장착된 다른 고정부 사이에서 탄성 변형되고, 커넥팅로드의 일단은 스프링 블록에 회동 가능하게 장착되고, 커넥팅로드의 타단은 하기되는 기준부에 중심으로부터 이격되어 배치된다.
본 실시예에서 커넥팅로드의 타단이 기준부에 직접 연결되는 구조를 취하나, 기준부와 일체로 연결되거나 연장되되 상기 기준부에 대하여 상대회동하지 않고 고정되는 구성요소를 통한 연결을 이룰 수도 있다.
여기서, 베이스링크 측에 대응하는 크랭크는 회동 고정된 구조를 이루고 베이스의 링크 회전축으로부터 R만큼 떨어진 커넥팅로드 조인트까지의 프레임을 크랭크라고 가정할 때, 길이 lcr의 커넥팅로드는 링크의 회전에 따라 링크 상에 배치된 가이드를 따라 전후진하는 스프링 블록을 이동시키며, 강성 k인 스프링이 s만큼 압축된다.
Figure PCTKR2014009918-appb-I000002
이때, φ는 커넥팅 로드와 링크 사이의 각도, so는 스프링의 초기 압축 거리이며, 커넥팅 로드와 회전중심 O까지의 거리 lm은 다음과 같이 계산할 수 있다.
Figure PCTKR2014009918-appb-I000003
그러므로 스프링의 초기 압축거리를 so라고 할 때, 커넥팅 로드 조인트에는 φ에 따라 다음과 같이 분력 Frod이 작용한다.
Figure PCTKR2014009918-appb-I000004
따라서 분 력 Frod 및 거리 lm에 따라 관절에는 다음과 같이 보상토크 Tc가 발생한다.
Figure PCTKR2014009918-appb-I000005
Figure PCTKR2014009918-appb-I000006
그러므로 본 발명에서는 위 수식의 각종 설계변수를 조절함으로써, 목표하는 중력토크를 적절히 보상할 수 있는 중력보상장치를 설계하였다.
또한, 상기 구조에 대한 보상토크에 있어 회전 변수 θ및 φ의 소거가 어려우므로, 중력토크와 완전히 일치하는 보상토크가 생성되기는 어려우나, 실제 사용 시에는 마찰력, 설계 모델과 제품 사이의 오차 등이 발생할 수 있고, 중력토크와 보상토크 사이에 발생하는 약간의 차이는 사용되는 액추에이터로 충분히 지지할 수 있다.
따라서 설계변수의 조절을 통해 중력토크에 최대한 근접한 보상토크를 생성함으로써, 관절 회전시의 필요 토크를 실질적으로 0의 값으로 설정하거나 또는 모터와 같은 액츄에이터를 통하여 지지 가능한 범위 내에서 운용 가능하도록 할 수 있다.
또한, 상기 보상토크에 대한 설계 변수를 조정함에 있어, 커넥팅로드의 조인트 위치를 변화시키는 구조를 취할 수도 있다.
즉, 도 4에 도시된 바와 같이 본 발명의 슬라이더-크랭크 기반의 중력보상장치인 카운터밸런서를 구비하는 토크 프리 링키지 유니트는 카운터밸런서를 통하여 생성되는 보상토크의 크기를 조절할 수 있다.
즉, 커넥팅 로드의 일단의 배치 위치를 조정하는 로드 조정부 구조를 더 구비할 수도 있다.
본 발명의 로드 조정부는 도 4에 도시된 바와 같이 리드-스크류 메커니즘을 취한다.
로드 조정부는 조정 리드 스크류와 조정 블록을 포함하고, 조정 리드 스크류는 링크로서의 로봇팔의 회동 중심(O)으로부터 반경 방향으로 배치되고 조정 블록은 조정 리드 스크류 상에 배치되어 소정의 조작을 통하여 리드 스크류 상에서 위치 이동 가능하고, 조정 블록에는 커넥팅로드의 일단이 회동 가능하게 장착된다. 조정 리드 스크류의 외측에는 조정 슬릿이 배치되어 조정 블록의 안정적인 직선 가동을 안내할 수도 있다.
즉, 조정 리드 스크류의 회동에 의하여 조정 블록의 위치가 변동함으로써 카운터밸런서에 의하여 발생하는 보상토크의 크기를 변화시킬 수 있다.
도 5에는 조절 블록의 위치에 따른 보상토크의 변화를 알 수 있다. 이를 통하여 로봇의 자중으로 인하여 발생하는 중력토크 뿐만 아니라, 링키지 유니트에 추가적인 자중이 부가되는 경우, 예를 들어 링키지 유니트가 로봇으로 구성되는 경우 로봇이 물체를 파지하였을 때 물체의 무게로부터 인가되는 중력토크까지 보상함으로써, 로봇의 가반하중을 극대화시킬 수 있다.
본 발명의 토크 프리 링키지 유니트가 목표로 하는 중렵 보상 토크를 생성하기 위한 적절한 설계 변수는 소정의 실험 내지 시뮬레이션을 통하여 목표값을 설정할 수 있다.
시뮬레이션 결과 도 6에 도시된 바와 같이 중력토크와 거의 유사한 형태(오차 5% 이내)의 보상토크를 생성할 수 있었으며, 이는 도면 부호 ㄱ,ㄴ으로 표시되는 확대 선도에서도 보다 자세하게 확인할 수 있다.
이를 통하여 제안한 슬라이더-크랭크 기반의 중력보상장치인 카운터밸런서를 통해 로봇팔로 구현되는 링크의 회전에 중력 보상을 위하여 필요한 필요토크를 거의 0에 가깝게 할 수 있음은 명백하다.
한편, 본 발명의 토크 프리 링키지 유니트는 더블패러렐로그램유니트(DPU)를 구비할 수 있는데, 더블패러렐로그램유니트(DPU)는 복수 개의 연결되는 링크의 연계 구조로 인한 변화를 전달하여 기준을 일치시켜 보상 토크를 적절하게 조정할 수 있다.
도 1에 도시되는 종래의 통상적인 1자유도 중력보상기구는 로봇에서 가장 많은 토크가 필요한 어깨관절에만 설치된다.
이는 기존의 중력보상기구가 로봇팔의 어깨 관절에 따른 타 관절에 인가되는 토크 변화에 적절히 대응하지 못하기 때문이다.
도 9에는 다자유도 링크 기구, 즉 다자유도 로봇팔에 탑재된 중력 보상 기구의 구성도가 도시되는데, 첫 번째 관절의 경우는 지면에 수직으로 배치된 고정 면(로봇 몸체)을 기준으로 스프링을 장착하여 첫 번째 관절에 연결되는 첫 번째 링크에 소정의 중력보상을 할 수 있다.
하지만, 두 번째 관절의 경우에는 첫 번째 링크의 회전에 의하여 두 번째 관절의 기준이 되는 두 번째 링크의 각도(지면 기준 각도)가 함께 변하므로, 첫 번째 링크의 회전에 의하여 발생하는 두 번째 링크의 위치 변화로 요구되는 필요토크에 대한 중력보상을 할 수 없게 된다.
즉, 두 번째 관절에 인가되는 토크는 두 번째 관절이 움직이지 않았음에도 불구하고 첫 번째 관절의 위치에 따라 함께 변하게 됨으로써, 첫 번째 링크의 위치 변화로 기인한 두 번째 링크의 위치 변화에 따른 중력 보상이 불가능하게 된다.
따라서, 상위 관절의 움직임에 따라 보상되는 토크를 적절히 변화시킬 수 있는 중력 보상 기구의 고안이 요구되며, 본 발명자의 기 출원(KR 10-2011-092171)에 기술된 와이어 기반의 이중 평행사변형 기구(double parallelogram mechanism, DPM; double parallelogram unit, DPU;)를 구성하여 1자유도 중력보상장치를 다자유도로 확장하였다.
도 8에는 본 발명자의 와이어 기반의 DPM의 구성이 도시된다.
도 8과 같이 DPM은 베이스에 고정되어 회전하지 않는 풀리 1과 관절 2에 장착되어 회전 가능한 풀리 2, 그리고 두 풀리를 연결하는 와이어로 구성된다. 풀리와 와이어로 구성된 평행사변형 기구에서 관절 2의 풀리 2는 관절 1의 풀리 1에 항상 평행을 유지한다.
그러므로 관절 1이 회전해도 지면과 일정한 각도를 이루는 또 다른 기준면이 생성된다. 즉, 평행사변형 기구를 통해서 관절 1의 위치에 상관없이 지면에 수직인 기준면이 생성되고, 이를 기준으로 스프링을 장착하면 관절 2에 대한 중력보상이 가능하게 된다.
하지만, 본 발명자는 와이어의 구성으로 인하여 야기되는 내구성 및 신뢰성 문제를 보완하는 새로운 구성을 본 발명에서 제시한다.
본 발명의 더블패러렐로그램 유니트는 와이어를 배제하고 베벨 기어 구조 기반으로 구성한다.
또한, 본 발명의 더블패러렐로그램 유니트는 1자유도 중력보상장치를 복수 개의 링크의 연속적 배치를 이루는 다자유도 구조로도 확장 가능하다.
본 발명의 토크 프리 링키지 유니트의 더블 패러렐로그램 유니트는 베벨 기어 구조를 취한다.
도 7에 도시된 바와 같이, 첫 번째 피치관절(베이스)에 기준부를 형성하는 베벨기어가 고정되고, 이웃한 내지는 연속하는 다른 피치관절(들)에 각각 자유회전이 가능한 다른 기준부를 형성하는 베벨기어가 설치된다.
각각의 기준부로서의 베벨기어 간에는 치합 구조를 통하여 연동하는데, 각각의 베벨기어로 구현되는 기준부 사이에는 패러랠로그램기어부가 배치된다.
패러랠로그램기어부는 패러랠로그램샤프트와 기준베벨기어를 구비하는데, 기준 베벨기어는 패러랠로그램샤프트의 양단에 배치되어 베벨기어로 형성되는 기준부와 치합된다.
