WO2015060314A1 - Method for producing l-amino acid - Google Patents

Method for producing l-amino acid Download PDF

Info

Publication number
WO2015060314A1
WO2015060314A1 PCT/JP2014/077993 JP2014077993W WO2015060314A1 WO 2015060314 A1 WO2015060314 A1 WO 2015060314A1 JP 2014077993 W JP2014077993 W JP 2014077993W WO 2015060314 A1 WO2015060314 A1 WO 2015060314A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
acpp
strain
fabf
protein
Prior art date
Application number
PCT/JP2014/077993
Other languages
French (fr)
Japanese (ja)
Inventor
未来 戸矢崎
景子 野口
美加 守屋
由利 上原
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2015507848A priority Critical patent/JP6459962B2/en
Priority to PL14835548T priority patent/PL2886651T3/en
Priority to EP14835548.0A priority patent/EP2886651B1/en
Priority to BR112015005215-0A priority patent/BR112015005215B1/en
Priority to CN201480002367.5A priority patent/CN104736707B/en
Priority to ES14835548.0T priority patent/ES2694011T3/en
Publication of WO2015060314A1 publication Critical patent/WO2015060314A1/en
Priority to US14/735,303 priority patent/US9487806B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli

Definitions

  • the present invention relates to a method for producing L-amino acids using bacteria.
  • L-amino acids are industrially useful as additives for animal feed, ingredients for seasonings and foods and drinks, amino acid infusions, and the like.
  • L-amino acids are industrially produced, for example, by fermentation using various microorganisms capable of producing L-amino acids.
  • methods for producing L-amino acids by fermentation include a method using a wild-type microorganism (wild strain), a method using an auxotrophic strain derived from a wild strain, and various drug-resistant mutant strains derived from a wild strain. And a method using a strain having characteristics of both an auxotrophic strain and a metabolic control mutant.
  • microorganisms whose L-amino acid producing ability has been improved by recombinant DNA technology have been used for the production of L-amino acids.
  • Examples of a method for improving the L-amino acid producing ability of a microorganism include, for example, enhancing the expression of a gene encoding an L-amino acid biosynthetic enzyme (Patent Documents 1 and 2) or an L-amino acid biosynthetic system. To enhance the inflow of the carbon source (Patent Document 3).
  • the acpP gene is a gene encoding an acyl carrier protein (ACP) (Non-patent Document 1).
  • ACP is translated as an inactive apo-ACP, and then converted into a 4′-phosphopantethein (4′ ⁇ ) at the serine residue at position 36 (in the case of Escherichia coli) of apo-ACP by ACP synthase (ACP synthease).
  • phosphopanteheine is added as a cofactor to form active holo-ACP.
  • ACP is a protein that plays an important role in fatty acid biosynthesis of bacteria and the like. Specifically, ACP (holo-ACP) binds to a fatty acid chain via a 4'-phosphopantethein group and carries the fatty acid chain during fatty acid biosynthesis.
  • the fabF gene is a gene encoding ⁇ -ketoacyl-ACP synthase II (non-patent document 1).
  • ⁇ -ketoacyl-ACP synthase II is one of fatty acid biosynthetic enzymes and is involved in the elongation of fatty acid chains. Specifically, ⁇ -ketoacyl-ACP synthase II catalyzes a reaction for producing 3-oxoacyl-ACP (carbon number n + 2) from acyl-ACP (carbon number n) and malonyl-ACP (EC 2.3.1.41). ).
  • a group of genes involved in fatty acid biosynthesis including the acpP gene and the fabF gene exists as a yceD-rpmF-plsX-fabHDG-acpP-fabF gene cluster.
  • the gene group of the cluster is co-transcribed as several gene pairs (Non-patent Document 1).
  • the acpP gene and the fabF gene are cotranscribed as the acpP-fabF operon.
  • the fabF gene is also transcribed individually from its own promoter.
  • the acpP gene can also be co-transcribed from the fabD gene and the fabG gene in the yceD-rpmF-plsX-fabHDG-acpP-fabF gene cluster.
  • An object of the present invention is to develop a novel technique for improving L-amino acid-producing ability of bacteria and to provide an efficient method for producing L-amino acid.
  • the present inventor can improve the L-amino acid-producing ability of bacteria by modifying the bacteria so that the expression of acpP and fabF genes is reduced.
  • the present invention was completed.
  • the present invention can be exemplified as follows.
  • Bacteria belonging to the family Enterobacteriaceae having L-amino acid-producing ability are cultured in a medium to produce and accumulate L-amino acid in the medium or in the bacterial body, and L-amino acid is produced from the medium or the bacterial body.
  • Collecting an L-amino acid comprising: A method, characterized in that the bacterium has been modified such that the acpP-fabF operon is attenuated.
  • the method, wherein the weakening of the acpP-fabF operon is a decrease in the activity of a protein encoded by a gene of the acpP-fabF operon.
  • L-amino acid is L-lysine.
  • Escherichia coli having L-lysine-producing ability is cultured in a medium, and L-lysine is produced and accumulated in the medium or cells of the Escherichia coli, and L-lysine is collected from the medium or cells.
  • a process for producing L-lysine comprising A method wherein the expression of the gene is weakened by modifying the expression control sequence of the gene of the acpP-fabF operon in the Escherichia coli.
  • Escherichia coli having L-lysine-producing ability is cultured in a medium, and L-lysine is produced and accumulated in the medium or cells of the Escherichia coli, and L-lysine is collected from the medium or cells.
  • a process for producing L-lysine comprising A method wherein cytosine at position ⁇ 34 upstream of the translation start point of the acpP gene is substituted with another base in the Escherichia coli.
  • Escherichia coli having L-lysine-producing ability is cultured in a medium, and L-lysine is produced and accumulated in the medium or cells of the Escherichia coli, and L-lysine is collected from the medium or cells.
  • a process for producing L-lysine comprising A method wherein cytosine at position ⁇ 34 upstream of the translation start point of the acpP gene is substituted with adenine in the Escherichia coli.
  • the method of the present invention comprises culturing a bacterium belonging to the family Enterobacteriaceae having L-amino acid-producing ability in a medium, and producing and accumulating L-amino acid in the medium or in the microbial cells, and the medium or the bacterium.
  • a method for producing an L-amino acid comprising collecting an L-amino acid from a body, wherein the bacterium is modified so that the acpP-fabF operon is weakened.
  • the bacterium used in this method is also referred to as “the bacterium of the present invention”.
  • the bacterium of the present invention is a bacterium belonging to the family Enterobacteriaceae having an L-amino acid-producing ability and modified so that the acpP-fabF operon is weakened.
  • bacteria having L-amino acid-producing ability refers to the extent that a desired L-amino acid can be produced and recovered when cultured in a medium. Refers to bacteria having the ability to accumulate in the medium or in the fungus body.
  • the bacterium having L-amino acid-producing ability may be a bacterium capable of accumulating a larger amount of the target L-amino acid in the medium than the unmodified strain.
  • Non-modified strains include wild strains and parent strains.
  • the bacterium having L-amino acid-producing ability is a bacterium that can accumulate the target L-amino acid in an amount of 0.5 g / L or more, more preferably 1.0 g / L or more in the medium. May be.
  • L-amino acids include basic amino acids such as L-lysine, L-ornithine, L-arginine, L-histidine, L-citrulline, L-isoleucine, L-alanine, L-valine, L-leucine, glycine, etc.
  • Aliphatic amino acids amino acids which are hydroxymonoaminocarboxylic acids such as L-threonine and L-serine, cyclic amino acids such as L-proline, aromatic amino acids such as L-phenylalanine, L-tyrosine and L-tryptophan, L- Examples thereof include sulfur-containing amino acids such as cysteine, L-cystine and L-methionine, acidic amino acids such as L-glutamic acid and L-aspartic acid, and amino acids having an amide group in the side chain such as L-glutamine and L-asparagine.
  • the bacterium of the present invention may have only one L-amino acid producing ability or may have two or more L-amino acid producing ability.
  • the term “amino acid” may mean an L-amino acid unless otherwise specified. Further, the produced L-amino acid may be a free form, a salt thereof, or a mixture thereof. That is, in the present invention, the term “L-amino acid” may mean a free L-amino acid, a salt thereof, or a mixture thereof, unless otherwise specified. Examples of the salt will be described later.
  • NCBI National Center for Biotechnology Information
  • the Escherichia bacterium is not particularly limited, but includes bacteria classified into the genus Escherichia by classification known to microbiologists.
  • Escherichia bacteria include, for example, Neidhardt et al. (Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1.
  • Neidhardt et al. Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1.
  • F. D. Nehard ed.
  • Salmonella Cellular, and Molecular, Biology / Second Edition
  • Escherichia coli include, for example, Escherichia coli W3110 (ATCC ⁇ 27325) and Escherichia coli MG1655 (ATCC ⁇ ⁇ ⁇ ⁇ ⁇ 47076) derived from the prototype wild type K-12.
  • the bacteria belonging to the genus Enterobacter are not particularly limited, but include bacteria classified into the genus Enterobacter by classification known to microbiologists.
  • Enterobacter bacteria include Enterobacter agglomerans and Enterobacter aerogenes.
  • Specific examples of Enterobacter agglomerans include the Enterobacter agglomerans ATCC12287 strain.
  • Specific examples of Enterobacter aerogenes include Enterobacter aerogenes ATCC13048, NBRC12010 (BiotechonolonBioeng.eng2007 Mar 27; 98 (2) 340-348), AJ110637 (FERM BP-10955) .
  • Enterobacter bacteria include those described in European Patent Application Publication No. EP0952221. Some Enterobacter agglomerans are classified as Pantoea agglomerans.
  • Pantoea bacterium is not particularly limited, and examples include bacteria classified into the Pantoea genus by classification known to microbiologists.
  • Examples of the genus Pantoea include Pantoea ⁇ ananatis, Pantoea stewartii, Pantoea agglomerans, and Pantoea citrea.
  • Pantoea Ananatis LMG20103 strain AJ13355 strain (FERM ⁇ BP-6614), AJ13356 strain (FERM BP-6615), AJ13601 strain (FERM BP-7207), SC17 strain (FERM BP) -11091), and SC17 (0) strain (VKPM B-9246).
  • Pantoea bacterium also includes a bacterium reclassified as Pantoea in this way.
  • Examples of the genus Erwinia include Erwinia amylovora and Erwinia carotovora.
  • Examples of Klebsiella bacteria include Klebsiella planticola.
  • strains can be sold, for example, from the American Type Culture Collection (address 12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States States of America). That is, a registration number corresponding to each strain is given, and it is possible to receive a sale using this registration number (see http://www.atcc.org/). The registration number corresponding to each strain is described in the catalog of American Type Culture Collection.
  • the bacterium of the present invention may inherently have L-amino acid-producing ability or may have been modified to have L-amino acid-producing ability.
  • a bacterium having L-amino acid-producing ability can be obtained, for example, by imparting L-amino acid-producing ability to the bacterium as described above, or by enhancing the L-amino acid-producing ability of the bacterium as described above. .
  • L-amino acid-producing ability can be imparted or enhanced by a method conventionally used for breeding amino acid-producing bacteria such as coryneform bacteria or Escherichia bacteria (Amino Acid Fermentation, Academic Publishing Center, Inc., 1986). (May 30, 1st edition issued, see pages 77-100). Examples of such methods include acquisition of auxotrophic mutants, acquisition of L-amino acid analog-resistant strains, acquisition of metabolic control mutants, and recombination with enhanced activity of L-amino acid biosynthetic enzymes. The creation of stocks. In the breeding of L-amino acid-producing bacteria, properties such as auxotrophy, analog resistance, and metabolic control mutation that are imparted may be single, or two or more.
  • L-amino acid biosynthetic enzymes whose activities are enhanced in breeding L-amino acid-producing bacteria may be used alone or in combination of two or more.
  • imparting properties such as auxotrophy, analog resistance, and metabolic control mutation may be combined with enhancing the activity of biosynthetic enzymes.
  • An auxotrophic mutant, an analog resistant strain, or a metabolically controlled mutant having L-amino acid production ability is subjected to normal mutation treatment of the parent strain or wild strain, and the auxotrophic, analog It can be obtained by selecting those exhibiting resistance or metabolic control mutations and having the ability to produce L-amino acids.
  • Normal mutation treatments include X-ray and ultraviolet irradiation, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ethyl methane sulfonate (EMS), methyl methane sulfonate (MMS), etc. Treatment with a mutagen is included.
  • the L-amino acid-producing ability can be imparted or enhanced by enhancing the activity of an enzyme involved in the target L-amino acid biosynthesis. Enhancing enzyme activity can be performed, for example, by modifying bacteria so that expression of a gene encoding the enzyme is enhanced. Methods for enhancing gene expression are described in WO00 / 18935 pamphlet, European Patent Application Publication No. 1010755, and the like. A detailed method for enhancing the enzyme activity will be described later.
  • the L-amino acid-producing ability can be imparted or enhanced by reducing the activity of an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of the target L-amino acid to produce a compound other than the target L-amino acid. It can be carried out.
  • an enzyme that catalyzes a reaction that produces a compound other than the target L-amino acid by branching from the biosynthetic pathway of the target L-amino acid includes enzymes involved in the degradation of the target amino acid. It is. A method for reducing the enzyme activity will be described later.
  • L-amino acid-producing bacteria and methods for imparting or enhancing L-amino acid-producing ability are given below.
  • any of the modifications exemplified below for imparting or enhancing the properties of L-amino acid-producing bacteria and L-amino acid-producing ability may be used alone or in appropriate combination.
  • Examples of the method for imparting or enhancing L-glutamic acid-producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-glutamic acid biosynthetic enzymes is increased. .
  • Such enzymes include, but are not limited to, glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), glutamate synthetase (gltBD), isocitrate dehydrogenase (icdA), aconite hydratase (acnA, acnB), citrate synthase (GltA), methyl citrate synthase (prpC), phosphoenolpyruvate carboxylase (ppc), pyruvate carboxylase (pyc), pyruvate dehydrogenase (aceEF, lpdA), pyruvate kinase (pykA, pykF), phosphoenolpyruvate Synthase (ppsA), enolase (eno), phosphoglyceromutase (pgmA, pgmI), phosphoglycerate kinase (pgd
  • the parentheses are abbreviations for genes encoding the enzymes (the same applies to the following description).
  • these enzymes it is preferable to enhance the activity of one or more enzymes selected from, for example, glutamate dehydrogenase, citrate synthase, phosphoenolpyruvate carboxylase, and methyl citrate synthase.
  • Strains belonging to the family Enterobacteriaceae that have been modified to increase expression of the citrate synthase gene, phosphoenolpyruvate carboxylase gene, and / or glutamate dehydrogenase gene include those disclosed in EP1078989A, EP955368A, and EP952221A Can be mentioned.
  • Examples of strains belonging to the family Enterobacteriaceae that have been modified to increase the expression of the Entner-Doudoroff pathway genes (edd, eda) include those disclosed in EP1352966B.
  • the method for imparting or enhancing the ability to produce L-glutamic acid is, for example, selected from enzymes that catalyze a reaction that branches from the biosynthetic pathway of L-glutamic acid to produce a compound other than L-glutamic acid.
  • a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • Such enzymes include, but are not limited to, isocitrate lyase (aceA), ⁇ -ketoglutarate dehydrogenase (sucA), phosphotransacetylase (pta), acetate kinase (ack), acetohydroxyacid synthase (ilvG), Acetolactate synthase (ilvI), formate acetyltransferase (pfl), lactate dehydrogenase (ldh), alcohol dehydrogenase (adh), glutamate decarboxylase (gadAB), succinate dehydrogenase (sdhABCD), 1-pyrroline-5-carboxylate dehydrogenase ( putA).
  • aceA isocitrate lyase
  • sucA ⁇ -ketoglutarate dehydrogenase
  • pta phosphotransacetylase
  • ack acetohydroxyacid synthase
  • ilvG Acetolac
  • Escherichia bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity and methods for obtaining them are described in US Pat. Nos. 5,378,616 and 5,573,945.
  • a method for reducing or eliminating ⁇ -ketoglutarate dehydrogenase activity in enteric bacteria such as Pantoea bacteria, Enterobacter bacteria, Klebsiella bacteria, Erwinia bacteria, and the like are disclosed in U.S. Patent No. 6,197,559, U.S. Patent No. 6,682,912, This is disclosed in US Pat. No. 6,331,419, US Pat. No. 8,129,151, and WO2008 / 075483.
  • bacteria belonging to the genus Escherichia with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity include the following strains.
  • E. coli W3110sucA Kmr
  • E. coli AJ12624 (FERM BP-3853)
  • E. coli AJ12628 (FERM BP-3854)
  • E. coli AJ12949 (FERM BP-4881)
  • E. coli W3110sucA is a strain obtained by disrupting the sucA gene encoding the ⁇ -ketoglutarate dehydrogenase of E. coli W3110. This strain is completely deficient in ⁇ -ketoglutarate dehydrogenase activity.
  • L-glutamic acid-producing bacteria or parent strains for inducing them include Pantoea ananatis AJ13355 strain (FERM BP-6614), Pantoea ananatis SC17 strain (FERM BP-11091), Pantoea ananatis SC17 (0) strain (VKPM B) -9246) and the like.
  • the AJ13355 strain is a strain isolated as a strain capable of growing on a medium containing L-glutamic acid and a carbon source at low pH from soil in Iwata City, Shizuoka Prefecture.
  • the SC17 strain is a strain selected from the AJ13355 strain as a low mucus production mutant (US Pat. No. 6,596,517).
  • examples of L-glutamic acid-producing bacteria and parent strains for inducing them also include Pantoea bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity.
  • Pantoea bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity include the AJ13356 strain (US Pat. No. 6,331,419) which is the E1 subunit gene (sucA) deficient strain of the ⁇ -ketoglutarate dehydrogenase of the AJ13355 strain, and the SC17sucA strain which is the sucA gene deficient strain of the SC17 strain ( US Pat. No. 6,596,517).
  • the AJ13356 strain was founded on February 19, 1998 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Patent Biological Depositary Center, Postal Code: 292-0818, Address: Chiba, Japan. Deposited at Kisarazu City Kazusa Kamashichi 2-5-8 120) under the accession number FERM P-16645 and transferred to the international deposit under the Budapest Treaty on 11 January 1999 and given the accession number FERM BP-6616 ing.
  • the SC17sucA strain was also assigned the private number AJ417.
  • the AJ13355 strain was identified as Enterobacter agglomerans at the time of its isolation, but has recently been reclassified as Pantoea anaananatis by 16S rRNA nucleotide sequence analysis and the like. Therefore, the AJ13355 strain and the AJ13356 strain are deposited as Enterobacter agglomerans in the above depository organization, but are described as Pantoea ananatis in this specification.
  • L-glutamic acid-producing bacteria or parent strains for inducing them include Pantoea bacteria such as Pantoea ananatis SC17sucA / RSFCPG + pSTVCB strain, Pantoea ananatis AJ13601 strain, Pantoea ananatis NP106 strain, and Pantoea ananatis NA1 strain .
  • Pantoea bacteria such as Pantoea ananatis SC17sucA / RSFCPG + pSTVCB strain, Pantoea ananatis AJ13601 strain, Pantoea ananatis NP106 strain, and Pantoea ananatis NA1 strain .
  • the SC17sucA / RSFCPG + pSTVCB strain is different from the SC17sucA strain in that the plasmid RSFCPG containing the citrate synthase gene (gltA), the phosphoenolpyruvate carboxylase gene (ppc), and the glutamate dehydrogenase gene (gdhA) derived from Escherichia coli, and Brevi
  • This is a strain obtained by introducing a plasmid pSTVCB containing a citrate synthase gene (gltA) derived from bacteria lactofermentum.
  • the AJ13601 strain was selected from the SC17sucA / RSFCPG + pSTVCB strain as a strain resistant to a high concentration of L-glutamic acid at low pH.
  • the NP106 strain is a strain obtained by removing the plasmid RSFCPG + pSTVCB from the AJ13601 strain.
  • AJ13601 shares were registered with the National Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Biological Depositary Center, Postal Code: 292-0818, Address: Chiba, Japan. Deposited at Kisarazu City Kazusa Kamashika 2-5-8 120) under the accession number FERM P-17516, transferred to an international deposit based on the Budapest Treaty on July 6, 2000 and given the accession number FERM BP-7207 ing.
  • L-glutamic acid-producing bacteria or parent strains for inducing them include strains in which both ⁇ -ketoglutarate dehydrogenase (sucA) activity and succinate dehydrogenase (sdh) activity are reduced or deficient (JP 2010) -041920).
  • specific examples of such a strain include a pantoeaPananatis NA1 sucAsdhA double-deficient strain (Japanese Patent Laid-Open No. 2010-041920).
  • examples of L-glutamic acid-producing bacteria or parent strains for inducing them include auxotrophic mutants.
  • the auxotrophic mutant include E. coli VL334thrC + (VKPM B-8961) (EP 1172433).
  • E. coli VL334 (VKPM B-1641) is an L-isoleucine and L-threonine auxotroph having a mutation in the thrC gene and the ilvA gene (US Pat. No. 4,278,765).
  • E. coli VL334thrC + is an L-isoleucine-requiring L-glutamic acid-producing bacterium obtained by introducing a wild type allele of the thrC gene into VL334. The wild type allele of the thrC gene was introduced by a general transduction method using bacteriophage P1 grown on cells of wild type E. coli K-12 strain (VKPM B-7).
  • examples of L-glutamic acid-producing bacteria or parent strains for inducing them also include strains resistant to aspartic acid analogs. These strains may be deficient in ⁇ -ketoglutarate dehydrogenase activity, for example.
  • Specific examples of strains resistant to aspartate analogs and lacking ⁇ -ketoglutarate dehydrogenase activity include, for example, E. coli AJ13199 (FERM BP-5807) (US Pat. No. 5,908,768), and L-glutamic acid.
  • E. coli FFRM P-12379 US Pat. No. 5,393,671
  • E. coli AJ13138 FERM BP-5565
  • a bacterium is modified so that the activity of D-xylulose-5-phosphate-phosphoketolase and / or fructose-6-phosphate phosphoketolase is increased.
  • There is also a method to do (Special Table 2008-509661). Either one or both of D-xylulose-5-phosphate-phosphoketolase activity and fructose-6-phosphate phosphoketolase activity may be enhanced.
  • D-xylulose-5-phosphate phosphoketolase and fructose-6-phosphate phosphoketolase may be collectively referred to as phosphoketolase.
  • D-xylulose-5-phosphate-phosphoketolase activity is the consumption of phosphoric acid to convert xylulose-5-phosphate into glyceraldehyde-3-phosphate and acetyl phosphate, and one molecule of H 2 O Means the activity of releasing. This activity is measured by the method described in Goldberg, M. et al. (Methods Enzymol., 9,515-520 (1966)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
  • fructose-6-phosphate phosphoketolase activity means that phosphoric acid is consumed, fructose 6-phosphate is converted into erythrose-4-phosphate and acetyl phosphate, and one molecule of H 2 O is released. Means activity. This activity is measured by the method described in Racker, E (Methods Enzymol., 5, 276-280 (1962)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
  • Examples of a method for imparting or enhancing L-glutamic acid producing ability include, for example, enhancing expression of yhfK gene (WO2005 / 085419) and ybjL gene (WO2008 / 133161) which are L-glutamic acid excretion genes. It is done.
  • Examples of the method for imparting or enhancing L-glutamine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-glutamine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, glutamate dehydrogenase (gdhA) and glutamine synthetase (glnA).
  • the activity of glutamine synthetase may be enhanced by disrupting the glutamine adenyltransferase gene (glnE) or the PII regulatory protein gene (glnB) (EP1229121).
  • the method for imparting or enhancing L-glutamine production ability is, for example, selected from an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of L-glutamine to produce a compound other than L-glutamine.
  • an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of L-glutamine to produce a compound other than L-glutamine.
  • a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • Such an enzyme is not particularly limited, and includes glutaminase.
  • L-glutamine producing bacterium or a parent strain for deriving the same specifically, for example, Escherichia having a mutant glutamine synthetase in which the tyrosine residue at position 397 of glutamine synthetase is substituted with another amino acid residue Strains belonging to the genus (US Patent Application Publication No. 2003-0148474).
  • Examples of the method for imparting or enhancing L-proline production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-proline biosynthesis enzymes is increased.
  • Such enzymes include glutamate-5-kinase (proB), ⁇ -glutamyl-phosphate reductase, pyrroline-5-carboxylate reductase (putA).
  • glutamate-5-kinase proB
  • ⁇ -glutamyl-phosphate reductase ⁇ -glutamyl-phosphate reductase
  • pyrroline-5-carboxylate reductase pyrroline-5-carboxylate reductase
  • the proB gene German Patent No. 3127361 encoding glutamate-5-kinase in which feedback inhibition by L-proline is released can be suitably used.
  • a method for imparting or enhancing L-proline production ability for example, a method of modifying bacteria so that the activity of an enzyme involved in L-proline degradation is reduced.
  • an enzyme include proline dehydrogenase and ornithine aminotransferase.
  • L-proline-producing bacteria or parent strains for deriving them include, for example, E. coli NRRL B-12403 and NRRL B-12404 (British Patent No. 2075056), E. coli VKPM B-8012 ( Russian patent application 2000124295), E. coli plasmid variant described in German Patent 3127361, Bloom FR et al (The 15th Miami winter symposium, 1983, p.34), E. coli plasmid variant, 3, E. coli 702 strain (VKPMB-8011) resistant to 4-dehydroxyproline and azatidine-2-carboxylate, E. coli 702ilvA strain (VKPM B-8012) (EP 1172433) which is a 702 ilvA gene-deficient strain Is mentioned.
  • L-threonine producing bacteria examples include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-threonine biosynthetic enzymes is increased. .
  • enzymes include, but are not limited to, aspartokinase III (lysC), aspartate semialdehyde dehydrogenase (asd), aspartokinase I (thrA), homoserine kinase (thrB), threonine synthase ( threonine synthase) (thrC), aspartate aminotransferase (aspartate transaminase) (aspC).
  • aspartokinase III lysC
  • aspartate semialdehyde dehydrogenase aspartokinase I
  • thrB homoserine kinase
  • thrC threonine synthase
  • aspartate aminotransferase aspartate transaminase
  • the L-threonine biosynthesis gene may be introduced into a strain in which threonine degradation is suppressed.
  • strains in which threonine degradation is suppressed include E. coli TDH6 strain lacking threonine dehydrogenase activity (Japanese Patent Laid-Open No. 2001-346578).
  • the activity of the L-threonine biosynthetic enzyme is inhibited by the final product L-threonine. Therefore, in order to construct an L-threonine-producing bacterium, it is preferable to modify the L-threonine biosynthetic gene so that it is not subject to feedback inhibition by L-threonine.
  • the thrA, thrB, and thrC genes constitute a threonine operon, and the threonine operon forms an attenuator structure. Expression of the threonine operon is inhibited by isoleucine and threonine in the culture medium, and is suppressed by attenuation.
  • Enhanced expression of the threonine operon can be achieved by removing the leader sequence or attenuator in the attenuation region (Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194: 59-69 1987 (1987); WO02 / 26993; WO2005 / 049808; WO2003 / 097839).
  • the threonine operon may be constructed so that a gene involved in threonine biosynthesis is expressed under the control of a lambda phage repressor and promoter (see European Patent No. 0593792).
  • Bacteria modified so as not to be subjected to feedback inhibition by L-threonine can also be obtained by selecting a strain resistant to ⁇ -amino- ⁇ -hydroxyvaleric acid (AHV), which is an L-threonine analog.
  • HAV ⁇ -amino- ⁇ -hydroxyvaleric acid
  • the threonine operon modified so as not to be subjected to feedback inhibition by L-threonine is improved in the expression level in the host by increasing the copy number or being linked to a strong promoter.
  • An increase in copy number can be achieved by introducing a plasmid containing a threonine operon into the host.
  • An increase in copy number can also be achieved by transferring the threonine operon onto the host genome using a transposon, Mu phage, or the like.
  • examples of a method for imparting or enhancing L-threonine production ability include a method for imparting L-threonine resistance to a host and a method for imparting L-homoserine resistance.
  • the imparting of resistance can be achieved, for example, by enhancing the expression of a gene that imparts resistance to L-threonine or a gene that imparts resistance to L-homoserine.
  • genes that confer resistance include rhtA gene (Res. Microbiol. 154: 123-135 (2003)), rhtB gene (European Patent Application Publication No. 0994190), rhtC gene (European Patent Application Publication No.
  • L-threonine-producing bacteria or parent strains for deriving them include, for example, E. coli TDH-6 / pVIC40 (VKPM B-3996) (US Patent No. 5,175,107, US Patent No. 5,705,371), E. coli 472T23 / pYN7 (ATCC 98081) (U.S. Patent No. 5,631,157), E. coli NRRL-21593 (U.S. Patent No. 5,939,307), E. coli FERM BP-3756 (U.S. Patent No. 5,474,918), E. coli FERM BP-3519 and FERM BP-3520 (U.S. Patent No. 5,376,538), E.
  • E. coli MG442 (Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978)), E. coli VL643 and VL2055 ( EP 1149911 A), and E. coli VKPM B-5318 (EP 0593792 B).
  • VKPM B-3996 strain is a strain obtained by introducing plasmid pVIC40 into TDH-6 strain.
  • the TDH-6 strain is sucrose-assimilating, lacks the thrC gene, and has a leaky mutation in the ilvA gene.
  • the VKPM B-3996 strain has a mutation that imparts resistance to a high concentration of threonine or homoserine in the rhtA gene.
  • the plasmid pVIC40 is a plasmid in which a thrA * BC operon containing a mutant thrA gene encoding an aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine and a wild type thrBC gene is inserted into an RSF1010-derived vector (US Patent) No. 5,705,371).
  • This mutant thrA gene encodes aspartokinase homoserine dehydrogenase I substantially desensitized to feedback inhibition by threonine.
  • the strain VKPM B-5318 is non-isoleucine-requiring and retains the plasmid pPRT614 in which the control region of the threonine operon in the plasmid pVIC40 is replaced with a temperature-sensitive lambda phage C1 repressor and a PR promoter.
  • VKPM B-5318 was assigned to Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on May 3, 1990 under the accession number VKPM B-5318 Has been deposited internationally.
  • the thrA gene encoding aspartokinase homoserine dehydrogenase I of E. coli has been revealed (nucleotide numbers 337-2799, GenBank accession NC_000913.2, gi: 49175990).
  • the thrA gene is located between the thrL gene and the thrB gene in the chromosome of E. coli K-12.
  • the thrB gene encoding homoserine kinase of Escherichia coli has been elucidated (nucleotide numbers 2801 to 3733, GenBank accession NC_000913.2, gi: 49175990).
  • the thrB gene is located between the thrA gene and the thrC gene in the chromosome of E. coli K-12.
  • the thrC gene encoding threonine synthase from E.coli has been elucidated (nucleotide numbers 3734 to 5020, GenBank accession NC_000913.2, gi: 49175990).
  • the thrC gene is located between the thrB gene and the yaaX open reading frame in the chromosome of E. coli K-12.
  • thrA * BC operon containing a mutant thrA gene encoding an aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine and a wild type thrBC gene is known in the threonine-producing strain E. coli VKPM B-3996. It can be obtained from plasmid pVIC40 (US Pat. No. 5,705,371).
  • the rhtA gene of E. coli is present at 18 minutes of the E. coli chromosome close to the glnHPQ operon, which encodes a glutamine transport system element.
  • the rhtA gene is the same as ORF1 (ybiF gene, nucleotide numbers 764 to 1651, GenBank accession number AAA218541, gi: 440181), and is located between the pexB gene and the ompX gene.
  • the unit that expresses the protein encoded by ORF1 is called rhtA gene (rht: resistant toosehomoserine andeonthreonine (resistant to homoserine and threonine)).
  • the asd gene of E. coli has already been clarified (nucleotide numbers 3572511 to 3571408, GenBank accession NC_000913.1, gi: 16131307), and can be obtained by PCR using primers prepared based on the nucleotide sequence of the gene ( White, TJ et al., Trends Genet., 5, 185 (1989)).
  • the asd gene of other microorganisms can be obtained similarly.
  • the aspC gene of E. ⁇ ⁇ coli has already been clarified (nucleotide numbers 983742 to 984932, GenBank accession NC_000913.1, gi: 16128895), and obtained by PCR using a primer prepared based on the nucleotide sequence of the gene be able to.
  • the aspC gene of other microorganisms can be obtained similarly.
  • Examples of a method for imparting or enhancing L-lysine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-lysine biosynthesis enzymes is increased.
  • Such enzymes include, but are not limited to, dihydrodipicolinate synthase (dapA), aspartokinase III (lysC), dihydrodipicolinate reductase (dapB), diaminopimelate Deaminopimelate decarboxylase (lysA), diaminopimelate dehydrogenase (ddh) (US Pat. No.
  • phosphoenolpyruvate carboxylase ppc
  • aspartate semialdehyde dehydrogenase aspartate semialdehyde dehydrogenase
  • Asd aspartate aminotransferase (aspartate transaminase)
  • dapF diaminopimelate epi Diaminopimelate epimerase
  • dapD tetrahydrodipicolinate succinylase
  • dapE succinyl-diaminopimelate deacylase
  • aspartase aspartase (195) ).
  • dihydrodipicolinate reductase diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semialdehyde dehydrogenase, tetrahydrodipicolinate succinylase, and
  • the activity of one or more enzymes selected from succinyl diaminopimelate deacylase is enhanced.
  • a gene (cyo) (EP 1170376 A) involved in energy efficiency, a gene encoding nicotinamide nucleotide transhydrogenase (pntAB) ( US Pat. No. 5,830,716), ybjE gene (WO2005 / 073390), or combinations thereof may have increased expression levels.
  • Aspartokinase III (lysC) is subject to feedback inhibition by L-lysine.
  • a mutant lysC gene encoding aspartokinase III that has been desensitized to feedback inhibition by L-lysine is used. It may be used (US Pat. No.
  • the method for imparting or enhancing L-lysine production ability is, for example, selected from enzymes that catalyze the reaction of branching from the biosynthetic pathway of L-lysine to produce compounds other than L-lysine.
  • enzymes that catalyze the reaction of branching from the biosynthetic pathway of L-lysine to produce compounds other than L-lysine.
  • a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • Such enzymes include, but are not limited to, homoserine dehydrogenase, lysine decarboxylase (US Pat. No. 5,827,698), and malic enzyme (WO2005 / 010175). .
  • L-lysine-producing bacteria or parent strains for inducing them include mutants having resistance to L-lysine analogs.
  • L-lysine analogs inhibit the growth of bacteria such as Enterobacteriaceae and coryneform bacteria, but this inhibition is completely or partially released when L-lysine is present in the medium.
  • the L-lysine analog is not particularly limited, and examples thereof include oxalysine, lysine hydroxamate, S- (2-aminoethyl) -L-cysteine (AEC), ⁇ -methyllysine, and ⁇ -chlorocaprolactam.
  • Mutant strains having resistance to these lysine analogs can be obtained by subjecting bacteria to normal artificial mutation treatment.
  • L-lysine-producing bacteria or parent strains for deriving them include, for example, E. coli AJ11442 (FERM BP-1543, NRRL B-12185; see U.S. Pat. No. 4,346,170) and E. coli VL611. Can be mentioned. In these strains, feedback inhibition of aspartokinase by L-lysine is released.
  • L-lysine-producing bacteria or parent strains for inducing them include E. ⁇ ⁇ ⁇ coli AJIK01 strain (NITE BP-01520). The AJIK01 strain was named E. coli AJ111046.
  • Patent Microorganisms Deposit Center Postal Code: 292-0818, Address: Kazusa Kama, Kisarazu City, Chiba Prefecture, Japan
  • No. 2-5-8 120
  • NITE BP-01520 deposit number
  • L-lysine-producing bacteria or parent strains for inducing them include E. coli WC196 strain.
  • the WC196 strain was bred by conferring AEC resistance to the W3110 strain derived from E. coli K-12 (US Pat. No. 5,827,698).
  • the WC196 strain was named E.
  • Preferred L-lysine producing bacteria include E.coli WC196 ⁇ cadA ⁇ ldc and E.coli WC196 ⁇ cadA ⁇ ldc / pCABD2 (WO2010 / 061890).
  • WC196 ⁇ cadA ⁇ ldc is a strain constructed by disrupting the cadA and ldcC genes encoding lysine decarboxylase from the WC196 strain.
  • WC196 ⁇ cadA ⁇ ldc / pCABD2 is a strain constructed by introducing plasmid pCABD2 (US Pat. No. 6,040,160) containing a lysine biosynthesis gene into WC196 ⁇ cadA ⁇ ldc.
  • WC196 ⁇ cadA ⁇ ldc was named AJ110692, and on October 7, 2008, National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (currently, National Institute of Technology and Evaluation, Patent Biological Depositary Center, ZIP Code: 292-0818, Address: Room 2-5-8 120, Kazusa Kamashitsu, Kisarazu, Chiba, Japan) was deposited internationally under the deposit number FERM BP-11027.
  • pCABD2 is a mutant dapA gene encoding dihydrodipicolinate synthase (DDPS) derived from Escherichia coli having a mutation that is desensitized to feedback inhibition by L-lysine, and a mutation that is desensitized to feedback inhibition by L-lysine.
  • DDPS dihydrodipicolinate synthase
  • a mutant lysC gene encoding aspartokinase III derived from Escherichia coli, dapB gene encoding dihydrodipicolinate reductase derived from Escherichia coli, and ddh encoding a diaminopimelate dehydrogenase derived from Brevibacterium lactofermentum Contains genes.
  • Examples of the method for imparting or enhancing L-arginine-producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-arginine biosynthesis enzymes is increased. .
  • Examples of such enzymes include, but are not limited to, N-acetylglutamate synthase (argA), N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine Examples include transaminase (argD), acetylornithine deacetylase (argE) ornithine carbamoyltransferase (argF), argininosuccinate synthase (argG), argininosuccinate lyase (argH), and carbamoyl phosphate synthase (carAB).
  • argA N-acetylglutamate synthase
  • argC N-acetylglutamylphosphate reductase
  • argJ ornithine acetyltransferase
  • N-acetylglutamate synthase (argA) gene examples include mutant N-acetylglutamate synthase in which amino acid residues corresponding to the 15th to 19th positions of the wild type are substituted and feedback inhibition by L-arginine is released. It is preferable to use a gene to be encoded (European Application Publication No. 1170361).
  • L-arginine-producing bacteria or parent strains for inducing the same include, for example, E. coli 237 strain (VKPM B-7925) (US Patent Application Publication 2002/058315 A1), mutant N-acetylglutamic acid Its derivative strain ⁇ ⁇ ( Russian patent application No. 2001112869, EP1170361A1) introduced with the argA gene encoding synthase, E.237coli 382 strain (VKPM B-7926) 237 (VKPM B-7926) EP1170358A1) and E. coli 382ilvA + strain, which is a strain in which the wild-type ilvA gene derived from E. coli K-12 strain is introduced into 382 strain.
  • E. coli 237 strain VKPM B-7925
  • US Patent Application Publication 2002/058315 A1 mutant N-acetylglutamic acid Its derivative strain ⁇ ⁇
  • E.237coli 382 strain VKPM B-7926
  • L-arginine-producing bacteria or parent strains for inducing them include strains having resistance to amino acid analogs and the like.
  • Such strains include, for example, ⁇ -methylmethionine, p-fluorophenylalanine, D-arginine, arginine hydroxamic acid, S- (2-aminoethyl) -cysteine, ⁇ -methylserine, ⁇ -2-thienylalanine, or Examples include Escherichia coli mutants having resistance to sulfaguanidine (see JP-A-56-106598).
  • L-citrulline and L-ornithine-producing bacteria share a biosynthetic pathway with L-arginine.
  • N-acetylglutamate synthase argA
  • N-acetylglutamylphosphate reductase argC
  • ornithine acetyltransferase argJ
  • N-acetylglutamate kinase argB
  • acetylornithine transaminase argD
  • WO 2006-35831 By increasing the enzyme activity of deacetylase (argE), the ability to produce L-citrulline and / or L-ornithine can be imparted or enhanced (WO 2006-35831).
  • Examples of the method for imparting or enhancing L-histidine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-histidine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, ATP phosphoribosyltransferase (hisG), phosphoribosyl-AMP cyclohydrolase (hisI), phosphoribosyl-ATP pyrophosphohydrolase (hisI), phosphoribosylformimino-5-aminoimidazole carboxamide ribonucleoside.
  • tide isomerase (hisA), amide transferase (hisH), histidinol phosphate aminotransferase (hisC), histidinol phosphatase (hisB), and histidinol dehydrogenase (hisD).
  • hisA tide isomerase
  • hisH amide transferase
  • hisC histidinol phosphate aminotransferase
  • hisB histidinol phosphatase
  • hisD histidinol dehydrogenase
  • L-histidine biosynthetic enzymes encoded by hisG and hisBHAFI are known to be inhibited by L-histidine. Therefore, the ability to produce L-histidine can be imparted or enhanced, for example, by introducing a mutation that confers resistance to feedback inhibition in the ATP phosphoribosyltransferase gene (hisG) ( Russian Patent No. 2003677 and No. 2). 2119536).
  • L-histidine-producing bacteria or parent strains for deriving them include, for example, E. coli 24 strain (VKPM B-5945, RU2003677), E. coli NRRL B-12116-B12121 (US Patent No. 4,388,405). No.), E. coli H-9342 (FERM BP-6675) and H-9343 (FERM BP-6676) (U.S. Patent No. 6,344,347), E. coli H-9341 (FERM BP-6674) (EP1085087), E Coli AI80 / pFM201 (U.S. Patent No. 6,258,554), E. coli FERM P-5038 and 5048 (Japanese Patent Laid-Open No.
  • E. coli strain ⁇ E. coli strain ⁇ (EP1016710A) introduced with a gene for amino acid transport
  • Examples of the method for imparting or enhancing L-cysteine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-cysteine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, serine acetyltransferase (cysE) and 3-phosphoglycerate dehydrogenase (serA).
  • Serine acetyltransferase activity can be enhanced, for example, by introducing a mutant cysE gene encoding a mutant serine acetyltransferase resistant to feedback inhibition by cysteine into bacteria.
  • Mutant serine acetyltransferases are disclosed, for example, in JP-A-11-155571 and US Patent Publication No. 20050112731. Further, the 3-phosphoglycerate dehydrogenase activity can be enhanced by introducing, for example, a mutant serA gene encoding a mutant 3-phosphoglycerate dehydrogenase resistant to feedback inhibition by serine into a bacterium. Mutant 3-phosphoglycerate dehydrogenase is disclosed, for example, in US Pat. No. 6,180,373.
  • the method for imparting or enhancing L-cysteine production ability is selected from, for example, an enzyme that catalyzes a reaction that branches from the biosynthesis pathway of L-cysteine to produce a compound other than L-cysteine.
  • an enzyme that catalyzes a reaction that branches from the biosynthesis pathway of L-cysteine to produce a compound other than L-cysteine Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • examples of such enzymes include enzymes involved in the degradation of L-cysteine.
  • the enzyme involved in the degradation of L-cysteine is not particularly limited, but cystathionine- ⁇ -lyase (metC) (Japanese Patent Laid-Open No. 11-155571, Chandra et.
  • examples of methods for imparting or enhancing L-cysteine production ability include enhancing the L-cysteine excretion system and enhancing the sulfate / thiosulfate transport system.
  • proteins of the L-cysteine excretion system include proteins encoded by the ydeD gene (JP 2002-233384), proteins encoded by the yfiK gene (JP 2004-49237), emrAB, emrKY, yojIH, acrEF, bcr, And each protein encoded by each gene of cusA (Japanese Patent Laid-Open No.
  • sulfate / thiosulfate transport system protein examples include proteins encoded by the cysPTWAM gene cluster.
  • L-cysteine-producing bacteria or parent strains for deriving them include, for example, E. coli JM15 (US Patent) transformed with various cysE alleles encoding mutant serine acetyltransferase resistant to feedback inhibition. No. 6,218,168, Russian Patent Application No. 2003121601), E. coli W3110 (US Pat.No. 5,972,663), cysteine desulfhydrase, which has an overexpressed gene encoding a protein suitable for excretion of substances toxic to cells Examples include E. coli strain (JP11155571A2) with reduced activity and E. coli W3110 (WO01 / 27307A1) with increased activity of the transcriptional control factor of the positive cysteine regulon encoded by the cysB gene.
  • L-methionine producing bacteria examples include L-threonine-requiring strains and mutants having resistance to norleucine (Japanese Patent Laid-Open No. 2000-139471).
  • examples of L-methionine-producing bacteria or parent strains for deriving them also include strains that retain mutant homoserine transsuccinylase that is resistant to feedback inhibition by L-methionine (Japanese Patent Laid-Open No. 2000-139471). , US20090029424).
  • L-methionine is biosynthesized with L-cysteine as an intermediate, L-methionine production ability can be improved by improving L-cysteine production ability (Japanese Patent Laid-Open No. 2000-139471, US20080311632).
  • L-methionine-producing bacteria or parent strains for inducing them include, for example, E. coli AJ11539 (NRRL B-12399), E. coli AJ11540 (NRRL B-12400), E. coli AJ11541 (NRRL B-12401), E. coli AJ11542 (NRRL B-12402) (British Patent No. 2075055), E. coli 218 strain (VKPM B-8125) having resistance to norleucine, an analog of L-methionine (Russian Patent No. 2209248) No.), 73 shares (VKPM B-8126) (Russian Patent No. 2215782), E.
  • coli AJ13425 (FERM P-16808) (Japanese Patent Laid-Open No. 2000-139471).
  • the AJ13425 strain lacks a methionine repressor, weakens intracellular S-adenosylmethionine synthetase activity, and produces intracellular homoserine transsuccinylase activity, cystathionine ⁇ -synthase activity, and aspartokinase-homoserine dehydrogenase II.
  • L-threonine-requiring strain derived from E. coli W3110 with enhanced activity.
  • Examples of the method for imparting or enhancing the ability to produce L-leucine include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-leucine biosynthesis enzymes is increased. .
  • Examples of such an enzyme include, but are not limited to, an enzyme encoded by a gene of leuABCD operon.
  • a mutant leuA gene US Pat. No. 6,403,342
  • encoding isopropyl malate synthase from which feedback inhibition by L-leucine has been released can be suitably used.
  • L-leucine-producing bacteria or parent strains for inducing the same include, for example, leucine-resistant E. coli strains (eg, 57 strains (VKPM B-7386, US Pat. No. 6,124,121)), ⁇ - E. coli strains resistant to leucine analogs such as 2-thienylalanine, 3-hydroxyleucine, 4-azaleucine, 5,5,5-trifluoroleucine (JP-B-62-34397 and JP-A-8-70879), WO96 And strains belonging to the genus Escherichia such as E. coli strain and E. coli H-9068 (JP-A-8-70879) obtained by the genetic engineering method described in / 06926.
  • leucine-resistant E. coli strains eg, 57 strains (VKPM B-7386, US Pat. No. 6,124,121)
  • ⁇ - E. coli strains resistant to leucine analogs such as 2-thienylalan
  • Examples of the method for imparting or enhancing L-isoleucine producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-isoleucine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, threonine deaminase and acetohydroxy acid synthase (JP-A-2-458, FR 0356739, and US Pat. No. 5,998,178).
  • L-isoleucine-producing bacteria or parent strains for inducing them include mutants having resistance to 6-dimethylaminopurine (Japanese Patent Laid-Open No. 5-304969), thiisoleucine, isoleucine hydroxamate, etc. And an Escherichia bacterium such as a mutant strain resistant to DL-ethionine and / or arginine hydroxamate in addition to the isoleucine analog (Japanese Patent Laid-Open No. 5-130882).
  • Examples of a method for imparting or enhancing L-valine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-valine biosynthetic enzymes is increased.
  • Examples of such enzymes include, but are not limited to, enzymes encoded by genes of ilvGMEDA operon and ilvBNC operon. ilvBN encodes acetohydroxy acid synthase, and ilvC encodes isomeroreductase (WO 00/50624).
  • the ilvGMEDA operon and the ilvBNC operon are subject to expression suppression (attenuation) by L-valine, L-isoleucine, and / or L-leucine. Therefore, in order to enhance the enzyme activity, it is preferable to remove or modify the region necessary for attenuation and to cancel the expression suppression by the produced L-valine.
  • the threonine deaminase encoded by the ilvA gene is an enzyme that catalyzes the deamination reaction from L-threonine to 2-ketobutyric acid, which is the rate-limiting step of the L-isoleucine biosynthesis system. Therefore, for L-valine production, it is preferable that the ilvA gene is disrupted and the threonine deaminase activity is reduced.
  • the method for imparting or enhancing L-valine-producing ability is, for example, selected from enzymes that catalyze a reaction that branches from the biosynthetic pathway of L-valine to produce a compound other than L-valine.
  • enzymes that catalyze a reaction that branches from the biosynthetic pathway of L-valine to produce a compound other than L-valine.
  • a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • examples of such enzymes include, but are not limited to, threonine dehydratase involved in L-leucine synthesis and enzymes involved in D-pantothenic acid synthesis (International Publication No. 00/50624).
  • L-valine-producing bacterium or the parent strain for deriving the same include, for example, the E. coli strain (US Pat. No. 5,998,178) that has been modified to overexpress the ilvGMEDA operon.
  • examples of L-valine-producing bacteria and parent strains for deriving the same also include strains having mutations in aminoacyl t-RNA synthetase (US Pat. No. 5,658,766).
  • examples of such a strain include E. coli VL1970 having a mutation in the ileS gene encoding isoleucine tRNA synthetase.
  • E. coli VL1970 was assigned to Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on June 24, 1988 under the accession number VKPM B-4411. It has been deposited.
  • examples of L-valine-producing bacteria or parent strains for deriving the same also include mutant strains (WO96 / 06926) that require lipoic acid for growth and / or lack H + -ATPase. .
  • L-tryptophan producing bacteria L-phenylalanine producing bacteria, L-tyrosine producing bacteria>
  • methods for imparting or enhancing L-tryptophan production ability, L-phenylalanine production ability, and / or L-tyrosine production ability include biosynthesis of L-tryptophan, L-phenylalanine, and / or L-tyrosine.
  • Biosynthetic enzymes common to these aromatic amino acids are not particularly limited, but 3-deoxy-D-arabinohepturonic acid-7-phosphate synthase (aroG), 3-dehydroquinate synthase (aroB) Shikimate dehydrogenase (aroE), shikimate kinase (aroL), 5-enolic acid pyruvylshikimate 3-phosphate synthase (aroA), chorismate synthase (aroC) (European Patent No. 763127). Expression of genes encoding these enzymes is controlled by a tyrosine repressor (tyrR), and the activity of these enzymes may be enhanced by deleting the tyrR gene (European Patent No. 763127).
  • tyrR tyrosine repressor
  • L-tryptophan biosynthesis enzyme examples include, but are not limited to, anthranilate synthase (trpE), tryptophan synthase (trpAB), and phosphoglycerate dehydrogenase (serA).
  • trpE anthranilate synthase
  • trpAB tryptophan synthase
  • serA phosphoglycerate dehydrogenase
  • L-tryptophan production ability can be imparted or enhanced by introducing DNA containing a tryptophan operon.
  • Tryptophan synthase consists of ⁇ and ⁇ subunits encoded by trpA and trpB genes, respectively.
  • anthranilate synthase is subject to feedback inhibition by L-tryptophan
  • a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
  • phosphoglycerate dehydrogenase is feedback-inhibited by L-serine
  • a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used to enhance the activity of the enzyme.
  • L-tryptophan-producing ability is imparted or enhanced by increasing the expression of an operon consisting of malate synthase (aceB), isocitrate lyase (aceA), and isocitrate dehydrogenase kinase / phosphatase (aceK). (WO2005 / 103275).
  • the L-phenylalanine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prefenate dehydratase. Chorismate mutase and prefenate dehydratase are encoded by the pheA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydratase is feedback-inhibited by L-phenylalanine, in order to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
  • the L-tyrosine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prephenate dehydrogenase. Chorismate mutase and prefenate dehydrogenase are encoded by the tyrA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydrogenase is feedback-inhibited by L-tyrosine, to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
  • the L-tryptophan, L-phenylalanine, and / or L-tyrosine producing bacterium may be modified so that biosynthesis of aromatic amino acids other than the target aromatic amino acid is lowered.
  • L-tryptophan, L-phenylalanine, and / or L-tyrosine-producing bacteria may be modified so that the by-product uptake system is enhanced.
  • By-products include aromatic amino acids other than the desired aromatic amino acid. Examples of genes encoding uptake systems of by-products include, for example, uptake systems of tnaB and mtr, which are L-tryptophan uptake systems, and pheP, L-tyrosine, which are genes encoding uptake systems of L-phenylalanine. TyrP, which is a gene coding for (EP1484410).
  • E. coli JP4735 / pMU3028 carrying a mutant trpS gene encoding a partially inactivated tryptophanyl-tRNA synthetase. DSM10122) and JP6015 / pMU91 (DSM10123) (U.S. Patent No. 5,756,345)
  • E. coli SV164 with trpE allele encoding anthranilate synthase not subject to feedback inhibition by tryptophan
  • phosphoglycerate dehydrogenase not subject to feedback inhibition by serine E. coli SV164 pGH5
  • E. coli AJ12739 (tyrA :: Tn10, tyrR) (VKPM) lacking chorismate mutase-prefenate dehydrogenase and tyrosine repressor B-8197) (WO03 / 044191)
  • E. coli HW1089 (ATCC 55371) (U.S. Patent No. 5,354,672), carrying a mutant pheA34 gene encoding chorismate mutase-prefenate dehydratase with released feedback inhibition
  • E.Coli MWEC 101-b KR8903681
  • E.coli NRRL B-12141 NRRL B-12145
  • NRRL B-12146 NRRL B-12147
  • US Pat. No. 4,407,952 E.coli NRRL B-12141
  • NRRL B-12145 NRRL B-12146
  • NRRL B-12147 US Pat. No. 4,407,952
  • E. coli K-12 that retains a gene encoding chorismate mutase-prefenate dehydratase in which feedback inhibition is released.
  • ⁇ W3110 (tyrA) / pPHAB> (FERM BP-3566)
  • L-phenylalanine-producing bacteria or parent strains for inducing them include, for example, strains belonging to the genus Escherichia in which the activity of the protein encoded by the yedA gene or the yddG gene is increased (US2003 / 0148473, US2003 / 0157667, WO03 / 044192).
  • examples of a method for imparting or enhancing L-amino acid-producing ability include a method of modifying a bacterium so that the activity of discharging L-amino acid from the bacterium cell is increased.
  • the activity to excrete L-amino acids can be increased, for example, by increasing the expression of a gene encoding a protein that excretes L-amino acids.
  • genes encoding proteins that excrete various amino acids include b2682 gene (ygaZ), b2683 gene (ygaH), b1242 gene (ychE), and b3434 gene (yhgN) (Japanese Patent Laid-Open No. 2002-300874) .
  • examples of a method for imparting or enhancing L-amino acid producing ability include a method for modifying bacteria so that the activity of a protein involved in sugar metabolism or a protein involved in energy metabolism is increased.
  • Proteins involved in sugar metabolism include proteins involved in sugar uptake and glycolytic enzymes.
  • genes encoding proteins involved in sugar metabolism include glucose 6-phosphate isomerase gene (pgi; WO 01/02542 pamphlet), phosphoenolpyruvate synthase gene (pps; EP 877090 specification) , Phosphoenolpyruvate carboxylase gene (ppc; WO 95/06114 pamphlet), pyruvate carboxylase gene (pyc; WO 99/18228 pamphlet, European application 1092776), phosphoglucomutase gene (Pgm; WO 03/04598 pamphlet), fructose diphosphate aldolase gene (pfkB, fbp; WO 03/04664 pamphlet), pyruvate kinase gene (pykF; WO 03/008609 pamphlet), transaldolase Gene (talB; WO03 / 008611 pamphlet), fumarase residue Child (
  • non-PTS sucrose uptake gene gene csc; European Application Publication No. 149911 pamphlet
  • sucrose utilization gene scrAB operon; International Publication No. 90/04636 pamphlet
  • genes encoding proteins involved in energy metabolism include a transhydrogenase gene (pntAB; US Pat. No. 5,830,716), a cytochrome bo type oxidase (cyoB; European Patent Application Publication No. 1070376) Is mentioned.
  • the gene used for breeding the above-mentioned L-amino acid-producing bacteria is not limited to the above-exemplified genes or genes having a known base sequence, as long as it encodes a protein having the original function maintained. There may be.
  • a gene used for breeding an L-amino acid-producing bacterium is an amino acid in which one or several amino acids at one or several positions are substituted, deleted, inserted or added in the amino acid sequence of a known protein. It may be a gene encoding a protein having a sequence.
  • gene and protein variants the descriptions relating to the acpP gene and fabF gene and the protein variants encoded by them can be applied mutatis mutandis.
  • acpP-fabF operon is weakened. Since the acpP-fabF operon is involved in fatty acid biosynthesis (Non-patent Document 1), when L-amino acid production culture is performed using bacteria in which the acpP-fabF operon has been weakened, L-amino acid is used using an unmodified strain. As compared to the case where production culture is performed, it is estimated that as a result of a decrease in inflow of carbon into the fatty acid biosynthetic pathway, surplus carbon and reducing power are used for L-amino acid production and L-amino acid production is improved.
  • the bacterium of the present invention can be obtained by modifying a bacterium having an L-amino acid-producing ability so that the acpP-fabF operon is weakened.
  • the bacterium of the present invention can also be obtained by imparting or enhancing L-amino acid-producing ability after modifying the bacterium so that the acpP-fabF operon is weakened.
  • the bacterium of the present invention may have acquired L-amino acid-producing ability by being modified so that the acpP-fabF operon is weakened.
  • the modification for constructing the bacterium of the present invention can be performed in any order.
  • AcpP-fabF operon is weakened means that the activity of the protein encoded by the gene of the acpP-fabF operon is decreased and / or the expression of the gene of the acpP-fabF operon is decreased.
  • Gene expression decreases means that the gene transcription amount (mRNA amount) decreases and / or the gene translation amount (protein amount) decreases.
  • the “gene of the acpP-fabF operon” refers to the acpP gene and / or the fabF gene.
  • the “protein encoded by the gene of the acpP-fabF operon” refers to a protein encoded by the acpP gene and / or a protein encoded by the fabF gene (ie, AcpP protein and / or FabF protein).
  • the activity of the protein can be achieved, for example, by weakening the expression of the gene encoding the protein or by destroying the gene encoding the protein. That is, “the acpP-fabF operon is weakened” may mean, for example, that the expression of the acpP-fabF operon gene is weakened.
  • the expression of either the acpP gene or the fabF gene may be weakened, or the expression of both may be weakened. That is, the expression of the entire acpP-fabF operon may be weakened.
  • the acpP gene is a gene encoding an acyl carrier protein (ACP).
  • ACP refers to a protein having a function of carrying a fatty acid chain by binding to the fatty acid chain via a 4′-phosphopantethein group during fatty acid biosynthesis. This function is also referred to as “ACP activity”.
