WO2010101053A1 - Method for producing l-amino acid - Google Patents

Method for producing l-amino acid Download PDF

Info

Publication number
WO2010101053A1
WO2010101053A1 PCT/JP2010/052845 JP2010052845W WO2010101053A1 WO 2010101053 A1 WO2010101053 A1 WO 2010101053A1 JP 2010052845 W JP2010052845 W JP 2010052845W WO 2010101053 A1 WO2010101053 A1 WO 2010101053A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
amino acid
activity
bacterium
strain
Prior art date
Application number
PCT/JP2010/052845
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 萩原
由利 長井
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2010101053A1 publication Critical patent/WO2010101053A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/32Processes using, or culture media containing, lower alkanols, i.e. C1 to C6
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/10Citrulline; Arginine; Ornithine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/222Phenylalanine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/225Tyrosine; 3,4-Dihydroxyphenylalanine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/227Tryptophan
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/24Proline; Hydroxyproline; Histidine

Definitions

  • the present invention relates to a method for producing an L-amino acid using a microorganism.
  • L-amino acids are used in various fields such as seasonings, food additives, feed additives, chemical products, and pharmaceuticals.
  • L-amino acids are industrially produced by fermentation using microorganisms belonging to the genera Brevibacterium, Corynebacterium, Escherichia and the like. In these production methods, strains isolated from nature, artificial mutants of the strains, and microorganisms modified so as to increase the activity of basic L-amino acid biosynthetic enzymes by recombinant DNA technology are used. It is used. (Patent Documents 1 to 9)
  • a saccharide is used as a carbon source as a main component, but ethanol can also be used as a carbon source in the same manner as a saccharide (Patent Document 10). ).
  • Ribonuclease G was found as a ribonuclease involved in the maturation of the 5 'end of 16S rRNA (Non-patent Documents 1 and 2). Ribonuclease G is said to cleave the AU-rich region of single-stranded RNA, but details of the cleavage sequence and the like have not been elucidated (Non-Patent Documents 3 to 5).
  • Non-Patent Documents 6 to 8 when comparing the degradation activity for 16S rRNA and adhE mRNA, it is reported that rng: cat does not degrade both, whereas rng430 (G341S) only degrades adhE mRNA.
  • Non-patent Document 10 pyruvic acid accumulates when cultured using glucose as a carbon source.
  • An object of the present invention is to provide a method for producing L-amino acid by fermentation using a substrate containing ethanol, which has been further improved over the prior art.
  • the present invention is as follows. (1) Bacteria belonging to the family Enterobacteriaceae and having L-amino acid-producing ability are cultured in a medium containing ethanol as a carbon source, and L-amino acid is produced and accumulated in the culture. A method for producing an L-amino acid, wherein the bacterium is a bacterium modified so that the activity of ribonuclease G is reduced. (2) The method as described above, wherein the rng gene encoding ribonuclease G is inactivated, whereby the activity of ribonuclease G is reduced. (3) The said method that the said rng gene is DNA which codes the amino acid sequence of sequence number 2, or its variant.
  • the L-amino acid is L-lysine, L-glutamic acid, L-threonine, L-arginine, L-histidine, L-isoleucine, L-valine, L-leucine, L-phenylalanine, L-tyrosine, L-
  • the method as described above which is one or more L-amino acids selected from the group consisting of tryptophan, L-proline, and L-cysteine.
  • the L-amino acid is L-lysine
  • the bacterium is dihydrodipicolinate reductase, diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semi
  • the activity of one or more enzymes selected from the group consisting of aldehyde dehydrogenase, tetrahydrodipicolinate succinylase, and succinyldiaminopimelate deacylase is enhanced and / or the activity of lysine decarboxylase is weakened Said method being.
  • the L-amino acid is L-threonine
  • the bacterium is selected from the group consisting of aspartate semialdehyde dehydrogenase, aspartokinase I, homoserine kinase, aspartate aminotransferase, and threonine synthase, or Said method wherein the activity of two or more enzymes is enhanced.
  • the method as described above, wherein the bacteria belonging to the family Enterobacteriaceae are Escherichia bacteria, Enterobacter bacteria or Pantoea bacteria.
  • the bacterium is Escherichia coli.
  • ethanol is contained in the medium in an amount of 0.001 w / v% or more.
  • Bacteria belonging to the family Enterobacteriaceae used in the present invention belong to the family Enterobacteriaceae, have the ability to produce L-amino acids, and have a reduced activity of ribonuclease G.
  • Bacteria that have been modified to The bacterium of the present invention belongs to the family Enterobacteriaceae and can be obtained by modifying a bacterium having an L-amino acid-producing ability so that the activity of ribonuclease G is reduced.
  • Examples of the bacterium used as a parent strain of the bacterium of the present invention, which is modified so that the activity of ribonuclease G is reduced, and a method for imparting or enhancing L-amino acid-producing ability are shown below.
  • the bacterium of the present invention has been modified so that L-amino acid-producing ability is imparted to a bacterium belonging to the family Enterobacteriaceae modified so that the activity of ribonuclease G is reduced or the activity of ribonuclease G is decreased. It can also be obtained by enhancing the L-amino acid producing ability of bacteria belonging to the family Enterobacteriaceae.
  • Bacteria used as parent strain of the present invention belongs to the family Enterobacteriaceae and has the ability to produce L-amino acids.
  • the Enterobacteriaceae family includes bacteria belonging to genera such as Escherichia, Enterobacter, Erbinia, Klebsiella, Pantoea, Photorhabdus, Providencia, Salmonella, Serratia, Shigella, Morganella, and Yersinia.
  • the bacterium belonging to the genus Escherichia is not particularly limited, but means that the bacterium is classified into the genus Escherichia according to the classification known to experts in microbiology.
  • Examples of bacteria belonging to the genus Escherichia used in the present invention include, but are not limited to, Escherichia coli (E. coli).
  • the bacteria belonging to the genus Escherichia that can be used in the present invention are not particularly limited.
  • Neidhardt et al. Neidhardt, F. C. Ed. 1996. Escherichia coli and Salmonella: Cellular and Molecular Biology / Second Edition pp 2477-2483.
  • Table 1 1. American Society for Microbiology Press, Washington, DC).
  • Specific examples include Escherichia coli W3110 (ATCC 32525) and Escherichia coli MG1655 (ATCC 47076) derived from the prototype wild type K12 strain.
  • strains can be sold, for example, from the American Type Culture Collection (address P.O. Box 1549 Manassas, VA 20108, United States of America). That is, the registration number corresponding to each strain is given, and it can receive distribution using this registration number. The registration number corresponding to each strain is described in the catalog of American Type Culture Collection.
  • the bacterium belonging to the genus Pantoea means that the bacterium is classified into the genus Pantoea according to the classification known to microbiologists. Certain types of Enterobacter agglomerans were recently reclassified as Pantoea agglomerans, Pantoea ananatis, Pantoea stewartii and others (Int. J. Syst. Bacteriol., 43, 162-173 (1993)). In the present invention, the bacteria belonging to the genus Pantoea include bacteria that have been reclassified to the genus Pantoea in this way.
  • the bacterium used in the present invention is a bacterium having an ethanol-assimilating ability, and originally has an ethanol-assimilating bacterium, an ethanol-assimilating recombinant strain, or an ethanol-assimilating ability. It may be a mutant strain.
  • Escherichia coli the presence of adhaldehyde having acetaldehyde dehydrogenase activity and alcohol dehydrogenase activity that reversibly catalyze the following reaction is known as an enzyme that produces ethanol under anaerobic conditions.
  • the sequence of the adhE gene encoding AdhE of Escherichia coli is shown in SEQ ID NO: 3, and the amino acid sequence is shown in SEQ ID NO: 4.
  • bacteria that can assimilate ethanol aerobically it is preferable to use bacteria that can assimilate ethanol aerobically.
  • Escherichia coli cannot assimilate ethanol under aerobic conditions
  • a strain modified so as to assimilate ethanol aerobically may be used.
  • expression under the control of a non-native promoter that functions under aerobic conditions examples include retaining a modified adh gene, or retaining a mutant adhE gene having a mutation in the coding region that enables aerobic assimilation of ethanol.
  • this mutant adhE gene may be expressed under the control of a non-natural promoter that functions under aerobic conditions.
  • alcohol dehydrogenase can be expressed under aerobic conditions and ethanol can be assimilated aerobically by replacing the promoter upstream of the gene encoding alcohol dehydrogenase with a promoter that functions aerobically.
  • WO2008 / 010565 pamphlet As the non-natural promoter that functions under aerobic conditions, any promoter that can express the adhE gene beyond a certain level under aerobic conditions can be used. Aerobic conditions can be those normally used for culturing bacteria that are supplied with oxygen by methods such as shaking, aeration and agitation. Specifically, any promoter known to express a gene under aerobic conditions can be used.
  • promoters of genes involved in glycolysis, pentose phosphate pathway, TCA cycle, amino acid biosynthesis pathway, etc. can be used.
  • P tac promoter ⁇ phage, lac promoter, trp promoter, all trc promoter, P R promoter, or P L promoters are known to be strong promoters which function under aerobic conditions, the use of these Is preferred.
  • Escherichia coli cannot assimilate ethanol under aerobic conditions, but it is known that ethanol can be assimilated aerobically even by mutation of AdhE (Clark (D. P ., And Cronan, J. E. Jr. 1980. J. Bacteriol. 144: 179-184; Membrillo-Hernandez, J. et al. 2000. J. Biol. Chem. 275: 33869-33875).
  • AdhE mutants having such mutations include mutants in which the glutamic acid residue at position 568 of AdhE of Escherichia coli is substituted with an amino acid residue other than glutamic acid and aspartic acid, such as lysine (Glu568Lys, E568K (International publication pamphlet WO2008 / 010565).
  • the AdhE mutant may contain the following additional mutations.
  • Alcohol dehydrogenase activity in is meant to be 1.5 units or more, preferably 5 units or more, and more preferably 10 units or more per mg of protein.
  • the bacterium of the present invention may be a strain modified so that the activity of pyruvate synthase or pyruvate: NADP + oxidoreductase is increased.
  • pyruvate synthase or pyruvate: NADP + oxidoreductase activity is affected by the parent strain such as a wild strain or an unmodified strain. It is preferable to modify so as to increase.
  • the microorganism modified to have the enzyme activity has pyruvate synthase or pyruvate: NADP + oxidoreductase activity in an unmodified strain. It is increasing compared to this.
  • the “pyruvate synthase” in the present invention is an enzyme (EC 1.2) that catalyzes the following reaction for producing pyruvate from acetyl-CoA and CO 2 in the presence of an electron donor, for example, in the presence of ferredoxin or flavodoxin. .7.1).
  • Pyruvate synthase is sometimes abbreviated as PS and is sometimes named pyruvate oxidoreductase, pyruvate ferredoxin oxidoreductase, pyruvate flavodoxin oxidoreductase, or pyruvate oxidoreductase.
  • As the electron donor ferredoxin or flavodoxin can be used.
  • Confirmation that the activity of pyruvate synthase is enhanced is achieved by preparing a crude enzyme solution from the microorganism before enhancement and the microorganism after enhancement and comparing the activity of pyruvate synthase.
  • the activity of pyruvate synthase can be measured, for example, according to the method of Yoon et al. (Yoon, K. S. et al. 1997. Arch. Microbiol. 167: 275-279).
  • the amount of reduced methyl viologen that increases due to decarboxylation of pyruvic acid is measured spectroscopically. It can be measured by measuring.
  • One unit (U) of enzyme activity is expressed as a reduction amount of 1 ⁇ mol of methyl viologen per minute.
  • the enzyme activity is preferably 1.5 times or more, more preferably 2 times or more, and even more preferably 3 times or more that of the parent strain.
  • pyruvate synthase is produced by introducing the pyruvate synthase gene, but the enzyme activity is enhanced to such an extent that it can be measured. Is preferably 0.001 U / mg (bacterial protein) or more, more preferably 0.005 U / mg or more, and still more preferably 0.01 U / mg or more. Pyruvate synthase is sensitive to oxygen and is generally difficult to express and measure (Buckel, W.and Golding, B. T. 2006. Ann. Rev. of Microbiol. 60: 27-49). Therefore, when measuring enzyme activity, it is preferable to carry out the enzyme reaction by reducing the oxygen concentration in the reaction vessel.
  • pyruvate synthase As a gene encoding pyruvate synthase, it is possible to use a pyruvate synthase gene of a bacterium having a reductive TCA cycle such as Chlorobium tepidum, Hydrogenobacter thermophilus, etc. . It is also possible to use a pyruvate synthase gene derived from bacteria belonging to the group of enterobacteria such as Escherichia coli.
  • genes encoding pyruvate synthase are autotrophic methane producers such as Methanococcus maripaludis, Methanococcus janasti, Methanothermobacter thermautotrophicus, and other methanothermobacter thermautotrophicus (Autotrophic (methanogens) pyruvate synthase gene can be used.
  • the pyruvate synthase gene of Chlorobium tepidum the base sequence shown in SEQ ID NO: 9 located at base numbers 1534432 to 1537989 of the genome sequence of Chlorobium tepidum (GenBank Accession No. NC_002932) The gene which has can be illustrated.
  • SEQ ID NO: 10 shows the amino acid sequence encoded by the same gene (GenBank Accession No. AAC76906).
  • Hydrogenobacter thermophilus pyruvate synthase is composed of ⁇ subunit (GenBank Accession No. BAA95604), ⁇ subunit (GenBank Accession No. BAA95605), ⁇ subunit (GenBank Accession No. BAA95606), ⁇ subunit.
  • the pyruvate synthase gene encoded by the four genes SSO1208, SSO7412, SSO1207, and SSO1206 indicated by nucleotide numbers 1047593 to 1044711 in the genome sequence of Sulfolobus solfataricus (GenBank Accession No. NC 002754) be able to.
  • the pyruvate synthase gene is based on the homology with the genes exemplified above, based on the genus Chlorobium, the genus Desulfobacter, the genus Aquifex, the genus Hydrogenobacter, It may be cloned from bacteria of the genus Thermoproteus, Pyrobaculum, or the like.
  • the ydbK gene (b1378) having the nucleotide sequence shown in SEQ ID NO: 11 located at nucleotide numbers 1435284 to 1438808 in the genome sequence of K-12 strain (GenBank Accession No. U00096) is homologous in sequence. From the nature, it is expected to encode pyruvate flavodoxin oxidoreductase, ie, pyruvate synthase.
  • SEQ ID NO: 12 shows the amino acid sequence encoded by the same gene (GenBank Accession No. AAC76906).
  • the pyruvate synthase gene is highly homologous to the Escherichia coli pyruvate synthase gene (ydbK), and the genera Escherichia, Salmonella, Serratia, Enterobacter, Shigella It may be a pyruvate synthase gene belonging to the group of enterobacteria such as (Shigella) and Citrobacter.
  • the pyruvate synthase of Methanococcus maripaludis is the base number of the genome sequence of Genococcus maripardis (GenBank Accession No. NC_005791) (Hendrickson, EL et al. 2004. J. Bacteriol. 186: 6956-6969). It is encoded by the porCDABEF operon located between 1462535 and 1466397 (Lin, WC et al. 2003. Arch. Microbiol. 179: 444-456). This pyruvate synthase contains four subunits, ⁇ , ⁇ , ⁇ , and ⁇ .
  • PorE and PorF are also known to be important for the activity of pyruvate synthase.
  • the ⁇ subunit is encoded by the porA gene of base numbers 1465867 to 1466397 (complementary strand) of the genome sequence, the base sequence is shown in SEQ ID NO: 13, and the amino acid sequence encoded by the same gene is shown in SEQ ID NO: 14 ( GenBank Accession No. NP_988626).
  • the ⁇ subunit is encoded by the genome sequence base numbers 1465595 to 1465852 (complementary strand) porB gene, the base sequence is shown in SEQ ID NO: 15, and the amino acid sequence encoded by the same gene is shown in SEQ ID NO: 16 (GenBank). Accession No. NP_988627).
  • the ⁇ subunit is encoded by the porC gene of nucleotide numbers 1464410 to 1455773 (complementary strand) of the genome sequence.
  • SEQ ID NO: 17 shows the nucleotide sequence
  • SEQ ID NO: 18 shows the amino acid sequence encoded by the same gene. (GenBank Accession No. NP_988625).
  • the ⁇ subunit is encoded by the porD gene at base numbers 1463497 to 14439393 (complementary strand) of the genome sequence.
  • SEQ ID NO: 19 shows the base sequence
  • SEQ ID NO: 20 shows the amino acid sequence encoded by the same gene.
  • PorE is encoded by the porE gene of nucleotide numbers 1462970 to 1463473 (complementary strand) of the genome sequence
  • SEQ ID NO: 21 shows the nucleotide sequence
  • SEQ ID NO: 22 shows the amino acid sequence encoded by the same gene (GenBank Accession No. NP_988623).
  • PorF is encoded by the porF gene of base numbers 1462535 to 1462951 (complementary strand) of the genome sequence, SEQ ID NO: 23 shows the base sequence, and SEQ ID NO: 24 shows the amino acid sequence encoded by the same gene (GenBank Accession No. NP_988622).
  • Autotrophic methanogenic archaea Methananocaldococcus jannaschii and Methanothermobacter thermautotrophicus are also known to have the same pyruvate synthase gene These can be used.
  • pyruvate: NADP + oxidoreductase means reversibly catalyzing the following reaction for producing pyruvic acid from acetyl-CoA and CO 2 in the presence of an electron donor, for example, in the presence of NADPH or NADH. Means enzyme (EC 1.2.1.15).
  • Pyruvate: NADP + oxidoreductase is sometimes abbreviated as PNO and sometimes as pyruvate dehydrogenase.
  • pyruvate dehydrogenase activity is an activity that catalyzes a reaction of oxidatively decarboxylating pyruvate to produce acetyl-CoA, as described later.
  • Acid dehydrogenase is a separate enzyme from pyruvate: NADP + oxidoreductase.
  • the amount of reduced methyl viologen that increases due to the decarboxylation of pyruvate is measured spectroscopically. It can be measured by measuring.
  • One unit (U) of enzyme activity is expressed as a reduction amount of 1 ⁇ mol of methyl viologen per minute.
  • the enzyme activity is preferably increased 1.5 times or more, more preferably 2 times or more, and even more preferably 3 times or more compared to the parent strain. Is desirable.
  • pyruvate: NADP + oxidoreductase activity it is sufficient that pyruvate: NADP + oxidoreductase is generated by introducing the pyruvate synthase gene, but the enzyme activity is measured. It is preferably strengthened to the extent possible, preferably 0.001 U / mg (bacterial protein) or more, more preferably 0.005 U / mg or more, and still more preferably 0.01 U / mg or more.
  • Pyruvate: NADP + oxidoreductase is sensitive to oxygen and is generally difficult to express and measure activity (Inui, H. et al. 1987. J. Biol. Chem. 262: 9130). -9135; Rotte, C. et al. 2001. Mol. Biol. Evol. 18: 710-720).
  • NADP + oxidoreductase is a photosynthetic eukaryotic microorganism and is also classified as a protozoan.
  • a gene having the base sequence shown in SEQ ID NO: 25 can be exemplified as a pyruvate: NADP + oxidoreductase gene of Euglena gracilis (GenBank Accession No. AB021127).
  • SEQ ID NO: 26 shows the amino acid sequence encoded by the same gene (GenBank Accession No. BAB12024).
  • the microorganism of the present invention is modified by increasing the activity of recycling the oxidized form of the electron donor necessary for the activity of pyruvate synthase to the reduced form as compared with the parent strain, for example, a wild strain or an unmodified strain,
  • the microorganism may be modified so that the activity of pyruvate synthase is increased.
  • Examples of the activity of recycling the oxidized form of the electron donor to the reduced form include ferredoxin-NADP + reductase activity.
  • the microorganism may be modified so that the activity of pyruvate synthase is increased by modifying the activity to increase pyruvate synthase activity.
  • the parent strain may have a gene that inherently encodes the electron donor recycling activity, or originally does not have the electron donor recycling activity. Activity may be imparted by introducing a gene to be encoded, and L-amino acid producing ability may be improved.
  • “Ferredoxin-NADP + reductase” refers to an enzyme (EC 1.18.1.2) that reversibly catalyzes the following reaction.
  • This reaction is a reversible reaction, and reduced ferredoxin can be produced in the presence of NADPH and oxidized ferredoxin.
  • Ferredoxin can be substituted for flavodoxin, and what is named flavodoxin-NADP + reductase also has an equivalent function.
  • Ferredoxin-NADP + reductase has been confirmed to exist widely from microorganisms to higher organisms (Carrillo, N. and Ceccarelli, EA 2003. Eur. J. Biochem. 270: 1900-1915; Ceccarelli, EA et al. 2004. Biochim Biophys. Acta. 1698: 155-165), some have been named ferredoxin-NADP + oxidoreductase, NADPH-ferredoxin oxidoreductase.
  • Confirmation that the activity of ferredoxin-NADP + reductase is enhanced is achieved by preparing a crude enzyme solution from the microorganism before modification and the microorganism after modification, and comparing the activity of ferredoxin-NADP + reductase.
  • the activity of ferredoxin-NADP + reductase can be measured, for example, according to the method of Blaschkowski et al. (Blaschkowski, H. P. et al. 1982. Eur. J. Biochem. 123: 563-569). For example, it can be measured by spectroscopically measuring the decreasing amount of NADPH using ferredoxin as a substrate.
  • One unit (U) of enzyme activity is expressed as an oxidation amount of 1 ⁇ mol NADPH per minute.
  • the parent strain has ferredoxin-NADP + reductase activity, it is not necessary to enhance if the activity of the parent strain is sufficiently high.
  • the enzyme activity is increased 3 times or more.
  • ferredoxin-NADP + reductase A gene encoding ferredoxin-NADP + reductase has been found in many biological species and can be used as long as it has activity in the target L-amino acid producing strain. In Escherichia coli, the fpr gene has been identified as flavodoxin-NADP + reductase (Bianchi, V. et al. 1993. J. Bacteriol. 175: 1590-1595). It is also known that Pseedomonas putida has NADPH-Putidaredoxin reductase gene and Putidaredoxin gene as operons (Koga, H. et al. 1989). J. Biochem. (Tokyo) 106: 831-836).
  • the Escherichia coli flavodoxin-NADP + reductase As the Escherichia coli flavodoxin-NADP + reductase, the nucleotide sequence shown in SEQ ID NO: 27, which is located in the base number 4111749-4112495 (complementary strand) of the genome sequence of Escherichia coli K-12 strain (GenBank Accession No. U00096)
  • the fpr gene having SEQ ID NO: 28 shows the amino acid sequence of Fpr (GenBank Accession No. AAC76906).
  • a ferredoxin-NADP + reductase gene has been found at the base numbers 25526234 to 2527211 of the genome sequence of Corynebacterium glutamicum (GenBank Accession No. BA00036) (GenBank Accession No. BAB99777).
  • the activity of pyruvate synthase requires that ferredoxin or flavodoxin be present as an electron donor. Therefore, the microorganism may be modified so that the activity of pyruvate synthase is increased by modifying the ferredoxin or flavodoxin so as to improve the production ability. Further, in addition to modification so that pyruvate synthase activity, or flavodoxin-NADP + reductase and pyruvate synthase activities are enhanced, modification may be made so that ferredoxin or flavodoxin production ability is improved.