이와 같은 구조를 통하여 각각의 기준부는 동일한 회전 각도 기준을 구비함으로써 연속적인 링크 구조의 개별 구동으로 인한 위치 변화에도 동일한 기준 형성을 통한 베이스 링크 측에서의 회동 위치 변화로 발생하는 기준 변화 반영이 가능하여 카운터밸런서를 통한 원활한 연속 연동 토크 보상 구조를 형성할 수 있다.
이와 같은 베벨기어 타입의 더블패러랠로그램 유니트는 기어 구조의 카운터밸런서에 국한되지 않고, 본 발명자의 기존 와이어 타입의 카운터 밸런서에도 적용될 수 있는 등 다양한 변형이 가능하다.
본 실시예에서 도 7의 (a)에 도시된 바와 같이 패러랠로그램기어부는 베이스 링크 측에 회동 가능하게 배치되는 제1링크와, 제1링크와 연결되는 제2링크를 구비하는 구성을 취한다.
베이스링크와 제1링크의 회동 중심인 제1관절에는 제1기준부의 기준면1이 배치된다.
제1링크와 제2링크의 회동 중심인 제2관절에는 제2기준부의 기준면2가 배치된다.
제2링크의 타단에 별도의 회동 중심인 제3관절이 배치되고 제3관절에 제3기준부로서의 기준면3이 배치되는데, 이들은 각각 베벨기어 구조를 형성하고, 이들 사이에는 패러랠로그램기어부가 배치된다.
각각의 패러랠로그램기어부는 제 1링크와 제2링크에 배치되는데, 패러랠로그램샤프트가 각각의 링크에 배치되고 패러랠로그램샤프트의 양단에 기준 베벨기어가 배치되되 각각은 제1기준부, 제2기준부 및 제3기준부와 각각 치합된다.
또한, 패러랠로그램기어부의 기준 베벨기어의 배치되는 교번 배치 구조를 형성한다.
즉, 소형베벨 기어로 구현되는 기준 베벨기어는 패럴랠로그램샤프트를 통하여 도 7의 (a)와 같이 서로 연결되는데, 기준 베벨기어와 치합되는 기준부로 형성되는 베벨기어의 회전방향을 고려하여, 로봇의 움직임에 상관없이 항상 지면에 일정한 각도를 갖는 기준면을 생성하기 위하여 도 7의 (b)와 같이 인접한 관절에 대하여 기준부의 배치가 교번 배치되도록 하였다.
즉, 각 베벨기어로 구현되는 기준부의 회전방향을 동일하게 설정하기 위하여 기준부의 위치를 교번적으로 배치하는데, 예를 들어 베이스링크와 제1링크가 이루는 제1관절에 배치되는 제1기준부에 대하여 제1기준부의 회전축에 수직하고 제1패러랠로그램샤프트의 회동 중심을 포함하는 평면을 중심으로 제1기준부의 배치 영역과 반대편에 배치되도록 한다.
또한, 제3기준부는 제2기준부와 제1링크와 제2링크가 이루는 제2관절에 배치되는 제2기준부에 대하여 제2기준부의 회전축에 수직하고 제2링크에 배치되는 제2패러랠로그램샤프트의 회동 중심을 포함하는 평면을 중심으로 제2기준부의 배치 영역과 반대편에 배치되도록 하여 제1기준부와 같은 측에 배치되도록 한다.
이와 같은 구조를 통하여 각 관절의 회전 및 로봇을 구성하는 링크의 자세와 상관없이 항상 지면과 수직인 기준면이 생성되고, 이를 기준으로 하여 각 관절에 카운터밸런서, 본 실시예에서는 슬라이더-크랭크 기반의 중력보상장치로서의 카운터밸런서를 구현함으로써, 모든 관절에 대한 중력보상이 가능하게 한다.
도 7 및 도 9(b)에는 베벨기어 기반의 단일 평행사변형 기구 패러랠로그램유니트 및 이를 복수 개의 연속적 링크에 적용시키는 더블 패러랠로그램 유니트(DPU)로 확장되는 경우가 도시된다. 도 9 (b)에서 관절 3에서의 제3기준부로서의 베벨기어가 도시 생략되어 있는데, 이는 도 7에 도시된 바와 같이 제2패러랠로그램기어부를 통하여 관절 2에서의 제2기준부와 치합 연동하는 구조를 취할 수 있고, 공간 효율성을 위하여 각 패러랠로그램 유니트로서의 평행사변형 기구(관절 1~관절 2, 관절 2~관절 3)는 관절 2에 위치한 제2기준부로서의 베벨기어를 공유한다.
도 9(b)는 앞에서 설명한 DPM 기반의 다자유도 중력보상장치의 대략적인 구동 모습을 보여준다.
제2관절을 중심으로 제2링크의 회동없이 제1관절을 중심으로 제1링크의 회동시 제2기준부의 기준을 제1기준부와 연동시켜 지면에 수직한 상태를 형성 유지함으로써 제2링크에도 제2카운터밸런서를 통한 중력보상 구조를 형성할 수 있다.
도 11 내지 도 16에는 앞서 기술된 본 발명의 슬라이더-크랭크 기구 타입의 카운터밸런서와 베벨기어 기반의 DPU를 구비하고 3자유도 중력보상 로봇팔로 구현되는 토크 프리 링키지 유니트의 일예가 도시된다.
로봇팔로 구현되는 토크 프리 링크지 유니트는 도 11에 도시된 바와 같이 3개의 피치관절로 구성되었다.
로봇팔로 구현되는 토크 프리 링키지 유니트의 각 관절에는 베벨기어 기반의 DPU가 설치되어 있으며, 이를 기준으로 슬라이더-크랭크 기반 중력보상장치로서의 카운터 밸런서가 구성된다.
개발된 중력보상 로봇팔은 다자유도 중력보상장치에 의해 대부분의 중력토크가 보상되므로, 로봇팔의 자세 유지 및 구동시에 필요한 토크가 현저하게 감소하게 된다.
따라서 매우 낮은 용량의 액추에이터 모듈을 통해서 구동이 가능하다.
이하 도면을 참조하여 개발된 다자유도 중력보상장치 및 더블패러랠로그램 유니트를 구비하는 토크 프리 링키지 유니트의 구성 및 동작원리 등을 설명한다.
앞서 언급한 바와 같이 베벨 기어 기반의 더블패러랠로그램유니트는 와이어 타입의 카운터밸런서와 조합되는 구조를 취할 수도 있으나, 본 발명은 슬라이더 크랭크 기반의 카운터밸런서와의 조합을 중심으로 설명한다.
먼저, 앞서 기술된 바와 같이, 본 발명의 토크 프리 링키지 유니트(10)는 베이스 링크(110), 제1링크(100), 제2링크(200) 및 제3링크(300)를 구비한다.
토크 프리 링키지 유니트(10)는 제3링크(300)의 단부에 롤모터 또는 그립퍼 등으로 구현될 수 있는 엔드이펙터(미도시)가 더 배치 가능한 구조를 취할 수 있는데, 본 실시예에서 엔드이펙터의 기술은 생략한다.
또한, 본 발명의 토크 프리 링키지 유니트는 다축 다자유도 구조를 중심으로 기술되나, 단일의 링크 구조를 취할 수도 있는 등 링크의 개수에 국한되지 않고 다양한 구성이 가능하다.
도 12에서 세부적으로는 본 발명의 토크 프리 링키지 유니트(10)는 베이스링크(110)와 제1링크(100)와 제2링크(200)와 제3링크(300)를 구비한다.
베이스링크(110)와 제1링크(100) 사이에는 제1관절(J1)이, 제1링크(100)와 제2링크(200) 사이에는 제2관절(J2)이, 그리고 제2링크(200)와 제3링크(300) 사이에는 제3관절(J3)이 형성 배치된다.
베이스링크(110)는 위치 고정 구조를 취할 수도 있다.
경우에 따라 제1관절(J1)과 수직 교차되는 별개의 베이스관절(J0)이 더 구비될 수 있고 베이스링크(110)가 베이스관절(J0)을 중심으로 소정의 회동 상태를 형성할 수도 있다.
베이스링크(110)와 제1링크(100) 사이의 제1관절(J1)에, 제1링크(100)와 제2링크(200) 사이의 제2관절(J2)에, 제2링크와 제3링크(300) 사이의 제3관절에는 각각 제1기준부(132), 제2기준부(231) 및 제3기준부(311)가 배치된다.
제1링크(100)에는 제1카운터밸런서(150)가 배치되고, 제2링크(200)에는 제2카운터밸런서(240)가 배치되고, 제3링크(300)에는 제3카운터밸런서(340)가 배치되고, 제1링크와 제2링크와 제3링크에 베벨기어 기반의 DPU가 배치된다.
베이스링크(110)는 좌측베이스프레임(111)과 우측베이스프레임(112)을 구비하고, 좌측베이스프레임(111)과 우측베이스프레임(112)는 외부에 거치 가능한 구조를 취한다.
본 실시예에 따른 토크 프리 링키지 유니트(10)는 슬라이더 크랭크 구조의 카운터밸런서와 베벨 기어 구조의 더블패러랠로그램유니트가 배치된다.
이들은 토크 프리 링키지 유니트의 어느 한측을 점유하며 배치되는 구조, 보다 구체적으로 카운터밸런서는 링크의 우측에 그리고 더블패러랠로그램유니트는 좌측에 배치되는 구조를 취하나, 이는 일예일뿐 컴팩트한 구성을 이루는 범위에서 다양한 배치 선택이 가능하다.
좌측베이스프레임(111)과 우측베이스프레임(112)는 제1링크(100)의 제1링크베이스관절연결바디(123,142)와 연결되는 구조를 형성한다.
좌측베이스프레임(111)과 우측베이스프레임(112)는 서로 대향하는 구조를 형성한다.