  • ACP is translated as inactive apo-ACP, and then 4'-phosphopantethein (4) is added to the serine residue at position 36 of apo-ACP (in the case of Escherichia coli) by ACP synthase. '-phosphopanteheine) is added as a cofactor, resulting in active holo-ACP.
  • the fabF gene is a gene encoding ⁇ -ketoacyl-ACP synthase II.
  • ⁇ -ketoacyl-ACP synthase II refers to an enzyme that catalyzes a reaction for producing 3-oxoacyl-ACP (carbon number n + 2) from acyl-ACP (carbon number n) and malonyl-ACP (EC 2.3. 1.41). The activity that catalyzes this reaction is also referred to as “ ⁇ -ketoacyl-ACP synthase II activity”.
  • the acpP gene of Escherichia coli K-12 MG1655 strain corresponds to the sequence of 1150838 to 1151074 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the acpP gene of MG1655 strain is synonymous with ECK1080 and JW1080.
  • the fabF gene of Escherichia coli K-12 MG1655 strain corresponds to the 1151162 to 1152403 positions in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database.
  • the fabF gene of MG1655 strain is synonymous with ECK1081 and JW1081.
  • the base sequence of the acpP-fabF operon of MG1655 strain (including upstream 210 bp) is shown in SEQ ID NO: 7.
  • the base sequence of the acpP gene corresponds to positions 211 to 447
  • the base sequence of the fabF gene corresponds to positions 535 to 1776, respectively.
  • the amino acid sequences of the AcpP protein and FabF protein of the MG1655 strain are shown in SEQ ID NOs: 8 and 9, respectively.
  • the acpP gene of Pantoea ananatis AJ13355 strain corresponds to the sequence of positions 986154 to 986528 in the genome sequence registered as GenBank accession NC_017531 (VERSION NC_017531.1 GI: 386014600) in the NCBI database.
  • GenBank accession NC_017531 VERSION NC_017531.1 GI: 386014600
  • the AcpP protein of AJ13355 strain is registered as GenBank accession YP_005933706 (version YP_005933706.1 GI: 386015425).
  • the fabF gene of Pantoea ananatis AJ13355 strain corresponds to the sequence of positions 986650 to 987855 in the genome sequence registered as GenBank accession NC_017531 (VERSION NC_017531.1 GI: 386014600) in the NCBI database.
  • FabF protein of AJ13355 strain is registered as GenBank accession YP_005933707 (version YP_005933707.1 GI: 386015426).
  • the base sequence of the acpP-fabF operon of AJ13355 strain (including upstream 210 bp) is shown in SEQ ID NO: 10.
  • the base sequence of the acpP gene corresponds to positions 211 to 585
  • the base sequence of the fabF gene corresponds to positions 707 to 1912, respectively.
  • the amino acid sequences of the AcpP protein and FabF protein of the AJ13355 strain are shown in SEQ ID NOs: 11 and 12, respectively.
  • the AcpP protein or FabF protein may be a variant of the AcpP protein or FabF protein as long as the original function is maintained.
  • the acpP gene or fabF gene may be a variant of the acpP gene or fabF gene as long as the original function is maintained.
  • Such a variant in which the original function is maintained may be referred to as a “conservative variant”.
  • the terms “AcpP protein” or “FabF protein” are intended to encompass, in addition to the AcpP protein or FabF protein, conservative variants thereof, respectively.
  • the terms “acpP gene” or “fabF gene” are intended to include conservative variants thereof in addition to the acpP gene or fabF gene, respectively. Examples of the conservative variant include homologues and fac modifications of the AcpP protein or FabF protein, the acpP gene or the fabF gene.
  • the original function is maintained means that a protein or gene variant has a function (activity or property) corresponding to the function (activity or property) of the original protein or gene. That is, for example, “the original function is maintained” for the AcpP protein means that the protein has ACP activity, and “the original function is maintained” for the FabF protein means that the protein is Having ⁇ -ketoacyl-ACP synthase II activity.
  • the original function is maintained” for the acpP gene means that the gene encodes a protein having ACP activity, and “the original function is maintained” for the fabF gene. Means that the gene encodes a protein having ⁇ -ketoacyl-ACP synthase II activity.
  • the gene encoding the homologue of the AcpP protein or FabF protein can be easily obtained from a public database by BLAST search or FASTA search using the base sequence of the acpP gene or fabF gene as a query sequence, for example. Further, the gene encoding the homologue of the AcpP protein or FabF protein is obtained by PCR using, for example, a chromosome of an organism such as a bacterium as a template and oligonucleotides prepared based on these known gene sequences as primers. be able to.
  • the acpP gene or fabF gene may be a gene encoding a conservative variant of the AcpP protein or FabF protein.
  • the acpP gene or the fabF gene has one or several amino acids in the amino acid sequence (for example, the amino acid sequence of SEQ ID NO: 8, 9, 11, or 12) as long as it encodes a protein having the original function maintained. It may be a gene encoding a protein having an amino acid sequence in which one or several amino acids at the position are substituted, deleted, inserted, or added.
  • the corresponding activity is usually 70% or more relative to the protein before 1 or several amino acids are substituted, deleted, inserted or added. Preferably, 80% or more, more preferably 90% or more can be maintained.
  • the “one or several” is different depending on the position of the amino acid residue in the three-dimensional structure of the protein and the type of amino acid residue, but specifically 1 to 50, 1 to 40, 1 to 30 It means 1 to 20, preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 5, and particularly preferably 1 to 3.
  • substitution, deletion, insertion, or addition of one or several amino acids described above is a conservative mutation that maintains the protein function normally.
  • a typical conservative mutation is a conservative substitution.
  • Conservative substitution is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In this case, between Gln and Asn, when it is a basic amino acid, between Lys, Arg, and His, when it is an acidic amino acid, between Asp and Glu, when it is an amino acid having a hydroxyl group Is a mutation that substitutes between Ser and Thr.
  • substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, Cys to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Substitution from Lys to Asn, Glu, Gln, His or Arg, substitution from Met to Ile, Leu, Val or Phe, substitution from Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution, substitution from Trp to Phe or Tyr, substitution
  • the gene having a conservative mutation as described above is 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 97% or more, particularly preferably 99%, based on the entire amino acid sequence. It may be a gene encoding a protein having a homology of at least% and maintaining the original function. In the present specification, “homology” means “identity”.
  • the acpP gene or fabF gene is a probe that can be prepared from a known gene sequence, for example, the above base sequence (for example, positions 211 to 447 of SEQ ID NO: 7, positions 535 to 1776 of SEQ ID NO: 7, 211 to DNA that encodes a protein that hybridizes under stringent conditions with a complementary sequence to the whole or part of position 585 or the nucleotide sequence of positions 707 to 1912 of SEQ ID NO: 10 and maintains the original function. Also good.
  • the acpP-fabF operon is a probe that can be prepared from a known gene sequence, for example, the above base sequence (for example, the entire SEQ ID NO: 7, positions 211 to 1776 of SEQ ID NO: 7, the entire SEQ ID NO: 10, or SEQ ID NO: 10 DNA that encodes a protein that hybridizes under stringent conditions with a complementary sequence to the whole or a part of the base sequence at positions 211 to 1912) and maintains the original function.
  • Stringent conditions refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
  • highly homologous DNAs for example, 80% or more, preferably 90% or more, more preferably 95% or more, more preferably 97% or more, particularly preferably 99% or more between DNAs having homology.
  • Is hybridized and DNAs with lower homology do not hybridize with each other, or normal Southern hybridization washing conditions of 60 ° C., 1 ⁇ SSC, 0.1% SDS, preferably 60 ° C., 0.1 ⁇ SSC And 0.1% SDS, more preferably 68 ° C., 0.1 ⁇ SSC, salt concentration and temperature corresponding to 0.1% SDS, and conditions of washing once, preferably 2 to 3 times.
  • the probe used for the hybridization may be a part of a gene complementary sequence.
  • a probe can be prepared by PCR using an oligonucleotide prepared on the basis of a known gene sequence as a primer and a DNA fragment containing these base sequences as a template.
  • a DNA fragment having a length of about 300 bp can be used as the probe.
  • hybridization washing conditions include 50 ° C., 2 ⁇ SSC, and 0.1% SDS.
  • the acpP gene or fabF gene may be one in which any codon is replaced with an equivalent codon as long as it encodes a protein having the original function maintained.
  • the acpP gene or the fabF gene may be modified to have an optimal codon according to the codon usage frequency of the host to be used.
  • Protein activity decreases means that the activity per cell of the protein is decreased compared to wild-type strains and parental unmodified strains, and the activity is completely lost. including. Specifically, “the activity of the protein is decreased” means that the number of molecules per cell of the protein is decreased and / or the function per molecule of the protein compared to the unmodified strain. Means that it is decreasing. In other words, “activity” in the case of “decrease in protein activity” means not only the catalytic activity of the protein but also the transcription amount (mRNA amount) or translation amount (protein amount) of the gene encoding the protein. May be. Note that “the number of molecules per cell of the protein is decreased” includes a case where the protein does not exist at all.
  • the function per molecule of the protein is reduced includes the case where the function per molecule of the protein is completely lost.
  • the activity of the protein is not particularly limited as long as it is lower than that of the non-modified strain. For example, it is 90% or less, 80% or less, 70% or less, 60% or less, 55% compared to the non-modified strain. Hereinafter, it may be reduced to 50% or less, 30% or less, 20% or less, 10% or less, 5% or less, or 0%.
  • the modification that reduces the activity of the protein is achieved, for example, by reducing the expression of a gene encoding the protein.
  • Gene expression decreases includes the case where the gene is not expressed at all.
  • the expression of the gene is reduced is also referred to as “the expression of the gene is weakened”.
  • the expression of the gene is, for example, 90% or less, 80% or less, 70% or less, 60% or less, 55% or less, 50% or less, 30% or less, 20% or less, 10% or less as compared with the unmodified strain It may be reduced to 5% or less, or 0%.
  • the acpP gene is known to be essential. Therefore, when reducing the activity of the AcpP protein, if necessary, when the bacterium of the present invention is cultured in a medium, the bacterium of the present invention can proliferate and the desired L-amino acid is produced. The activity remains. That is, the activity of AcpP protein is not reduced to 0% (not completely disappeared) as compared to the unmodified strain. For example, the activity of AcpP protein remains 1% or more, 5% or more, 10% or more, 15% or more, 17% or more, 20% or more, 30% or more, or 50% or more compared to the unmodified strain. It's okay.
  • the activity of the AcpP protein is, for example, 1% to 90%, 5% to 80%, 10% to 70%, 15% to 60%, or 17% to 55 compared to the unmodified strain. % May be reduced.
  • the expression level of the acpP gene is not reduced to 0% compared to the unmodified strain.
  • the expression level of the acpP gene remains 1% or more, 5% or more, 10% or more, 20% or more, 15% or more, 17% or more, 30% or more, or 50% or more compared to the unmodified strain. You can do it.
  • the expression level of the acpP gene is, for example, 1% to 90%, 5% to 80%, 10% to 70%, 15% to 60%, or 17% to 17% compared to the unmodified strain. It may be reduced to 55%.
  • Such a description of reducing the activity of the AcpP protein may be applied mutatis mutandis to reducing the activity of the FabF protein.
  • the decrease in gene expression may be due to, for example, a decrease in transcription efficiency, a decrease in translation efficiency, or a combination thereof.
  • gene expression can be reduced by altering expression regulatory sequences such as the promoter of the gene, Shine-Dalgarno (SD) sequence (also called ribosome binding site (RBS)), spacer region between RBS and start codon. Can be achieved.
  • SD Shine-Dalgarno
  • RBS ribosome binding site
  • AcpP protein is known as an abundant protein in cells, and thus it is suggested that the activity of the wild type promoter of the acpP gene is strong (Non-patent Document 1). Therefore, for example, by replacing the wild-type promoter of the acpP gene with a less active promoter, the expression of the acpP gene can be reduced.
  • promoters that are less active than the wild type promoter of the acpP gene include the lac promoter and the P tac84 promoter described in Russian Patent Application Publication No. 2006/134574.
  • the expression control sequence is preferably modified by 1 base or more, more preferably 2 bases or more, particularly preferably 3 bases or more. Further, part or all of the expression regulatory sequence may be deleted.
  • reduction of gene expression can be achieved, for example, by manipulating factors involved in expression control. Factors involved in expression control include small molecules (such as inducers and inhibitors) involved in transcription and translation control, proteins (such as transcription factors), nucleic acids (such as siRNA), and the like.
  • reduction of gene expression can be achieved, for example, by introducing a mutation that reduces gene expression into the coding region of the gene.
  • gene expression can be reduced by replacing codons in the coding region of the gene with synonymous codons that are used less frequently in the host.
  • gene expression itself may be reduced by gene disruption as described below.
  • the acpP gene and fabF gene are co-transcribed as the acpP-fabF operon.
  • the fabF gene is also transcribed individually from its own promoter.
  • the acpP gene can also be co-transcribed from the fabD gene and the fabG gene in the yceD-rpmF-plsX-fabHDG-acpP-fabF gene cluster. Therefore, for example, the expression of the acpP gene and the fabF gene may be collectively reduced by modifying a promoter that controls co-transcription of the acpP-fabF operon. In addition, for example, the expression of the fabF gene may be decreased alone by modifying the promoter in front of the fabF gene.
  • the expression of the acpP gene may be decreased together with those genes.
  • the expression of the acpP gene and / or the fabF gene may be reduced by introducing a mutation that reduces the expression of the gene into the coding region of the acpP gene and / or the fabF gene.
  • a mutation that decreases the expression of the acpP gene and / or fabF gene specifically, for example, a mutation in which cytosine (C) at the position ⁇ 34 upstream of the translation start point of the acpP gene is replaced with another base.
  • the other base is preferably adenine (A).
  • upstream position 34 of the translation start point of the acpP gene refers to the position corresponding to position 34 upstream from the start codon (ATG) of the acpP gene in the nucleotide sequence shown in SEQ ID NO: 7. Means.
  • a of the start codon (ATG) is + 1st, and the upstream side thereof is -1st.
  • upstream position 34 of the translation start point of the acpP gene means the 177th position of the nucleotide sequence shown in SEQ ID NO: 7 (that is, the genome sequence of Escherichia coli K-12 MG1655 strain registered as GenBank accession NC_000913) No. 1150804).
  • Upstream position 34 of the translation start point of the acpP gene indicates a relative position with reference to SEQ ID NO: 7, and its absolute position is determined by deletion, insertion, addition, etc. of the base. May go back and forth. That is, “position upstream of position -34 of the translation start point of the acpP gene” is the start codon of the acpP gene when one base is deleted between the base at position 177 and the start codon A in SEQ ID NO: 7. This means the 33rd position upstream from A.
  • upstream position 34 of the translation start point of the acpP gene is the sequence of the start codon of the acpP gene when one base is inserted between the base at position 177 and the start codon A in SEQ ID NO: 7. It means the 35th position upstream from A.
  • acpP-fabF operon of an arbitrary bacterium which base is the base “position 34 to the upstream of the translation start point of the acpP gene” can be determined by, for example, the upstream sequence of the bacterial acpP gene and SEQ ID NO: 7 This can be determined by performing alignment with the upstream sequence of the acpP gene.
  • the alignment can be performed using, for example, known gene analysis software. Specific software includes DNA Solutions from Hitachi Solutions and GENETYX from Genetics (Elizabeth C. Tyler et al., Computers and Biomedical Research, 24 (1), 72-96, 1991; Barton GJ et) al., Journal of molecular biology, 198 (2), 327-37. 1987).
  • the modification that decreases the activity of the protein can be achieved, for example, by destroying a gene encoding the protein.
  • Gene disruption can be achieved, for example, by deleting part or all of the coding region of the gene on the chromosome.
  • the entire gene including the sequences before and after the gene on the chromosome may be deleted.
  • the region to be deleted may be any region such as an N-terminal region, an internal region, or a C-terminal region as long as a decrease in protein activity can be achieved.
  • the longer region to be deleted can surely inactivate the gene.
  • it is preferable that the reading frames of the sequences before and after the region to be deleted do not match.
  • gene disruption is, for example, introducing an amino acid substitution (missense mutation) into a coding region of a gene on a chromosome, introducing a stop codon (nonsense mutation), or adding or deleting 1 to 2 bases. It can also be achieved by introducing a frameshift mutation (Journal of Biological Chemistry 272: 8611-8617 (1997), Proceedings of the National Academy of Sciences, USA 95 5511-5515 (1998), Journal of Biological Chemistry 26 116, 20833-20839 (1991)).
  • gene disruption can be achieved, for example, by inserting another sequence into the coding region of the gene on the chromosome.
  • the insertion site may be any region of the gene, but the longer the inserted sequence, the more reliably the gene can be inactivated.
  • the other sequence is not particularly limited as long as it reduces or eliminates the activity of the encoded protein, and examples thereof include marker genes such as antibiotic resistance genes and genes useful for the production of target substances.
  • Modifying a gene on a chromosome as described above includes, for example, deleting a partial sequence of the gene and preparing a deleted gene modified so as not to produce a normally functioning protein.
  • the host is transformed with the recombinant DNA containing, and the homologous recombination is caused between the deletion type gene and the wild type gene on the chromosome, thereby replacing the wild type gene on the chromosome with the deletion type gene. Can be achieved.
  • the recombinant DNA can be easily manipulated by including a marker gene in accordance with a trait such as auxotrophy of the host.
  • the modification that reduces the activity of the protein may be performed by, for example, a mutation treatment.
  • Mutation treatments include X-ray irradiation, UV irradiation, and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS), and methylmethanesulfonate (MMS). ) And the like.
  • all of the plurality of subunits may be modified or only a part may be modified as long as the activity of the protein decreases as a result. . That is, for example, all of a plurality of genes encoding these subunits may be destroyed, or only a part of them may be destroyed.
  • all the activities of the plurality of isozymes may be reduced, or only a part of the activities may be reduced. That is, for example, all of a plurality of genes encoding these isozymes may be destroyed, or only a part of them may be destroyed.
  • the decrease in the activity of the protein can be confirmed by measuring the activity of the protein.
  • the decrease in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has decreased.
  • the decrease in gene expression can be confirmed by confirming that the transcription amount of the gene has decreased, or confirming that the amount of protein expressed from the gene has decreased.
  • the amount of transcription of the gene has been reduced by comparing the amount of mRNA transcribed from the same gene with that of the unmodified strain.
  • methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR, and the like (Molecular cloning (Cold spring spring Laboratory Laboratory, Cold spring Harbor (USA), 2001)).
  • the amount of mRNA is, for example, 90% or less, 80% or less, 70% or less, 60% or less, 55% or less, 50% or less, 30% or less, 20% or less, 10% or less as compared to the unmodified strain. It may be reduced to 5% or less, or 0%.
  • the amount of mRNA transcribed from the acpP gene is not reduced to 0% compared to the unmodified strain.
  • the amount of mRNA transcribed from the gene is 1% or more, 5% or more, 10% or more, 15% or more, 17% or more, compared to the unmodified strain, 20% or more, 30% or more, or 50% or more may remain.
  • the amount of mRNA transcribed from the gene is specifically 1% to 90%, 5% to 80%, 10% to It may be reduced to 70%, 15% to 60%, or 17% to 55%.
  • the amount of protein is, for example, 90% or less, 80% or less, 70% or less, 60% or less, 55% or less, 50% or less, 30% or less, 20% or less, 10% or less compared to the unmodified strain It may be reduced to 5% or less, or 0%. However, the amount of AcpP protein is not reduced to 0% compared to the unmodified strain.
  • the amount of AcpP protein when the expression of the acpP gene decreases, the amount of AcpP protein is 1% or more, 5% or more, 10% or more, 15% or more, 17% or more, 20% or more, or compared to the unmodified strain, or 30% or more, or 50% or more may remain.
  • the amount of AcpP protein is specifically 1% to 90%, 5% to 80%, 10% to 70%, 15%, for example, as compared to the unmodified strain. It may be reduced to ⁇ 60%, or 17% to 55%.
  • the gene has been destroyed by determining part or all of the nucleotide sequence, restriction enzyme map, full length, etc. of the gene according to the means used for the destruction.
  • the above-described technique for reducing the activity of the protein generates a compound other than the target L-amino acid by branching from the biosynthetic pathway of any protein, for example, the target L-amino acid. It can be used to reduce the activity of an enzyme that catalyzes the reaction, or to reduce the expression of any gene, for example, a gene encoding any of these proteins.
  • Protein activity increases “means that the activity per cell of the protein is increased relative to unmodified strains such as wild strains and parental strains. Note that “increasing protein activity” is also referred to as “enhancing protein activity”. “Protein activity increases” specifically means that the number of molecules per cell of the protein is increased and / or the function per molecule of the protein compared to an unmodified strain. Is increasing. That is, “activity” in the case of “increasing protein activity” means not only the catalytic activity of the protein, but also the transcription amount (mRNA amount) or translation amount (protein amount) of the gene encoding the protein. May be.
  • Protein activity increases means not only to increase the activity of the protein in a strain that originally has the activity of the target protein, but also to the activity of the protein in a strain that does not originally have the activity of the target protein. Including granting. Further, as long as the activity of the protein increases as a result, the activity of the target protein inherent in the host may be reduced or eliminated, and the activity of a suitable target protein may be imparted.
  • the activity of the protein is not particularly limited as long as it is increased compared to the non-modified strain.
  • the protein activity is increased 1.5 times or more, 2 times or more, or 3 times or more compared to the non-modified strain. Good.
  • the protein is generated by introducing a gene encoding the protein.
  • the protein has an enzymatic activity. It may be produced to the extent that it can be measured.
  • Modification that increases the activity of the protein is achieved, for example, by increasing the expression of the gene encoding the protein.
  • increasing gene expression is also referred to as “enhanced gene expression”.
  • the expression of the gene may be increased 1.5 times or more, 2 times or more, or 3 times or more, for example, as compared to the unmodified strain.
  • increasing gene expression means not only increasing the expression level of a target gene in a strain that originally expresses the target gene, but also in a strain that originally does not express the target gene. Including expressing a gene. That is, “increasing gene expression” includes, for example, introducing the gene into a strain that does not hold the target gene and expressing the gene.
  • An increase in gene expression can be achieved, for example, by increasing the copy number of the gene.
  • Increase in gene copy number can be achieved by introducing the gene into the host chromosome.
  • Introduction of a gene into a chromosome can be performed, for example, using homologous recombination (Miller I, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory). Only one copy of the gene may be introduced, or two copies or more may be introduced.
  • multiple copies of a gene can be introduced into a chromosome by performing homologous recombination with a sequence having multiple copies on the chromosome as a target. Examples of sequences having many copies on a chromosome include repetitive DNA sequences (inverted DNA) and inverted repeats present at both ends of a transposon.
  • homologous recombination may be performed by targeting an appropriate sequence on a chromosome such as a gene unnecessary for production of the target substance.
  • Homologous recombination is, for example, the Red-driven integration method (Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97: 6640-6645 (2000) ), A method using a linear DNA, a method using a plasmid containing a temperature-sensitive replication origin, a method using a plasmid capable of conjugation transfer, a method using a suicide vector that does not have a replication origin and functions in a host, or a phage It can be performed by the transduction method used.
  • the gene can also be randomly introduced onto the chromosome using transposon or Mini-Mu (Japanese Patent Laid-Open No. 2-109985, US Pat. No. 5,882,888, EP805867B1).
  • An increase in the copy number of a gene can also be achieved by introducing a vector containing the gene into a host.
  • a DNA fragment containing a target gene can be linked to a vector that functions in the host to construct an expression vector for the gene, and the host can be transformed with the expression vector to increase the copy number of the gene. it can.
  • a DNA fragment containing a target gene can be obtained, for example, by PCR using a genomic DNA of a microorganism having the target gene as a template.
  • the vector a vector capable of autonomous replication in a host cell can be used.
  • the vector is preferably a multicopy vector.
  • the vector preferably has a marker such as an antibiotic resistance gene.
  • the vector may be equipped with a promoter or terminator for expressing the inserted gene.
  • the vector may be, for example, a vector derived from a bacterial plasmid, a vector derived from a yeast plasmid, a vector derived from a bacteriophage, a cosmid, or a phagemid.
  • vectors capable of autonomous replication in bacteria of the Enterobacteriaceae family such as Escherichia coli, specifically, for example, pUC19, pUC18, pHSG299, pHSG399, pHSG398, pBR322, pSTV29 (all available from Takara Bio Inc.), pACYC184, pMW219 (Nippon Gene), pTrc99A (Pharmacia), pPROK vector (Clontech), pKK233-2 (Clontech), pET vector (Novagen), pQE vector (Qiagen), wide host range Vector RSF1010 is mentioned.
  • the gene may be retained in the bacterium of the present invention so that it can be expressed.
  • the gene may be introduced so as to be expressed under the control of a promoter sequence that functions in the bacterium of the present invention.
  • the promoter may be a host-derived promoter or a heterologous promoter.
  • the promoter may be a native promoter of a gene to be introduced or a promoter of another gene.
  • a stronger promoter as described later may be used.
  • a terminator for terminating transcription can be arranged downstream of the gene.
  • the terminator is not particularly limited as long as it functions in the bacterium of the present invention.
  • the terminator may be a host-derived terminator or a heterologous terminator.
  • the terminator may be a terminator specific to the gene to be introduced, or may be a terminator of another gene. Specific examples of the terminator include T7 terminator, T4 terminator, fd phage terminator, tet terminator, and trpA terminator.
  • Vectors, promoters, and terminators that can be used in various microorganisms are described in detail in, for example, “Basic Course of Microbiology 8, Genetic Engineering, Kyoritsu Shuppan, 1987”, and these can be used.
  • each gene when two or more genes are introduced, each gene may be retained in the bacterium of the present invention so that it can be expressed. For example, all the genes may be held on a single expression vector, or all may be held on a chromosome. Moreover, each gene may be separately hold
  • the gene to be introduced is not particularly limited as long as it encodes a protein that functions in the host.
  • the introduced gene may be a host-derived gene or a heterologous gene.
  • the gene to be introduced can be obtained by PCR using, for example, a primer designed based on the base sequence of the gene, and using a genomic DNA of an organism having the gene or a plasmid carrying the gene as a template.
  • the introduced gene may be totally synthesized based on the base sequence of the same gene (Gene, 60 (1), 115-127 (1987)).
  • each subunit constituting the complex may be derived from one organism or two or more different organisms as long as the complex has the function of the target protein. That is, for example, genes derived from the same organism encoding a plurality of subunits may be introduced into the host, or genes derived from different organisms may be introduced into the host.
  • the increase in gene expression can be achieved by improving the transcription efficiency of the gene.
  • Improvement of gene transcription efficiency can be achieved, for example, by replacing a promoter of a gene on a chromosome with a stronger promoter.
  • strong promoter is meant a promoter that improves transcription of the gene over the native wild-type promoter. Examples of stronger promoters include the known high expression promoters T7 promoter, trp promoter, lac promoter, thr promoter, thr promoter, tac promoter, trc promoter, tet promoter, araBAD promoter, rpoH promoter, PR promoter, and PL promoter. Can be mentioned.
  • a highly active promoter of a conventional promoter may be obtained by using various reporter genes.
  • the activity of the promoter can be increased by bringing the -35 and -10 regions in the promoter region closer to the consensus sequence (WO 00/18935).
  • the highly active promoter include various tac-like promoters (Katashkina JI et al. Russian Patent application 2006134574) and pnlp8 promoter (WO2010 / 027045). Methods for evaluating promoter strength and examples of strong promoters are described in Goldstein et al. (Prokaryotickpromoters in biotechnology. Biotechnol. Annu. Rev.,. 1, 105-128 (1995)).
  • the increase in gene expression can be achieved by improving the translation efficiency of the gene.
  • Improvement of gene translation efficiency can be achieved, for example, by replacing the Shine-Dalgarno (SD) sequence (also referred to as ribosome binding site (RBS)) of the gene on the chromosome with a stronger SD sequence.
  • SD Shine-Dalgarno
  • RBS ribosome binding site
  • a stronger SD sequence is meant an SD sequence in which the translation of mRNA is improved over the originally existing wild-type SD sequence.
  • RBS of gene 10 derived from phage T7 can be mentioned (Olins P. O. et al, Gene, 1988, 73, 227-235).
  • substitution of several nucleotides in the spacer region between the RBS and the start codon, particularly the sequence immediately upstream of the start codon (5'-UTR), or insertion or deletion contributes to mRNA stability and translation efficiency. It is known to have a great influence, and the translation efficiency of a gene can be improved by modifying them.
  • promoters, SD sequences, and sites that affect gene expression are also collectively referred to as “expression control regions”.
  • the expression regulatory region can be determined using a promoter search vector or gene analysis software such as GENETYX.
  • These expression control regions can be modified by, for example, a method using a temperature sensitive vector or a Red driven integration method (WO2005 / 010175).
  • Improvement of gene translation efficiency can also be achieved, for example, by codon modification.
  • Escherichia coli, etc. there is a clear codon bias among the 61 amino acid codons found in the population of mRNA molecules, and the abundance of a tRNA seems to be directly proportional to the frequency of use of the corresponding codon. (Kane, JF, Curr. Opin. Biotechnol., 6 (5), 494-500 (1995)). That is, if a large amount of mRNA containing an excessive rare codon is present, translation problems may occur. Recent studies suggest that, inter alia, clusters of AGG / AGA, CUA, AUA, CGA, or CCC codons can reduce both the amount and quality of the synthesized protein.
  • Codon substitution can be performed, for example, by a site-specific mutagenesis method in which a target mutation is introduced into a target site of DNA.
  • site-directed mutagenesis a method using PCR (Higuchi, R., 61, in PCR technology, rlErlich, H. A. Eds., Stockton press (1989); Carter, P., ethMeth. In Enzymol., 154, 382 (1987)) and methods using phage (Kramer, W.
  • the increase in gene expression can be achieved by amplifying a regulator that increases gene expression or by deleting or weakening a regulator that decreases gene expression.
  • the modification that increases the activity of the protein can be achieved, for example, by enhancing the specific activity of the protein.
  • Specific activity enhancement also includes the reduction and elimination of feedback inhibition.
  • Proteins with enhanced specific activity can be obtained by searching for various organisms, for example.
  • a highly active protein may be obtained by introducing a mutation into a conventional protein.
  • the introduced mutation may be, for example, a substitution, deletion, insertion or addition of one or several amino acids at one or several positions of the protein. Mutation can be introduced by, for example, the site-specific mutation method as described above. Moreover, you may introduce
  • Mutation treatments include X-ray irradiation, UV irradiation, and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS), and methylmethanesulfonate (MMS). ) And the like.
  • DNA may be directly treated with hydroxylamine in vitro to induce random mutations.
  • the enhancement of specific activity may be used alone or in any combination with the above-described method for enhancing gene expression.
  • the method of transformation is not particularly limited, and a conventionally known method can be used.
  • recipient cells are treated with calcium chloride to increase DNA permeability (Mandel, M. and Higa, A., J. Mol. Biol. 1970, 53, 159-162) and methods for introducing competent cells from proliferating cells and introducing DNA as reported for Bacillus subtilis (Duncan, C. H., Wilson, G. A. and Young, F. E .., 1997. Gene 1: 153-167) can be used.
  • DNA-receptive cells such as those known for Bacillus subtilis, actinomycetes, and yeast, can be made into protoplasts or spheroplasts that readily incorporate recombinant DNA into recombinant DNA.
  • Introduction method (Chang, S. and Choen, SN, 1979. Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978. Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933) can also be applied.
  • an electric pulse method Japanese Patent Laid-Open No. 2-207791 as reported for coryneform bacteria can also be used.
  • the increase in protein activity can be confirmed by measuring the activity of the protein.
  • the increase in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has increased.
  • An increase in gene expression can be confirmed by confirming that the transcription amount of the gene has increased, or by confirming that the amount of protein expressed from the gene has increased.
  • the transcription amount of the gene has increased by comparing the amount of mRNA transcribed from the gene with an unmodified strain such as a wild strain or a parent strain.
  • Methods for assessing the amount of mRNA include Northern hybridization, RT-PCR, etc. ), 2001).
  • the amount of mRNA may be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more, compared to the unmodified strain.
  • the amount of protein may be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more, compared to the unmodified strain.
  • the above-described technique for increasing the activity of a protein can be used for enhancing the activity of an arbitrary protein, such as an L-amino acid biosynthetic enzyme, or for enhancing the expression of an arbitrary gene, such as a gene encoding the arbitrary protein.
  • the method of the present invention comprises culturing the bacterium of the present invention in a medium to produce and accumulate L-amino acid in the medium or in the microbial cells, and the medium.
  • it is a method for producing an L-amino acid, which comprises collecting the L-amino acid from cells.
  • one L-amino acid may be produced, or two or more L-amino acids may be produced.
  • the medium used is not particularly limited as long as the bacterium of the present invention can grow and L-amino acids are produced.
  • a normal medium used for culturing microorganisms such as bacteria can be used.
  • the medium may contain a component selected from a carbon source, a nitrogen source, a phosphoric acid source, a sulfur source, and other various organic and inorganic components as necessary.
  • the type and concentration of the medium component may be appropriately set according to various conditions such as the type of bacteria used and the type of L-amino acid to be produced.
  • the carbon source is not particularly limited as long as it can be assimilated by the bacterium of the present invention to produce an L-amino acid.
  • the carbon source for example, glucose, fructose, sucrose, lactose, galactose, xylose, arabinose, waste molasses, starch hydrolyzate, saccharides such as biomass hydrolyzate, acetic acid, fumaric acid, citric acid, Examples thereof include organic acids such as succinic acid and malic acid, alcohols such as glycerol, crude glycerol and ethanol, and fatty acids.
  • one type of carbon source may be used, or two or more types of carbon sources may be used in combination.
  • the concentration of the carbon source in the medium is not particularly limited as long as the bacterium of the present invention can grow and L-amino acid is produced.
  • the concentration of the carbon source in the medium is preferably as high as possible as long as the production of L-amino acid is not inhibited.
  • the initial concentration of the carbon source in the medium may be, for example, usually 5 to 30% (W / V), preferably 10 to 20% (W / V).
  • the nitrogen source include ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate, organic nitrogen sources such as peptone, yeast extract, meat extract, and soybean protein degradation product, ammonia, and urea.
  • Ammonia gas or ammonia water used for pH adjustment may be used as a nitrogen source.
  • the nitrogen source one kind of nitrogen source may be used, or two or more kinds of nitrogen sources may be used in combination.
  • the phosphoric acid source examples include phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate, and phosphate polymers such as pyrophosphoric acid.
  • phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate
  • phosphate polymers such as pyrophosphoric acid.
  • the phosphoric acid source one type of phosphoric acid source may be used, or two or more types of phosphoric acid sources may be used in combination.
  • the sulfur source include inorganic sulfur compounds such as sulfate, thiosulfate, and sulfite, and sulfur-containing amino acids such as cysteine, cystine, and glutathione.
  • the sulfur source one kind of sulfur source may be used, or two or more kinds of sulfur sources may be used in combination.
  • organic and inorganic components include, for example, inorganic salts such as sodium chloride and potassium chloride; trace metals such as iron, manganese, magnesium and calcium; vitamin B1, vitamin B2, vitamin B6 and nicotine Examples include vitamins such as acid, nicotinamide, and vitamin B12; amino acids; nucleic acids; and organic components such as peptone, casamino acid, yeast extract, and soybean protein degradation products containing these.
  • inorganic salts such as sodium chloride and potassium chloride
  • trace metals such as iron, manganese, magnesium and calcium
  • vitamin B1, vitamin B2, vitamin B6 and nicotine include vitamins such as acid, nicotinamide, and vitamin B12; amino acids; nucleic acids; and organic components such as peptone, casamino acid, yeast extract, and soybean protein degradation products containing these.
  • vitamins such as acid, nicotinamide, and vitamin B12
  • amino acids amino acids
  • nucleic acids amino acids
  • organic components such as peptone, casamino acid, yeast extract, and soybean
  • L-lysine producing bacteria often have an enhanced L-lysine biosynthetic pathway and weakened L-lysine resolution. Therefore, when culturing such L-lysine-producing bacteria, for example, one or more amino acids selected from L-threonine, L-homoserine, L-isoleucine, and L-methionine are supplemented to the medium. Is preferred.
  • Culture conditions are not particularly limited as long as the bacterium of the present invention can grow and L-amino acids are produced.
  • the culture can be performed, for example, under normal conditions used for culture of microorganisms such as bacteria.
  • the culture conditions may be appropriately set according to various conditions such as the type of bacteria used and the type of L-amino acid to be produced.
  • Cultivation can be performed using a liquid medium.
  • the culture medium of the bacterium of the present invention cultured in a solid medium such as an agar medium may be directly inoculated into a liquid medium, or the bacterium of the present invention seeded in a liquid medium is used as a liquid for main culture.
  • the medium may be inoculated. That is, the culture may be performed separately for seed culture and main culture.
  • the amount of the bacterium of the present invention contained in the medium at the start of culture is not particularly limited.
  • a seed culture solution having an OD660 of 4 to 8 may be added at 0.1 to 30% by mass, preferably 1 to 10% by mass with respect to the medium for main culture at the start of culture.
  • Culture can be performed by batch culture, fed-batch culture, continuous culture, or a combination thereof.
  • the culture conditions for seed culture and main culture may or may not be the same.
  • both seed culture and main culture may be performed by batch culture.
  • seed culture may be performed by batch culture, and main culture may be performed by fed-batch culture or continuous culture.
  • the culture can be performed aerobically, for example.
  • the culture can be performed by aeration culture or shaking culture.
  • the oxygen concentration may be controlled to, for example, 5 to 50%, preferably about 10% of the saturated oxygen concentration.
  • the pH of the medium may be, for example, pH 3 to 10, preferably pH 4.0 to 9.5. During the culture, the pH of the medium can be adjusted as necessary.
  • the pH of the medium is adjusted using various alkaline or acidic substances such as ammonia gas, ammonia water, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide, etc. can do.
  • the culture temperature may be, for example, 20 to 45 ° C, preferably 25 ° C to 37 ° C.
  • the culture period may be, for example, 1 hour or more, 4 hours or more, 10 hours or more, or 15 hours or more, and may be 168 hours or less, 120 hours or less, 90 hours, or 72 hours or less. Specifically, the culture period may be, for example, 10 hours to 120 hours.
  • the culture may be continued, for example, until the carbon source in the medium is consumed or until the activity of the bacterium of the present invention is lost. By culturing the bacterium of the present invention under such conditions, L-amino acids accumulate in the cells and / or in the medium.
  • L-glutamic acid when producing L-glutamic acid, it is also possible to carry out the culture while precipitating L-glutamic acid in the medium using a liquid medium adjusted to conditions under which L-glutamic acid is precipitated.
  • the conditions under which L-glutamic acid precipitates are, for example, pH 5.0 to 3.0, preferably pH 4.9 to 3.5, more preferably pH 4.9 to 4.0, and particularly preferably around pH 4.7. (European Patent Application Publication No. 1078989).
  • cultivation may be performed at the said pH in the whole period, and may be performed at the said pH only for a part of period.
  • the “partial period” may be, for example, a period of 50% or more, 70% or more, 80% or more, 90% or more, 95% or more, or 99% or more of the entire culture period.
  • a method of fermenting basic amino acid using bicarbonate ion and / or carbonate ion as a main counter ion of basic amino acid may be used.
  • basic amino acids can be produced while reducing the amount of sulfate ions and / or chloride ions that have been conventionally used as counter ions for basic amino acids.
  • L-amino acid can be confirmed by a known method used for detection or identification of a compound. Examples of such a method include HPLC, LC / MS, GC / MS, and NMR. These methods can be used in appropriate combination.
  • the produced L-amino acid can be recovered by a known method used for separation and purification of compounds. Examples of such a method include an ion exchange resin method, a membrane treatment method, a precipitation method, and a crystallization method. These methods can be used in appropriate combination. In the case where L-amino acid accumulates in the microbial cells, for example, the microbial cells are crushed with ultrasonic waves, and the microbial cells are removed by centrifugation from the supernatant obtained by ion exchange resin method or the like. Amino acids can be recovered. The recovered L-amino acid may be a free form, a salt thereof, or a mixture thereof.
  • Examples of the salt include sulfate, hydrochloride, carbonate, ammonium salt, sodium salt, and potassium salt.
  • L-lysine may be free L-lysine, L-lysine sulfate, L-lysine hydrochloride, L-lysine carbonate, or a mixture thereof.
  • L-glutamic acid may be free L-glutamic acid, sodium L-glutamate (MSG), ammonium L-glutamate, or a mixture thereof.
  • L-amino acid is precipitated in the medium, it can be recovered by centrifugation or filtration.
  • the L-amino acid precipitated in the medium may be isolated together after crystallization of the L-amino acid dissolved in the medium.
  • the recovered L-amino acid may contain components other than the L-amino acid, such as bacterial cells, medium components, water, and bacterial metabolic byproducts.
  • the purity of the collected L-amino acid is, for example, 30% (w / w) or higher, 50% (w / w) or higher, 70% (w / w) or higher, 80% (w / w) or higher, 85% (JP1214636B, USP5,431,933, USP4,956,471, USP4,777,051, USP4,946,654, USP5,840,358, USP6,238,714 , US2005 / 0025878).
  • Escherichia coli having L-lysine producing ability is cultured in a medium, and L-lysine is produced and accumulated in the medium or in the microbial cells, and the medium or microbial cells
  • a method for producing L-lysine, comprising collecting L-lysine, wherein the expression control sequence of the gene for the acpP-fabF operon is altered in Escherichia coli, whereby the expression of the gene is weakened It may be a method characterized by the above.
  • Escherichia coli having L-lysine producing ability is cultured in a medium, and L-lysine is produced and accumulated in the medium or in the microbial cells, and the medium or A method for producing L-lysine, comprising collecting L-lysine from bacterial cells, wherein cytosine at position ⁇ 34 upstream of the translation start point of the acpP gene is substituted with another base in Escherichia coli.
  • the method characterized by this may be used.
  • Escherichia coli having L-lysine-producing ability is cultured in a medium, and L-lysine is produced and accumulated in the medium or in the bacterial cells, and the medium or A method for producing L-lysine, comprising collecting L-lysine from a microbial cell, wherein cytosine at position ⁇ 34 upstream of the translation start point of the acpP gene is substituted with adenine in the Escherichia coli. It may be a featured method. About these aspects of the method of this invention, the description regarding the bacteria of this invention mentioned above and the method of this invention can apply mutatis mutandis.
  • Example 1 Construction of L-lysine-producing bacterium with reduced expression of acpP and fabF genes
  • E. coli WC196 ⁇ cadA ⁇ ldc strain (FERM BP-11027; WO2010 / 061890) (hereinafter also referred to as WC196LC strain) was used.
  • a method called “Red-driven integration” (Proc. Natl. Acad. Sci. USA, 2000, vol. 1) was first developed by Datsenko and Wanner upstream of the acpP-fabF operon comprising the acpP and fabF genes of the same strain. 97, No. 12, p6640-6645).
  • the sequence corresponding to the target gene was designed on the 5 ′ side of the synthetic oligonucleotide, and the sequence corresponding to the antibiotic resistance gene was obtained using the synthetic oligonucleotide designed on the 3 ′ side.
  • Mutation-introduced strains can be constructed in one step using PCR products. The procedure is shown below.
  • PCR was performed using the chromosomal DNA of Escherichia coli MG1655 strain (ATCC 47076) as a template and the synthetic oligonucleotides shown in SEQ ID NOs: 1 and 2 as primers.
  • Primer of SEQ ID NO: 1 the 5 'end of the primer the sequence corresponding to the peripheral BglII site of the plasmid pMW118 ( ⁇ attL-Km r - ⁇ attR) (WO2006 / 093322), corresponding to a portion of the upstream sequence of acpP gene sequence At the 3 'end of the primer.
  • Primer of SEQ ID NO: 2 the 5 'end of the primer the sequence corresponding to the peripheral BglII site of the plasmid pMW118 ( ⁇ attL-Km r - ⁇ attR) (WO2006 / 093322), corresponding to a portion of the downstream sequence of fabF gene sequence At the 3 'end of the primer.
  • the resulting DNA fragment was ligated with the restriction enzymes BglII treated with vector pMW118 ( ⁇ attL-Km r - ⁇ attR) and In-Fusion HD Cloning Kit (TAKARA BIO).
  • E. coli JM109 was transformed with the In-Fusion reaction solution. Transformants were selected on L-agar medium containing 50 mg / L kanamycin. A plasmid was extracted from the transformant, and it was confirmed that the target fragment was inserted. This plasmid was designated pMW118 ( ⁇ attL-Km r - ⁇ attR) -acpP
  • pMW118 and ( ⁇ attL-Km r - ⁇ attR) the -acpP-fabF template the synthetic oligonucleotide shown in SEQ ID NO: 3 and 4 as primers
  • QuikChange Site-Directed Mutagenesis Kit plasmid introduced point mutations used (Agilent Technologies) Built. This mutation is a substitution of cytosine 34 bases upstream of the translation start point of the acpP gene with adenine.
  • This plasmid was designated pMW118 ( ⁇ attL-Km r - ⁇ attR) -acpP * -fabF.
  • WC196LCacpP * strain was constructed from E. coli WC196LC strain using ⁇ -red method described in US Patent Application Publication No. 2006/0160191 and WO2005 / 010175.
  • cytosine 34 bases upstream of the translation start point of the acpP gene is replaced with adenine. Acquisition of kanamycin-resistant recombinants by the ⁇ -red method was performed by plating on L-agar medium containing 50 mg / L kanamycin at 37 ° C. and selecting kanamycin-resistant recombinants.
  • Plasmid pCABD2 (US Pat. No. 6,040,160) was used to transform WC196LCacpP * strain, transformants were selected on L-agar medium containing 20 mg / L streptomycin, and WC196LCacpP * / pCABD2 strain was selected. Obtained.
  • pCABD2 is a mutant dapA gene encoding dihydrodipicolinate synthase (DDPS) derived from Escherichia coli having a mutation that is desensitized to feedback inhibition by L-lysine, and a mutation that is desensitized to feedback inhibition by L-lysine.
  • DDPS dihydrodipicolinate synthase
  • a mutant lysC gene encoding aspartokinase III derived from Escherichia coli, dapB gene encoding dihydrodipicolinate reductase derived from Escherichia coli, and ddh encoding a diaminopimelate dehydrogenase derived from Brevibacterium lactofermentum Contains genes.
  • Example 2 L-lysine production culture (1) The prepared WC196LCacpP * / pCABD2 strain was used for L-lysine production culture. This strain was cultured at 37 ° C. in an L-agar medium containing 20 mg / L of streptomycin until the OD600 reached about 0.6, and then the same amount of 40% glycerol solution as the culture solution was added and stirred. Thereafter, an appropriate amount was dispensed and stored at ⁇ 80 ° C. to prepare a glycerol stock.
  • a glycerol stock of WC196LCacpP * / pCABD2 strain was evenly spread on an L-agar medium containing 20 mg / L of streptomycin and cultured at 37 ° C. for 24 hours.
  • the WC196LC / pCABD2 strain which was a control strain in which pCABD2 was introduced into the WC196LC strain, was also cultured in the same manner on an L-agar medium containing 20 mg / L of streptomycin.
  • the grown cells were suspended in 3.0 mL of an L-lysine production medium (MS-Glc medium) shown in Table 1, and the resulting suspension was diluted with the same medium so that the OD600 was 15.
  • the obtained diluted suspension (1.0 mL) was inoculated into a 500 mL Sakaguchi flask in which 19 mL of L-lysine production medium containing 20 mg / L of streptomycin was infused, and was reconstituted using a reciprocating shake culture apparatus. Culturing was performed at 0 ° C. At 48 hours after the start of culture, the amount of remaining glucose and the amount of L-lysine produced were quantified.
  • Table 2 shows the residual glucose concentration and L-lysine accumulation concentration after 48 hours of culture. Compared with the control strain WC196LC / pCABD2, the WC196LCacpP * / pCABD2 strain in which the expression of the acpP and fabF genes was reduced significantly improved the L-lysine yield.
  • Example 3 Confirmation of expression level of acpP gene by RT-PCR (1)
  • the WC196LCacpP * / pCABD2 strain and WC196LC / pCABD2 strain prepared in Example 1 were each cultured under the conditions described in Example 2, and the culture solution was sampled at 17 hours of culture.
  • RNA was extracted from the culture using RNAprotect Bacteria Reagent (Qiagen) and RNeasy Mini Kit (Qiagen). Using the obtained RNA as a template, reverse transcription PCR was performed using PrimeScript RT reagent Kit (Takara Bio).
  • the synthetic oligonucleotides shown in SEQ ID NOs: 13 and 14 and the synthetic oligonucleotides shown in SEQ ID NOs: 15 and 16 as primers, and quantitative PCR using Power SYBR Green PCR Master Mix (Applied Biosystems) went.
  • the oligonucleotides shown in SEQ ID NOs: 13 and 14 correspond to the base sequence of the acpP gene.
  • the oligonucleotides shown in SEQ ID NOs: 15 and 16 correspond to sequences within the ORF of rrsA (16s rRNA).
  • the mRNA amount of the acpP gene was calculated using rrsA (16s rRNA) as an internal standard.
  • Table 3 shows the amount of mRNA of the acpP gene at 17 hours of culture. The data are shown as relative values with the mRNA level of the acpP gene of the pCABD2 / WC196LC strain as 1. Compared with the control strain pCABD2 / WC196LC, the pCABD2 / WC196LC acpP * strain significantly decreased the amount of mRNA of the acpP gene.
  • Example 4 Construction of L-lysine-producing bacterium with reduced expression of acpP and fabF genes (2)
  • the WC196LC strain is used as an L-lysine producing bacterium.
  • the upstream region of the acpP-fabF operon consisting of the acpP and fabF genes of the same strain is replaced with the P tac84 promoter ( Russian Patent Application Publication No. 2006/134574) or the lac promoter by the “Red-driven integration” method.
  • the region to be replaced may be part or all of -200 to -1 upstream of the transcription start site of the acpP-fabF operon. For example, the region of -100 to -1, upstream -50 to -1, upstream -30 to -1, or upstream -30 to -10 upstream of the transcription start site of the acpP-fabF operon is replaced.
  • a strain in which the region upstream of the acpP-fabF operon of the WC196LC strain is replaced with a P tac84 promoter is referred to as a WC196LC P tac84 acpP strain
  • a strain in which the lac promoter is replaced is referred to as a WC196LC P lac acpP strain.
  • WC196LC P tac84 acpP and WC196LC P lac acpP were transformed with plasmid pCABD2, and transformants were selected on L-agar medium containing 20 mg / L of streptomycin, and WC196LC P tac84 acpP / pCABD2 And obtain WC196LC P lac acpP / pCABD2 strain.
  • Example 5 L-lysine production culture (2) Using the WC196LC P tac84 acpP / pCABD2 strain and WC196LC P lac acpP / pCABD2 strain prepared in Example 4 and the WC196LC / pCABD2 strain as a control strain, L-lysine production culture is performed according to the method described in Example 2.
  • Example 6 Confirmation of expression level of acpP gene by RT-PCR (2)
  • the WC196LC P tac84 acpP / pCABD2 strain, the WC196LC P lac acpP / pCABD2 strain, and the WC196LC / pCABD2 strain prepared in Example 4 were cultured under the conditions described in Example 2, respectively, and the method described in Example 3 was used. Calculate the amount of mRNA of the acpP gene.
  • Example 7 Construction of L-threonine-producing bacterium with reduced expression of acpP and fabF genes
  • E. coli TDH-6 strain Japanese Patent Laid-Open No. 2001-346578
  • the TDH-6 strain can be obtained by removing the plasmid pVIC40 from E. coli TDH-6 / pVIC40 (VKPM B-3996) (Japanese Patent Laid-Open No. 2001-346578).
  • cytosine 34 bases upstream of the translation start point of the acpP gene of TDH-6 strain is replaced with adenine.
  • the upstream region of the acpP-fabF operon of the TDH-6 strain is replaced with the P tac84 promoter or the lac promoter.
  • the region to be replaced may be part or all of -200 to -1 upstream of the transcription start site of the acpP-fabF operon.
  • the region of -100 to -1, upstream -50 to -1, upstream -30 to -1, or upstream -30 to -10 upstream of the transcription start site of the acpP-fabF operon is replaced.
  • the TDH-6acpP * strain was substituted with cytosine 34 bases upstream of the translation start point of the adhP gene of the TDH-6 strain, and the upstream region of the acpP-fabF operon of the TDH-6 strain was used as the P tac84 promoter.
  • the substituted strain is called TDH-6 P tac84 acpP strain
  • the strain substituted with the lac promoter is called TDH-6 P lac acpP strain.
  • Plasmid pVIC40 (US Pat. No. 5,705,371) was used to transform TDH-6acpP * strain, TDH-6 P tac84 acpP strain, TDH-6 P lac acpP strain, and TDH-6acpP * / pVIC40 strain, TDH-6 P A tac84 acpP / pVIC40 strain and a TDH-6 P lac acpP / pVIC40 strain are obtained.
  • Example 8 L-threonine production culture TDH-6acpP * / pVIC40 strain, TDH-6 P tac84 acpP / pVIC40 strain, TDH-6 P lac acpP / pVIC40 strain prepared in Example 7, and TDH-6 as a control strain / pVIC40 strain is used for L-threonine production culture according to the method described in US Pat. No. 7,915,018.
  • Example 9 Confirmation of expression level of acpP gene by RT-PCR (3) Using the TDH-6acpP * / pVIC40 strain, the TDH- 6P tac84 acpP / pVIC40 strain, the TDH-6P lac acpP / pVIC40 strain prepared in Example 7 and the TDH-6 / pVIC40 strain as a control strain, L-threonine production culture is performed according to the method described in No. 7,915,018, and the mRNA amount of the acpP gene is calculated using the culture solution according to the method described in Example 3.
  • the ability of bacteria to produce L-amino acids can be improved, and L-amino acids can be produced efficiently.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided is a method for producing an L-amino acid. An L-amino acid can be produced by culturing a bacterium that belongs to the family Enterobacteriaceae, is so modified as to weaken an acpP-fabF operon and is capable of producing an L-amino acid in a culture medium and then collecting the L-amino acid from the culture medium or cells of the bacterium.