  • the “ferredoxin” in the present invention is a protein that contains a non-heme iron atom (Fe) and a sulfur atom and binds an iron-sulfur cluster called a 4Fe-4S, 3Fe-4S, or 2Fe-2S cluster.
  • “Flavodoxin” refers to a protein that functions as a one- or two-electron transmitter containing FMN (Flavin-mononucleotide) as a prosthetic genus.
  • FMN Fevin-mononucleotide
  • the parent strain used for the modification may have a gene that inherently encodes ferredoxin or flavodoxin, or originally has no ferredoxin or flavodoxin gene, but introduces a ferredoxin or flavodoxin gene. By doing so, activity may be imparted and L-amino acid producing ability may be improved.
  • Confirmation that ferredoxin or flavodoxin production ability is improved compared to the parent strain, for example, wild strain or non-modified strain, can be confirmed by comparing the amount of ferredoxin or flavodoxin mRNA with the wild-type or non-modified strain.
  • Examples of the expression level confirmation method include Northern hybridization and RT-PCR (Sambrook, J. et al. 1989. Molecular CloningA Laboratory Manual / Second Edition, Cold Spring Harbor Laboratory Press, New York).
  • the expression level may be any as long as it is increased compared to the wild strain or the unmodified strain, for example, 1.5 times or more, more preferably 2 times or more, more preferably compared to the wild strain or the non-modified strain. It is desirable that it rises 3 times or more.
  • ferredoxin or flavodoxin production is improved compared to the parent strain, for example, wild strain or unmodified strain, should be detected by SDS-PAGE, two-dimensional electrophoresis, or Western blot using an antibody.
  • the production amount may be any as long as it is improved as compared to the wild strain or the unmodified strain, but for example, 1.5 times or more, more preferably 2 times or more, more preferably compared to the wild strain or the non-modified strain. It is desirable that it rises 3 times or more.
  • the activity of ferredoxin and flavodoxin can be measured by adding to an appropriate redox reaction system.
  • Boyer et al. Discloses a method of reducing the produced ferredoxin with ferredoxin-NADP + reductase and quantifying the reduction of cytochrome C by the resulting reduced ferredoxin (Boyer, ME et al. 2006. Biotechnol. Bioeng. 94: 128-138).
  • the activity of flavodoxin can be measured by the same method using flavodoxin-NADP + reductase.
  • the gene encoding ferredoxin or flavodoxin is widely distributed, and any encoded ferredoxin or flavodoxin can be used as long as pyruvate synthase and an electron donor regeneration system are available.
  • the fdx gene exists as a gene encoding ferredoxin having a 2Fe-2S cluster (Ta, D. T. and Vickery, L. E. 1992. J. Biol. Chem. 267: 11120 -11125), the yfhL gene is predicted as a ferredoxin gene having a 4Fe-4S cluster.
  • the flavodoxin gene includes fldA gene (Osborne, C. et al. 1991. J. Bacteriol.
  • ferredoxin I and ferredoxin II have been identified as 4Fe-4S type ferredoxin genes that serve as electron acceptors for pyruvate synthase (Yoon, K. S Et al. 2001. J. Biol. Chem. 276: 44027-44036).
  • Ferredoxin genes or flavodoxin genes derived from bacteria having a reductive TCA cycle such as Hydrogenobacter thermophilus can also be used.
  • ferredoxin gene of Escherichia coli the fdx shown in SEQ ID NO: 29 located at nucleotide numbers 2654770 to 2655105 (complementary strand) of the genome sequence of Escherichia coli K-12 strain (GenBank Accession No. U00096) Examples thereof include the gene and the yfhL gene shown in SEQ ID NO: 31 located at base numbers 2676885 to 2697945.
  • SEQ ID NO: 30 and SEQ ID NO: 32 show the amino acid sequences of Fdx and YfhL (GenBank Accession No. AAC75578 and AAC75615, respectively).
  • Examples of the flavodoxin gene of Escherichia coli include the fldA gene shown in SEQ ID NO: 33 located at base numbers 710688 to 710158 (complementary strand) of the genome sequence of Escherichia coli K-12 strain (GenBank Accession No. U00096), and bases An example of the fldB gene shown in SEQ ID NO: 35 located at numbers 3037877 to 3038398 is shown.
  • SEQ ID NO: 34 and SEQ ID NO: 36 show the amino acid sequences encoded by the fldA gene and the fldB gene (GenBank Accession No. AAC73778 and AAC75933, respectively).
  • ferredoxin gene of Chlorobium tepidum As the ferredoxin gene of Chlorobium tepidum, the ferredoxin I gene shown in SEQ ID NO: 37 located at base numbers 1184078 to 1184266 of the genomic sequence of Chlorobium tepidum (GenBank Accession NC_002932), and base numbers 1184476 to A ferredoxin II gene represented by SEQ ID NO: 39 located at 1184664 can be exemplified.
  • SEQ ID NO: 38 and SEQ ID NO: 40 show the amino acid sequences encoded by ferredoxin I and ferredoxin II (GenBank Accession No. AAM72491 and AAM72490, respectively).
  • Ferrobacter thermophilus ferredoxin gene GenBank Accession No.
  • the Sulfolobus solfataricus base sequence 2345414 to 2345728 are shown.
  • An example is the ferricoxin gene of Taricus.
  • the genera Chlorobium, Desulfobacter, Aquifex, Hydrogenobacter, Thermoproteus, Thermoproteus May be cloned from bacteria belonging to the genus Pyrobaculum, and also ⁇ -proteobacteria such as Enterobacter, Klebsiella, Serratia, Erbinia, Yersinia, Corynebacterium glutamicum, etc.
  • coryneform bacteria such as Brevibacterium lactofermentum, Pseudomonas bacteria such as Pseudomonas aeruginosa, and Mycobacterium bacteria such as Mycobacterium tuberculosis.
  • the modification for enhancing the expression of the gene of the present invention as described above can be performed in the same manner as the method for enhancing the expression of the target gene described for imparting L-amino acid-producing ability.
  • the gene of the present invention can be obtained by a PCR method using a chromosomal DNA of a microorganism holding them as a template.
  • the pyruvate synthase gene of Chlorobium tepidum is prepared by PCR using primers prepared based on the nucleotide sequence of SEQ ID NO: 9, for example, primers shown in SEQ ID NOs: 41 and 42, and chromosomal DNA of Chlorobium tepidum as a template. It can be obtained by the method (polymerase chain reaction) (see White, TJ et al. 1989. Trends Genet. 5: 185-189).
  • Escherichia coli pyruvate synthase gene is a primer prepared based on the nucleotide sequence of SEQ ID NO: 11, for example, using primers shown in SEQ ID NOs: 43 and 44, by PCR using Escherichia coli chromosomal DNA as a template, Can be acquired.
  • Euglena gracilis pyruvate NADP + oxidoreductase gene is a PCR method using a primer prepared based on SEQ ID NO: 13, for example, the primers shown in SEQ ID NOs: 45 and 46, using Euglena gracilis chromosomal DNA as a template Can be obtained.
  • Escherichia coli flavodoxin-NADP + reductase gene is a PCR prepared using a primer prepared based on the nucleotide sequence of SEQ ID NO: 27, for example, the primers shown in SEQ ID NOs: 47 and 48, using Escherichia coli chromosomal DNA as a template. It can be obtained by law.
  • Escherichia coli ferredoxin gene fdx is a primer prepared based on the nucleotide sequence of SEQ ID NO: 29, for example, using primers shown in SEQ ID NO: 49, 50, by PCR method using Escherichia coli chromosomal DNA as a template, Can be acquired.
  • the Escherichia coli flavodoxin gene fldA was prepared using a primer prepared based on the nucleotide sequence of SEQ ID NO: 33, and the flavodoxin gene fldB was prepared using a primer prepared based on the nucleotide sequence of SEQ ID NO: 35.
  • Each can be obtained by PCR using chromosomal DNA as a template.
  • the ferredoxin I gene of Chlorobium tepidum was prepared using a primer prepared based on the nucleotide sequence of SEQ ID NO: 37, and the ferredoxin II gene was prepared using a primer prepared based on the nucleotide sequence of SEQ ID NO: 39.
  • Each can be obtained by PCR using tepidum chromosomal DNA as a template.
  • the gene of the present invention derived from other microorganisms is also a PCR method using primers prepared with oligonucleotides prepared based on the sequence information of each of the above genes or gene or protein sequences known in the microorganism, or It can be obtained from a chromosomal DNA or a chromosomal DNA library of a microorganism by a hybridization method using an oligonucleotide prepared based on the sequence information as a probe.
  • chromosomal DNA is obtained from microorganisms as DNA donors, for example, by Saito and Miura's method (Saito, H. and Miura, K. I. 1963. Biochem.phyBiophys. Acta, 72, 619-629; Book, edited by Japanese Society for Biotechnology, pages 97-98, Bafukan, 1992).
  • the microorganism of the present invention preferably has reduced activity of malic enzyme.
  • the microorganism of the present invention is a bacterium belonging to the genus Escherichia, Enterobacter, Pantoea, Klebsiella, or Serratia, it is particularly preferable to reduce the activity of malic enzyme.
  • the activity of malic enzyme means an activity of reversibly catalyzing a reaction in which malic acid is oxidatively decarboxylated to produce pyruvic acid.
  • the above reaction is NADP-type malic enzyme (also expressed as malate dehydrogenase (oxaloacetate-decarboxylating) (NADP + )) using NADP as an electron acceptor (EC: 1.1.1.40 b2463 gene (also referred to as maeB gene) SEQ ID NO: 51) or NAD type malic enzyme (also referred to as malate dehydrogenase (oxaloacetate-decarboxylating) (NAD + )) using NAD as an electron acceptor (EC: 1.1.1.38 sfcA gene (also referred to as maeA gene) sequence Catalyzed by two enzymes of number 53).
  • the confirmation of malic enzyme activity can be measured according to the method of Bologna et al. (Bologna, F. P
  • NADP-dependent malic enzyme NADP + + malate ⁇ NADPH + CO 2 + pyruvate
  • NAD-dependent malic enzyme NAD + + malate ⁇ NADH + CO 2 + pyruvate
  • the decrease in enzyme activity can be carried out in the same manner as the decrease in ribonuclease G activity described later.
  • the microorganism of the present invention belongs to the genus Escherichia, Enterobacter, Pantoea, Klebsiella, or Serratia.
  • the bacterium belongs, it is preferable to reduce the activity of both types of malic enzyme.
  • the microorganism of the present invention preferably has reduced pyruvate dehydrogenase activity.
  • pyruvate dehydrogenase activity means an activity that catalyzes a reaction of oxidatively decarboxylating pyruvate to produce acetyl-CoA (acetyl-CoA). To do.
  • PDH activity the activity of catalyzing the combined reaction of these three reactions. Confirmation of PDH activity can be measured according to the method of Visser and Strating (Visser, J. and Strating, M. 1982. Methods Enzymol. 89: 391-399).
  • E1p pyruvate + [dihydrolipoyllysine-residue succinyltransferase] lipoyllysine ⁇ [dihydrolipoyllysine-residue acetyltransferase] S-acetyldihydrolipoyllysine + CO 2
  • E2p CoA + enzyme N6- (S-acetyldihydrolipoyl) lysine ⁇ acetyl-CoA + enzyme N6- (dihydrolipoyl) lysine
  • E3 protein N6- (dihydrolipoyl) lysine + NAD + ⁇ protein N6- (lipoyl) lysine + NADH + H +
  • the decrease in enzyme activity can be carried out in the same manner as the decrease in ribonuclease G activity described later.
  • the bacterium of the present invention is modified so that malate synthase, isocitrate triase, isocitrate dehydrogenase kinase / phosphatase operon (ace operon) is constitutively expressed, or expression of the operon is enhanced. Strains may be used. Constitutive expression of malate synthase, isocitrate triase, isocitrate dehydrogenase kinase / phosphatase operon (ace operon) means that the ace operon promoter is not repressed by the repressor protein iclR. It means that it has been released.
  • ace operon is constitutively expressed and the expression of the operon is enhanced is that the proteins encoded by the ace operon are malate synthase (aceB), isocitrate triase (aceA), isocyto This can be confirmed by the fact that the enzyme activity of rate dehydrogenase kinase / phosphatase (aceK) is increased compared to the unmodified strain or the wild strain.
  • aceB malate synthase
  • aceA isocitrate triase
  • aceK rate dehydrogenase kinase / phosphatase
  • Enzyme activity was determined by measuring glyoxylic acid-dependent degradation of the thioester bond of acetyl-CoA by reducing A232 for malate synthase (Dixon, GH, Kornberg, HL, 1960, Biochem. J, 1; 41: p217-233), for isocitrate lyase, a method for measuring glyoxylic acid generated from isocitrate as a 2,4-dinitrophenylhydrazone derivative (Roche, TE. Williams JO, 1970, Biochim. Biophys.
  • the binding site of the repressor (iclR) on the ace operon may be modified so that iclR cannot bind.
  • the suppression can be released by replacing the promoter of the operon with a strong promoter (such as the lac promoter) that is not subject to expression suppression by iclR.
  • the expression of the ace operon can be made constitutive by modifying the bacterium so that the expression of the iclR gene is reduced or deleted. Specifically, the expression control sequence of the gene encoding iclR is modified so that the gene does not express, or the coding region is modified so that the function of the repressor is lost, thereby suppressing the expression of the ace operon. Can be released.
  • the preferred form of the bacterium used in the present invention is the above-mentioned i) the property of aerobically assimilating ethanol, ii) the increased activity of pyruvate synthase or pyruvate: NADP + oxidoreductase, iii) the ace operon It has either constitutive expression or enhanced expression, iv) reduced pyruvate dehydrogenase activity, but preferably has the properties i) and ii), more preferably has these four properties preferable.
  • the bacterium having L-amino acid-producing ability refers to a bacterium having the ability to produce L-amino acid and secrete it into the medium when cultured in the medium.
  • it refers to a bacterium capable of accumulating the target L-amino acid in the medium in an amount of preferably 0.5 g / L or more, more preferably 1.0 g / L or more.
  • L-amino acids include L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-cysteine, L-glutamic acid, L-glutamine, glycine, L-histidine, L-isoleucine, L-leucine, L- Includes lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine and L-valine.
  • L-lysine, L-glutamic acid, L-threonine, L-arginine, L-histidine, L-isoleucine, L-valine, L-leucine, L-phenylalanine, L-tyrosine, L-tryptophan, and L-cysteine is preferred, and L-threonine, L-lysine and L-glutamic acid are particularly preferred.
  • L-amino acids include not only free L-amino acids but also salts including sulfates, hydrochlorides, carbonates, ammonium salts, sodium salts, and potassium salts.
  • auxotrophic mutants In order to confer L-amino acid-producing ability, acquisition of auxotrophic mutants, L-amino acid analog resistant strains or metabolic control mutants, and recombinant strains with enhanced expression of L-amino acid biosynthetic enzymes can be applied to the breeding of amino acid-producing bacteria such as coryneform bacteria or Escherichia bacteria (Amino Acid Fermentation, Academic Publishing Center, Inc., May 30, 1986, first edition) Issue, see pages 77-100).
  • the auxotrophy, analog resistance, metabolic control mutation and other properties imparted may be singly or may be two or more.
  • L-amino acid biosynthetic enzymes whose expression is enhanced may be used alone or in combination of two or more. Furthermore, imparting properties such as auxotrophy, analog resistance, and metabolic regulation mutation may be combined with enhancement of biosynthetic enzymes.
  • an auxotrophic mutant an analog resistant strain, or a metabolically controlled mutant having L-amino acid-producing ability
  • the parent strain or wild strain is subjected to normal mutation treatment, that is, irradiation with X-rays or ultraviolet rays, or N-methyl.
  • -Treated with a treatment with a mutant such as -N'-nitro-N-nitrosoguanidine, among the obtained mutant strains shows auxotrophy, analog resistance, or metabolic control mutation, and has an ability to produce L-amino acid It can be obtained by selecting what it has.
  • the imparting or enhancing of the ability to produce L-amino acid can be performed by enhancing the enzyme activity by gene recombination.
  • the enzyme activity can be enhanced by, for example, a method of modifying a bacterium so that expression of a gene encoding an enzyme involved in L-amino acid biosynthesis is enhanced.
  • an amplified plasmid in which a DNA fragment containing the gene is introduced into an appropriate plasmid for example, a plasmid vector containing at least a gene responsible for the replication replication function of the plasmid in a microorganism
  • an appropriate plasmid for example, a plasmid vector containing at least a gene responsible for the replication replication function of the plasmid in a microorganism
  • the promoter for expressing these genes may be any promoter that functions in coryneform bacteria, and the promoter of the gene itself used. Or may be modified.
  • the expression level of the gene can also be regulated by appropriately selecting a promoter that functions strongly in coryneform bacteria, or by bringing the ⁇ 35 and ⁇ 10 regions of the promoter closer to the consensus sequence.
  • the method for enhancing the expression of the enzyme gene as described above is described in WO00 / 18935 pamphlet, European Patent Application Publication No. 1010755, and the like.
  • L-threonine producing bacteria Preferred microorganisms having L-threonine producing ability include bacteria having enhanced activity of one or more L-threonine biosynthetic enzymes.
  • L-threonine biosynthetic enzymes include aspartokinase III (lysC), aspartate semialdehyde dehydrogenase (asd), aspartokinase I (thrA), homoserine kinase (thrB), threonine synthase (thrC), aspartate amino Examples include transferase (aspartate transaminase) (aspC).
  • the parentheses are abbreviations for the genes (the same applies to the following description).
  • the L-threonine biosynthesis gene may be introduced into a bacterium belonging to the genus Escherichia in which threonine degradation is suppressed.
  • Escherichia bacterium in which threonine degradation is suppressed include, for example, the TDH6 strain lacking threonine dehydrogenase activity (Japanese Patent Laid-Open No. 2001-346578).
  • the enzyme activity of the L-threonine biosynthetic enzyme is suppressed by the final product, L-threonine. Therefore, in order to construct an L-threonine-producing bacterium, it is desirable to modify the L-threonine biosynthetic gene so that it is not subject to feedback inhibition by L-threonine.
  • the thrA, thrB, and thrC genes constitute the threonine operon, but the threonine operon forms an attenuator structure, and the expression of the threonine operon inhibits isoleucine and threonine in the culture medium. The expression is suppressed by attenuation.
  • This modification can be achieved by removing the leader sequence or attenuator in the attenuation region (Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M ., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194: 59-69 (1987); International Publication No. 02/26993; International Publication No. 2005/049808) .
  • a strain resistant to ⁇ -amino- ⁇ -hydroxyvaleric acid (AHV) may be selected. Is possible.
  • the threonine operon modified so as not to be subjected to feedback inhibition by L-threonine has an increased copy number in the host or is linked to a strong promoter to improve the expression level. Is preferred.
  • the increase in copy number can be achieved by transferring the threonine operon on the genome by transposon, Mu-fuzzy, etc., in addition to amplification by plasmid.
  • L-threonine biosynthetic enzyme In addition to the L-threonine biosynthetic enzyme, it is also preferable to enhance the glycolytic system, TCA cycle, genes related to the respiratory chain, genes controlling gene expression, and sugar uptake genes.
  • genes effective for L-threonine production include transhydronase (pntAB) gene (European Patent 733712), phosphoenolpyruvate carboxylase gene (pepC) (International Publication No. 95/06114 pamphlet), phospho Examples include the enol pyruvate synthase gene (pps) (European Patent No. 877090), the pyruvate carboxylase gene of Coryneform bacteria or Bacillus bacteria (International Publication No. 99/18228, European Application Publication No. 1092776).
  • genes that confer resistance include rhtA gene (Res. Microbiol. 154: 123-135 (2003)), rhtB gene (European Patent Application Publication No. 0994190), rhtC gene (European Patent Application Publication No. 1013765) ), YfiK, yeaS gene (European Patent Application Publication No. 1016710).
  • rhtA gene Res. Microbiol. 154: 123-135 (2003)
  • rhtB gene European Patent Application Publication No. 0994190
  • rhtC gene European Patent Application Publication No. 1013765
  • YfiK European Patent Application Publication No. 1016710
  • European Patent Application Publication No. 0994190 and International Publication No. 90/04636 can be referred to.
  • L-threonine-producing bacteria or parent strains for inducing them examples include E. coli TDH-6 / pVIC40 (VKPM B-3996) (US Patent No. 5,175,107, US Patent No. 5,705,371), E. coli 472T23 / pYN7 (ATCC 98081) (U.S. Pat.No. 5,631,157), E.coli NRRL-21593 (U.S. Pat.No. 5,939,307), E.coli FERM BP-3756 (U.S. Pat.No. 5,474,918), E.coli FERM BP-3519 And FERM BP-3520 (U.S. Patent No. 5,376,538), E.
  • E. coli MG442 (Gusyatiner et al., Genetikaet (in Russian), 14, 947-956 (1978)), E. coli VL643 and VL2055 (EP 1149911 A) Strains belonging to the genus Escherichia such as, but not limited to.
  • the TDH-6 strain lacks the thrC gene, is sucrose-utilizing, and the ilvA gene has a leaky mutation. This strain also has a mutation in the rhtA gene that confers resistance to high concentrations of threonine or homoserine.
  • the B-3996 strain carries the plasmid pVIC40 in which the thrA * BC operon containing the mutated thrA gene is inserted into the RSF1010-derived vector. This mutant thrA gene encodes aspartokinase homoserine dehydrogenase I which is substantially desensitized to feedback inhibition by threonine.
  • E. coli VKPM B-5318 (EP 0593792B) can also be used as an L-threonine producing bacterium or a parent strain for inducing it.
  • the B-5318 strain is isoleucine non-required, and the control region of the threonine operon in the plasmid pVIC40 is replaced by a temperature sensitive lambda phage C1 repressor and a PR promoter.
  • VKPM B-5318 was assigned to Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on May 3, 1990 under the accession number VKPM B-5318. Has been deposited internationally.
  • the thrA gene encoding aspartokinase homoserine dehydrogenase I of Escherichia coli has been clarified (nucleotide numbers 337 to 2799, “GenBank accession” NC_000913.2, “gi”: “49175990”).
  • the thrA gene is located between the thrL gene and the thrB gene in the chromosome of E. coli K-12.
  • the thrB gene encoding homoserine kinase of Escherichia coli has been elucidated (nucleotide numbers 2801 to 3733, GenBank accession NC_000913.2, gi: 49175990).
  • the thrB gene is located between the thrA gene and the thrC gene in the chromosome of E. coli K-12.
  • the thrC gene encoding the threonine synthase of Escherichia coli has been elucidated (nucleotide numbers 3734-5020, GenBank accession NC_000913.2, gi: 49175990).
  • the thrC gene is located between the thrB gene and the yaaX open reading frame in the chromosome of E. coli K-12. All three of these genes function as a single threonine operon.
  • the attenuator region that affects transcription is preferably removed from the operon (WO2005 / 049808, WO2003 / 097839).