좌측베이스프레임(111)과 우측베이스프레임(112)는 대향 배치 조립됨으로써 소정의 내부 공간을 형성하고, 제1구동부(120)는 베이스링크(110)와 제1링크(100)에 배치된다.
즉, 베이스링크(110)에는 제1구동부(120)의 적어도 일부가 배치되는데, 베이스링크(110)의 내부 공간에는 하기되는 제1링크를 회동시키기 위한 회전력을 생성하는 제1구동부(120)의 제1링크모터(125)가 배치된다.
제1링크모터(125)는 제1관절의 회전축을 중심으로 제1링크를 회동시키는 회동력을 제공한다.
여기서, 제1링크모터(125)는 단순하게 표현되었으나, 감속기가 내장된 구조를 취할 수도 있고, 경우에 따라 별개의 감속기가 연결되는 구조를 취할 수도 있는 등 다양한 구성이 가능하다.
제1구동부(120)는 제1링크 동력전달부(124,126)를 포함하는데, 제1링크 동력전달부(124,126)는 제1링크모터(125)와 제1링크(100) 측 사이에 배치되어 제1링크모터(125)의 회전력을 제1링크(100) 측에 전달하여 제1링크(100)의 상대 회동을 형성한다.
제1링크 동력전달부(124,126)는 제1링기어(124)와 제1피니언기어(126)를 포함한다.
제1피니언기어(126)는 제1링크모터(125)의 회동축에 연결되고 제1링기어(124)와 치합된다.
제1링크(100)는 베이스링크(110)에 일단이 회동 가능하게 연결 배치되어 제1관절(J1)을 형성하고 무게중심이 제1관절(J1)로부터 이격된다.
제1링크(100)는 제1링크플레이트(161,165)와, 제1링크샤프트(164)를 포함한다.
제1링크의 단부에는 각각 제1링크베이스관절연결부(123,140;141,142,143)와 제1링크제2링크관절연결부(171,172,173)가 배치될 수 있다.
제1링크플레이트(161,165)는 제1링크플레이트A파트(161)와 제1링크플레이트B파트(165)를 포함한다.
제1링크플레이트(161,163)는 하기되는 제1카운터밸런서(150)의 제1스프링블록(154) 및 제1압축스프링(163)을 사이에 두고 대향하여 배치된다.
제1링크플레이트(161,163)의 제1링크플레이트A파트(161)는 베이스링크(110)에 위치 고정되어 배치되는 제1기준부(132)와 제1압축스프링(163) 사이에 배치되고, 제1링크플레이트B파트(165)는 제1압축스프링(163)과의 사이에 제1스프링블록(154)이 배치되도록 한다.
제1링크플레이트A파트(161)에는 제1링크베이스관절연결부(123,143)가 배치되고, 제1링크플레이트B파트(163)에는 제1링크제2링크관절연결부(171,172,173)이 배치되고, 이격되는 제1링크플레이트A파트(161)와 제1링크플레이트B파트(163) 사이에는 제1링크샤프트(164)가 배치되어 제1링크플레이트A파트(161)와 제1링크플레이트B파트(163)를 연결한다.
제1링크샤프트(164)는 본 실시예에서 중공샤프트로 구현되고, 하기되는 더블패러랠로그램유니트의 패러랠로그램샤프트의 관통 배치를 가능하게 한다.
즉, 제1링크(100)의 일단에는 베이스링크(110)와 함께 제1관절(J1)을 형성하는 제1링크베이스관절연결부(123,142)가 배치되는데, 제1링크베이스관절연결부(123,142)의 제1링크-1(123)는 제1크로스롤러베어링(121)을 삽입하여 로봇팔로 구현되는 토크 프리 링키지 유니트에 가해지는 모멘트를 지지 가능하도록 한다.
제1크로스롤러베어링(121)의 외륜과 내륜은 각각 제1누름플랜지(122) 및 제2누름플랜지(131)에 의하여 제1링크-1(123)에 압압 고정된다.
제1링크-1(123)은 하기되는 제1링크(100)의 제1링크플레이트(161,165)의 제1링크플레이트A파트(161)와 연결된다.
제1링크플레이트A파트(161)의 타측은 제1링크-3(142)와 연결되고, 제1링크-3(142)는 우측베이스프레임(112)에 회동 가능하게 배치된다.
제1링크-3(142)는 깊은홈 볼베어링2(141)을 통하여 조립되는데 제3누름플랜지(143)가 깊은홈 볼베어링2(141)의 내륜을 누르며 고정시킨다.
제1링크-3(142)는 제1링크플레이트A파트(161)와 결합하여 제1링크-1(123)과 함께 제1링크(100)가 베이스링크(110)에 회동 가능하게 장착 가능하도록 한다.
제1링크-1(123)에는 제1링기어(124)가 고정 장착되는데, 제1링기어(124)는 하기되는 제1소형베벨기어A(133)와의 간섭을 방지하도록 C형의 호상으로 형성된다.
우측베이스프레임(112)에 고정된 제1링크모터(125)에 제1피니언기어(126)가 연결된다.
제1피니언기어(126)는 제1링기어(124)와 치합되어 제1링크모터(125)가 가동되는 경우 회동력을 전달하여 제1피니언기어(126)이 제1링기어(124)를 회전시킴으로써, 제1관절(J1)을 중심으로 제1링크(100)가 회전한다.
제1링크-1(123)은 제1링크플레이트A파트(161)와 결합하는데, 제1링크플레이트A파트(161)는 이격 배치되는 제1링크플레이트B파트(164)와의 사이에 제1링크샤프트(164)가 배치되고, 제1링크샤프트(164)의 외주에는 제1카운터밸런서(150)의 제1압축스프링(163) 및 제1스프링블록(154)가 배치된다.
본 발명은 카운터밸런서 및 더블패러랠로그램유니트에 사용되는 기준부가 구비되는데, 본 실시예에서 제1기준부(132)는 제2누름플랜지(131)와 조립되어 좌측베이스프레임(111)에 위치 고정되어 장착되어 제1기준부(132)와 제1링크(100) 간에는 상대 회동이 가능하다.
하기되는 더블패러렐로그램유니트의 제1패러랠로그램기어부(130)는 제1패러랠로그램샤프트(133,134,136)을 포함한다.
제1패러랠로그램샤프트(133,134,136)는 제1소형베벨기어A(133)와, 제1소형베벨기어B(134)와, 제1회전축(136)를 포함한다.
좌측베이스프레임(111)에 위치 고정 장착되는 제1기준부(132)는 제1소형베벨기어A(133)와 치합되고, 제1소형베벨기어A(133)는 제1회전축(136)의 일단에 연결되고, 제1소형베벨기어B(134)는 제1회전축(136)의 타단에 연결된다.
제1소형베벨기어A(133) 측에는 스페이서1(135)이 배치되어 제1소형베벨기어A(133)와 제1기준부(132)의 치합 조립 시 발생하는 조립공차를 맞출 수 있다.
제1소형베벨기어A(133)는 제1회전축(136)를 통해 제1소형베벨기어B(134)와 조립되어 제1링크(100)의 회전시 위치 고정된 제1기준부(132)와의 상대 회동을 통하여 발생하는 회전을 전달한다.
제1회전축(136)은 각각 제1링크플레이트A파트(161), 제1링크플레이트 B 파트(165)와 더불어, 제1링크제2링크관절연결부의 제1-2링크관절연결패러랠연결부(171)에 고정된 깊은홈베어링1(137, 138, 139)에 의해 지지되는데, 앞서 기술된 바와 같이 제1링크샤프트(164)는 중공 샤프트로 형성되고 제1회전축(136)은 제1링크샤프트(164)를 관통하여 배치된다.
우측 베이스프레임(112)에는 제1관절(J1)을 이루는 제1링크베이스관절연결부(123,140;141,142,143)가 배치되어 제1링크(100)의 베이스링크(110)와의 연결을 형성하고, 제1링크(100)의 우측에는 제1카운터밸런서의 구성요소가 배치된다.
제1카운터밸런서(150)는 제1스프링블록(154)와 제1압축스프링(163)와 제1커넥팅로드(151)를 구비하는데, 제1스프링블록(154)은 베이스링크(110)에 배치되는 제1기준부(132)와 이격되어 제1링크(100)의 길이 방향을 따라 가동 가능하다.
제1커넥팅로드(151)는 일단이 제1기준부(132) 측의 제1관절(J1)에 대한 회전 중심으로부터 반경 방향으로 이격되어 회동 가능하게 배치되고, 타단이 제1스프링블록(154) 측에 회동 가능하게 장착되어 제1링크(100)가 제1관절(J1)을 중심으로 회동함에 따라 제1스프링블록(154)을 가동시킨다.
제1압축스프링(163)은 제1스프링블록(154)과 제1기준부(132) 사이에 배치되는데 일단은 제1스프링블록(154)과 접하고 타단은 제1링크(100)의 제1링크플레이트의 제1링크플레이트A파트와 접하여 제1스프링블록(154)을 탄성지지하고 이를 통하여 소정의 탄성력을 통한 제1링크의 중력 보상을 이룰 수 있다.
제1스프링블록(154)은 제1링크샤프트(164)에 관통 배치되는데, 제1링크샤프트(164)는 본 실시에에서 총 4개가 배치되고 제1스프링블록(154)의 관통구에는 제1리니어부시(153)가 형성되어 제1링크샤프트(164) 상에서의 원활한 가동을 가능하게 한다.
제1링크샤프트(164)는 제1링크플레이트A파트(161)와 제1링크플레이트B파트(165)의 사이에 배치되고, 제1압축스프링(163)은 제1링크샤프트(154)의 외주에 배치되어 제1스프링블록(154)을 탄성 지지한다.
제1링크샤프트(164)는 4개가 구비될 수 있는데, 4개의 직진도를 유지하기 위해 공차가 준수된다. 또한 제1링크샤프트(164)를 중공샤프트 구조로 형성하여 내부에서 모터의 배선이 이루어질 수 있는데, 이러한 구조는 중공볼트를 사용하여 결합될 수 있다.