Description

L-アミノ酸の製造法Method for producing L-amino acid
 本発明は、細菌を用いたL-アミノ酸の製造法に関する。L-アミノ酸は、動物飼料用の添加物、調味料や飲食品の成分、又はアミノ酸輸液等として、産業上有用である。 The present invention relates to a method for producing L-amino acids using bacteria. L-amino acids are industrially useful as additives for animal feed, ingredients for seasonings and foods and drinks, amino acid infusions, and the like.
 L-アミノ酸は、例えば、L-アミノ酸生産能を有する各種微生物を用いた発酵法により工業生産されている。発酵法によるL-アミノ酸の製造法としては、例えば、野生型微生物(野生株)を用いる方法、野生株から誘導された栄養要求株を用いる方法、野生株から種々の薬剤耐性変異株として誘導された代謝調節変異株を用いる方法、栄養要求株と代謝調節変異株の両方の性質を持った株を用いる方法が挙げられる。 L-amino acids are industrially produced, for example, by fermentation using various microorganisms capable of producing L-amino acids. Examples of methods for producing L-amino acids by fermentation include a method using a wild-type microorganism (wild strain), a method using an auxotrophic strain derived from a wild strain, and various drug-resistant mutant strains derived from a wild strain. And a method using a strain having characteristics of both an auxotrophic strain and a metabolic control mutant.
 また、近年は、組換えDNA技術によりL-アミノ酸生産能を向上させた微生物がL-アミノ酸の製造に利用されている。微生物のL-アミノ酸生産能を向上させる方法としては、例えば、L-アミノ酸生合成系酵素をコードする遺伝子の発現を増強すること(特許文献1、特許文献2)やL-アミノ酸生合成系への炭素源の流入を増強すること(特許文献3)が挙げられる。 In recent years, microorganisms whose L-amino acid producing ability has been improved by recombinant DNA technology have been used for the production of L-amino acids. Examples of a method for improving the L-amino acid producing ability of a microorganism include, for example, enhancing the expression of a gene encoding an L-amino acid biosynthetic enzyme (Patent Documents 1 and 2) or an L-amino acid biosynthetic system. To enhance the inflow of the carbon source (Patent Document 3).
 acpP遺伝子は、アシルキャリアタンパク質(acyl carrier protein;ACP)をコードする遺伝子である(非特許文献1)。ACPは、不活性なapo-ACPとして翻訳され、その後、ACPシンターゼ(ACP synthease)によりapo-ACPの36位(エシェリヒア・コリの場合)のセリン残基に4’-ホスホパンテテイン(4'-phosphopanteheine)が補因子として付加され、活性なholo-ACPとなる。ACPは、細菌等の脂肪酸生合成において重要な役割を担うタンパク質である。具体的には、ACP(holo-ACP)は、脂肪酸生合成の際に、4’-ホスホパンテテイン基を介して脂肪酸鎖と結合し、脂肪酸鎖を担持する。 The acpP gene is a gene encoding an acyl carrier protein (ACP) (Non-patent Document 1). ACP is translated as an inactive apo-ACP, and then converted into a 4′-phosphopantethein (4′−) at the serine residue at position 36 (in the case of Escherichia coli) of apo-ACP by ACP synthase (ACP synthease). phosphopanteheine) is added as a cofactor to form active holo-ACP. ACP is a protein that plays an important role in fatty acid biosynthesis of bacteria and the like. Specifically, ACP (holo-ACP) binds to a fatty acid chain via a 4'-phosphopantethein group and carries the fatty acid chain during fatty acid biosynthesis.
 fabF遺伝子は、β-ケトアシル-ACPシンターゼII(beta-ketoacyl-ACP synthase II)をコードする遺伝子である(非特許文献1)。β-ケトアシル-ACPシンターゼIIは、脂肪酸生合成酵素の1つであり、脂肪酸鎖の伸長に関与する。具体的には、β-ケトアシル-ACPシンターゼIIは、アシル-ACP(炭素数n)とマロニル-ACPから、3-オキソアシル-ACP(炭素数n+2)を生成する反応を触媒する(EC 2.3.1.41)。 The fabF gene is a gene encoding β-ketoacyl-ACP synthase II (non-patent document 1). β-ketoacyl-ACP synthase II is one of fatty acid biosynthetic enzymes and is involved in the elongation of fatty acid chains. Specifically, β-ketoacyl-ACP synthase II catalyzes a reaction for producing 3-oxoacyl-ACP (carbon number n + 2) from acyl-ACP (carbon number n) and malonyl-ACP (EC 2.3.1.41). ).
 エシェリヒア・コリにおいて、acpP遺伝子およびfabF遺伝子を含む脂肪酸生合成に関与する遺伝子群は、yceD-rpmF-plsX-fabHDG-acpP-fabF遺伝子クラスターとして存在する。同クラスターの遺伝子群は、いくつかの遺伝子ペアとして共転写される(非特許文献1)。例えば、acpP遺伝子およびfabF遺伝子はacpP-fabFオペロンとして共転写される。なお、fabF遺伝子は、自前のプロモーターから個別にも転写される。また、acpP遺伝子は、yceD-rpmF-plsX-fabHDG-acpP-fabF遺伝子クラスター中の、fabD遺伝子およびfabG遺伝子から共転写され得る。 In Escherichia coli, a group of genes involved in fatty acid biosynthesis including the acpP gene and the fabF gene exists as a yceD-rpmF-plsX-fabHDG-acpP-fabF gene cluster. The gene group of the cluster is co-transcribed as several gene pairs (Non-patent Document 1). For example, the acpP gene and the fabF gene are cotranscribed as the acpP-fabF operon. The fabF gene is also transcribed individually from its own promoter. The acpP gene can also be co-transcribed from the fabD gene and the fabG gene in the yceD-rpmF-plsX-fabHDG-acpP-fabF gene cluster.
 しかしながら、acpP遺伝子およびfabF遺伝子とL-アミノ酸生産との関係は知られていなかった。 However, the relationship between the acpP gene and fabF gene and L-amino acid production has not been known.
米国特許第5,168,056号明細書U.S. Pat.No. 5,168,056 米国特許第5,776,736号明細書U.S. Pat.No. 5,776,736 米国特許第5,906,925号明細書U.S. Pat.No. 5,906,925
 本発明は、細菌のL-アミノ酸生産能を向上させる新規な技術を開発し、効率的なL-アミノ酸の製造法を提供することを課題とする。 An object of the present invention is to develop a novel technique for improving L-amino acid-producing ability of bacteria and to provide an efficient method for producing L-amino acid.
 本発明者は、上記課題を解決するために鋭意研究を行った結果、acpPおよびfabF遺伝子の発現が低下するように細菌を改変することによって、細菌のL-アミノ酸生産能を向上させることができることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventor can improve the L-amino acid-producing ability of bacteria by modifying the bacteria so that the expression of acpP and fabF genes is reduced. The present invention was completed.
 すなわち、本発明は以下の通り例示できる。
[1]
 L-アミノ酸生産能を有する腸内細菌科に属する細菌を培地で培養してL-アミノ酸を該培地中または該細菌の菌体内に生成蓄積すること、および該培地または菌体よりL-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、
 前記細菌が、acpP-fabFオペロンが弱化されるように改変されていることを特徴とする、方法。
[2]
 前記acpP-fabFオペロンの弱化が、acpP-fabFオペロンの遺伝子にコードされるタンパク質の活性の低下である、前記方法。
[3]
 acpP-fabFオペロンの遺伝子の発現が弱化されることにより、前記オペロンが弱化された、前記方法。
[4]
 前記acpP-fabFオペロンの遺伝子の発現調節配列が改変されることにより、前記遺伝子の発現が弱化された、前記方法。
[5]
 前記acpP-fabFオペロンの遺伝子が、acpP遺伝子および/またはfabF遺伝子である、前記方法。
[6]
 前記acpP-fabFオペロンの遺伝子が、acpP遺伝子およびfabF遺伝子である、前記方法。
[7]
 acpP遺伝子の翻訳開始点の上流-34位のシトシンが他の塩基に置換されることにより、前記acpP-fabFオペロンの遺伝子の発現が弱化された、前記方法。
[8]
 acpP遺伝子の翻訳開始点の上流-34位のシトシンがアデニンに置換されることにより、前記acpP-fabFオペロンの遺伝子の発現が弱化された、前記方法。
[9]
 前記細菌が、エシェリヒア属、パントエア属、またはエンテロバクター属に属する細菌である、前記方法。
[10]
 前記細菌が、エシェリヒア・コリである、前記方法。
[11]
 前記L-アミノ酸が、L-リジンである、前記方法。
[12]
 L-リジン生産能を有するエシェリヒア・コリを培地で培養してL-リジンを該培地中または該エシェリヒア・コリの菌体内に生成蓄積すること、および該培地または菌体よりL-リジンを採取すること、を含むL-リジンの製造法であって、
 前記エシェリヒア・コリにおいて、acpP-fabFオペロンの遺伝子の発現調節配列が改変されることにより、前記遺伝子の発現が弱化されていることを特徴とする、方法。
[13]
 L-リジン生産能を有するエシェリヒア・コリを培地で培養してL-リジンを該培地中または該エシェリヒア・コリの菌体内に生成蓄積すること、および該培地または菌体よりL-リジンを採取すること、を含むL-リジンの製造法であって、
 前記エシェリヒア・コリにおいてacpP遺伝子の翻訳開始点の上流-34位のシトシンが他の塩基に置換されていることを特徴とする、方法。
[14]
 L-リジン生産能を有するエシェリヒア・コリを培地で培養してL-リジンを該培地中または該エシェリヒア・コリの菌体内に生成蓄積すること、および該培地または菌体よりL-リジンを採取すること、を含むL-リジンの製造法であって、
 前記エシェリヒア・コリにおいてacpP遺伝子の翻訳開始点の上流-34位のシトシンがアデニンに置換されていることを特徴とする、方法。
That is, the present invention can be exemplified as follows.
[1]
Bacteria belonging to the family Enterobacteriaceae having L-amino acid-producing ability are cultured in a medium to produce and accumulate L-amino acid in the medium or in the bacterial body, and L-amino acid is produced from the medium or the bacterial body. Collecting an L-amino acid comprising:
A method, characterized in that the bacterium has been modified such that the acpP-fabF operon is attenuated.
[2]
The method, wherein the weakening of the acpP-fabF operon is a decrease in the activity of a protein encoded by a gene of the acpP-fabF operon.
[3]
The method, wherein the expression of the acpP-fabF operon gene is weakened to weaken the operon.
[4]
The method, wherein expression of the gene is weakened by modifying an expression control sequence of the gene of the acpP-fabF operon.
[5]
The method, wherein the gene for the acpP-fabF operon is an acpP gene and / or a fabF gene.
[6]
The method, wherein the genes for the acpP-fabF operon are an acpP gene and a fabF gene.
[7]
The method, wherein the expression of the acpP-fabF operon gene is weakened by replacing cytosine at position −34 upstream of the translation start point of the acpP gene with another base.
[8]
The method, wherein the expression of the acpP-fabF operon gene is attenuated by replacing cytosine at position −34 upstream of the translation start point of the acpP gene with adenine.
[9]
The method, wherein the bacterium belongs to the genus Escherichia, Pantoea, or Enterobacter.
[10]
The method, wherein the bacterium is Escherichia coli.
[11]
The method, wherein the L-amino acid is L-lysine.
[12]
Escherichia coli having L-lysine-producing ability is cultured in a medium, and L-lysine is produced and accumulated in the medium or cells of the Escherichia coli, and L-lysine is collected from the medium or cells. A process for producing L-lysine comprising
A method wherein the expression of the gene is weakened by modifying the expression control sequence of the gene of the acpP-fabF operon in the Escherichia coli.
[13]
Escherichia coli having L-lysine-producing ability is cultured in a medium, and L-lysine is produced and accumulated in the medium or cells of the Escherichia coli, and L-lysine is collected from the medium or cells. A process for producing L-lysine comprising
A method wherein cytosine at position −34 upstream of the translation start point of the acpP gene is substituted with another base in the Escherichia coli.
[14]
Escherichia coli having L-lysine-producing ability is cultured in a medium, and L-lysine is produced and accumulated in the medium or cells of the Escherichia coli, and L-lysine is collected from the medium or cells. A process for producing L-lysine comprising
A method wherein cytosine at position −34 upstream of the translation start point of the acpP gene is substituted with adenine in the Escherichia coli.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明の方法は、L-アミノ酸生産能を有する腸内細菌科に属する細菌を培地で培養してL-アミノ酸を該培地中または該細菌の菌体内に生成蓄積すること、および該培地または菌体よりL-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、前記細菌が、acpP-fabFオペロンが弱化されるように改変されていることを特徴とする、方法である。同方法に用いられる細菌を、「本発明の細菌」ともいう。 The method of the present invention comprises culturing a bacterium belonging to the family Enterobacteriaceae having L-amino acid-producing ability in a medium, and producing and accumulating L-amino acid in the medium or in the microbial cells, and the medium or the bacterium. A method for producing an L-amino acid comprising collecting an L-amino acid from a body, wherein the bacterium is modified so that the acpP-fabF operon is weakened. The bacterium used in this method is also referred to as “the bacterium of the present invention”.
<1>本発明の細菌
 本発明の細菌は、L-アミノ酸生産能を有する腸内細菌科に属する細菌であって、且つ、acpP-fabFオペロンが弱化されるように改変された細菌である。
<1> Bacteria of the Present Invention The bacterium of the present invention is a bacterium belonging to the family Enterobacteriaceae having an L-amino acid-producing ability and modified so that the acpP-fabF operon is weakened.
<1-1>L-アミノ酸生産能を有する細菌
 本発明において、「L-アミノ酸生産能を有する細菌」とは、培地で培養したときに、目的とするL-アミノ酸を生成し、回収できる程度に培地中または菌体内に蓄積する能力を有する細菌をいう。L-アミノ酸生産能を有する細菌は、非改変株よりも多い量の目的とするL-アミノ酸を培地に蓄積することができる細菌であってよい。非改変株としては、野生株や親株が挙げられる。また、L-アミノ酸生産能を有する細菌は、好ましくは0.5g/L以上、より好ましくは1.0g/L以上の量の目的とするL-アミノ酸を培地に蓄積することができる細菌であってもよい。
<1-1> Bacteria having L-amino acid-producing ability In the present invention, “bacteria having L-amino acid-producing ability” refers to the extent that a desired L-amino acid can be produced and recovered when cultured in a medium. Refers to bacteria having the ability to accumulate in the medium or in the fungus body. The bacterium having L-amino acid-producing ability may be a bacterium capable of accumulating a larger amount of the target L-amino acid in the medium than the unmodified strain. Non-modified strains include wild strains and parent strains. The bacterium having L-amino acid-producing ability is a bacterium that can accumulate the target L-amino acid in an amount of 0.5 g / L or more, more preferably 1.0 g / L or more in the medium. May be.
 L-アミノ酸としては、L-リジン、L-オルニチン、L-アルギニン、L-ヒスチジン、L-シトルリン等の塩基性アミノ酸、L-イソロイシン、L-アラニン、L-バリン、L-ロイシン、グリシン等の脂肪族アミノ酸、L-スレオニン、L-セリン等のヒドロキシモノアミノカルボン酸であるアミノ酸、L-プロリン等の環式アミノ酸、L-フェニルアラニン、L-チロシン、L-トリプトファン等の芳香族アミノ酸、L-システイン、L-シスチン、L-メチオニン等の含硫アミノ酸、L-グルタミン酸、L-アスパラギン酸等の酸性アミノ酸、L-グルタミン、L-アスパラギン等の側鎖にアミド基を持つアミノ酸が挙げられる。本発明の細菌は、1種のL-アミノ酸の生産能のみを有していてもよく、2種またはそれ以上のL-アミノ酸の生産能を有していてもよい。 L-amino acids include basic amino acids such as L-lysine, L-ornithine, L-arginine, L-histidine, L-citrulline, L-isoleucine, L-alanine, L-valine, L-leucine, glycine, etc. Aliphatic amino acids, amino acids which are hydroxymonoaminocarboxylic acids such as L-threonine and L-serine, cyclic amino acids such as L-proline, aromatic amino acids such as L-phenylalanine, L-tyrosine and L-tryptophan, L- Examples thereof include sulfur-containing amino acids such as cysteine, L-cystine and L-methionine, acidic amino acids such as L-glutamic acid and L-aspartic acid, and amino acids having an amide group in the side chain such as L-glutamine and L-asparagine. The bacterium of the present invention may have only one L-amino acid producing ability or may have two or more L-amino acid producing ability.
 本発明において、「アミノ酸」という用語は、特記しない限り、L-アミノ酸を意味してよい。また、生産されるL-アミノ酸は、フリー体、その塩、またはそれらの混合物であってよい。すなわち、本発明において、「L-アミノ酸」という用語は、特記しない限り、フリー体のL-アミノ酸、その塩、またはそれらの混合物を意味してよい。塩の例については後述する。 In the present invention, the term “amino acid” may mean an L-amino acid unless otherwise specified. Further, the produced L-amino acid may be a free form, a salt thereof, or a mixture thereof. That is, in the present invention, the term “L-amino acid” may mean a free L-amino acid, a salt thereof, or a mixture thereof, unless otherwise specified. Examples of the salt will be described later.
 腸内細菌科に属する細菌としては、エシェリヒア(Escherichia)属、エンテロバクター(Enterobacter)属、パントエア(Pantoea)属、クレブシエラ(Klebsiella)属、セラチア(Serratia)属、エルビニア(Erwinia)属、フォトラブダス(Photorhabdus)属、プロビデンシア(Providencia)属、サルモネラ(Salmonella)属、モルガネラ(Morganella)等の属に属する細菌が挙げられる。具体的には、NCBI(National Center for Biotechnology Information)のデータベース(http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347)で用いられている分類法により腸内細菌科に分類されている細菌を用いることができる。 The bacteria belonging to the family Enterobacteriaceae include Escherichia, Enterobacter, Pantoea, Klebsiella, Serratia, Erwinia, Photolabdas Examples include bacteria belonging to genera such as (Photorhabdus), Providencia, Salmonella, Morganella, and the like. Specifically, according to the taxonomy used in the NCBI (National Center for Biotechnology Information) database (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347) Bacteria classified in the family Enterobacteriaceae can be used.
 エシェリヒア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエシェリヒア属に分類されている細菌が挙げられる。エシェリヒア属細菌としては、例えば、Neidhardtらの著書(Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1. In F. D. Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washington, D.C.)に記載されたものが挙げられる。エシェリヒア属細菌としては、例えば、エシェリヒア・コリ(Escherichia coli)が挙げられる。エシェリヒア・コリとして、具体的には、例えば、プロトタイプの野生株K-12由来のエシェリヒア・コリW3110(ATCC 27325)やエシェリヒア・コリMG1655(ATCC 47076)が挙げられる。 The Escherichia bacterium is not particularly limited, but includes bacteria classified into the genus Escherichia by classification known to microbiologists. Examples of Escherichia bacteria include, for example, Neidhardt et al. (Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1. In F. D. Nehard (ed.), “Escherichia, coli, and Salmonella, Cellular, and Molecular, Biology / Second Edition, American, Society, for Microbiology, Press, Washington, DC). Examples of bacteria belonging to the genus Escherichia include Escherichia coli. Specific examples of Escherichia coli include, for example, Escherichia coli W3110 (ATCC エ 27325) and Escherichia coli MG1655 (ATCC プ ロ ト タ イ プ 47076) derived from the prototype wild type K-12.
 エンテロバクター属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエンテロバクター属に分類されている細菌が挙げられる。エンテロバクター属細菌としては、例えば、エンテロバクター・アグロメランス(Enterobacter agglomerans)やエンテロバクター・アエロゲネス(Enterobacter aerogenes)が挙げられる。エンテロバクター・アグロメランスとして、具体的には、例えば、エンテロバクター・アグロメランスATCC12287株が挙げられる。エンテロバクター・アエロゲネスとして、具体的には、例えば、エンテロバクター・アエロゲネスATCC13048株、NBRC12010株(Biotechonol Bioeng. 2007 Mar 27; 98(2) 340-348)、AJ110637株(FERM BP-10955)が挙げられる。また、エンテロバクター属細菌としては、例えば、欧州特許出願公開EP0952221号明細書に記載されたものが挙げられる。なお、Enterobacter agglomeransには、Pantoea agglomeransと分類されているものも存在する。 The bacteria belonging to the genus Enterobacter are not particularly limited, but include bacteria classified into the genus Enterobacter by classification known to microbiologists. Examples of Enterobacter bacteria include Enterobacter agglomerans and Enterobacter aerogenes. Specific examples of Enterobacter agglomerans include the Enterobacter agglomerans ATCC12287 strain. Specific examples of Enterobacter aerogenes include Enterobacter aerogenes ATCC13048, NBRC12010 (BiotechonolonBioeng.eng2007 Mar 27; 98 (2) 340-348), AJ110637 (FERM BP-10955) . Examples of Enterobacter bacteria include those described in European Patent Application Publication No. EP0952221. Some Enterobacter agglomerans are classified as Pantoea agglomerans.
 パントエア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりパントエア属に分類されている細菌が挙げられる。パントエア属細菌としては、例えば、パントエア・アナナティス(Pantoea ananatis)、パントエア・スチューアルティ(Pantoea stewartii)、パントエア・アグロメランス(Pantoea agglomerans)、パントエア・シトレア(Pantoea citrea)が挙げられる。パントエア・アナナティスとして、具体的には、例えば、パントエア・アナナティスLMG20103株、AJ13355株(FERM BP-6614)、AJ13356株(FERM BP-6615)、AJ13601株(FERM BP-7207)、SC17株(FERM BP-11091)、及びSC17(0)株(VKPM B-9246)が挙げられる。なお、エンテロバクター・アグロメランスのある種のものは、最近、16S rRNAの塩基配列分析等に基づき、パントエア・アグロメランス、パントエア・アナナティス、パントエア・ステワルティイ等に再分類された(Int. J. Syst. Bacteriol., 43, 162-173 (1993))。本発明において、パントエア属細菌には、このようにパントエア属に再分類された細菌も含まれる。 The Pantoea bacterium is not particularly limited, and examples include bacteria classified into the Pantoea genus by classification known to microbiologists. Examples of the genus Pantoea include Pantoea 、 ananatis, Pantoea stewartii, Pantoea agglomerans, and Pantoea citrea. Specifically, for example, Pantoea Ananatis LMG20103 strain, AJ13355 strain (FERM 、 BP-6614), AJ13356 strain (FERM BP-6615), AJ13601 strain (FERM BP-7207), SC17 strain (FERM BP) -11091), and SC17 (0) strain (VKPM B-9246). Certain types of Enterobacter agglomerans were recently reclassified as Pantoea agglomerans, Pantoea ananatis, Pantoea stewartii, etc. based on 16S rRNA nucleotide sequence analysis (Int. J. Syst. Bacteriol) ., 43, 162-173 (1993)). In the present invention, the Pantoea bacterium also includes a bacterium reclassified as Pantoea in this way.
 エルビニア属細菌としては、エルビニア・アミロボーラ(Erwinia amylovora)、エルビニア・カロトボーラ(Erwinia carotovora)が挙げられる。クレブシエラ属細菌としては、クレブシエラ・プランティコーラ(Klebsiella planticola)が挙げられる。 Examples of the genus Erwinia include Erwinia amylovora and Erwinia carotovora. Examples of Klebsiella bacteria include Klebsiella planticola.
 これらの菌株は、例えば、アメリカン・タイプ・カルチャー・コレクション(住所12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States of America)より分譲を受けることが出来る。すなわち各菌株に対応する登録番号が付与されており、この登録番号を利用して分譲を受けることが出来る(http://www.atcc.org/参照)。各菌株に対応する登録番号は、アメリカン・タイプ・カルチャー・コレクションのカタログに記載されている。 These strains can be sold, for example, from the American Type Culture Collection (address 12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States States of America). That is, a registration number corresponding to each strain is given, and it is possible to receive a sale using this registration number (see http://www.atcc.org/). The registration number corresponding to each strain is described in the catalog of American Type Culture Collection.
 本発明の細菌は、本来的にL-アミノ酸生産能を有するものであってもよく、L-アミノ酸生産能を有するように改変されたものであってもよい。L-アミノ酸生産能を有する細菌は、例えば、上記のような細菌にL-アミノ酸生産能を付与することにより、または、上記のような細菌のL-アミノ酸生産能を増強することにより、取得できる。 The bacterium of the present invention may inherently have L-amino acid-producing ability or may have been modified to have L-amino acid-producing ability. A bacterium having L-amino acid-producing ability can be obtained, for example, by imparting L-amino acid-producing ability to the bacterium as described above, or by enhancing the L-amino acid-producing ability of the bacterium as described above. .
 L-アミノ酸生産能の付与または増強は、従来、コリネ型細菌又はエシェリヒア属細菌等のアミノ酸生産菌の育種に採用されてきた方法により行うことができる(アミノ酸発酵、(株)学会出版センター、1986年5月30日初版発行、第77~100頁参照)。そのような方法としては、例えば、栄養要求性変異株の取得、L-アミノ酸のアナログ耐性株の取得、代謝制御変異株の取得、L-アミノ酸の生合成系酵素の活性が増強された組換え株の創製が挙げられる。L-アミノ酸生産菌の育種において、付与される栄養要求性、アナログ耐性、代謝制御変異等の性質は、単独であってもよく、2種又は3種以上であってもよい。また、L-アミノ酸生産菌の育種において、活性が増強されるL-アミノ酸生合成系酵素も、単独であってもよく、2種又は3種以上であってもよい。さらに、栄養要求性、アナログ耐性、代謝制御変異等の性質の付与と、生合成系酵素の活性の増強が組み合わされてもよい。 L-amino acid-producing ability can be imparted or enhanced by a method conventionally used for breeding amino acid-producing bacteria such as coryneform bacteria or Escherichia bacteria (Amino Acid Fermentation, Academic Publishing Center, Inc., 1986). (May 30, 1st edition issued, see pages 77-100). Examples of such methods include acquisition of auxotrophic mutants, acquisition of L-amino acid analog-resistant strains, acquisition of metabolic control mutants, and recombination with enhanced activity of L-amino acid biosynthetic enzymes. The creation of stocks. In the breeding of L-amino acid-producing bacteria, properties such as auxotrophy, analog resistance, and metabolic control mutation that are imparted may be single, or two or more. In addition, L-amino acid biosynthetic enzymes whose activities are enhanced in breeding L-amino acid-producing bacteria may be used alone or in combination of two or more. Furthermore, imparting properties such as auxotrophy, analog resistance, and metabolic control mutation may be combined with enhancing the activity of biosynthetic enzymes.
 L-アミノ酸生産能を有する栄養要求性変異株、アナログ耐性株、又は代謝制御変異株は、親株又は野生株を通常の変異処理に供し、得られた変異株の中から、栄養要求性、アナログ耐性、又は代謝制御変異を示し、且つL-アミノ酸生産能を有するものを選択することによって取得できる。通常の変異処理としては、X線や紫外線の照射、N-メチル-N’-ニトロ-N-ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、メチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。 An auxotrophic mutant, an analog resistant strain, or a metabolically controlled mutant having L-amino acid production ability is subjected to normal mutation treatment of the parent strain or wild strain, and the auxotrophic, analog It can be obtained by selecting those exhibiting resistance or metabolic control mutations and having the ability to produce L-amino acids. Normal mutation treatments include X-ray and ultraviolet irradiation, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ethyl methane sulfonate (EMS), methyl methane sulfonate (MMS), etc. Treatment with a mutagen is included.
 また、L-アミノ酸生産能の付与又は増強は、目的のL-アミノ酸の生合成に関与する酵素の活性を増強することによっても行うことができる。酵素活性の増強は、例えば、同酵素をコードする遺伝子の発現が増強するように細菌を改変することにより行うことができる。遺伝子の発現を増強する方法は、WO00/18935号パンフレット、欧州特許出願公開1010755号明細書等に記載されている。酵素活性を増強する詳細な手法については後述する。 Also, the L-amino acid-producing ability can be imparted or enhanced by enhancing the activity of an enzyme involved in the target L-amino acid biosynthesis. Enhancing enzyme activity can be performed, for example, by modifying bacteria so that expression of a gene encoding the enzyme is enhanced. Methods for enhancing gene expression are described in WO00 / 18935 pamphlet, European Patent Application Publication No. 1010755, and the like. A detailed method for enhancing the enzyme activity will be described later.
 また、L-アミノ酸生産能の付与又は増強は、目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素の活性を低下させることによっても行うことができる。なお、ここでいう「目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素」には、目的のアミノ酸の分解に関与する酵素も含まれる。酵素活性を低下させる手法については後述する。 Furthermore, the L-amino acid-producing ability can be imparted or enhanced by reducing the activity of an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of the target L-amino acid to produce a compound other than the target L-amino acid. It can be carried out. As used herein, “an enzyme that catalyzes a reaction that produces a compound other than the target L-amino acid by branching from the biosynthetic pathway of the target L-amino acid” includes enzymes involved in the degradation of the target amino acid. It is. A method for reducing the enzyme activity will be described later.
 以下、L-アミノ酸生産菌、およびL-アミノ酸生産能を付与または増強する方法について具体的に例示する。なお、以下に例示するようなL-アミノ酸生産菌が有する性質およびL-アミノ酸生産能を付与または増強するための改変は、いずれも、単独で用いてもよく、適宜組み合わせて用いてもよい。 Specific examples of L-amino acid-producing bacteria and methods for imparting or enhancing L-amino acid-producing ability are given below. In addition, any of the modifications exemplified below for imparting or enhancing the properties of L-amino acid-producing bacteria and L-amino acid-producing ability may be used alone or in appropriate combination.
<L-グルタミン酸生産菌>
 L-グルタミン酸生産能を付与又は増強するための方法としては、例えば、L-グルタミン酸生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、グルタミン酸デヒドロゲナーゼ(gdhA)、グルタミンシンテターゼ(glnA)、グルタミン酸シンテターゼ(gltBD)、イソクエン酸デヒドロゲナーゼ(icdA)、アコニテートヒドラターゼ(acnA, acnB)、クエン酸シンターゼ(gltA)、メチルクエン酸シンターゼ(prpC)、ホスホエノールピルビン酸カルボキシラーゼ(ppc)、ピルビン酸カルボキシラーゼ(pyc)、ピルビン酸デヒドロゲナーゼ(aceEF, lpdA)、ピルベートキナーゼ(pykA, pykF)、ホスホエノールピルビン酸シンターゼ(ppsA)、エノラーゼ(eno)、ホスホグリセロムターゼ(pgmA, pgmI)、ホスホグリセリン酸キナーゼ(pgk)、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ(gapA)、トリオースリン酸イソメラーゼ(tpiA)、フルクトースビスリン酸アルドラーゼ(fbp)、ホスホフルクトキナーゼ(pfkA, pfkB)、グルコースリン酸イソメラーゼ(pgi)、6-ホスホグルコン酸デヒドラターゼ(edd)、2-ケト-3-デオキシ-6-ホスホグルコン酸アルドラーゼ(eda)、トランスヒドロゲナーゼが挙げられる。なお、カッコ内は、その酵素をコードする遺伝子の略記号である(以下の記載においても同様)。これらの酵素の中では、例えば、グルタミン酸デヒドロゲナーゼ、クエン酸シンターゼ、ホスホエノールピルビン酸カルボキシラーゼ、及びメチルクエン酸シンターゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。
<L-glutamic acid producing bacteria>
Examples of the method for imparting or enhancing L-glutamic acid-producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-glutamic acid biosynthetic enzymes is increased. . Examples of such enzymes include, but are not limited to, glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), glutamate synthetase (gltBD), isocitrate dehydrogenase (icdA), aconite hydratase (acnA, acnB), citrate synthase (GltA), methyl citrate synthase (prpC), phosphoenolpyruvate carboxylase (ppc), pyruvate carboxylase (pyc), pyruvate dehydrogenase (aceEF, lpdA), pyruvate kinase (pykA, pykF), phosphoenolpyruvate Synthase (ppsA), enolase (eno), phosphoglyceromutase (pgmA, pgmI), phosphoglycerate kinase (pgk), glyceraldehyde-3-phosphate dehydrogenase (gapA), triosephosphate isomerase (tpiA), fructose bis Acid aldolase (fbp), phosphofructokinase (pfkA, pfkB), glucose phosphate isomerase (pgi), 6-phosphogluconate dehydratase (edd), 2-keto-3-deoxy-6-phosphogluconate aldolase ( eda), transhydrogenase. The parentheses are abbreviations for genes encoding the enzymes (the same applies to the following description). Among these enzymes, it is preferable to enhance the activity of one or more enzymes selected from, for example, glutamate dehydrogenase, citrate synthase, phosphoenolpyruvate carboxylase, and methyl citrate synthase.
 クエン酸シンターゼ遺伝子、ホスホエノールピルビン酸カルボキシラーゼ遺伝子、および/またはグルタミン酸デヒドロゲナーゼ遺伝子の発現が増大するように改変された腸内細菌科に属する株としては、EP1078989A、EP955368A、及びEP952221Aに開示されたものが挙げられる。また、エントナー・ドゥドロフ経路の遺伝子(edd, eda)の発現が増大するように改変された腸内細菌科に属する株としては、EP1352966Bに開示されたものが挙げられる。 Strains belonging to the family Enterobacteriaceae that have been modified to increase expression of the citrate synthase gene, phosphoenolpyruvate carboxylase gene, and / or glutamate dehydrogenase gene include those disclosed in EP1078989A, EP955368A, and EP952221A Can be mentioned. Examples of strains belonging to the family Enterobacteriaceae that have been modified to increase the expression of the Entner-Doudoroff pathway genes (edd, eda) include those disclosed in EP1352966B.
 また、L-グルタミン酸生産能を付与又は増強するための方法としては、例えば、L-グルタミン酸の生合成経路から分岐してL-グルタミン酸以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、イソクエン酸リアーゼ(aceA)、α-ケトグルタル酸デヒドロゲナーゼ(sucA)、ホスホトランスアセチラーゼ(pta)、酢酸キナーゼ(ack)、アセトヒドロキシ酸シンターゼ(ilvG)、アセト乳酸シンターゼ(ilvI)、ギ酸アセチルトランスフェラーゼ(pfl)、乳酸デヒドロゲナーゼ(ldh)、アルコールデヒドロゲナーゼ(adh)、グルタミン酸デカルボキシラーゼ(gadAB)、コハク酸デヒドロゲナーゼ(sdhABCD)、1-ピロリン-5-カルボキシレートデヒドロゲナーゼ(putA)が挙げられる。これらの酵素の中では、例えば、α-ケトグルタル酸デヒドロゲナーゼ活性を低下又は欠損させることが好ましい。 The method for imparting or enhancing the ability to produce L-glutamic acid is, for example, selected from enzymes that catalyze a reaction that branches from the biosynthetic pathway of L-glutamic acid to produce a compound other than L-glutamic acid. Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned. Examples of such enzymes include, but are not limited to, isocitrate lyase (aceA), α-ketoglutarate dehydrogenase (sucA), phosphotransacetylase (pta), acetate kinase (ack), acetohydroxyacid synthase (ilvG), Acetolactate synthase (ilvI), formate acetyltransferase (pfl), lactate dehydrogenase (ldh), alcohol dehydrogenase (adh), glutamate decarboxylase (gadAB), succinate dehydrogenase (sdhABCD), 1-pyrroline-5-carboxylate dehydrogenase ( putA). Among these enzymes, for example, it is preferable to reduce or eliminate α-ketoglutarate dehydrogenase activity.
 α-ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したエシェリヒア属細菌、及びそれらの取得方法は、米国特許第5,378,616号及び第5,573,945号に記載されている。また、パントエア属細菌、エンテロバクター属細菌、クレブシエラ属細菌、エルビニア属細菌等の腸内細菌においてα-ケトグルタル酸デヒドロゲナーゼ活性を低下または欠損させる方法は、米国特許6,197,559号公報、米国特許6,682,912号公報、米国特許6,331,419号公報、米国特許8,129,151号公報、およびWO2008/075483に開示されている。α-ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したエシェリヒア属細菌として、具体的には、例えば、下記の株が挙げられる。
E. coli W3110sucA::Kmr
E. coli AJ12624 (FERM BP-3853)
E. coli AJ12628 (FERM BP-3854)
E. coli AJ12949 (FERM BP-4881)
Escherichia bacteria with reduced or deficient α-ketoglutarate dehydrogenase activity and methods for obtaining them are described in US Pat. Nos. 5,378,616 and 5,573,945. In addition, a method for reducing or eliminating α-ketoglutarate dehydrogenase activity in enteric bacteria such as Pantoea bacteria, Enterobacter bacteria, Klebsiella bacteria, Erwinia bacteria, and the like are disclosed in U.S. Patent No. 6,197,559, U.S. Patent No. 6,682,912, This is disclosed in US Pat. No. 6,331,419, US Pat. No. 8,129,151, and WO2008 / 075483. Specific examples of bacteria belonging to the genus Escherichia with reduced or deficient α-ketoglutarate dehydrogenase activity include the following strains.
E. coli W3110sucA :: Kmr
E. coli AJ12624 (FERM BP-3853)
E. coli AJ12628 (FERM BP-3854)
E. coli AJ12949 (FERM BP-4881)
 E. coli W3110sucA::Kmr は、E. coli W3110のα-ケトグルタル酸デヒドロゲナーゼをコードするsucA遺伝子を破壊することにより得られた株である。この株は、α-ケトグルタル酸デヒドロゲナーゼ活性を完全に欠損している。 E. coli W3110sucA :: Kmr is a strain obtained by disrupting the sucA gene encoding the α-ketoglutarate dehydrogenase of E. coli W3110. This strain is completely deficient in α-ketoglutarate dehydrogenase activity.
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、Pantoea ananatis AJ13355株(FERM BP-6614)、Pantoea ananatis SC17株(FERM BP-11091)、Pantoea ananatis SC17(0)株(VKPM B-9246)等のパントエア属細菌も挙げられる。AJ13355株は、静岡県磐田市の土壌から、低pHでL-グルタミン酸及び炭素源を含む培地で増殖できる株として分離された株である。SC17株は、AJ13355株から、粘液質低生産変異株として選択された株である(米国特許第6,596,517号)。SC17株は、2009年2月4日に、独立行政法人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に寄託され、受託番号FERM BP-11091が付与されている。AJ13355株は、1998年2月19日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に、受託番号FERM P-16644として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6614が付与されている。 In addition, L-glutamic acid-producing bacteria or parent strains for inducing them include Pantoea ananatis AJ13355 strain (FERM BP-6614), Pantoea ananatis SC17 strain (FERM BP-11091), Pantoea ananatis SC17 (0) strain (VKPM B) -9246) and the like. The AJ13355 strain is a strain isolated as a strain capable of growing on a medium containing L-glutamic acid and a carbon source at low pH from soil in Iwata City, Shizuoka Prefecture. The SC17 strain is a strain selected from the AJ13355 strain as a low mucus production mutant (US Pat. No. 6,596,517). On February 4, 2009, SC17 shares were incorporated by the National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (currently the National Institute of Technology and Evaluation, Patent Biological Depositary Center, ZIP Code: 292-0818, Address: Japan Kazusa Kamashizu 2-5-8-5120, Kisarazu City, Chiba Prefecture, Japan), and has been given the accession number FERM BP-11091. AJ13355 shares were founded on February 19, 1998 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Patent Biological Depositary Center, Postal Code: 292-0818, Address: Chiba, Japan Deposited in Kazusa, Kazusa, Kazusa 2-5-8 120) under the deposit number FERM P-16644, transferred to an international deposit under the Budapest Treaty on January 11, 1999, and given the deposit number FERM BP-6614 Has been.
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、α-ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したパントエア属細菌も挙げられる。そのような株としては、AJ13355株のα-ケトグルタル酸デヒドロゲナーゼのE1サブユニット遺伝子(sucA)欠損株であるAJ13356株(米国特許第6,331,419号)、及びSC17株のsucA遺伝子欠損株であるSC17sucA株(米国特許第6,596,517号)が挙げられる。AJ13356株は、1998年2月19日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-16645として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6616が付与されている。また、SC17sucA株は、ブライベートナンバーAJ417が付与され、2004年2月26日に独立行政法人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM BP-8646として寄託されている。 In addition, examples of L-glutamic acid-producing bacteria and parent strains for inducing them also include Pantoea bacteria with reduced or deficient α-ketoglutarate dehydrogenase activity. Such strains include the AJ13356 strain (US Pat. No. 6,331,419) which is the E1 subunit gene (sucA) deficient strain of the α-ketoglutarate dehydrogenase of the AJ13355 strain, and the SC17sucA strain which is the sucA gene deficient strain of the SC17 strain ( US Pat. No. 6,596,517). The AJ13356 strain was founded on February 19, 1998 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Patent Biological Depositary Center, Postal Code: 292-0818, Address: Chiba, Japan. Deposited at Kisarazu City Kazusa Kamashichi 2-5-8 120) under the accession number FERM P-16645 and transferred to the international deposit under the Budapest Treaty on 11 January 1999 and given the accession number FERM BP-6616 ing. The SC17sucA strain was also assigned the private number AJ417. On February 26, 2004, the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (now the National Institute for Product Evaluation Technology Patent Biological Deposit Center, postal code) : 292-0818, Address: Kazusa Kamashitsu 2-5-8 津 120, Kisarazu, Chiba, Japan), deposited under the accession number FERM BP-8646.
 尚、AJ13355株は、分離された当時はEnterobacter agglomeransと同定されたが、近年、16S rRNAの塩基配列解析などにより、Pantoea ananatisに再分類されている。よって、AJ13355株及びAJ13356株は、上記寄託機関にEnterobacter agglomeransとして寄託されているが、本明細書ではPantoea ananatisとして記載する。 The AJ13355 strain was identified as Enterobacter agglomerans at the time of its isolation, but has recently been reclassified as Pantoea anaananatis by 16S rRNA nucleotide sequence analysis and the like. Therefore, the AJ13355 strain and the AJ13356 strain are deposited as Enterobacter agglomerans in the above depository organization, but are described as Pantoea ananatis in this specification.
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、Pantoea ananatis SC17sucA/RSFCPG+pSTVCB株、Pantoea ananatis AJ13601株、Pantoea ananatis NP106株、及びPantoea ananatis NA1株等のパントエア属細菌も挙げられる。SC17sucA/RSFCPG+pSTVCB株は、SC17sucA株に、エシェリヒア・コリ由来のクエン酸シンターゼ遺伝子(gltA)、ホスホエノールピルビン酸カルボキシラーゼ遺伝子(ppc)、およびグルタミン酸デヒドロゲナーゼ遺伝子(gdhA)を含むプラスミドRSFCPG、並びに、ブレビバクテリウム・ラクトファーメンタム由来のクエン酸シンターゼ遺伝子(gltA)を含むプラスミドpSTVCBを導入して得られた株である。AJ13601株は、このSC17sucA/RSFCPG+pSTVCB株から低pH下で高濃度のL-グルタミン酸に耐性を示す株として選択された株である。また、NP106株は、AJ13601株からプラスミドRSFCPG+pSTVCBを脱落させた株である。AJ13601株は、1999年8月18日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-17516として寄託され、2000年7月6日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-7207が付与されている。 Examples of L-glutamic acid-producing bacteria or parent strains for inducing them include Pantoea bacteria such as Pantoea ananatis SC17sucA / RSFCPG + pSTVCB strain, Pantoea ananatis AJ13601 strain, Pantoea ananatis NP106 strain, and Pantoea ananatis NA1 strain . The SC17sucA / RSFCPG + pSTVCB strain is different from the SC17sucA strain in that the plasmid RSFCPG containing the citrate synthase gene (gltA), the phosphoenolpyruvate carboxylase gene (ppc), and the glutamate dehydrogenase gene (gdhA) derived from Escherichia coli, and Brevi This is a strain obtained by introducing a plasmid pSTVCB containing a citrate synthase gene (gltA) derived from bacteria lactofermentum. The AJ13601 strain was selected from the SC17sucA / RSFCPG + pSTVCB strain as a strain resistant to a high concentration of L-glutamic acid at low pH. The NP106 strain is a strain obtained by removing the plasmid RSFCPG + pSTVCB from the AJ13601 strain. On August 18, 1999, AJ13601 shares were registered with the National Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Biological Depositary Center, Postal Code: 292-0818, Address: Chiba, Japan. Deposited at Kisarazu City Kazusa Kamashika 2-5-8 120) under the accession number FERM P-17516, transferred to an international deposit based on the Budapest Treaty on July 6, 2000 and given the accession number FERM BP-7207 ing.
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、α-ケトグルタル酸デヒドロゲナーゼ(sucA)活性およびコハク酸デヒドロゲナーゼ(sdh)活性の両方が低下または欠損した株も挙げられる(特開2010-041920号)。そのような株として、具体的には、例えば、Pantoea ananatis NA1のsucAsdhA二重欠損株が挙げられる(特開2010-041920号)。 Examples of L-glutamic acid-producing bacteria or parent strains for inducing them include strains in which both α-ketoglutarate dehydrogenase (sucA) activity and succinate dehydrogenase (sdh) activity are reduced or deficient (JP 2010) -041920). Specific examples of such a strain include a pantoeaPananatis NA1 sucAsdhA double-deficient strain (Japanese Patent Laid-Open No. 2010-041920).
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、栄養要求性変異株も挙げられる。栄養要求性変異株として、具体的には、例えば、E. coli VL334thrC+ (VKPM B-8961) (EP 1172433) が挙げられる。E. coli VL334 (VKPM B-1641) は、thrC遺伝子及びilvA遺伝子に変異を有するL-イソロイシン及びL-スレオニン要求性株である (米国特許第4,278,765号)。E. coli VL334thrC+は、thrC遺伝子の野生型アレルをVL334に導入することにより得られた、L-イソロイシン要求性のL-グルタミン酸生産菌である。thrC遺伝子の野生型アレルは、野生型E. coli K-12株 (VKPM B-7) の細胞で増殖したバクテリオファージP1を用いる一般的形質導入法により導入された。 In addition, examples of L-glutamic acid-producing bacteria or parent strains for inducing them include auxotrophic mutants. Specific examples of the auxotrophic mutant include E. coli VL334thrC + (VKPM B-8961) (EP 1172433). E. coli VL334 (VKPM B-1641) is an L-isoleucine and L-threonine auxotroph having a mutation in the thrC gene and the ilvA gene (US Pat. No. 4,278,765). E. coli VL334thrC + is an L-isoleucine-requiring L-glutamic acid-producing bacterium obtained by introducing a wild type allele of the thrC gene into VL334. The wild type allele of the thrC gene was introduced by a general transduction method using bacteriophage P1 grown on cells of wild type E. coli K-12 strain (VKPM B-7).
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、アスパラギン酸アナログに耐性を有する株も挙げられる。これらの株は、例えば、α-ケトグルタル酸デヒドロゲナーゼ活性を欠損していてもよい。アスパラギン酸アナログに耐性を有し、α-ケトグルタル酸デヒドロゲナーゼ活性を欠損した株として、具体的には、例えば、E. coli AJ13199 (FERM BP-5807) (米国特許第5,908,768号)、さらにL-グルタミン酸分解能が低下したE. coli FFRM P-12379 (米国特許第5,393,671号)、E. coli AJ13138 (FERM BP-5565) (米国特許第6,110,714号) が挙げられる。 In addition, examples of L-glutamic acid-producing bacteria or parent strains for inducing them also include strains resistant to aspartic acid analogs. These strains may be deficient in α-ketoglutarate dehydrogenase activity, for example. Specific examples of strains resistant to aspartate analogs and lacking α-ketoglutarate dehydrogenase activity include, for example, E. coli AJ13199 (FERM BP-5807) (US Pat. No. 5,908,768), and L-glutamic acid. E. coli FFRM P-12379 (US Pat. No. 5,393,671) and E. coli AJ13138 (FERM BP-5565) (US Pat. No. 6,110,714) are known.
 また、L-グルタミン酸生産能を付与又は増強するための方法としては、例えば、D-キシルロース-5-リン酸-ホスホケトラーゼ及び/又はフルクトース-6-リン酸ホスホケトラーゼの活性が増大するように細菌を改変する方法も挙げられる(特表2008-509661)。D-キシルロース-5-リン酸-ホスホケトラーゼ活性及びフルクトース-6-リン酸ホスホケトラーゼ活性はいずれか一方を増強してもよいし、両方を増強してもよい。なお、本明細書ではD-キシルロース-5-リン酸-ホスホケトラーゼとフルクトース-6-リン酸ホスホケトラーゼをまとめてホスホケトラーゼと呼ぶことがある。 As a method for imparting or enhancing L-glutamic acid-producing ability, for example, a bacterium is modified so that the activity of D-xylulose-5-phosphate-phosphoketolase and / or fructose-6-phosphate phosphoketolase is increased. There is also a method to do (Special Table 2008-509661). Either one or both of D-xylulose-5-phosphate-phosphoketolase activity and fructose-6-phosphate phosphoketolase activity may be enhanced. In the present specification, D-xylulose-5-phosphate phosphoketolase and fructose-6-phosphate phosphoketolase may be collectively referred to as phosphoketolase.
 D-キシルロース-5-リン酸-ホスホケトラーゼ活性とは、リン酸を消費して、キシルロース-5-リン酸をグリセルアルデヒド-3-リン酸とアセチルリン酸に変換し、一分子のH2Oを放出する活性を意味する。この活性は、Goldberg, M.らの文献 (Methods Enzymol., 9,515-520 (1966)) またはL.Meileの文献 (J.Bacteriol. (2001) 183; 2929-2936) に記載の方法によって測定することができる。 D-xylulose-5-phosphate-phosphoketolase activity is the consumption of phosphoric acid to convert xylulose-5-phosphate into glyceraldehyde-3-phosphate and acetyl phosphate, and one molecule of H 2 O Means the activity of releasing. This activity is measured by the method described in Goldberg, M. et al. (Methods Enzymol., 9,515-520 (1966)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
 また、フルクトース-6-リン酸ホスホケトラーゼ活性とは、リン酸を消費して、フルクトース6-リン酸をエリスロース-4-リン酸とアセチルリン酸に変換し、一分子のH2Oを放出する活性を意味する。この活性は、Racker, Eの文献 (Methods Enzymol., 5, 276-280 (1962)) またはL.Meileの文献 (J.Bacteriol. (2001) 183; 2929-2936) に記載の方法によって測定することができる。 In addition, fructose-6-phosphate phosphoketolase activity means that phosphoric acid is consumed, fructose 6-phosphate is converted into erythrose-4-phosphate and acetyl phosphate, and one molecule of H 2 O is released. Means activity. This activity is measured by the method described in Racker, E (Methods Enzymol., 5, 276-280 (1962)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
 また、L-グルタミン酸生産能を付与又は増強するための方法としては、例えば、L-グルタミン酸排出遺伝子であるyhfK遺伝子(WO2005/085419)やybjL遺伝子(WO2008/133161)の発現を増強することも挙げられる。 Examples of a method for imparting or enhancing L-glutamic acid producing ability include, for example, enhancing expression of yhfK gene (WO2005 / 085419) and ybjL gene (WO2008 / 133161) which are L-glutamic acid excretion genes. It is done.
<L-グルタミン生産菌>
 L-グルタミン生産能を付与又は増強するための方法としては、例えば、L-グルタミン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、グルタミン酸デヒドロゲナーゼ(gdhA)やグルタミンシンセターゼ(glnA)が挙げられる。なお、グルタミンシンセターゼの活性は、グルタミンアデニニルトランスフェラーゼ遺伝子(glnE)の破壊やPII制御タンパク質遺伝子(glnB)の破壊によって増強してもよい(EP1229121)。
<L-glutamine producing bacteria>
Examples of the method for imparting or enhancing L-glutamine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-glutamine biosynthesis enzymes is increased. . Examples of such an enzyme include, but are not limited to, glutamate dehydrogenase (gdhA) and glutamine synthetase (glnA). The activity of glutamine synthetase may be enhanced by disrupting the glutamine adenyltransferase gene (glnE) or the PII regulatory protein gene (glnB) (EP1229121).
 また、L-グルタミン生産能を付与又は増強するための方法としては、例えば、L-グルタミンの生合成経路から分岐してL-グルタミン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、グルタミナーゼが挙げられる。 The method for imparting or enhancing L-glutamine production ability is, for example, selected from an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of L-glutamine to produce a compound other than L-glutamine. Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned. Such an enzyme is not particularly limited, and includes glutaminase.
 L-グルタミン生産菌又はそれを誘導するための親株として、具体的には、例えば、グルタミンシンセターゼの397位のチロシン残基が他のアミノ酸残基に置換された変異型グルタミンシンセターゼを有するエシェリヒア属に属する株が挙げられる(米国特許出願公開第2003-0148474号明細書)。 As an L-glutamine producing bacterium or a parent strain for deriving the same, specifically, for example, Escherichia having a mutant glutamine synthetase in which the tyrosine residue at position 397 of glutamine synthetase is substituted with another amino acid residue Strains belonging to the genus (US Patent Application Publication No. 2003-0148474).
<L-プロリン生産菌>
 L-プロリン生産能を付与又は増強するための方法としては、例えば、L-プロリン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、グルタミン酸-5-キナーゼ(proB)、γ‐グルタミル-リン酸レダクターゼ、ピロリン-5-カルボキシレートレダクターゼ(putA)が挙げられる。酵素活性の増強には、例えば、L-プロリンによるフィードバック阻害が解除されたグルタミン酸-5-キナーゼをコードするproB遺伝子(ドイツ特許第3127361号)が好適に利用できる。
<L-proline producing bacteria>
Examples of the method for imparting or enhancing L-proline production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-proline biosynthesis enzymes is increased. . Such enzymes include glutamate-5-kinase (proB), γ-glutamyl-phosphate reductase, pyrroline-5-carboxylate reductase (putA). For the enhancement of the enzyme activity, for example, the proB gene (German Patent No. 3127361) encoding glutamate-5-kinase in which feedback inhibition by L-proline is released can be suitably used.
 また、L-プロリン生産能を付与又は増強するための方法としては、例えば、L-プロリン分解に関与する酵素の活性が低下するように細菌を改変する方法が挙げられる。そのような酵素としては、プロリンデヒドロゲナーゼやオルニチンアミノトランスフェラーゼが挙げられる。 In addition, as a method for imparting or enhancing L-proline production ability, for example, a method of modifying bacteria so that the activity of an enzyme involved in L-proline degradation is reduced. Examples of such an enzyme include proline dehydrogenase and ornithine aminotransferase.
 L-プロリン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli NRRL B-12403及びNRRL B-12404 (英国特許第2075056号)、E. coli VKPM B-8012 (ロシア特許出願2000124295)、ドイツ特許第3127361号に記載のE. coliプラスミド変異体、Bloom F.R. et al (The 15th Miami winter symposium, 1983, p.34)に記載のE. coliプラスミド変異体、3,4-デヒドロキシプロリンおよびアザチジン-2-カルボキシレートに耐性のE. coli 702株(VKPMB-8011)、702株のilvA遺伝子欠損株であるE. coli 702ilvA株(VKPM B-8012) (EP 1172433) が挙げられる。 Specific examples of L-proline-producing bacteria or parent strains for deriving them include, for example, E. coli NRRL B-12403 and NRRL B-12404 (British Patent No. 2075056), E. coli VKPM B-8012 ( Russian patent application 2000124295), E. coli plasmid variant described in German Patent 3127361, Bloom FR et al (The 15th Miami winter symposium, 1983, p.34), E. coli plasmid variant, 3, E. coli 702 strain (VKPMB-8011) resistant to 4-dehydroxyproline and azatidine-2-carboxylate, E. coli 702ilvA strain (VKPM B-8012) (EP 1172433) which is a 702 ilvA gene-deficient strain Is mentioned.
<L-スレオニン生産菌>
 L-スレオニン生産能を付与又は増強するための方法としては、例えば、L-スレオニン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、アスパルトキナーゼIII(lysC)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(asd)、アスパルトキナーゼI(thrA)、ホモセリンキナーゼ(homoserine kinase)(thrB)、スレオニンシンターゼ(threonine synthase)(thrC)、アスパラギン酸アミノトランスフェラーゼ(アスパラギン酸トランスアミナーゼ)(aspC)が挙げられる。これらの酵素の中では、アスパルトキナーゼIII、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、アスパルトキナーゼI、ホモセリンキナーゼ、アスパラギン酸アミノトランスフェラーゼ、及びスレオニンシンターゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。L-スレオニン生合成系遺伝子は、スレオニン分解が抑制された株に導入してもよい。スレオニン分解が抑制された株としては、例えば、スレオニンデヒドロゲナーゼ活性が欠損したE. coli TDH6株(特開2001-346578号)が挙げられる。
<L-threonine producing bacteria>
Examples of the method for imparting or enhancing the ability to produce L-threonine include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-threonine biosynthetic enzymes is increased. . Examples of such enzymes include, but are not limited to, aspartokinase III (lysC), aspartate semialdehyde dehydrogenase (asd), aspartokinase I (thrA), homoserine kinase (thrB), threonine synthase ( threonine synthase) (thrC), aspartate aminotransferase (aspartate transaminase) (aspC). Among these enzymes, it enhances the activity of one or more enzymes selected from aspartokinase III, aspartate semialdehyde dehydrogenase, aspartokinase I, homoserine kinase, aspartate aminotransferase, and threonine synthase. Is preferred. The L-threonine biosynthesis gene may be introduced into a strain in which threonine degradation is suppressed. Examples of strains in which threonine degradation is suppressed include E. coli TDH6 strain lacking threonine dehydrogenase activity (Japanese Patent Laid-Open No. 2001-346578).
 L-スレオニン生合成系酵素の活性は、最終産物のL-スレオニンによって阻害される。従って、L-スレオニン生産菌を構築するためには、L-スレオニンによるフィードバック阻害を受けないようにL-スレオニン生合成系遺伝子を改変するのが好ましい。上記thrA、thrB、thrC遺伝子は、スレオニンオペロンを構成しており、スレオニンオペロンは、アテニュエーター構造を形成している。スレオニンオペロンの発現は、培養液中のイソロイシン、スレオニンに阻害を受け、アテニュエーションにより抑制される。スレオニンオペロンの発現の増強は、アテニュエーション領域のリーダー配列あるいはアテニュエーターを除去することにより達成できる(Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194:59-69 (1987); WO02/26993; WO2005/049808; WO2003/097839参照)。 The activity of the L-threonine biosynthetic enzyme is inhibited by the final product L-threonine. Therefore, in order to construct an L-threonine-producing bacterium, it is preferable to modify the L-threonine biosynthetic gene so that it is not subject to feedback inhibition by L-threonine. The thrA, thrB, and thrC genes constitute a threonine operon, and the threonine operon forms an attenuator structure. Expression of the threonine operon is inhibited by isoleucine and threonine in the culture medium, and is suppressed by attenuation. Enhanced expression of the threonine operon can be achieved by removing the leader sequence or attenuator in the attenuation region (Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194: 59-69 1987 (1987); WO02 / 26993; WO2005 / 049808; WO2003 / 097839).
 スレオニンオペロンの上流には固有のプロモーターが存在するが、同プロモーターを非天然のプロモーターに置換してもよい(WO98/04715号パンフレット参照)。また、スレオニン生合成関与遺伝子がラムダファ-ジのリプレッサーおよびプロモーターの制御下で発現するようにスレオニンオペロンを構築してもよい(欧州特許第0593792号明細書参照)。また、L-スレオニンによるフィードバック阻害を受けないように改変された細菌は、L-スレオニンアナログであるα-amino-β-hydroxyvaleric acid(AHV)に耐性な菌株を選抜することによっても取得できる。 A unique promoter exists upstream of the threonine operon, but this promoter may be replaced with a non-natural promoter (see pamphlet of WO98 / 04715). In addition, the threonine operon may be constructed so that a gene involved in threonine biosynthesis is expressed under the control of a lambda phage repressor and promoter (see European Patent No. 0593792). Bacteria modified so as not to be subjected to feedback inhibition by L-threonine can also be obtained by selecting a strain resistant to α-amino-β-hydroxyvaleric acid (AHV), which is an L-threonine analog.
 このようにL-スレオニンによるフィードバック阻害を受けないように改変されたスレオニンオペロンは、コピー数の上昇により、あるいは強力なプロモーターに連結されることにより、宿主内での発現量が向上しているのが好ましい。コピー数の上昇は、スレオニンオペロンを含むプラスミドを宿主に導入することにより達成できる。また、コピー数の上昇は、トランスポゾン、Muファ-ジ等を利用して、宿主のゲノム上にスレオニンオペロンを転移させることによっても達成できる。 Thus, the threonine operon modified so as not to be subjected to feedback inhibition by L-threonine is improved in the expression level in the host by increasing the copy number or being linked to a strong promoter. Is preferred. An increase in copy number can be achieved by introducing a plasmid containing a threonine operon into the host. An increase in copy number can also be achieved by transferring the threonine operon onto the host genome using a transposon, Mu phage, or the like.
 また、L-スレオニン生産能を付与または増強する方法としては、宿主にL-スレオニン耐性を付与する方法やL-ホモセリン耐性を付与する方法も挙げられる。耐性の付与は、例えば、L-スレオニンに耐性を付与する遺伝子、L-ホモセリンに耐性を付与する遺伝子の発現を強化することにより達成できる。耐性を付与する遺伝子としては、rhtA遺伝子(Res. Microbiol. 154:123-135 (2003))、rhtB遺伝子(欧州特許出願公開第0994190号明細書)、rhtC遺伝子(欧州特許出願公開第1013765号明細書)、yfiK遺伝子、yeaS遺伝子(欧州特許出願公開第1016710号明細書)が挙げられる。また、宿主にL-スレオニン耐性を付与する方法は、欧州特許出願公開第0994190号明細書や国際公開第90/04636号パンフレットに記載の方法を参照出来る。 In addition, examples of a method for imparting or enhancing L-threonine production ability include a method for imparting L-threonine resistance to a host and a method for imparting L-homoserine resistance. The imparting of resistance can be achieved, for example, by enhancing the expression of a gene that imparts resistance to L-threonine or a gene that imparts resistance to L-homoserine. Examples of genes that confer resistance include rhtA gene (Res. Microbiol. 154: 123-135 (2003)), rhtB gene (European Patent Application Publication No. 0994190), rhtC gene (European Patent Application Publication No. 1013765) ), YfiK gene, and yeaS gene (European Patent Application Publication No. 1016710). For methods for imparting L-threonine resistance to a host, methods described in European Patent Application Publication No. 0994190 and International Publication No. 90/04636 can be referred to.
 L-スレオニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli TDH-6/pVIC40 (VKPM B-3996) (米国特許第5,175,107号、米国特許第5,705,371号)、E. coli 472T23/pYN7 (ATCC 98081) (米国特許第5,631,157号)、E. coli NRRL-21593 (米国特許第5,939,307号)、E. coli FERM BP-3756 (米国特許第5,474,918号)、E. coli FERM BP-3519及びFERM BP-3520 (米国特許第5,376,538号)、E. coli MG442 (Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978))、E. coli VL643及びVL2055 (EP 1149911 A)、ならびにE. coli VKPM B-5318 (EP 0593792 B) が挙げられる。 Specific examples of L-threonine-producing bacteria or parent strains for deriving them include, for example, E. coli TDH-6 / pVIC40 (VKPM B-3996) (US Patent No. 5,175,107, US Patent No. 5,705,371), E. coli 472T23 / pYN7 (ATCC 98081) (U.S. Patent No. 5,631,157), E. coli NRRL-21593 (U.S. Patent No. 5,939,307), E. coli FERM BP-3756 (U.S. Patent No. 5,474,918), E. coli FERM BP-3519 and FERM BP-3520 (U.S. Patent No. 5,376,538), E. coli MG442 (Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978)), E. coli VL643 and VL2055 ( EP 1149911 A), and E. coli VKPM B-5318 (EP 0593792 B).