  • mutant thrA gene encoding aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine, and the thrB and thrC genes are one operon from the well-known plasmid pVIC40 present in the threonine producing strain E. coli VKPM B-3996. Can be obtained as Details of plasmid pVIC40 are described in US Pat. No. 5,705,371.
  • the rhtA gene is present on the 18th minute of the E. ⁇ coli chromosome close to the glnHPQ operon, which encodes an element of the glutamine transport system.
  • the rhtA gene is identical to ORF1 (ybiF gene, nucleotide numbers 764 to 1651, GenBank accession number AAA218541, gi: 440181), and is located between the pexB gene and the ompX gene.
  • the unit that expresses the protein encoded by ORF1 is called rhtA gene (rht: resistant to homoserine and threonine).
  • the E. coli asd gene has already been clarified (nucleotide numbers 3572511 to 3571408, GenBank accession NC_000913.1, gi: 16131307), and can be obtained by PCR using primers prepared based on the nucleotide sequence of the gene. (See White, TJ et al., Trends Genet., 5, 185 (1989)). The asd gene of other microorganisms can be obtained similarly.
  • the aspC gene of E.coli has already been clarified (nucleotide numbers 983742 to 984932, GenBank accession NC_000913.1, gi: 16128895) and can be obtained by PCR.
  • the aspC gene of other microorganisms can be obtained similarly.
  • L-lysine-producing bacteria belonging to the genus Escherichia include mutants having resistance to L-lysine analogs.
  • L-lysine analogues inhibit the growth of bacteria belonging to the genus Escherichia, but this inhibition is completely or partially desensitized when L-lysine is present in the medium.
  • L-lysine analogs include, but are not limited to, oxalysine, lysine hydroxamate, S- (2-aminoethyl) -L-cysteine (AEC), ⁇ -methyllysine, ⁇ -chlorocaprolactam, and the like. .
  • Mutant strains resistant to these lysine analogs can be obtained by subjecting bacteria belonging to the genus Escherichia to normal artificial mutation treatment.
  • Specific examples of bacterial strains useful for the production of L-lysine include Escherichia coli AJ11442 (FERM BP-1543, NRRL B-12185; see US Pat. No. 4,346,170) and Escherichia coli VL611. In these microorganisms, feedback inhibition of aspartokinase by L-lysine is released.
  • L-lysine-producing bacteria or parent strains for inducing them include strains in which one or more activities of L-lysine biosynthetic enzymes are enhanced.
  • L-lysine biosynthetic enzymes include dihydrodipicolinate synthase (dapA), aspartokinase (lysC), dihydrodipicolinate reductase (dapB), diaminopimelate decarboxylase (lysA), diaminopimelate dehydrogenase (ddh) (US Pat.No. 6,040,160).
  • ppc Phosphoenolpyruvate carboxylase
  • ppc Phosphoenolpyruvate carboxylase
  • dapF diaminopimelate epimerase
  • dapD tetrahydrodipicolinate succinylase
  • dapE succinyl diaminopimelate deacylase
  • aspartase aspA
  • the parent strain is a gene involved in energy efficiency (cyo) (EP 1170376 A), a gene encoding nicotinamide nucleotide transhydrogenase (pntAB) (US Patent No. 5,830,716), ybjE gene (WO2005 / 073390), or The expression level of these combinations may be increased.
  • L-lysine-producing bacteria or parent strains for deriving the same include reduction or loss of the activity of enzymes that catalyze reactions that branch off from the L-lysine biosynthetic pathway to produce compounds other than L-lysine. There are also stocks. Examples of enzymes that catalyze reactions that branch off from the biosynthetic pathway of L-lysine to produce compounds other than L-lysine include homoserine dehydrogenase, lysine decarboxylase (US Pat. No. 5,827,698), and malate enzyme ( WO2005 / 010175).
  • a preferred L-lysine-producing bacterium includes Escherichia coli WC196 ⁇ cadA ⁇ ldcC / pCABD2 (WO2006 / 078039). This strain was constructed by disrupting the cadA and ldcC genes encoding lysine decarboxylase and introducing plasmid pCABD2 (US Pat. No. 6,040,160) containing a lysine biosynthesis gene from WC196 strain. The WC196 strain was obtained from the W3110 strain derived from E. coli K-12, and encodes aspartokinase III in which feedback inhibition by L-lysine was released by replacing threonine at position 352 with isoleucine.
  • the WC196 strain was named Escherichia coli AJ13069.
  • WC196 ⁇ cadA ⁇ ldcC was named AJ110692, and was deposited internationally on October 7, 2008, at the National Institute of Advanced Industrial Science and Technology, the Patent Biological Deposit Center (1-6 Chuo, 1-chome, 1-chome, Tsukuba, Ibaraki, Japan, 305-8566) The accession number is FERM BP-11027.
  • pCABD2 is a mutant dapA gene encoding dihydrodipicolinate synthase (DDPS) derived from Escherichia coli having a mutation that is desensitized to feedback inhibition by L-lysine, and a mutation that is desensitized to feedback inhibition by L-lysine.
  • a mutant lysC gene encoding aspartokinase III derived from Escherichia coli, dapB gene encoding dihydrodipicolinate reductase derived from Escherichia coli, and ddh encoding a diaminopimelate dehydrogenase derived from Brevibacterium lactofermentum Contains genes (International Publication Nos. WO95 / 16042 and WO01 / 53459).
  • L-cysteine producing bacteria examples include E. coli JM15 (US Pat. No. 6,218,168) transformed with a different cysE allele encoding a feedback inhibition resistant serine acetyltransferase. , Russian Patent Application No. 2003121601), E. coli W3110 (US Pat.No. 5,972,663) having an overexpressed gene encoding a protein suitable for excretion of a substance toxic to cells, cysteine desulfohydrase activity
  • E. coli JM15 US Pat. No. 6,218,168 transformed with a different cysE allele encoding a feedback inhibition resistant serine acetyltransferase.
  • Russian Patent Application No. 2003121601 Russian Patent Application No. 2003121601
  • E. coli W3110 US Pat.No. 5,972,663
  • cysteine desulfohydrase activity include strains belonging to the genus Escherichia such as E. coli strains
  • L-leucine-producing bacteria examples include leucine-resistant E. coil strains (eg, 57 strains (VKPM B-7386, US Pat. No. 6,124,121)) or ⁇ E. coli strains resistant to leucine analogs such as -2-thienylalanine, 3-hydroxyleucine, 4-azaleucine, 5,5,5-trifluoroleucine (Japanese Patent Publication No. 62-34397 and JP-A-8-70879), Examples include, but are not limited to, strains belonging to the genus Escherichia such as E. coli strains and E. coli H-9068 (JP-A-8-70879) obtained by the genetic engineering method described in WO96 / 06926. .
  • the bacterium used in the present invention may be improved by increasing the expression of one or more genes involved in L-leucine biosynthesis.
  • a gene of leuABCD operon represented by a mutant leuA gene (US Pat. No. 6,403,342) encoding isopropyl malate synthase which is preferably desensitized to feedback inhibition by L-leucine can be mentioned.
  • the bacterium used in the present invention may be improved by increasing the expression of one or more genes encoding proteins that excrete L-amino acids from bacterial cells. Examples of such genes include b2682 gene and b2683 gene (ygaZH gene) (EP 1239041 A2).
  • L-histidine-producing bacteria examples include E. coli 24 strain (VKPM B-5945, RU2003677), E. coli 80 strain (VKPM B-7270, RU2119536) E. coli NRRL B-12116-B12121 (U.S. Pat.No. 4,388,405), E. coli H-9342 (FERM BP-6675) and H-9343 (FERM BP-6676) (U.S. Pat.No. 6,344,347), E. coli. Examples include, but are not limited to, strains belonging to the genus Escherichia, such as E. coli H-9341 (FERM BP-6674) (EP1085087) and E. coli AI80 / pFM201 (US Pat. No. 6,258,554).
  • L-histidine-producing bacteria or parent strains for inducing them include strains in which expression of one or more genes encoding L-histidine biosynthetic enzymes are increased.
  • genes include ATP phosphoribosyltransferase gene (hisG), phosphoribosyl AMP cyclohydrolase gene (hisI), phosphoribosyl-ATP pyrophosphohydrolase gene (hisI), phosphoribosylformimino-5- Examples include aminoimidazole carboxamide ribotide isomerase gene (hisA), amide transferase gene (hisH), histidinol phosphate aminotransferase gene (hisC), histidinol phosphatase gene (hisB), and histidinol dehydrogenase gene (hisD). It is done.
  • L-histidine biosynthetic enzymes encoded by hisG and hisBHAFI are known to be inhibited by L-histidine, and therefore L-histidine-producing ability is feedback-inhibited by the ATP phosphoribosyltransferase gene (hisG). Can be efficiently increased by introducing mutations that confer resistance to (Russian Patent Nos. 2003677 and 2119536).
  • strains having the ability to produce L-histidine include E. coli FERM-P 5038 and 5048 introduced with a vector carrying a DNA encoding an L-histidine biosynthetic enzyme (Japanese Patent Laid-Open No. 56-005099).
  • E. coli strain (EP1016710A) introduced with a gene for amino acid transport
  • E. coli 80 strain (VKPM B-7270) to which resistance to sulfaguanidine, DL-1,2,4-triazole-3-alanine and streptomycin was imparted
  • Russian Patent No. 2119536 Russian Patent No. 2119536
  • L-glutamic acid-producing bacteria examples include, but are not limited to, strains belonging to the genus Escherichia such as E. coli VL334thrC + (EP 1172433).
  • E. coli VL334 (VKPM B-1641) is an L-isoleucine and L-threonine auxotroph having a mutation in the thrC gene and the ilvA gene (US Pat. No. 4,278,765).
  • the wild type allele of the thrC gene was introduced by a general transduction method using bacteriophage P1 grown on cells of wild type E. coli K12 strain (VKPM B-7).
  • VKPM B-8961 L-isoleucine-requiring L-glutamic acid-producing bacterium VL334thrC +
  • L-glutamic acid-producing bacteria or parent strains for inducing them include, but are not limited to, strains with enhanced activity of one or more L-glutamic acid biosynthetic enzymes.
  • examples of such genes include glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), glutamate synthetase (gltAB), isocitrate dehydrogenase (icdA), aconitate hydratase (acnA, acnB), citrate synthase (gltA), Methyl citrate synthase (prpC), phosphoenolpyruvate carbocilase (ppc), pyruvate dehydrogenase (aceEF, lpdA), pyruvate kinase (pykA, pykF), phosphoenolpyruvate synthase (ppsA), enolase ( eno), en
  • strains modified to increase expression of citrate synthetase gene, phosphoenolpyruvate carboxylase gene, and / or glutamate dehydrogenase gene include those disclosed in EP1078989A, EP955368A and EP952221A.
  • L-glutamic acid-producing bacteria or parent strains for deriving the same are those in which the activity of an enzyme that catalyzes the synthesis of compounds other than L-glutamic acid by diverging from the biosynthetic pathway of L-glutamic acid is reduced or absent Stocks are also mentioned.
  • Examples of such enzymes include isocitrate triase (aceA), ⁇ -ketoglutarate dehydrogenase (sucA), phosphotransacetylase (pta), acetate kinase (ack), acetohydroxy acid synthase (ilvG), Examples include acetolactate synthase (ilvI), formate acetyltransferase (pfl), lactate dehydrogenase (ldh), glutamate decarboxylase (gadAB), and the like.
  • aceA isocitrate triase
  • sucA ⁇ -ketoglutarate dehydrogenase
  • pta phosphotransacetylase
  • ack acetate kinase
  • ilvG acetohydroxy acid synthase
  • Examples include acetolactate synthase (ilvI), formate acetyltransferase (pfl), lactate dehydrogenase (ld
  • E. coli W3110sucA Kmr E. coli AJ12624 (FERM BP-3853) E. coli AJ12628 (FERM BP-3854) E. coli AJ12949 (FERM BP-4881)
  • E. coli W3110sucA is a strain obtained by disrupting the ⁇ -ketoglutarate dehydrogenase gene (hereinafter also referred to as "sucA gene") of E. coli W3110. This strain is completely deficient in ⁇ -ketoglutarate dehydrogenase.
  • L-glutamic acid-producing bacteria include those belonging to the genus Escherichia and having resistance to an aspartic acid antimetabolite. These strains may be deficient in ⁇ -ketoglutarate dehydrogenase, for example, E. coli AJ13199 (FERM BP-5807) (US Patent No. 5.908,768), and FFRM with reduced L-glutamate resolution. P-12379 (US Pat. No. 5,393,671); AJ13138 (FERM BP-5565) (US Pat. No. 6,110,714) and the like.
  • Pantoea ananatis AJ13355 strain An example of an L-glutamic acid-producing bacterium of Pantoae ananatis is Pantoea ananatis AJ13355 strain. This strain was isolated from the soil of Iwata City, Shizuoka Prefecture as a strain that can grow on a medium containing L-glutamic acid and a carbon source at a low pH. Pantoea Ananatis AJ13355 was commissioned on February 19, 1998 at the National Institute of Advanced Industrial Science and Technology, the Patent Biological Deposit Center (address: 1st, 1st, 1st, 1-chome, Tsukuba, Ibaraki, Japan, 305-8566).
  • examples of L-glutamic acid-producing bacteria of Pantoae ananatis include bacteria belonging to the genus Pantoea in which ⁇ -ketoglutarate dehydrogenase ( ⁇ KGDH) activity is deficient or ⁇ KGDH activity is reduced.
  • Such strains include AJ13356 (US Pat. No. 6,331,419) in which the ⁇ KGDH-E1 subunit gene (sucA) of AJ13355 strain is deleted, and sucA derived from SC17 strain selected from AJ13355 strain as a low mucus production mutant.
  • SC17sucA US Pat. No. 6,596,517) which is a gene-deficient strain.
  • AJ13356 was founded on February 19, 1998 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center, 1-chome, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan 305-8566 No. 6) was deposited under the deposit number FERM P-16645, transferred to an international deposit under the Budapest Treaty on January 11, 1999, and given the deposit number FERM BP-6616.
  • AJ13355 and AJ13356 are deposited as Enterobacter agglomerans in the above depository organization, but are described as Pantoea ananatis in this specification.
  • the SC17sucA strain has been assigned the private number AJ417, and was deposited at the National Institute of Advanced Industrial Science and Technology as the accession number FERM BP-08646 on February 26, 2004.
  • SC17sucA / RSFCPG + pSTVCB strain is a plasmid RSFCPG containing the citrate synthase gene (gltA), phosphoenolpyruvate carboxylase gene (ppsA), and glutamate dehydrogenase gene (gdhA) derived from Escherichia coli.
  • gltA citrate synthase gene
  • ppsA phosphoenolpyruvate carboxylase gene
  • gdhA glutamate dehydrogenase gene
  • the AJ13601 strain was selected from the SC17sucA / RSFCPG + pSTVCB strain as a strain resistant to a high concentration of L-glutamic acid at low pH.
  • the NP106 strain is a strain obtained by removing the plasmid RSFCPG + pSTVCB from the AJ13601 strain.
  • AJ13601 shares were registered with the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (305-1856, Ibaraki, Japan, 1st-chome, 1st-chome, 1st-chome, 1st-centre, 6th). Deposited as 17516, transferred to an international deposit under the Budapest Treaty on July 6, 2000, and assigned the deposit number FERM BP-7207.
  • L-phenylalanine producing bacteria examples include E. coli AJ12739 (tyrA :: Tn10, tyrR) lacking chorismate mutase-prefenate dehydrogenase and tyrosine repressor ( VKPM B-8197) (WO03 / 044191), E. coli HW1089 (ATCC 55371) (US Pat.No. 5,354,672) carrying a mutant pheA34 gene encoding chorismate mutase-prefenate dehydratase with desensitized feedback inhibition, Strains belonging to the genus Escherichia such as E.
  • E. coli MWEC101-b KR8903681
  • E. coli NRRL B-12141 E. coli NRRL B-12141
  • NRRL B-12145 E. coli NRRL B-12146
  • NRRL B-12147 U.S. Pat.No. 4,407,952
  • E. coli K-12 [W3110 (tyrA) / pPHAB]
  • E. coli K that retains the gene encoding chorismate mutase-prefenate dehydratase whose feedback inhibition has been released.
  • -12 [W3110 (tyrA) / pPHAD] (FERM BP-12659)
  • E. coli K-12 [W3110 (tyrA) / pPHATerm] (FERM BP-12662) and E. coli K-12 named AJ 12604 [W3110 (tyrA) / pBR-aroG4, pACMAB] (FERM BP-3579) can also be used (EP 488424 B1).
  • L-phenylalanine producing bacteria belonging to the genus Escherichia with increased activity of the protein encoded by the yedA gene or the yddG gene can also be used (US Patent Application Publications 2003/0148473 A1 and 2003/0157667 A1, WO03 / 044192).
  • L-tryptophan-producing bacteria examples include E. coli JP4735 / pMU3028 (DSM10122) and JP6015 / pMU91 lacking the tryptophanyl-tRNA synthetase encoded by the mutant trpS gene (DSM10123) (U.S. Pat.No. 5,756,345), E. coli having a serA allele encoding phosphoglycerate dehydrogenase not subject to feedback inhibition by serine and a trpE allele encoding an anthranilate synthase not subject to feedback inhibition by tryptophan.
  • SV164 pGH5 (US Pat.No.
  • E. coli AGX17 (pGX44) (NRRL B-12263) and AGX6 (pGX50) aroP (NRRL B-12264) lacking tryptophanase (US Pat.No. 4,371,614)
  • E. coli AGX17 / pGX50, pACKG4-pps (WO9708333, U.S. Pat.No. 6,319,696) with increased ability to produce phosphoenolpyruvate Strains include belonging to Erihia genus, but is not limited thereto.
  • L-tryptophan-producing bacteria belonging to the genus Escherichia with increased activity of the protein encoded by the yedA gene or the yddG gene can also be used (US Patent Application Publications 2003/0148473 A1 and 2003/0157667 A1).
  • L-tryptophan-producing bacteria or parent strains for inducing them examples include anthranilate synthase (trpE), phosphoglycerate dehydrogenase (serA), 3-deoxy-D-arabinohepturonic acid-7-phosphorus Acid synthase (aroG), 3-dehydroquinate synthase (aroB), shikimate dehydrogenase (aroE), shikimate kinase (aroL), 5-enolate pyruvylshikimate 3-phosphate synthase (aroA), chorismate synthase (aroC ), Prephenate dehydratase, chorismate mutase and tryptophan synthase (trpAB).
  • trpE anthranilate synthase
  • serA phosphoglycerate dehydrogenase
  • aroG 3-deoxy-D-arabinohepturonic acid-7-phosphorus Acid synthase
  • CM-PD a bifunctional enzyme
  • strains having such mutations include E. coli SV164 carrying a desensitized anthranilate synthase and a mutant serA gene encoding phosphoglycerate dehydrogenase with desensitized feedback inhibition Examples include a transformant obtained by introducing the plasmid pGH5 (WO 94/08031) into E.coli SV164.
  • L-tryptophan-producing bacteria or parent strains for deriving the same examples include strains into which a tryptophan operon containing a gene encoding an inhibitory anthranilate synthase has been introduced (Japanese Patent Laid-Open Nos. 57-71397 and 1994 62-244382, US Pat. No. 4,371,614). Furthermore, L-tryptophan-producing ability may be imparted by increasing the expression of a gene encoding tryptophan synthase in the tryptophan operon (trpBA). Tryptophan synthase consists of ⁇ and ⁇ subunits encoded by trpA and trpB genes, respectively. Furthermore, L-tryptophan production ability may be improved by increasing the expression of the isocitrate triase-malate synthase operon (WO2005 / 103275).
  • L-proline-producing bacteria examples include E. coli 702ilvA (VKPM B-8012) (EP 1172433) that lacks the ilvA gene and can produce L-proline Strains belonging to the genus Escherichia, but are not limited thereto.
  • the bacterium used in the present invention may be improved by increasing the expression of one or more genes involved in L-proline biosynthesis.
  • An example of a gene preferable for L-proline-producing bacteria includes a proB gene (German Patent No. 3127361) encoding glutamate kinase that is desensitized to feedback inhibition by L-proline.
  • the bacterium used in the present invention may be improved by increasing the expression of one or more genes encoding proteins that excrete L-amino acids from bacterial cells. Examples of such genes include b2682 gene and b2683 gene (ygaZH gene) gene (EP1239041 gene A2).
  • bacteria belonging to the genus Escherichia having the ability to produce L-proline include NRRL B-12403 and NRRL B-12404 (British Patent No. 2075056), VKPM B-8012 (Russian Patent Application 2000124295), German Patent No. 3127361 And E. coli strains such as the plasmid variants described in Bloom FR et al (The 15th Miami winter symposium, 1983, p.34).
  • L-arginine producing bacteria examples include E. coli strain 237 (VKPM B-7925) (US Patent Application Publication 2002/058315 A1) and mutant N- Derivatives carrying acetylglutamate synthase ( Russian patent application No. 2001112869), E. coli 382 strain (VKPM B-7926) (EP1170358A1), arginine producing strain introduced with argA gene encoding N-acetylglutamate synthetase Examples include, but are not limited to, strains belonging to the genus Escherichia, such as (EP1170361A1).
  • L-arginine-producing bacteria or parent strains for inducing them include strains in which expression of one or more genes encoding L-arginine biosynthetic enzymes are increased.
  • genes include N-acetylglutamylphosphate reductase gene (argC), ornithine acetyltransferase gene (argJ), N-acetylglutamate kinase gene (argB), acetylornithine transaminase gene (argD), ornithine carbamoyltransferase gene ( argF), arginosuccinate synthetase gene (argG), arginosuccinate lyase gene (argH), carbamoylphosphate synthetase gene (carAB).
  • argC N-acetylglutamylphosphate reductase gene
  • argJ ornithine acetyltransferase gene
  • argB N-
  • L-valine-producing bacteria L-valine-producing bacteria or parent strains for inducing the same include, but are not limited to, strains modified to overexpress the ilvGMEDA operon (US Pat. No. 5,998,178). Not. It is preferable to remove the region of the ilvGMEDA operon necessary for attenuation so that the expression of the operon is not attenuated by the produced L-valine. Furthermore, it is preferred that the ilvA gene of the operon is disrupted and the threonine deaminase activity is reduced. Examples of L-valine-producing bacteria or parent strains for deriving them also include mutants having aminoacyl t-RNA synthetase mutations (US Pat. No.
  • E. coli VL1970 having a mutation in the ileS gene encoding isoleucine tRNA synthetase can be used.
  • E. coli VL1970 was registered with Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on June 24, 1988 under the accession number VKPM B-4411. It has been deposited.
  • a mutant strain (WO96 / 06926) that requires lipoic acid for growth and / or lacks H + -ATPase can be used as a parent strain.
  • L-isoleucine-producing bacteria and L-isoleucine-producing bacteria or parent strains for inducing them include mutants resistant to 6-dimethylaminopurine (Japanese Patent Laid-Open No. 5-304969), thiisoleucine, isoleucine hydroxamate Mutants having resistance to isoleucine analogs such as the above, and mutants having resistance to DL-ethionine and / or arginine hydroxamate (Japanese Patent Laid-Open No. 5-130882), but are not limited thereto.