제1링크플레이트B파트(165)에는 제2링크(200)와 연결되어 제2관절(J2)을 형성하는 제1링크제2링크관절연결부(170)이 배치된다. 제1링크제2링크관절연결부(170)는 제1링크플레이트B파트(165)와 연결되는 제1-2링크관절연결패러랠연결부(171)와, 제1-2링크관절연결패러랠연결부(171)에 연결되어 제2관절(J2)을 중심으로 상대 회동 가능하게 제2링크(200)와 연결되는 제1-2링크관절연결패러랠연결연장부(172)와 제1-2링크관절연결구동연결부(173)를 포함한다.
제1-2링크관절연결패러랠연결부(171)에는 깊은홈베어링1(137, 138, 139)에 의해 더블패러랠로그램유니트(DPU)의 제1회전축(136)이 관통 배치된다.
제1카운터밸런서(150)가 배치되는 제1링크(100)는 제1스프링모듈(160)을 포함하는데, 제1스프링모듈(160)은 제1압축스프링(163)이 배치되는 제1링크샤프트(164)의 외부를 덮는 제1카운터밸런서커버(162)를 포함한다.
제1커넥팅로드(152)의 타단이 연결되는 제1스프링블록(154) 측과의 연결 구조는 제1스프링블록(154)과의 직접적인 연결을 이룰 수도 있으나, 본 실시예의 제1카운터밸런서(150)는 제1로드블록(152)을 포함한다.
제1로드블록(152)는 제1스프링블록(154)의 일측에서 제1스프링블록(154)과 연결되고 타측이 가동 방향으로 제1링크플레이트A파트(161)를 향하도록 배치되고 제1로드블록(152)의 타측이 제1커넥팅로드(152)의 타단과 상대 회동 가능하게 연결된다.
이때, 제1링크플레이트A파트(161)에는 관통구가 형성되고 제1커넥팅로드(152)는 제1링크플레이트A파트(161)에 형성된 관통구를 관통하여 가동 가능하게 배치된다.
제1커넥팅로드(151)와 제1로드블록(152) 간의 연결시 스프링압축력을 충분히 지지하도록 깊은홈 볼베어링3(155)이 두 개가 병렬로 삽입되어 연결되는 구조를 취할 수 있다.
제1로드블록(152)을 통한 연결 구조를 이용하여 제1스프링블록(154)과 중심에서 연결되는 구조가 형성되어 효과적인 힘의 분산이 이루어질 수 있다.
또한, 이와 같은 구조를 통하여 제1링크(100)가 베이스링크(110)에 대하여 회동하는 경우, 제1커넥팅로드(152)의 길이는 한정되어 구속되는 조건을 형성한다. 이를 통하여, 제1커넥팅로드(152)의 타측에 연결된 제1로드블록(152) 및 제1스프링블록(154)은 제1링크(100)의 길이 방향으로 제1링크샤프트(164)를 따라 이동하여 압축 가능함으로써 소정의 탄성력 형성을 이루고 이는 제1링크의 자중에 의한 토크를 보상하여 제1링크의 자중을 보상하기 위하여 필요한 필요토크의 크기를 최소화할 수 있다.
한편, 도 12에는 도시되지 않았으나, 앞서 본 발명의 카운터밸런서의 원리 설명 시 기술된 바와 같이, 베벨기어로 형성되는 제1기준부와 제1커넥팅로드의 연결 위치를 조정할 수 있는 로드 조정부가 더 구비된다.
로드 조정부는 조정 리드 스크류와 조정 리드 스크류와 조정 블록을 구비한다.
조정 리드스크류는 제1기준부 측에 제1관절(J1)의 중심으로부터 반경 방향으로 배치되고 길이 방향으로 회동 조정 가능하다.
조정 블록은 조정 리드 스크류의 길이 방향을 따라 조정 리드 스크류의 회동에 따라 제1관절(J1)의 중심으로부터 반경 방향 상에서 위치 조정 가능하고, 제1커넥팅로드(152)의 일단이 회동 가능하게 장착되는 구조를 취할 수 있다.
또한, 조정 블록의 이동을 안내하는 슬릿이 조정 리드 스크류의 길이 방향을 따라 형성되는 구조를 취할 수도 있다.
한편, 도 12에 도시되는 제1링크(100)의 제1링크제2링크관절연결부(170)를 통하여 제2링크(200)가 연결배치될 수 있다.
제2링크(200)는 제1링크(100)에 일단이 회동 가능하게 연결 배치되어 제2관절(J2)을 형성하고 무게중심이 제2관절(J2)로부터 이격되는 링크 연결 구조를 형성한다.
제2링크(200)는 제2카운터밸런서(240)를 포함하는데, 제2카운더밸런서(240)는 제2링크(200)에 형성되는 구성을 취한다는 점 이외에는 제1카운터밸런서(150)와 거의 동일한 구조를 취한다.
제2카운더밸런서(240)는 일단이 제2관절(J2)에 배치되고 타단이 제2링크(200)의 길이 방향을 따라 배치되어 제2링크(200)가 제2관절(J2)을 중심으로 회동하는 경우 제2링크(200)의 중력을 보상하거나, 제2관절에서의 제2링크의 회동없이 제1링크가 제1관절에서 회동이 이루어져 더블패러랠로그램유니트에 의하여 제2링크와 제1링크 사이에 배치되는 하기되는 제2기준부의 기준 위치가 제1기준부와 일치되도록 조정되는 경우 제1링크의 회동으로 인한 제2링크의 자중 영향 변화를 보상할 수 있다.
보다 상세하게, 제2링크(200)는 제1링크(100)의 일단, 즉 제1링크제2링크관절연결부(170)에 일단이 회동 가능하게 연결된다.
제2링크(200)는 제1링크(100)에 일단이 회동 가능하게 연결 배치되어 제2관절(J2)을 형성하고 무게중심이 제2관절(J2)로부터 이격된다.
제2링크(200)는 제2링크플레이트(251,254)와, 제2링크샤프트(252)를 포함하고, 제2링크의 단부에는 각각 제2링크제1링크관절연결부(171,172,173)와 제2링크제3링크관절연결부(260;261,263)이 배치될 수 있다.
제2링크플레이트(251,254)는 제2링크플레이트A파트(251)와 제2링크플레이트B파트(254)를 포함한다.
제2링크플레이트(251,254)는 하기되는 제2카운터밸런서(240)의 제2스프링블록(245) 및 제2압축스프링(253)을 사이에 두고 대향하여 배치된다.
제2링크플레이트(251,253)의 제2링크플레이트A파트(251)는 제2링크(200)와 제1링크(100)의 연결되는 제1관절(J1)에 위치 고정되어 배치되는 제2기준부(231)와 제2압축스프링(253) 사이에 배치된다.
제2링크플레이트B파트(254)는 제2압축스프링(253)과의 사이에 제2스프링블록(245)이 배치되도록 한다.
제2링크플레이트A파트(251)에는 제2링크제1링크관절연결부(211,220)가 배치된다.
제2링크플레이트B파트(253)에는 제2링크제3링크관절연결부(260;261,262)이 배치된다.
이격되는 제2링크플레이트A파트(251)와 제2링크플레이트B파트(253) 사이에는 제2링크샤프트(252)가 배치되어 제2링크플레이트A파트(251)와 제2링크플레이트B파트(253)를 연결한다.
제2링크샤프트(252)는 본 실시예에서 중공샤프트로 구현되고, 하기되는 더블패러랠로그램유니트의 패러랠로그램샤프트의 관통 배치를 가능하게 한다.
제2링크플레이트A파트(251)에는 앞서 제1링크의 경우와 마찬가지로 제2카운터밸런서의 제2커넥팅로드의 관통을 허용하는 관통구가 구비된다.
제2링크(200)의 일단에는 제1링크(100)와 함께 제2관절(J2)을 형성하는 제2링크제1링크관절연결부(211,220)가 배치된다.
제2링크제1링크관절연결부(211,220)의 제2-1링크관절연결패러랠연결부(220)에는 제2기준부(231)가 장착되고, 제2-1링크관절연결패러랠연결부(220)에는 앵귤러컨택트 베어링(221)이 배치된다.
앵귤러컨택트 베어링(221)의 외륜은 제4누름플랜지(222)에 의하여 제1-2링크관절연결패러랠연결연장부(172)에 고정되고, 앵귤러컨택트 베어링(221)의 내륜은 제1-2링크관절연결패러랠연결연장부(172)를 관통하는 고정 볼트(224)를 통하여 제2-1링크관절연결패러랠연결링크(223)와 연결되고, 제2-1링크관절연결패러랠연결링크(223)는 제1-2링크관절연결패러랠연결연장부(172)에 대하여 상대 회동 가능하게 장착된다.
제2-1링크관절연결패러랠연결링크(223)에는 베벨기어로 구현되는 제2기준부(231)가 고정 장착되어 제2기준부(231)는 제1-2링크관절연결패러랠연결연장부(172)에 대하여 상대 회동 가능하여 독립적 회동이 이루어져 다자유도중력보상을 이룰 수 있다.
제2기준부(231)는 도면에서 원활한 인식을 위하여 제1-2링크관절연결패러랠연결연장부(172)에 가깝도록 도시되었다.
앞서 기술된 바와 같이, 베벨기어로 구현되고 제1패러랠로그램기어부의 제1소형베벨기어B(233)과 치합되어 제1기준부(132)와의 회전 방향을 일치시켜 동일한 방향으로의 회동을 이루어 기준 위치를 일치시켜 평행을 이루도록 하기 위하여 제2기준부(231)는 제1기준부(132)의 회전축에 수직하고 제1패러랠로그램샤프트의 제1회전축(136)의 회동중심을 포함하는 평면을 중심으로 제1기준부(132)의 배치 영역과 반대편에 배치되도록 교번 배치되는 구조를 형성한다(도 7의 (b) 참조).