 VKPM B-3996株は、TDH-6株に、プラスミドpVIC40を導入した株である。TDH-6株は、スクロース資化性であり、thrC遺伝子を欠損し、ilvA遺伝子にリーキー(leaky)変異を有する。また、VKPM B-3996株は、rhtA遺伝子に、高濃度のスレオニンまたはホモセリンに対する耐性を付与する変異を有する。プラスミドpVIC40は、RSF1010由来ベクターに、スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異型thrA遺伝子と野生型thrBC遺伝子を含むthrA*BCオペロンが挿入されたプラスミドである(米国特許第5,705,371号)。この変異型thrA遺伝子は、スレオニンによるフィードバック阻害が実質的に解除されたアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする。B-3996株は、1987年11月19日、オールユニオン・サイエンティフィック・センター・オブ・アンチビオティクス(Nagatinskaya Street 3-A, 117105 Moscow, Russia)に、受託番号RIA 1867で寄託されている。この株は、また、1987年4月7日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia) に、受託番号VKPM B-3996で寄託されている。 VKPM B-3996 strain is a strain obtained by introducing plasmid pVIC40 into TDH-6 strain. The TDH-6 strain is sucrose-assimilating, lacks the thrC gene, and has a leaky mutation in the ilvA gene. The VKPM B-3996 strain has a mutation that imparts resistance to a high concentration of threonine or homoserine in the rhtA gene. The plasmid pVIC40 is a plasmid in which a thrA * BC operon containing a mutant thrA gene encoding an aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine and a wild type thrBC gene is inserted into an RSF1010-derived vector (US Patent) No. 5,705,371). This mutant thrA gene encodes aspartokinase homoserine dehydrogenase I substantially desensitized to feedback inhibition by threonine. B-3996 was deposited on 19 November 1987 at the All Union Scientific Center of Antibiotics (Nagatinskaya Street 3-A, 117105 Moscow, Russia) with accession number RIA 1867. . This stock was also assigned to the Lucian National Collection of Industrial Microorganisms (VKPM) on April 7, 1987, under the accession number VKPM (FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia). Deposited at B-3996.
 VKPM B-5318株は、イソロイシン非要求性であり、プラスミドpVIC40中のスレオニンオペロンの制御領域を温度感受性ラムダファージC1リプレッサー及びPRプロモーターにより置換したプラスミドpPRT614を保持する。VKPM B-5318は、1990年5月3日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) に、受託番号VKPM B-5318で国際寄託されている。 The strain VKPM B-5318 is non-isoleucine-requiring and retains the plasmid pPRT614 in which the control region of the threonine operon in the plasmid pVIC40 is replaced with a temperature-sensitive lambda phage C1 repressor and a PR promoter. VKPM B-5318 was assigned to Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on May 3, 1990 under the accession number VKPM B-5318 Has been deposited internationally.
 E. coliのアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードするthrA遺伝子は明らかにされている(ヌクレオチド番号337~2799, GenBank accession NC_000913.2, gi: 49175990)。thrA遺伝子は、E. coli K-12の染色体において、thrL遺伝子とthrB遺伝子との間に位置する。Escherichia coliのホモセリンキナーゼをコードするthrB遺伝子は明らかにされている(ヌクレオチド番号2801~3733, GenBank accession NC_000913.2, gi: 49175990)。thrB遺伝子は、E. coli K-12の染色体において、thrA遺伝子とthrC遺伝子との間に位置する。E. coliのスレオニンシンターゼをコードするthrC遺伝子は明らかにされている(ヌクレオチド番号3734~5020, GenBank accession NC_000913.2, gi: 49175990)。thrC遺伝子は、E. coli K-12の染色体において、thrB遺伝子とyaaXオープンリーディングフレームとの間に位置する。また、スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異型thrA遺伝子と野生型thrBC遺伝子を含むthrA*BCオペロンは、スレオニン生産株E. coli VKPM B-3996に存在する周知のプラスミドpVIC40(米国特許第5,705,371号)から取得できる。 The thrA gene encoding aspartokinase homoserine dehydrogenase I of E. coli has been revealed (nucleotide numbers 337-2799, GenBank accession NC_000913.2, gi: 49175990). The thrA gene is located between the thrL gene and the thrB gene in the chromosome of E. coli K-12. The thrB gene encoding homoserine kinase of Escherichia coli has been elucidated (nucleotide numbers 2801 to 3733, GenBank accession NC_000913.2, gi: 49175990). The thrB gene is located between the thrA gene and the thrC gene in the chromosome of E. coli K-12. The thrC gene encoding threonine synthase from E.coli has been elucidated (nucleotide numbers 3734 to 5020, GenBank accession NC_000913.2, gi: 49175990). The thrC gene is located between the thrB gene and the yaaX open reading frame in the chromosome of E. coli K-12. In addition, a thrA * BC operon containing a mutant thrA gene encoding an aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine and a wild type thrBC gene is known in the threonine-producing strain E. coli VKPM B-3996. It can be obtained from plasmid pVIC40 (US Pat. No. 5,705,371).
 E. coliのrhtA遺伝子は、グルタミン輸送系の要素をコードするglnHPQ オペロンに近いE. coli染色体の18分に存在する。rhtA遺伝子は、ORF1 (ybiF遺伝子, ヌクレオチド番号764~1651, GenBank accession number AAA218541, gi:440181)と同一であり、pexB遺伝子とompX遺伝子との間に位置する。ORF1によりコードされるタンパク質を発現するユニットは、rhtA遺伝子と呼ばれている(rht: resistant to homoserine and threonine(ホモセリン及びスレオニンに耐性))。また、高濃度のスレオニン又はホモセリンへの耐性を付与するrhtA23変異が、ATG開始コドンに対して-1位のG→A置換であることが判明している(ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A)。 The rhtA gene of E. coli is present at 18 minutes of the E. coli chromosome close to the glnHPQ operon, which encodes a glutamine transport system element. The rhtA gene is the same as ORF1 (ybiF gene, nucleotide numbers 764 to 1651, GenBank accession number AAA218541, gi: 440181), and is located between the pexB gene and the ompX gene. The unit that expresses the protein encoded by ORF1 is called rhtA gene (rht: resistant toosehomoserine andeonthreonine (resistant to homoserine and threonine)). It has also been found that the rhtA23 mutation conferring resistance to high concentrations of threonine or homoserine is a G → A substitution at position -1 relative to the ATG initiation codon (ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A).
 E. coliのasd遺伝子は既に明らかにされており(ヌクレオチド番号3572511~3571408, GenBank accession NC_000913.1, gi:16131307)、その遺伝子の塩基配列に基づいて作製されたプライマーを用いるPCRにより取得できる(White, T.J. et al., Trends Genet., 5, 185 (1989)参照)。他の微生物のasd遺伝子も同様に得ることができる。 The asd gene of E. coli has already been clarified (nucleotide numbers 3572511 to 3571408, GenBank accession NC_000913.1, gi: 16131307), and can be obtained by PCR using primers prepared based on the nucleotide sequence of the gene ( White, TJ et al., Trends Genet., 5, 185 (1989)). The asd gene of other microorganisms can be obtained similarly.
 また、E. coliのaspC遺伝子も既に明らかにされており(ヌクレオチド番号983742~984932, GenBank accession NC_000913.1, gi:16128895)、その遺伝子の塩基配列に基づいて作製されたプライマーを用いるPCRにより得ることができる。他の微生物のaspC遺伝子も同様に得ることができる。 In addition, the aspC gene of E. 既 に coli has already been clarified (nucleotide numbers 983742 to 984932, GenBank accession NC_000913.1, gi: 16128895), and obtained by PCR using a primer prepared based on the nucleotide sequence of the gene be able to. The aspC gene of other microorganisms can be obtained similarly.
<L-リジン生産菌>
 L-リジン生産能を付与又は増強するための方法としては、例えば、L-リジン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ジヒドロジピコリン酸シンターゼ(dihydrodipicolinate synthase)(dapA)、アスパルトキナーゼIII(aspartokinase III)(lysC)、ジヒドロジピコリン酸レダクターゼ(dihydrodipicolinate reductase)(dapB)、ジアミノピメリン酸デカルボキシラーゼ(diaminopimelate decarboxylase)(lysA)、ジアミノピメリン酸デヒドロゲナーゼ(diaminopimelate dehydrogenase)(ddh)(米国特許第6,040,160号)、ホスホエノールピルビン酸カルボキシラーゼ(phosphoenolpyruvate carboxylase)(ppc)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(aspartate semialdehyde dehydrogenase)(asd)、アスパラギン酸アミノトランスフェラーゼ(aspartate aminotransferase)(アスパラギン酸トランスアミナーゼ(aspartate transaminase))(aspC)、ジアミノピメリン酸エピメラーゼ(diaminopimelate epimerase)(dapF)、テトラヒドロジピコリン酸スクシニラーゼ(tetrahydrodipicolinate succinylase)(dapD)、スクシニルジアミノピメリン酸デアシラーゼ(succinyl-diaminopimelate deacylase)(dapE)、及びアスパルターゼ(aspartase)(aspA)(EP 1253195 A)が挙げられる。これらの酵素の中では、例えば、ジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、ホスホエノールピルビン酸カルボキシラーゼ、アスパラギン酸アミノトランスフェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、テトラヒドロジピコリン酸スクシニラーゼ、及びスクシニルジアミノピメリン酸デアシラーゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。また、L-リジン生産菌又はそれを誘導するための親株では、エネルギー効率に関与する遺伝子(cyo)(EP 1170376 A)、ニコチンアミドヌクレオチドトランスヒドロゲナーゼ(nicotinamide nucleotide transhydrogenase)をコードする遺伝子(pntAB)(米国特許第5,830,716号)、ybjE遺伝子(WO2005/073390)、またはこれらの組み合わせの発現レベルが増大していてもよい。アスパルトキナーゼIII(lysC)はL-リジンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、L-リジンによるフィードバック阻害が解除されたアスパルトキナーゼIIIをコードする変異型lysC遺伝子を利用してもよい(米国特許5,932,453号明細書)。また、ジヒドロジピコリン酸合成酵素(dapA)L-リジンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、L-リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素をコードする変異型dapA遺伝子を利用してもよい。
<L-lysine producing bacteria>
Examples of a method for imparting or enhancing L-lysine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-lysine biosynthesis enzymes is increased. . Such enzymes include, but are not limited to, dihydrodipicolinate synthase (dapA), aspartokinase III (lysC), dihydrodipicolinate reductase (dapB), diaminopimelate Deaminopimelate decarboxylase (lysA), diaminopimelate dehydrogenase (ddh) (US Pat. No. 6,040,160), phosphoenolpyruvate carboxylase (ppc), aspartate semialdehyde dehydrogenase (aspartate semialdehyde dehydrogenase) ) (Asd), aspartate aminotransferase (aspartate transaminase) (aspC), diaminopimelate epi Diaminopimelate epimerase (dapF), tetrahydrodipicolinate succinylase (dapD), succinyl-diaminopimelate deacylase (dapE), and aspartase (aspA) (195) ). Among these enzymes, for example, dihydrodipicolinate reductase, diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semialdehyde dehydrogenase, tetrahydrodipicolinate succinylase, and Preferably, the activity of one or more enzymes selected from succinyl diaminopimelate deacylase is enhanced. In addition, in L-lysine producing bacteria or a parent strain for deriving the same, a gene (cyo) (EP 1170376 A) involved in energy efficiency, a gene encoding nicotinamide nucleotide transhydrogenase (pntAB) ( US Pat. No. 5,830,716), ybjE gene (WO2005 / 073390), or combinations thereof may have increased expression levels. Aspartokinase III (lysC) is subject to feedback inhibition by L-lysine. To enhance the activity of the enzyme, a mutant lysC gene encoding aspartokinase III that has been desensitized to feedback inhibition by L-lysine is used. It may be used (US Pat. No. 5,932,453). In addition, since it is subjected to feedback inhibition by dihydrodipicolinate synthase (dapA) L-lysine, in order to enhance the activity of the enzyme, a mutant type encoding dihydrodipicolinate synthase from which feedback inhibition by L-lysine is released The dapA gene may be used.
 また、L-リジン生産能を付与又は増強するための方法としては、例えば、L-リジンの生合成経路から分岐してL-リジン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、ホモセリンデヒドロゲナーゼ(homoserine dehydrogenase)、リジンデカルボキシラーゼ(lysine decarboxylase)(米国特許第5,827,698号)、及びリンゴ酸酵素(malic enzyme)(WO2005/010175)が挙げられる。 The method for imparting or enhancing L-lysine production ability is, for example, selected from enzymes that catalyze the reaction of branching from the biosynthetic pathway of L-lysine to produce compounds other than L-lysine. Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned. Such enzymes include, but are not limited to, homoserine dehydrogenase, lysine decarboxylase (US Pat. No. 5,827,698), and malic enzyme (WO2005 / 010175). .
 また、L-リジン生産菌又はそれを誘導するための親株としては、L-リジンアナログに耐性を有する変異株が挙げられる。L-リジンアナログは腸内細菌科の細菌やコリネ型細菌等の細菌の生育を阻害するが、この阻害は、L-リジンが培地に共存するときには完全にまたは部分的に解除される。L-リジンアナログとしては、特に制限されないが、オキサリジン、リジンヒドロキサメート、S-(2-アミノエチル)-L-システイン(AEC)、γ-メチルリジン、α-クロロカプロラクタムが挙げられる。これらのリジンアナログに対して耐性を有する変異株は、細菌を通常の人工変異処理に付すことによって得ることができる。 In addition, examples of L-lysine-producing bacteria or parent strains for inducing them include mutants having resistance to L-lysine analogs. L-lysine analogs inhibit the growth of bacteria such as Enterobacteriaceae and coryneform bacteria, but this inhibition is completely or partially released when L-lysine is present in the medium. The L-lysine analog is not particularly limited, and examples thereof include oxalysine, lysine hydroxamate, S- (2-aminoethyl) -L-cysteine (AEC), γ-methyllysine, and α-chlorocaprolactam. Mutant strains having resistance to these lysine analogs can be obtained by subjecting bacteria to normal artificial mutation treatment.
 L-リジン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli AJ11442(FERM BP-1543, NRRL B-12185; 米国特許第4,346,170号参照)及びE. coli VL611が挙げられる。これらの株では、アスパルトキナーゼのL-リジンによるフィードバック阻害が解除されている。L-リジン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli AJIK01株(NITE BP-01520)も挙げられる。AJIK01株は、E. coli AJ111046と命名され、2013年1月29日に、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に寄託され、2014年5月15日にブダペスト条約に基づく国際寄託に移管され、受託番号NITE BP-01520が付与されている。 Specific examples of L-lysine-producing bacteria or parent strains for deriving them include, for example, E. coli AJ11442 (FERM BP-1543, NRRL B-12185; see U.S. Pat. No. 4,346,170) and E. coli VL611. Can be mentioned. In these strains, feedback inhibition of aspartokinase by L-lysine is released. Specific examples of L-lysine-producing bacteria or parent strains for inducing them include E. 例 え ば coli AJIK01 strain (NITE BP-01520). The AJIK01 strain was named E. coli AJ111046. On January 29, 2013, the National Institute of Technology and Evaluation, Patent Microorganisms Deposit Center (Postal Code: 292-0818, Address: Kazusa Kama, Kisarazu City, Chiba Prefecture, Japan) No. 2-5-8 (120)), transferred to an international deposit based on the Budapest Treaty on May 15, 2014, and assigned the deposit number NITE BP-01520.
 L-リジン生産菌又はそれを誘導するための親株として、具体的には、E. coli WC196株も挙げられる。WC196株は、E. coli K-12に由来するW3110株にAEC耐性を付与することにより育種された(米国特許第5,827,698号)。WC196株は、E. coli AJ13069と命名され、1994年12月6日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-14690として寄託され、1995年9月29日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-5252が付与されている(米国特許第5,827,698号)。 Specific examples of L-lysine-producing bacteria or parent strains for inducing them include E. coli WC196 strain. The WC196 strain was bred by conferring AEC resistance to the W3110 strain derived from E. coli K-12 (US Pat. No. 5,827,698). The WC196 strain was named E. coli AJ13069, and on December 6, 1994, the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Patent Biological Depositary Center, ZIP Code: 292- 0818, address: 2-5-8 鎌 120, Kazusa Kamashitsu, Kisarazu City, Chiba, Japan), deposited under the accession number FERM P-14690, transferred to an international deposit based on the Budapest Treaty on September 29, 1995. No. FERM BP-5252 (US Pat. No. 5,827,698).
 好ましいL-リジン生産菌として、E. coli WC196ΔcadAΔldcやE. coli WC196ΔcadAΔldc/pCABD2が挙げられる(WO2010/061890)。WC196ΔcadAΔldcは、WC196株より、リジンデカルボキシラーゼをコードするcadA及びldcC遺伝子を破壊することにより構築した株である。WC196ΔcadAΔldc/pCABD2は、WC196ΔcadAΔldcに、リジン生合成系遺伝子を含むプラスミドpCABD2(米国特許第6,040,160号)を導入することにより構築した株である。WC196ΔcadAΔldcは、AJ110692と命名され、2008年10月7日、独立行政法人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM BP-11027として国際寄託された。pCABD2は、L-リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のジヒドロジピコリン酸合成酵素(DDPS)をコードする変異型dapA遺伝子と、L-リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のアスパルトキナーゼIIIをコードする変異型lysC遺伝子と、エシェリヒア・コリ由来のジヒドロジピコリン酸レダクターゼをコードするdapB遺伝子と、ブレビバクテリウム・ラクトファーメンタム由来ジアミノピメリン酸デヒドロゲナーゼをコードするddh遺伝子を含んでいる。 Preferred L-lysine producing bacteria include E.coli WC196ΔcadAΔldc and E.coli WC196ΔcadAΔldc / pCABD2 (WO2010 / 061890). WC196ΔcadAΔldc is a strain constructed by disrupting the cadA and ldcC genes encoding lysine decarboxylase from the WC196 strain. WC196ΔcadAΔldc / pCABD2 is a strain constructed by introducing plasmid pCABD2 (US Pat. No. 6,040,160) containing a lysine biosynthesis gene into WC196ΔcadAΔldc. WC196ΔcadAΔldc was named AJ110692, and on October 7, 2008, National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (currently, National Institute of Technology and Evaluation, Patent Biological Depositary Center, ZIP Code: 292-0818, Address: Room 2-5-8 120, Kazusa Kamashitsu, Kisarazu, Chiba, Japan) was deposited internationally under the deposit number FERM BP-11027. pCABD2 is a mutant dapA gene encoding dihydrodipicolinate synthase (DDPS) derived from Escherichia coli having a mutation that is desensitized to feedback inhibition by L-lysine, and a mutation that is desensitized to feedback inhibition by L-lysine. A mutant lysC gene encoding aspartokinase III derived from Escherichia coli, dapB gene encoding dihydrodipicolinate reductase derived from Escherichia coli, and ddh encoding a diaminopimelate dehydrogenase derived from Brevibacterium lactofermentum Contains genes.
<L-アルギニン生産菌>
 L-アルギニン生産能を付与又は増強するための方法としては、例えば、L-アルギニン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、N-アセチルグルタミン酸シンターゼ(argA)、N-アセチルグルタミルリン酸レダクターゼ(argC)、オルニチンアセチルトランスフェラーゼ(argJ)、N-アセチルグルタミン酸キナーゼ(argB)、アセチルオルニチントランスアミナーゼ(argD)、アセチルオルニチンデアセチラーゼ(argE)オルニチンカルバモイルトランスフェラーゼ(argF)、アルギニノコハク酸シンターゼ(argG)、アルギニノコハク酸リアーゼ(argH)、カルバモイルリン酸シンターゼ(carAB)が挙げられる。N-アセチルグルタミン酸シンターゼ(argA)遺伝子としては、例えば、野生型の15位~19位に相当するアミノ酸残基が置換され、L-アルギニンによるフィードバック阻害が解除された変異型N-アセチルグルタミン酸シンターゼをコードする遺伝子を用いると好適である(欧州出願公開1170361号明細書)。
<L-arginine producing bacteria>
Examples of the method for imparting or enhancing L-arginine-producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-arginine biosynthesis enzymes is increased. . Examples of such enzymes include, but are not limited to, N-acetylglutamate synthase (argA), N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine Examples include transaminase (argD), acetylornithine deacetylase (argE) ornithine carbamoyltransferase (argF), argininosuccinate synthase (argG), argininosuccinate lyase (argH), and carbamoyl phosphate synthase (carAB). Examples of the N-acetylglutamate synthase (argA) gene include mutant N-acetylglutamate synthase in which amino acid residues corresponding to the 15th to 19th positions of the wild type are substituted and feedback inhibition by L-arginine is released. It is preferable to use a gene to be encoded (European Application Publication No. 1170361).
 L-アルギニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli 237株 (VKPM B-7925) (米国特許出願公開2002/058315 A1)、変異型N-アセチルグルタミン酸シンターゼをコードするargA遺伝子が導入されたその誘導株 (ロシア特許出願第2001112869号, EP1170361A1)、237株由来の酢酸資化能が向上した株であるE. coli 382株 (VKPM B-7926) (EP1170358A1)、及び382株にE. coli K-12株由来の野生型ilvA遺伝子が導入された株であるE. coli 382ilvA+株が挙げられる。E. coli 237株は、2000年4月10日にルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) にVKPM B-7925の受託番号で寄託され、2001年5月18日にブダペスト条約に基づく国際寄託に移管された。E. coli 382株は、2000年4月10日にルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) にVKPM B-7926の受託番号で寄託されている。 Specific examples of L-arginine-producing bacteria or parent strains for inducing the same include, for example, E. coli 237 strain (VKPM B-7925) (US Patent Application Publication 2002/058315 A1), mutant N-acetylglutamic acid Its derivative strain さ れ (Russian patent application No. 2001112869, EP1170361A1) introduced with the argA gene encoding synthase, E.237coli 382 strain (VKPM B-7926) 237 (VKPM B-7926) EP1170358A1) and E. coli 382ilvA + strain, which is a strain in which the wild-type ilvA gene derived from E. coli K-12 strain is introduced into 382 strain. E. coli 237 shares were registered with VKPM B-7925 on April 10, 2000 at Lucian National Collection of Industrial Microorganisms (1 Dorozhny proezd., 1 Moscow 117545, Russia) And was transferred to an international deposit under the Budapest Treaty on May 18, 2001. E. coli 382 shares were awarded VKPM B-7926 to Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on April 10, 2000 Deposited at
 また、L-アルギニン生産菌又はそれを誘導するための親株としては、アミノ酸アナログ等への耐性を有する株も挙げられる。そのような株としては、例えば、α-メチルメチオニン、p-フルオロフェニルアラニン、D-アルギニン、アルギニンヒドロキサム酸、S-(2-アミノエチル)-システイン、α-メチルセリン、β-2-チエニルアラニン、またはスルファグアニジンに耐性を有するエシェリヒア・コリ変異株(特開昭56-106598号公報参照)が挙げられる。 In addition, examples of L-arginine-producing bacteria or parent strains for inducing them include strains having resistance to amino acid analogs and the like. Such strains include, for example, α-methylmethionine, p-fluorophenylalanine, D-arginine, arginine hydroxamic acid, S- (2-aminoethyl) -cysteine, α-methylserine, β-2-thienylalanine, or Examples include Escherichia coli mutants having resistance to sulfaguanidine (see JP-A-56-106598).
<L-シトルリン生産菌およびL-オルニチン生産菌>
 L-シトルリンおよびL-オルニチンは、L-アルギニンと生合成経路が共通している。よって、N-アセチルグルタミン酸シンターゼ(argA)、N-アセチルグルタミルリン酸レダクターゼ(argC)、オルニチンアセチルトランスフェラーゼ(argJ)、N-アセチルグルタミン酸キナーゼ(argB)、アセチルオルニチントランスアミナーゼ(argD)、および/またはアセチルオルニチンデアセチラーゼ(argE)の酵素活性を上昇させることによって、L-シトルリンおよび/またはL-オルニチンの生産能を付与または増強することができる(国際公開2006-35831号パンフレット)。
<L-citrulline-producing bacteria and L-ornithine-producing bacteria>
L-citrulline and L-ornithine share a biosynthetic pathway with L-arginine. Thus, N-acetylglutamate synthase (argA), N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), and / or acetylornithine By increasing the enzyme activity of deacetylase (argE), the ability to produce L-citrulline and / or L-ornithine can be imparted or enhanced (WO 2006-35831).
<L-ヒスチジン生産菌>
 L-ヒスチジン生産能を付与又は増強するための方法としては、例えば、L-ヒスチジン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ATPホスホリボシルトランスフェラーゼ(hisG)、ホスホリボシル-AMPサイクロヒドロラーゼ(hisI)、ホスホリボシル-ATPピロホスホヒドロラーゼ(hisI)、ホスホリボシルフォルミミノ-5-アミノイミダゾールカルボキサミドリボタイドイソメラーゼ(hisA)、アミドトランスフェラーゼ(hisH)、ヒスチジノールフォスフェイトアミノトランスフェラーゼ(hisC)、ヒスチジノールフォスファターゼ(hisB)、ヒスチジノールデヒドロゲナーゼ(hisD)が挙げられる。
<L-histidine producing bacteria>
Examples of the method for imparting or enhancing L-histidine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-histidine biosynthesis enzymes is increased. . Examples of such an enzyme include, but are not limited to, ATP phosphoribosyltransferase (hisG), phosphoribosyl-AMP cyclohydrolase (hisI), phosphoribosyl-ATP pyrophosphohydrolase (hisI), phosphoribosylformimino-5-aminoimidazole carboxamide ribonucleoside. Examples thereof include tide isomerase (hisA), amide transferase (hisH), histidinol phosphate aminotransferase (hisC), histidinol phosphatase (hisB), and histidinol dehydrogenase (hisD).
 これらの内、hisG及びhisBHAFIにコードされるL-ヒスチジン生合成系酵素は、L-ヒスチジンにより阻害されることが知られている。従って、L-ヒスチジン生産能は、例えば、ATPホスホリボシルトランスフェラーゼ遺伝子(hisG)にフィードバック阻害への耐性を付与する変異を導入することにより、付与または増強させることができる(ロシア特許第2003677号及び第2119536号)。 Of these, L-histidine biosynthetic enzymes encoded by hisG and hisBHAFI are known to be inhibited by L-histidine. Therefore, the ability to produce L-histidine can be imparted or enhanced, for example, by introducing a mutation that confers resistance to feedback inhibition in the ATP phosphoribosyltransferase gene (hisG) (Russian Patent No. 2003677 and No. 2). 2119536).
 L-ヒスチジン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli 24株 (VKPM B-5945, RU2003677)、E. coli NRRL B-12116~B12121 (米国特許第4,388,405号)、E. coli H-9342 (FERM BP-6675)及びH-9343 (FERM BP-6676) (米国特許第6,344,347号)、E. coli H-9341 (FERM BP-6674) (EP1085087)、E. coli AI80/pFM201 (米国特許第6,258,554号)、L-ヒスチジン生合成系酵素をコードするDNAを保持するベクターを導入したE. coli FERM P-5038及び5048 (特開昭56-005099号)、アミノ酸輸送の遺伝子を導入したE. coli株 (EP1016710A)、スルファグアニジン、DL-1,2,4-トリアゾール-3-アラニン、及びストレプトマイシンに対する耐性を付与したE. coli 80株 (VKPM B-7270, ロシア特許第2119536号) などのエシェリヒア属に属する株が挙げられる。 Specific examples of L-histidine-producing bacteria or parent strains for deriving them include, for example, E. coli 24 strain (VKPM B-5945, RU2003677), E. coli NRRL B-12116-B12121 (US Patent No. 4,388,405). No.), E. coli H-9342 (FERM BP-6675) and H-9343 (FERM BP-6676) (U.S. Patent No. 6,344,347), E. coli H-9341 (FERM BP-6674) (EP1085087), E Coli AI80 / pFM201 (U.S. Patent No. 6,258,554), E. coli FERM P-5038 and 5048 (Japanese Patent Laid-Open No. 56-005099) into which a vector holding a DNA encoding an L-histidine biosynthetic enzyme was introduced E. coli strain 導入 (EP1016710A) introduced with a gene for amino acid transport, E. coli 80 strain (VKPM B-7270) with resistance to sulfaguanidine, DL-1,2,4-triazole-3-alanine, and streptomycin , (Russian Patent No. 2119536) and other strains belonging to the genus Escherichia.
<L-システイン生産菌>
 L-システイン生産能を付与又は増強するための方法としては、例えば、L-システイン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、セリンアセチルトランスフェラーゼ(cysE)や3-ホスホグリセリン酸デヒドロゲナーゼ(serA)が挙げられる。セリンアセチルトランスフェラーゼ活性は、例えば、システインによるフィードバック阻害に耐性の変異型セリンアセチルトランスフェラーゼをコードする変異型cysE遺伝子を細菌に導入することにより増強できる。変異型セリンアセチルトランスフェラーゼは、例えば、特開平11-155571や米国特許公開第20050112731に開示されている。また、3-ホスホグリセリン酸デヒドロゲナーゼ活性は、例えば、セリンによるフィードバック阻害に耐性の変異型3-ホスホグリセリン酸デヒドロゲナーゼをコードする変異型serA遺伝子を細菌に導入することにより増強できる。変異型3-ホスホグリセリン酸デヒドロゲナーゼは、例えば、米国特許第6,180,373号に開示されている。
<L-cysteine producing bacteria>
Examples of the method for imparting or enhancing L-cysteine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-cysteine biosynthesis enzymes is increased. . Examples of such an enzyme include, but are not limited to, serine acetyltransferase (cysE) and 3-phosphoglycerate dehydrogenase (serA). Serine acetyltransferase activity can be enhanced, for example, by introducing a mutant cysE gene encoding a mutant serine acetyltransferase resistant to feedback inhibition by cysteine into bacteria. Mutant serine acetyltransferases are disclosed, for example, in JP-A-11-155571 and US Patent Publication No. 20050112731. Further, the 3-phosphoglycerate dehydrogenase activity can be enhanced by introducing, for example, a mutant serA gene encoding a mutant 3-phosphoglycerate dehydrogenase resistant to feedback inhibition by serine into a bacterium. Mutant 3-phosphoglycerate dehydrogenase is disclosed, for example, in US Pat. No. 6,180,373.
 また、L-システイン生産能を付与又は増強するための方法としては、例えば、L-システインの生合成経路から分岐してL-システイン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、例えば、L-システインの分解に関与する酵素が挙げられる。L-システインの分解に関与する酵素としては、特に制限されないが、シスタチオニン-β-リアーゼ(metC)(特開平11-155571号、Chandra et. al., Biochemistry, 21 (1982) 3064-3069))、トリプトファナーゼ(tnaA)(特開2003-169668、Austin Newton et. al., J. Biol. Chem. 240 (1965) 1211-1218)、O-アセチルセリンスルフヒドリラーゼB(cysM)(特開2005-245311)、malY遺伝子産物(特開2005-245311)、Pantoea ananatisのd0191遺伝子産物(特開2009-232844)が挙げられる。 The method for imparting or enhancing L-cysteine production ability is selected from, for example, an enzyme that catalyzes a reaction that branches from the biosynthesis pathway of L-cysteine to produce a compound other than L-cysteine. Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned. Examples of such enzymes include enzymes involved in the degradation of L-cysteine. The enzyme involved in the degradation of L-cysteine is not particularly limited, but cystathionine-β-lyase (metC) (Japanese Patent Laid-Open No. 11-155571, Chandra et. Al., Biochemistry, 21 (1982) 3064-3069)) Tryptophanase (tnaA) (Japanese Patent Laid-Open No. 2003-169668, Austin 、 Newton et. Al., J. Biol. Chem. 240 (1965) 1211-1218), O-acetylserine sulfhydrylase B (cysM) (special JP 2005-245311), malY gene product (JP 2005-245311), d0191 gene product of Pantoea 遺 伝 子 ananatis (JP 2009-232844).
 また、L-システイン生産能を付与又は増強するための方法としては、例えば、L-システイン排出系を増強することや硫酸塩/チオ硫酸塩輸送系を増強することも挙げられる。L-システイン排出系のタンパク質としては、ydeD遺伝子にコードされるタンパク質(特開2002-233384)、yfiK遺伝子にコードされるタンパク質(特開2004-49237)、emrAB、emrKY、yojIH、acrEF、bcr、およびcusAの各遺伝子にコードされる各タンパク質(特開2005-287333)、yeaS遺伝子にコードされるタンパク質(特開2010-187552)が挙げられる。硫酸塩/チオ硫酸塩輸送系のタンパク質としては、cysPTWAM遺伝子クラスターにコードされるタンパク質が挙げられる。 In addition, examples of methods for imparting or enhancing L-cysteine production ability include enhancing the L-cysteine excretion system and enhancing the sulfate / thiosulfate transport system. Examples of proteins of the L-cysteine excretion system include proteins encoded by the ydeD gene (JP 2002-233384), proteins encoded by the yfiK gene (JP 2004-49237), emrAB, emrKY, yojIH, acrEF, bcr, And each protein encoded by each gene of cusA (Japanese Patent Laid-Open No. 2005-287333), and protein encoded by the yeaS gene (Japanese Patent Laid-Open No. 2010-187552). Examples of the sulfate / thiosulfate transport system protein include proteins encoded by the cysPTWAM gene cluster.
 L-システイン生産菌又はそれを誘導するための親株として、具体的には、例えば、フィードバック阻害耐性の変異型セリンアセチルトランスフェラーゼをコードする種々のcysEアレルで形質転換されたE. coli JM15 (米国特許第6,218,168号、ロシア特許出願第2003121601号)、細胞に毒性の物質を排出するのに適したタンパク質をコードする過剰発現遺伝子を有するE. coli W3110 (米国特許第5,972,663号)、システインデスルフヒドラーゼ活性が低下したE. coli株 (JP11155571A2)、cysB遺伝子によりコードされる正のシステインレギュロンの転写制御因子の活性が上昇したE. coli W3110 (WO01/27307A1)が挙げられる。 Specific examples of L-cysteine-producing bacteria or parent strains for deriving them include, for example, E. coli JM15 (US Patent) transformed with various cysE alleles encoding mutant serine acetyltransferase resistant to feedback inhibition. No. 6,218,168, Russian Patent Application No. 2003121601), E. coli W3110 (US Pat.No. 5,972,663), cysteine desulfhydrase, which has an overexpressed gene encoding a protein suitable for excretion of substances toxic to cells Examples include E. coli strain (JP11155571A2) with reduced activity and E. coli W3110 (WO01 / 27307A1) with increased activity of the transcriptional control factor of the positive cysteine regulon encoded by the cysB gene.
<L-メチオニン生産菌>
 L-メチオニン生産菌又はそれを誘導するための親株としては、L-スレオニン要求株や、ノルロイシンに耐性を有する変異株が挙げられる(特開2000-139471)。また、L-メチオニン生産菌又はそれを誘導するための親株としては、L-メチオニンによるフィードバック阻害に対して耐性をもつ変異型ホモセリントランスサクシニラーゼを保持する株も挙げられる(特開2000-139471、US20090029424)。なお、L-メチオニンはL-システインを中間体として生合成されるため、L-システインの生産能の向上によりL-メチオニンの生産能も向上させることができる(特開2000-139471、US20080311632)。
<L-methionine producing bacteria>
Examples of L-methionine-producing bacteria or parent strains for inducing them include L-threonine-requiring strains and mutants having resistance to norleucine (Japanese Patent Laid-Open No. 2000-139471). In addition, examples of L-methionine-producing bacteria or parent strains for deriving them also include strains that retain mutant homoserine transsuccinylase that is resistant to feedback inhibition by L-methionine (Japanese Patent Laid-Open No. 2000-139471). , US20090029424). Since L-methionine is biosynthesized with L-cysteine as an intermediate, L-methionine production ability can be improved by improving L-cysteine production ability (Japanese Patent Laid-Open No. 2000-139471, US20080311632).
 L-メチオニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli AJ11539 (NRRL B-12399)、E. coli AJ11540 (NRRL B-12400)、E. coli AJ11541 (NRRL B-12401)、E. coli AJ11542 (NRRL B-12402) (英国特許第2075055号)、L-メチオニンのアナログであるノルロイシン耐性を有するE. coli 218株 (VKPM B-8125)(ロシア特許第2209248号)や73株 (VKPM B-8126) (ロシア特許第2215782号)、E. coli AJ13425 (FERM P-16808)(特開2000-139471)が挙げられる。AJ13425株は、メチオニンリプレッサーを欠損し、細胞内のS-アデノシルメチオニンシンセターゼ活性が弱化し、細胞内のホモセリントランスサクシニラーゼ活性、シスタチオニンγ-シンターゼ活性、及びアスパルトキナーゼ-ホモセリンデヒドロゲナーゼII活性が増強された、E. coli W3110由来のL-スレオニン要求株である。 Specific examples of L-methionine-producing bacteria or parent strains for inducing them include, for example, E. coli AJ11539 (NRRL B-12399), E. coli AJ11540 (NRRL B-12400), E. coli AJ11541 (NRRL B-12401), E. coli AJ11542 (NRRL B-12402) (British Patent No. 2075055), E. coli 218 strain (VKPM B-8125) having resistance to norleucine, an analog of L-methionine (Russian Patent No. 2209248) No.), 73 shares (VKPM B-8126) (Russian Patent No. 2215782), E. coli AJ13425 (FERM P-16808) (Japanese Patent Laid-Open No. 2000-139471). The AJ13425 strain lacks a methionine repressor, weakens intracellular S-adenosylmethionine synthetase activity, and produces intracellular homoserine transsuccinylase activity, cystathionine γ-synthase activity, and aspartokinase-homoserine dehydrogenase II. L-threonine-requiring strain derived from E. coli W3110 with enhanced activity.
<L-ロイシン生産菌>
 L-ロイシン生産能を付与又は増強するための方法としては、例えば、L-ロイシン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、leuABCDオペロンの遺伝子にコードされる酵素が挙げられる。また、酵素活性の増強には、例えば、L-ロイシンによるフィードバック阻害が解除されたイソプロピルマレートシンターゼをコードする変異leuA遺伝子(米国特許第6,403,342号)が好適に利用できる。
<L-leucine producing bacteria>
Examples of the method for imparting or enhancing the ability to produce L-leucine include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-leucine biosynthesis enzymes is increased. . Examples of such an enzyme include, but are not limited to, an enzyme encoded by a gene of leuABCD operon. For enhancing enzyme activity, for example, a mutant leuA gene (US Pat. No. 6,403,342) encoding isopropyl malate synthase from which feedback inhibition by L-leucine has been released can be suitably used.
 L-ロイシン生産菌又はそれを誘導するための親株として、具体的には、例えば、ロイシン耐性のE. coli株 (例えば、57株 (VKPM B-7386, 米国特許第6,124,121号))、β-2-チエニルアラニン、3-ヒドロキシロイシン、4-アザロイシン、5,5,5-トリフルオロロイシンなどのロイシンアナログ耐性のE. coli株(特公昭62-34397号及び特開平8-70879号)、WO96/06926に記載された遺伝子工学的方法で得られたE. coli株、E. coli H-9068 (特開平8-70879号)などのエシェリヒア属に属する株が挙げられる。 Specific examples of L-leucine-producing bacteria or parent strains for inducing the same include, for example, leucine-resistant E. coli strains (eg, 57 strains (VKPM B-7386, US Pat. No. 6,124,121)), β- E. coli strains resistant to leucine analogs such as 2-thienylalanine, 3-hydroxyleucine, 4-azaleucine, 5,5,5-trifluoroleucine (JP-B-62-34397 and JP-A-8-70879), WO96 And strains belonging to the genus Escherichia such as E. coli strain and E. coli H-9068 (JP-A-8-70879) obtained by the genetic engineering method described in / 06926.
<L-イソロイシン生産菌>
 L-イソロイシン生産能を付与又は増強するための方法としては、例えば、L-イソロイシン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、スレオニンデアミナーゼやアセトヒドロキシ酸シンターゼが挙げられる(特開平2-458号, FR 0356739, 及び米国特許第5,998,178号)。
<L-isoleucine producing bacterium>
Examples of the method for imparting or enhancing L-isoleucine producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-isoleucine biosynthesis enzymes is increased. . Examples of such an enzyme include, but are not limited to, threonine deaminase and acetohydroxy acid synthase (JP-A-2-458, FR 0356739, and US Pat. No. 5,998,178).
 L-イソロイシン生産菌又はそれを誘導するための親株として、具体的には、例えば、6-ジメチルアミノプリンに耐性を有する変異株(特開平5-304969号)、チアイソロイシン、イソロイシンヒドロキサメートなどのイソロイシンアナログに耐性を有する変異株、イソロイシンアナログに加えてDL-エチオニン及び/またはアルギニンヒドロキサメートに耐性を有する変異株(特開平5-130882号) 等のエシェリヒア属細菌が挙げられる。 Specific examples of L-isoleucine-producing bacteria or parent strains for inducing them include mutants having resistance to 6-dimethylaminopurine (Japanese Patent Laid-Open No. 5-304969), thiisoleucine, isoleucine hydroxamate, etc. And an Escherichia bacterium such as a mutant strain resistant to DL-ethionine and / or arginine hydroxamate in addition to the isoleucine analog (Japanese Patent Laid-Open No. 5-130882).
<L-バリン生産菌>
 L-バリン生産能を付与又は増強するための方法としては、例えば、L-バリン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ilvGMEDAオペロンやilvBNCオペロンの遺伝子にコードされる酵素が挙げられる。ilvBNはアセトヒドロキシ酸シンターゼを、ilvCはイソメロリダクターゼ(国際公開00/50624号)を、それぞれコードする。なお、ilvGMEDAオペロンおよびilvBNCオペロンは、L-バリン、L-イソロイシン、および/またはL-ロイシンによる発現抑制(アテニュエーション)を受ける。よって、酵素活性の増強のためには、アテニュエーションに必要な領域を除去または改変し、生成するL-バリンによる発現抑制を解除するのが好ましい。また、ilvA遺伝子がコードするスレオニンデアミナーゼは、L-イソロイシン生合成系の律速段階であるL-スレオニンから2-ケト酪酸への脱アミノ化反応を触媒する酵素である。よって、L-バリン生産のためには、ilvA遺伝子が破壊等され、スレオニンデアミナーゼ活性が減少しているのが好ましい。
<L-valine producing bacteria>
Examples of a method for imparting or enhancing L-valine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-valine biosynthetic enzymes is increased. . Examples of such enzymes include, but are not limited to, enzymes encoded by genes of ilvGMEDA operon and ilvBNC operon. ilvBN encodes acetohydroxy acid synthase, and ilvC encodes isomeroreductase (WO 00/50624). The ilvGMEDA operon and the ilvBNC operon are subject to expression suppression (attenuation) by L-valine, L-isoleucine, and / or L-leucine. Therefore, in order to enhance the enzyme activity, it is preferable to remove or modify the region necessary for attenuation and to cancel the expression suppression by the produced L-valine. The threonine deaminase encoded by the ilvA gene is an enzyme that catalyzes the deamination reaction from L-threonine to 2-ketobutyric acid, which is the rate-limiting step of the L-isoleucine biosynthesis system. Therefore, for L-valine production, it is preferable that the ilvA gene is disrupted and the threonine deaminase activity is reduced.
 また、L-バリン生産能を付与又は増強するための方法としては、例えば、L-バリンの生合成経路から分岐してL-バリン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、L-ロイシン合成に関与するスレオニンデヒドラターゼやD-パントテン酸合成に関与する酵素が挙げられる(国際公開00/50624号)。 The method for imparting or enhancing L-valine-producing ability is, for example, selected from enzymes that catalyze a reaction that branches from the biosynthetic pathway of L-valine to produce a compound other than L-valine. Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned. Examples of such enzymes include, but are not limited to, threonine dehydratase involved in L-leucine synthesis and enzymes involved in D-pantothenic acid synthesis (International Publication No. 00/50624).
 L-バリン生産菌又はそれを誘導するための親株として、具体的には、例えば、ilvGMEDAオペロンを過剰発現するように改変されたE. coli株(米国特許第5,998,178号) が挙げられる。 Specific examples of the L-valine-producing bacterium or the parent strain for deriving the same include, for example, the E. coli strain (US Pat. No. 5,998,178) that has been modified to overexpress the ilvGMEDA operon.
 また、L-バリン生産菌又はそれを誘導するための親株としては、アミノアシルt-RNAシンテターゼに変異を有する株(米国特許第5,658,766号)も挙げられる。そのような株としては、例えば、イソロイシンtRNAシンテターゼをコードするileS遺伝子に変異を有するE. coli VL1970が挙げられる。E. coli VL1970は、1988年6月24日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM B-4411で寄託されている。また、L-バリン生産菌又はそれを誘導するための親株としては、生育にリポ酸を要求する、および/または、H+-ATPaseを欠失している変異株(WO96/06926)も挙げられる。 In addition, examples of L-valine-producing bacteria and parent strains for deriving the same also include strains having mutations in aminoacyl t-RNA synthetase (US Pat. No. 5,658,766). Examples of such a strain include E. coli VL1970 having a mutation in the ileS gene encoding isoleucine tRNA synthetase. E. coli VL1970 was assigned to Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on June 24, 1988 under the accession number VKPM B-4411. It has been deposited. In addition, examples of L-valine-producing bacteria or parent strains for deriving the same also include mutant strains (WO96 / 06926) that require lipoic acid for growth and / or lack H + -ATPase. .
<L-トリプトファン生産菌、L-フェニルアラニン生産菌、L-チロシン生産菌>
 L-トリプトファン生産能、L-フェニルアラニン生産能、および/またはL-チロシン生産能を付与又は増強するための方法としては、例えば、L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。
<L-tryptophan producing bacteria, L-phenylalanine producing bacteria, L-tyrosine producing bacteria>
Examples of methods for imparting or enhancing L-tryptophan production ability, L-phenylalanine production ability, and / or L-tyrosine production ability include biosynthesis of L-tryptophan, L-phenylalanine, and / or L-tyrosine. Examples include a method of modifying a bacterium so that the activity of one or more enzymes selected from system enzymes is increased.
 これらの芳香族アミノ酸に共通する生合成系酵素としては、特に制限されないが、3-デオキシ-D-アラビノヘプツロン酸-7-リン酸シンターゼ(aroG)、3-デヒドロキネートシンターゼ(aroB)、シキミ酸デヒドロゲナーゼ(aroE)、シキミ酸キナーゼ(aroL)、5-エノール酸ピルビルシキミ酸3-リン酸シンターゼ(aroA)、コリスミ酸シンターゼ(aroC)が挙げられる(欧州特許763127号)。これらの酵素をコードする遺伝子の発現はチロシンリプレッサー(tyrR)によって制御されており、tyrR遺伝子を欠損させることによって、これらの酵素の活性を増強してもよい(欧州特許763127号)。 Biosynthetic enzymes common to these aromatic amino acids are not particularly limited, but 3-deoxy-D-arabinohepturonic acid-7-phosphate synthase (aroG), 3-dehydroquinate synthase (aroB) Shikimate dehydrogenase (aroE), shikimate kinase (aroL), 5-enolic acid pyruvylshikimate 3-phosphate synthase (aroA), chorismate synthase (aroC) (European Patent No. 763127). Expression of genes encoding these enzymes is controlled by a tyrosine repressor (tyrR), and the activity of these enzymes may be enhanced by deleting the tyrR gene (European Patent No. 763127).
 L-トリプトファン生合成系酵素としては、特に制限されないが、アントラニル酸シンターゼ(trpE)、トリプトファンシンターゼ(trpAB)、及びホスホグリセリン酸デヒドロゲナーゼ(serA)が挙げられる。例えば、トリプトファンオペロンを含むDNAを導入することにより、L-トリプトファン生産能を付与又は増強できる。トリプトファンシンターゼは、それぞれtrpA及びtrpB遺伝子によりコードされるα及びβサブユニットからなる。アントラニル酸シンターゼはL-トリプトファンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。ホスホグリセリン酸デヒドロゲナーゼはL-セリンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。さらに、マレートシンターゼ(aceB)、イソクエン酸リアーゼ(aceA)、およびイソクエン酸デヒドロゲナーゼキナーゼ/フォスファターゼ(aceK)からなるオペロン(aceオペロン)の発現を増大させることによりL-トリプトファン生産能を付与または増強してもよい(WO2005/103275)。 Examples of the L-tryptophan biosynthesis enzyme include, but are not limited to, anthranilate synthase (trpE), tryptophan synthase (trpAB), and phosphoglycerate dehydrogenase (serA). For example, L-tryptophan production ability can be imparted or enhanced by introducing DNA containing a tryptophan operon. Tryptophan synthase consists of α and β subunits encoded by trpA and trpB genes, respectively. Since anthranilate synthase is subject to feedback inhibition by L-tryptophan, in order to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used. Since phosphoglycerate dehydrogenase is feedback-inhibited by L-serine, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used to enhance the activity of the enzyme. Furthermore, L-tryptophan-producing ability is imparted or enhanced by increasing the expression of an operon consisting of malate synthase (aceB), isocitrate lyase (aceA), and isocitrate dehydrogenase kinase / phosphatase (aceK). (WO2005 / 103275).
 L-フェニルアラニン生合成系酵素としては、特に制限されないが、コリスミ酸ムターゼ及びプレフェン酸デヒドラターゼが挙げられる。コリスミ酸ムターゼ及びプレフェン酸デヒドラターゼは、2機能酵素としてpheA遺伝子によってコードされている。コリスミ酸ムターゼ-プレフェン酸デヒドラターゼはL-フェニルアラニンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。 The L-phenylalanine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prefenate dehydratase. Chorismate mutase and prefenate dehydratase are encoded by the pheA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydratase is feedback-inhibited by L-phenylalanine, in order to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
 L-チロシン生合成系酵素としては、特に制限されないが、コリスミ酸ムターゼ及びプレフェン酸デヒドロゲナーゼが挙げられる。コリスミ酸ムターゼ及びプレフェン酸デヒドロゲナーゼは、2機能酵素としてtyrA遺伝子によってコードされている。コリスミ酸ムターゼ-プレフェン酸デヒドロゲナーゼはL-チロシンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。 The L-tyrosine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prephenate dehydrogenase. Chorismate mutase and prefenate dehydrogenase are encoded by the tyrA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydrogenase is feedback-inhibited by L-tyrosine, to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
 L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生産菌は、目的の芳香族アミノ酸以外の芳香族アミノ酸の生合成が低下するように改変されていてもよい。また、L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生産菌は、副生物の取り込み系が増強されるように改変されていてもよい。副生物としては、目的の芳香族アミノ酸以外の芳香族アミノ酸が挙げられる。副生物の取り込み系をコードする遺伝子としては、例えば、L-トリプトファンの取り込み系をコードする遺伝子であるtnaBやmtr、L-フェニルアラニンの取り込み系をコードする遺伝子であるpheP、L-チロシンの取り込み系をコードする遺伝子であるtyrPが挙げられる(EP1484410)。 The L-tryptophan, L-phenylalanine, and / or L-tyrosine producing bacterium may be modified so that biosynthesis of aromatic amino acids other than the target aromatic amino acid is lowered. In addition, L-tryptophan, L-phenylalanine, and / or L-tyrosine-producing bacteria may be modified so that the by-product uptake system is enhanced. By-products include aromatic amino acids other than the desired aromatic amino acid. Examples of genes encoding uptake systems of by-products include, for example, uptake systems of tnaB and mtr, which are L-tryptophan uptake systems, and pheP, L-tyrosine, which are genes encoding uptake systems of L-phenylalanine. TyrP, which is a gene coding for (EP1484410).
 L-トリプトファン生産菌又はそれを誘導するための親株として、具体的には、例えば、部分的に不活化されたトリプトファニル-tRNAシンテターゼをコードする変異型trpS遺伝子を保持するE. coli JP4735/pMU3028 (DSM10122)及びJP6015/pMU91 (DSM10123) (米国特許第5,756,345号)、トリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを有するE. coli SV164、セリンによるフィードバック阻害を受けないホスホグリセリン酸デヒドロゲナーゼをコードするserAアレル及びトリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを有するE. coli SV164 (pGH5) (米国特許第6,180,373号)、トリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを含むトリプトファンオペロンが導入された株 (特開昭57-71397号, 特開昭62-244382号, 米国特許第4,371,614号)、トリプトファナーゼが欠損したE. coli AGX17 (pGX44) (NRRL B-12263)及びAGX6(pGX50)aroP (NRRL B-12264) (米国特許第4,371,614号)、ホスホエノールピルビン酸生産能が増大したE. coli AGX17/pGX50,pACKG4-pps (WO9708333, 米国特許第6,319,696号)、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属する株 (米国特許出願公開2003/0148473 A1及び2003/0157667 A1) が挙げられる。 As an L-tryptophan-producing bacterium or a parent strain for deriving it, specifically, for example, E. coli JP4735 / pMU3028 carrying a mutant trpS gene encoding a partially inactivated tryptophanyl-tRNA synthetase. DSM10122) and JP6015 / pMU91 (DSM10123) (U.S. Patent No. 5,756,345), E. coli SV164 with trpE allele encoding anthranilate synthase not subject to feedback inhibition by tryptophan, phosphoglycerate dehydrogenase not subject to feedback inhibition by serine E. coli SV164 (pGH5) (U.S. Pat.No. 6,180,373) with serA allele encoding and trpE allele encoding anthranilate synthase not subject to feedback inhibition by tryptophan, coding for anthranilate synthase not subject to feedback inhibition by tryptophan A strain introduced with a tryptophan operon containing a trpE allele (JP 57-71397, JP 62-244382, U.S. Pat.No. 4,371,614), E. coliGX AGX17 (pGX44) lacking tryptophanase NRRL B-12263) and AGX6 (pGX50) aroP (NRRL B-12264) (U.S. Pat.No. 4,371,614), E. coli AGX17 / pGX50, pACKG4-pps (WO9708333, U.S. Patent No. No. 6,319,696), strains belonging to the genus Escherichia with increased activity of the protein encoded by the yedA gene or the yddG gene (US Patent Application Publications 2003/0148473 A1 and 2003/0157667 A1).
 L-フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、例えば、コリスミ酸ムターゼ-プレフェン酸デヒドロゲナーゼ及びチロシンリプレッサーを欠損したE. coli AJ12739 (tyrA::Tn10, tyrR) (VKPM B-8197)(WO03/044191)、フィードバック阻害が解除されたコリスミ酸ムターゼ-プレフェン酸デヒドラターゼをコードする変異型pheA34遺伝子を保持するE. coli HW1089 (ATCC 55371) (米国特許第 5,354,672号)、E. coli MWEC101-b (KR8903681)、E. coli NRRL B-12141、NRRL B-12145、NRRL B-12146、NRRL B-12147 (米国特許第4,407,952号)が挙げられる。また、L-フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、例えば、フィードバック阻害が解除されたコリスミ酸ムターゼ-プレフェン酸デヒドラターゼをコードする遺伝子を保持するE. coli K-12 <W3110 (tyrA)/pPHAB> (FERM BP-3566)、E. coli K-12 <W3110 (tyrA)/pPHAD> (FERM BP-12659)、E. coli K-12 <W3110 (tyrA)/pPHATerm> (FERM BP-12662)、E. coli K-12 AJ 12604 <W3110 (tyrA)/pBR-aroG4, pACMAB> (FERM BP-3579)も挙げられる(EP 488424 B1)。また、L-フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、例えば、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属する株も挙げられる(US2003/0148473、US2003/0157667、WO03/044192)。 As an L-phenylalanine producing bacterium or a parent strain for deriving the same, specifically, for example, E. coli AJ12739 (tyrA :: Tn10, tyrR) (VKPM) lacking chorismate mutase-prefenate dehydrogenase and tyrosine repressor B-8197) (WO03 / 044191), E. coli HW1089 (ATCC 55371) (U.S. Patent No. 5,354,672), carrying a mutant pheA34 gene encoding chorismate mutase-prefenate dehydratase with released feedback inhibition (US Patent No. 5,354,672), E .Coli MWEC 101-b (KR8903681), E.coli NRRL B-12141, NRRL B-12145, NRRL B-12146, NRRL B-12147 (US Pat. No. 4,407,952). Further, as an L-phenylalanine-producing bacterium or a parent strain for deriving the same, specifically, for example, E. coli K-12 that retains a gene encoding chorismate mutase-prefenate dehydratase in which feedback inhibition is released. <W3110 (tyrA) / pPHAB> (FERM BP-3566), E. coli K-12 <W3110 (tyrA) / pPHAD> (FERM BP-12659), E. coli K-12 <W3110 (tyrA) / pPHATerm> (FERM BP-12662), E. coli K-12 AJ 12604 <W3110 (tyrA) / pBR-aroG4, pACMAB> (FERM BP-3579) (EP 488424 B1). Specific examples of L-phenylalanine-producing bacteria or parent strains for inducing them include, for example, strains belonging to the genus Escherichia in which the activity of the protein encoded by the yedA gene or the yddG gene is increased (US2003 / 0148473, US2003 / 0157667, WO03 / 044192).
 また、L-アミノ酸生産能を付与または増強する方法としては、例えば、細菌の細胞からL-アミノ酸を排出する活性が増大するように細菌を改変する方法が挙げられる。L-アミノ酸を排出する活性は、例えば、L-アミノ酸を排出するタンパク質をコードする遺伝子の発現を上昇させることにより、増大させることができる。各種アミノ酸を排出するタンパク質をコードする遺伝子としては、例えば、b2682遺伝子(ygaZ)、b2683遺伝子(ygaH)、b1242遺伝子(ychE)、b3434遺伝子(yhgN)が挙げられる(特開2002-300874号公報)。 In addition, examples of a method for imparting or enhancing L-amino acid-producing ability include a method of modifying a bacterium so that the activity of discharging L-amino acid from the bacterium cell is increased. The activity to excrete L-amino acids can be increased, for example, by increasing the expression of a gene encoding a protein that excretes L-amino acids. Examples of genes encoding proteins that excrete various amino acids include b2682 gene (ygaZ), b2683 gene (ygaH), b1242 gene (ychE), and b3434 gene (yhgN) (Japanese Patent Laid-Open No. 2002-300874) .
 また、L-アミノ酸生産能を付与または増強する方法としては、例えば、糖代謝に関与するタンパク質やエネルギー代謝に関与するタンパク質の活性が増大するように細菌を改変する方法が挙げられる。 In addition, examples of a method for imparting or enhancing L-amino acid producing ability include a method for modifying bacteria so that the activity of a protein involved in sugar metabolism or a protein involved in energy metabolism is increased.
 糖代謝に関与するタンパク質としては、糖の取り込みに関与するタンパク質や解糖系酵素が挙げられる。糖代謝に関与するタンパク質をコードする遺伝子としては、グルコース6-リン酸イソメラーゼ遺伝子(pgi;国際公開第01/02542号パンフレット)、ホスホエノールピルビン酸シンターゼ遺伝子(pps;欧州出願公開877090号明細書)、ホスホエノ-ルピルビン酸カルボキシラ-ゼ遺伝子(ppc;国際公開95/06114号パンフレット)、ピルビン酸カルボキシラーゼ遺伝子(pyc;国際公開99/18228号パンフレット、欧州出願公開1092776号明細書)、ホスホグルコムターゼ遺伝子(pgm;国際公開03/04598号パンフレット)、フルクトース二リン酸アルドラーゼ遺伝子(pfkB, fbp;国際公開03/04664号パンフレット)、ピルビン酸キナーゼ遺伝子(pykF;国際公開03/008609号パンフレット)、トランスアルドラーゼ遺伝子(talB;国際公開03/008611号パンフレット)、フマラーゼ遺伝子(fum;国際公開01/02545号パンフレット)、non-PTSスクロース取り込み遺伝子遺伝子(csc;欧州出願公開149911号パンフレット)、スクロース資化性遺伝子(scrABオペロン;国際公開第90/04636号パンフレット)が挙げられる。 Proteins involved in sugar metabolism include proteins involved in sugar uptake and glycolytic enzymes. Examples of genes encoding proteins involved in sugar metabolism include glucose 6-phosphate isomerase gene (pgi; WO 01/02542 pamphlet), phosphoenolpyruvate synthase gene (pps; EP 877090 specification) , Phosphoenolpyruvate carboxylase gene (ppc; WO 95/06114 pamphlet), pyruvate carboxylase gene (pyc; WO 99/18228 pamphlet, European application 1092776), phosphoglucomutase gene (Pgm; WO 03/04598 pamphlet), fructose diphosphate aldolase gene (pfkB, fbp; WO 03/04664 pamphlet), pyruvate kinase gene (pykF; WO 03/008609 pamphlet), transaldolase Gene (talB; WO03 / 008611 pamphlet), fumarase residue Child (fum; International Publication No. 01/02545 pamphlet), non-PTS sucrose uptake gene gene (csc; European Application Publication No. 149911 pamphlet), sucrose utilization gene (scrAB operon; International Publication No. 90/04636 pamphlet) Can be mentioned.
 エネルギー代謝に関与するタンパク質をコードする遺伝子としては、トランスヒドロゲナーゼ遺伝子(pntAB;米国特許 5,830,716号明細書)、チトクロムbo型オキシダーゼ(cytochromoe bo type oxidase)遺伝子(cyoB;欧州特許出願公開1070376号明細書)が挙げられる。 Examples of genes encoding proteins involved in energy metabolism include a transhydrogenase gene (pntAB; US Pat. No. 5,830,716), a cytochrome bo type oxidase (cyoB; European Patent Application Publication No. 1070376) Is mentioned.
 なお、上記のL-アミノ酸生産菌の育種に使用される遺伝子は、元の機能が維持されたタンパク質をコードする限り、上記例示した遺伝子や公知の塩基配列を有する遺伝子に限られず、そのバリアントであってもよい。例えば、L-アミノ酸生産菌の育種に使用される遺伝子は、公知のタンパク質のアミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。遺伝子やタンパク質のバリアントについては、後述するacpP遺伝子およびfabF遺伝子ならびにそれらがコードするタンパク質のバリアントに関する記載を準用できる。 The gene used for breeding the above-mentioned L-amino acid-producing bacteria is not limited to the above-exemplified genes or genes having a known base sequence, as long as it encodes a protein having the original function maintained. There may be. For example, a gene used for breeding an L-amino acid-producing bacterium is an amino acid in which one or several amino acids at one or several positions are substituted, deleted, inserted or added in the amino acid sequence of a known protein. It may be a gene encoding a protein having a sequence. As for gene and protein variants, the descriptions relating to the acpP gene and fabF gene and the protein variants encoded by them can be applied mutatis mutandis.
<1-2>acpP-fabFオペロンの弱化
 本発明の細菌は、acpP-fabFオペロンが弱化されるように改変されている。acpP-fabFオペロンは脂肪酸生合成に関与する(非特許文献1)ため、acpP-fabFオペロンが弱化された細菌を用いてL-アミノ酸生産培養を行った場合、非改変株を用いてL-アミノ酸生産培養を行った場合と比較して、脂肪酸生合成経路への炭素の流入が減る結果、余剰の炭素や還元力がL-アミノ酸生産に用いられ、L-アミノ酸生産が向上すると推定される。本発明の細菌は、L-アミノ酸生産能を有する細菌を、acpP-fabFオペロンが弱化されるように改変することにより取得できる。また、本発明の細菌は、acpP-fabFオペロンが弱化されるように細菌を改変した後に、L-アミノ酸生産能を付与または増強することによっても得ることができる。また、本発明の細菌は、acpP-fabFオペロンが弱化されるように改変されたことによりL-アミノ酸生産能を獲得したものであってもよい。本発明の細菌を構築するための改変は、任意の順番で行うことができる。
<1-2> Weakness of acpP-fabF operon The bacterium of the present invention has been modified so that the acpP-fabF operon is weakened. Since the acpP-fabF operon is involved in fatty acid biosynthesis (Non-patent Document 1), when L-amino acid production culture is performed using bacteria in which the acpP-fabF operon has been weakened, L-amino acid is used using an unmodified strain. As compared to the case where production culture is performed, it is estimated that as a result of a decrease in inflow of carbon into the fatty acid biosynthetic pathway, surplus carbon and reducing power are used for L-amino acid production and L-amino acid production is improved. The bacterium of the present invention can be obtained by modifying a bacterium having an L-amino acid-producing ability so that the acpP-fabF operon is weakened. The bacterium of the present invention can also be obtained by imparting or enhancing L-amino acid-producing ability after modifying the bacterium so that the acpP-fabF operon is weakened. In addition, the bacterium of the present invention may have acquired L-amino acid-producing ability by being modified so that the acpP-fabF operon is weakened. The modification for constructing the bacterium of the present invention can be performed in any order.