  • a recombinant strain transformed with a gene encoding a protein involved in L-isoleucine biosynthesis such as threonine deaminase and acetohydroxy acid synthase can also be used as a parent strain (JP-A-2-458, FR 0356739, and US Pat. No. 5,998,178).
  • L-tyrosine-producing bacteria examples include Escherichia bacteria (European Patent Application Publication No. 1616940) having a desensitized prefenate dehydratase gene (tyrA) that is not inhibited by tyrosine.
  • Escherichia bacteria European Patent Application Publication No. 1616940
  • tyrA desensitized prefenate dehydratase gene
  • the gene to be used is not limited to the gene having the genetic information described above or a gene having a known sequence, but variants of those genes, that is, encoded proteins As long as these functions are not impaired, genes having conservative mutations such as homologues and artificially modified variants of those genes can also be used. That is, it may be a gene encoding a protein having a sequence including substitution, deletion, insertion or addition of one or several amino acids at one or several positions in the amino acid sequence of a known protein.
  • “one or several” differs depending on the position of the protein in the three-dimensional structure of the amino acid residue and the type of amino acid residue, but specifically, preferably 1 to 20, more preferably 1 to 10 Means, more preferably 1-5.
  • a typical conservative mutation is a conservative substitution.
  • Conservative substitution is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid.
  • substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, Cys to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Substitution from Lys to Asn, Glu, Gln, His or Arg, substitution from Met to Ile, Leu, Val or Phe, substitution from Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution, substitution from Trp to Phe or Tyr, substitution
  • amino acid substitutions, deletions, insertions, additions, or inversions as described above include naturally occurring mutations (mutants or variants) such as those based on individual differences or species differences of the microorganism from which the gene is derived. Also included by Such a gene can be modified, for example, by site-directed mutagenesis so that the amino acid residue at a specific site of the encoded protein contains substitutions, deletions, insertions or additions. Can be obtained by:
  • the gene having a conservative mutation as described above has a homology of 80% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more with respect to the entire encoded amino acid sequence.
  • each codon in the gene sequence may be replaced with a codon that is easy to use in the host into which the gene is introduced.
  • the gene having a conservative mutation may be one obtained by a method usually used for mutation treatment such as treatment with a mutation agent.
  • a gene is a DNA that hybridizes with a probe complementary to a known gene sequence or a probe that can be prepared from the complementary sequence under stringent conditions and encodes a protein having a function equivalent to that of a known gene product. Also good.
  • stringent conditions refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
  • DNAs having high homology for example, 80% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more, are hybridized to each other.
  • Conditions under which DNAs with low homology do not hybridize or conditions for washing of ordinary Southern hybridization, 60 ° C., 1 ⁇ SSC, 0.1% SDS, preferably 0.1 ⁇ SSC, 0.1% SDS, more preferably The conditions include washing once at a salt concentration and temperature corresponding to 68 ° C., 0.1 ⁇ SSC, and 0.1% SDS, more preferably 2 to 3 times.
  • a part of the complementary sequence of the gene can also be used.
  • Such a probe can be prepared by PCR using an oligonucleotide prepared on the basis of a known gene sequence as a primer and a DNA fragment containing these base sequences as a template.
  • hybridization washing conditions include 50 ° C., 2 ⁇ SSC, and 0.1% SDS.
  • ribonuclease G (RNaseG) activity refers to an activity of degrading RNA serving as a substrate for RNaseG.
  • RNA serving as a substrate for RNaseG include RNA transcribed from the gene eno (GenBank Accession No. X82400) encoding enolase and the gene adhE (GenBank Accession No. M33504) encoding alcohol dehydrogenase.
  • RNA can be extracted from a strain in which RNA synthesis is suppressed by rifampicin, and the activity can be indirectly known by measuring the degradation half-life of mRNA of the eno gene or adhE gene.
  • the activity can be determined by isolating and purifying RNaseG and measuring the cleavage reaction of an artificial substrate such as an oligoribonucleotide containing an RNaseG cleavage site.
  • an activity measurement method has already been disclosed (J. Biol. Chem., 275, 8726-8732, 2000).
  • modified so that the RNaseG activity is reduced means that the RNaseG activity per bacterial cell is lower than that of an unmodified strain, for example, a strain belonging to the wild type Enterobacteriaceae.
  • an unmodified strain for example, a strain belonging to the wild type Enterobacteriaceae.
  • the comparison of the RNaseG activity per cell can be performed, for example, by comparing the RNaseG activity contained in the cell extract of bacteria cultured under the same conditions.
  • the “decrease” in activity includes a case where the activity is completely lost. Examples of wild-type bacteria belonging to the genus Escherichia that serve as a comparative control include Escherichia coli MG1655 strain.
  • the decrease in the activity of RNaseG is achieved by inactivating the gene (rng) encoding RNaseG.
  • “Inactivation” of the rng gene means that the gene is modified by genetic recombination or a mutation is introduced into the gene so that the activity of RNaseG encoded by the gene is reduced or eliminated. .
  • Examples of the rng gene include Escherichia coli rng gene registered in GenBank (complementary strand of base numbers 3394348 to 3395817 of GenBank Accession No. NC_000913.2: SEQ ID NO: 1). The amino acid sequence of RNaseG encoded by this rng gene is shown in SEQ ID NO: 2.
  • the rng gene can be cloned by synthesizing a synthetic oligonucleotide based on these sequences and performing a PCR reaction using Escherichia coli chromosome as a template.
  • the rng gene When the rng gene is deleted by homologous recombination, it has a certain degree of homology with the rng gene on the chromosome, for example, 80% or more, preferably 90% or more, more preferably 95% or more. Genes can also be used. A gene that hybridizes with a rng gene on a chromosome under stringent conditions can also be used.
  • the stringent conditions include, for example, a salt concentration corresponding to 60 ° C., 1 ⁇ SSC, 0.1% SDS, preferably 0.1 ⁇ SSC, 0.1% SDS, more preferably 1 to 2 times. The condition of washing three times is mentioned.
  • inactivation of the rng gene is achieved, for example, by deleting a part or all of the coding region of the rng gene on the chromosome, or by inserting another sequence into the coding region. These techniques are also called gene disruption.
  • the rng gene can also be inactivated by reducing the expression of the rng gene, for example, by modifying the expression regulatory sequence such as the promoter of the rng gene or Shine-Dalgarno (SD) sequence. Decreased expression includes reduced transcription and reduced translation.
  • gene expression can also be reduced by modifying non-translated regions other than the expression regulatory sequences.
  • the entire target gene may be deleted, including sequences before and after the target gene on the chromosome.
  • Inactivation of the rng gene can be achieved by introducing an amino acid substitution (missense mutation) into the coding region of the rng gene on the chromosome, introducing a stop codon (nonsense mutation), or adding or deleting one or two bases.
  • each gene is preferably performed by gene recombination.
  • the gene recombination method uses homologous recombination to delete the expression regulatory sequence of the target gene on the chromosome, for example, the promoter region, the coding region, or a part or all of the non-coding region. Or insertion of other sequences into these regions.
  • the modification of the expression regulatory sequence is preferably 1 base or more, more preferably 2 bases or more, particularly preferably 3 bases or more.
  • the region to be deleted is any of the N-terminal region, internal region, and C-terminal region. It may be the entire code area. Usually, the longer region to be deleted can surely inactivate the target gene. Moreover, it is preferable that the upstream and downstream reading frames of the region to be deleted do not match.
  • the insertion position When inserting other sequences into the coding region, the insertion position may be any region of the target gene, but the longer the sequence to be inserted, the more reliably the target gene can be inactivated.
  • the sequences before and after the insertion site preferably do not match the reading frame.
  • Other sequences are not particularly limited as long as they reduce or eliminate the function of the protein encoded by the target gene. Examples include antibiotic resistance genes and transposons carrying genes useful for L-glutamic acid production. It is done.
  • a deletion type gene is prepared by deleting a partial sequence of the target gene and modifying it so as not to produce a protein that functions normally. This can be accomplished by replacing the target gene on the chromosome with the deleted gene by transforming bacteria with the contained DNA and causing homologous recombination between the deleted gene and the target gene on the chromosome. Even if the protein encoded by the deletion-type target gene is produced, it has a three-dimensional structure different from that of the wild-type protein, and its function decreases or disappears.
  • a method using linear DNA such as a method (see WO2005 / 010175), a plasmid containing a temperature-sensitive replication origin,
  • a method using a plasmid capable of conjugation transfer and a method using a suicide vector which does not have an origin of replication in the host (US Pat. No. 6,303,383 or Japanese Patent Laid-Open No. 05-007491).
  • the amount of transcription of the target gene is reduced by comparing the amount of mRNA transcribed from the target gene with a wild strain or an unmodified strain.
  • methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR, and the like (Molecular cloning (Cold spring spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001)).
  • the decrease in the amount of transcription may be any as long as it is reduced compared to the wild strain or the unmodified strain, but for example, at least 75% or less, 50% or less, 25% or less, compared to the wild strain or the unmodified strain, Alternatively, it is desirable that the concentration is reduced to 10% or less, and it is particularly preferable that no expression occurs.
  • the decrease in the amount of protein may be any as long as it is lower than that of the wild strain or non-modified strain, but for example, at least 75% compared to the wild strain or non-modified strain compared to the wild strain or non-modified strain. In the following, it is desirable to decrease to 50% or less, 25% or less, or 10% or less, and it is particularly preferable that no protein is produced (the activity is completely lost).
  • the expression of the adhE gene encoding alcohol dehydrogenase depends on the function of the rng gene (Biochem. Biophys. Res. Commun., 295 (2002) 92-97), so that adhE and a reporter gene such as ⁇ -galactosidase are combined.
  • the activity-reduced rng gene can also be screened by allowing the plasmid expressing the fusion protein to coexist in the cell with the mutant rng gene and measuring ⁇ -galactosidase activity.
  • Escherichia bacteria are irradiated with ultraviolet light, or normal mutation such as N-methyl-N′-nitro-N-nitrosoguanidine (NTG) or nitrite
  • NTG N-methyl-N′-nitro-N-nitrosoguanidine
  • mutant strains with reduced RNaseG activity include strains in which the maturation activity at the 5 'end of 16S rRNA remains but only mRNA degradation activity has decreased, such as mutant DC430 strain and GM1430 strain (Biochem. Biobios. Res. Commun., 289 (5), 1301-1306, 201).
  • the ethanol to be used may be used at any concentration that is suitable for producing L-amino acids.
  • ethanol When used as a sole carbon source in the medium, ethanol may be any ethanol as long as it is contained as much as a carbon source in the medium, but is 0.001 w / v% or more, preferably 0.05 w / v% or more, more preferably It is desirable to contain 0.1 w / v% or more.
  • the ethanol concentration in the medium is preferably 20 w / V% or less, preferably 10 w / v% or less, more preferably 2 w / v% or less.
  • ethanol is desirably contained in the medium in an amount of 0.001 w / v% or more, preferably 0.05 w / v% or more, more preferably 0.1 w / v% or more. It is preferable to contain v% or less, preferably 5 w / v% or less, more preferably 1 w / v% or less.
  • concentration of ethanol can be measured by various methods, but measurement by an enzyme method is simple and general (Swift, R. 2003. Addiction 98: 73-80).
  • carbon sources may be added to the medium used in the method of the present invention in addition to ethanol.
  • One carbon source may be used, or a mixture of two or more carbon sources may be used.
  • the ratio of ethanol in the carbon source is 20% by weight or more, more preferably 30% by weight or more, more preferably 37% by weight. It is desirable.
  • the ratio of ethanol is preferably within the above range from the viewpoint of the yield of amino acid produced.
  • the mixing ratio of ethanol and other carbon source is preferably higher in ethanol concentration, 80% Above, preferably 90% or more, more preferably 100%.
  • ethanol may be contained at a constant concentration in all the steps of the culture, may be added only to the fed-batch medium or only to the initial medium, and if other carbon sources are satisfied, There may be a period of ethanol shortage for a certain period of time.
  • temporary means that ethanol may be insufficient for a time of 10% or less, or 20% or less, and a maximum of 30% of the entire fermentation time.
  • a normal medium containing a nitrogen source, inorganic ions and other organic components as required can be used in addition to the carbon source.
  • a nitrogen source contained in the culture medium of the present invention ammonium salts such as ammonia, ammonium sulfate, ammonium carbonate, ammonium chloride, ammonium phosphate, ammonium acetate, urea, or nitrates can be used, and are used for pH adjustment. Ammonia gas and aqueous ammonia can also be used as a nitrogen source.
  • peptone, yeast extract, meat extract, malt extract, corn steep liquor, soybean hydrolyzate and the like can also be used.
  • nitrogen sources Only one of these nitrogen sources may be included in the medium, or two or more thereof may be included. These nitrogen sources can be used for both the initial medium and the fed-batch medium. In addition, the same nitrogen source may be used for both the initial culture medium and the feed medium, or the nitrogen source of the feed medium may be changed to the initial culture medium.
  • the medium of the present invention preferably contains a phosphate source and a sulfur source in addition to a carbon source and a nitrogen source.
  • phosphoric acid source phosphoric acid polymers such as potassium dihydrogen phosphate, dipotassium hydrogen phosphate and pyrophosphoric acid can be used.
  • the sulfur source may be any one containing sulfur atoms, but sulfates such as sulfates, thiosulfates and sulfites, and sulfur-containing amino acids such as cysteine, cystine and glutathione are desirable. However, ammonium sulfate is desirable.
  • the medium may contain a growth promoting factor (a nutrient having a growth promoting effect) in addition to the carbon source, nitrogen source, and sulfur source.
  • a growth promoting factor a nutrient having a growth promoting effect
  • the growth promoting factor include trace metals, amino acids, vitamins, nucleic acids, and peptone, casamino acid, yeast extract, soybean protein degradation products, and the like containing these.
  • trace metals include iron, manganese, magnesium, calcium, and vitamins include vitamin B1, vitamin B2, vitamin B6, nicotinic acid, nicotinamide, and vitamin B12.
  • L-lysine-producing bacteria that can be used in the present invention have many L-lysine biosynthetic pathways as described later, and L-lysine resolution is weakened. It is desirable to add one or more selected from homoserine, L-isoleucine, and L-methionine.
  • the initial medium and fed-batch medium may have the same or different medium composition.
  • the initial culture medium and the fed-batch medium may have the same or different medium composition.
  • the composition of each feeding medium may be the same or different.
  • the culture is preferably carried out by aeration culture at a fermentation temperature of 20 to 45 ° C, particularly preferably 33 to 42 ° C.
  • the oxygen concentration is adjusted to 5 to 50%, preferably about 10%.
  • calcium carbonate can be added or neutralized with an alkali such as ammonia gas or ammonia water.
  • the concentration of the accumulated L-amino acid is higher than that of the wild strain, and any concentration can be used as long as it can be collected and recovered from the medium, but it is 50 g / L or more, preferably 75 g / L or more, more preferably 100 g / L or more. is there.
  • the pH during the culture is controlled to 6.5 to 9.0, and the pH of the medium at the end of the culture is controlled to 7.2 to 9.0.
  • a culture period in which the pressure in the tank is controlled to be positive, or carbon dioxide gas or a mixed gas containing carbon dioxide gas is supplied to the medium so that bicarbonate ions and / or carbonate ions are present in the medium at least 20 mM or more.
  • the target basic amino acid JP 2002-065287, US Patent Application Publication No. 2002025564, EP1813677A).
  • both the control so that the pressure in the fermenter during the fermentation may be positive and the supply of carbon dioxide or a mixed gas containing carbon dioxide to the medium may be performed.
  • the pressure in the fermenter, the supply amount of carbon dioxide or a mixed gas containing carbon dioxide, or the limited supply amount is measured, for example, by measuring bicarbonate ions or carbonate ions in the medium, or by measuring pH or ammonia concentration. Can be determined.
  • the pH of the medium during the culture is controlled to 6.0 to 9.0, preferably 6.5 to 8.0, and the pH of the medium at the end of the culture is controlled to 7.2 to 9.0.
  • the pH of the culture medium for making the quantity of bicarbonate ion and / or carbonate ion which are required as a counter ion exist in a culture medium.
  • ammonia is supplied to increase the pH, which can serve as an N source for basic amino acids.
  • Examples of cations other than basic amino acids contained in the medium include K, Na, Mg, Ca and the like derived from medium components. These are preferably 50% or less of the total cations.
  • the supply air pressure may be set higher than the exhaust pressure.
  • the carbon dioxide gas generated by fermentation dissolves in the culture solution to produce bicarbonate ions or carbonate ions, which can be counter ions of basic amino acids.
  • the pressure in the fermenter is 0.03 to 0.2 MPa, preferably 0.05 to 0.15 MPa, more preferably 0.1 to 0.3 MPa in terms of gauge pressure (differential pressure with respect to atmospheric pressure).
  • gauge pressure Differential pressure with respect to atmospheric pressure.
  • carbon dioxide gas may be dissolved in the culture solution by supplying carbon dioxide gas or a mixed gas containing carbon dioxide gas to the culture solution.
  • pure carbon dioxide or a mixed gas containing 5% by volume or more of carbon dioxide may be blown.
  • the above-mentioned method for dissolving bicarbonate ions and / or carbonate ions in the medium may be used alone or in combination.
  • a sufficient amount of ammonium sulfate or ammonium chloride is usually added to the medium as a counter anion of the basic amino acid to be produced, and a sulfate or hydrolyzate of protein or the like as a nutrient component is added to the medium.
  • the culture medium contains sulfate ions and chloride ions. Therefore, the concentration of carbonate ion, which is weakly acidic, is extremely low during the culture, and is in ppm.
  • the above aspect is characterized in that the sulfate ions and chloride ions are reduced, and carbon dioxide released by the microorganisms during fermentation is dissolved in the medium in the fermentation environment to form counter ions.
  • sulfate ions or chloride ions it is not necessary to add sulfate ions or chloride ions to the culture medium in an amount necessary for growth.
  • an appropriate amount of ammonium sulfate or the like is fed to the medium at the beginning of the culture, and the feed is stopped during the culture. Or you may feed ammonium sulfate etc., maintaining the balance with the dissolved amount of the carbonate ion or bicarbonate ion in a culture medium.
  • ammonia may be fed to the medium as a nitrogen source for basic amino acids. Ammonia can be supplied to the medium alone or with other gases.
  • the concentration of bicarbonate ions and / or other anions other than carbonate ions contained in the medium is preferably low as long as it is an amount necessary for the growth of microorganisms.
  • Such anions include chloride ions, sulfate ions, phosphate ions, ionized organic acids, hydroxide ions, and the like.
  • the total molar concentration of these other ions is preferably usually 900 mM or less, more preferably 700 mM or less, particularly preferably 500 mM or less, still more preferably 300 mM or less, and particularly preferably 200 mM or less.
  • one of the purposes is to reduce the amount of sulfate ion and / or chloride ion used, and the sulfate ion or chloride ion contained in the medium, or the total of these, is usually 700 mM.
  • it is preferably 500 mM or less, more preferably 300 mM or less, still more preferably 200 mM or less, and particularly preferably 100 mM or less.
  • the total ammonia concentration in the medium is controlled to such an extent that “the production of basic amino acids is not inhibited”.
  • Such conditions include, for example, preferably 50% or more, more preferably 70% or more, particularly preferably 90%, as compared to the yield and / or productivity in the case of producing a basic amino acid under optimum conditions.
  • Conditions for obtaining the above yield and / or productivity are included.
  • the total ammonia concentration in the medium is preferably 300 mM or less, more preferably 250 mM, and particularly preferably 200 mM or less.
  • the degree of ammonia dissociation decreases with increasing pH. Undissociated ammonia is more toxic to bacteria than ammonium ions.
  • the upper limit of the total ammonia concentration also depends on the pH of the culture solution. That is, the higher the pH of the culture solution, the lower the allowable total ammonia concentration. Therefore, the total ammonia concentration that “does not inhibit the production of basic amino acids” is preferably set for each pH. However, the total ammonia concentration range allowed at the highest pH during the culture may be the upper limit range of the total ammonia concentration throughout the culture period.
  • the total ammonia concentration as a nitrogen source necessary for the growth of microorganisms and the production of basic substances decreases the productivity of target substances by microorganisms due to the lack of a nitrogen source that does not continuously deplete ammonia during culture.
  • the ammonia concentration may be measured over time during the culture, and a small amount of ammonia may be added to the medium when the ammonia in the medium is depleted.
  • the concentration when ammonia is added is not particularly limited.
  • the total ammonia concentration is preferably 1 mM or more, more preferably 10 mM or more, and particularly preferably 20 mM or more.
  • the culture of microorganisms may be performed separately in seed culture and main culture, and the seed culture is performed in a flask culture or a batch culture.
  • the main culture may be performed by fed-batch culture or continuous culture, and both seed culture and main culture may be performed by batch culture.
  • the feed medium when fed-batch culture or continuous culture is performed, the feed medium may be fed intermittently so that the feed of ethanol or other carbon source is temporarily stopped. In addition, it is preferable to stop the feeding of the fed-batch medium at a maximum of 30% or less, desirably 20% or less, particularly desirably 10% or less of the feeding time.
  • the fed-batch culture is fed intermittently, the fed-batch medium is added for a certain period of time, and the second and subsequent additions are performed when the carbon source in the fermentation medium is depleted in the addition stop period preceding the addition stage. Control to start when a rise in pH or an increase in dissolved oxygen concentration is detected by the computer, so that the substrate concentration in the culture tank may always be automatically maintained at a low level (US Pat. No. 5,912,113). book).
  • the fed-batch medium used for fed-batch culture is preferably a medium containing ethanol or other carbon source and a nutrient (growth promoting factor) that has a growth promoting effect, and is controlled so that the concentration of ethanol in the fermentation medium is below a certain level. May be.
  • the term “below a certain concentration” means preparing a medium to be added so that the concentration is 10 w / v% or less, preferably 5 w / v% or less, and more preferably 1 w / v% or less.
  • the L-amino acid can be collected from the culture solution by combining an ion exchange resin method, a precipitation method and other known methods.
  • L-amino acid accumulates in the microbial cells, for example, the microbial cells are crushed by ultrasonic waves and the microbial cells are removed by centrifugation, and the L-amino acid is removed from the supernatant obtained by ion exchange resin method or the like.
  • the recovered L-amino acid may be a free L-amino acid or a salt containing sulfate, hydrochloride, carbonate, ammonium salt, sodium salt, or potassium salt.
  • the L-amino acid collected in the present invention may contain microbial cells, medium components, moisture, and microbial metabolic byproducts in addition to the target L-amino acid.
  • the purity of the collected L-amino acid is 50% or more, preferably 85% or more, particularly preferably 95% or more. , 238,714, US2005 / 0025878).
  • L-amino acid is precipitated in the medium, it can be recovered by centrifugation or filtration.
  • the L-amino acid precipitated in the medium may be isolated together after crystallization of the L-amino acid dissolved in the medium.
  • Example 1 Construction of L-lysine-producing bacterium with reduced ribonuclease G activity ⁇ 1-1> Giving ethanol-assimilating ability to WC196 ⁇ cadA ⁇ ldcC strain An alcohol dehydrogenase gene (adhE *) was introduced. As the mutant alcohol dehydrogenase gene, a gene derived from MG1655 :: PL -tac adhE * (WO2008 / 010565) was used.