제2링크-3(211)은 하기되는 제2링크(200)의 제2링크플레이트(251,254)의 제2링크플레이트A파트(251)와 연결되고, 제2링크-3(211)는 제1-2링크관절연결구동연결부(173)에 회동 가능하게 배치된다.
제2링크-3(211)는 크로스롤러베어링2(213)을 통하여 연결되는데, 크로스롤러베어링2(213)의 내륜은 제2링크-3(211)에 연결된다.
크로스롤러베어링2(213)의 외륜은 제5누름플랜지(212)를 통하여 제1-2링크관절연결구동연결부(173)에 연결된다.
제1-2링크관절연결구동연결부(173)의 외측에는 제2링크관절연결커버(217)이 배치된다.
제2링크-3(211)는 제2링크플레이트A파트(251)와 결합하여 제2링크(200)가 제1링크(100)에 회동 가능하게 장착 가능하도록 한다.
제2링크-3(211)에는 제2구동부(210)의 제2링기어(215)가 고정 장착된다. 제2관절(J2)의 동작 범위는 도 15에 도시된 바와 같이, 제2소형베벨기어B(233)와 제2소형베벨기어A(232)가 제2관절의 베벨기어로 구현되는 제2기준부(231)에 맞물려 돌면서 서로 간섭이 생기지 않는 범위로 제한된다. 경우에 따라 제2링크연결제한부(238)가 구비되어 제2관절의 회동을 지지 내지 제한하는 구조를 취할 수도 있다.
제1-2링크관절연결구동연결부(173)에 장착되는 제2구동부(210)의 제2링크모터(214)에 제2피니언기어(216)가 연결된다.
제2피니언기어(216)는 제2링기어(215)와 치합되어 제2링크모터(214)가 가동되는 경우 회동력을 전달하여 제2피니언기어(216)이 제2링기어(215)를 회전시킴으로써, 제2관절(J2)을 중심으로 제2링크(200)가 회전한다.
제2링크(200)의 제2링크플레이트A파트(251)는 이격 배치되는 제2링크플레이트B파트(252)와의 사이에 제2링크샤프트(252)가 배치된다.
제2링크샤프트(252)의 외주에는 제2카운터밸런서(240)의 제2압축스프링(253) 및 제2스프링블록(245)가 배치된다.
더블패러렐로그램유니트의 제2패러랠로그램기어부(230)는 제2패러랠로그램샤프트(232,233,235)을 포함하고, 제2패러랠로그램샤프트(232,233,235)는 제2소형베벨기어A(232)와, 제2소형베벨기어B(233)와, 제2회전축(235)를 포함한다.
제1-2링크관절연결패러랠연결연장부(172)에 대하여 상대 회동 가능하게 장착되는 제2-1링크관절연결패러랠연결링크(223)에 고정 장착되는 제2기준부(231)가 제2소형베벨기어A(232)와 치합되고, 제2소형베벨기어A(232)는 제2회전축(235)의 일단에 연결되고, 제2소형베벨기어B(233)는 제2회전축(235)의 타단에 연결된다.
제2소형베벨기어A(232) 측에는 스페이서2(234)가 배치되어 제2소형베벨기어A(232)와 제2기준부(231)의 치합 조립 시 발생하는 조립공차를 맞출 수 있다.
제2소형베벨기어A(232)는 제2회전축(235)를 통해 제2소형베벨기어B(233)와 조립되어 제2링크(200)의 회전시 위치 고정된 제2기준부(231)와의 상대 회동을 통하여 발생하는 회전을 전달한다.
제2회전축(235)은 각각 제2링크플레이트A파트(251), 제2링크플레이트 B 파트(254)에 고정된 깊은홈베어링2(236,237)에 의해 지지되는데, 앞서 기술된 바와 같이 제2링크샤프트(252)는 중공 샤프트로 형성되고 제2회전축(235)은 제2링크샤프트(252)를 관통하여 배치된다.
제2링크(200)의 우측에는 제2카운터밸런서의 구성요소가 배치되는데, 제2카운터밸런서(240)는 제2스프링블록(245)와 제2압축스프링(253)와 제2커넥팅로드(241)를 구비한다.
제2스프링블록(245)은 제2링크(200)의 제2관절(J2)에 배치되는 제2기준부(231)와 이격되어 제2링크(200)의 길이 방향을 따라 가동 가능하다.
제2커넥팅로드(241)는 일단이 제2기준부(231) 측의 제2관절(J2)에 대한 회전 중심으로부터 반경 방향으로 이격되어 회동 가능하게 배치되고, 타단이 제2스프링블록(245) 측에 회동 가능하게 장착되어 제2링크(200)가 제2관절(J2)을 중심으로 회동함에 따라 제2스프링블록(245)을 가동시킨다.
제2압축스프링(253)은 제2스프링블록(245)과 제2기준부(231) 사이에 배치되는데 일단은 제2스프링블록(245)과 접하고 타단은 제2링크(200)의 제2링크플레이트의 제2링크플레이트A파트와 접하여 제2스프링블록(245)을 탄성지지하고 이를 통하여 소정의 탄성력을 통한 제2링크의 중력 보상을 이룰 수 있다.
제2스프링블록(245)은 제2링크샤프트(252)에 관통 배치되는데, 제2링크샤프트(252)는 본 실시에에서 총 4개가 배치되고 제2스프링블록(245)의 관통구에는 제2리니어부시(244)가 형성되어 제2링크샤프트(252) 상에서의 원활한 가동을 가능하게 한다.
제2링크샤프트(252)는 제2링크플레이트A파트(251)와 제2링크플레이트B파트(254)의 사이에 배치되고, 제2압축스프링(253)은 제2링크샤프트(245)의 외주에 배치되어 제2스프링블록(245)을 탄성 지지한다.
제2링크샤프트(252)는 4개가 구비될 수 있는데, 4개의 직진도를 유지하기 위해 공차가 준수된다. 또한 제2링크샤프트(252)를 중공샤프트 구조로 형성하여 내부에서 모터의 배선이 이루어질 수 있는데, 이러한 구조는 중공볼트를 사용하여 결합될 수 있다.
제2링크플레이트B파트(254)에는 제3링크(300)와 연결되어 제3관절(J3)을 형성하는 제2링크제3링크관절연결부(260)이 배치된다.
제2링크제3링크관절연결부(260)는 제2링크플레이트B파트(254)와 연결되는 제2-3링크관절연결패러랠연결부(262) 및 제2-3링크관절연결구동연결부(261)를 포함한다.
제2링크플레이트B파트(254)에는 깊은홈베어링2(237)에 의해 지지되는 더블패러랠로그램유니트(DPU)의 제2회전축(235)이 관통 배치된다.
제2카운터밸런서(240)가 배치되는 제2링크(200)는 제2스프링모듈(250)을 포함하는데, 제2스프링모듈(250)은 제2압축스프링(253)이 배치되는 제2링크샤프트(252)의 외부를 덮는 제2카운터밸런서커버(255,256)를 포함한다.
제2커넥팅로드(241)의 타단이 연결되는 제2스프링블록(245) 측과의 연결 구조는 제2스프링블록(245)과의 직접적인 연결을 이룰 수도 있으나, 본 실시예의 제2카운터밸런서(240)는 제2로드블록(243)을 포함한다.
제2로드블록(243)는 제2스프링블록(245)의 일측에서 제2스프링블록(245)과 연결되고 타측이 가동 방향으로 제2링크플레이트A파트(251)를 향하도록 배치되고 제2로드블록(243)의 타측이 제2커넥팅로드(241)의 타단과 상대 회동 가능하게 연결된다.
이때, 제2링크플레이트A파트(251)에는 관통구가 형성되고 제2커넥팅로드(241)는 제2링크플레이트A파트(251)에 형성된 관통구를 관통하여 가동 가능하게 배치된다.
제2커넥팅로드(241)와 제2로드블록(243) 간의 연결시 스프링압축력을 충분히 지지하도록 깊은홈 볼베어링4(242)이 삽입되어 연결되는 구조를 취할 수 있다. 제2로드블록(243)을 통한 연결 구조를 이용하여 제2스프링블록(245)과 중심에서 연결되는 구조가 형성되어 효과적인 힘의 분산이 이루어질 수 있다.
또한, 이와 같은 구조를 통하여 제2링크(200)가 제1링크(100)에 대하여 회동하는 경우, 제2커넥팅로드(241)의 길이는 한정되어 구속되는 조건을 형성함으로써, 제2커넥팅로드(241)의 타측에 연결된 제2로드블록(243) 및 제2스프링블록(245)은 제2링크(200)의 길이 방향으로 제2링크샤프트(252)를 따라 이동하여 압축 가능함으로써 소정의 탄성력 형성을 이루고 이는 제2링크의 자중에 의한 토크를 보상하여 제2링크의 자중을 보상하기 위하여 필요한 필요토크의 크기를 최소화할 수 있다.
한편, 앞서 제1링크의 경우와 마찬가지로 베벨기어로 형성되는 제2기준부와 제2커넥팅로드의 연결 위치를 조정할 수 있는 로드 조정부가 더 구비될 수 있다.
한편, 제2링크(200)의 단부에 제3링크(300)가 배치될 수 있는데, 제3링크(300)는 제2링크(200)에 일단이 회동 가능하게 연결 배치되어 제3관절(J3)을 형성하고 무게중심이 제3관절(J3)로부터 이격된다.
제3패러랠로그램기어부(310)의 제3기준부(311)는 제2링크(200)의 타단, 즉 제3링크(300)의 일단으로 제3관절(J3)을 형성하는 위치에 배치되는데, 제3기준부(311)도 베벨 기어 구조의 제3기준베벨기어로 구현될 수 있다.