 「acpP-fabFオペロンが弱化される」とは、acpP-fabFオペロンの遺伝子にコードされるタンパク質の活性が低下すること、および/または、acpP-fabFオペロンの遺伝子の発現が低下することを意味する。「遺伝子の発現が低下する」とは、遺伝子の転写量(mRNA量)が低下すること、および/または、遺伝子の翻訳量(タンパク質の量)が低下することを意味する。「acpP-fabFオペロンの遺伝子」とは、acpP遺伝子および/またはfabF遺伝子をいう。すなわち、「acpP-fabFオペロンの遺伝子にコードされるタンパク質」とは、acpP遺伝子にコードされるタンパク質および/またはfabF遺伝子にコードされるタンパク質(すなわち、AcpPタンパク質および/またはFabFタンパク質)をいう。タンパク質の活性は、後述するように、例えば、同タンパク質をコードする遺伝子の発現を弱化することや、同タンパク質をコードする遺伝子を破壊することにより、達成できる。すなわち、「acpP-fabFオペロンが弱化される」とは、例えば、acpP-fabFオペロンの遺伝子の発現が弱化されることであってよい。本発明においては、例えば、acpP遺伝子およびfabF遺伝子のいずれかの発現が弱化されてもよく、両方の発現が弱化されてもよい。すなわち、acpP-fabFオペロン全体の発現が弱化されてもよい。 “AcpP-fabF operon is weakened” means that the activity of the protein encoded by the gene of the acpP-fabF operon is decreased and / or the expression of the gene of the acpP-fabF operon is decreased. . “Gene expression decreases” means that the gene transcription amount (mRNA amount) decreases and / or the gene translation amount (protein amount) decreases. The “gene of the acpP-fabF operon” refers to the acpP gene and / or the fabF gene. That is, the “protein encoded by the gene of the acpP-fabF operon” refers to a protein encoded by the acpP gene and / or a protein encoded by the fabF gene (ie, AcpP protein and / or FabF protein). As described later, the activity of the protein can be achieved, for example, by weakening the expression of the gene encoding the protein or by destroying the gene encoding the protein. That is, “the acpP-fabF operon is weakened” may mean, for example, that the expression of the acpP-fabF operon gene is weakened. In the present invention, for example, the expression of either the acpP gene or the fabF gene may be weakened, or the expression of both may be weakened. That is, the expression of the entire acpP-fabF operon may be weakened.
 acpP遺伝子は、アシルキャリアタンパク質(acyl carrier protein;ACP)をコードする遺伝子である。「ACP」とは、脂肪酸生合成の際に、4’-ホスホパンテテイン基を介して脂肪酸鎖と結合し、脂肪酸鎖を担持する機能を有するタンパク質をいう。また、当該機能を、「ACP活性」ともいう。なお、ACPは、不活性なapo-ACPとして翻訳され、その後、ACPシンターゼ(ACP synthease)によりapo-ACPの36位(エシェリヒア・コリの場合)のセリン残基に4’-ホスホパンテテイン(4'-phosphopanteheine)が補因子として付加され、活性なholo-ACPとなる。 The acpP gene is a gene encoding an acyl carrier protein (ACP). “ACP” refers to a protein having a function of carrying a fatty acid chain by binding to the fatty acid chain via a 4′-phosphopantethein group during fatty acid biosynthesis. This function is also referred to as “ACP activity”. ACP is translated as inactive apo-ACP, and then 4'-phosphopantethein (4) is added to the serine residue at position 36 of apo-ACP (in the case of Escherichia coli) by ACP synthase. '-phosphopanteheine) is added as a cofactor, resulting in active holo-ACP.
 fabF遺伝子は、β-ケトアシル-ACPシンターゼII(beta-ketoacyl-ACP synthase II)をコードする遺伝子である。「β-ケトアシル-ACPシンターゼII」とは、アシル-ACP(炭素数n)とマロニル-ACPから、3-オキソアシル-ACP(炭素数n+2)を生成する反応を触媒する酵素をいう(EC 2.3.1.41)。また、同反応を触媒する活性を、「β-ケトアシル-ACPシンターゼII活性」ともいう。 The fabF gene is a gene encoding β-ketoacyl-ACP synthase II. “Β-ketoacyl-ACP synthase II” refers to an enzyme that catalyzes a reaction for producing 3-oxoacyl-ACP (carbon number n + 2) from acyl-ACP (carbon number n) and malonyl-ACP (EC 2.3. 1.41). The activity that catalyzes this reaction is also referred to as “β-ketoacyl-ACP synthase II activity”.
 Escherichia coli K-12 MG1655株のacpP遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、1150838~1151074位の配列に相当する。MG1655株のacpP遺伝子は、ECK1080、JW1080と同義である。また、MG1655株のAcpPタンパク質は、GenBank accession NP_415612 (version NP_415612.1 GI:16129057, locus_tag="b1094")として登録されている。 The acpP gene of Escherichia coli K-12 MG1655 strain corresponds to the sequence of 1150838 to 1151074 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. The acpP gene of MG1655 strain is synonymous with ECK1080 and JW1080. The AcpP protein of the MG1655 strain is registered as GenBank accession NP_415612 (version NP_415612.1 GI: 16129057, locus_tag = "b1094").
 Escherichia coli K-12 MG1655株のfabF遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.2 GI:49175990)として登録されているゲノム配列中、1151162~1152403位の配列に相当する。MG1655株のfabF遺伝子は、ECK1081、JW1081と同義である。また、MG1655株のFabFタンパク質は、GenBank accession NP_415613 (version NP_415613.1 GI:16129058, locus_tag="b1095")として登録されている。 The fabF gene of Escherichia coli K-12 MG1655 strain corresponds to the 1151162 to 1152403 positions in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.2 GI: 49175990) in the NCBI database. The fabF gene of MG1655 strain is synonymous with ECK1081 and JW1081. The FabF protein of the MG1655 strain is registered as GenBank accession NP_415613 (version NP_415613.1 GI: 16129058, locus_tag = "b1095").
 MG1655株のacpP-fabFオペロンの塩基配列(上流210 bpを含む)を、配列番号7に示す。配列番号7において、acpP遺伝子の塩基配列は211~447位に、fabF遺伝子の塩基配列は535~1776位に、それぞれ相当する。また、MG1655株のAcpPタンパク質およびFabFタンパク質のアミノ酸配列を、それぞれ配列番号8および9に示す。 The base sequence of the acpP-fabF operon of MG1655 strain (including upstream 210 bp) is shown in SEQ ID NO: 7. In SEQ ID NO: 7, the base sequence of the acpP gene corresponds to positions 211 to 447, and the base sequence of the fabF gene corresponds to positions 535 to 1776, respectively. In addition, the amino acid sequences of the AcpP protein and FabF protein of the MG1655 strain are shown in SEQ ID NOs: 8 and 9, respectively.
 Pantoea ananatis AJ13355株のacpP遺伝子は、NCBIデータベースに、GenBank accession NC_017531 (VERSION NC_017531.1 GI:386014600)として登録されているゲノム配列中、986154~986528位の配列に相当する。また、AJ13355株のAcpPタンパク質は、GenBank accession YP_005933706 (version YP_005933706.1 GI:386015425)として登録されている。 The acpP gene of Pantoea ananatis AJ13355 strain corresponds to the sequence of positions 986154 to 986528 in the genome sequence registered as GenBank accession NC_017531 (VERSION NC_017531.1 GI: 386014600) in the NCBI database. The AcpP protein of AJ13355 strain is registered as GenBank accession YP_005933706 (version YP_005933706.1 GI: 386015425).
 Pantoea ananatis AJ13355株のfabF遺伝子は、NCBIデータベースに、GenBank accession NC_017531 (VERSION NC_017531.1 GI:386014600)として登録されているゲノム配列中、986650~987855位の配列に相当する。また、AJ13355株のFabFタンパク質は、GenBank accession YP_005933707 (version YP_005933707.1 GI:386015426)として登録されている。 The fabF gene of Pantoea ananatis AJ13355 strain corresponds to the sequence of positions 986650 to 987855 in the genome sequence registered as GenBank accession NC_017531 (VERSION NC_017531.1 GI: 386014600) in the NCBI database. In addition, FabF protein of AJ13355 strain is registered as GenBank accession YP_005933707 (version YP_005933707.1 GI: 386015426).
 AJ13355株のacpP-fabFオペロンの塩基配列(上流210 bpを含む)を、配列番号10に示す。配列番号10において、acpP遺伝子の塩基配列は211~585位に、fabF遺伝子の塩基配列は707~1912位に、それぞれ相当する。また、AJ13355株のAcpPタンパク質およびFabFタンパク質のアミノ酸配列を、それぞれ配列番号11および12に示す。 The base sequence of the acpP-fabF operon of AJ13355 strain (including upstream 210 bp) is shown in SEQ ID NO: 10. In SEQ ID NO: 10, the base sequence of the acpP gene corresponds to positions 211 to 585, and the base sequence of the fabF gene corresponds to positions 707 to 1912, respectively. In addition, the amino acid sequences of the AcpP protein and FabF protein of the AJ13355 strain are shown in SEQ ID NOs: 11 and 12, respectively.
 AcpPタンパク質またはFabFタンパク質は、元の機能が維持されている限り、上記AcpPタンパク質またはFabFタンパク質のバリアントであってもよい。同様に、acpP遺伝子またはfabF遺伝子は、元の機能が維持されている限り、上記acpP遺伝子またはfabF遺伝子のバリアントであってもよい。なお、そのような元の機能が維持されたバリアントを「保存的バリアント」という場合がある。「AcpPタンパク質」または「FabFタンパク質」という用語は、それぞれ、上記AcpPタンパク質またはFabFタンパク質に加えて、それらの保存的バリアントを包含するものとする。同様に、「acpP遺伝子」または「fabF遺伝子」という用語は、それぞれ、上記acpP遺伝子またはfabF遺伝子に加えて、それらの保存的バリアントを包含するものとする。保存的バリアントとしては、例えば、上記AcpPタンパク質またはFabFタンパク質や上記acpP遺伝子またはfabF遺伝子の、ホモログや人為的な改変体が挙げられる。 The AcpP protein or FabF protein may be a variant of the AcpP protein or FabF protein as long as the original function is maintained. Similarly, the acpP gene or fabF gene may be a variant of the acpP gene or fabF gene as long as the original function is maintained. Such a variant in which the original function is maintained may be referred to as a “conservative variant”. The terms “AcpP protein” or “FabF protein” are intended to encompass, in addition to the AcpP protein or FabF protein, conservative variants thereof, respectively. Similarly, the terms “acpP gene” or “fabF gene” are intended to include conservative variants thereof in addition to the acpP gene or fabF gene, respectively. Examples of the conservative variant include homologues and artificial modifications of the AcpP protein or FabF protein, the acpP gene or the fabF gene.
 「元の機能が維持されている」とは、タンパク質または遺伝子のバリアントが、元のタンパク質または遺伝子の機能(活性や性質)に対応する機能(活性や性質)を有することをいう。すなわち、例えば、AcpPタンパク質についての「元の機能が維持されている」とは、タンパク質がACP活性を有することをいい、FabFタンパク質についての「元の機能が維持されている」とは、タンパク質がβ-ケトアシル-ACPシンターゼII活性を有することをいう。また、例えば、acpP遺伝子についての「元の機能が維持されている」とは、遺伝子がACP活性を有するタンパク質をコードすることをいい、fabF遺伝子についての「元の機能が維持されている」とは、遺伝子がβ-ケトアシル-ACPシンターゼII活性を有するタンパク質をコードすることをいう。 “The original function is maintained” means that a protein or gene variant has a function (activity or property) corresponding to the function (activity or property) of the original protein or gene. That is, for example, “the original function is maintained” for the AcpP protein means that the protein has ACP activity, and “the original function is maintained” for the FabF protein means that the protein is Having β-ketoacyl-ACP synthase II activity. For example, “the original function is maintained” for the acpP gene means that the gene encodes a protein having ACP activity, and “the original function is maintained” for the fabF gene. Means that the gene encodes a protein having β-ketoacyl-ACP synthase II activity.
 上記AcpPタンパク質またはFabFタンパク質のホモログをコードする遺伝子は、例えば、上記acpP遺伝子またはfabF遺伝子の塩基配列を問い合わせ配列として用いたBLAST検索やFASTA検索によって公開データベースから容易に取得することができる。また、上記AcpPタンパク質またはFabFタンパク質のホモログをコードする遺伝子は、例えば、細菌等の生物の染色体を鋳型にして、これら公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとして用いたPCRにより取得することができる。 The gene encoding the homologue of the AcpP protein or FabF protein can be easily obtained from a public database by BLAST search or FASTA search using the base sequence of the acpP gene or fabF gene as a query sequence, for example. Further, the gene encoding the homologue of the AcpP protein or FabF protein is obtained by PCR using, for example, a chromosome of an organism such as a bacterium as a template and oligonucleotides prepared based on these known gene sequences as primers. be able to.
 acpP遺伝子またはfabF遺伝子は、上記AcpPタンパク質またはFabFタンパク質の保存的バリアントをコードする遺伝子であってよい。例えば、acpP遺伝子またはfabF遺伝子は、元の機能が維持されたタンパク質をコードする限りにおいて、上記アミノ酸配列(例えば、配列番号8、9、11、または12のアミノ酸配列)において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入、又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。この場合、対応する活性(ACP活性やβ-ケトアシル-ACPシンターゼII活性)は、1又は数個のアミノ酸が置換、欠失、挿入、又は付加される前のタンパク質に対して、通常70%以上、好ましくは80%以上、より好ましくは90%以上が維持され得る。なお上記「1又は数個」とは、アミノ酸残基のタンパク質の立体構造における位置やアミノ酸残基の種類によっても異なるが、具体的には、1~50個、1~40個、1~30個、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個を意味する。 The acpP gene or fabF gene may be a gene encoding a conservative variant of the AcpP protein or FabF protein. For example, the acpP gene or the fabF gene has one or several amino acids in the amino acid sequence (for example, the amino acid sequence of SEQ ID NO: 8, 9, 11, or 12) as long as it encodes a protein having the original function maintained. It may be a gene encoding a protein having an amino acid sequence in which one or several amino acids at the position are substituted, deleted, inserted, or added. In this case, the corresponding activity (ACP activity or β-ketoacyl-ACP synthase II activity) is usually 70% or more relative to the protein before 1 or several amino acids are substituted, deleted, inserted or added. Preferably, 80% or more, more preferably 90% or more can be maintained. The “one or several” is different depending on the position of the amino acid residue in the three-dimensional structure of the protein and the type of amino acid residue, but specifically 1 to 50, 1 to 40, 1 to 30 It means 1 to 20, preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 5, and particularly preferably 1 to 3.
 上記の1若しくは数個のアミノ酸の置換、欠失、挿入、または付加は、タンパク質の機能が正常に維持される保存的変異である。保存的変異の代表的なものは、保存的置換である。保存的置換とは、置換部位が芳香族アミノ酸である場合には、Phe、Trp、Tyr間で、置換部位が疎水性アミノ酸である場合には、Leu、Ile、Val間で、極性アミノ酸である場合には、Gln、Asn間で、塩基性アミノ酸である場合には、Lys、Arg、His間で、酸性アミノ酸である場合には、Asp、Glu間で、ヒドロキシル基を持つアミノ酸である場合には、Ser、Thr間でお互いに置換する変異である。保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、ArgからGln、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、CysからSer又はAlaへの置換、GlnからAsn、Glu、Lys、His、Asp又はArgへの置換、GluからGly、Asn、Gln、Lys又はAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はPheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換、及び、ValからMet、Ile又はLeuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、遺伝子が由来する生物の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。 The substitution, deletion, insertion, or addition of one or several amino acids described above is a conservative mutation that maintains the protein function normally. A typical conservative mutation is a conservative substitution. Conservative substitution is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In this case, between Gln and Asn, when it is a basic amino acid, between Lys, Arg, and His, when it is an acidic amino acid, between Asp and Glu, when it is an amino acid having a hydroxyl group Is a mutation that substitutes between Ser and Thr. Specifically, substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, Cys to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Substitution from Lys to Asn, Glu, Gln, His or Arg, substitution from Met to Ile, Leu, Val or Phe, substitution from Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution, substitution from Thr to Ser or Ala, substitution from Trp to Phe or Tyr, substitution from Tyr to His, Phe or Trp, and substitution from Val to Met, Ile or Leu. In addition, amino acid substitutions, deletions, insertions, additions, or inversions as described above include naturally occurring mutations (mutants or variants) such as those based on individual differences or species differences of the organism from which the gene is derived. Also included by
 さらに、上記のような保存的変異を有する遺伝子は、上記アミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の相同性を有し、かつ、元の機能が維持されたタンパク質をコードする遺伝子であってもよい。尚、本明細書において、「相同性」(homology)は、「同一性」(identity)を意味する。 Furthermore, the gene having a conservative mutation as described above is 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 97% or more, particularly preferably 99%, based on the entire amino acid sequence. It may be a gene encoding a protein having a homology of at least% and maintaining the original function. In the present specification, “homology” means “identity”.
 また、acpP遺伝子またはfabF遺伝子は、公知の遺伝子配列から調製され得るプローブ、例えば上記塩基配列(例えば、配列番号7の211~447位、配列番号7の535~1776位、配列番号10の211~585位、または配列番号10の707~1912位の塩基配列)の全体または一部に対する相補配列とストリンジェントな条件下でハイブリダイズし、元の機能が維持されたタンパク質をコードするDNAであってもよい。また、acpP-fabFオペロンは、公知の遺伝子配列から調製され得るプローブ、例えば上記塩基配列(例えば、配列番号7の全体、配列番号7の211~1776位、配列番号10の全体、または配列番号10の211~1912位の塩基配列)の全体または一部に対する相補配列とストリンジェントな条件下でハイブリダイズし、元の機能が維持されたタンパク質をコードするDNAであってもよい。「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。一例を示せば、相同性が高いDNA同士、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、特に好ましくは99%以上の相同性を有するDNA同士がハイブリダイズし、それより相同性が低いDNA同士がハイブリダイズしない条件、あるいは通常のサザンハイブリダイゼーションの洗いの条件である60℃、1×SSC、0.1% SDS、好ましくは60℃、0.1×SSC、0.1% SDS、より好ましくは、68℃、0.1×SSC、0.1% SDSに相当する塩濃度および温度で、1回、好ましくは2~3回洗浄する条件を挙げることができる。 The acpP gene or fabF gene is a probe that can be prepared from a known gene sequence, for example, the above base sequence (for example, positions 211 to 447 of SEQ ID NO: 7, positions 535 to 1776 of SEQ ID NO: 7, 211 to DNA that encodes a protein that hybridizes under stringent conditions with a complementary sequence to the whole or part of position 585 or the nucleotide sequence of positions 707 to 1912 of SEQ ID NO: 10 and maintains the original function. Also good. The acpP-fabF operon is a probe that can be prepared from a known gene sequence, for example, the above base sequence (for example, the entire SEQ ID NO: 7, positions 211 to 1776 of SEQ ID NO: 7, the entire SEQ ID NO: 10, or SEQ ID NO: 10 DNA that encodes a protein that hybridizes under stringent conditions with a complementary sequence to the whole or a part of the base sequence at positions 211 to 1912) and maintains the original function. “Stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, highly homologous DNAs, for example, 80% or more, preferably 90% or more, more preferably 95% or more, more preferably 97% or more, particularly preferably 99% or more between DNAs having homology. Is hybridized and DNAs with lower homology do not hybridize with each other, or normal Southern hybridization washing conditions of 60 ° C., 1 × SSC, 0.1% SDS, preferably 60 ° C., 0.1 × SSC And 0.1% SDS, more preferably 68 ° C., 0.1 × SSC, salt concentration and temperature corresponding to 0.1% SDS, and conditions of washing once, preferably 2 to 3 times.
 上述の通り、上記ハイブリダイゼーションに用いるプローブは、遺伝子の相補配列の一部であってもよい。そのようなプローブは、公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとし、これらの塩基配列を含むDNA断片を鋳型とするPCRによって作製することができる。例えば、プローブとしては、300 bp程度の長さのDNA断片を用いることができる。プローブとして300 bp程度の長さのDNA断片を用いる場合には、ハイブリダイゼーションの洗いの条件としては、50℃、2×SSC、0.1% SDSが挙げられる。 As described above, the probe used for the hybridization may be a part of a gene complementary sequence. Such a probe can be prepared by PCR using an oligonucleotide prepared on the basis of a known gene sequence as a primer and a DNA fragment containing these base sequences as a template. For example, as the probe, a DNA fragment having a length of about 300 bp can be used. When a DNA fragment having a length of about 300 bp is used as a probe, hybridization washing conditions include 50 ° C., 2 × SSC, and 0.1% SDS.
 また、acpP遺伝子またはfabF遺伝子は、元の機能が維持されたタンパク質をコードする限り、任意のコドンがそれと等価のコドンに置換されたものであってもよい。例えば、acpP遺伝子またはfabF遺伝子は、使用する宿主のコドン使用頻度に応じて最適なコドンを有するように改変されたものであってもよい。 Further, the acpP gene or fabF gene may be one in which any codon is replaced with an equivalent codon as long as it encodes a protein having the original function maintained. For example, the acpP gene or the fabF gene may be modified to have an optimal codon according to the codon usage frequency of the host to be used.
 なお、上記の遺伝子やタンパク質の保存的バリアントに関する記載は、L-アミノ酸生合成系酵素等の任意のタンパク質、およびそれらをコードする遺伝子にも準用できる。 In addition, the description regarding the said gene and protein conservative variant is applicable mutatis mutandis to arbitrary proteins, such as L-amino acid biosynthesis enzyme, and the gene which codes them.
<1-3>タンパク質の活性を低下させる手法
 以下に、AcpPタンパク質やFabFタンパク質等のタンパク質の活性を低下させる手法について説明する。
<1-3> Technique for Reducing Protein Activity A technique for reducing the activity of proteins such as AcpP protein and FabF protein will be described below.
 「タンパク質の活性が低下する」とは、同タンパク質の細胞当たりの活性が野性株や親株等の非改変株と比較して減少していることを意味し、活性が完全に消失している場合を含む。「タンパク質の活性が低下する」とは、具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が低下していること、および/または、同タンパク質の分子当たりの機能が低下していることをいう。すなわち、「タンパク質の活性が低下する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。なお、「タンパク質の細胞当たりの分子数が低下している」ことには、同タンパク質が全く存在していない場合が含まれる。また、「タンパク質の分子当たりの機能が低下している」ことには、同タンパク質の分子当たりの機能が完全に消失している場合が含まれる。タンパク質の活性は、非改変株と比較して低下していれば特に制限されないが、例えば、非改変株と比較して、90%以下、80%以下、70%以下、60%以下、55%以下、50%以下、30%以下、20%以下、10%以下、5%以下、または0%に低下してよい。 “Protein activity decreases” means that the activity per cell of the protein is decreased compared to wild-type strains and parental unmodified strains, and the activity is completely lost. including. Specifically, “the activity of the protein is decreased” means that the number of molecules per cell of the protein is decreased and / or the function per molecule of the protein compared to the unmodified strain. Means that it is decreasing. In other words, “activity” in the case of “decrease in protein activity” means not only the catalytic activity of the protein but also the transcription amount (mRNA amount) or translation amount (protein amount) of the gene encoding the protein. May be. Note that “the number of molecules per cell of the protein is decreased” includes a case where the protein does not exist at all. Moreover, “the function per molecule of the protein is reduced” includes the case where the function per molecule of the protein is completely lost. The activity of the protein is not particularly limited as long as it is lower than that of the non-modified strain. For example, it is 90% or less, 80% or less, 70% or less, 60% or less, 55% compared to the non-modified strain. Hereinafter, it may be reduced to 50% or less, 30% or less, 20% or less, 10% or less, 5% or less, or 0%.
 タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子の発現を低下させることにより達成される。「遺伝子の発現が低下する」ことには、同遺伝子が全く発現していない場合が含まれる。なお、「遺伝子の発現が低下する」ことを、「遺伝子の発現が弱化される」ともいう。遺伝子の発現は、例えば、非改変株と比較して、90%以下、80%以下、70%以下、60%以下、55%以下、50%以下、30%以下、20%以下、10%以下、5%以下、または0%に低下してよい。 The modification that reduces the activity of the protein is achieved, for example, by reducing the expression of a gene encoding the protein. “Gene expression decreases” includes the case where the gene is not expressed at all. In addition, “the expression of the gene is reduced” is also referred to as “the expression of the gene is weakened”. The expression of the gene is, for example, 90% or less, 80% or less, 70% or less, 60% or less, 55% or less, 50% or less, 30% or less, 20% or less, 10% or less as compared with the unmodified strain It may be reduced to 5% or less, or 0%.
 なお、例えばE. coliにおいて、acpP遺伝子は必須(essential)であることが知られている。よって、AcpPタンパク質の活性を低下させる場合は、必要により、本発明の細菌を培地で培養した際に、本発明の細菌が増殖でき、目的のL-アミノ酸が生産される程度に、AcpPタンパク質の活性を残存させる。すなわち、AcpPタンパク質の活性は、非改変株と比較して、0%には低下しない(完全には消失しない)ものとする。例えば、AcpPタンパク質の活性は、非改変株と比較して、1%以上、5%以上、10%以上、15%以上、17%以上、20%以上、30%以上、または50%以上残存してよい。AcpPタンパク質の活性は、具体的には、例えば、非改変株と比較して、1%~90%、5%~80%、10%~70%、15%~60%、または17%~55%に低下してもよい。また、acpP遺伝子の発現量は、非改変株と比較して、0%には低下しないものとする。例えば、acpP遺伝子の発現量は、非改変株と比較して、1%以上、5%以上、10%以上、20%以上、15%以上、17%以上、30%以上、または50%以上残存してよい。acpP遺伝子の発現量は、具体的には、例えば、非改変株と比較して、1%~90%、5%~80%、10%~70%、15%~60%、または17%~55%に低下してもよい。このようなAcpPタンパク質の活性を低下させる場合の記載は、FabFタンパク質の活性を低下させる場合に準用してもよい。 For example, in E. coli, the acpP gene is known to be essential. Therefore, when reducing the activity of the AcpP protein, if necessary, when the bacterium of the present invention is cultured in a medium, the bacterium of the present invention can proliferate and the desired L-amino acid is produced. The activity remains. That is, the activity of AcpP protein is not reduced to 0% (not completely disappeared) as compared to the unmodified strain. For example, the activity of AcpP protein remains 1% or more, 5% or more, 10% or more, 15% or more, 17% or more, 20% or more, 30% or more, or 50% or more compared to the unmodified strain. It's okay. Specifically, the activity of the AcpP protein is, for example, 1% to 90%, 5% to 80%, 10% to 70%, 15% to 60%, or 17% to 55 compared to the unmodified strain. % May be reduced. In addition, the expression level of the acpP gene is not reduced to 0% compared to the unmodified strain. For example, the expression level of the acpP gene remains 1% or more, 5% or more, 10% or more, 20% or more, 15% or more, 17% or more, 30% or more, or 50% or more compared to the unmodified strain. You can do it. Specifically, the expression level of the acpP gene is, for example, 1% to 90%, 5% to 80%, 10% to 70%, 15% to 60%, or 17% to 17% compared to the unmodified strain. It may be reduced to 55%. Such a description of reducing the activity of the AcpP protein may be applied mutatis mutandis to reducing the activity of the FabF protein.
 遺伝子の発現の低下は、例えば、転写効率の低下によるものであってもよく、翻訳効率の低下によるものであってもよく、それらの組み合わせによるものであってもよい。遺伝子の発現の低下は、例えば、遺伝子のプロモーター、シャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)、RBSと開始コドンとの間のスペーサー領域等の発現調節配列を改変することにより達成できる。AcpPタンパク質は細胞内で豊富なタンパク質として知られており、よって、acpP遺伝子の野生型プロモーターの活性は強いことが示唆される(非特許文献1)。従って、例えば、acpP遺伝子の野生型プロモーターをより活性の弱いプロモーターに置換することにより、acpP遺伝子の発現を低下させることができる。acpP遺伝子の野生型プロモーターより活性の弱いプロモーターとしては、例えば、lacプロモーターや、ロシア特許出願公開第2006/134574号公報に記載のPtac84プロモーターが挙げられる。発現調節配列を改変する場合には、発現調節配列は、好ましくは1塩基以上、より好ましくは2塩基以上、特に好ましくは3塩基以上が改変される。また、発現調節配列の一部または全部を欠失させてもよい。また、遺伝子の発現の低下は、例えば、発現制御に関わる因子を操作することによっても達成できる。発現制御に関わる因子としては、転写や翻訳制御に関わる低分子(誘導物質、阻害物質など)、タンパク質(転写因子など)、核酸(siRNAなど)等が挙げられる。また、遺伝子の発現の低下は、例えば、遺伝子のコード領域に遺伝子の発現が低下するような変異を導入することによっても達成できる。例えば、遺伝子のコード領域のコドンを、宿主においてより低頻度で利用される同義コドンに置き換えることによって、遺伝子の発現を低下させることができる。また、例えば、後述するような遺伝子の破壊により、遺伝子の発現自体が低下し得る。 The decrease in gene expression may be due to, for example, a decrease in transcription efficiency, a decrease in translation efficiency, or a combination thereof. For example, gene expression can be reduced by altering expression regulatory sequences such as the promoter of the gene, Shine-Dalgarno (SD) sequence (also called ribosome binding site (RBS)), spacer region between RBS and start codon. Can be achieved. AcpP protein is known as an abundant protein in cells, and thus it is suggested that the activity of the wild type promoter of the acpP gene is strong (Non-patent Document 1). Therefore, for example, by replacing the wild-type promoter of the acpP gene with a less active promoter, the expression of the acpP gene can be reduced. Examples of promoters that are less active than the wild type promoter of the acpP gene include the lac promoter and the P tac84 promoter described in Russian Patent Application Publication No. 2006/134574. In the case of modifying the expression control sequence, the expression control sequence is preferably modified by 1 base or more, more preferably 2 bases or more, particularly preferably 3 bases or more. Further, part or all of the expression regulatory sequence may be deleted. In addition, reduction of gene expression can be achieved, for example, by manipulating factors involved in expression control. Factors involved in expression control include small molecules (such as inducers and inhibitors) involved in transcription and translation control, proteins (such as transcription factors), nucleic acids (such as siRNA), and the like. In addition, reduction of gene expression can be achieved, for example, by introducing a mutation that reduces gene expression into the coding region of the gene. For example, gene expression can be reduced by replacing codons in the coding region of the gene with synonymous codons that are used less frequently in the host. In addition, for example, gene expression itself may be reduced by gene disruption as described below.
 acpP遺伝子およびfabF遺伝子はacpP-fabFオペロンとして共転写される。なお、fabF遺伝子は、自前のプロモーターから個別にも転写される。また、acpP遺伝子は、yceD-rpmF-plsX-fabHDG-acpP-fabF遺伝子クラスター中の、fabD遺伝子およびfabG遺伝子から共転写され得る。よって、例えば、acpP-fabFオペロンの共転写を制御するプロモーターを改変することにより、acpP遺伝子およびfabF遺伝子の発現をまとめて低下させてもよい。また、例えば、fabF遺伝子の自前のプロモーターを改変することにより、fabF遺伝子の発現を単独で低下させてもよい。また、例えば、fabD遺伝子および/またはfabG遺伝子のプロモーターを改変することにより、それらの遺伝子とともにacpP遺伝子の発現を低下させてもよい。また、例えば、acpP遺伝子および/またはfabF遺伝子のコード領域に、遺伝子の発現が低下するような変異を導入することにより、acpP遺伝子および/またはfabF遺伝子の発現を低下させてもよい。 The acpP gene and fabF gene are co-transcribed as the acpP-fabF operon. The fabF gene is also transcribed individually from its own promoter. The acpP gene can also be co-transcribed from the fabD gene and the fabG gene in the yceD-rpmF-plsX-fabHDG-acpP-fabF gene cluster. Therefore, for example, the expression of the acpP gene and the fabF gene may be collectively reduced by modifying a promoter that controls co-transcription of the acpP-fabF operon. In addition, for example, the expression of the fabF gene may be decreased alone by modifying the promoter in front of the fabF gene. Further, for example, by modifying the promoter of the fabD gene and / or the fabG gene, the expression of the acpP gene may be decreased together with those genes. In addition, for example, the expression of the acpP gene and / or the fabF gene may be reduced by introducing a mutation that reduces the expression of the gene into the coding region of the acpP gene and / or the fabF gene.
 また、acpP遺伝子および/またはfabF遺伝子の発現が低下する変異として、具体的には、例えば、acpP遺伝子の翻訳開始点の上流-34位のシトシン(C)が他の塩基に置換される変異が挙げられる。他の塩基は、アデニン(A)であるのが好ましい。 Further, as a mutation that decreases the expression of the acpP gene and / or fabF gene, specifically, for example, a mutation in which cytosine (C) at the position −34 upstream of the translation start point of the acpP gene is replaced with another base. Can be mentioned. The other base is preferably adenine (A).
 ここでいう「acpP遺伝子の翻訳開始点の上流-34位」とは、配列番号7に示す塩基配列における、acpP遺伝子の開始コドン(ATG)のAから数えて、上流に34番目に相当する位置を意味する。なお、開始コドン(ATG)のAが+1位、その上流側の隣が-1位である。言い換えると、「acpP遺伝子の翻訳開始点の上流-34位」とは、配列番号7に示す塩基配列の177位(すなわち、GenBank accession NC_000913として登録されているEscherichia coli K-12 MG1655株のゲノム配列の1150804位)に相当する位置を意味する。なお、「acpP遺伝子の翻訳開始点の上流-34位」は、配列番号7を基準とした相対的な位置を示すものであって、塩基の欠失、挿入、付加などによってその絶対的な位置は前後することがある。すなわち、「acpP遺伝子の翻訳開始点の上流-34位」は、配列番号7において、177位の塩基と開始コドンのAの間で1塩基が欠失している場合は、acpP遺伝子の開始コドンのAから数えて、上流に33番目の位置を意味する。また、「acpP遺伝子の翻訳開始点の上流-34位」は、配列番号7において、177位の塩基と開始コドンのAの間で1塩基が挿入されている場合は、acpP遺伝子の開始コドンのAから数えて、上流に35番目の位置を意味する。 As used herein, “upstream position 34 of the translation start point of the acpP gene” refers to the position corresponding to position 34 upstream from the start codon (ATG) of the acpP gene in the nucleotide sequence shown in SEQ ID NO: 7. Means. In addition, A of the start codon (ATG) is + 1st, and the upstream side thereof is -1st. In other words, “upstream position 34 of the translation start point of the acpP gene” means the 177th position of the nucleotide sequence shown in SEQ ID NO: 7 (that is, the genome sequence of Escherichia coli K-12 MG1655 strain registered as GenBank accession NC_000913) No. 1150804). “Upstream position 34 of the translation start point of the acpP gene” indicates a relative position with reference to SEQ ID NO: 7, and its absolute position is determined by deletion, insertion, addition, etc. of the base. May go back and forth. That is, “position upstream of position -34 of the translation start point of the acpP gene” is the start codon of the acpP gene when one base is deleted between the base at position 177 and the start codon A in SEQ ID NO: 7. This means the 33rd position upstream from A. In addition, “upstream position 34 of the translation start point of the acpP gene” is the sequence of the start codon of the acpP gene when one base is inserted between the base at position 177 and the start codon A in SEQ ID NO: 7. It means the 35th position upstream from A.
 任意の細菌のacpP-fabFオペロンにおいて、いずれの塩基が「acpP遺伝子の翻訳開始点の上流-34位」の塩基であるかは、例えば、当該細菌のacpP遺伝子の上流配列と、配列番号7におけるacpP遺伝子の上流配列とで、アライメントを行うことにより決定できる。アライメントは、例えば、公知の遺伝子解析ソフトウェアを利用して行うことができる。具体的なソフトウェアとしては、日立ソリューションズ製のDNASISや、ゼネティックス製のGENETYXなどが挙げられる(Elizabeth C. Tyler et al., Computers and Biomedical Research, 24(1), 72-96, 1991;Barton GJ et al., Journal of molecular biology, 198(2), 327-37. 1987)。 In the acpP-fabF operon of an arbitrary bacterium, which base is the base “position 34 to the upstream of the translation start point of the acpP gene” can be determined by, for example, the upstream sequence of the bacterial acpP gene and SEQ ID NO: 7 This can be determined by performing alignment with the upstream sequence of the acpP gene. The alignment can be performed using, for example, known gene analysis software. Specific software includes DNA Solutions from Hitachi Solutions and GENETYX from Genetics (Elizabeth C. Tyler et al., Computers and Biomedical Research, 24 (1), 72-96, 1991; Barton GJ et) al., Journal of molecular biology, 198 (2), 327-37. 1987).
 また、タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子を破壊することにより達成できる。遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域の一部又は全部を欠損させることにより達成できる。さらには、染色体上の遺伝子の前後の配列を含めて、遺伝子全体を欠失させてもよい。タンパク質の活性の低下が達成できる限り、欠失させる領域は、N末端領域、内部領域、C末端領域等のいずれの領域であってもよい。通常、欠失させる領域は長い方が確実に遺伝子を不活化することができる。また、欠失させる領域の前後の配列は、リーディングフレームが一致しないことが好ましい。 Further, the modification that decreases the activity of the protein can be achieved, for example, by destroying a gene encoding the protein. Gene disruption can be achieved, for example, by deleting part or all of the coding region of the gene on the chromosome. Furthermore, the entire gene including the sequences before and after the gene on the chromosome may be deleted. The region to be deleted may be any region such as an N-terminal region, an internal region, or a C-terminal region as long as a decrease in protein activity can be achieved. Usually, the longer region to be deleted can surely inactivate the gene. Moreover, it is preferable that the reading frames of the sequences before and after the region to be deleted do not match.
 また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域にアミノ酸置換(ミスセンス変異)を導入すること、終止コドンを導入すること(ナンセンス変異)、あるいは1~2塩基を付加または欠失するフレームシフト変異を導入すること等によっても達成できる(Journal of Biological Chemistry 272:8611-8617(1997), Proceedings of the National Academy of Sciences, USA 95 5511-5515(1998), Journal of Biological Chemistry 26 116, 20833-20839(1991))。 In addition, gene disruption is, for example, introducing an amino acid substitution (missense mutation) into a coding region of a gene on a chromosome, introducing a stop codon (nonsense mutation), or adding or deleting 1 to 2 bases. It can also be achieved by introducing a frameshift mutation (Journal of Biological Chemistry 272: 8611-8617 (1997), Proceedings of the National Academy of Sciences, USA 95 5511-5515 (1998), Journal of Biological Chemistry 26 116, 20833-20839 (1991)).
 また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域に他の配列を挿入することによっても達成できる。挿入部位は遺伝子のいずれの領域であってもよいが、挿入する配列は長い方が確実に遺伝子を不活化することができる。また、挿入部位の前後の配列は、リーディングフレームが一致しないことが好ましい。他の配列としては、コードされるタンパク質の活性を低下又は消失させるものであれば特に制限されないが、例えば、抗生物質耐性遺伝子等のマーカー遺伝子や目的物質の生産に有用な遺伝子が挙げられる。 Also, gene disruption can be achieved, for example, by inserting another sequence into the coding region of the gene on the chromosome. The insertion site may be any region of the gene, but the longer the inserted sequence, the more reliably the gene can be inactivated. Moreover, it is preferable that the reading frames of the sequences before and after the insertion site do not match. The other sequence is not particularly limited as long as it reduces or eliminates the activity of the encoded protein, and examples thereof include marker genes such as antibiotic resistance genes and genes useful for the production of target substances.
 染色体上の遺伝子を上記のように改変することは、例えば、遺伝子の部分配列を欠失し、正常に機能するタンパク質を産生しないように改変した欠失型遺伝子を作製し、該欠失型遺伝子を含む組換えDNAで宿主を形質転換して、欠失型遺伝子と染色体上の野生型遺伝子とで相同組換えを起こさせることにより、染色体上の野生型遺伝子を欠失型遺伝子に置換することによって達成できる。その際、組換えDNAには、宿主の栄養要求性等の形質にしたがって、マーカー遺伝子を含ませておくと操作がしやすい。欠失型遺伝子によってコードされるタンパク質は、生成したとしても、野生型タンパク質とは異なる立体構造を有し、機能が低下又は消失する。このような相同組換えを利用した遺伝子置換による遺伝子破壊は既に確立しており、「Redドリブンインテグレーション(Red-driven integration)」と呼ばれる方法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))、Redドリブンインテグレーション法とλファージ由来の切り出しシステム(Cho, E. H., Gumport, R. I., Gardner, J. F. J. Bacteriol. 184: 5200-5203 (2002))とを組み合わせた方法(WO2005/010175号参照)等の直鎖状DNAを用いる方法や、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法などがある(米国特許第6303383号、特開平05-007491号)。 Modifying a gene on a chromosome as described above includes, for example, deleting a partial sequence of the gene and preparing a deleted gene modified so as not to produce a normally functioning protein. The host is transformed with the recombinant DNA containing, and the homologous recombination is caused between the deletion type gene and the wild type gene on the chromosome, thereby replacing the wild type gene on the chromosome with the deletion type gene. Can be achieved. At this time, the recombinant DNA can be easily manipulated by including a marker gene in accordance with a trait such as auxotrophy of the host. Even if the protein encoded by the deletion-type gene is produced, it has a three-dimensional structure different from that of the wild-type protein, and its function is reduced or lost. Gene disruption by gene replacement using such homologous recombination has already been established, and a method called “Red-driven integration” (Datsenko, K. A, and Wanner, B. L. Proc .Natl. Acad. Sci. U S A. 97: 6640-6645 (2000)), Red-driven integration method and λ phage-derived excision system (Cho, E. H., Gumport, R. I., Gardner, J F. J. Bacteriol. 184: 5200-5203 (2002)), a method using linear DNA such as a method (see WO2005 / 010175), a method using a plasmid containing a temperature-sensitive replication origin, There are a method using a plasmid capable of conjugation transfer and a method using a suicide vector which does not have an origin of replication and functions in a host (US Pat. No. 6,303,383, Japanese Patent Laid-Open No. 05-007491).
 また、タンパク質の活性が低下するような改変は、例えば、突然変異処理により行ってもよい。突然変異処理としては、X線の照射、紫外線の照射、ならびにN-メチル-N'-ニトロ-N-ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、およびメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。 Further, the modification that reduces the activity of the protein may be performed by, for example, a mutation treatment. Mutation treatments include X-ray irradiation, UV irradiation, and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS), and methylmethanesulfonate (MMS). ) And the like.
 なお、タンパク質が複数のサブユニットからなる複合体として機能する場合、結果としてタンパク質の活性が低下する限り、それら複数のサブユニットの全てを改変してもよく、一部のみを改変してもよい。すなわち、例えば、それらのサブユニットをコードする複数の遺伝子の全てを破壊等してもよく、一部のみを破壊等してもよい。また、タンパク質に複数のアイソザイムが存在する場合、結果としてタンパク質の活性が低下する限り、複数のアイソザイムの全ての活性を低下させてもよく、一部のみの活性を低下させてもよい。すなわち、例えば、それらのアイソザイムをコードする複数の遺伝子の全てを破壊等してもよく、一部のみを破壊等してもよい。 When the protein functions as a complex composed of a plurality of subunits, all of the plurality of subunits may be modified or only a part may be modified as long as the activity of the protein decreases as a result. . That is, for example, all of a plurality of genes encoding these subunits may be destroyed, or only a part of them may be destroyed. In addition, when a plurality of isozymes are present in a protein, as long as the activity of the protein is reduced as a result, all the activities of the plurality of isozymes may be reduced, or only a part of the activities may be reduced. That is, for example, all of a plurality of genes encoding these isozymes may be destroyed, or only a part of them may be destroyed.
 タンパク質の活性が低下したことは、同タンパク質の活性を測定することで確認できる。 The decrease in the activity of the protein can be confirmed by measuring the activity of the protein.
 タンパク質の活性が低下したことは、同タンパク質をコードする遺伝子の発現が低下したことを確認することによっても、確認できる。遺伝子の発現が低下したことは、同遺伝子の転写量が低下したことを確認することや、同遺伝子から発現するタンパク質の量が低下したことを確認することにより確認できる。 The decrease in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has decreased. The decrease in gene expression can be confirmed by confirming that the transcription amount of the gene has decreased, or confirming that the amount of protein expressed from the gene has decreased.
 遺伝子の転写量が低下したことの確認は、同遺伝子から転写されるmRNAの量を非改変株と比較することによって行うことが出来る。mRNAの量を評価する方法としては、ノーザンハイブリダイゼーション、RT-PCR等が挙げられる(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。mRNAの量は、非改変株と比較して、例えば、90%以下、80%以下、70%以下、60%以下、55%以下、50%以下、30%以下、20%以下、10%以下、5%以下、または0%に低下してよい。ただし、acpP遺伝子から転写されるmRNAの量は、非改変株と比較して、0%には低下しないものとする。例えば、acpP遺伝子の発現が低下する場合、同遺伝子から転写されるmRNAの量は、非改変株と比較して、1%以上、5%以上、10%以上、15%以上、17%以上、20%以上、または30%以上、または50%以上残存してもよい。acpP遺伝子の発現が低下する場合、同遺伝子から転写されるmRNAの量は、具体的には、例えば、非改変株と比較して、1%~90%、5%~80%、10%~70%、15%~60%、または17%~55%に低下してよい。 It can be confirmed that the amount of transcription of the gene has been reduced by comparing the amount of mRNA transcribed from the same gene with that of the unmodified strain. Examples of methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR, and the like (Molecular cloning (Cold spring spring Laboratory Laboratory, Cold spring Harbor (USA), 2001)). The amount of mRNA is, for example, 90% or less, 80% or less, 70% or less, 60% or less, 55% or less, 50% or less, 30% or less, 20% or less, 10% or less as compared to the unmodified strain. It may be reduced to 5% or less, or 0%. However, the amount of mRNA transcribed from the acpP gene is not reduced to 0% compared to the unmodified strain. For example, when the expression of the acpP gene decreases, the amount of mRNA transcribed from the gene is 1% or more, 5% or more, 10% or more, 15% or more, 17% or more, compared to the unmodified strain, 20% or more, 30% or more, or 50% or more may remain. When the expression of the acpP gene decreases, the amount of mRNA transcribed from the gene is specifically 1% to 90%, 5% to 80%, 10% to It may be reduced to 70%, 15% to 60%, or 17% to 55%.
 タンパク質の量が低下したことの確認は、抗体を用いてウェスタンブロットによって行うことが出来る(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。タンパク質の量は、非改変株と比較して、例えば、90%以下、80%以下、70%以下、60%以下、55%以下、50%以下、30%以下、20%以下、10%以下、5%以下、または0%に低下してよい。ただし、AcpPタンパク質の量は、非改変株と比較して、0%には低下しないものとする。例えば、acpP遺伝子の発現が低下する場合、AcpPタンパク質の量は、非改変株と比較して、1%以上、5%以上、10%以上、15%以上、17%以上、20%以上、または30%以上、または50%以上残存してもよい。acpP遺伝子の発現が低下する場合、AcpPタンパク質の量は、具体的には、例えば、非改変株と比較して、1%~90%、5%~80%、10%~70%、15%~60%、または17%~55%に低下してよい。 Confirmation that the amount of the protein has decreased can be performed by Western blotting using an antibody (Molecular cloning (Cold spring Spring Laboratory Press, Cold spring Harbor (USA), 2001)). The amount of protein is, for example, 90% or less, 80% or less, 70% or less, 60% or less, 55% or less, 50% or less, 30% or less, 20% or less, 10% or less compared to the unmodified strain It may be reduced to 5% or less, or 0%. However, the amount of AcpP protein is not reduced to 0% compared to the unmodified strain. For example, when the expression of the acpP gene decreases, the amount of AcpP protein is 1% or more, 5% or more, 10% or more, 15% or more, 17% or more, 20% or more, or compared to the unmodified strain, or 30% or more, or 50% or more may remain. When the expression of the acpP gene decreases, the amount of AcpP protein is specifically 1% to 90%, 5% to 80%, 10% to 70%, 15%, for example, as compared to the unmodified strain. It may be reduced to ˜60%, or 17% to 55%.
 遺伝子が破壊されたことは、破壊に用いた手段に応じて、同遺伝子の一部または全部の塩基配列、制限酵素地図、または全長等を決定することで確認できる。 It can be confirmed that the gene has been destroyed by determining part or all of the nucleotide sequence, restriction enzyme map, full length, etc. of the gene according to the means used for the destruction.
 上記したタンパク質の活性を低下させる手法は、acpP-fabFオペロンの弱化に加えて、任意のタンパク質、例えば目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素、の活性低下や、任意の遺伝子、例えばそれら任意のタンパク質をコードする遺伝子、の発現低下に利用できる。 In addition to the weakening of the acpP-fabF operon, the above-described technique for reducing the activity of the protein generates a compound other than the target L-amino acid by branching from the biosynthetic pathway of any protein, for example, the target L-amino acid. It can be used to reduce the activity of an enzyme that catalyzes the reaction, or to reduce the expression of any gene, for example, a gene encoding any of these proteins.
<1-4>タンパク質の活性を増大させる手法
 以下に、タンパク質の活性を増大させる手法について説明する。
<1-4> Technique for Increasing Protein Activity A technique for increasing protein activity is described below.
 「タンパク質の活性が増大する」とは、同タンパク質の細胞当たりの活性が野生株や親株等の非改変株に対して増大していることを意味する。なお、「タンパク質の活性が増大する」ことを、「タンパク質の活性が増強される」ともいう。「タンパク質の活性が増大する」とは、具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が増加していること、および/または、同タンパク質の分子当たりの機能が増大していることをいう。すなわち、「タンパク質の活性が増大する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。また、「タンパク質の活性が増大する」とは、もともと標的のタンパク質の活性を有する菌株において同タンパク質の活性を増大させることだけでなく、もともと標的のタンパク質の活性が存在しない菌株に同タンパク質の活性を付与することを含む。また、結果としてタンパク質の活性が増大する限り、宿主が本来有する標的のタンパク質の活性を低下または消失させた上で、好適な標的のタンパク質の活性を付与してもよい。 "" Protein activity increases "means that the activity per cell of the protein is increased relative to unmodified strains such as wild strains and parental strains. Note that “increasing protein activity” is also referred to as “enhancing protein activity”. “Protein activity increases” specifically means that the number of molecules per cell of the protein is increased and / or the function per molecule of the protein compared to an unmodified strain. Is increasing. That is, “activity” in the case of “increasing protein activity” means not only the catalytic activity of the protein, but also the transcription amount (mRNA amount) or translation amount (protein amount) of the gene encoding the protein. May be. “Protein activity increases” means not only to increase the activity of the protein in a strain that originally has the activity of the target protein, but also to the activity of the protein in a strain that does not originally have the activity of the target protein. Including granting. Further, as long as the activity of the protein increases as a result, the activity of the target protein inherent in the host may be reduced or eliminated, and the activity of a suitable target protein may be imparted.
 タンパク質の活性は、非改変株と比較して増大していれば特に制限されないが、例えば、非改変株と比較して、1.5倍以上、2倍以上、または3倍以上に上昇してよい。また、非改変株が標的のタンパク質の活性を有していない場合は、同タンパク質をコードする遺伝子を導入することにより同タンパク質が生成されていればよいが、例えば、同タンパク質はその酵素活性が測定できる程度に生産されていてよい。 The activity of the protein is not particularly limited as long as it is increased compared to the non-modified strain. For example, the protein activity is increased 1.5 times or more, 2 times or more, or 3 times or more compared to the non-modified strain. Good. In addition, when the non-modified strain does not have the activity of the target protein, it is sufficient that the protein is generated by introducing a gene encoding the protein. For example, the protein has an enzymatic activity. It may be produced to the extent that it can be measured.
 タンパク質の活性が増大するような改変は、例えば、同タンパク質をコードする遺伝子の発現を上昇させることによって達成される。なお、「遺伝子の発現が上昇する」ことを、「遺伝子の発現が増強される」ともいう。遺伝子の発現は、例えば、非改変株と比較して、1.5倍以上、2倍以上、または3倍以上に上昇してよい。また、「遺伝子の発現が上昇する」とは、もともと標的の遺伝子が発現している菌株において同遺伝子の発現量を上昇させることだけでなく、もともと標的の遺伝子が発現していない菌株において、同遺伝子を発現させることを含む。すなわち、「遺伝子の発現が上昇する」とは、例えば、標的の遺伝子を保持しない菌株に同遺伝子を導入し、同遺伝子を発現させることを含む。 Modification that increases the activity of the protein is achieved, for example, by increasing the expression of the gene encoding the protein. Note that “increasing gene expression” is also referred to as “enhanced gene expression”. The expression of the gene may be increased 1.5 times or more, 2 times or more, or 3 times or more, for example, as compared to the unmodified strain. In addition, “increasing gene expression” means not only increasing the expression level of a target gene in a strain that originally expresses the target gene, but also in a strain that originally does not express the target gene. Including expressing a gene. That is, “increasing gene expression” includes, for example, introducing the gene into a strain that does not hold the target gene and expressing the gene.
 遺伝子の発現の上昇は、例えば、遺伝子のコピー数を増加させることにより達成できる。 An increase in gene expression can be achieved, for example, by increasing the copy number of the gene.
 遺伝子のコピー数の増加は、宿主の染色体へ同遺伝子を導入することにより達成できる。染色体への遺伝子の導入は、例えば、相同組み換えを利用して行うことができる(MillerI, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory)。遺伝子は、1コピーのみ導入されてもよく、2コピーまたはそれ以上導入されてもよい。例えば、染色体上に多数のコピーが存在する配列を標的として相同組み換えを行うことで、染色体へ遺伝子の多数のコピーを導入することができる。染色体上に多数のコピーが存在する配列としては、反復DNA配列(repetitive DNA)、トランスポゾンの両端に存在するインバーテッド・リピートが挙げられる。また、目的物質の生産に不要な遺伝子等の染色体上の適当な配列を標的として相同組み換えを行ってもよい。相同組み換えは、例えば、Redドリブンインテグレーション(Red-driven integration)法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))等の直鎖状DNAを用いる方法、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法、またはファージを用いたtransduction法により行うことができる。また、遺伝子は、トランスポゾンやMini-Muを用いて染色体上にランダムに導入することもできる(特開平2-109985号公報、US5,882,888、EP805867B1)。 Increase in gene copy number can be achieved by introducing the gene into the host chromosome. Introduction of a gene into a chromosome can be performed, for example, using homologous recombination (Miller I, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory). Only one copy of the gene may be introduced, or two copies or more may be introduced. For example, multiple copies of a gene can be introduced into a chromosome by performing homologous recombination with a sequence having multiple copies on the chromosome as a target. Examples of sequences having many copies on a chromosome include repetitive DNA sequences (inverted DNA) and inverted repeats present at both ends of a transposon. Alternatively, homologous recombination may be performed by targeting an appropriate sequence on a chromosome such as a gene unnecessary for production of the target substance. Homologous recombination is, for example, the Red-driven integration method (Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97: 6640-6645 (2000) ), A method using a linear DNA, a method using a plasmid containing a temperature-sensitive replication origin, a method using a plasmid capable of conjugation transfer, a method using a suicide vector that does not have a replication origin and functions in a host, or a phage It can be performed by the transduction method used. The gene can also be randomly introduced onto the chromosome using transposon or Mini-Mu (Japanese Patent Laid-Open No. 2-109985, US Pat. No. 5,882,888, EP805867B1).
 染色体上に標的遺伝子が導入されたことの確認は、同遺伝子の全部又は一部と相補的な配列を持つプローブを用いたサザンハイブリダイゼーション、又は同遺伝子の配列に基づいて作成したプライマーを用いたPCR等によって確認できる。 Confirmation of the introduction of the target gene on the chromosome was performed using Southern hybridization using a probe having a sequence complementary to all or part of the gene, or a primer prepared based on the sequence of the gene. It can be confirmed by PCR.
 また、遺伝子のコピー数の増加は、同遺伝子を含むベクターを宿主に導入することによっても達成できる。例えば、標的遺伝子を含むDNA断片を、宿主で機能するベクターと連結して同遺伝子の発現ベクターを構築し、当該発現ベクターで宿主を形質転換することにより、同遺伝子のコピー数を増加させることができる。標的遺伝子を含むDNA断片は、例えば、標的遺伝子を有する微生物のゲノムDNAを鋳型とするPCRにより取得できる。ベクターとしては、宿主の細胞内において自律複製可能なベクターを用いることができる。ベクターは、マルチコピーベクターであるのが好ましい。また、形質転換体を選択するために、ベクターは抗生物質耐性遺伝子などのマーカーを有することが好ましい。また、ベクターは、挿入された遺伝子を発現するためのプロモーターやターミネーターを備えていてもよい。ベクターは、例えば、細菌プラスミド由来のベクター、酵母プラスミド由来のベクター、バクテリオファージ由来のベクター、コスミド、またはファージミド等であってよい。エシェリヒア・コリ等の腸内細菌科の細菌において自律複製可能なベクターとして、具体的には、例えば、pUC19、pUC18、pHSG299、pHSG399、pHSG398、pBR322、pSTV29(いずれもタカラバイオ社より入手可)、pACYC184、pMW219(ニッポンジーン社)、pTrc99A(ファルマシア社)、pPROK系ベクター(クロンテック社)、pKK233‐2(クロンテック社製)、pET系ベクター(ノバジェン社)、pQE系ベクター(キアゲン社)、広宿主域ベクターRSF1010が挙げられる。 An increase in the copy number of a gene can also be achieved by introducing a vector containing the gene into a host. For example, a DNA fragment containing a target gene can be linked to a vector that functions in the host to construct an expression vector for the gene, and the host can be transformed with the expression vector to increase the copy number of the gene. it can. A DNA fragment containing a target gene can be obtained, for example, by PCR using a genomic DNA of a microorganism having the target gene as a template. As the vector, a vector capable of autonomous replication in a host cell can be used. The vector is preferably a multicopy vector. In order to select a transformant, the vector preferably has a marker such as an antibiotic resistance gene. Moreover, the vector may be equipped with a promoter or terminator for expressing the inserted gene. The vector may be, for example, a vector derived from a bacterial plasmid, a vector derived from a yeast plasmid, a vector derived from a bacteriophage, a cosmid, or a phagemid. As vectors capable of autonomous replication in bacteria of the Enterobacteriaceae family such as Escherichia coli, specifically, for example, pUC19, pUC18, pHSG299, pHSG399, pHSG398, pBR322, pSTV29 (all available from Takara Bio Inc.), pACYC184, pMW219 (Nippon Gene), pTrc99A (Pharmacia), pPROK vector (Clontech), pKK233-2 (Clontech), pET vector (Novagen), pQE vector (Qiagen), wide host range Vector RSF1010 is mentioned.
 遺伝子を導入する場合、遺伝子は、発現可能に本発明の細菌に保持されていればよい。具体的には、遺伝子は、本発明の細菌で機能するプロモーター配列による制御を受けて発現するように導入されていればよい。プロモーターは、宿主由来のプロモーターであってもよく、異種由来のプロモーターであってもよい。プロモーターは、導入する遺伝子の固有のプロモーターであってもよく、他の遺伝子のプロモーターであってもよい。プロモーターとしては、例えば、後述するような、より強力なプロモーターを利用してもよい。また、例えば、遺伝子の下流には、転写終結用のターミネーターを配置することができる。ターミネーターは、本発明の細菌において機能するものであれば特に制限されない。ターミネーターは、宿主由来のターミネーターであってもよく、異種由来のターミネーターであってもよい。ターミネーターは、導入する遺伝子の固有のターミネーターであってもよく、他の遺伝子のターミネーターであってもよい。ターミネーターとして、具体的には、例えば、T7ターミネーター、T4ターミネーター、fdファージターミネーター、tetターミネーター、およびtrpAターミネーターが挙げられる。各種微生物において利用可能なベクター、プロモーター、ターミネーターに関しては、例えば「微生物学基礎講座8 遺伝子工学、共立出版、1987年」に詳細に記載されており、それらを利用することが可能である。 In the case of introducing a gene, the gene may be retained in the bacterium of the present invention so that it can be expressed. Specifically, the gene may be introduced so as to be expressed under the control of a promoter sequence that functions in the bacterium of the present invention. The promoter may be a host-derived promoter or a heterologous promoter. The promoter may be a native promoter of a gene to be introduced or a promoter of another gene. As the promoter, for example, a stronger promoter as described later may be used. Further, for example, a terminator for terminating transcription can be arranged downstream of the gene. The terminator is not particularly limited as long as it functions in the bacterium of the present invention. The terminator may be a host-derived terminator or a heterologous terminator. The terminator may be a terminator specific to the gene to be introduced, or may be a terminator of another gene. Specific examples of the terminator include T7 terminator, T4 terminator, fd phage terminator, tet terminator, and trpA terminator. Vectors, promoters, and terminators that can be used in various microorganisms are described in detail in, for example, “Basic Course of Microbiology 8, Genetic Engineering, Kyoritsu Shuppan, 1987”, and these can be used.