  • the MG1655 contains a chloramphenicol resistance gene (cat) and a DNA fragment linked to the mutant adhE gene controlled by the PL-tac promoter in the genome of Escherichia coli MG1655 strain. It is a strain obtained by insertion. In order to be able to remove the cat gene from the genome, the cat gene was replaced with a DNA fragment (att-tet) linking the attachment site of lambda phage and the tetracycline resistance gene.
  • Red-driven integration originally developed by Datsenko and Wanner described in WO2005 / 010175 (Proc. Natl. Acad. Sci. USA, 2000, vol. 97, No. 12, p6640-6645).
  • a synthetic oligonucleotide designed with a part of the target gene on the 5 ′ side of the synthetic oligonucleotide and a part of the antibiotic resistance gene on the 3 ′ side is used as a primer.
  • a gene-disrupted strain can be constructed in one step.
  • MG1655-att-tet-P L-tac adhE * was used as a donor, P1 transduction was performed on L-lysine-producing bacteria WC196 ⁇ cadA ⁇ ldcC, and WC196 ⁇ cadA ⁇ ldcC-att-tet -P L-tac adhE * strain was obtained.
  • pMW-intxis-ts US Patent Application Publication 200601415866
  • pMW-intxis-ts is a plasmid carrying a gene encoding ⁇ phage integrase (Int) and gene encoding excisionase (Xis) and having temperature-sensitive replication ability.
  • Competent cells of the WC196 ⁇ cadA ⁇ ldcC-att-tet-PL -tac adhE * strain obtained above were prepared according to a conventional method, transformed with the helper plasmid pMW-intxis-ts, and 50 mg / L at 30 ° C. Plates were plated on LB agar medium containing ampicillin, and ampicillin resistant strains were selected. In order to remove the pMW-intxis-ts plasmid, it was cultured on LB agar medium at 42 ° C, and the resulting colonies were tested for ampicillin resistance and tetracycline resistance. Att-tet and pMW-intxis-ts were removed. We obtained tetracycline and ampicillin sensitive strains, which are P L-tac adhE * introduced strains. This strain was named WC196 ⁇ cadA ⁇ ldcC PL -tac adhE * strain.
  • strain MG1655 by the method "Red-driven integration" The deletion of the rng gene was performed.
  • the primers of SEQ ID NOs: 7 and 8 can be used.
  • the MG1655 ⁇ rng :: Cm strain was obtained.
  • WC196 ⁇ cadA ⁇ ldcC P L-tac adhE * strain and WC196 ⁇ cadA ⁇ ldcC P L-tac adhE * ⁇ rng :: Cm strain are routinely used in the Lys production plasmid pCABD2 (International Publication No. WO01 / 53459 pamphlet) carrying the dapA, dapB and lysC genes. Then, WC196 ⁇ cadA ⁇ ldcC P L-tac adhE * / pCABD2 strain and WC196 ⁇ cadA ⁇ ldcC P L-tac adhE * ⁇ rng :: Cm / pCABD2 were obtained.
  • glycerol stock After culturing these strains in L medium containing 20 mg / L streptomycin at 37 ° C. so that the final OD600 ⁇ 0.6, an equal amount of 40% glycerol solution and the same amount as the culture solution were added and stirred. Aliquots were stored at -80 ° C. This is called glycerol stock.
  • SEQ ID NO: 1 Escherichia coi ribonuclease G gene (rng) nucleotide sequence
  • SEQ ID NO: 2 Escherichia coi ribonuclease G amino acid sequence
  • SEQ ID NO: 3 Escherichia coli alcohol dehydrogenase gene (adhE) nucleotide sequence
  • SEQ ID NO: 4 Escherichia coli Amino acid sequence of alcohol dehydrogenase of SEQ ID NO: 5: primer for replacing cat gene with att-tet gene
  • SEQ ID NO: 6 primer for replacing cat gene with att-tet gene
  • SEQ ID NO: 7 for deletion of rng gene
  • Primer SEQ ID NO: 8 primer for deletion of rng gene
  • SEQ ID NO: 9 nucleotide sequence of Chlorobium tepidum pyruvate synthase gene
  • SEQ ID NO: 10 amino acid sequence of Chlorobium tepidum
  • L-amino acid can be efficiently produced using ethanol as a carbon source.

Abstract

Disclosed is a method for producing L-amino acid, wherein a bacterium, which belongs to the family Enterobacteriaceae and has an L-amino acid-producing ability, while being modified so as to have a reduced ribonuclease G activity, is cultured in a culture medium that contains ethanol as a carbon source, so that L-amino acid is produced and accumulated in a culture, and then the thus-produced L-amino acid is collected from the culture.

Description

L-アミノ酸の製造法Method for producing L-amino acid
 本発明は、微生物を用いたL-アミノ酸の製造法に関する。L-アミノ酸は、調味料、食品添加物、飼料添加物、化学製品、医薬品などの様々な分野に利用される。 The present invention relates to a method for producing an L-amino acid using a microorganism. L-amino acids are used in various fields such as seasonings, food additives, feed additives, chemical products, and pharmaceuticals.
 L-アミノ酸は、ブレビバクテリウム属、コリネバクテリウム属、エシェリヒア属等に属する微生物を用いた発酵法により工業生産されている。これらの製造法においては、自然界から分離された菌株または該菌株の人工変異株、さらには、組換えDNA技術により塩基性L-アミノ酸生合成酵素の活性が増大するように改変された微生物などが用いられている。(特許文献1~9) L-amino acids are industrially produced by fermentation using microorganisms belonging to the genera Brevibacterium, Corynebacterium, Escherichia and the like. In these production methods, strains isolated from nature, artificial mutants of the strains, and microorganisms modified so as to increase the activity of basic L-amino acid biosynthetic enzymes by recombinant DNA technology are used. It is used. (Patent Documents 1 to 9)
 一般的に、微生物を用いてアミノ酸生産を行う際には、炭素源に糖質を主成分として用いているが、エタノールも糖質と同様に炭素源として用いることが可能である(特許文献10)。 Generally, when amino acids are produced using microorganisms, a saccharide is used as a carbon source as a main component, but ethanol can also be used as a carbon source in the same manner as a saccharide (Patent Document 10). ).
 リボヌクレアーゼGは、16SrRNAの5'末端の成熟に関わるリボヌクレアーゼとして見出された(非特許文献1、2)。また、リボヌクレアーゼGは一本鎖RNAのAUリッチな領域を切断するといわれているが、切断配列等の詳細に関しては解明されていない(非特許文献3~5)。 Ribonuclease G was found as a ribonuclease involved in the maturation of the 5 'end of 16S rRNA (Non-patent Documents 1 and 2). Ribonuclease G is said to cleave the AU-rich region of single-stranded RNA, but details of the cleavage sequence and the like have not been elucidated (Non-Patent Documents 3 to 5).
 リボヌクレアーゼGの生理学的役割に関する知見は乏しいが、リボヌクレアーゼGがeno mRNAやアルコールデヒドロゲナーゼをコードするadhE mRNAの分解に関与していること、及び、マイクロアレイ解析の結果から、いくつかの解糖系酵素をコードする遺伝子をはじめ、複数の遺伝子のmRNAの特異的な分解に関与することが報告されている(非特許文献6~8)。また、16S rRNAとadhE mRNAに対する分解活性を比較すると、rng:catでは両方が分解されなくなるのに対し、rng430 (G341S)ではadhE mRNAのみが分解されることが報告されている(非特許文献9)。 Although little is known about the physiological role of ribonuclease G, ribonuclease G is involved in the degradation of eno mRNA and adhE mRNA encoding alcohol dehydrogenase, and the results of microarray analysis indicate that some glycolytic enzymes It has been reported that it is involved in specific degradation of mRNAs of a plurality of genes including genes to be encoded (Non-Patent Documents 6 to 8). In addition, when comparing the degradation activity for 16S rRNA and adhE mRNA, it is reported that rng: cat does not degrade both, whereas rng430 (G341S) only degrades adhE mRNA (Non-patent Document 9). ).
 また、rng遺伝子とcra遺伝子の両方を欠損した株では、グルコースを炭素源として培養した際にピルピン酸が蓄積するという報告がなされている(非特許文献10)。 In addition, it has been reported that in strains lacking both the rng gene and the cra gene, pyruvic acid accumulates when cultured using glucose as a carbon source (Non-patent Document 10).
 しかしながら、リボヌクレアーゼGの活性を変えることがエタノールからのL-アミノ酸生産に効果があることは、全く知られていなかった。 However, it has never been known that changing the activity of ribonuclease G has an effect on L-amino acid production from ethanol.
欧州特許公開EP0643135BEuropean Patent Publication EP0643135B 欧州特許公開EP0733712BEuropean Patent Publication EP0733712B 欧州特許公開EP1477565AEuropean Patent Publication EP1477565A 欧州特許公開EP0796912AEuropean Patent Publication EP0796912A 欧州特許公開EP0837134AEuropean Patent Publication EP0837134A 国際公開WO01/53459International Publication WO01 / 53459 欧州特許公開EP1170376AEuropean Patent Publication EP1170376A 国際公開WO2005/010175International Publication WO2005 / 010175 国際公開WO96/17930International Publication WO96 / 17930 WO2008/010565WO2008 / 010565
 本発明は、従来よりもさらに改良された、エタノールを含む基質を用いた発酵法によるL-アミノ酸の製造法を提供することを課題とする。 An object of the present invention is to provide a method for producing L-amino acid by fermentation using a substrate containing ethanol, which has been further improved over the prior art.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、リボヌクレアーゼGの活性を低下させることによって、腸内細菌のエタノールからのL-アミノ酸生産能が大幅に向上することを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have found that the ability of intestinal bacteria to produce L-amino acids from ethanol is greatly improved by reducing the activity of ribonuclease G. The present invention has been completed.
 すなわち、本発明は以下のとおりである。
(1)腸内細菌科に属し、L-アミノ酸生産能を有する細菌を、エタノールを炭素源として含む培地に培養し、培養物中にL-アミノ酸を生産蓄積させ、該培養物からL-アミノ酸を採取することを特徴とするL-アミノ酸の製造法であって、前記細菌が、リボヌクレアーゼGの活性が低下するように改変された細菌である方法。
(2)リボヌクレアーゼGをコードするrng遺伝子が不活化されたことにより、リボヌクレアーゼGの活性が低下した、前記方法。
(3)前記rng遺伝子が、配列番号2のアミノ酸配列をコードするDNA又はそのバリアントである、前記方法。
(4)前記細菌が、好気的にエタノールを資化できるように改変された、前記方法。
(5)前記細菌が、好気条件で機能する非天然型プロモーターの制御下で発現するように改変されたadh遺伝子を保持し、それによって好気的にエタノールを資化できる、前記方法。
(6)前記細菌が、変異型adhE遺伝子を保持するように改変され、それによって好気的にエタノールを資化できる、前記方法。
(7)前記変異型adhE遺伝子が、568位のグルタミン酸残基が他のアミノ酸残基に置換された以外は配列番号4のアミノ酸配列を有するタンパク質又はその保存的バリアントをコードする、前記方法。
(8)前記L-アミノ酸がL-リジン、L-グルタミン酸、L-スレオニン、L-アルギニン、L-ヒスチジン、L-イソロイシン、L-バリン、L-ロイシン、L-フェニルアラニン、L-チロシン、L-トリプトファン、L-プロリン、及びL-システインからなる群から選択される一種または二種以上のL-アミノ酸である前記方法。
(9)前記L-アミノ酸がL-リジンであり、前記細菌がジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、フォスフォエノールピルベートカルボキシラーゼ、アスパルテートアミノトランスフェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパルテートセミアルデヒドデヒドロゲナーゼ、テトラヒドロジピコリン酸スクシニラーゼ、及び、スクシニルジアミノピメリン酸デアシラーゼからなる群より選択される1種または2種以上の酵素の活性が増強されている、及び/または、リジンデカルボキシラーゼの活性が弱化されている前記方法。
(10)前記L-アミノ酸がL-スレオニンであり、前記細菌がアスパルテートセミアルデヒドデヒドロゲナーゼ、アスパルトキナーゼI、ホモセリンキナーゼ、アスパルテートアミノトランスフェラーゼ、及び、スレオニンシンターゼからなる群より選択される1種または2種以上の酵素の活性が増強されている前記方法。
(11)前記腸内細菌科に属する細菌が、エシェリヒア属細菌、エンテロバクター属細菌またはパントエア属細菌である前記方法。
(12)前記細菌が、エシェリヒア・コリである、前記方法。
(13)エタノールが培地中に0.001w/v%以上含まれる前記方法。
That is, the present invention is as follows.
(1) Bacteria belonging to the family Enterobacteriaceae and having L-amino acid-producing ability are cultured in a medium containing ethanol as a carbon source, and L-amino acid is produced and accumulated in the culture. A method for producing an L-amino acid, wherein the bacterium is a bacterium modified so that the activity of ribonuclease G is reduced.
(2) The method as described above, wherein the rng gene encoding ribonuclease G is inactivated, whereby the activity of ribonuclease G is reduced.
(3) The said method that the said rng gene is DNA which codes the amino acid sequence of sequence number 2, or its variant.
(4) The method as described above, wherein the bacterium is modified so as to assimilate ethanol aerobically.
(5) The method as described above, wherein the bacterium retains the adh gene modified so as to be expressed under the control of a non-natural promoter functioning under aerobic conditions, and thereby can assimilate ethanol aerobically.
(6) The method as described above, wherein the bacterium is modified so as to retain a mutant adhE gene and thereby can assimilate ethanol aerobically.
(7) The method as described above, wherein the mutant adhE gene encodes a protein having the amino acid sequence of SEQ ID NO: 4 or a conservative variant thereof except that the glutamic acid residue at position 568 is substituted with another amino acid residue.
(8) The L-amino acid is L-lysine, L-glutamic acid, L-threonine, L-arginine, L-histidine, L-isoleucine, L-valine, L-leucine, L-phenylalanine, L-tyrosine, L- The method as described above, which is one or more L-amino acids selected from the group consisting of tryptophan, L-proline, and L-cysteine.
(9) The L-amino acid is L-lysine, and the bacterium is dihydrodipicolinate reductase, diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semi The activity of one or more enzymes selected from the group consisting of aldehyde dehydrogenase, tetrahydrodipicolinate succinylase, and succinyldiaminopimelate deacylase is enhanced and / or the activity of lysine decarboxylase is weakened Said method being.
(10) The L-amino acid is L-threonine, and the bacterium is selected from the group consisting of aspartate semialdehyde dehydrogenase, aspartokinase I, homoserine kinase, aspartate aminotransferase, and threonine synthase, or Said method wherein the activity of two or more enzymes is enhanced.
(11) The method as described above, wherein the bacteria belonging to the family Enterobacteriaceae are Escherichia bacteria, Enterobacter bacteria or Pantoea bacteria.
(12) The method as described above, wherein the bacterium is Escherichia coli.
(13) The method as described above, wherein ethanol is contained in the medium in an amount of 0.001 w / v% or more.
<1>本発明で使用される腸内細菌科に属する細菌
 本発明で使用される細菌は、腸内細菌科に属し、L-アミノ酸生産能を有する細菌であり、かつリボヌクレアーゼGの活性が低下するように改変された細菌である。本発明の細菌は、腸内細菌科に属し、L-アミノ酸生産能を有する細菌を、リボヌクレアーゼGの活性が低下するように改変することによって取得することができる。以下に、リボヌクレアーゼGの活性が低下するように改変される、本発明の細菌の親株として使用される細菌、及びL-アミノ酸生産能の付与又は増強の方法を以下に例示する。尚、本発明の細菌は、リボヌクレアーゼGの活性が低下するように改変された腸内細菌科に属する細菌にL-アミノ酸生産能を付与するか、リボヌクレアーゼGの活性が低下するように改変された腸内細菌科に属する細菌のL-アミノ酸生産能を増強することによっても、取得することができる。
<1> Bacteria belonging to the family Enterobacteriaceae used in the present invention The bacteria used in the present invention belong to the family Enterobacteriaceae, have the ability to produce L-amino acids, and have a reduced activity of ribonuclease G. Bacteria that have been modified to The bacterium of the present invention belongs to the family Enterobacteriaceae and can be obtained by modifying a bacterium having an L-amino acid-producing ability so that the activity of ribonuclease G is reduced. Examples of the bacterium used as a parent strain of the bacterium of the present invention, which is modified so that the activity of ribonuclease G is reduced, and a method for imparting or enhancing L-amino acid-producing ability are shown below. In addition, the bacterium of the present invention has been modified so that L-amino acid-producing ability is imparted to a bacterium belonging to the family Enterobacteriaceae modified so that the activity of ribonuclease G is reduced or the activity of ribonuclease G is decreased. It can also be obtained by enhancing the L-amino acid producing ability of bacteria belonging to the family Enterobacteriaceae.
<1-1>本発明の親株として使用される細菌
 本発明の細菌は、腸内細菌科に属し、L-アミノ酸生産能を有する細菌である。
 腸内細菌科は、エシェリヒア、エンテロバクター、エルビニア、クレブシエラ、パントエア、フォトルハブドゥス、プロビデンシア、サルモネラ、セラチア、シゲラ、モルガネラ、イェルシニア等の属に属する細菌を含む。特に、NCBI (National Center for Biotechnology Information)のデータベース(http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347)で用いられている分類法により腸内細菌科に分類されている細菌が好ましい。
<1-1> Bacteria used as parent strain of the present invention The bacterium of the present invention belongs to the family Enterobacteriaceae and has the ability to produce L-amino acids.
The Enterobacteriaceae family includes bacteria belonging to genera such as Escherichia, Enterobacter, Erbinia, Klebsiella, Pantoea, Photorhabdus, Providencia, Salmonella, Serratia, Shigella, Morganella, and Yersinia. In particular, enterobacteria are identified by the taxonomy used in the NCBI (National Center for Biotechnology Information) database (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347). Bacteria classified in the family are preferred.
 エシェリヒア属に属する細菌とは、特に制限されないが、当該細菌が微生物学の専門家に知られている分類により、エシェリヒア属に分類されていることを意味する。本発明において使用されるエシェリヒア属に属する細菌の例としては、エシェリヒア・コリ(E.coli)が挙げられるが、これに限定されない。 The bacterium belonging to the genus Escherichia is not particularly limited, but means that the bacterium is classified into the genus Escherichia according to the classification known to experts in microbiology. Examples of bacteria belonging to the genus Escherichia used in the present invention include, but are not limited to, Escherichia coli (E. coli).
 本発明において使用することができるエシェリヒア属に属する細菌は、特に制限されないが、例えば、ナイトハルトらの著書(Neidhardt, F. C. Ed. 1996. Escherichia coli and Salmonella: Cellular and Molecular Biology/Second Edition pp. 2477-2483. Table 1. American Society for Microbiology Press, Washington, D.C.)に記述されている系統のものが含まれる。具体的には、プロトタイプの野生株K12株由来のエシェリヒア・コリ W3110 (ATCC 27325)、エシェリヒア・コリ MG1655 (ATCC 47076)等が挙げられる。 The bacteria belonging to the genus Escherichia that can be used in the present invention are not particularly limited. For example, Neidhardt et al. (Neidhardt, F. C. Ed. 1996. Escherichia coli and Salmonella: Cellular and Molecular Biology / Second Edition pp 2477-2483. Table 1 1. American Society for Microbiology Press, Washington, DC). Specific examples include Escherichia coli W3110 (ATCC 32525) and Escherichia coli MG1655 (ATCC 47076) derived from the prototype wild type K12 strain.
 これらの菌株は、例えばアメリカン・タイプ・カルチャー・コレクション(住所 P.O. Box 1549 Manassas, VA 20108, United States of America)より分譲を受けることが出来る。すなわち各菌株に対応する登録番号が付与されており、この登録番号を利用して分譲を受けることが出来る。各菌株に対応する登録番号は、アメリカン・タイプ・カルチャー・コレクションのカタログに記載されている。 These strains can be sold, for example, from the American Type Culture Collection (address P.O. Box 1549 Manassas, VA 20108, United States of America). That is, the registration number corresponding to each strain is given, and it can receive distribution using this registration number. The registration number corresponding to each strain is described in the catalog of American Type Culture Collection.
 パントエア属に属する細菌とは、当該細菌が微生物学の専門家に知られている分類により、パントエア属に分類されていることを意味する。エンテロバクター・アグロメランスのある種のものは、最近、16S rRNAの塩基配列分析等に基づき、パントエア・アグロメランス、パントエア・アナナティス、パントエア・ステワルティイその他に再分類された(Int. J. Syst. Bacteriol., 43, 162-173 (1993))。本発明において、パントエア属に属する細菌には、このようにパントエア属に再分類された細菌も含まれる。 The bacterium belonging to the genus Pantoea means that the bacterium is classified into the genus Pantoea according to the classification known to microbiologists. Certain types of Enterobacter agglomerans were recently reclassified as Pantoea agglomerans, Pantoea ananatis, Pantoea stewartii and others (Int. J. Syst. Bacteriol., 43, 162-173 (1993)). In the present invention, the bacteria belonging to the genus Pantoea include bacteria that have been reclassified to the genus Pantoea in this way.
 本発明に用いる細菌は、エタノール資化性を有する細菌であり、元来エタノールの資化性を有する細菌、エタノールの資化性を付与された組換え株、又はエタノールの資化性が高まった変異株でもよい。
 エシェリヒア・コリに関しては、嫌気条件でエタノールを生成する酵素として、以下の反応を可逆的に触媒するアセトアルデヒドデヒドロゲナーゼとアルコールデヒドロゲナーゼ活性を有するAdhEの存在が知られている。エシェリヒア・コリのAdhEをコードするadhE遺伝子の配列を配列番号3に、アミノ酸配列を配列番号4に示す。
アセチル-CoA + NADH + H+ → アセトアルデヒド + NAD+ + CoA
アセトアルデヒド + NADH + H+ → エタノール + NAD+
The bacterium used in the present invention is a bacterium having an ethanol-assimilating ability, and originally has an ethanol-assimilating bacterium, an ethanol-assimilating recombinant strain, or an ethanol-assimilating ability. It may be a mutant strain.
Regarding Escherichia coli, the presence of adhaldehyde having acetaldehyde dehydrogenase activity and alcohol dehydrogenase activity that reversibly catalyze the following reaction is known as an enzyme that produces ethanol under anaerobic conditions. The sequence of the adhE gene encoding AdhE of Escherichia coli is shown in SEQ ID NO: 3, and the amino acid sequence is shown in SEQ ID NO: 4.