제3기준부(311)는 제1기준부와 제2기준부의 교번 배치 구조와 마찬가지로 제2기준부(231)에 대하여 교번 배치 구조를 이룬다. 즉, 제3기준부(311)는 제2기준부(231)의 회전축에 수직하고 제2패러랠로그램샤프트의 회동 중심을 포함하는 평면을 중심으로 제2기준부의 배치 영역과 반대편에 배치된다.
제3링크(300)는 제3링크바디(320;321,322,324,326,327)와, 제3링크샤프트(345)를 포함하고, 제3링크의 단부에는 각각 제3링크제2링크관절연결부(312)가 배치될 수 있다.
제3링크제2링크관절연결부(312)는 제2링크제3링크관절연결부(260;261,262)에 회동 가능하게 연결된다.
제2링크제3링크관절연결부(260;261,262)의 제2-3링크관절연결패러랠연결부(262)에는 깊은홈 볼베어링5(313)이 배치되된다.
제3-2링크관절연결패러랠연결부(312,314)는 깊은홈 볼베어링5(313)의 내륜에 연결되어 제2-3링크관절연결패러랠연결부(262)의 양측에서 지지된다.
제3-2링크관절연결패러랠연결부(312,314)는 제3-2링크관절연결패러랠연결부A(312)와 제3-2링크관절연결패러랠연결부B(314)를 구비한다.
제3-2링크관절연결패러랠연결부A(312)에는 제3기준베벨기어로 구현되는 제3기준부(311)가 배치된다.
제3기준부(311)는 깊은홈베어링7(323)을 통하여 제3링크바디사이드A(321)와 상대 회동 가능하게 연결된다.
제3기준부(311)는 제3-2링크관절연결패러랠연결부A(312)를 통하여 제3-2링크관절연결패러랠연결부B(314)에 연결되어 함께 회동 상태를 형성할 수 있다.
제3-2링크관절연결패러랠연결부B(314)는 하기되는 제3카운터밸런서(340)의 제3커넥팅로드(341)와 제3-2링크관절연결패러랠연결부B(314)의 회동 중심으로부터 반경 방향으로 이격된 위치에서 상대 회동 가능하게 연결된다.
제3기준베벨기어로 구혀뇌는 제3기준부(311)는 제1기준부(132) 및 제2기준부와의 회전 방향을 일치시켜 동일한 방향으로의 회동을 이루어 기준 위치를 일치시켜 평행을 이루도록 하기 위하여 제3기준부(311)는 제2기준부의 회전축에 수직하고 제2패러랠로그램샤프트의 제2회전축의 회동중심을 포함하는 평면을 중심으로 제2기준부의 배치 영역과 반대편에 배치되도록 교번 배치되는 구조를 형성한다(도 7의 (b) 참조).
제3링크바디(320;321,322,324,326)는 제3링크바디사이드A(321)와 제3링크바디사이드B(324)와 제3링크바디프론트(322)와 제3링크바디어퍼(326)과 제3링크바디바텀(327)을 포함한다.
제3링크바디사이드A(321)와 제3링크바디사이드B(324)와 제3링크바디어퍼(326)과 제3링크바디바텀(327)는 제3링크바디프론트(322)에 연결된다.
제3링크바디사이드B(324)에는 제3링크샤프트(345)가 제3링크의 길이 방향을 따라 배치되는데, 제3링크바디사이드B(324)에는 제3카운터밸런서(340)가 배치된다.
제3카운터밸런서(340)는 제3스프링블록(343) 및 제3압축스프링(346) 및 제3커넥팅로드(341)을 포함한다.
제3링크샤프트(345)에는 제3스프링블록(343)이 제3기준부(311)와 이격되어 제3링크(300)의 길이 방향을 따라 가동 가능하게 배치된다.
제3링크샤프트(345)의 외주로 제3스프링블록(343)과 제3기준부(311)의 사이에는 제3압축스프링(346)이 배치되고, 제3커넥팅로드(341)는 일단이 제3기준부(311) 측, 보다 구체적으로 제3기준부(311)와 상대 회동 방지되어 동축 회동하도록 연결되는 제3-2링크관절연결패러랠연결부B(314)의 제3관절(J3)에 대한 회전 중심으로부터 반경 방향으로 이격되어 회동 가능하게 배치되고, 타단이 제3스프링블록(343) 측에 회동 가능하게 장착되어 제3기준부(311)가 회동함에 따라 제3스프링블록(343)을 가동시킨다.
제3스프링블록(343)와 제3기준부(311) 측 사이에는 제3압축스프링(346)이 배치되어 제3스프링블록(343)을 탄성 지지한다. 제3커넥팅로드(341)의 단부는 깊은홈 볼베어링6(342)을 통하여 제3스프링블록(343)과 회동 가능하게 연결된다.
제3구동부(330)는 제3링크모터(331)와 제3링크 동력 전달부(332,333)을 포함한다.
제3링크모터(331)는 제3링크(300)의 길이 방향에 수직하는 회전축을 중심으로 회전력을 생성한다.
제3링크 동력 전달부(332,333)는 제3링크모터(331)와 제2링크(200) 측 사이에 배치되어 제3링크모터(331)에서 생성된 회전력을 제2링크(200)측에 전달하여 제3링크(300)의 상대 회동을 형성한다.
제3링크 동력 전달부(332,333)는 제3피니언기어(332)와 제3링기어(333)를 포함하는데, 제3피니언기어(332)는 제3링크모터(331)의 회동축에 연결되고, 제3링기어(333)는 제2링크(200) 측, 보다 구체적으로 제2링크(200)의 제2-3링크관절연결구동연결부(261)에 고정 장착되고, 제3피니언기어(332)와 치합된다.
따라서, 제3링크모터(331)의 회전력에 의하여 제3피니언기어(332)가 회동하는 경우, 치합되는 제3링기어(331)도 함께 회동하는데 제3링기어(331)는 제2-3링크관절연결구동연결부(261)에 고정 장착됨으로써 제3링크(300)는 제3관절(J3)을 중심으로 제2링크(200)에 대하여 상대 회동을 이룬다.
상기 실시예들은 본 발명을 설명하기 위한 일예들로, 본 발명이 이에 국한되는 것은 아니다. 본 발명의 토크 프리 링키지 유니트는 로봇 팔의 형태 이외 택배 내지 배송물 내지 수하물 등의 이송을 위한 이송 기구 장치 내지 가정에서의 모니터의 링키지 지지 구조 내지 의료 설비의 링키지 구조 등과 같이 산업용, 의료용 내지 가정용 등의 다양한 기구적 구성에 사용될 수 있고, 추가적인 구동력이 요하지 않는 기구적 구조를 이룰 수도 있고 단수 링크 배치 구조 이외 복수 개의 연속적 링크 배치 구조를 이룰 수도 있는 등, 슬라이더 크랭크 기반의 카운터밸런서 내지 베벨 기어 기반의 더블패러랠로그램유니트를 구비하는 범위에서 다양한 변형이 가능하다.
본 발명의 토크 프리 링키지 유니트는 산업용, 가정용, 의료용 등 전방위적인 로봇 장치와 더불어 소정의 자중에 의한 중력 보상 기능을 구현하는 기구적 요소에 적용 가능한 등 다양한 활용이 가능하다.

Claims (26)

  1. 베이스링크; 및
    상기 베이스링크에 일단이 회동 가능하게 연결 배치되어 제1관절을 형성하고 무게중심이 상기 제1관절로부터 이격되는 제1링크;를 구비하고,
    상기 제1링크는, 일단이 상기 제1관절에 배치되고 타단이 상기 제1링크의 길이 방향을 따라 배치되어 상기 제1링크가 상기 제1관절을 중심으로 회동하는 경우 상기 제1링크의 중력을 보상하는 제1카운터밸런서를 구비하고,
    상기 제1카운터밸런서는:
    인가되는 회전력을 상기 제1링크에 전달하고 상기 베이스링크에 배치되는 제1기준부와 이격되어, 상기 제1링크의 길이 방향을 따라 가동가능한 제1스프링블록과,
    일단이 상기 제1기준부 측의 상기 제1관절에 대한 회전 중심으로부터 반경 방향으로 이격되어 회동 가능하게 배치되고, 타단이 상기 제1스프링블록 측에 회동 가능하게 장착되어 상기 제1링크가 상기 제1관절을 중심으로 회동함에 따라 상기 제1스프링블록을 가동시키는 제1커넥팅로드와,
    상기 제1스프링블록과 상기 제1기준부 사이에 배치되는 제1압축스프링을 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  2. 제 1항에 있어서,
    상기 제1링크는:
    상기 제1스프링블록 및 상기 제1압축스프링을 사이에 두고 대향하여 배치되되, 상기 제1기준부와 상기 제1압축스프링 사이에 배치되는 제1링크플레이트A파트와, 상기 제1압축스프링과의 사이에 상기 제1스프링블록이 배치되는 제1링크플레이트B파트를 포함하는 제1링크플레이트와,
    상기 제1링크플레이트의 사이에 배치되는 제1링크샤프트를 구비하고,
    상기 제1커넥팅로드는 상기 제1링크플레이트의 상기 제1링크플레이트A파트를 관통하여 배치되고, 상기 제1압축스프링은 상기 제1링크샤프트의 길이 방향을 따라 외주에 배치되는 것을 특징으로 하는 토크 프리 링키지 유니트.