 また、2またはそれ以上の遺伝子を導入する場合、各遺伝子が、発現可能に本発明の細菌に保持されていればよい。例えば、各遺伝子は、全てが単一の発現ベクター上に保持されていてもよく、全てが染色体上に保持されていてもよい。また、各遺伝子は、複数の発現ベクター上に別々に保持されていてもよく、単一または複数の発現ベクター上と染色体上とに別々に保持されていてもよい。また、2またはそれ以上の遺伝子でオペロンを構成して導入してもよい。「2またはそれ以上の遺伝子を導入する場合」としては、例えば、2またはそれ以上の酵素をそれぞれコードする遺伝子を導入する場合、単一の酵素を構成する2またはそれ以上のサブユニットをそれぞれコードする遺伝子を導入する場合、およびそれらの組み合わせが挙げられる。 In addition, when two or more genes are introduced, each gene may be retained in the bacterium of the present invention so that it can be expressed. For example, all the genes may be held on a single expression vector, or all may be held on a chromosome. Moreover, each gene may be separately hold | maintained on several expression vector, and may be separately hold | maintained on the single or several expression vector and chromosome. Further, an operon may be constructed by introducing two or more genes. “When two or more genes are introduced” means, for example, when a gene encoding each of two or more enzymes is introduced, each of two or more subunits constituting a single enzyme is encoded. And a combination thereof.
 導入される遺伝子は、宿主で機能するタンパク質をコードするものであれば特に制限されない。導入される遺伝子は、宿主由来の遺伝子であってもよく、異種由来の遺伝子であってもよい。導入される遺伝子は、例えば、同遺伝子の塩基配列に基づいて設計したプライマーを用い、同遺伝子を有する生物のゲノムDNAや同遺伝子を搭載するプラスミド等を鋳型として、PCRにより取得することができる。また、導入される遺伝子は、例えば、同遺伝子の塩基配列に基づいて全合成してもよい(Gene, 60(1), 115-127 (1987))。 The gene to be introduced is not particularly limited as long as it encodes a protein that functions in the host. The introduced gene may be a host-derived gene or a heterologous gene. The gene to be introduced can be obtained by PCR using, for example, a primer designed based on the base sequence of the gene, and using a genomic DNA of an organism having the gene or a plasmid carrying the gene as a template. The introduced gene may be totally synthesized based on the base sequence of the same gene (Gene, 60 (1), 115-127 (1987)).
 なお、タンパク質が複数のサブユニットからなる複合体として機能する場合、結果としてタンパク質の活性が増大する限り、それら複数のサブユニットの全てを改変してもよく、一部のみを改変してもよい。すなわち、例えば、遺伝子の発現を上昇させることによりタンパク質の活性を増大させる場合、それらのサブユニットをコードする複数の遺伝子の全ての発現を増強してもよく、一部の発現のみを増強してもよい。通常は、それらのサブユニットをコードする複数の遺伝子の全ての発現を増強するのが好ましい。また、複合体を構成する各サブユニットは、複合体が目的のタンパク質の機能を有する限り、1種の生物由来であってもよく、2種またはそれ以上の異なる生物由来であってもよい。すなわち、例えば、複数のサブユニットをコードする、同一の生物由来の遺伝子を宿主に導入してもよく、それぞれ異なる生物由来の遺伝子を宿主に導入してもよい。 When the protein functions as a complex composed of a plurality of subunits, all of the plurality of subunits may be modified or only a part may be modified as long as the activity of the protein increases as a result. . That is, for example, when the activity of a protein is increased by increasing the expression of a gene, the expression of a plurality of genes encoding those subunits may be enhanced, or only a part of the expression may be enhanced. Also good. Usually, it is preferable to enhance the expression of all of a plurality of genes encoding these subunits. In addition, each subunit constituting the complex may be derived from one organism or two or more different organisms as long as the complex has the function of the target protein. That is, for example, genes derived from the same organism encoding a plurality of subunits may be introduced into the host, or genes derived from different organisms may be introduced into the host.
 また、遺伝子の発現の上昇は、遺伝子の転写効率を向上させることにより達成できる。遺伝子の転写効率の向上は、例えば、染色体上の遺伝子のプロモーターをより強力なプロモーターに置換することにより達成できる。「より強力なプロモーター」とは、遺伝子の転写が、もともと存在している野生型のプロモーターよりも向上するプロモーターを意味する。より強力なプロモーターとしては、例えば、公知の高発現プロモーターであるT7プロモーター、trpプロモーター、lacプロモーター、thrプロモーター、tacプロモーター、trcプロモーター、tetプロモーター、araBADプロモーター、rpoHプロモーター、PRプロモーター、およびPLプロモーターが挙げられる。また、より強力なプロモーターとしては、各種レポーター遺伝子を用いることにより、在来のプロモーターの高活性型のものを取得してもよい。例えば、プロモーター領域内の-35、-10領域をコンセンサス配列に近づけることにより、プロモーターの活性を高めることができる(国際公開第00/18935号)。高活性型プロモーターとしては、各種tac様プロモーター(Katashkina JI et al. Russian Federation Patent application 2006134574)やpnlp8プロモーター(WO2010/027045)が挙げられる。プロモーターの強度の評価法および強力なプロモーターの例は、Goldsteinらの論文(Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev., 1, 105-128 (1995))等に記載されている。 Moreover, the increase in gene expression can be achieved by improving the transcription efficiency of the gene. Improvement of gene transcription efficiency can be achieved, for example, by replacing a promoter of a gene on a chromosome with a stronger promoter. By “stronger promoter” is meant a promoter that improves transcription of the gene over the native wild-type promoter. Examples of stronger promoters include the known high expression promoters T7 promoter, trp promoter, lac promoter, thr promoter, thr promoter, tac promoter, trc promoter, tet promoter, araBAD promoter, rpoH promoter, PR promoter, and PL promoter. Can be mentioned. As a more powerful promoter, a highly active promoter of a conventional promoter may be obtained by using various reporter genes. For example, the activity of the promoter can be increased by bringing the -35 and -10 regions in the promoter region closer to the consensus sequence (WO 00/18935). Examples of the highly active promoter include various tac-like promoters (Katashkina JI et al. Russian Patent application 2006134574) and pnlp8 promoter (WO2010 / 027045). Methods for evaluating promoter strength and examples of strong promoters are described in Goldstein et al. (Prokaryotickpromoters in biotechnology. Biotechnol. Annu. Rev.,. 1, 105-128 (1995)).
 また、遺伝子の発現の上昇は、遺伝子の翻訳効率を向上させることにより達成できる。遺伝子の翻訳効率の向上は、例えば、染色体上の遺伝子のシャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)をより強力なSD配列に置換することにより達成できる。「より強力なSD配列」とは、mRNAの翻訳が、もともと存在している野生型のSD配列よりも向上するSD配列を意味する。より強力なSD配列としては、例えば、ファージT7由来の遺伝子10のRBSが挙げられる(Olins P. O. et al, Gene, 1988, 73, 227-235)。さらに、RBSと開始コドンとの間のスペーサー領域、特に開始コドンのすぐ上流の配列(5'-UTR)における数個のヌクレオチドの置換、あるいは挿入、あるいは欠失がmRNAの安定性および翻訳効率に非常に影響を及ぼすことが知られており、これらを改変することによっても遺伝子の翻訳効率を向上させることができる。 Moreover, the increase in gene expression can be achieved by improving the translation efficiency of the gene. Improvement of gene translation efficiency can be achieved, for example, by replacing the Shine-Dalgarno (SD) sequence (also referred to as ribosome binding site (RBS)) of the gene on the chromosome with a stronger SD sequence. By “a stronger SD sequence” is meant an SD sequence in which the translation of mRNA is improved over the originally existing wild-type SD sequence. As a stronger SD sequence, for example, RBS of gene 10 derived from phage T7 can be mentioned (Olins P. O. et al, Gene, 1988, 73, 227-235). Furthermore, substitution of several nucleotides in the spacer region between the RBS and the start codon, particularly the sequence immediately upstream of the start codon (5'-UTR), or insertion or deletion, contributes to mRNA stability and translation efficiency. It is known to have a great influence, and the translation efficiency of a gene can be improved by modifying them.
 本発明においては、プロモーター、SD配列、およびRBSと開始コドンとの間のスペーサー領域等の遺伝子の発現に影響する部位を総称して「発現調節領域」ともいう。発現調節領域は、プロモーター検索ベクターやGENETYX等の遺伝子解析ソフトを用いて決定することができる。これら発現調節領域の改変は、例えば、温度感受性ベクターを用いた方法や、Redドリブンインテグレーション法(WO2005/010175)により行うことができる。 In the present invention, promoters, SD sequences, and sites that affect gene expression such as a spacer region between the RBS and the start codon are also collectively referred to as “expression control regions”. The expression regulatory region can be determined using a promoter search vector or gene analysis software such as GENETYX. These expression control regions can be modified by, for example, a method using a temperature sensitive vector or a Red driven integration method (WO2005 / 010175).
 遺伝子の翻訳効率の向上は、例えば、コドンの改変によっても達成できる。エシェリヒア・コリ等において、mRNA分子の集団内に見出される61種のアミノ酸コドン間には明らかなコドンの偏りが存在し、あるtRNAの存在量は、対応するコドンの使用頻度と直接比例するようである(Kane, J.F., Curr. Opin. Biotechnol., 6(5), 494-500 (1995))。すなわち、過剰のレアコドンを含むmRNAが大量に存在すると翻訳の問題が生じうる。近年の研究によれば、特に、AGG/AGA、CUA、AUA、CGA、又はCCCコドンのクラスターが、合成されたタンパク質の量および質の両方を低下させ得ることが示唆されている。このような問題は、特に異種遺伝子の発現の際に生じうる。よって、遺伝子の異種発現を行う場合等には、遺伝子中に存在するレアコドンを、より高頻度で利用される同義コドンに置き換えることにより、遺伝子の翻訳効率を向上させることができる。コドンの置換は、例えば、DNAの目的の部位に目的の変異を導入する部位特異的変異法により行うことができる。部位特異的変異法としては、PCRを用いる方法(Higuchi, R., 61, in PCR technology, Erlich, H. A. Eds., Stockton press (1989);Carter, P., Meth. in Enzymol., 154, 382 (1987))や、ファージを用いる方法(Kramer,W. and Frits, H. J., Meth. in Enzymol., 154, 350 (1987);Kunkel, T. A. et al., Meth. in Enzymol., 154, 367 (1987))が挙げられる。また、コドンが置換された遺伝子断片を全合成してもよい。種々の生物におけるコドンの使用頻度は、「コドン使用データベース」(http://www.kazusa.or.jp/codon; Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000))に開示されている。 Improvement of gene translation efficiency can also be achieved, for example, by codon modification. In Escherichia coli, etc., there is a clear codon bias among the 61 amino acid codons found in the population of mRNA molecules, and the abundance of a tRNA seems to be directly proportional to the frequency of use of the corresponding codon. (Kane, JF, Curr. Opin. Biotechnol., 6 (5), 494-500 (1995)). That is, if a large amount of mRNA containing an excessive rare codon is present, translation problems may occur. Recent studies suggest that, inter alia, clusters of AGG / AGA, CUA, AUA, CGA, or CCC codons can reduce both the amount and quality of the synthesized protein. Such a problem can occur particularly during the expression of heterologous genes. Therefore, when performing heterologous expression of a gene, the translation efficiency of the gene can be improved by replacing rare codons present in the gene with synonymous codons that are used more frequently. Codon substitution can be performed, for example, by a site-specific mutagenesis method in which a target mutation is introduced into a target site of DNA. As site-directed mutagenesis, a method using PCR (Higuchi, R., 61, in PCR technology, rlErlich, H. A. Eds., Stockton press (1989); Carter, P., ethMeth. In Enzymol., 154, 382 (1987)) and methods using phage (Kramer, W. and Frits, H. J., Meth. In Enzymol., 154, 350 (1987); Kunkel, T. A. et al., Meth In Enzymol., 154, 367 (1987)). Alternatively, gene fragments in which codons have been replaced may be fully synthesized. The frequency of codon usage in various organisms can be found in the “Codon Usage Database” (http://www.kazusa.or.jp/codon; Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000)) Is disclosed.
 また、遺伝子の発現の上昇は、遺伝子の発現を上昇させるようなレギュレーターを増幅すること、または、遺伝子の発現を低下させるようなレギュレーターを欠失または弱化させることによっても達成できる。 Also, the increase in gene expression can be achieved by amplifying a regulator that increases gene expression or by deleting or weakening a regulator that decreases gene expression.
 上記のような遺伝子の発現を上昇させる手法は、単独で用いてもよく、任意の組み合わせで用いてもよい。 The techniques for increasing gene expression as described above may be used alone or in any combination.
 また、タンパク質の活性が増大するような改変は、例えば、タンパク質の比活性を増強することによっても達成できる。比活性の増強には、フィードバック阻害の低減および解除も含まれる。比活性が増強されたタンパク質は、例えば、種々の生物を探索し取得することができる。また、在来のタンパク質に変異を導入することで高活性型のものを取得してもよい。導入される変異は、例えば、タンパク質の1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入、又は付加されるものであってよい。変異の導入は、例えば、上述したような部位特異的変異法により行うことができる。また、変異の導入は、例えば、突然変異処理により行ってもよい。突然変異処理としては、X線の照射、紫外線の照射、ならびにN-メチル-N'-ニトロ-N-ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、およびメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。また、in vitroでDNAを直接ヒドロキシルアミンで処理し、ランダム変異を誘発してもよい。比活性の増強は、単独で用いてもよく、上記のような遺伝子の発現を増強させる手法と任意に組み合わせて用いてもよい。 Further, the modification that increases the activity of the protein can be achieved, for example, by enhancing the specific activity of the protein. Specific activity enhancement also includes the reduction and elimination of feedback inhibition. Proteins with enhanced specific activity can be obtained by searching for various organisms, for example. Alternatively, a highly active protein may be obtained by introducing a mutation into a conventional protein. The introduced mutation may be, for example, a substitution, deletion, insertion or addition of one or several amino acids at one or several positions of the protein. Mutation can be introduced by, for example, the site-specific mutation method as described above. Moreover, you may introduce | transduce a variation | mutation by a mutation process, for example. Mutation treatments include X-ray irradiation, UV irradiation, and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS), and methylmethanesulfonate (MMS). ) And the like. Alternatively, DNA may be directly treated with hydroxylamine in vitro to induce random mutations. The enhancement of specific activity may be used alone or in any combination with the above-described method for enhancing gene expression.
 形質転換の方法は特に限定されず、従来知られた方法を用いることができる。例えば、エシェリヒア・コリ K-12について報告されているような、受容菌細胞を塩化カルシウムで処理してDNAの透過性を増す方法(Mandel, M. and Higa, A.,J. Mol. Biol. 1970, 53, 159-162)や、バチルス・ズブチリスについて報告されているような、増殖段階の細胞からコンピテントセルを調製してDNAを導入する方法(Duncan, C. H., Wilson, G. A. and Young, F. E.., 1997. Gene 1: 153-167)を用いることができる。あるいは、バチルス・ズブチリス、放線菌類、及び酵母について知られているような、DNA受容菌の細胞を、組換えDNAを容易に取り込むプロトプラストまたはスフェロプラストの状態にして組換えDNAをDNA受容菌に導入する方法(Chang, S.and Choen, S.N., 1979.Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978.Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933)も応用できる。あるいは、コリネ型細菌について報告されているような、電気パルス法(特開平2-207791)を利用することもできる。 The method of transformation is not particularly limited, and a conventionally known method can be used. For example, as reported for Escherichia coli K-12, recipient cells are treated with calcium chloride to increase DNA permeability (Mandel, M. and Higa, A., J. Mol. Biol. 1970, 53, 159-162) and methods for introducing competent cells from proliferating cells and introducing DNA as reported for Bacillus subtilis (Duncan, C. H., Wilson, G. A. and Young, F. E .., 1997. Gene 1: 153-167) can be used. Alternatively, DNA-receptive cells, such as those known for Bacillus subtilis, actinomycetes, and yeast, can be made into protoplasts or spheroplasts that readily incorporate recombinant DNA into recombinant DNA. Introduction method (Chang, S. and Choen, SN, 1979. Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978. Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933) can also be applied. Alternatively, an electric pulse method (Japanese Patent Laid-Open No. 2-207791) as reported for coryneform bacteria can also be used.
 タンパク質の活性が増大したことは、同タンパク質の活性を測定することで確認できる。 The increase in protein activity can be confirmed by measuring the activity of the protein.
 タンパク質の活性が増大したことは、同タンパク質をコードする遺伝子の発現が上昇したことを確認することによっても、確認できる。遺伝子の発現が上昇したことは、同遺伝子の転写量が上昇したことを確認することや、同遺伝子から発現するタンパク質の量が上昇したことを確認することにより確認できる。 The increase in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has increased. An increase in gene expression can be confirmed by confirming that the transcription amount of the gene has increased, or by confirming that the amount of protein expressed from the gene has increased.
 遺伝子の転写量が上昇したことの確認は、同遺伝子から転写されるmRNAの量を野生株または親株等の非改変株と比較することによって行うことができる。mRNAの量を評価する方法としてはノーザンハイブリダイゼーション、RT-PCR等が挙げられる(Sambrook, J., et al., Molecular Cloning A Laboratory Manual/Third Edition, Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001)。mRNAの量は、非改変株と比較して、例えば、1.5倍以上、2倍以上、または3倍以上に上昇してよい。 It can be confirmed that the transcription amount of the gene has increased by comparing the amount of mRNA transcribed from the gene with an unmodified strain such as a wild strain or a parent strain. Methods for assessing the amount of mRNA include Northern hybridization, RT-PCR, etc. ), 2001). The amount of mRNA may be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more, compared to the unmodified strain.
 タンパク質の量が上昇したことの確認は、抗体を用いてウェスタンブロットによって行うことができる(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。タンパク質の量は、非改変株と比較して、例えば、1.5倍以上、2倍以上、または3倍以上に上昇してよい。 Confirmation of the increase in the amount of protein can be performed by Western blotting using an antibody (Molecular cloning (Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001)). The amount of protein may be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more, compared to the unmodified strain.
 上記したタンパク質の活性を増大させる手法は、任意のタンパク質、例えばL-アミノ酸生合成系酵素、の活性増強や、任意の遺伝子、例えばそれら任意のタンパク質をコードする遺伝子、の発現増強に利用できる。 The above-described technique for increasing the activity of a protein can be used for enhancing the activity of an arbitrary protein, such as an L-amino acid biosynthetic enzyme, or for enhancing the expression of an arbitrary gene, such as a gene encoding the arbitrary protein.
<2>本発明のL-アミノ酸の製造法
 本発明の方法は、本発明の細菌を培地で培養してL-アミノ酸を該培地中又は該細菌の菌体内に生成蓄積すること、および該培地又は菌体よりL-アミノ酸を採取することを含む、L-アミノ酸の製造法である。本発明においては、1種のL-アミノ酸が製造されてもよく、2種またはそれ以上のL-アミノ酸が製造されてもよい。
<2> Method for Producing L-Amino Acid of the Present Invention The method of the present invention comprises culturing the bacterium of the present invention in a medium to produce and accumulate L-amino acid in the medium or in the microbial cells, and the medium. Alternatively, it is a method for producing an L-amino acid, which comprises collecting the L-amino acid from cells. In the present invention, one L-amino acid may be produced, or two or more L-amino acids may be produced.
 使用する培地は、本発明の細菌が増殖でき、L-アミノ酸が生産される限り、特に制限されない。培地としては、例えば、細菌等の微生物の培養に用いられる通常の培地を用いることができる。培地は、炭素源、窒素源、リン酸源、硫黄源、その他の各種有機成分や無機成分から選択される成分を必要に応じて含有してよい。培地成分の種類や濃度は、使用する細菌の種類や製造するL-アミノ酸の種類等の諸条件に応じて適宜設定してよい。 The medium used is not particularly limited as long as the bacterium of the present invention can grow and L-amino acids are produced. As the medium, for example, a normal medium used for culturing microorganisms such as bacteria can be used. The medium may contain a component selected from a carbon source, a nitrogen source, a phosphoric acid source, a sulfur source, and other various organic and inorganic components as necessary. The type and concentration of the medium component may be appropriately set according to various conditions such as the type of bacteria used and the type of L-amino acid to be produced.
 炭素源は、本発明の細菌が資化してL-アミノ酸を生成し得るものであれば、特に限定されない。炭素源として、具体的には、例えば、グルコース、フルクトース、スクロース、ラクトース、ガラクトース、キシロース、アラビノース、廃糖蜜、澱粉加水分解物、バイオマスの加水分解物等の糖類、酢酸、フマル酸、クエン酸、コハク酸、リンゴ酸等の有機酸類、グリセロール、粗グリセロール、エタノール等のアルコール類、脂肪酸類が挙げられる。炭素源としては、1種の炭素源を用いてもよく、2種またはそれ以上の炭素源を組み合わせて用いてもよい。 The carbon source is not particularly limited as long as it can be assimilated by the bacterium of the present invention to produce an L-amino acid. Specifically, as the carbon source, for example, glucose, fructose, sucrose, lactose, galactose, xylose, arabinose, waste molasses, starch hydrolyzate, saccharides such as biomass hydrolyzate, acetic acid, fumaric acid, citric acid, Examples thereof include organic acids such as succinic acid and malic acid, alcohols such as glycerol, crude glycerol and ethanol, and fatty acids. As the carbon source, one type of carbon source may be used, or two or more types of carbon sources may be used in combination.
 培地中での炭素源の濃度は、本発明の細菌が増殖でき、L-アミノ酸が生産される限り、特に制限されない。培地中での炭素源の濃度は、L-アミノ酸の生産が阻害されない範囲で可能な限り高くするのが好ましい。培地中での炭素源の初発濃度は、例えば、通常5~30 %(W/V)、好ましくは10~20 %(W/V)であってよい。また、発酵の進行に伴う炭素源の消費に応じて、炭素源を追加で添加してもよい。 The concentration of the carbon source in the medium is not particularly limited as long as the bacterium of the present invention can grow and L-amino acid is produced. The concentration of the carbon source in the medium is preferably as high as possible as long as the production of L-amino acid is not inhibited. The initial concentration of the carbon source in the medium may be, for example, usually 5 to 30% (W / V), preferably 10 to 20% (W / V). Moreover, you may add a carbon source additionally according to consumption of the carbon source accompanying progress of fermentation.
 窒素源として、具体的には、例えば、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等のアンモニウム塩、ペプトン、酵母エキス、肉エキス、大豆タンパク質分解物等の有機窒素源、アンモニア、ウレアが挙げられる。pH調整に用いられるアンモニアガスやアンモニア水を窒素源として利用してもよい。窒素源としては、1種の窒素源を用いてもよく、2種またはそれ以上の窒素源を組み合わせて用いてもよい。 Specific examples of the nitrogen source include ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate, organic nitrogen sources such as peptone, yeast extract, meat extract, and soybean protein degradation product, ammonia, and urea. Ammonia gas or ammonia water used for pH adjustment may be used as a nitrogen source. As the nitrogen source, one kind of nitrogen source may be used, or two or more kinds of nitrogen sources may be used in combination.
 リン酸源として、具体的には、例えば、リン酸2水素カリウム、リン酸水素2カリウム等のリン酸塩、ピロリン酸等のリン酸ポリマーが挙げられる。リン酸源としては、1種のリン酸源を用いてもよく、2種またはそれ以上のリン酸源を組み合わせて用いてもよい。 Specific examples of the phosphoric acid source include phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate, and phosphate polymers such as pyrophosphoric acid. As the phosphoric acid source, one type of phosphoric acid source may be used, or two or more types of phosphoric acid sources may be used in combination.
 硫黄源として、具体的には、例えば、硫酸塩、チオ硫酸塩、亜硫酸塩等の無機硫黄化合物、システイン、シスチン、グルタチオン等の含硫アミノ酸が挙げられる。硫黄源としては、1種の硫黄源を用いてもよく、2種またはそれ以上の硫黄源を組み合わせて用いてもよい。 Specific examples of the sulfur source include inorganic sulfur compounds such as sulfate, thiosulfate, and sulfite, and sulfur-containing amino acids such as cysteine, cystine, and glutathione. As the sulfur source, one kind of sulfur source may be used, or two or more kinds of sulfur sources may be used in combination.
 その他の各種有機成分や無機成分として、具体的には、例えば、塩化ナトリウム、塩化カリウム等の無機塩類;鉄、マンガン、マグネシウム、カルシウム等の微量金属類;ビタミンB1、ビタミンB2、ビタミンB6、ニコチン酸、ニコチン酸アミド、ビタミンB12等のビタミン類;アミノ酸類;核酸類;これらを含有するペプトン、カザミノ酸、酵母エキス、大豆タンパク質分解物等の有機成分が挙げられる。その他の各種有機成分や無機成分としては、1種の成分を用いてもよく、2種またはそれ以上の成分を組み合わせて用いてもよい。 Other various organic and inorganic components include, for example, inorganic salts such as sodium chloride and potassium chloride; trace metals such as iron, manganese, magnesium and calcium; vitamin B1, vitamin B2, vitamin B6 and nicotine Examples include vitamins such as acid, nicotinamide, and vitamin B12; amino acids; nucleic acids; and organic components such as peptone, casamino acid, yeast extract, and soybean protein degradation products containing these. As other various organic components and inorganic components, one component may be used, or two or more components may be used in combination.
 また、生育にアミノ酸などを要求する栄養要求性変異株を使用する場合には、培地に要求される栄養素を補添することが好ましい。例えば、L-リジン生産菌は、L-リジン生合成経路が強化され、L-リジン分解能が弱化されている場合が多い。よって、そのようなL-リジン生産菌を培養する場合には、例えば、L-スレオニン、L-ホモセリン、L-イソロイシン、L-メチオニンから選ばれる1またはそれ以上のアミノ酸を培地に補添するのが好ましい。 Moreover, when using an auxotrophic mutant strain that requires an amino acid or the like for growth, it is preferable to supplement nutrients required for the medium. For example, L-lysine producing bacteria often have an enhanced L-lysine biosynthetic pathway and weakened L-lysine resolution. Therefore, when culturing such L-lysine-producing bacteria, for example, one or more amino acids selected from L-threonine, L-homoserine, L-isoleucine, and L-methionine are supplemented to the medium. Is preferred.
 また、培養時の発泡を抑えるために、培地には市販の消泡剤を適量添加しておくことが好ましい。 In order to suppress foaming during culture, it is preferable to add an appropriate amount of a commercially available antifoaming agent to the medium.
 培養条件は、本発明の細菌が増殖でき、L-アミノ酸が生産される限り、特に制限されない。培養は、例えば、細菌等の微生物の培養に用いられる通常の条件で行うことができる。培養条件は、使用する細菌の種類や製造するL-アミノ酸の種類等の諸条件に応じて適宜設定してよい。 Culture conditions are not particularly limited as long as the bacterium of the present invention can grow and L-amino acids are produced. The culture can be performed, for example, under normal conditions used for culture of microorganisms such as bacteria. The culture conditions may be appropriately set according to various conditions such as the type of bacteria used and the type of L-amino acid to be produced.
 培養は、液体培地を用いて行うことができる。培養の際には、本発明の細菌を寒天培地等の固体培地で培養したものを直接液体培地に接種してもよく、本発明の細菌を液体培地で種培養したものを本培養用の液体培地に接種してもよい。すなわち、培養は、種培養と本培養とに分けて行われてもよい。培養開始時に培地に含有される本発明の細菌の量は特に制限されない。例えば、OD660=4~8の種培養液を、培養開始時に、本培養用の培地に対して0.1質量%~30質量%、好ましくは1質量%~10質量%、添加してよい。 Cultivation can be performed using a liquid medium. When culturing, the culture medium of the bacterium of the present invention cultured in a solid medium such as an agar medium may be directly inoculated into a liquid medium, or the bacterium of the present invention seeded in a liquid medium is used as a liquid for main culture. The medium may be inoculated. That is, the culture may be performed separately for seed culture and main culture. The amount of the bacterium of the present invention contained in the medium at the start of culture is not particularly limited. For example, a seed culture solution having an OD660 of 4 to 8 may be added at 0.1 to 30% by mass, preferably 1 to 10% by mass with respect to the medium for main culture at the start of culture.
 培養は、回分培養(batch culture)、流加培養(Fed-batch culture)、連続培養(continuous culture)、またはそれらの組み合わせにより実施することができる。なお、培養が種培養と本培養とに分けて行われる場合、種培養と本培養の培養条件は、同一であってもよく、そうでなくてもよい。例えば、種培養と本培養を、共に回分培養で行ってもよい。また、例えば、種培養を回分培養で行い、本培養を流加培養または連続培養で行ってもよい。 Culture can be performed by batch culture, fed-batch culture, continuous culture, or a combination thereof. In addition, when culture is performed separately for seed culture and main culture, the culture conditions for seed culture and main culture may or may not be the same. For example, both seed culture and main culture may be performed by batch culture. Further, for example, seed culture may be performed by batch culture, and main culture may be performed by fed-batch culture or continuous culture.
 培養は、例えば、好気的に行うことができる。例えば、培養は、通気培養または振盪培養で行うことができる。酸素濃度は、例えば、飽和酸素濃度の5~50%、好ましくは10%程度に制御されてよい。培地のpHは、例えば、pH 3~10、好ましくはpH 4.0~9.5であってよい。培養中、必要に応じて培地のpHを調整することができる。培地のpHは、アンモニアガス、アンモニア水、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム等の各種アルカリ性または酸性物質を用いて調整することができる。培養温度は、例えば、20~45℃、好ましくは25℃~37℃であってよい。培養期間は、例えば、1時間以上、4時間以上、10時間以上、または15時間以上であってよく、168時間以下、120時間以下、90時間、または72時間以下であってよい。培養期間は、具体的には、例えば、10時間~120時間であってよい。培養は、例えば、培地中の炭素源が消費されるまで、あるいは本発明の細菌の活性がなくなるまで、継続してもよい。このような条件下で本発明の細菌を培養することにより、菌体内および/または培地中にL-アミノ酸が蓄積する。 The culture can be performed aerobically, for example. For example, the culture can be performed by aeration culture or shaking culture. The oxygen concentration may be controlled to, for example, 5 to 50%, preferably about 10% of the saturated oxygen concentration. The pH of the medium may be, for example, pH 3 to 10, preferably pH 4.0 to 9.5. During the culture, the pH of the medium can be adjusted as necessary. The pH of the medium is adjusted using various alkaline or acidic substances such as ammonia gas, ammonia water, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide, etc. can do. The culture temperature may be, for example, 20 to 45 ° C, preferably 25 ° C to 37 ° C. The culture period may be, for example, 1 hour or more, 4 hours or more, 10 hours or more, or 15 hours or more, and may be 168 hours or less, 120 hours or less, 90 hours, or 72 hours or less. Specifically, the culture period may be, for example, 10 hours to 120 hours. The culture may be continued, for example, until the carbon source in the medium is consumed or until the activity of the bacterium of the present invention is lost. By culturing the bacterium of the present invention under such conditions, L-amino acids accumulate in the cells and / or in the medium.
 また、L-グルタミン酸を製造する場合、L-グルタミン酸が析出する条件に調整された液体培地を用いて、培地中にL-グルタミン酸を析出させながら培養を行うことも出来る。L-グルタミン酸が析出する条件としては、例えば、pH5.0~3.0、好ましくはpH4.9~3.5、さらに好ましくはpH4.9~4.0、特に好ましくはpH4.7付近の条件が挙げられる(欧州特許出願公開第1078989号明細書)。尚、培養は、その全期間において上記pHで行われてもよく、一部の期間のみ上記pHで行われてもよい。「一部の期間」とは、例えば、培養の全期間の50%以上、70%以上、80%以上、90%以上、95%以上、または99%以上の期間であってよい。 In addition, when producing L-glutamic acid, it is also possible to carry out the culture while precipitating L-glutamic acid in the medium using a liquid medium adjusted to conditions under which L-glutamic acid is precipitated. The conditions under which L-glutamic acid precipitates are, for example, pH 5.0 to 3.0, preferably pH 4.9 to 3.5, more preferably pH 4.9 to 4.0, and particularly preferably around pH 4.7. (European Patent Application Publication No. 1078989). In addition, culture | cultivation may be performed at the said pH in the whole period, and may be performed at the said pH only for a part of period. The “partial period” may be, for example, a period of 50% or more, 70% or more, 80% or more, 90% or more, 95% or more, or 99% or more of the entire culture period.
 また、L-リジン等の塩基性アミノ酸を製造する場合、重炭酸イオン及び/又は炭酸イオンを塩基性アミノ酸の主なカウンタイオンとして利用して塩基性アミノ酸を発酵生産する方法を利用してもよい(特開2002-65287、US2002-0025564A、EP1813677A)。これらの方法によれば、塩基性アミノ酸のカウンタイオンとして従来利用されていた硫酸イオン及び/又は塩化物イオンの使用量を削減しつつ、塩基性アミノ酸を製造することができる。 Further, when a basic amino acid such as L-lysine is produced, a method of fermenting basic amino acid using bicarbonate ion and / or carbonate ion as a main counter ion of basic amino acid may be used. (Unexamined-Japanese-Patent No. 2002-65287, US2002-0025564A, EP1813677A). According to these methods, basic amino acids can be produced while reducing the amount of sulfate ions and / or chloride ions that have been conventionally used as counter ions for basic amino acids.
 L-アミノ酸が生成したことは、化合物の検出または同定に用いられる公知の手法により確認することができる。そのような手法としては、例えば、HPLC、LC/MS、GC/MS、NMRが挙げられる。これらの手法は適宜組み合わせて用いることができる。 The formation of L-amino acid can be confirmed by a known method used for detection or identification of a compound. Examples of such a method include HPLC, LC / MS, GC / MS, and NMR. These methods can be used in appropriate combination.
 生成したL-アミノ酸の回収は、化合物の分離精製に用いられる公知の手法により行うことができる。そのような手法としては、例えば、イオン交換樹脂法、膜処理法、沈殿法、および晶析法が挙げられる。これらの手法は適宜組み合わせて用いることができる。なお、菌体内にL-アミノ酸が蓄積する場合には、例えば、菌体を超音波などにより破砕し、遠心分離によって菌体を除去して得られる上清から、イオン交換樹脂法などによってL-アミノ酸を回収することができる。回収されるL-アミノ酸は、フリー体、その塩、またはそれらの混合物であってよい。塩としては、例えば、硫酸塩、塩酸塩、炭酸塩、アンモニウム塩、ナトリウム塩、カリウム塩が挙げられる。例えば、L-リジンは、フリー体のL-リジン、L-リジン硫酸塩、L-リジン塩酸塩、L-リジン炭酸塩、またはそれらの混合物であってもよい。また、例えば、L-グルタミン酸は、フリー体のL-グルタミン酸、L―グルタミン酸ナトリウム(MSG)、L-グルタミン酸アンモニウム塩、またはそれらの混合物であってもよい。 The produced L-amino acid can be recovered by a known method used for separation and purification of compounds. Examples of such a method include an ion exchange resin method, a membrane treatment method, a precipitation method, and a crystallization method. These methods can be used in appropriate combination. In the case where L-amino acid accumulates in the microbial cells, for example, the microbial cells are crushed with ultrasonic waves, and the microbial cells are removed by centrifugation from the supernatant obtained by ion exchange resin method or the like. Amino acids can be recovered. The recovered L-amino acid may be a free form, a salt thereof, or a mixture thereof. Examples of the salt include sulfate, hydrochloride, carbonate, ammonium salt, sodium salt, and potassium salt. For example, L-lysine may be free L-lysine, L-lysine sulfate, L-lysine hydrochloride, L-lysine carbonate, or a mixture thereof. Further, for example, L-glutamic acid may be free L-glutamic acid, sodium L-glutamate (MSG), ammonium L-glutamate, or a mixture thereof.
 また、L-アミノ酸が培地中に析出する場合は、遠心分離又は濾過等により回収することができる。また、培地中に析出したL-アミノ酸は、培地中に溶解しているL-アミノ酸を晶析した後に、併せて単離してもよい。 If L-amino acid is precipitated in the medium, it can be recovered by centrifugation or filtration. The L-amino acid precipitated in the medium may be isolated together after crystallization of the L-amino acid dissolved in the medium.
 尚、回収されるL-アミノ酸は、L-アミノ酸以外に、例えば、細菌菌体、培地成分、水分、及び細菌の代謝副産物等の成分を含んでいてもよい。回収されたL-アミノ酸の純度は、例えば、30%(w/w)以上、50%(w/w)以上、70%(w/w)以上、80%(w/w)以上、85%以上、90%(w/w)以上、または95%(w/w)以上であってよい (JP1214636B, USP5,431,933, USP4,956,471, USP4,777,051, USP4,946,654, USP5,840,358, USP6,238,714, US2005/0025878)。 The recovered L-amino acid may contain components other than the L-amino acid, such as bacterial cells, medium components, water, and bacterial metabolic byproducts. The purity of the collected L-amino acid is, for example, 30% (w / w) or higher, 50% (w / w) or higher, 70% (w / w) or higher, 80% (w / w) or higher, 85% (JP1214636B, USP5,431,933, USP4,956,471, USP4,777,051, USP4,946,654, USP5,840,358, USP6,238,714 , US2005 / 0025878).
 本発明の方法の一態様は、L-リジン生産能を有するエシェリヒア・コリを培地で培養してL-リジンを該培地中または該細菌の菌体内に生成蓄積すること、および該培地または菌体よりL-リジンを採取すること、を含むL-リジンの製造法であって、前記エシェリヒア・コリにおいて、acpP-fabFオペロンの遺伝子の発現調節配列が改変されることにより、前記遺伝子の発現が弱化されていることを特徴とする方法であってよい。また、本発明の方法の一態様は、L-リジン生産能を有するエシェリヒア・コリを培地で培養してL-リジンを該培地中または該細菌の菌体内に生成蓄積すること、および該培地または菌体よりL-リジンを採取すること、を含むL-リジンの製造法であって、前記エシェリヒア・コリにおいてacpP遺伝子の翻訳開始点の上流-34位のシトシンが他の塩基に置換されていることを特徴とする方法であってもよい。また、本発明の方法の一態様は、L-リジン生産能を有するエシェリヒア・コリを培地で培養してL-リジンを該培地中または該細菌の菌体内に生成蓄積すること、および該培地または菌体よりL-リジンを採取すること、を含むL-リジンの製造法であって、前記エシェリヒア・コリにおいてacpP遺伝子の翻訳開始点の上流-34位のシトシンがアデニンに置換されていることを特徴とする方法であってもよい。本発明の方法のこれらの態様については、上述した本発明の細菌や本発明の方法に関する記載を準用できる。 In one embodiment of the method of the present invention, Escherichia coli having L-lysine producing ability is cultured in a medium, and L-lysine is produced and accumulated in the medium or in the microbial cells, and the medium or microbial cells A method for producing L-lysine, comprising collecting L-lysine, wherein the expression control sequence of the gene for the acpP-fabF operon is altered in Escherichia coli, whereby the expression of the gene is weakened It may be a method characterized by the above. Further, according to one aspect of the method of the present invention, Escherichia coli having L-lysine producing ability is cultured in a medium, and L-lysine is produced and accumulated in the medium or in the microbial cells, and the medium or A method for producing L-lysine, comprising collecting L-lysine from bacterial cells, wherein cytosine at position −34 upstream of the translation start point of the acpP gene is substituted with another base in Escherichia coli. The method characterized by this may be used. Further, according to one aspect of the method of the present invention, Escherichia coli having L-lysine-producing ability is cultured in a medium, and L-lysine is produced and accumulated in the medium or in the bacterial cells, and the medium or A method for producing L-lysine, comprising collecting L-lysine from a microbial cell, wherein cytosine at position −34 upstream of the translation start point of the acpP gene is substituted with adenine in the Escherichia coli. It may be a featured method. About these aspects of the method of this invention, the description regarding the bacteria of this invention mentioned above and the method of this invention can apply mutatis mutandis.
 以下、本発明を実施例によりさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
実施例1:acpPおよびfabF遺伝子の発現が低下したL-リジン生産菌の構築(1)
 L-リジン生産菌として、E. coli WC196ΔcadAΔldc株(FERM BP-11027;WO2010/061890)(以下、WC196LC株ともいう)を用いた。同株のacpPおよびfabF遺伝子からなるacpP-fabFオペロンの上流に、DatsenkoとWannerによって最初に開発された「Red-driven integration」と呼ばれる方法(Proc. Natl. Acad. Sci. USA, 2000, vol. 97, No. 12, p6640-6645)を用いて点変異を導入した。この方法によれば、標的とする遺伝子に対応する配列を合成オリゴヌクレオチドの5'側にデザインし、抗生物質耐性遺伝子に対応する配列を3'側にデザインした合成オリゴヌクレオチドを用いて得られたPCR産物を用いて、一段階で変異導入株を構築することが出来る。手順を以下に示す。
Example 1: Construction of L-lysine-producing bacterium with reduced expression of acpP and fabF genes (1)
As an L-lysine producing bacterium, E. coli WC196ΔcadAΔldc strain (FERM BP-11027; WO2010 / 061890) (hereinafter also referred to as WC196LC strain) was used. A method called “Red-driven integration” (Proc. Natl. Acad. Sci. USA, 2000, vol. 1) was first developed by Datsenko and Wanner upstream of the acpP-fabF operon comprising the acpP and fabF genes of the same strain. 97, No. 12, p6640-6645). According to this method, the sequence corresponding to the target gene was designed on the 5 ′ side of the synthetic oligonucleotide, and the sequence corresponding to the antibiotic resistance gene was obtained using the synthetic oligonucleotide designed on the 3 ′ side. Mutation-introduced strains can be constructed in one step using PCR products. The procedure is shown below.
 Escherichia coli MG1655株(ATCC 47076)の染色体DNAを鋳型として、配列番号1及び2に示す合成オリゴヌクレオチドをプライマーに用いて、PCRを行った。配列番号1のプライマーは、プラスミドpMW118(λattL-Kmr-λattR) (WO2006/093322)のBglIIサイト周辺に対応する配列をプライマーの5’末端に、acpP遺伝子の上流配列の一部に対応する配列をプライマーの3’末端に有する。配列番号2のプライマーは、プラスミドpMW118(λattL-Kmr-λattR) (WO2006/093322)のBglIIサイト周辺に対応する配列をプライマーの5’末端に、fabF遺伝子の下流配列の一部に対応する配列をプライマーの3’末端に有する。得られたDNA断片を、制限酵素BglIIで処理したベクターpMW118(λattL-Kmr-λattR) とIn-Fusion HD Cloning Kit (TAKARA BIO)を用いて連結した。In-Fusion反応液を用いてE. coli JM109を形質転換した。50 mg/Lのカナマイシンを含むL-寒天培地上で形質転換体を選択した。形質転換体よりプラスミドを抽出し、目的の断片が挿入されていることを確認した。このプラスミドをpMW118(λattL-Kmr-λattR)-acpP-fabFと命名した。 PCR was performed using the chromosomal DNA of Escherichia coli MG1655 strain (ATCC 47076) as a template and the synthetic oligonucleotides shown in SEQ ID NOs: 1 and 2 as primers. Primer of SEQ ID NO: 1, the 5 'end of the primer the sequence corresponding to the peripheral BglII site of the plasmid pMW118 (λattL-Km r -λattR) (WO2006 / 093322), corresponding to a portion of the upstream sequence of acpP gene sequence At the 3 'end of the primer. Primer of SEQ ID NO: 2, the 5 'end of the primer the sequence corresponding to the peripheral BglII site of the plasmid pMW118 (λattL-Km r -λattR) (WO2006 / 093322), corresponding to a portion of the downstream sequence of fabF gene sequence At the 3 'end of the primer. The resulting DNA fragment was ligated with the restriction enzymes BglII treated with vector pMW118 (λattL-Km r -λattR) and In-Fusion HD Cloning Kit (TAKARA BIO). E. coli JM109 was transformed with the In-Fusion reaction solution. Transformants were selected on L-agar medium containing 50 mg / L kanamycin. A plasmid was extracted from the transformant, and it was confirmed that the target fragment was inserted. This plasmid was designated pMW118 (λattL-Km r -λattR) -acpP-fabF.
 pMW118(λattL-Kmr-λattR)-acpP-fabFを鋳型とし、配列番号3及び4に示す合成オリゴヌクレオチドをプライマーとして、QuikChange Site-Directed Mutagenesis Kit (Agilent Technologies)を用いて点変異を導入したプラスミドを構築した。この変異はacpP遺伝子の翻訳開始点の34塩基上流のシトシンをアデニンに置換したものである。このプラスミドをpMW118(λattL-Kmr-λattR)-acpP*-fabFと命名した。 pMW118 and (λattL-Km r -λattR) the -acpP-fabF template, the synthetic oligonucleotide shown in SEQ ID NO: 3 and 4 as primers, QuikChange Site-Directed Mutagenesis Kit plasmid introduced point mutations used (Agilent Technologies) Built. This mutation is a substitution of cytosine 34 bases upstream of the translation start point of the acpP gene with adenine. This plasmid was designated pMW118 (λattL-Km r -λattR) -acpP * -fabF.
 pMW118(λattL-Kmr-λattR)-acpP*-fabFを鋳型とし、配列番号5及び6に示す合成オリゴヌクレオチドをプライマーに用いて、PCRを行った。得られたDNA断片を用いて、米国特許出願公開第2006/0160191号公報及びWO2005/010175に記載のλ-red法を用いて、E. coli WC196LC株から、WC196LCacpP*株を構築した。WC196LCacpP*株は、acpP遺伝子の翻訳開始点の34塩基上流のシトシンがアデニンに置換されている。λ-red法におけるカナマイシン耐性組換え体の取得は、37℃でカナマイシン50 mg/Lを含むL-寒天培地上で平板培養し、カナマイシン耐性組換え体を選択することにより行った。 and pMW118 the (λattL-Km r -λattR) -acpP * -fabF a template, using synthetic oligonucleotides shown in SEQ ID NO: 5 and 6 as primers, were PCR. Using the obtained DNA fragment, WC196LCacpP * strain was constructed from E. coli WC196LC strain using λ-red method described in US Patent Application Publication No. 2006/0160191 and WO2005 / 010175. In the WC196LCacpP * strain, cytosine 34 bases upstream of the translation start point of the acpP gene is replaced with adenine. Acquisition of kanamycin-resistant recombinants by the λ-red method was performed by plating on L-agar medium containing 50 mg / L kanamycin at 37 ° C. and selecting kanamycin-resistant recombinants.
 プラスミドpCABD2(米国特許第6,040,160号明細書)を用いてWC196LCacpP*株を形質転換し、20 mg/Lのストレプトマイシンを含むL-寒天培地上で形質転換体を選択して、WC196LCacpP*/pCABD2株を得た。pCABD2は、L-リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のジヒドロジピコリン酸合成酵素(DDPS)をコードする変異型dapA遺伝子と、L-リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のアスパルトキナーゼIIIをコードする変異型lysC遺伝子と、エシェリヒア・コリ由来のジヒドロジピコリン酸レダクターゼをコードするdapB遺伝子と、ブレビバクテリウム・ラクトファーメンタム由来ジアミノピメリン酸デヒドロゲナーゼをコードするddh遺伝子を含む。 Plasmid pCABD2 (US Pat. No. 6,040,160) was used to transform WC196LCacpP * strain, transformants were selected on L-agar medium containing 20 mg / L streptomycin, and WC196LCacpP * / pCABD2 strain was selected. Obtained. pCABD2 is a mutant dapA gene encoding dihydrodipicolinate synthase (DDPS) derived from Escherichia coli having a mutation that is desensitized to feedback inhibition by L-lysine, and a mutation that is desensitized to feedback inhibition by L-lysine. A mutant lysC gene encoding aspartokinase III derived from Escherichia coli, dapB gene encoding dihydrodipicolinate reductase derived from Escherichia coli, and ddh encoding a diaminopimelate dehydrogenase derived from Brevibacterium lactofermentum Contains genes.
実施例2:L-リジン生産培養(1)
 作成したWC196LCacpP*/pCABD2株を用いて、L-リジン生産培養を行った。同株を、20 mg/Lのストレプトマイシンを含むL-寒天培地にてOD600が約0.6となるまで37℃にて培養した後、培養液と等量の40%グリセロール溶液を加えて攪拌した。その後、適当量ずつ分注、-80℃に保存し、グリセロールストックとした。
Example 2: L-lysine production culture (1)
The prepared WC196LCacpP * / pCABD2 strain was used for L-lysine production culture. This strain was cultured at 37 ° C. in an L-agar medium containing 20 mg / L of streptomycin until the OD600 reached about 0.6, and then the same amount of 40% glycerol solution as the culture solution was added and stirred. Thereafter, an appropriate amount was dispensed and stored at −80 ° C. to prepare a glycerol stock.
 WC196LCacpP*/pCABD2株のグリセロールストックを、20 mg/Lのストレプトマイシンを含むL-寒天培地に均一に塗布し、37℃にて24時間培養した。WC196LC株にpCABD2が導入された対照株であるWC196LC/pCABD2株も、20 mg/Lのストレプトマイシンを含むL-寒天培地上で同様に培養した。生育した菌体を3.0 mLの表1に示すL-リジン生産培地(MS-Glc培地)に懸濁し、得られた懸濁液をOD600が15になるように同培地にて希釈した。得られた希釈懸濁液1.0 mLを、20 mg/Lのストレプトマイシンを含む19 mLのL-リジン生産培地を張り込んだ500 mL容坂口フラスコに植菌し、往復振とう培養装置を用いて37℃で培養を行った。培養開始後48時間目に、残存するグルコースの量と生成したL-リジンの量を定量した。 A glycerol stock of WC196LCacpP * / pCABD2 strain was evenly spread on an L-agar medium containing 20 mg / L of streptomycin and cultured at 37 ° C. for 24 hours. The WC196LC / pCABD2 strain, which was a control strain in which pCABD2 was introduced into the WC196LC strain, was also cultured in the same manner on an L-agar medium containing 20 mg / L of streptomycin. The grown cells were suspended in 3.0 mL of an L-lysine production medium (MS-Glc medium) shown in Table 1, and the resulting suspension was diluted with the same medium so that the OD600 was 15. The obtained diluted suspension (1.0 mL) was inoculated into a 500 mL Sakaguchi flask in which 19 mL of L-lysine production medium containing 20 mg / L of streptomycin was infused, and was reconstituted using a reciprocating shake culture apparatus. Culturing was performed at 0 ° C. At 48 hours after the start of culture, the amount of remaining glucose and the amount of L-lysine produced were quantified.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 培養48時間目における残存グルコース濃度とL-リジン蓄積濃度を表2に示す。対照株であるWC196LC/pCABD2株と比較して、acpPおよびfabF遺伝子の発現が低下したWC196LCacpP*/pCABD2株では、L-リジン収率が大きく向上した。 Table 2 shows the residual glucose concentration and L-lysine accumulation concentration after 48 hours of culture. Compared with the control strain WC196LC / pCABD2, the WC196LCacpP * / pCABD2 strain in which the expression of the acpP and fabF genes was reduced significantly improved the L-lysine yield.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例3:RT-PCRによるacpP遺伝子の発現量の確認(1)
 実施例1で作成したWC196LCacpP*/pCABD2株およびWC196LC/pCABD2株をそれぞれ実施例2に記載の条件で培養し、培養液を培養17時間目にサンプリングした。RNAprotect Bacteria Reagent (Qiagen) とRNeasy Mini Kit (Qiagen) を用いて培養液からRNAを抽出した。得られたRNAを鋳型とし、PrimeScript RT reagent Kit (Takara Bio) を用いて逆転写PCRを行った。得られたcDNAを鋳型とし、配列番号13と14に示す合成オリゴヌクレオチド及び配列番号15と16に示す合成オリゴヌクレオチドをプライマーに用い、Power SYBR Green PCR Master Mix (Applied Biosystems) を用いて定量PCRを行った。配列番号13と14に示すオリゴヌクレオチドはacpP遺伝子の塩基配列に対応する。配列番号15と16に示すオリゴヌクレオチドはrrsA (16s rRNA)のORF内部の配列に対応する。rrsA (16s rRNA)を内部標準として、acpP遺伝子のmRNA量を算出した。
Example 3: Confirmation of expression level of acpP gene by RT-PCR (1)
The WC196LCacpP * / pCABD2 strain and WC196LC / pCABD2 strain prepared in Example 1 were each cultured under the conditions described in Example 2, and the culture solution was sampled at 17 hours of culture. RNA was extracted from the culture using RNAprotect Bacteria Reagent (Qiagen) and RNeasy Mini Kit (Qiagen). Using the obtained RNA as a template, reverse transcription PCR was performed using PrimeScript RT reagent Kit (Takara Bio). Using the obtained cDNA as a template, the synthetic oligonucleotides shown in SEQ ID NOs: 13 and 14 and the synthetic oligonucleotides shown in SEQ ID NOs: 15 and 16 as primers, and quantitative PCR using Power SYBR Green PCR Master Mix (Applied Biosystems) went. The oligonucleotides shown in SEQ ID NOs: 13 and 14 correspond to the base sequence of the acpP gene. The oligonucleotides shown in SEQ ID NOs: 15 and 16 correspond to sequences within the ORF of rrsA (16s rRNA). The mRNA amount of the acpP gene was calculated using rrsA (16s rRNA) as an internal standard.
 培養17時間目におけるacpP遺伝子のmRNA量を表3に示す。データは、pCABD2/WC196LC株のacpP遺伝子のmRNA量を1とした相対値として示した。対照株であるpCABD2/WC196LC株と比較して、pCABD2/WC196LC acpP*株では、acpP遺伝子のmRNA量が大きく低下した。 Table 3 shows the amount of mRNA of the acpP gene at 17 hours of culture. The data are shown as relative values with the mRNA level of the acpP gene of the pCABD2 / WC196LC strain as 1. Compared with the control strain pCABD2 / WC196LC, the pCABD2 / WC196LC acpP * strain significantly decreased the amount of mRNA of the acpP gene.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例4:acpPおよびfabF遺伝子の発現が低下したL-リジン生産菌の構築(2)
 L-リジン生産菌として、WC196LC株を用いる。同株のacpPおよびfabF遺伝子からなるacpP-fabFオペロンの上流の領域を、「Red-driven integration」法により、Ptac84プロモーター(ロシア特許出願公開第2006/134574号公報)又はlacプロモーターに置換する。置換される領域は、acpP-fabFオペロンの転写開始点の上流-200~-1の一部または全体であってよい。例えば、acpP-fabFオペロンの転写開始点の上流-100~-1、上流-50~-1、上流-30~-1、又は上流-30~-10の領域を置換する。
Example 4: Construction of L-lysine-producing bacterium with reduced expression of acpP and fabF genes (2)
The WC196LC strain is used as an L-lysine producing bacterium. The upstream region of the acpP-fabF operon consisting of the acpP and fabF genes of the same strain is replaced with the P tac84 promoter (Russian Patent Application Publication No. 2006/134574) or the lac promoter by the “Red-driven integration” method. The region to be replaced may be part or all of -200 to -1 upstream of the transcription start site of the acpP-fabF operon. For example, the region of -100 to -1, upstream -50 to -1, upstream -30 to -1, or upstream -30 to -10 upstream of the transcription start site of the acpP-fabF operon is replaced.
 以下、WC196LC株のacpP-fabFオペロンの上流の領域をPtac84プロモーターに置換した株をWC196LC Ptac84acpP株、lacプロモーターに置換した株をWC196LC Plac acpP株と呼ぶ。 Hereinafter, a strain in which the region upstream of the acpP-fabF operon of the WC196LC strain is replaced with a P tac84 promoter is referred to as a WC196LC P tac84 acpP strain, and a strain in which the lac promoter is replaced is referred to as a WC196LC P lac acpP strain.
 プラスミドpCABD2を用いてWC196LC Ptac84acpP株とWC196LC Plac acpP株を形質転換し、20 mg/Lのストレプトマイシンを含むL-寒天培地上で形質転換体を選択して、WC196LC Ptac84acpP /pCABD2株とWC196LC Plac acpP /pCABD2株を得る。 WC196LC P tac84 acpP and WC196LC P lac acpP were transformed with plasmid pCABD2, and transformants were selected on L-agar medium containing 20 mg / L of streptomycin, and WC196LC P tac84 acpP / pCABD2 And obtain WC196LC P lac acpP / pCABD2 strain.
実施例5:L-リジン生産培養(2)
 実施例4で作成したWC196LC Ptac84acpP /pCABD2株とWC196LC Plac acpP /pCABD2株、および対照株としてWC196LC /pCABD2株を用いて、実施例2に記載の方法に従いL-リジン生産培養を行う。
Example 5: L-lysine production culture (2)
Using the WC196LC P tac84 acpP / pCABD2 strain and WC196LC P lac acpP / pCABD2 strain prepared in Example 4 and the WC196LC / pCABD2 strain as a control strain, L-lysine production culture is performed according to the method described in Example 2.
実施例6:RT-PCRによるacpP遺伝子の発現量の確認(2)
 実施例4で作成したWC196LC Ptac84acpP /pCABD2株とWC196LC Plac acpP /pCABD2株、およびWC196LC/pCABD2株をそれぞれ実施例2に記載の条件で培養し、実施例3に記載の方法を用いてacpP遺伝子のmRNA量を算出する。
Example 6: Confirmation of expression level of acpP gene by RT-PCR (2)
The WC196LC P tac84 acpP / pCABD2 strain, the WC196LC P lac acpP / pCABD2 strain, and the WC196LC / pCABD2 strain prepared in Example 4 were cultured under the conditions described in Example 2, respectively, and the method described in Example 3 was used. Calculate the amount of mRNA of the acpP gene.
実施例7:acpPおよびfabF遺伝子の発現が低下したL-スレオニン生産菌の構築
 L-スレオニン生産菌として、E. coli TDH-6株(特開2001-346578号)を用いる。TDH-6株は、E. coli TDH-6/pVIC40 (VKPM B-3996) からプラスミドpVIC40を除去することにより得られる(特開2001-346578号)。実施例1に記載した方法を用いて、TDH-6株のacpP遺伝子の翻訳開始点の34塩基上流のシトシンをアデニンに置換する。又は、実施例4に記載した方法を用いて、TDH-6株のacpP-fabFオペロンの上流の領域をPtac84プロモーター又はlacプロモーターに置換する。置換される領域は、acpP-fabFオペロンの転写開始点の上流-200~-1の一部または全体であってよい。例えば、acpP-fabFオペロンの転写開始点の上流-100~-1、上流-50~-1、上流-30~-1、又は上流-30~-10の領域を置換する。
Example 7: Construction of L-threonine-producing bacterium with reduced expression of acpP and fabF genes E. coli TDH-6 strain (Japanese Patent Laid-Open No. 2001-346578) is used as the L-threonine-producing bacterium. The TDH-6 strain can be obtained by removing the plasmid pVIC40 from E. coli TDH-6 / pVIC40 (VKPM B-3996) (Japanese Patent Laid-Open No. 2001-346578). Using the method described in Example 1, cytosine 34 bases upstream of the translation start point of the acpP gene of TDH-6 strain is replaced with adenine. Alternatively, using the method described in Example 4, the upstream region of the acpP-fabF operon of the TDH-6 strain is replaced with the P tac84 promoter or the lac promoter. The region to be replaced may be part or all of -200 to -1 upstream of the transcription start site of the acpP-fabF operon. For example, the region of -100 to -1, upstream -50 to -1, upstream -30 to -1, or upstream -30 to -10 upstream of the transcription start site of the acpP-fabF operon is replaced.
 以下、TDH-6株のacpP遺伝子の翻訳開始点の34塩基上流のシトシンをアデニンに置換した株をTDH-6acpP*株、TDH-6株のacpP-fabFオペロンの上流の領域をPtac84プロモーターに置換した株をTDH-6 Ptac84acpP株、lacプロモーターに置換した株をTDH-6 Plac acpP株と呼ぶ。 Hereinafter, the TDH-6acpP * strain was substituted with cytosine 34 bases upstream of the translation start point of the adhP gene of the TDH-6 strain, and the upstream region of the acpP-fabF operon of the TDH-6 strain was used as the P tac84 promoter. The substituted strain is called TDH-6 P tac84 acpP strain, and the strain substituted with the lac promoter is called TDH-6 P lac acpP strain.
 プラスミドpVIC40(米国特許第5,705,371号)を用いてTDH-6acpP*株、TDH-6 Ptac84acpP株、TDH-6 Plac acpP株を形質転換し、TDH-6acpP*/pVIC40株、TDH-6 Ptac84acpP/pVIC40株、TDH-6 Plac acpP/pVIC40株を得る。 Plasmid pVIC40 (US Pat. No. 5,705,371) was used to transform TDH-6acpP * strain, TDH-6 P tac84 acpP strain, TDH-6 P lac acpP strain, and TDH-6acpP * / pVIC40 strain, TDH-6 P A tac84 acpP / pVIC40 strain and a TDH-6 P lac acpP / pVIC40 strain are obtained.
実施例8:L-スレオニン生産培養
 実施例7で作成したTDH-6acpP*/pVIC40株、TDH-6 Ptac84acpP/pVIC40株、TDH-6 Plac acpP/pVIC40株、および対照株としてTDH-6/pVIC40株を用いて、米国特許第7,915,018号に記載の方法に従いL-スレオニン生産培養を行う。
Example 8: L-threonine production culture TDH-6acpP * / pVIC40 strain, TDH-6 P tac84 acpP / pVIC40 strain, TDH-6 P lac acpP / pVIC40 strain prepared in Example 7, and TDH-6 as a control strain / pVIC40 strain is used for L-threonine production culture according to the method described in US Pat. No. 7,915,018.
実施例9:RT-PCRによるacpP遺伝子の発現量の確認(3)
 実施例7で作成したTDH-6acpP*/pVIC40株、TDH-6 Ptac84acpP/pVIC40株、TDH-6 Plac acpP/pVIC40株、および対照株としてTDH-6/pVIC40株を用いて、米国特許第7,915,018号に記載の方法に従ってL-スレオニン生産培養を行い、その培養液を用い実施例3に記載の方法に従ってacpP遺伝子のmRNA量を算出する。
Example 9: Confirmation of expression level of acpP gene by RT-PCR (3)
Using the TDH-6acpP * / pVIC40 strain, the TDH- 6P tac84 acpP / pVIC40 strain, the TDH-6P lac acpP / pVIC40 strain prepared in Example 7 and the TDH-6 / pVIC40 strain as a control strain, L-threonine production culture is performed according to the method described in No. 7,915,018, and the mRNA amount of the acpP gene is calculated using the culture solution according to the method described in Example 3.
 本発明によれば、細菌のL-アミノ酸生産能を向上させることができ、L-アミノ酸を効率よく製造することができる。 According to the present invention, the ability of bacteria to produce L-amino acids can be improved, and L-amino acids can be produced efficiently.
<配列表の説明>
配列番号1~6:プライマー
配列番号7:E. coli MG1655のacpP-fabFオペロンおよびその上流配列の塩基配列
配列番号8:E. coli MG1655のAcpPタンパク質のアミノ酸配列
配列番号9:E. coli MG1655のFabFタンパク質のアミノ酸配列
配列番号10:Pantoea ananatis AJ13355のacpP-fabFオペロンおよびその上流配列の塩基配列
配列番号11:Pantoea ananatis AJ13355のAcpPタンパク質のアミノ酸配列
配列番号12:Pantoea ananatis AJ13355のFabFタンパク質のアミノ酸配列
配列番号13~16:プライマー
<Explanation of Sequence Listing>
SEQ ID NOs: 1 to 6: Primer SEQ ID NO: 7: base sequence of acpP-fabF operon of E. coli MG1655 and its upstream sequence SEQ ID NO: 8: amino acid sequence of AcpP protein of E. coli MG1655 SEQ ID NO: 9: of E. coli MG1655 The amino acid sequence of FabF protein SEQ ID NO: 10: the nucleotide sequence of the acpP-fabF operon of Pantoea ananatis AJ13355 and its upstream sequence SEQ ID NO: 11: the amino acid sequence of the AcpP protein of Pantoea ananatis AJ13355 SEQ ID NOs: 13 to 16: Primers