Acetyl-CoA + NADH + H + → Acetaldehyde + NAD + + CoA
Acetaldehyde + NADH + H + → Ethanol + NAD +
 本発明においては、好気的にエタノールを資化できる細菌を用いることが好ましい。エシェリヒア・コリは、好気条件ではエタノールは資化できないが、好気的にエタノールを資化できるように改変された株を用いてもよい。元来好気的にエタノールを資化できない細菌を、好気的にエタノールを資化できるように改変するには、例えば、好気条件で機能する非天然型プロモーターの制御下で発現するように改変されたadh遺伝子を保持させること、又は、好気的にエタノールを資化できることを可能にする変異をコード領域内に有する変異型adhE遺伝子を保持させることが挙げられる。さらに、この変異型adhE遺伝子は、好気条件で機能する非天然型プロモーターの制御下で発現するものであってもよい。 In the present invention, it is preferable to use bacteria that can assimilate ethanol aerobically. Although Escherichia coli cannot assimilate ethanol under aerobic conditions, a strain modified so as to assimilate ethanol aerobically may be used. In order to modify bacteria that are not aerobically assimilating ethanol aerobically so that they can assimilate ethanol, for example, expression under the control of a non-native promoter that functions under aerobic conditions. Examples include retaining a modified adh gene, or retaining a mutant adhE gene having a mutation in the coding region that enables aerobic assimilation of ethanol. Furthermore, this mutant adhE gene may be expressed under the control of a non-natural promoter that functions under aerobic conditions.
 エシェリヒア・コリは、アルコールデヒドロゲナーゼをコードする遺伝子の上流のプロモーターを好気的に機能するプロモーターに置換することによって、好気条件でアルコールデヒドロゲナーゼが発現し、好気的にエタノールを資化できるようになる(WO2008/010565号パンフレット)。好気条件で機能する非天然型プロモーターとして、好気条件で或る特定レベルを超えてadhE遺伝子を発現することができる任意のプロモーターを用いることができる。好気条件は、振盪、通気及び撹拌等の方法によって酸素が供給される細菌の培養に通常用いられるものであり得る。具体的には、好気条件で遺伝子を発現することが知られている任意のプロモーターを用いることができる。例えば、解糖、ペントースリン酸経路、TCAサイクル、アミノ酸生合成経路等に関与する遺伝子のプロモーターを用いることができる。さらに、λファージのPtacプロモーター、lacプロモーター、trpプロモーター、trcプロモーター、PRプロモーター、又はPLプロモーターは全て、好気条件で機能する強いプロモーターであることが知られており、これらを用いることが好ましい。 In Escherichia coli, alcohol dehydrogenase can be expressed under aerobic conditions and ethanol can be assimilated aerobically by replacing the promoter upstream of the gene encoding alcohol dehydrogenase with a promoter that functions aerobically. (WO2008 / 010565 pamphlet). As the non-natural promoter that functions under aerobic conditions, any promoter that can express the adhE gene beyond a certain level under aerobic conditions can be used. Aerobic conditions can be those normally used for culturing bacteria that are supplied with oxygen by methods such as shaking, aeration and agitation. Specifically, any promoter known to express a gene under aerobic conditions can be used. For example, promoters of genes involved in glycolysis, pentose phosphate pathway, TCA cycle, amino acid biosynthesis pathway, etc. can be used. Furthermore, P tac promoter λ phage, lac promoter, trp promoter, all trc promoter, P R promoter, or P L promoters are known to be strong promoters which function under aerobic conditions, the use of these Is preferred.
 また、前記したようにエシェリヒア・コリは好気条件ではエタノールは資化できないが、AdhEの変異によっても、好気的にエタノールを資化出来るようになることが知られている(Clark D. P., and Cronan, J. E. Jr. 1980. J. Bacteriol. 144: 179-184; Membrillo-Hernandez, J. et al. 2000. J. Biol. Chem. 275: 33869-33875)。このような変異を有するAdhE変異体として具体的には、エシェリヒア・コリのAdhEの568位のグルタミン酸残基がグルタミン酸及びアスパラギン酸以外のアミノ酸残基、例えばリジンで置換された変異体(Glu568Lys、E568K)がある(国際公開パンフレットWO2008/010565号公報)。 As described above, Escherichia coli cannot assimilate ethanol under aerobic conditions, but it is known that ethanol can be assimilated aerobically even by mutation of AdhE (Clark (D. P ., And Cronan, J. E. Jr. 1980. J. Bacteriol. 144: 179-184; Membrillo-Hernandez, J. et al. 2000. J. Biol. Chem. 275: 33869-33875). Specifically, AdhE mutants having such mutations include mutants in which the glutamic acid residue at position 568 of AdhE of Escherichia coli is substituted with an amino acid residue other than glutamic acid and aspartic acid, such as lysine (Glu568Lys, E568K (International publication pamphlet WO2008 / 010565).
 さらに、前記AdhE変異体は、以下の追加的変異を含んでいてもよい。
A)560位のグルタミン酸残基の他のアミノ酸残基、例えばリジン残基への置換
B)566位のフェニルアラニン残基の他のアミノ酸残基、例えばバリン残基への置換、
C)22位のグルタミン酸残基、236位のメチオニン残基、461位のチロシン残基、554位のイソロイシン残基、及び786位のアラニン残基の他のアミノ酸残基、例えばそれぞれグリシン残基、バリン残基、システイン残基、セリン残基、及びバリン残基への置換、又は
D)上記変異の組合わせ。
Furthermore, the AdhE mutant may contain the following additional mutations.
A) Substitution of a glutamic acid residue at position 560 to another amino acid residue, such as a lysine residue B) Substitution of a phenylalanine residue at position 566 to another amino acid residue, such as a valine residue,
C) Glutamic acid residue at position 22, methionine residue at position 236, tyrosine residue at position 461, isoleucine residue at position 554, and other amino acid residues at position 786, such as a glycine residue, respectively. Substitution to valine residue, cysteine residue, serine residue, and valine residue, or D) Combination of the above mutations.
 「好気的にエタノールを資化できる」とは、エタノールを単一炭素源とする最少液体培地もしくは固体培地にて、好気条件で生育可能であることを意味する。「好気条件」は前記と同様に、振盪、通気及び撹拌等の方法によって酸素が供給される細菌の培養に通常用いられるものであり得る。また、「好気的にエタノールを資化できる」とは、AdhEタンパク質のレベルに関して、Clark及びCronan(J. Bacteriol., 141, 177-183 (1980))の方法によって測定された無細胞抽出物におけるアルコールデヒドロゲナーゼ活性は、タンパク質1mg当たり1.5ユニット以上、好ましくは5ユニット以上、及びより好ましくは10ユニット以上であることを意味する。 “Aerobically assimilate ethanol” means that it can grow in aerobic conditions in a minimal liquid medium or solid medium using ethanol as a single carbon source. “Aerobic conditions” can be those commonly used for culturing bacteria to which oxygen is supplied by methods such as shaking, aeration and agitation, as described above. “Aerobic assimilation of ethanol” means a cell-free extract measured by the method of Clark and Cronan (J. Bacteriol., 141, 177-183 (1980)) with respect to the level of AdhE protein. The alcohol dehydrogenase activity in is meant to be 1.5 units or more, preferably 5 units or more, and more preferably 10 units or more per mg of protein.
 また、本発明の細菌は、ピルビン酸シンターゼ、または、ピルビン酸:NADP+オキシドレダクターゼの活性が増大するように改変された菌株であってもよい。ピルビン酸シンターゼの、あるいは、ピルビン酸:NADP+オキシドレダクターゼ活性が増大するように改変するには、ピルビン酸シンターゼ、または、ピルビン酸:NADP+オキシドレダクターゼ活性が、親株、例えば野生株や非改変株と比べて増大するように改変することが好ましい。尚、微生物が元来ピルビン酸シンターゼ活性を有していない場合、同酵素活性を有するように改変された微生物は、ピルビン酸シンターゼ、または、ピルビン酸:NADP+オキシドレダクターゼ活性が、非改変株に比べて増大している。 The bacterium of the present invention may be a strain modified so that the activity of pyruvate synthase or pyruvate: NADP + oxidoreductase is increased. In order to modify pyruvate synthase or pyruvate: NADP + oxidoreductase activity to increase, pyruvate synthase or pyruvate: NADP + oxidoreductase activity is affected by the parent strain such as a wild strain or an unmodified strain. It is preferable to modify so as to increase. In addition, when the microorganism originally does not have pyruvate synthase activity, the microorganism modified to have the enzyme activity has pyruvate synthase or pyruvate: NADP + oxidoreductase activity in an unmodified strain. It is increasing compared to this.
 本発明における「ピルビン酸シンターゼ」とは、アセチル-CoAとCO2からピルビン酸を生成する下記の反応を、電子供与体存在下、例えばフェレドキシンあるいはフラボドキシン存在下で可逆的に触媒する酵素(EC 1.2.7.1)を意味する。ピルビン酸シンターゼは、PSと略称されることもあり、ピルビン酸オキシドレダクターゼ、ピルビン酸フェレドキシンオキシドレダクターゼ、ピルビン酸フラボドキシンオキシドレダクターゼ、または、ピルビン酸オキシドレダクターゼと命名されている場合もある。電子供与体としては、フェレドキシンまたはフラボドキシンを用いることが出来る。 The “pyruvate synthase” in the present invention is an enzyme (EC 1.2) that catalyzes the following reaction for producing pyruvate from acetyl-CoA and CO 2 in the presence of an electron donor, for example, in the presence of ferredoxin or flavodoxin. .7.1). Pyruvate synthase is sometimes abbreviated as PS and is sometimes named pyruvate oxidoreductase, pyruvate ferredoxin oxidoreductase, pyruvate flavodoxin oxidoreductase, or pyruvate oxidoreductase. As the electron donor, ferredoxin or flavodoxin can be used.
還元型フェレドキシン + アセチル-CoA + CO2 → 酸化型フェレドキシン + ピルビン酸 + CoA Reduced ferredoxin + acetyl-CoA + CO 2 → oxidized ferredoxin + pyruvate + CoA
 ピルビン酸シンターゼの活性が増強されたことの確認は、増強前の微生物と、増強後の微生物より粗酵素液を調製し、そのピルビン酸シンターゼ活性を比較することにより達成される。ピルビン酸シンターゼの活性は、例えば、Yoonらの方法(Yoon, K. S. et al. 1997. Arch. Microbiol. 167: 275-279)に従って測定できる。例えば、電子受容体としての酸化型メチルビオロゲンとCoAと粗酵素液を含む反応液にピルビン酸を添加した際に、ピルビン酸の脱炭酸反応によって増大する還元型メチルビオロゲンの量を分光学的に測定することによって、測定可能である。酵素活性1ユニット(U)は1分間あたり1μmolのメチルビオロゲンの還元量で表される。親株がピルビン酸シンターゼ活性を有している場合、親株と比較して、好ましくは1.5倍以上、より好ましくは2倍以上、さらに好ましくは3倍以上酵素活性が上昇していることが望ましい。また親株がピルビン酸シンターゼ活性を有していない場合には、ピルビン酸シンターゼ遺伝子を導入することにより、ピルビン酸シンターゼが生成されていればよいが、酵素活性が測定できる程度に強化されていることが好ましく、好ましくは0.001U/mg(菌体タンパク質)以上、より好ましくは0.005U/mg以上、さらに好ましくは0.01U/mg以上が望ましい。ピルビン酸シンターゼは、酸素に対して感受性であり、一般的に活性発現や測定は困難であることも多い(Buckel, W.and Golding, B. T. 2006. Ann. Rev. of Microbiol. 60: 27-49)。したがって、酵素活性の測定に際しては、反応容器中の酸素濃度を低下させて酵素反応を行うことが好ましい。 Confirmation that the activity of pyruvate synthase is enhanced is achieved by preparing a crude enzyme solution from the microorganism before enhancement and the microorganism after enhancement and comparing the activity of pyruvate synthase. The activity of pyruvate synthase can be measured, for example, according to the method of Yoon et al. (Yoon, K. S. et al. 1997. Arch. Microbiol. 167: 275-279). For example, when pyruvic acid is added to a reaction solution containing oxidized methyl viologen as an electron acceptor, CoA, and a crude enzyme solution, the amount of reduced methyl viologen that increases due to decarboxylation of pyruvic acid is measured spectroscopically. It can be measured by measuring. One unit (U) of enzyme activity is expressed as a reduction amount of 1 μmol of methyl viologen per minute. When the parent strain has pyruvate synthase activity, the enzyme activity is preferably 1.5 times or more, more preferably 2 times or more, and even more preferably 3 times or more that of the parent strain. If the parent strain does not have pyruvate synthase activity, it is sufficient that pyruvate synthase is produced by introducing the pyruvate synthase gene, but the enzyme activity is enhanced to such an extent that it can be measured. Is preferably 0.001 U / mg (bacterial protein) or more, more preferably 0.005 U / mg or more, and still more preferably 0.01 U / mg or more. Pyruvate synthase is sensitive to oxygen and is generally difficult to express and measure (Buckel, W.and Golding, B. T. 2006. Ann. Rev. of Microbiol. 60: 27-49). Therefore, when measuring enzyme activity, it is preferable to carry out the enzyme reaction by reducing the oxygen concentration in the reaction vessel.
 ピルビン酸シンターゼをコードする遺伝子は、クロロビウム・テピダム(Chlorobium tepidum)、ハイドロジェノバクター・サーモファイラス(Hydrogenobacter thermophilus)等、還元的TCAサイクルを持つ細菌のピルビン酸シンターゼ遺伝子を利用することが可能である。また、エシェリヒア・コリ(Escherichia coli)をはじめとする、腸内細菌群に属する細菌由来のピルビン酸シンターゼ遺伝子を利用することも可能である。さらに、ピルビン酸シンターゼをコードする遺伝子は、メタノコッカス・マリパルディス(Methanococcus maripaludis)、メタノカルドコッカス・ジャナスチ(Methanocaldococcus jannaschii)、メタノサーモバクター・サーマトトロフィカス(Methanothermobacter thermautotrophicus)などの独立栄養性メタン生成古細菌(autotrophic methanogens)のピルビン酸シンターゼ遺伝子を利用することが可能である。 As a gene encoding pyruvate synthase, it is possible to use a pyruvate synthase gene of a bacterium having a reductive TCA cycle such as Chlorobium tepidum, Hydrogenobacter thermophilus, etc. . It is also possible to use a pyruvate synthase gene derived from bacteria belonging to the group of enterobacteria such as Escherichia coli. In addition, genes encoding pyruvate synthase are autotrophic methane producers such as Methanococcus maripaludis, Methanococcus janasti, Methanothermobacter thermautotrophicus, and other methanothermobacter thermautotrophicus (Autotrophic (methanogens) pyruvate synthase gene can be used.
 具体的には、クロロビウム・テピダム(Chlorobium tepidum)のピルビン酸シンターゼ遺伝子として、クロロビウム・テピダムのゲノム配列(GenBank Accession No. NC_002932)の塩基番号1534432~1537989に位置する、配列番号9に示す塩基配列を有する遺伝子を例示することができる。配列番号10には、同遺伝子がコードするアミノ酸配列を示した(GenBank Accession No. AAC76906)。また、ハイドロジェノバクター・サーモファイラスのピルビン酸シンターゼは、δサブユニット(GenBank Accession No. BAA95604)、αサブユニット(GenBank Accession No. BAA95605)、βサブユニット(GenBank Accession No. BAA95606)、γサブユニット(GenBank Accession No. BAA95607)の4つのサブユニットによる複合体を形成していることが知られている(Ikeda, T. et al. 2006. Biochem. Biophys. Res. Commun. 340: 76-82)。さらに、ヘリコバクター・ピロリ(Helicobacter pylori)のゲノム配列(GenBank Accession No. NC 000915)の塩基番号1170138~1173296番に位置するHP1108、HP1109、HP1110、HP1111の4つの遺伝子からなるピルビン酸シンターゼ遺伝子、スルフォロバス・ソルファタリカス(Sulfolobus solfataricus)のゲノム配列(GenBank Accession No. NC 002754)の塩基番号1047593~1044711番で示されるSSO1208、SSO7412、SSO1207、SSO1206の4つの遺伝子でコードされるピルビン酸シンターゼ遺伝子を例示することができる。さらに、ピルビン酸シンターゼ遺伝子は、上記で例示された遺伝子との相同性に基づいて、クロロビウム(Chlorobium)属、デスルホバクター(Desulfobacter)属、アクイフェクス(Aquifex)属、ハイドロジェノバクター(Hydrogenobacter)属、サーモプロテウス(Thermoproteus)属、パイロバキュラム(Pyrobaculum)属細菌等からクローニングされるものであってもよい。 Specifically, as the pyruvate synthase gene of Chlorobium tepidum, the base sequence shown in SEQ ID NO: 9 located at base numbers 1534432 to 1537989 of the genome sequence of Chlorobium tepidum (GenBank Accession No. NC_002932) The gene which has can be illustrated. SEQ ID NO: 10 shows the amino acid sequence encoded by the same gene (GenBank Accession No. AAC76906). Hydrogenobacter thermophilus pyruvate synthase is composed of δ subunit (GenBank Accession No. BAA95604), α subunit (GenBank Accession No. BAA95605), β subunit (GenBank Accession No. BAA95606), γ subunit. It is known to form a complex with four subunits of the unit (GenBank Accession No. BAA95607) (Ikeda, T. et al. 2006. Biochem. Biophys. Res. Commun. 340: 76-82 ). Furthermore, the pyruvate synthase gene comprising 4 genes of HP1108, HP1109, HP1110, and HP1111 located at base numbers 1170138 to 1173296 of the genome sequence of Helicobacter pylori (GenBank Accession No. Illustrates the pyruvate synthase gene encoded by the four genes SSO1208, SSO7412, SSO1207, and SSO1206 indicated by nucleotide numbers 1047593 to 1044711 in the genome sequence of Sulfolobus solfataricus (GenBank Accession No. NC 002754) be able to. Furthermore, the pyruvate synthase gene is based on the homology with the genes exemplified above, based on the genus Chlorobium, the genus Desulfobacter, the genus Aquifex, the genus Hydrogenobacter, It may be cloned from bacteria of the genus Thermoproteus, Pyrobaculum, or the like.
 エシェリヒア・コリにおいては、K-12株のゲノム配列(GenBank Accession No. U00096)の塩基番号1435284~1438808に位置する、配列番号11に示す塩基配列を有するydbK遺伝子(b1378)が、配列上の相同性からピルビン酸フラボドキシンオキシドレダクターゼ、すなわちピルビン酸シンターゼをコードしていると予想されている。配列番号12には、同遺伝子がコードするアミノ酸配列を示した(GenBank Accession No. AAC76906)。さらに、ピルビン酸シンターゼ遺伝子は、エシェリヒア・コリのピルビン酸シンターゼ遺伝子(ydbK)と高い相同性を有する、エシェリヒア属、サルモネラ属(Salmonella)、セラチア属(Serratia)、エンテロバクター属(Enterobacter)、シゲラ属(Shigella)、サイトロバクター属(Citrobacter)などの腸内細菌群に属するピルビン酸シンターゼ遺伝子であってもよい。 In Escherichia coli, the ydbK gene (b1378) having the nucleotide sequence shown in SEQ ID NO: 11 located at nucleotide numbers 1435284 to 1438808 in the genome sequence of K-12 strain (GenBank Accession No. U00096) is homologous in sequence. From the nature, it is expected to encode pyruvate flavodoxin oxidoreductase, ie, pyruvate synthase. SEQ ID NO: 12 shows the amino acid sequence encoded by the same gene (GenBank Accession No. AAC76906). Furthermore, the pyruvate synthase gene is highly homologous to the Escherichia coli pyruvate synthase gene (ydbK), and the genera Escherichia, Salmonella, Serratia, Enterobacter, Shigella It may be a pyruvate synthase gene belonging to the group of enterobacteria such as (Shigella) and Citrobacter.
 メタノコッカス・マリパルディス(Methanococcus maripaludis)のピルビン酸シンターゼは、メタノコッカス・マリパルディスのゲノム配列(GenBank Accession No. NC_005791)(Hendrickson, E. L. et al. 2004. J. Bacteriol. 186: 6956-6969)の塩基番号1462535~1466397に位置するporCDABEFオペロンにコードされている(Lin, W. C. et al. 2003. Arch. Microbiol. 179: 444-456)。このピルビン酸シンターゼは、γ、α、β、及びδの4つのサブユニットを含んでおり、これらのサブユニットに加えて、PorE及びPorFもピルビン酸シンターゼの活性に重要であることが知られている(Lin, W. and Whitman, W. B. 2004. Arch. Microbiol. 181: 68-73)。γサブユニットは、ゲノム配列の塩基番号1465867~1466397(相補鎖)のporA遺伝子にコードされており、配列番号13にその塩基配列を、配列番号14に同遺伝子がコードするアミノ酸配列を示した(GenBank Accession No. NP_988626)。δサブユニットは、ゲノム配列の塩基番号1465595~1465852(相補鎖)porB遺伝子にコードされており、配列番号15にその塩基配列を、配列番号16に同遺伝子がコードするアミノ酸配列を示した(GenBank Accession No. NP_988627)。αサブユニットは、ゲノム配列の塩基番号1464410~1465573(相補鎖)のporC遺伝子にコードされており、配列番号17にはその塩基配列を、配列番号18に同遺伝子がコードするアミノ酸配列を示した(GenBank Accession No. NP_988625)。βサブユニットは、ゲノム配列の塩基番号1463497~1464393(相補鎖)のporD遺伝子にコードされており、配列番号19にはその塩基配列を、配列番号20に同遺伝子がコードするアミノ酸配列を示した(GenBank Accession No. NP_988624)。PorEは、ゲノム配列の塩基番号1462970~1463473(相補鎖)のporE遺伝子にコードされており、配列番号21にはその塩基配列を、配列番号22に同遺伝子がコードするアミノ酸配列を示した(GenBank Accession No. NP_988623)。PorFは、ゲノム配列の塩基番号1462535~1462951(相補鎖)のporF遺伝子にコードされており、配列番号23にはその塩基配列を、配列番号24に同遺伝子がコードするアミノ酸配列を示した(GenBank Accession No. NP_988622)。
 独立栄養性のメタン生成古細菌のメタノカルドコッカス・ジャナスチ(Methanocaldococcus jannaschii)、メタノサーモバクター・サーマトトロフィカス(Methanothermobacter thermautotrophicus)なども同じ遺伝子構造のピルビン酸シンターゼ遺伝子を有していることが知られており、これらを利用することが可能である。
The pyruvate synthase of Methanococcus maripaludis is the base number of the genome sequence of Genococcus maripardis (GenBank Accession No. NC_005791) (Hendrickson, EL et al. 2004. J. Bacteriol. 186: 6956-6969). It is encoded by the porCDABEF operon located between 1462535 and 1466397 (Lin, WC et al. 2003. Arch. Microbiol. 179: 444-456). This pyruvate synthase contains four subunits, γ, α, β, and δ. In addition to these subunits, PorE and PorF are also known to be important for the activity of pyruvate synthase. (Lin, W. and Whitman, WB 2004. Arch. Microbiol. 181: 68-73). The γ subunit is encoded by the porA gene of base numbers 1465867 to 1466397 (complementary strand) of the genome sequence, the base sequence is shown in SEQ ID NO: 13, and the amino acid sequence encoded by the same gene is shown in SEQ ID NO: 14 ( GenBank Accession No. NP_988626). The δ subunit is encoded by the genome sequence base numbers 1465595 to 1465852 (complementary strand) porB gene, the base sequence is shown in SEQ ID NO: 15, and the amino acid sequence encoded by the same gene is shown in SEQ ID NO: 16 (GenBank). Accession No. NP_988627). The α subunit is encoded by the porC gene of nucleotide numbers 1464410 to 1455773 (complementary strand) of the genome sequence. SEQ ID NO: 17 shows the nucleotide sequence, and SEQ ID NO: 18 shows the amino acid sequence encoded by the same gene. (GenBank Accession No. NP_988625). The β subunit is encoded by the porD gene at base numbers 1463497 to 14439393 (complementary strand) of the genome sequence. SEQ ID NO: 19 shows the base sequence, and SEQ ID NO: 20 shows the amino acid sequence encoded by the same gene. (GenBank Accession No. NP_988624). PorE is encoded by the porE gene of nucleotide numbers 1462970 to 1463473 (complementary strand) of the genome sequence, SEQ ID NO: 21 shows the nucleotide sequence, and SEQ ID NO: 22 shows the amino acid sequence encoded by the same gene (GenBank Accession No. NP_988623). PorF is encoded by the porF gene of base numbers 1462535 to 1462951 (complementary strand) of the genome sequence, SEQ ID NO: 23 shows the base sequence, and SEQ ID NO: 24 shows the amino acid sequence encoded by the same gene (GenBank Accession No. NP_988622).