  3. 제 2항에 있어서,
    상기 제1카운터밸런서는, 상기 제1스프링블록의 일측에 상기 제1스프링블록의 가동 방향으로 상기 제1링크플레이트A파트를 향하여 배치되는 제1로드블록을 포함하고, 상기 제1커넥팅로드의 타단과 회동 가능하게 연결되는 것을 특징으로 하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  4. 제 1항에 있어서,
    상기 제1카운터밸런서는 상기 제1커넥팅로드의 일단의 배치 위치를 조정하는 로드 조정부를 더 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  5. 제 4항에 있어서,
    상기 제1기준부 측에는 상기 제1관절의 중심으로부터 반경 방향으로 배치되고 길이 방향으로 회동 조정 가능한 조정 리드 스크류와,
    상기 조정 리드 스크류의 길이 방향을 따라 상기 조정 리드 스크류의 회동에 따라 상기 제1관절의 중심으로부터 반경 방향 상에서 위치 조정 가능하고, 상기 제1커넥팅로드의 일단이 회동 가능하게 장착되는 조정 블록을 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  6. 제 1항에 있어서,
    상기 베이스링크에는 상기 제1링크의 회전력 형성하는 제1구동부가 구비되고,
    상기 제1구동부는;
    상기 제1링크의 길이 방향에 수직하는 회전축을 중심으로 회전력을 생성하는 제1링크모터와,
    상기 제1링크모터와 상기 제1링크 측 사이에 배치되어 상기 제1링크모터의 회전력을 상기 제1링크 측에 전달하여 상기 제1링크의 상대 회동을 형성하는 제1링크 동력전달부를 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  7. 제 6항에 있어서,
    상기 제1링크 동력전달부는:
    상기 제1링크모터에 연결되는 제1피니언기어와,
    상기 제1링크 측에 고정 장착되고 상기 제1피니언기어와 치합되는 제1링기어를 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  8. 제 1항에 있어서,
    상기 제1링크에 일단이 회동 가능하게 연결 배치되는 제2관절을 형성하고 무게중심이 상기 제2관절로부터 이격되는 제2링크를 구비하고,
    상기 제2링크는, 일단이 상기 제2관절에 배치되고 타단이 상기 제2링크의 길이 방향을 따라 배치되어 상기 제2링크가 상기 제2관절을 중심으로 회동하는 경우 상기 제2링크의 중력을 보상하는 제2카운터밸런서를 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  9. 제 8항에 있어서,
    상기 제2카운터밸런서는:
    상기 제2관절을 형성하는 상기 제2링크의 단부에 회전가능하게 배치되는 제2기준부와 이격되어 상기 제2링크의 길이 방향을 따라 가동가능한 제2스프링블록과,
    일단이 상기 제2기준부 측의 상기 제2관절에 대한 회전 중심으로부터 반경 방향으로 이격되어 회동 가능하게 배치되고, 타단이 상기 제2스프링블록 측에 회동 가능하게 장착되어 상기 제2기준부가 회동함에 따라 상기 제2스프링블록을 가동시키는 제2커넥팅로드와,
    상기 제2스프링블록과 상기 제2기준부 사이에 배치되는 제2압축스프링을 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  10. 제 9항에 있어서,
    상기 제2링크는:
    상기 제2스프링블록 및 상기 제2압축스프링을 사이에 두고 대향하여 배치되되, 상기 제2기준부와 상기 제2압축스프링 사이에 배치되는 제2링크플레이트A파트와, 상기 제2압축스프링과의 사이에 상기 제2스프링블록이 배치되는 제2링크플레이트B파트를 포함하는 제2링크플레이트와,
    상기 제2링크플레이트의 사이에 배치되는 제2링크샤프트를 구비하고,
    상기 제2커넥팅로드는 상기 제2링크플레이트A파트를 관통하여 배치되고, 상기 제2압축스프링은 상기 제2링크샤프트의 길이 방향을 따라 외주에 배치되는 것을 특징으로 하는 토크 프리 링키지 유니트.
  11. 제 10항에 있어서,
    상기 제2카운터밸런서는, 상기 제2스프링블록의 일측에 상기 제2스프링블록의 가동 방향으로 상기 제2링크플레이트A파트를 향하여 배치되는 제2로드블록을 포함하고, 상기 제2커넥팅로드의 타단과 회동 가능하게 연결되는 것을 특징으로 하는 것을 특징으로 하는 토크 프리 로봇 팔.
  12. 제 9항에 있어서,
    상기 제2카운터밸런서는 상기 제2커넥팅로드의 일단의 배치 위치를 조정하는 로드 조정부를 더 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  13. 제 12항에 있어서,
    상기 제2기준부 측에는 상기 제1관절의 중심으로부터 반경 방향으로 배치되고 길이 방향으로 회동 조정 가능한 조정 리드 스크류와,
    상기 조정 리드 스크류의 길이 방향을 따라 상기 조정 리드 스크류의 회동에 따라 상기 제2관절의 중심으로부터 반경 방향 상에서 위치 조정 가능하고, 상기 제2커넥팅로드의 일단이 회동 가능하게 장착되는 조정 블록을 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  14. 제 9항에 있어서,
    상기 제1링크에는 상기 제2링크의 회전력 형성하는 제2구동부가 구비되고,
    상기 제2구동부는;
    상기 제2링크의 길이 방향에 수직하는 회전축을 중심으로 회전력을 생성하는 제2모터와,
    상기 제2모터와 상기 제2링크 측 사이에 배치되어 상기 제2모터의 회전력을 상기 제2링크 측에 전달하여 상기 제2링크의 상대 회동을 형성하는 제2링크 동력전달부를 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  15. 제 14항에 있어서,
    상기 제2링크 동력전달부는:
    상기 제2모터에 연결되는 제2피니언기어와,
    상기 제2링크 측에 고정 장착되고 상기 제2피니언기어와 치합되는 제2링기어를 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  16. 제 1항에 있어서,
    상기 제1링크에 일단이 회동 가능하게 연결 배치되는 제2관절을 형성하고 무게중심이 상기 제2관절로부터 이격되는 제2링크가 구비되고,
    상기 제2관절을 형성하는 상기 제2링크의 단부에 회전가능하게 배치되는 제2기준부; 및 일단이 상기 제1기준부에 치합되고 타단이 상기 제2기준부에 치합되는 제1패러렐로그램샤프트를 포함하는 패러렐로그램기어부;를 포함하고, 상기 제1관절 및 상기 제2관절을 이루는 상기 제2기준부와 상기 제1기준부의 회전각도 기준을 동일하게 형성시키는 더블패러렐로그램 유니트를 더 구비하고,
    상기 제2기준부는, 상기 제1기준부의 회전축에 수직하고 상기 제1패러렐로그램샤프트의 회동 중심을 포함하는 평면을 중심으로 상기 제1기준부의 배치 영역과 반대편에 배치되는 것을 특징으로 하는 토크 프리 링키지 유니트.
  17. 제 16항에 있어서,
    상기 제1기준부는 베벨 기어 타입의 제1기준베벨기어로 형성되고, 상기 제2기준부는 베벨 기어 타입의 제2기준베벨기어로 형성되고,
    상기 제1패러렐로그램샤프트는:
    상기 제1기준베벨기어와 치합되는 제1소형베벨기어A와,
    상기 제2기준베벨기어와 치합되는 제1소형베벨기어B와,
    일단에 상기 제1소형베벨기어A가 그리고 타단에 상기 제1소형베벨기어B가 배치되는 제1회전축을 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  18. 제 16항에 있어서,
    상기 제2링크는, 일단이 상기 제2관절에 배치되고 타단이 상기 제2링크의 길이 방향을 따라 배치되어 상기 제2링크가 상기 제2관절을 중심으로 회동하는 경우 상기 제2링크의 중력을 보상하는 제2카운터밸런서를 구비하고,
    상기 제2링크의 타단에는 상기 제2관절과 평행한 제3관절을 형성하는 제3기준부가 배치되고,
    상기 더블 패러렐로그램 유니트는 상기 제3기준부의 지면에 대한 회전각도 기준도 상기 제2기준부 및 상기 제1기준부와 동일하게 형성하기 위하여,
    상기 패러렐로그램기어부는, 일단이 상기 제2기준부에 치합되고 타단이 상기 제3기준부에 치합되는 제2패러렐로그램샤프트를 포함하고,
    상기 제3기준부는, 상기 제2기준부의 회전축에 수직하고 상기 제2패러렐로그램샤프트의 회동 중심을 포함하는 평면을 중심으로 상기 제2기준부의 배치 영역과 반대편에 배치되는 것을 특징으로 하는 토크 프리 링키지 유니트.