Claims (14)

  1.  L-アミノ酸生産能を有する腸内細菌科に属する細菌を培地で培養してL-アミノ酸を該培地中または該細菌の菌体内に生成蓄積すること、および該培地または菌体よりL-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、
     前記細菌が、acpP-fabFオペロンが弱化されるように改変されていることを特徴とする、方法。
    Bacteria belonging to the family Enterobacteriaceae having L-amino acid-producing ability are cultured in a medium to produce and accumulate L-amino acid in the medium or in the bacterial body, and L-amino acid is produced from the medium or the bacterial body. Collecting an L-amino acid comprising:
    A method, characterized in that the bacterium has been modified such that the acpP-fabF operon is attenuated.
  2.  前記acpP-fabFオペロンの弱化が、acpP-fabFオペロンの遺伝子にコードされるタンパク質の活性の低下である、請求項1に記載の方法。 The method according to claim 1, wherein the weakening of the acpP-fabF operon is a decrease in the activity of a protein encoded by a gene of the acpP-fabF operon.
  3.  acpP-fabFオペロンの遺伝子の発現が弱化されることにより、前記オペロンが弱化された、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the operon is weakened by weakening the expression of the gene of the acpP-fabF operon.
  4.  前記acpP-fabFオペロンの遺伝子の発現調節配列が改変されることにより、前記遺伝子の発現が弱化された、請求項3に記載の方法。 4. The method according to claim 3, wherein expression of the gene is weakened by modifying an expression control sequence of the gene of the acpP-fabF operon.
  5.  前記acpP-fabFオペロンの遺伝子が、acpP遺伝子および/またはfabF遺伝子である、請求項2~4のいずれか1項に記載の方法。 The method according to any one of claims 2 to 4, wherein the gene of the acpP-fabF operon is an acpP gene and / or a fabF gene.
  6.  前記acpP-fabFオペロンの遺伝子が、acpP遺伝子およびfabF遺伝子である、請求項5に記載の方法。 The method according to claim 5, wherein the genes of the acpP-fabF operon are an acpP gene and a fabF gene.
  7.  acpP遺伝子の翻訳開始点の上流-34位のシトシンが他の塩基に置換されることにより、前記acpP-fabFオペロンの遺伝子の発現が弱化された、請求項3~6のいずれか1項に記載の方法。 7. The expression of the acpP-fabF operon gene is attenuated by replacing cytosine at position −34 upstream of the translation start point of the acpP gene with another base. the method of.
  8.  acpP遺伝子の翻訳開始点の上流-34位のシトシンがアデニンに置換されることにより、前記acpP-fabFオペロンの遺伝子の発現が弱化された、請求項7に記載の方法。 The method according to claim 7, wherein the expression of the acpP-fabF operon gene is weakened by replacing cytosine at position −34 upstream of the translation start point of the acpP gene with adenine.
  9.  前記細菌が、エシェリヒア属、パントエア属、またはエンテロバクター属に属する細菌である、請求項1~8のいずれか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein the bacterium belongs to the genus Escherichia, Pantoea, or Enterobacter.
  10.  前記細菌が、エシェリヒア・コリである、請求項9に記載の方法。 The method according to claim 9, wherein the bacterium is Escherichia coli.
  11.  前記L-アミノ酸が、L-リジンである、請求項1~10のいずれか1項に記載の方法。 The method according to any one of claims 1 to 10, wherein the L-amino acid is L-lysine.
  12.  L-リジン生産能を有するエシェリヒア・コリを培地で培養してL-リジンを該培地中または該エシェリヒア・コリの菌体内に生成蓄積すること、および該培地または菌体よりL-リジンを採取すること、を含むL-リジンの製造法であって、
     前記エシェリヒア・コリにおいて、acpP-fabFオペロンの遺伝子の発現調節配列が改変されることにより、前記遺伝子の発現が弱化されていることを特徴とする、方法。
    Escherichia coli having L-lysine-producing ability is cultured in a medium, and L-lysine is produced and accumulated in the medium or cells of the Escherichia coli, and L-lysine is collected from the medium or cells. A process for producing L-lysine comprising
    A method wherein the expression of the gene is weakened by modifying the expression control sequence of the gene of the acpP-fabF operon in the Escherichia coli.
  13.  L-リジン生産能を有するエシェリヒア・コリを培地で培養してL-リジンを該培地中または該エシェリヒア・コリの菌体内に生成蓄積すること、および該培地または菌体よりL-リジンを採取すること、を含むL-リジンの製造法であって、
     前記エシェリヒア・コリにおいてacpP遺伝子の翻訳開始点の上流-34位のシトシンが他の塩基に置換されていることを特徴とする、方法。
    Escherichia coli having L-lysine-producing ability is cultured in a medium, and L-lysine is produced and accumulated in the medium or cells of the Escherichia coli, and L-lysine is collected from the medium or cells. A process for producing L-lysine comprising
    A method wherein cytosine at position −34 upstream of the translation start point of the acpP gene is substituted with another base in the Escherichia coli.
  14.  L-リジン生産能を有するエシェリヒア・コリを培地で培養してL-リジンを該培地中または該エシェリヒア・コリの菌体内に生成蓄積すること、および該培地または菌体よりL-リジンを採取すること、を含むL-リジンの製造法であって、
     前記エシェリヒア・コリにおいてacpP遺伝子の翻訳開始点の上流-34位のシトシンがアデニンに置換されていることを特徴とする、方法。
    Escherichia coli having L-lysine-producing ability is cultured in a medium, and L-lysine is produced and accumulated in the medium or cells of the Escherichia coli, and L-lysine is collected from the medium or cells. A process for producing L-lysine comprising
    A method wherein cytosine at position −34 upstream of the translation start point of the acpP gene is substituted with adenine in the Escherichia coli.
PCT/JP2014/077993 2013-10-21 2014-10-21 Method for producing l-amino acid WO2015060314A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015507848A JP6459962B2 (en) 2013-10-21 2014-10-21 Method for producing L-amino acid
PL14835548T PL2886651T3 (en) 2013-10-21 2014-10-21 Method for producing l-amino acid
EP14835548.0A EP2886651B1 (en) 2013-10-21 2014-10-21 Method for producing l-amino acid
BR112015005215-0A BR112015005215B1 (en) 2013-10-21 2014-10-21 METHODS FOR THE PRODUCTION OF AN L-AMINO ACID AND FOR THE PRODUCTION OF L-LYSINE
CN201480002367.5A CN104736707B (en) 2013-10-21 2014-10-21 The method for producing L amino acid
ES14835548.0T ES2694011T3 (en) 2013-10-21 2014-10-21 Method to produce L-amino acid
US14/735,303 US9487806B2 (en) 2013-10-21 2015-06-10 Method for producing L-amino acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013218221 2013-10-21
JP2013-218221 2013-10-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/735,303 Continuation US9487806B2 (en) 2013-10-21 2015-06-10 Method for producing L-amino acid

Publications (1)

Publication Number Publication Date
WO2015060314A1 true WO2015060314A1 (en) 2015-04-30

Family

ID=52992908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077993 WO2015060314A1 (en) 2013-10-21 2014-10-21 Method for producing l-amino acid

Country Status (8)

Country Link
US (1) US9487806B2 (en)
EP (1) EP2886651B1 (en)
JP (1) JP6459962B2 (en)
CN (1) CN104736707B (en)
BR (1) BR112015005215B1 (en)
ES (1) ES2694011T3 (en)
PL (1) PL2886651T3 (en)
WO (1) WO2015060314A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3368695A2 (en) 2015-10-27 2018-09-05 Ajinomoto Co., Inc. Method for producing aldehyde
US10428359B2 (en) 2016-10-03 2019-10-01 Ajinomoto Co, Inc. Method for producing L-amino acid