Autotrophic methanogenic archaea Methananocaldococcus jannaschii and Methanothermobacter thermautotrophicus are also known to have the same pyruvate synthase gene These can be used.
 本発明における「ピルビン酸:NADP+オキシドレダクターゼ」とは、アセチル-CoAとCO2からピルビン酸を生成する下記の反応を、電子供与体存在下、例えばNADPHあるいはNADH存在下で可逆的に触媒する酵素(EC 1.2.1.15)を意味する。ピルビン酸:NADP+オキシドレダクターゼは、PNOと略称されることもあり、ピルビン酸デヒドロゲナーゼと命名されている場合もある。しかしながら、本発明において「ピルビン酸デヒドロゲナーゼ活性」というときは、後述するように、ピルビン酸を酸化的に脱炭酸し、アセチル-CoAを生成する反応を触媒する活性であり、この反応を触媒するピルビン酸デヒドロゲナーゼ(PDH)は、ピルビン酸:NADP+オキシドレダクターゼとは別の酵素である。ピルビン酸:NADP+オキシドレダクターゼは、電子供与体としては、NADPHあるいはNADHを用いることが出来る。 In the present invention, “pyruvate: NADP + oxidoreductase” means reversibly catalyzing the following reaction for producing pyruvic acid from acetyl-CoA and CO 2 in the presence of an electron donor, for example, in the presence of NADPH or NADH. Means enzyme (EC 1.2.1.15). Pyruvate: NADP + oxidoreductase is sometimes abbreviated as PNO and sometimes as pyruvate dehydrogenase. However, in the present invention, “pyruvate dehydrogenase activity” is an activity that catalyzes a reaction of oxidatively decarboxylating pyruvate to produce acetyl-CoA, as described later. Acid dehydrogenase (PDH) is a separate enzyme from pyruvate: NADP + oxidoreductase. Pyruvate: NADP + oxidoreductase can use NADPH or NADH as an electron donor.
NADPH + アセチル-CoA + CO2 → NADP+ + ピルビン酸 + CoA NADPH + Acetyl-CoA + CO 2 → NADP + + Pyruvate + CoA
 ピルビン酸:NADP+オキシドレダクターゼの活性が増強されたことの確認は、増強前の微生物と、増強後の微生物より粗酵素液を調製し、そのピルビン酸:NADP+オキシドレダクターゼ活性を比較することにより達成される。ピルビン酸:NADP+オキシドレダクターゼの活性は、例えば、Inuiらの方法(Inui, H. et al. 1987. J. Biol. Chem. 262: 9130-9135)に従って測定できる。例えば、電子受容体としての酸化型メチルビオロゲンとCoAと粗酵素液を含む反応液に、ピルビン酸を添加した際にピルビン酸の脱炭酸反応によって増大する還元型メチルビオロゲンの量を分光学的に測定することによって、測定可能である。酵素活性1ユニット(U)は1分間あたり1μmolのメチルビオロゲンの還元量で表される。親株がピルビン酸:NADP+オキシドレダクターゼ活性を有している場合、親株と比較して、好ましくは1.5倍以上、より好ましくは2倍以上、さらに好ましくは3倍以上酵素活性が上昇していることが望ましい。また親株がピルビン酸:NADP+オキシドレダクターゼ活性を有していない場合には、ピルビン酸シンターゼ遺伝子を導入することにより、ピルビン酸:NADP+オキシドレダクターゼが生成されていればよいが、酵素活性が測定できる程度に強化されていることが好ましく、好ましくは0.001U/mg(菌体タンパク質)以上、より好ましくは0.005U/mg以上、さらに好ましくは0.01U/mg以上が望ましい。ピルビン酸:NADP+オキシドレダクターゼは、酸素に対して感受性であり、一般的に活性発現や測定は困難であることも多い(Inui, H. et al. 1987. J. Biol. Chem. 262: 9130-9135; Rotte, C. et al. 2001. Mol. Biol. Evol. 18: 710-720)。 Confirmation that the activity of pyruvate: NADP + oxidoreductase was enhanced was made by preparing a crude enzyme solution from the microorganism before enhancement and the microorganism after enhancement, and comparing the activity of pyruvate: NADP + oxidoreductase. Achieved. The activity of pyruvate: NADP + oxidoreductase can be measured, for example, according to the method of Inui et al. (Inui, H. et al. 1987. J. Biol. Chem. 262: 9130-9135). For example, when pyruvate is added to a reaction solution containing oxidized methyl viologen as an electron acceptor, CoA, and a crude enzyme solution, the amount of reduced methyl viologen that increases due to the decarboxylation of pyruvate is measured spectroscopically. It can be measured by measuring. One unit (U) of enzyme activity is expressed as a reduction amount of 1 μmol of methyl viologen per minute. When the parent strain has pyruvate: NADP + oxidoreductase activity, the enzyme activity is preferably increased 1.5 times or more, more preferably 2 times or more, and even more preferably 3 times or more compared to the parent strain. Is desirable. If the parent strain does not have pyruvate: NADP + oxidoreductase activity, it is sufficient that pyruvate: NADP + oxidoreductase is generated by introducing the pyruvate synthase gene, but the enzyme activity is measured. It is preferably strengthened to the extent possible, preferably 0.001 U / mg (bacterial protein) or more, more preferably 0.005 U / mg or more, and still more preferably 0.01 U / mg or more. Pyruvate: NADP + oxidoreductase is sensitive to oxygen and is generally difficult to express and measure activity (Inui, H. et al. 1987. J. Biol. Chem. 262: 9130). -9135; Rotte, C. et al. 2001. Mol. Biol. Evol. 18: 710-720).
 ピルビン酸:NADP+オキシドレダクターゼをコードする遺伝子は、光合成真核微生物で原生動物にも分類されるユーグレナ・グラシリス(Euglena gracilis)のピルビン酸:NADP+オキシドレダクターゼ遺伝子(Nakazawa, M. et al. 2000. FEBS Lett. 479: 155-156)、原生生物クリプトスポルジウム・パルバム(Cryptosporidium parvum)のピルビン酸:NADP+オキシドレダクターゼ遺伝子(Rotte, C. et al. 2001. Mol. Biol. Evol. 18: 710-720)の他、珪藻タラシオシラ・スードナナ(Tharassiosira pseudonana)にも相同な遺伝子が存在することが知られている(Ctrnacta, V. et al. 2006. J. Eukaryot. Microbiol. 53: 225-231)。 The gene encoding pyruvate: NADP + oxidoreductase is a photosynthetic eukaryotic microorganism and is also classified as a protozoan. The pyruvate: NADP + oxidoreductase gene of Euglena gracilis (Nakazawa, M. et al. 2000) FEBS Lett. 479: 155-156), the protist Cryptosporidium parvum pyruvate: NADP + oxidoreductase gene (Rotte, C. et al. 2001. Mol. Biol. Evol. 18: 710 -720) and homologous genes are known to exist in the diatom Tharassiosira pseudonana (Ctrnacta, V. et al. 2006. J. Eukaryot. Microbiol. 53: 225-231) .
 具体的には、ユーグレナ・グラシリス(Euglena gracilis)のピルビン酸:NADP+オキシドレダクターゼ遺伝子として、配列番号25に示す塩基配列を有する遺伝子を例示することができる(GenBank Accession No. AB021127)。配列番号26には、同遺伝子がコードするアミノ酸配列を示した(GenBank Accession No. BAB12024)。 Specifically, a gene having the base sequence shown in SEQ ID NO: 25 can be exemplified as a pyruvate: NADP + oxidoreductase gene of Euglena gracilis (GenBank Accession No. AB021127). SEQ ID NO: 26 shows the amino acid sequence encoded by the same gene (GenBank Accession No. BAB12024).
 本発明の微生物は、ピルビン酸シンターゼの活性に必要な電子供与体の酸化型を還元型にリサイクルする活性が、親株、例えば野生株や非改変株と比べて増大するように改変することによって、ピルビン酸シンターゼの活性が増大するように改変された微生物でもよい。電子供与体の酸化型を還元型にリサイクルする活性としては、フェレドキシン-NADP+レダクターゼ活性を挙げることができる。また、電子供与体のリサイクル活性の増強に加えて、ピルビン酸シンターゼ活性が増大するように改変することによって、ピルビン酸シンターゼの活性が増大するように改変された微生物でもよい。なお、上記親株は、本来内在的に電子供与体のリサイクル活性をコードする遺伝子を有しているものであってもよいし、本来は電子供与体のリサイクル活性を有さないが、当該活性をコードする遺伝子を導入することにより活性が付与され、L-アミノ酸生産能が向上するものであってもよい。 The microorganism of the present invention is modified by increasing the activity of recycling the oxidized form of the electron donor necessary for the activity of pyruvate synthase to the reduced form as compared with the parent strain, for example, a wild strain or an unmodified strain, The microorganism may be modified so that the activity of pyruvate synthase is increased. Examples of the activity of recycling the oxidized form of the electron donor to the reduced form include ferredoxin-NADP + reductase activity. In addition to enhancing the recycling activity of the electron donor, the microorganism may be modified so that the activity of pyruvate synthase is increased by modifying the activity to increase pyruvate synthase activity. The parent strain may have a gene that inherently encodes the electron donor recycling activity, or originally does not have the electron donor recycling activity. Activity may be imparted by introducing a gene to be encoded, and L-amino acid producing ability may be improved.
 「フェレドキシン-NADP+レダクターゼ」とは、以下の反応を可逆的に触媒する酵素(EC 1.18.1.2)をいう。 “Ferredoxin-NADP + reductase” refers to an enzyme (EC 1.18.1.2) that reversibly catalyzes the following reaction.
還元型フェレドキシン + NADP+ → 酸化型フェレドキシン + NADPH + H+ Reduced ferredoxin + NADP + → oxidized ferredoxin + NADPH + H +
 本反応は、可逆反応であり、NADPHと酸化型フェレドキシン存在下で、還元型フェレドキシンを産生することが可能である。フェレドキシンはフラボドキシンと代替可能でありフラボドキシン-NADP+レダクターゼと命名されているものも同等の機能を有する。フェレドキシン-NADP+レダクターゼは微生物から高等生物まで幅広く存在が確認されており(Carrillo, N. and Ceccarelli, E. A. 2003. Eur. J. Biochem. 270: 1900-1915; Ceccarelli, E. A. et al. 2004. Biochim. Biophys. Acta. 1698: 155-165参照)、フェレドキシン-NADP+オキシドレダクターゼ、NADPH-フェレドキシンオキシドレダクターゼと命名されているものもある。 This reaction is a reversible reaction, and reduced ferredoxin can be produced in the presence of NADPH and oxidized ferredoxin. Ferredoxin can be substituted for flavodoxin, and what is named flavodoxin-NADP + reductase also has an equivalent function. Ferredoxin-NADP + reductase has been confirmed to exist widely from microorganisms to higher organisms (Carrillo, N. and Ceccarelli, EA 2003. Eur. J. Biochem. 270: 1900-1915; Ceccarelli, EA et al. 2004. Biochim Biophys. Acta. 1698: 155-165), some have been named ferredoxin-NADP + oxidoreductase, NADPH-ferredoxin oxidoreductase.
 フェレドキシン-NADP+レダクターゼの活性が増強されたことの確認は、改変前の微生物と、改変後の微生物より粗酵素液を調製し、そのフェレドキシン-NADP+レダクターゼ活性を比較することにより達成される。フェレドキシン-NADP+レダクターゼの活性は、例えば、Blaschkowskiらの方法(Blaschkowski, H. P. et al. 1982. Eur. J. Biochem. 123: 563-569)に従って測定できる。例えば、基質としてフェレドキシンを用い、減少するNADPH量を分光学的に測定することによって測定可能である。酵素活性1ユニット(U)は1分間あたり1μmolのNADPHの酸化量で表される。親株がフェレドキシン-NADP+レダクターゼ活性を有している場合、親株の活性が十分高ければ、増強する必要はないが、親株と比較して、好ましくは1.5倍以上、より好ましくは2倍以上、さらに好ましくは3倍以上酵素活性が上昇していることが望ましい。 Confirmation that the activity of ferredoxin-NADP + reductase is enhanced is achieved by preparing a crude enzyme solution from the microorganism before modification and the microorganism after modification, and comparing the activity of ferredoxin-NADP + reductase. The activity of ferredoxin-NADP + reductase can be measured, for example, according to the method of Blaschkowski et al. (Blaschkowski, H. P. et al. 1982. Eur. J. Biochem. 123: 563-569). For example, it can be measured by spectroscopically measuring the decreasing amount of NADPH using ferredoxin as a substrate. One unit (U) of enzyme activity is expressed as an oxidation amount of 1 μmol NADPH per minute. When the parent strain has ferredoxin-NADP + reductase activity, it is not necessary to enhance if the activity of the parent strain is sufficiently high. Preferably, the enzyme activity is increased 3 times or more.
 フェレドキシン-NADP+レダクターゼをコードする遺伝子は、多くの生物種で見出されており、目的のL-アミノ酸生産株中で活性を有するものであれば使用することが可能である。エシェリヒア・コリではフラボドキシン-NADP+レダクターゼとしてfpr遺伝子が同定されている(Bianchi, V. et al. 1993. J. Bacteriol. 175:1590-1595)。また、シュードモナス・プチダ(Psuedomonas putida)には、NADPH-プチダレドキシンレダクターゼ(Putidaredoxin reductase)遺伝子とプチダレドキシン(Putidaredoxin)遺伝子がオペロンとして存在することが知られている(Koga, H. et al. 1989. J. Biochem. (Tokyo) 106: 831-836)。 A gene encoding ferredoxin-NADP + reductase has been found in many biological species and can be used as long as it has activity in the target L-amino acid producing strain. In Escherichia coli, the fpr gene has been identified as flavodoxin-NADP + reductase (Bianchi, V. et al. 1993. J. Bacteriol. 175: 1590-1595). It is also known that Pseedomonas putida has NADPH-Putidaredoxin reductase gene and Putidaredoxin gene as operons (Koga, H. et al. 1989). J. Biochem. (Tokyo) 106: 831-836).
 エシェリヒア・コリのフラボドキシン-NADP+レダクターゼとしては、エシェリヒア・コリK-12株のゲノム配列(GenBank Accession No. U00096)の塩基番号4111749~4112495(相補鎖)に位置する、配列番号27に示す塩基配列を有するfpr遺伝子を例示することができる。配列番号28にはFprのアミノ酸配列を示した(GenBank Accession No. AAC76906)。また、コリネバクテリウム・グルタミカムのゲノム配列(GenBank Accession No. BA00036)の塩基番号2526234~2527211にフェレドキシン-NADP+レダクターゼ遺伝子が見出されている(GenBank Accession No. BAB99777)。 As the Escherichia coli flavodoxin-NADP + reductase, the nucleotide sequence shown in SEQ ID NO: 27, which is located in the base number 4111749-4112495 (complementary strand) of the genome sequence of Escherichia coli K-12 strain (GenBank Accession No. U00096) The fpr gene having SEQ ID NO: 28 shows the amino acid sequence of Fpr (GenBank Accession No. AAC76906). Further, a ferredoxin-NADP + reductase gene has been found at the base numbers 25526234 to 2527211 of the genome sequence of Corynebacterium glutamicum (GenBank Accession No. BA00036) (GenBank Accession No. BAB99777).
 ピルビン酸シンターゼの活性には、フェレドキシン又はフラボドキシンが電子供与体として存在することが必要である。従って、フェレドキシン又はフラボドキシンの産生能が向上するように改変することによって、ピルビン酸シンターゼの活性が増大するように改変された微生物であってもよい。
 また、ピルビン酸シンターゼ活性、又は、フラボドキシン-NADP+レダクターゼ及びピルビン酸シンターゼ活性が増強するように改変することに加えて、フェレドキシン又はフラボドキシンの産生能が向上するように改変してもよい。
The activity of pyruvate synthase requires that ferredoxin or flavodoxin be present as an electron donor. Therefore, the microorganism may be modified so that the activity of pyruvate synthase is increased by modifying the ferredoxin or flavodoxin so as to improve the production ability.
Further, in addition to modification so that pyruvate synthase activity, or flavodoxin-NADP + reductase and pyruvate synthase activities are enhanced, modification may be made so that ferredoxin or flavodoxin production ability is improved.
 本発明における「フェレドキシン」とは、非ヘム鉄原子(Fe)と、硫黄原子を含み、4Fe-4S、3Fe-4S、あるいは、2Fe-2Sクラスターと呼ばれる鉄-硫黄クラスターを結合したタンパク質で1電子の伝達体として機能するものを指す。「フラボドキシン」とはFMN(Flavin-mononucleotide)を補欠分子属として含む1あるいは2電子の伝達体として機能するものタンパク質を指す。フェレドキシンとフラボドキシンについては、McLeanらの文献に記載されている(McLean, K. J. et al. 2005. Biochem. Soc. Trans. 33: 796-801)。 The “ferredoxin” in the present invention is a protein that contains a non-heme iron atom (Fe) and a sulfur atom and binds an iron-sulfur cluster called a 4Fe-4S, 3Fe-4S, or 2Fe-2S cluster. The one that functions as a transmitter. “Flavodoxin” refers to a protein that functions as a one- or two-electron transmitter containing FMN (Flavin-mononucleotide) as a prosthetic genus. Ferredoxin and flavodoxin are described in McLean et al. (McLean, K. J. et al. 2005. Biochem. Soc. Trans. 33: 796-801).
 なお、改変に用いる親株は、本来内在的にフェレドキシン又はフラボドキシンをコードする遺伝子を有しているものであってもよいし、本来はフェレドキシン又はフラボドキシン遺伝子を有さないが、フェレドキシン又はフラボドキシン遺伝子を導入することにより活性が付与され、L-アミノ酸生産能が向上するものであってもよい。 The parent strain used for the modification may have a gene that inherently encodes ferredoxin or flavodoxin, or originally has no ferredoxin or flavodoxin gene, but introduces a ferredoxin or flavodoxin gene. By doing so, activity may be imparted and L-amino acid producing ability may be improved.
 フェレドキシン又はフラボドキシンの産生能が親株、例えば野生株や非改変株と比べて向上していることの確認は、フェレドキシン又はフラボドキシンのmRNAの量を野生型、あるいは非改変株と比較することによって確認できる。発現量の確認方法としては、ノーザンハイブリダイゼーション、RT-PCRが挙げられる(Sambrook, J. et al. 1989. Molecular CloningA Laboratory Manual/Second Edition, Cold Spring Harbor Laboratory Press, New York)。発現量については、野生株あるいは非改変株と比較して、上昇していればいずれでもよいが、例えば野生株、非改変株と比べて1.5倍以上、より好ましくは2倍以上、さらに好ましくは3倍以上上昇していることが望ましい。 Confirmation that ferredoxin or flavodoxin production ability is improved compared to the parent strain, for example, wild strain or non-modified strain, can be confirmed by comparing the amount of ferredoxin or flavodoxin mRNA with the wild-type or non-modified strain. . Examples of the expression level confirmation method include Northern hybridization and RT-PCR (Sambrook, J. et al. 1989. Molecular CloningA Laboratory Manual / Second Edition, Cold Spring Harbor Laboratory Press, New York). The expression level may be any as long as it is increased compared to the wild strain or the unmodified strain, for example, 1.5 times or more, more preferably 2 times or more, more preferably compared to the wild strain or the non-modified strain. It is desirable that it rises 3 times or more.
 また、フェレドキシン又はフラボドキシンの産生能が親株、例えば野生株や非改変株と比べて向上していることの確認は、SDS-PAGEや二次元電気泳動あるいは、抗体を用いたウェスタンブロットによって検出することが出来る(Sambrook, J. et al. 1989. Molecular Cloning A Laboratory Manual/Second Edition, Cold Spring Harbor Laboratory Press, New York)。生産量については、野生株あるいは非改変株と比較して、向上していればいずれでもよいが、例えば野生株、非改変株と比べて1.5倍以上、より好ましくは2倍以上、さらに好ましくは3倍以上上昇していることが望ましい。 Confirmation that ferredoxin or flavodoxin production is improved compared to the parent strain, for example, wild strain or unmodified strain, should be detected by SDS-PAGE, two-dimensional electrophoresis, or Western blot using an antibody. (Sambrook, J. et al. 1989. Molecular Cloning A Laboratory Manual / Second Edition, Cold Spring Harbor Laboratory Press, New York). The production amount may be any as long as it is improved as compared to the wild strain or the unmodified strain, but for example, 1.5 times or more, more preferably 2 times or more, more preferably compared to the wild strain or the non-modified strain. It is desirable that it rises 3 times or more.
 フェレドキシン及びフラボドキシンの活性は、適切な酸化還元反応系に加えることで測定することが可能である。例えば、Boyerらにより、産生されたフェレドキシンをフェレドキシン-NADP+レダクターゼにより還元し、生じた還元型フェレドキシンによるチトクロームCの還元を定量する方法が開示されている(Boyer, M. E. et al. 2006. Biotechnol. Bioeng. 94: 128-138)。また、フラボドキシンの活性は、フラボドキシン-NADP+レダクターゼを用いることで、同じ方法で測定が可能である。 The activity of ferredoxin and flavodoxin can be measured by adding to an appropriate redox reaction system. For example, Boyer et al. Discloses a method of reducing the produced ferredoxin with ferredoxin-NADP + reductase and quantifying the reduction of cytochrome C by the resulting reduced ferredoxin (Boyer, ME et al. 2006. Biotechnol. Bioeng. 94: 128-138). The activity of flavodoxin can be measured by the same method using flavodoxin-NADP + reductase.