  19. 제 18항에 있어서,
    상기 제2기준부는 베벨 기어 타입의 제2기준베벨기어로 형성되고, 상기 제3기준부는 베벨 기어 타입의 제3기준베벨기어로 형성되고,
    상기 제2패러렐로그램샤프트는:
    상기 제2기준베벨기어와 치합되는 제2소형베벨기어A와,
    상기 제3기준베벨기어와 치합되는 제2소형베벨기어B와,
    일단에 상기 제2소형베벨기어A가 그리고 타단에 상기 제2소형베벨기어B가 배치되는 제2회전축을 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  20. 제 18항에 있어서,
    상기 제3기준부의 외측에는, 상기 제2링크에 일단이 회동 가능하게 연결 배치되어 상기 제3관절을 형성하고 무게중심이 상기 제3관절로부터 이격되는 제3링크를 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  21. 제 20항에 있어서,
    상기 제3링크는, 일단이 상기 제3관절에 배치되고 타단이 상기 제3링크의 길이 방향을 따라 배치되어 상기 제3링크가 상기 제3관절을 중심으로 회동하는 경우 상기 제3링크의 중력을 보상하는 제3카운터밸런서를 구비하고,
    상기 제3카운터밸런서는:
    상기 제3기준부와 이격되어 상기 제3링크의 길이 방향을 따라 가동가능한 제3스프링블록과,
    일단이 상기 제3기준부 측의 상기 제3관절에 대한 회전 중심으로부터 반경 방향으로 이격되어 회동 가능하게 배치되고, 타단이 상기 제3스프링블록 측에 회동 가능하게 장착되어 상기 제3기준부가 회동함에 따라 상기 제3스프링블록을 가동시키는 제3커넥팅로드와,
    상기 제3스프링블록과 상기 제3기준부 측 사이에 배치되는 제3압축스프링을 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  22. 제 21항에 있어서,
    상기 제3링크에는 상기 제3링크의 회전력 형성하는 제3구동부가 구비되고,
    상기 제3구동부는;
    상기 제3링크의 길이 방향에 수직하는 회전축을 중심으로 회전력을 생성하는 제3모터와,
    상기 제3모터와 상기 제2링크 측 사이에 배치되어 상기 제3모터의 회전력을 상기 제2링크 측에 전달하여 상기 제3링크의 상대 회동을 형성하는 제3링크 동력전달부를 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  23. 제 21항에 있어서,
    상기 제3링크 동력전달부는:
    상기 제3모터에 연결되는 제3피니언기어와,
    상기 제2링크 측에 고정 장착되고 상기 제3피니언기어와 치합되는 제3링기어를 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  24. 베이스링크;
    상기 베이스링크에 일단이 회동 가능하게 연결 배치되어 제1관절을 형성하고 무게중심이 상기 제1관절로부터 이격되는 제1링크; 및
    상기 제1링크에 일단이 회동 가능하게 연결 배치되는 제2관절을 형성하고 무게중심이 상기 제2관절로부터 이격되는 제2링크가 구비되고,
    상기 제1링크는, 일단이 상기 제1관절에 배치되고 타단이 상기 제1링크의 길이 방향을 따라 배치되어 상기 제1링크가 상기 제1관절을 중심으로 회동하는 경우 상기 제1링크의 중력을 보상하는 제1카운터밸런서를 구비하고,
    상기 베이스링크에 위치 고정 배치되어 회동이 제한되는 제1기준부; 상기 제2관절을 형성하는 상기 제2링크의 단부에 회전가능하게 배치되는 제2기준부; 및 일단이 상기 제1기준부에 치합되고 타단이 상기 제2기준부에 치합되는 제1패러렐로그램샤프트를 포함하는 패러렐로그램기어부;를 포함하고, 상기 제1관절 및 상기 제2관절을 이루는 상기 제2기준부와 상기 제1기준부의 회전각도 기준을 동일하게 형성시키는 더블패러렐로그램 유니트를 더 구비하고,
    상기 제2기준부는, 상기 제1기준부의 회전축에 수직하고 상기 제1패러렐로그램샤프트의 회동 중심을 포함하는 평면을 중심으로 상기 제1기준부의 배치 영역과 반대편에 배치되는 것을 특징으로 하는 토크 프리 링키지 유니트.
  25. 제 24항에 있어서,
    상기 제1기준부는 베벨 기어 타입의 제1기준베벨기어로 형성되고, 상기 제2기준부는 베벨 기어 타입의 제2기준베벨기어로 형성되고,
    상기 제1패러렐로그램샤프트는:
    상기 제1기준베벨기어와 치합되는 제1소형베벨기어A와,
    상기 제2기준베벨기어와 치합되는 제1소형베벨기어B와,
    일단에 상기 제1소형베벨기어A가 그리고 타단에 상기 제1소형베벨기어B가 배치되는 제1회전축을 구비하는 것을 특징으로 하는 토크 프리 링키지 유니트.
  26. 제 25항에 있어서,
    상기 제2링크는, 일단이 상기 제2관절에 배치되고 타단이 상기 제2링크의 길이 방향을 따라 배치되어 상기 제2링크가 상기 제2관절을 중심으로 회동하는 경우 상기 제2링크의 중력을 보상하는 제2카운터밸런서를 구비하고,
    상기 제2링크의 타단에는 상기 제2관절과 평행한 제3관절을 형성하는 제3기준부가 배치되고,
    상기 더블 패러렐로그램 유니트는 상기 제3기준부의 지면에 대한 회전각도 기준도 상기 제2기준부 및 상기 제1기준부와 동일하게 형성하기 위하여,
    상기 패러렐로그램기어부는, 일단이 상기 제2기준부에 치합되고 타단이 상기 제3기준부에 치합되는 제2패러렐로그램샤프트를 포함하고,
    상기 제3기준부는, 상기 제2기준부의 회전축에 수직하고 상기 제2패러렐로그램샤프트의 회동 중심을 포함하는 평면을 중심으로 상기 제2기준부의 배치 영역과 반대편에 배치되는 것을 특징으로 하는 토크 프리 링키지 유니트.
PCT/KR2014/009918 2013-10-22 2014-10-22 토크 프리 링키지 유니트 WO2015060629A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130126149 2013-10-22
KR10-2013-0126149 2013-10-22
KR1020140052726A KR20150047076A (ko) 2013-10-22 2014-04-30 토크 프리 링키지 유니트
KR10-2014-0052726 2014-04-30

Publications (1)

Publication Number Publication Date
WO2015060629A1 true WO2015060629A1 (ko) 2015-04-30

Family

ID=52993157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009918 WO2015060629A1 (ko) 2013-10-22 2014-10-22 토크 프리 링키지 유니트

Country Status (1)

Country Link
WO (1) WO2015060629A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108058187A (zh) * 2016-11-09 2018-05-22 株式会社东芝 臂构造以及搬运装置
CN110404157A (zh) * 2019-08-03 2019-11-05 安徽工程大学 一种机器人用正弦弹力放大力矩补偿装置及方法
CN112223305A (zh) * 2020-09-23 2021-01-15 合肥铁榔头教育科技有限公司 一种人形机器人腰部关节及实现方法
CN114423985A (zh) * 2019-09-18 2022-04-29 微软技术许可有限责任公司 显示器平衡机构
CN115533866A (zh) * 2022-11-07 2022-12-30 陈思睿 一种带有抓取装置的机器人及其工作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6298569B1 (en) * 1998-12-08 2001-10-09 Faro Technologies, Inc. Adjustable counterbalance mechanism for a coordinate measurement machine
JP2003181789A (ja) * 2001-12-14 2003-07-02 Univ Waseda 機械的自重補償装置
KR20070122209A (ko) * 2005-03-03 2007-12-28 히드라우리크-링 게엠베하 내연기관의 기계적 가변 밸브 제어 장치
KR20130028542A (ko) * 2011-09-09 2013-03-19 고려대학교 산학협력단 토크 프리 로봇 팔
KR101306215B1 (ko) * 2006-02-03 2013-09-09 더 유럽피안 애토믹 에너지 커뮤니티(이유알에이티오엠), 리프레젠티드 바이 더 유럽피안 커미션 원통좌표형 조작 암을 구비한 의료용 로봇 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6298569B1 (en) * 1998-12-08 2001-10-09 Faro Technologies, Inc. Adjustable counterbalance mechanism for a coordinate measurement machine
JP2003181789A (ja) * 2001-12-14 2003-07-02 Univ Waseda 機械的自重補償装置
KR20070122209A (ko) * 2005-03-03 2007-12-28 히드라우리크-링 게엠베하 내연기관의 기계적 가변 밸브 제어 장치
KR101306215B1 (ko) * 2006-02-03 2013-09-09 더 유럽피안 애토믹 에너지 커뮤니티(이유알에이티오엠), 리프레젠티드 바이 더 유럽피안 커미션 원통좌표형 조작 암을 구비한 의료용 로봇 시스템
KR20130028542A (ko) * 2011-09-09 2013-03-19 고려대학교 산학협력단 토크 프리 로봇 팔

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108058187A (zh) * 2016-11-09 2018-05-22 株式会社东芝 臂构造以及搬运装置
CN108058187B (zh) * 2016-11-09 2021-10-01 株式会社东芝 臂构造以及搬运装置
CN110404157A (zh) * 2019-08-03 2019-11-05 安徽工程大学 一种机器人用正弦弹力放大力矩补偿装置及方法
CN114423985A (zh) * 2019-09-18 2022-04-29 微软技术许可有限责任公司 显示器平衡机构
US11946588B2 (en) 2019-09-18 2024-04-02 Microsoft Technology Licensing, Llc Display counterbalance mechanism
CN112223305A (zh) * 2020-09-23 2021-01-15 合肥铁榔头教育科技有限公司 一种人形机器人腰部关节及实现方法
CN115533866A (zh) * 2022-11-07 2022-12-30 陈思睿 一种带有抓取装置的机器人及其工作方法
CN115533866B (zh) * 2022-11-07 2023-06-13 陈思睿 一种带有抓取装置的机器人及其工作方法

Similar Documents

Publication Publication Date Title
WO2015060629A1 (ko) 토크 프리 링키지 유니트
WO2018101734A1 (en) Display device
WO2020251191A1 (en) Display device
WO2021101120A1 (ko) 디스플레이 디바이스
WO2017150933A1 (ko) 가변형 중력토크 보상장치 및 이의 제어 방법
WO2019088373A1 (ko) 플렉서블 디스플레이 유닛 및 이를 구비하는 이동 단말기
WO2020184738A1 (ko) 로봇
WO2022010061A1 (ko) 디스플레이 지지 장치
WO2009116770A2 (en) Continuously variable transmission
WO2021132782A1 (ko) 디스플레이 디바이스
WO2022119360A1 (ko) 폴더블 구조를 갖는 휴대단말기 힌지
WO2020158964A1 (ko) 액션 로봇
WO2024080660A1 (ko) 이송 장치
WO2020256504A2 (ko) 수술 시스템
WO2021132779A1 (ko) 디스플레이 디바이스
WO2021002566A1 (ko) 의류 폴딩 머신
WO2020235709A1 (ko) 액션 로봇
WO2021172625A1 (ko) 디스플레이 디바이스
WO2021137322A1 (ko) 디스플레이 디바이스
WO2019226011A1 (ko) 정보 출력 장치
WO2022149739A1 (ko) 힌지 구조물을 포함하는 전자 장치
WO2021101287A1 (ko) 로봇 암용 그리퍼 장치
WO2021101263A1 (en) Planetary gear transmission device and robot having the same
WO2021101118A1 (ko) 디스플레이 디바이스
WO2015060626A1 (ko) 다자유도 토크 프리 링키지 유니트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856048

Country of ref document: EP

Kind code of ref document: A1