Citations (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR356739A (en) 1904-09-20 1905-12-07 Charles Glauser Perrin Winding and time-setting mechanism
JPS565099A (en) 1979-06-25 1981-01-20 Ajinomoto Co Inc Production of l-histidine through fermentation process and microorganism used therefor
US4278765A (en) 1978-06-30 1981-07-14 Debabov Vladimir G Method for preparing strains which produce aminoacids
JPS56106598A (en) 1980-01-30 1981-08-24 Ajinomoto Co Inc Preparation of l-arginine by fermentation method
GB2075056A (en) 1980-04-14 1981-11-11 Ajinomoto Kk L-proline-producing Microorganisms
GB2075055A (en) 1980-04-14 1981-11-11 Ajinomoto Kk L-methionone-producing Microorganisms
JPS5771397A (en) 1980-08-22 1982-05-04 Ajinomoto Co Inc Preparation of l-tryptophan by fermentation method
US4346170A (en) 1979-07-23 1982-08-24 Ajinomoto Company, Incorporated Method for producing L-lysine by fermentation
DE3127361A1 (en) 1981-07-08 1983-02-03 Schering Ag, 1000 Berlin Und 4619 Bergkamen PRODUCTION AND APPLICATION OF PLASMIDES WITH GENES FOR THE BIOSYNTHESIS OF L-PROLIN
US4407952A (en) 1979-06-15 1983-10-04 Ajinomoto Company Incorporated Method for producing L-phenylalanine by fermentation
JPS5848147B2 (en) 1975-12-15 1983-10-26 味の素株式会社 Shiryo no Seizouhou
EP0149911A2 (en) 1984-01-09 1985-07-31 Minnesota Mining And Manufacturing Company Electrical connector locator plate
JPS6234397B2 (en) 1979-11-15 1987-07-27 Ajinomoto Kk
JPS62244382A (en) 1986-04-16 1987-10-24 Ajinomoto Co Inc Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan
US4777051A (en) 1986-06-20 1988-10-11 Ajinomoto Co., Inc. Process for the production of a composition for animal feed
KR890003681A (en) 1986-10-16 1989-04-17 스타퍼 케미칼 캄파니 2--1,3-cyclohexanedione and its manufacturing method and composition and plant suppression method using the same
JPH02458A (en) 1987-10-12 1990-01-05 Ajinomoto Co Inc Recombinant dna, microorganism containing the same recombinant dna and production of l-isoleucine using the same microorganism
JPH02109985A (en) 1988-02-22 1990-04-23 Eurolysine Method for incorporating objective gene in bacteria chromosome and obtained bacteria
WO1990004636A1 (en) 1988-10-25 1990-05-03 Vsesojuzny Nauchno-Issledovatelsky Institut Genetiki I Selektsii Promyshlennykh Mikroorganizmov (Vniigenetika) Strain of bacteria escherichia coli, producer of l-threonine
US4946654A (en) 1984-04-07 1990-08-07 Bayer Aktiengesellschaft Process for preparing granulates
JPH02207791A (en) 1989-02-07 1990-08-17 Ajinomoto Co Inc Transformation of bacterium
US4956471A (en) 1986-04-28 1990-09-11 Ajinomoto Company, Inc. Process for isolating and purifying amino acids
US5168056A (en) 1991-02-08 1992-12-01 Purdue Research Foundation Enhanced production of common aromatic pathway compounds
JPH057491A (en) 1990-10-15 1993-01-19 Ajinomoto Co Inc Temperature-sensitive plasmid
JPH05130882A (en) 1991-11-11 1993-05-28 Kyowa Hakko Kogyo Co Ltd Production of l-isoleucine by fermentation
JPH05304969A (en) 1992-02-25 1993-11-19 Kyowa Hakko Kogyo Co Ltd Production of amino acid by fermentation method
RU2003677C1 (en) 1992-03-30 1993-11-30 Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Strain of bacterium escherichia coli - a producer of l-histidine
EP0593792A1 (en) 1992-10-14 1994-04-27 Ajinomoto Co., Inc. Novel L-threonine-producing microbacteria and a method for the production of L-threonine
US5354672A (en) 1992-11-24 1994-10-11 Ian Fotheringham Materials and methods for hypersecretion of amino acids
US5376538A (en) 1991-09-04 1994-12-27 Kyowa Hakko Kogyo Co., Ltd. Process for producing L-threonine with strains of E coli resistant to phenylalanine and leucine
US5378616A (en) 1991-08-07 1995-01-03 Ajinomoto Co., Inc. Mutant Escherichia coli capable of enhanced L-glutamic acid production by fermentation
WO1995006114A1 (en) 1993-08-24 1995-03-02 Ajinomoto Co., Inc. Variant phosphoenolpyruvate carboxylase, gene thereof, and process for producing amino acid
US5431933A (en) 1991-09-17 1995-07-11 Degussa Aktiengesellschaft Animal feed supplement based on a fermentation broth amino acid, a process for its production and its use
WO1996006926A1 (en) 1994-08-30 1996-03-07 Ajinomoto Co., Inc. Process for producing l-valine and l-leucine
JPH0870879A (en) 1994-06-30 1996-03-19 Kyowa Hakko Kogyo Co Ltd Method for producing l-leucine by fermentation method
US5573945A (en) 1994-01-10 1996-11-12 Ajinomoto Co., Inc. Mutant and method for producing L-glutamic acid by fermentation
EP0488424B1 (en) 1990-11-30 1997-03-05 Ajinomoto Co., Inc. Recombinant DNA sequences encoding feedback inhibition released enzymes, plasmids comprising the recombinant DNA sequences, transformed microorganisms useful in the production of aromatic amino acids, and a process for preparing aromatic amino acids by fermentation
WO1997008333A1 (en) 1995-08-30 1997-03-06 Ajinomoto Co., Inc. Process for producing l-amino acids
EP0763127A1 (en) 1994-06-09 1997-03-19 Purdue Research Foundation Deblocking the common pathway of aromatic amino acid synthesis
US5658766A (en) 1991-05-30 1997-08-19 Ajinomoto Co., Inc. Strains of Escherichia coli which produce isoleucine or valine and a method for their production
US5705371A (en) 1990-06-12 1998-01-06 Ajinomoto Co., Inc. Bacterial strain of escherichia coli BKIIM B-3996 as the producer of L-threonine
WO1998004715A1 (en) 1996-07-30 1998-02-05 Archer-Daniels-Midland Company Novel strains of escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production
US5756345A (en) 1995-09-05 1998-05-26 Degussa Aktiengesellschaft Production of tryptophan by the bacterium Escherichia coli
RU2119536C1 (en) 1997-01-21 1998-09-27 Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Strain escherichia coli - a producer of l-histidine
US5827698A (en) 1994-12-09 1998-10-27 Ajinomoto Co., Inc. Lysine decarboxylase gene and method of producing l-lysine
US5830716A (en) 1993-10-28 1998-11-03 Ajinomoto Co., Inc. Increased amounts of substances by modifying a microorganism to increase production of NADPH from NADH
US5840358A (en) 1996-05-31 1998-11-24 Degussa Aktiengesellschaft Process for the preparation of an animal feed supplement based on fermentation broth
US5882888A (en) 1995-01-23 1999-03-16 Novo Nordisk A/S DNA integration by transposition
WO1999018228A2 (en) 1997-10-04 1999-04-15 Forschungszentrum Jülich GmbH Method for microbial production of amino acids of the aspartate and/or glutamate family and agents which can be used in said method
US5906925A (en) 1994-09-16 1999-05-25 Liao; James C. Microorganisms and methods for overproduction of DAHP by cloned pps gene
US5908768A (en) 1996-04-23 1999-06-01 Ajinomoto Co., Inc. Process for producing L-glutamic acid by fermentation with E. coli resistant to aspartic acid antimetabolite
JPH11155571A (en) 1997-11-25 1999-06-15 Ajinomoto Co Inc Production of l-cysteine
US5932453A (en) 1996-10-15 1999-08-03 Ajinomoto Co., Ltd. Process for producing L-amino acid through fermentation
US5972663A (en) 1997-06-19 1999-10-26 Consortium Fur Elektrochemische Industrie Gmbh Microorganisms and processes for the fermentative preparation of L-cysteine, L-cystine, N-acetylserine or thiazolidine derivatives
EP0952221A2 (en) 1998-03-18 1999-10-27 Ajinomoto Co., Ltd. L-Glutamic acid-producing bacterium and method for producing L-glutamic acid
EP0955368A2 (en) 1998-03-18 1999-11-10 Ajinomoto Co., Ltd. L-glutamic acid-producing bacterium and method for producing l-glutamic acid
US5998178A (en) 1994-05-30 1999-12-07 Ajinomoto Co., Ltd. L-isoleucine-producing bacterium and method for preparing L-isoleucine through fermentation
US6040160A (en) 1993-12-08 2000-03-21 Ajinomoto Co., Inc. Method of producing L-lysine by fermentation
WO2000018935A1 (en) 1998-09-25 2000-04-06 Ajinomoto Co.,Inc. Process for constructing amino acid-producing bacterium and process for producing amino acid by fermentation method with the use of the thus constructed amino acid-producing bacterium
EP0994190A2 (en) 1998-10-13 2000-04-19 Ajinomoto Co., Inc. DNA conferring L-homoserine resistance to bacteria, and its use
JP2000139471A (en) 1998-11-17 2000-05-23 Ajinomoto Co Inc Production of l-methionine by fermentation
EP1010755A1 (en) 1998-12-18 2000-06-21 Ajinomoto Co., Inc. Method for producing L-Glutamic acid by fermentation
EP1013765A1 (en) 1998-12-23 2000-06-28 Ajinomoto Co., Ltd. Gene and method for producing L-amino acids
EP1016710A2 (en) 1998-12-30 2000-07-05 Ajinomoto Co., Inc. Method for producing L-amino acids
US6110714A (en) 1995-08-23 2000-08-29 Ajinomoto Co., Inc. Process for producing L-glutamic acid by fermentation
US6124121A (en) 1997-10-29 2000-09-26 Ajinomoto Co., Inc. Method for producing L-leucine
WO2001002542A1 (en) 1999-07-02 2001-01-11 Ajinomoto Co., Inc. Process for producing l-amino acid
WO2001002545A1 (en) 1999-07-02 2001-01-11 Ajinomoto Co., Inc. Process for producing l-amino acid
EP1070376A1 (en) 1998-04-09 2001-01-24 Siemens Aktiengesellschaft Device and method for supplying an electric load with electric energy
US6180373B1 (en) 1992-09-28 2001-01-30 Consortium f{umlaut over (u)}r elektrochemische Industrie GmbH Microorganisms for the production of tryptophan and process for the preparation thereof
EP1078989A2 (en) 1999-08-20 2001-02-28 Ajinomoto Co., Ltd. Method for producing L-glutamic acid by fermentation accompanied by precipitation
EP1085087A2 (en) 1999-09-20 2001-03-21 Kyowa Hakko Kogyo Co., Ltd. Method for producing amino acids by fermentation using aminoquinoline resistant bacterial strains
US6218168B1 (en) 1995-10-26 2001-04-17 CONSORTIUM FüR ELEKTROCHEMISCHE INUDSTRIE GMBH Process for preparing O-acetylserine, L-cysteine and L-cysteine-related products
EP1092776A1 (en) 1999-10-14 2001-04-18 Ajinomoto Co., Inc. Method for producing L-amino acid by fermentation
WO2001027307A1 (en) 1999-10-14 2001-04-19 Consortium für elektrochemische Industrie GmbH Method for production of l-cysteine or l-cysteine derivatives by fermentation
US6238714B1 (en) 1999-05-05 2001-05-29 Degussa-Huls Ag Feedstuff additive which contains D-pantothenic acid and/or its salts and a process for the preparation thereof
US6258554B1 (en) 1998-07-03 2001-07-10 Kyowa Hakko Kogyo Co., Ltd. Method for producing metabolites biologically synthesized via phosphoribosyl pyrophosphate
US6303383B1 (en) 1999-03-16 2001-10-16 Ajinomoto Co., Inc. Temperature sensitive plasmid for coryneform bacteria
EP1149911A2 (en) 2000-04-26 2001-10-31 Ajinomoto Co., Ltd. Amino acid producing strains belonging to the genus Escherichia and method for producing amino acid
EP1170376A1 (en) 2000-07-05 2002-01-09 Ajinomoto Co., Inc. Method for producing substances utilizing microorganisms
EP1170361A2 (en) 2000-06-28 2002-01-09 Ajinomoto Co., Inc. New mutant N-Acetylglutamate synthase and method for L-Arginine production
EP1170358A1 (en) 2000-07-06 2002-01-09 Ajinomoto Co., Ltd. L-arginine producing Escherichia coli and method of producing L-arginine
EP1172433A1 (en) 2000-07-06 2002-01-16 Ajinomoto Co., Inc. Bacterium having ability to produce L-glutamic acid, L-proline or L-arginine and method for producing L-glutamic acid, L-proline or L-arginine
US6344347B1 (en) 1999-09-20 2002-02-05 Kyowa Hakko Kogyo Co., Ltd. Method for producing L-amino acids by fermentation
US20020025564A1 (en) 2000-08-24 2002-02-28 Ajinomoto Co., Inc. Method for producing basic amino acid
WO2002026993A1 (en) 2000-09-28 2002-04-04 Archer-Daniels-Midland Company Escherichia coli strains which over-produce l-threonine and processes for the production of l-threonine by fermentation
US20020058315A1 (en) 2000-09-26 2002-05-16 Ajinomoto Co., Inc. Bacterium having ability to produce L-glutamic acid, L-proline or L-arginine and method for producing L-glutamic acid, L-proline or L-arginine
US6403342B1 (en) 1999-07-09 2002-06-11 Anjinomoto Co., Inc. DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine
EP1229121A2 (en) 2001-02-05 2002-08-07 Ajinomoto Co., Inc. Method for producing L-glutamine by fermentation and L-glutamine producing bacterium
JP2002233384A (en) 2001-02-09 2002-08-20 Ajinomoto Co Inc L-cysteine-producing bacterium and method for producing l-cysteine
JP2002300874A (en) 2001-02-13 2002-10-15 Ajinomoto Co Inc Method for producing l-amino acid using bacterium of genus escherichia
EP1253195A1 (en) 2000-01-21 2002-10-30 Ajinomoto Co., Inc. Process for producing l-lysine
WO2003004664A2 (en) 2001-07-06 2003-01-16 Degussa Ag Process for the preparation of l-amino acids using strains of the enterobacteriaceae family with enhanced fba expression
WO2003008609A2 (en) 2001-07-18 2003-01-30 Degussa Ag Process for the preparation of l-amino acids using strains of the enterobacteriaceae family which contain an enhanced pykf gene
RU2000124295A (en) 2000-09-26 2003-02-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" A BACTERIA POSSIBLE FOR PRODUCING L-GLUTAMIN ACID, L-PROLINE OR L-ARGININE, AND A METHOD FOR PRODUCING L-GLUTAMIN ACID, L-PROLINE OR L-ARGININE
WO2003044191A1 (en) 2001-11-23 2003-05-30 Ajinomoto Co.,Inc. Process for producing l-amino acid using escherichia
WO2003044192A1 (en) 2001-11-23 2003-05-30 Ajinomoto Co.,Inc. Process for producing l-amino acid using escherichia
JP2003169668A (en) 2001-09-28 2003-06-17 Ajinomoto Co Inc L-cysteine-producing microorganism and method for producing l-cysteine
US6596517B2 (en) 2001-02-20 2003-07-22 Ajinomoto Co., Inc. Method for producing L-glutamic acid
RU2209248C2 (en) 2001-06-26 2003-07-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Method for preparing l-methionine, strain of bacterium escherichia coli vkpm b-8125 as producer of l-methionine
US20030148474A1 (en) 2001-11-30 2003-08-07 Ajinomoto Co., Inc. New mutant glutamine synthetase and method for producing amino acids
RU2215782C2 (en) 2001-02-26 2003-11-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Method for preparing l-amino acids, strain escherichia coli as producer of l-amino acid (variants)
WO2003097839A1 (en) 2002-05-15 2003-11-27 Cj Corporation Nucleotide sequence of threonine operon irrepressible by isoleucine and method for producing l-threonine using transformed host cell containing the same
JP2004049237A (en) 2002-07-19 2004-02-19 Consortium Elektrochem Ind Gmbh Microorganism strain, plasmid, method for producing microorganism strain, and method for producing amino acid of phosphoglycerate family
EP1484410A1 (en) 2003-06-05 2004-12-08 Ajinomoto Co., Ltd. Fermentation methods and genetically modified bacteria with increased substrate and byproduct uptake.
WO2004108840A2 (en) * 2003-06-03 2004-12-16 Cytogenix, Inc. Nucleotides for prevention and treatment of bacterial and fungal pathologies
US20050025878A1 (en) 2003-07-11 2005-02-03 Degussa Ag Process for the granulation of an animal feedstuff additive
WO2005010175A1 (en) 2003-07-29 2005-02-03 Ajinomoto Co., Inc. Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity
RU2003121601A (en) 2003-07-16 2005-02-27 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") (RU) MUTANT SERINACETHYL TRANSFERASE
US20050112731A1 (en) 2003-07-16 2005-05-26 Tatsuki Kashiwagi Mutant serine acetyltransferase
WO2005049808A1 (en) 2003-11-21 2005-06-02 Ajinomoto Co., Inc. Method for producing l-amino acid by fermentation
EP1352966B1 (en) 2002-03-27 2005-07-20 Ajinomoto Co., Inc. Method for producing L-amino acid
WO2005073390A2 (en) 2004-01-30 2005-08-11 Ajinomoto Co., Inc. L-amino acid-producing microorganism and method for producing l-amino acid
JP2005245311A (en) 2004-03-04 2005-09-15 Ajinomoto Co Inc L-cysteine producing bacteria and method for producing l-cysteine
WO2005085419A1 (en) 2004-03-04 2005-09-15 Ajinomoto Co., Inc. L-glutamic acid-producing microorganism and a method for producing l-glutamic acid
JP2005287333A (en) 2004-03-31 2005-10-20 Ajinomoto Co Inc L-cysteine producing bacteria and method for producing l-cysteine
WO2005103275A1 (en) 2004-04-26 2005-11-03 Ajinomoto Co., Ltd. Process for producing l-tryptophan according to fermentation process
WO2006035831A1 (en) 2004-09-28 2006-04-06 Kyowa Hakko Kogyo Co., Ltd. Method of producing l-arginine, l-ornithine or l-citrulline
US20060160191A1 (en) 2005-01-18 2006-07-20 Saori Kataoka L-amino acid producing microorganism and a method for producing L-amino acid
WO2006093322A2 (en) 2005-03-03 2006-09-08 Ajinomoto Co., Inc. Method for manufacturing 4-hydroxy-l-isoleucine or a salt thereof
EP1813677A1 (en) 2004-10-07 2007-08-01 Ajinomoto Co., Inc. Process for producing basic substance
WO2007136762A2 (en) * 2006-05-19 2007-11-29 Ls9, Inc. Production of fatty acids and derivatives thereof
JP2008509661A (en) 2004-08-10 2008-04-03 味の素株式会社 Use of phosphoketolase to produce useful metabolites
RU2006134574A (en) 2006-09-29 2008-04-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) METHOD FOR CONSTRUCTING RECOMBINANT BACTERIA BELONGING TO PANTOEA GENUS AND METHOD FOR PRODUCING L-AMINO ACIDS USING BACTERIA BELONGING TO PANTOEA GENUS
WO2008075483A1 (en) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. Process for production of l-amino acid
WO2008133161A1 (en) 2007-04-17 2008-11-06 Ajinomoto Co., Inc. Method for production of acidic substance having carboxyl group
US20080311632A1 (en) 2006-01-04 2008-12-18 Rainer Figge Methods for Producing Methionine by Culturing a Microorganism Modified to Enhance Production of Cysteine
US20090029424A1 (en) 2004-05-12 2009-01-29 Metabolic Explorer Recombinant enzyme with altered feedback sensitivity
WO2009031564A1 (en) * 2007-09-04 2009-03-12 Ajinomoto Co., Inc. L-amino acid-producing bacterium and method of producing l-amino acid
JP2009232844A (en) 2008-03-06 2009-10-15 Ajinomoto Co Inc L-cysteine-producing bacterium, and method for producing l-cysteine
WO2010027045A1 (en) 2008-09-08 2010-03-11 味の素株式会社 Microorganism capable of producing l-amino acid, and method for producing l-amino acid
WO2010042664A2 (en) * 2008-10-07 2010-04-15 Ls9, Inc. Method and compositions for producing fatty aldehydes
WO2010061890A1 (en) 2008-11-27 2010-06-03 味の素株式会社 Process for producing l-amino acid
JP2010187552A (en) 2009-02-16 2010-09-02 Ajinomoto Co Inc L-amino acid-producing bacterium and method for producing l-amino acid
US7915018B2 (en) 2004-10-22 2011-03-29 Ajinomoto Co., Inc. Method for producing L-amino acids using bacteria of the Enterobacteriaceae family
WO2011152565A1 (en) * 2010-06-03 2011-12-08 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family, having attenuated expression of gene(s) encoding peptidase
WO2012002486A1 (en) * 2010-07-01 2012-01-05 味の素株式会社 Method for producing l-amino acid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2215783C2 (en) 2001-05-15 2003-11-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото - Генетика" Mutant n-acetylglutamate synthase (variants), dna fragment, strain of microorganism escherichia coli as producer of arginine and method for preparing l-arginine
CN101490241A (en) * 2006-05-19 2009-07-22 Ls9公司 Production of fatty acids and derivatives thereof

Patent Citations (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR356739A (en) 1904-09-20 1905-12-07 Charles Glauser Perrin Winding and time-setting mechanism
JPS5848147B2 (en) 1975-12-15 1983-10-26 味の素株式会社 Shiryo no Seizouhou
US4278765A (en) 1978-06-30 1981-07-14 Debabov Vladimir G Method for preparing strains which produce aminoacids
US4407952A (en) 1979-06-15 1983-10-04 Ajinomoto Company Incorporated Method for producing L-phenylalanine by fermentation
US4388405A (en) 1979-06-25 1983-06-14 Ajinomoto Company Incorporated Method for producing L-histidine by fermentation
JPS565099A (en) 1979-06-25 1981-01-20 Ajinomoto Co Inc Production of l-histidine through fermentation process and microorganism used therefor
US4346170A (en) 1979-07-23 1982-08-24 Ajinomoto Company, Incorporated Method for producing L-lysine by fermentation
JPS6234397B2 (en) 1979-11-15 1987-07-27 Ajinomoto Kk
JPS56106598A (en) 1980-01-30 1981-08-24 Ajinomoto Co Inc Preparation of l-arginine by fermentation method
GB2075055A (en) 1980-04-14 1981-11-11 Ajinomoto Kk L-methionone-producing Microorganisms
GB2075056A (en) 1980-04-14 1981-11-11 Ajinomoto Kk L-proline-producing Microorganisms
US4371614A (en) 1980-08-22 1983-02-01 Ajinomoto Co., Inc. E.Coli bacteria carrying recombinant plasmids and their use in the fermentative production of L-tryptophan
JPS5771397A (en) 1980-08-22 1982-05-04 Ajinomoto Co Inc Preparation of l-tryptophan by fermentation method
DE3127361A1 (en) 1981-07-08 1983-02-03 Schering Ag, 1000 Berlin Und 4619 Bergkamen PRODUCTION AND APPLICATION OF PLASMIDES WITH GENES FOR THE BIOSYNTHESIS OF L-PROLIN
EP0149911A2 (en) 1984-01-09 1985-07-31 Minnesota Mining And Manufacturing Company Electrical connector locator plate
US4946654A (en) 1984-04-07 1990-08-07 Bayer Aktiengesellschaft Process for preparing granulates
JPS62244382A (en) 1986-04-16 1987-10-24 Ajinomoto Co Inc Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan
US4956471A (en) 1986-04-28 1990-09-11 Ajinomoto Company, Inc. Process for isolating and purifying amino acids
US4777051A (en) 1986-06-20 1988-10-11 Ajinomoto Co., Inc. Process for the production of a composition for animal feed
KR890003681A (en) 1986-10-16 1989-04-17 스타퍼 케미칼 캄파니 2--1,3-cyclohexanedione and its manufacturing method and composition and plant suppression method using the same
JPH02458A (en) 1987-10-12 1990-01-05 Ajinomoto Co Inc Recombinant dna, microorganism containing the same recombinant dna and production of l-isoleucine using the same microorganism
JPH02109985A (en) 1988-02-22 1990-04-23 Eurolysine Method for incorporating objective gene in bacteria chromosome and obtained bacteria
WO1990004636A1 (en) 1988-10-25 1990-05-03 Vsesojuzny Nauchno-Issledovatelsky Institut Genetiki I Selektsii Promyshlennykh Mikroorganizmov (Vniigenetika) Strain of bacteria escherichia coli, producer of l-threonine
US5175107A (en) 1988-10-25 1992-12-29 Ajinomoto Co., Inc. Bacterial strain of escherichia coli bkiim b-3996 as the producer of l-threonine
US5631157A (en) 1988-10-25 1997-05-20 Ajinomoto Co., Inc. Bacterial strain of Escherichia coli VNII genetika 472T23 as the producer of L-threonine
JPH02207791A (en) 1989-02-07 1990-08-17 Ajinomoto Co Inc Transformation of bacterium
US5705371A (en) 1990-06-12 1998-01-06 Ajinomoto Co., Inc. Bacterial strain of escherichia coli BKIIM B-3996 as the producer of L-threonine
JPH057491A (en) 1990-10-15 1993-01-19 Ajinomoto Co Inc Temperature-sensitive plasmid
EP0488424B1 (en) 1990-11-30 1997-03-05 Ajinomoto Co., Inc. Recombinant DNA sequences encoding feedback inhibition released enzymes, plasmids comprising the recombinant DNA sequences, transformed microorganisms useful in the production of aromatic amino acids, and a process for preparing aromatic amino acids by fermentation
US5168056A (en) 1991-02-08 1992-12-01 Purdue Research Foundation Enhanced production of common aromatic pathway compounds
US5658766A (en) 1991-05-30 1997-08-19 Ajinomoto Co., Inc. Strains of Escherichia coli which produce isoleucine or valine and a method for their production
US5378616A (en) 1991-08-07 1995-01-03 Ajinomoto Co., Inc. Mutant Escherichia coli capable of enhanced L-glutamic acid production by fermentation
US5393671A (en) 1991-08-07 1995-02-28 Ajinomoto Co., Inc. Mutant Escherichia coli capable of enhanced L-glutamic acid production
US5376538A (en) 1991-09-04 1994-12-27 Kyowa Hakko Kogyo Co., Ltd. Process for producing L-threonine with strains of E coli resistant to phenylalanine and leucine
US5431933A (en) 1991-09-17 1995-07-11 Degussa Aktiengesellschaft Animal feed supplement based on a fermentation broth amino acid, a process for its production and its use
JPH05130882A (en) 1991-11-11 1993-05-28 Kyowa Hakko Kogyo Co Ltd Production of l-isoleucine by fermentation
US5474918A (en) 1992-02-25 1995-12-12 Kyowa Kakko Kogyo Co., Ltd. Process for the production of L-threonine and L-isoleucine by fermentation of Escherichia coli
JPH05304969A (en) 1992-02-25 1993-11-19 Kyowa Hakko Kogyo Co Ltd Production of amino acid by fermentation method
RU2003677C1 (en) 1992-03-30 1993-11-30 Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Strain of bacterium escherichia coli - a producer of l-histidine
US6180373B1 (en) 1992-09-28 2001-01-30 Consortium f{umlaut over (u)}r elektrochemische Industrie GmbH Microorganisms for the production of tryptophan and process for the preparation thereof
EP0593792A1 (en) 1992-10-14 1994-04-27 Ajinomoto Co., Inc. Novel L-threonine-producing microbacteria and a method for the production of L-threonine
EP0593792B1 (en) 1992-10-14 1997-05-14 Ajinomoto Co., Inc. Novel L-threonine-producing microbacteria and a method for the production of L-threonine
US5354672A (en) 1992-11-24 1994-10-11 Ian Fotheringham Materials and methods for hypersecretion of amino acids
US5776736A (en) 1992-12-21 1998-07-07 Purdue Research Foundation Deblocking the common pathway of aromatic amino acid synthesis
WO1995006114A1 (en) 1993-08-24 1995-03-02 Ajinomoto Co., Inc. Variant phosphoenolpyruvate carboxylase, gene thereof, and process for producing amino acid
US5830716A (en) 1993-10-28 1998-11-03 Ajinomoto Co., Inc. Increased amounts of substances by modifying a microorganism to increase production of NADPH from NADH
US6040160A (en) 1993-12-08 2000-03-21 Ajinomoto Co., Inc. Method of producing L-lysine by fermentation
US5573945A (en) 1994-01-10 1996-11-12 Ajinomoto Co., Inc. Mutant and method for producing L-glutamic acid by fermentation
US5998178A (en) 1994-05-30 1999-12-07 Ajinomoto Co., Ltd. L-isoleucine-producing bacterium and method for preparing L-isoleucine through fermentation
EP0763127A1 (en) 1994-06-09 1997-03-19 Purdue Research Foundation Deblocking the common pathway of aromatic amino acid synthesis
JPH0870879A (en) 1994-06-30 1996-03-19 Kyowa Hakko Kogyo Co Ltd Method for producing l-leucine by fermentation method
WO1996006926A1 (en) 1994-08-30 1996-03-07 Ajinomoto Co., Inc. Process for producing l-valine and l-leucine
US5906925A (en) 1994-09-16 1999-05-25 Liao; James C. Microorganisms and methods for overproduction of DAHP by cloned pps gene
US5827698A (en) 1994-12-09 1998-10-27 Ajinomoto Co., Inc. Lysine decarboxylase gene and method of producing l-lysine
EP0805867B1 (en) 1995-01-23 2003-12-17 Novozymes A/S Dna integration by transposition
US5882888A (en) 1995-01-23 1999-03-16 Novo Nordisk A/S DNA integration by transposition
US6110714A (en) 1995-08-23 2000-08-29 Ajinomoto Co., Inc. Process for producing L-glutamic acid by fermentation
WO1997008333A1 (en) 1995-08-30 1997-03-06 Ajinomoto Co., Inc. Process for producing l-amino acids
EP0877090A1 (en) 1995-08-30 1998-11-11 Ajinomoto Co., Inc. Process for producing l-amino acids
US6319696B1 (en) 1995-08-30 2001-11-20 Ajinomoto Co., Inc. Process for producing L-amino acids
US5756345A (en) 1995-09-05 1998-05-26 Degussa Aktiengesellschaft Production of tryptophan by the bacterium Escherichia coli
US6218168B1 (en) 1995-10-26 2001-04-17 CONSORTIUM FüR ELEKTROCHEMISCHE INUDSTRIE GMBH Process for preparing O-acetylserine, L-cysteine and L-cysteine-related products
US5908768A (en) 1996-04-23 1999-06-01 Ajinomoto Co., Inc. Process for producing L-glutamic acid by fermentation with E. coli resistant to aspartic acid antimetabolite
US5840358A (en) 1996-05-31 1998-11-24 Degussa Aktiengesellschaft Process for the preparation of an animal feed supplement based on fermentation broth
US5939307A (en) 1996-07-30 1999-08-17 The Archer-Daniels-Midland Company Strains of Escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production
WO1998004715A1 (en) 1996-07-30 1998-02-05 Archer-Daniels-Midland Company Novel strains of escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production
US5932453A (en) 1996-10-15 1999-08-03 Ajinomoto Co., Ltd. Process for producing L-amino acid through fermentation
RU2119536C1 (en) 1997-01-21 1998-09-27 Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Strain escherichia coli - a producer of l-histidine
US5972663A (en) 1997-06-19 1999-10-26 Consortium Fur Elektrochemische Industrie Gmbh Microorganisms and processes for the fermentative preparation of L-cysteine, L-cystine, N-acetylserine or thiazolidine derivatives
WO1999018228A2 (en) 1997-10-04 1999-04-15 Forschungszentrum Jülich GmbH Method for microbial production of amino acids of the aspartate and/or glutamate family and agents which can be used in said method
US6124121A (en) 1997-10-29 2000-09-26 Ajinomoto Co., Inc. Method for producing L-leucine
JPH11155571A (en) 1997-11-25 1999-06-15 Ajinomoto Co Inc Production of l-cysteine
US6197559B1 (en) 1998-03-18 2001-03-06 Ajinomoto Co., Inc. L-glutamic acid-producing bacterium and method for producing L-glutamic acid
US8129151B2 (en) 1998-03-18 2012-03-06 Ajinomoto Co., Inc. L-glutamic acid-producing bacterium and method for producing L-glutamic acid
US6682912B2 (en) 1998-03-18 2004-01-27 Ajinomoto Co., Inc. L-glutamic acid-producing bacterium and method for producing L-glutamic acid
EP0952221A2 (en) 1998-03-18 1999-10-27 Ajinomoto Co., Ltd. L-Glutamic acid-producing bacterium and method for producing L-glutamic acid
US6331419B1 (en) 1998-03-18 2001-12-18 Ajinomoto Co., Inc. L-glutamic acid-producing bacterium and method for producing L-glutamic acid
EP0955368A2 (en) 1998-03-18 1999-11-10 Ajinomoto Co., Ltd. L-glutamic acid-producing bacterium and method for producing l-glutamic acid
EP1070376A1 (en) 1998-04-09 2001-01-24 Siemens Aktiengesellschaft Device and method for supplying an electric load with electric energy
US6258554B1 (en) 1998-07-03 2001-07-10 Kyowa Hakko Kogyo Co., Ltd. Method for producing metabolites biologically synthesized via phosphoribosyl pyrophosphate
WO2000018935A1 (en) 1998-09-25 2000-04-06 Ajinomoto Co.,Inc. Process for constructing amino acid-producing bacterium and process for producing amino acid by fermentation method with the use of the thus constructed amino acid-producing bacterium
EP0994190A2 (en) 1998-10-13 2000-04-19 Ajinomoto Co., Inc. DNA conferring L-homoserine resistance to bacteria, and its use
JP2000139471A (en) 1998-11-17 2000-05-23 Ajinomoto Co Inc Production of l-methionine by fermentation
EP1010755A1 (en) 1998-12-18 2000-06-21 Ajinomoto Co., Inc. Method for producing L-Glutamic acid by fermentation
EP1013765A1 (en) 1998-12-23 2000-06-28 Ajinomoto Co., Ltd. Gene and method for producing L-amino acids
EP1016710A2 (en) 1998-12-30 2000-07-05 Ajinomoto Co., Inc. Method for producing L-amino acids
US6303383B1 (en) 1999-03-16 2001-10-16 Ajinomoto Co., Inc. Temperature sensitive plasmid for coryneform bacteria
US6238714B1 (en) 1999-05-05 2001-05-29 Degussa-Huls Ag Feedstuff additive which contains D-pantothenic acid and/or its salts and a process for the preparation thereof
WO2001002542A1 (en) 1999-07-02 2001-01-11 Ajinomoto Co., Inc. Process for producing l-amino acid
WO2001002545A1 (en) 1999-07-02 2001-01-11 Ajinomoto Co., Inc. Process for producing l-amino acid
US6403342B1 (en) 1999-07-09 2002-06-11 Anjinomoto Co., Inc. DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine
EP1078989A2 (en) 1999-08-20 2001-02-28 Ajinomoto Co., Ltd. Method for producing L-glutamic acid by fermentation accompanied by precipitation
EP1085087A2 (en) 1999-09-20 2001-03-21 Kyowa Hakko Kogyo Co., Ltd. Method for producing amino acids by fermentation using aminoquinoline resistant bacterial strains
US6344347B1 (en) 1999-09-20 2002-02-05 Kyowa Hakko Kogyo Co., Ltd. Method for producing L-amino acids by fermentation
WO2001027307A1 (en) 1999-10-14 2001-04-19 Consortium für elektrochemische Industrie GmbH Method for production of l-cysteine or l-cysteine derivatives by fermentation
EP1092776A1 (en) 1999-10-14 2001-04-18 Ajinomoto Co., Inc. Method for producing L-amino acid by fermentation
EP1253195A1 (en) 2000-01-21 2002-10-30 Ajinomoto Co., Inc. Process for producing l-lysine
EP1149911A2 (en) 2000-04-26 2001-10-31 Ajinomoto Co., Ltd. Amino acid producing strains belonging to the genus Escherichia and method for producing amino acid
JP2001346578A (en) 2000-04-26 2001-12-18 Ajinomoto Co Inc Amino acid producing bacterium and method for producing amino acid
EP1170361A2 (en) 2000-06-28 2002-01-09 Ajinomoto Co., Inc. New mutant N-Acetylglutamate synthase and method for L-Arginine production
EP1170376A1 (en) 2000-07-05 2002-01-09 Ajinomoto Co., Inc. Method for producing substances utilizing microorganisms
EP1170358A1 (en) 2000-07-06 2002-01-09 Ajinomoto Co., Ltd. L-arginine producing Escherichia coli and method of producing L-arginine
EP1172433A1 (en) 2000-07-06 2002-01-16 Ajinomoto Co., Inc. Bacterium having ability to produce L-glutamic acid, L-proline or L-arginine and method for producing L-glutamic acid, L-proline or L-arginine
JP2002065287A (en) 2000-08-24 2002-03-05 Ajinomoto Co Inc Method for producing basic amino acid
US20020025564A1 (en) 2000-08-24 2002-02-28 Ajinomoto Co., Inc. Method for producing basic amino acid
US20020058315A1 (en) 2000-09-26 2002-05-16 Ajinomoto Co., Inc. Bacterium having ability to produce L-glutamic acid, L-proline or L-arginine and method for producing L-glutamic acid, L-proline or L-arginine
RU2000124295A (en) 2000-09-26 2003-02-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" A BACTERIA POSSIBLE FOR PRODUCING L-GLUTAMIN ACID, L-PROLINE OR L-ARGININE, AND A METHOD FOR PRODUCING L-GLUTAMIN ACID, L-PROLINE OR L-ARGININE
WO2002026993A1 (en) 2000-09-28 2002-04-04 Archer-Daniels-Midland Company Escherichia coli strains which over-produce l-threonine and processes for the production of l-threonine by fermentation
EP1229121A2 (en) 2001-02-05 2002-08-07 Ajinomoto Co., Inc. Method for producing L-glutamine by fermentation and L-glutamine producing bacterium
JP2002233384A (en) 2001-02-09 2002-08-20 Ajinomoto Co Inc L-cysteine-producing bacterium and method for producing l-cysteine
JP2002300874A (en) 2001-02-13 2002-10-15 Ajinomoto Co Inc Method for producing l-amino acid using bacterium of genus escherichia
US6596517B2 (en) 2001-02-20 2003-07-22 Ajinomoto Co., Inc. Method for producing L-glutamic acid
RU2215782C2 (en) 2001-02-26 2003-11-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Method for preparing l-amino acids, strain escherichia coli as producer of l-amino acid (variants)
RU2001112869A (en) 2001-05-15 2003-03-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" NEW MUTANT N-ACETYL GLUTAMATE SYNTHESIS AND METHOD FOR PRODUCING L-ARGININE
RU2209248C2 (en) 2001-06-26 2003-07-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Method for preparing l-methionine, strain of bacterium escherichia coli vkpm b-8125 as producer of l-methionine
WO2003004598A2 (en) 2001-07-06 2003-01-16 Degussa Ag Process for the preparation of l-amino acids using strains of the enterobacteriaceae family
WO2003004664A2 (en) 2001-07-06 2003-01-16 Degussa Ag Process for the preparation of l-amino acids using strains of the enterobacteriaceae family with enhanced fba expression
WO2003008611A2 (en) 2001-07-18 2003-01-30 Degussa Ag Process for the preparation of l-amino acids using strains of the enterobacteriaceae family which contain an enhanced talb gene
WO2003008609A2 (en) 2001-07-18 2003-01-30 Degussa Ag Process for the preparation of l-amino acids using strains of the enterobacteriaceae family which contain an enhanced pykf gene
JP2003169668A (en) 2001-09-28 2003-06-17 Ajinomoto Co Inc L-cysteine-producing microorganism and method for producing l-cysteine
WO2003044192A1 (en) 2001-11-23 2003-05-30 Ajinomoto Co.,Inc. Process for producing l-amino acid using escherichia
WO2003044191A1 (en) 2001-11-23 2003-05-30 Ajinomoto Co.,Inc. Process for producing l-amino acid using escherichia
US20030148473A1 (en) 2001-11-23 2003-08-07 Ajinomoto Co., Inc. Method for producing L-amino acid using bacteria belonging to the genus escherichia
US20030157667A1 (en) 2001-11-23 2003-08-21 Ajinomoto Co., Inc. Method for producing L-amino acids using bacteria belonging to the genus escherichia
US20030148474A1 (en) 2001-11-30 2003-08-07 Ajinomoto Co., Inc. New mutant glutamine synthetase and method for producing amino acids
EP1352966B1 (en) 2002-03-27 2005-07-20 Ajinomoto Co., Inc. Method for producing L-amino acid
WO2003097839A1 (en) 2002-05-15 2003-11-27 Cj Corporation Nucleotide sequence of threonine operon irrepressible by isoleucine and method for producing l-threonine using transformed host cell containing the same
JP2004049237A (en) 2002-07-19 2004-02-19 Consortium Elektrochem Ind Gmbh Microorganism strain, plasmid, method for producing microorganism strain, and method for producing amino acid of phosphoglycerate family
WO2004108840A2 (en) * 2003-06-03 2004-12-16 Cytogenix, Inc. Nucleotides for prevention and treatment of bacterial and fungal pathologies
EP1484410A1 (en) 2003-06-05 2004-12-08 Ajinomoto Co., Ltd. Fermentation methods and genetically modified bacteria with increased substrate and byproduct uptake.
US20050025878A1 (en) 2003-07-11 2005-02-03 Degussa Ag Process for the granulation of an animal feedstuff additive
RU2003121601A (en) 2003-07-16 2005-02-27 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") (RU) MUTANT SERINACETHYL TRANSFERASE
US20050112731A1 (en) 2003-07-16 2005-05-26 Tatsuki Kashiwagi Mutant serine acetyltransferase
WO2005010175A1 (en) 2003-07-29 2005-02-03 Ajinomoto Co., Inc. Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity
WO2005049808A1 (en) 2003-11-21 2005-06-02 Ajinomoto Co., Inc. Method for producing l-amino acid by fermentation
WO2005073390A2 (en) 2004-01-30 2005-08-11 Ajinomoto Co., Inc. L-amino acid-producing microorganism and method for producing l-amino acid
JP2005245311A (en) 2004-03-04 2005-09-15 Ajinomoto Co Inc L-cysteine producing bacteria and method for producing l-cysteine
WO2005085419A1 (en) 2004-03-04 2005-09-15 Ajinomoto Co., Inc. L-glutamic acid-producing microorganism and a method for producing l-glutamic acid
JP2005287333A (en) 2004-03-31 2005-10-20 Ajinomoto Co Inc L-cysteine producing bacteria and method for producing l-cysteine
WO2005103275A1 (en) 2004-04-26 2005-11-03 Ajinomoto Co., Ltd. Process for producing l-tryptophan according to fermentation process
US20090029424A1 (en) 2004-05-12 2009-01-29 Metabolic Explorer Recombinant enzyme with altered feedback sensitivity
JP2008509661A (en) 2004-08-10 2008-04-03 味の素株式会社 Use of phosphoketolase to produce useful metabolites
WO2006035831A1 (en) 2004-09-28 2006-04-06 Kyowa Hakko Kogyo Co., Ltd. Method of producing l-arginine, l-ornithine or l-citrulline
EP1813677A1 (en) 2004-10-07 2007-08-01 Ajinomoto Co., Inc. Process for producing basic substance
US7915018B2 (en) 2004-10-22 2011-03-29 Ajinomoto Co., Inc. Method for producing L-amino acids using bacteria of the Enterobacteriaceae family
US20060160191A1 (en) 2005-01-18 2006-07-20 Saori Kataoka L-amino acid producing microorganism and a method for producing L-amino acid
WO2006078039A1 (en) 2005-01-18 2006-07-27 Ajinomoto Co., Inc. L-amino acid producing microorganism and a method for producing l-amino acid
WO2006093322A2 (en) 2005-03-03 2006-09-08 Ajinomoto Co., Inc. Method for manufacturing 4-hydroxy-l-isoleucine or a salt thereof
US20080311632A1 (en) 2006-01-04 2008-12-18 Rainer Figge Methods for Producing Methionine by Culturing a Microorganism Modified to Enhance Production of Cysteine
WO2007136762A2 (en) * 2006-05-19 2007-11-29 Ls9, Inc. Production of fatty acids and derivatives thereof
RU2006134574A (en) 2006-09-29 2008-04-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) METHOD FOR CONSTRUCTING RECOMBINANT BACTERIA BELONGING TO PANTOEA GENUS AND METHOD FOR PRODUCING L-AMINO ACIDS USING BACTERIA BELONGING TO PANTOEA GENUS
JP2010041920A (en) 2006-12-19 2010-02-25 Ajinomoto Co Inc Method for producing l-amino acid
WO2008075483A1 (en) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. Process for production of l-amino acid
WO2008133161A1 (en) 2007-04-17 2008-11-06 Ajinomoto Co., Inc. Method for production of acidic substance having carboxyl group
WO2009031564A1 (en) * 2007-09-04 2009-03-12 Ajinomoto Co., Inc. L-amino acid-producing bacterium and method of producing l-amino acid
JP2009232844A (en) 2008-03-06 2009-10-15 Ajinomoto Co Inc L-cysteine-producing bacterium, and method for producing l-cysteine
WO2010027045A1 (en) 2008-09-08 2010-03-11 味の素株式会社 Microorganism capable of producing l-amino acid, and method for producing l-amino acid
WO2010042664A2 (en) * 2008-10-07 2010-04-15 Ls9, Inc. Method and compositions for producing fatty aldehydes
WO2010061890A1 (en) 2008-11-27 2010-06-03 味の素株式会社 Process for producing l-amino acid
JP2010187552A (en) 2009-02-16 2010-09-02 Ajinomoto Co Inc L-amino acid-producing bacterium and method for producing l-amino acid
WO2011152565A1 (en) * 2010-06-03 2011-12-08 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family, having attenuated expression of gene(s) encoding peptidase
WO2012002486A1 (en) * 2010-07-01 2012-01-05 味の素株式会社 Method for producing l-amino acid

Non-Patent Citations (46)

* Cited by examiner, † Cited by third party
Title
"Amino Acid Fermentation", 30 May 1986, GAKKAI SHUPPAN CENTER (LTD., pages: 77 - 100
"Fundamental Microbiology", vol. 8, 1987, KYORITSU SHUPPAN CO., LTD
"Molecular Cloning", 2001, COLD SPRING HARBOR LABORATORY PRESS
AUSTIN NEWTON ET AL., J. BIOL. CHEM., vol. 240, 1965, pages 1211 - 1218
BACKMANN B.J.: "Escherichia coli and Salmonella Cellular and Molecular Biology", 1996, AMERICAN SOCIETY FOR MICROBIOLOGY PRESS, article "Derivations and Genotypes of some mutant derivatives of Escherichia coli", pages: 2460 - 2488
BARTON GJ ET AL., JOURNAL OF MOLECULAR BIOLOGY, vol. 198, no. 2, 1987, pages 327 - 37
BIBB, M.J.; WARD, J.M.; HOPWOOD, O.A., NATURE, vol. 274, 1978, pages 398 - 400
BIOTECHNOL BIOENG., vol. 98, no. 2, 27 March 2007 (2007-03-27), pages 340 - 348
BLOOM F.R. ET AL., THE 15TH MIAMI WINTER SYMPOSIUM, 1983, pages 34
CARTER, P., METH. IN ENZYMOL., vol. 154, 1987, pages 382
CHANDRA ET AL., BIOCHEMISTRY, vol. 21, 1982, pages 3064 - 3069
CHANG, S.; CHOEN, S.N, MOL. GEN. GENET., vol. 168, 1979, pages 111 - 115
CHO, E.H.; GUMPORT, R.I.; GARDNER, J.F., J. BACTERIOL., vol. 184, 2002, pages 5200 - 5203
DATSENKO, K.A.; WANNER, B.L., PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 6640 - 6645
DATSENKO, K.A; WANNER, B.L., PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 6640 - 6645
DATSENKO; WANNER, PROC. NATL. ACAD. SCI. USA, vol. 97, no. 12, 2000, pages 6640 - 6645
DE LAY, NR. ET AL.: "In vivo functional analyses of the type II acyl carrier proteins of fatty acid biosynthesis.", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 282, no. 28, 2007, pages 20319 - 20328, XP055199505 *
DUNCAN, C.H.; WILSON, G.A.; YOUNG, F.E., GENE, vol. 1, 1977, pages 153 - 167
ELIZABETH C. TYLER ET AL., COMPUTERS AND BIOMEDICAL RESEARCH, vol. 24, no. 1, 1991, pages 72 - 96
GENE, vol. 60, no. 1, 1987, pages 115 - 127
GOLDBERG, M. ET AL., METHODS ENZYMOL., vol. 9, 1996, pages 515 - 520
GOLDSTEIN ET AL., PROKARYOTIC PROMOTERS IN BIOTECHNOLOGY, BIOTECHNOL. ANNU. REV., vol. 1, 1995, pages 105 - 128
GUSYATINER ET AL., GENETIKA, vol. 14, 1978, pages 947 - 956
HIGUCHI, R.: "PCR Technology", vol. 61, 1989, STOCKTON PRESS
HINNEN, A.; HICKS, J.B.; FINK, G.R., PROC. NATL. ACAD. SCI. USA, vol. 75, 1978, pages 1929 - 1933
INT. J. SYST. BACTERIOL., vol. 43, 1993, pages 162 - 173
JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 26, no. 116, 1991, pages 20833 - 20839
JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 272, 1997, pages 8611 - 8617
KANE, J.F., CURR. OPIN. BIOTECHNOL., vol. 6, no. 5, 1995, pages 494 - 500
KRAMER, W.; FRITS, H.J., METH. IN ENZYMOL., vol. 154, 1987, pages 350
KUNKEL, T.A. ET AL., METH. IN ENZYMOL., vol. 154, 1987, pages 367
L. MEILE, J. BACTERIOL, vol. 183, 2001, pages 2929 - 2936
L. MEILE, J. BACTERIOL., vol. 183, 2001, pages 2929 - 2936
LYNN, S.P.; BURTON, W.S.; DONOHUE, T.J.; GOULD, R.M.; GUMPORT, R.L; GARDNER, J.F., J. MOL. BIOL., vol. 194, 1987, pages 59 - 69
MANDEL, M.; HIGA, A., J. MOL. BIOL., vol. 53, 1970, pages 159 - 162
METHODS ENZYMOL., vol. 5, 1962, pages 276 - 280
MILLER, J.H.: "Experiments in Molecular Genetics", 1972, COLD SPRING HARBOR LABORATORY
MOLECULAR BIOLOGY IN CONJUGATION WITH ANNUAL MEETING OF THE AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, 24 August 1997 (1997-08-24)
NAKAMURA, Y. ET AL., NUCL. ACIDS RES., vol. 28, 2000, pages 292
OLINS P.O. ET AL., GENE, vol. 73, 1988, pages 227 - 235
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, USA, vol. 95, 1998, pages 5511 - 5515
RES. MICROBIOL., vol. 154, 2003, pages 123 - 135
SAMBROOK, J. ET AL.: "Molecular Cloning A Laboratory Manual Third Edition,", 2001, COLD SPRING HARBOR LABORATORY PRESS
See also references of EP2886651A4
WHITE, T.J. ET AL., TRENDS GENET, vol. 5, 1989, pages 185 - 189
ZHANG Y; CRONAN JE JR., J BACTERIOL., vol. 178, no. 12, June 1996 (1996-06-01), pages 3614 - 20

Also Published As

Publication number Publication date
ES2694011T3 (en) 2018-12-17
CN104736707A (en) 2015-06-24
CN104736707B (en) 2017-08-25
US20150275246A1 (en) 2015-10-01
EP2886651A1 (en) 2015-06-24
BR112015005215B1 (en) 2022-12-13
JPWO2015060314A1 (en) 2017-03-09
BR112015005215A2 (en) 2015-09-22
EP2886651B1 (en) 2018-08-22
EP2886651A4 (en) 2016-05-25
US9487806B2 (en) 2016-11-08
JP6459962B2 (en) 2019-01-30
PL2886651T3 (en) 2018-11-30

Similar Documents

Publication Publication Date Title
CN107893089B (en) Method for producing L-amino acid
US7833762B2 (en) Method for producing L-amino acid
US8293505B2 (en) L-amino acid-producing microorganism and a method for producing an L-amino acid
CN108690856B (en) Process for producing L-amino acid
JP2019165635A (en) Method for producing L-amino acid
EP2382320B1 (en) Process for producing l-amino acids employing bacteria of the enterobacteriacea family in a culture medium with controlled glycerol concentration
US10787691B2 (en) Method for producing L-amino acid
US10563234B2 (en) Method for producing L-amino acids
WO2012002486A1 (en) Method for producing l-amino acid
JP6459962B2 (en) Method for producing L-amino acid
US20150211033A1 (en) Method for Producing L-Amino Acid
US20150218605A1 (en) Method for Producing L-Amino Acid
WO2010101053A1 (en) Method for producing l-amino acid

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015507848

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014835548

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201501038

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015005215

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015005215

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150309

NENP Non-entry into the national phase

Ref country code: DE