 フェレドキシン、又はフラボドキシンをコードする遺伝子は、広く分布しており、コードされるフェレドキシン又はフラボドキシンがピルビン酸シンターゼと電子供与体再生系が利用可能なものであれば、どのようなものでも用いることができる。例えば、エシェリヒア・コリには、2Fe-2Sクラスターを有するフェレドキシンをコードする遺伝子としてfdx遺伝子が存在し(Ta, D. T. and Vickery, L. E. 1992. J. Biol. Chem. 267:11120-11125)、4Fe-4Sクラスターを有するフェレドキシン遺伝子としてyfhL遺伝子が予想されている。また、フラボドキシン遺伝子としては、fldA遺伝子(Osborne, C. et al. 1991. J. Bacteriol. 173: 1729-1737)とfldB遺伝子(Gaudu, P. and Weiss, B. 2000. J. Bacteriol. 182:1788-1793)の存在が知られている。コリネバクテリウム・グルタミカムのゲノム配列(GenBank Accession No. BA00036)においては、塩基番号562643~562963番に複数のフェレドキシン遺伝子fdx(GenBank Accession No. BAB97942)及び塩基番号1148953~1149270番にfer(GenBank Accession No. BAB98495)が見出されている。また、クロロビウム・テピダムにおいては、多くのフェレドキシン遺伝子が存在するが、ピルビン酸シンターゼの電子受容体となる4Fe-4S型のフェレドキシン遺伝子としてフェレドキシンI及びフェレドキシンIIが同定されている(Yoon, K. S. et al. 2001. J. Biol. Chem. 276: 44027-44036)。ハイドロジェノバクター・サーモファイラス等、還元的TCAサイクルを持つ細菌由来のフェレドキシン遺伝子あるいはフラボドキシン遺伝子を用いることもできる。 The gene encoding ferredoxin or flavodoxin is widely distributed, and any encoded ferredoxin or flavodoxin can be used as long as pyruvate synthase and an electron donor regeneration system are available. . For example, in Escherichia coli, the fdx gene exists as a gene encoding ferredoxin having a 2Fe-2S cluster (Ta, D. T. and Vickery, L. E. 1992. J. Biol. Chem. 267: 11120 -11125), the yfhL gene is predicted as a ferredoxin gene having a 4Fe-4S cluster. The flavodoxin gene includes fldA gene (Osborne, C. et al. 1991. J. Bacteriol. 173: 1729-1737) and fldB gene (Gaudu, P. and Weiss, B. 2000. J. Bacteriol. 182: 1788-1793) is known. In the genome sequence of Corynebacterium glutamicum (GenBank Accession No. BA00036), multiple ferredoxin genes fdx (GenBank Accession No. BAB97942) at base numbers 562643 to 562963 and fer (GenBank Accession No at base numbers 1148953 to 1149270) (BAB98495) has been found. In Chlorobium tepidum, there are many ferredoxin genes, but ferredoxin I and ferredoxin II have been identified as 4Fe-4S type ferredoxin genes that serve as electron acceptors for pyruvate synthase (Yoon, K. S Et al. 2001. J. Biol. Chem. 276: 44027-44036). Ferredoxin genes or flavodoxin genes derived from bacteria having a reductive TCA cycle such as Hydrogenobacter thermophilus can also be used.
 具体的には、エシェリヒア・コリのフェレドキシン遺伝子として、エシェリヒア・コリK-12株のゲノム配列(GenBank Accession No. U00096)の塩基番号2654770~2655105番(相補鎖)に位置する配列番号29に示すfdx遺伝子、及び塩基番号2697685~2697945番に位置する配列番号31に示すyfhL遺伝子を例示することができる。配列番号30及び配列番号32には、Fdx及びYfhLのアミノ酸配列を示した(それぞれ、GenBank Accession No. AAC75578及びAAC75615)。エシェリヒア・コリのフラボドキシン遺伝子としては、エシェリヒア・コリK-12株のゲノム配列(GenBank Accession No. U00096)の塩基番号710688~710158番(相補鎖)に位置する配列番号33に示すfldA遺伝子、及び塩基番号3037877~3038398 番に位置する配列番号35に示すfldB遺伝子を例示することができる。配列番号34及び配列番号36には、fldA遺伝子及びfldB遺伝子がコードするアミノ酸配列を示した(それぞれ、GenBank Accession No. AAC73778及びAAC75933)。 Specifically, as the ferredoxin gene of Escherichia coli, the fdx shown in SEQ ID NO: 29 located at nucleotide numbers 2654770 to 2655105 (complementary strand) of the genome sequence of Escherichia coli K-12 strain (GenBank Accession No. U00096) Examples thereof include the gene and the yfhL gene shown in SEQ ID NO: 31 located at base numbers 2676885 to 2697945. SEQ ID NO: 30 and SEQ ID NO: 32 show the amino acid sequences of Fdx and YfhL (GenBank Accession No. AAC75578 and AAC75615, respectively). Examples of the flavodoxin gene of Escherichia coli include the fldA gene shown in SEQ ID NO: 33 located at base numbers 710688 to 710158 (complementary strand) of the genome sequence of Escherichia coli K-12 strain (GenBank Accession No. U00096), and bases An example of the fldB gene shown in SEQ ID NO: 35 located at numbers 3037877 to 3038398 is shown. SEQ ID NO: 34 and SEQ ID NO: 36 show the amino acid sequences encoded by the fldA gene and the fldB gene (GenBank Accession No. AAC73778 and AAC75933, respectively).
 クロロビウム・テピダム(Chlorobium tepidum)のフェレドキシン遺伝子としては、クロロビウム・テピダムのゲノム配列(GenBank Accession No. NC_002932)の塩基番号1184078~1184266番に位置する配列番号37に示すフェレドキシンI遺伝子、及び塩基番号1184476~1184664番に位置する配列番号39に示すフェレドキシンII遺伝子を例示することができる。配列番号38及び配列番号40には、フェレドキシンI及びフェレドキシンIIがコードするアミノ酸配列を示した(それぞれ、GenBank Accession No. AAM72491及びAAM72490)。また、ハイドロジェノバクター・サーモファイラス(Hydrogenobacter thermophilus)のフェレドキシン遺伝子(GenBank Accession No. BAE02673)やスルフォロバス・ソルファタリカス(Sulfolobus solfataricus)のゲノム配列中の塩基番号2345414~2345728番で示されるスルフォロバス・ソルファタリカスのフェレドキシン遺伝子を例示することができる。さらに、上記で例示された遺伝子との相同性に基づいて、クロロビウム(Chlorobium)属、デスルホバクター(Desulfobacter)属、アクイフェクス(Aquifex)属、ハイドロジェノバクター(Hydrogenobacter)属、サーモプロテウス(Thermoproteus)属、パイロバキュラム(Pyrobaculum)属細菌等からクローニングされるものであってもよく、さらにはエンテロバクター属、クレブシエラ属、セラチア属、エルビニア属、エルシニア属等のγ-プロテオバクテリア、コリネバクテリウム・グルタミカム、ブレビバクテリウム・ラクトファーメンタム等のコリネ型細菌、シュードモナス・アエルジノーサ等のシュードモナス属細菌、マイコバクテリウム・ツベルクロシス等のマイコバクテリウム属細菌等からクローニングされるものであってもよい。 As the ferredoxin gene of Chlorobium tepidum, the ferredoxin I gene shown in SEQ ID NO: 37 located at base numbers 1184078 to 1184266 of the genomic sequence of Chlorobium tepidum (GenBank Accession NC_002932), and base numbers 1184476 to A ferredoxin II gene represented by SEQ ID NO: 39 located at 1184664 can be exemplified. SEQ ID NO: 38 and SEQ ID NO: 40 show the amino acid sequences encoded by ferredoxin I and ferredoxin II (GenBank Accession No. AAM72491 and AAM72490, respectively). In addition, the Ferrobacter thermophilus ferredoxin gene (GenBank Accession No. BAE02673) and the Sulfolobus solfataricus base sequence 2345414 to 2345728 are shown. An example is the ferricoxin gene of Taricus. Furthermore, based on the homology with the genes exemplified above, the genera Chlorobium, Desulfobacter, Aquifex, Hydrogenobacter, Thermoproteus, Thermoproteus May be cloned from bacteria belonging to the genus Pyrobaculum, and also γ-proteobacteria such as Enterobacter, Klebsiella, Serratia, Erbinia, Yersinia, Corynebacterium glutamicum, etc. It may be cloned from coryneform bacteria such as Brevibacterium lactofermentum, Pseudomonas bacteria such as Pseudomonas aeruginosa, and Mycobacterium bacteria such as Mycobacterium tuberculosis.
 上述のような本発明の遺伝子の発現を増強するための改変は、L-アミノ酸生産能の付与について記載した目的遺伝子の発現を増強する方法と同様にして行うことができる。本発明の遺伝子は、それらを保持する微生物の染色体DNAを鋳型にして、PCR法により取得することができる。 The modification for enhancing the expression of the gene of the present invention as described above can be performed in the same manner as the method for enhancing the expression of the target gene described for imparting L-amino acid-producing ability. The gene of the present invention can be obtained by a PCR method using a chromosomal DNA of a microorganism holding them as a template.
 例えば、クロロビウム・テピダムのピルビン酸シンターゼ遺伝子は、配列番号9の塩基配列に基づいて作製したプライマー、例えば、配列番号41、42に示すプライマーを用いて、クロロビウム・テピダムの染色体DNAを鋳型とするPCR法(polymerase chain reaction)法(White, T. J. et al. 1989. Trends Genet. 5: 185-189参照)によって、取得することができる。
 エシェリヒア・コリのピルビン酸シンターゼ遺伝子は、配列番号11の塩基配列に基づいて作製したプライマー、例えば、配列番号43、44に示すプライマーを用いて、エシェリヒア・コリの染色体DNAを鋳型とするPCRによって、取得することができる。
For example, the pyruvate synthase gene of Chlorobium tepidum is prepared by PCR using primers prepared based on the nucleotide sequence of SEQ ID NO: 9, for example, primers shown in SEQ ID NOs: 41 and 42, and chromosomal DNA of Chlorobium tepidum as a template. It can be obtained by the method (polymerase chain reaction) (see White, TJ et al. 1989. Trends Genet. 5: 185-189).
Escherichia coli pyruvate synthase gene is a primer prepared based on the nucleotide sequence of SEQ ID NO: 11, for example, using primers shown in SEQ ID NOs: 43 and 44, by PCR using Escherichia coli chromosomal DNA as a template, Can be acquired.
 ユーグレナ・グラシリスのピルビン酸:NADP+オキシドレダクターゼ遺伝子は、配列番号13に基づいて作製したプライマー、例えば、配列番号45、46に示すプライマーを用いて、ユーグレナ・グラシリスの染色体DNAを鋳型とするPCR法によって、取得することができる。 Euglena gracilis pyruvate: NADP + oxidoreductase gene is a PCR method using a primer prepared based on SEQ ID NO: 13, for example, the primers shown in SEQ ID NOs: 45 and 46, using Euglena gracilis chromosomal DNA as a template Can be obtained.
 エシェリヒア・コリのフラボドキシン-NADP+レダクターゼ遺伝子は、配列番号27の塩基配列に基づいて作製したプライマー、例えば、配列番号47、48に示すプライマーを用いて、エシェリヒア・コリの染色体DNAを鋳型とするPCR法によって、取得することができる。 Escherichia coli flavodoxin-NADP + reductase gene is a PCR prepared using a primer prepared based on the nucleotide sequence of SEQ ID NO: 27, for example, the primers shown in SEQ ID NOs: 47 and 48, using Escherichia coli chromosomal DNA as a template. It can be obtained by law.
 エシェリヒア・コリのフェレドキシン遺伝子fdxは、配列番号29の塩基配列に基づいて作製したプライマー、例えば、配列番号49、50に示すプライマーを用いて、エシェリヒア・コリの染色体DNAを鋳型とするPCR法によって、取得することができる。 Escherichia coli ferredoxin gene fdx is a primer prepared based on the nucleotide sequence of SEQ ID NO: 29, for example, using primers shown in SEQ ID NO: 49, 50, by PCR method using Escherichia coli chromosomal DNA as a template, Can be acquired.
 エシェリヒア・コリのフラボドキシン遺伝子fldAは、配列番号33の塩基配列に基づいて作製したプライマーを用いて、フラボドキシン遺伝子fldBは、配列番号35の塩基配列に基づいて作製したプライマーを用いて、エシェリヒア・コリの染色体DNAを鋳型とするPCR法によって、各々取得することができる。 The Escherichia coli flavodoxin gene fldA was prepared using a primer prepared based on the nucleotide sequence of SEQ ID NO: 33, and the flavodoxin gene fldB was prepared using a primer prepared based on the nucleotide sequence of SEQ ID NO: 35. Each can be obtained by PCR using chromosomal DNA as a template.
 また、クロロビウム・テピダムのフェレドキシンI遺伝子は、配列番号37の塩基配列に基づいて作製したプライマーを用いて、フェレドキシンII遺伝子は、配列番号39の塩基配列に基づいて作製したプライマーを用いて、クロロビウム・テピダムの染色体DNAを鋳型とするPCR法によって、各々取得することができる。 The ferredoxin I gene of Chlorobium tepidum was prepared using a primer prepared based on the nucleotide sequence of SEQ ID NO: 37, and the ferredoxin II gene was prepared using a primer prepared based on the nucleotide sequence of SEQ ID NO: 39. Each can be obtained by PCR using tepidum chromosomal DNA as a template.
 他の微生物に由来する本発明の遺伝子も、上記の各遺伝子の配列情報、又は、その微生物において公知の遺伝子又はタンパク質の配列情報に基づいて作製したオリゴヌクレオチドをプライマーとするPCR法、又は、前記配列情報に基づいて作製したオリゴヌクレオチドをプローブとするハイブリダイゼーション法によって、微生物の染色体DNA又は染色体DNAライブラリーから、取得することができる。なお、染色体DNAは、DNA供与体である微生物から、例えば、斎藤、三浦の方法(Saito, H. and Miura, K. I. 1963. Biochem. Biophys. Acta, 72, 619-629; 生物工学実験書、日本生物工学会編、97~98頁、培風館、1992年参照)等により調製することができる。 The gene of the present invention derived from other microorganisms is also a PCR method using primers prepared with oligonucleotides prepared based on the sequence information of each of the above genes or gene or protein sequences known in the microorganism, or It can be obtained from a chromosomal DNA or a chromosomal DNA library of a microorganism by a hybridization method using an oligonucleotide prepared based on the sequence information as a probe. In addition, chromosomal DNA is obtained from microorganisms as DNA donors, for example, by Saito and Miura's method (Saito, H. and Miura, K. I. 1963. Biochem.phyBiophys. Acta, 72, 619-629; Book, edited by Japanese Society for Biotechnology, pages 97-98, Bafukan, 1992).
 また、本発明の微生物は、ピルビン酸シンターゼ、又はピルビン酸:NADP+オキシドレダクターゼの活性の増強に加えて、マリックエンザイムの活性が低下していることが好ましい。本発明の微生物がエシェリヒア属、エンテロバクター属、パントエア属、クレブシエラ属、又はセラチア属に属する細菌である場合は、特にマリックエンザイムの活性を低下させることが好ましい。 In addition to the enhancement of pyruvate synthase or pyruvate: NADP + oxidoreductase activity, the microorganism of the present invention preferably has reduced activity of malic enzyme. When the microorganism of the present invention is a bacterium belonging to the genus Escherichia, Enterobacter, Pantoea, Klebsiella, or Serratia, it is particularly preferable to reduce the activity of malic enzyme.
 本発明において、マリックエンザイムの活性とは、リンゴ酸を酸化的に脱炭酸し、ピルビン酸を生成する反応を可逆的触媒する活性を意味する。上記反応は、NADPを電子受容体とするNADP型マリックエンザイム(malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+)とも表記される)(EC:1.1.1.40 b2463遺伝子(maeB遺伝子とも表記される)配列番号51)、あるいは、NADを電子受容体とするNAD型マリックエンザイム(malate dehydrogenase (oxaloacetate-decarboxylating) (NAD+) とも表記される)(EC:1.1.1.38 sfcA遺伝子(maeA遺伝子とも表記される)配列番号53)の2種の酵素によって触媒される。マリックエンザイム活性の確認は、Bolognaらの方法(Bologna, F. P. et al. 2007. J. Bacteriol. 2007 189: 5937-5946)に従って測定することができる。 In the present invention, the activity of malic enzyme means an activity of reversibly catalyzing a reaction in which malic acid is oxidatively decarboxylated to produce pyruvic acid. The above reaction is NADP-type malic enzyme (also expressed as malate dehydrogenase (oxaloacetate-decarboxylating) (NADP + )) using NADP as an electron acceptor (EC: 1.1.1.40 b2463 gene (also referred to as maeB gene) SEQ ID NO: 51) or NAD type malic enzyme (also referred to as malate dehydrogenase (oxaloacetate-decarboxylating) (NAD + )) using NAD as an electron acceptor (EC: 1.1.1.38 sfcA gene (also referred to as maeA gene) sequence Catalyzed by two enzymes of number 53). The confirmation of malic enzyme activity can be measured according to the method of Bologna et al. (Bologna, F. P. et al. 2007. J. Bacteriol. 2007 189: 5937-5946).
NADP-dependent malic enzyme : NADP+ + malate → NADPH + CO2 + pyruvate
NAD-dependent malic enzyme:NAD+ + malate → NADH + CO2 + pyruvate
NADP-dependent malic enzyme: NADP + + malate → NADPH + CO 2 + pyruvate
NAD-dependent malic enzyme: NAD + + malate → NADH + CO 2 + pyruvate
 酵素活性の低下は、後述のリボヌクレアーゼG活性の低下と同様にして行うことができる。 The decrease in enzyme activity can be carried out in the same manner as the decrease in ribonuclease G activity described later.
 本発明においては、NADP型マリックエンザイムとNAD型マリックエンザイムの両方の活性を低下させることがより好ましく、特に、本発明の微生物がエシェリヒア属、エンテロバクター属、パントエア属、クレブシエラ属、又はセラチア属に属する細菌である場合に、両方の型のマリックエンザイムの活性を低下させることが好ましい。 In the present invention, it is more preferable to reduce the activities of both NADP-type and NAD-type malic enzymes. In particular, the microorganism of the present invention belongs to the genus Escherichia, Enterobacter, Pantoea, Klebsiella, or Serratia. When the bacterium belongs, it is preferable to reduce the activity of both types of malic enzyme.
 また、本発明の微生物は、ピルビン酸シンターゼ、又はピルビン酸:NADP+オキシドレダクターゼの活性の増強に加えて、ピルビン酸デヒドロゲナーゼ活性が低下していることが好ましい。 In addition to the enhanced activity of pyruvate synthase or pyruvate: NADP + oxidoreductase, the microorganism of the present invention preferably has reduced pyruvate dehydrogenase activity.
 本発明において、ピルビン酸デヒドロゲナーゼ(以下、「PDH」ということがある)活性とは、ピルビン酸を酸化的に脱炭酸し、アセチル-CoA(acetyl-CoA)を生成する反応を触媒する活性を意味する。上記反応は、PDH(E1p:pyruvate dehydrogenase, EC:1.2.4.1 aceE遺伝子 配列番号55)、ジヒドロリポイルトランスアセチラーゼ(E2p:dihydrolipoyltransacetylase, EC:2.3.1.12 aceF遺伝子 配列番号57)、ジヒドロリポアミドデヒドロゲナーゼ(E3:dihydrolipoamide dehydrogenase; EC:1.8.1.4 lpdA遺伝子 配列番号59)の3種の酵素によって触媒される。すなわち、これらの3種類のサブユニットはそれぞれ以下の反応を触媒し、これら3つの反応を合わせた反応を触媒する活性をPDH活性という。PDH活性の確認は、VisserとStratingの方法(Visser, J. and Strating, M. 1982. Methods Enzymol. 89: 391-399)に従って測定することができる。 In the present invention, pyruvate dehydrogenase (hereinafter sometimes referred to as “PDH”) activity means an activity that catalyzes a reaction of oxidatively decarboxylating pyruvate to produce acetyl-CoA (acetyl-CoA). To do. The above reactions were carried out by PDH (E1p: pyruvate dehydrogenase, EC: 1.2.4.1 aceE gene SEQ ID NO: 55), dihydrolipoyltransacetylase (E2p: dihydrolipoyltransacetylase, EC: 2.3.1.12 aceF gene SEQ ID NO: 57), dihydrolipoamide dehydrogenase It is catalyzed by three enzymes (E3: dihydrolipoamide hydrogendehydrogenase; EC: 1.8.1.4 lpdA gene SEQ ID NO: 59). That is, these three types of subunits each catalyze the following reaction, and the activity of catalyzing the combined reaction of these three reactions is called PDH activity. Confirmation of PDH activity can be measured according to the method of Visser and Strating (Visser, J. and Strating, M. 1982. Methods Enzymol. 89: 391-399).
 E1p: pyruvate + [dihydrolipoyllysine-residue succinyltransferase] lipoyllysine → [dihydrolipoyllysine-residue acetyltransferase] S-acetyldihydrolipoyllysine + CO2
 E2p:CoA + enzyme N6-(S-acetyldihydrolipoyl)lysine → acetyl-CoA + enzyme N6-(dihydrolipoyl)lysine
 E3: protein N6-(dihydrolipoyl)lysine + NAD+ → protein N6-(lipoyl)lysine + NADH + H+
E1p: pyruvate + [dihydrolipoyllysine-residue succinyltransferase] lipoyllysine → [dihydrolipoyllysine-residue acetyltransferase] S-acetyldihydrolipoyllysine + CO 2
E2p: CoA + enzyme N6- (S-acetyldihydrolipoyl) lysine → acetyl-CoA + enzyme N6- (dihydrolipoyl) lysine
E3: protein N6- (dihydrolipoyl) lysine + NAD + → protein N6- (lipoyl) lysine + NADH + H +
 酵素活性の低下は、後述のリボヌクレアーゼG活性の低下と同様にして行うことができる。 The decrease in enzyme activity can be carried out in the same manner as the decrease in ribonuclease G activity described later.
 また、本発明の細菌は、マレートシンターゼ・イソシトレートリアーゼ・イソシトレートデヒドロゲナーゼキナーゼ/フォスファターゼオペロン(aceオペロン)が構成的に発現するか、又は同オペロンの発現が強化されるように改変された菌株であってもよい。マレートシンターゼ・イソシトレートリアーゼ・イソシトレートデヒドロゲナーゼキナーゼ/フォスファターゼオペロン(aceオペロン)が構成的に発現するとは、aceオペロンのプロモーターが、リプレッサータンパク質であるiclRにより抑制を受けないこと、抑制が解除されていることを意味する。 The bacterium of the present invention is modified so that malate synthase, isocitrate triase, isocitrate dehydrogenase kinase / phosphatase operon (ace operon) is constitutively expressed, or expression of the operon is enhanced. Strains may be used. Constitutive expression of malate synthase, isocitrate triase, isocitrate dehydrogenase kinase / phosphatase operon (ace operon) means that the ace operon promoter is not repressed by the repressor protein iclR. It means that it has been released.
 aceオペロンを構成的に発現していること、また同オペロンの発現が強化していることは、aceオペロンがコードするタンパク質であるマレートシンターゼ(aceB)、イソシトレートリアーゼ(aceA)、イソシトレートデヒドロゲナーゼキナーゼ/フォスファターゼ(aceK)の酵素活性が非改変株、あるいは野生株と比べて増大していることによって確認出来る。 The fact that the ace operon is constitutively expressed and the expression of the operon is enhanced is that the proteins encoded by the ace operon are malate synthase (aceB), isocitrate triase (aceA), isocyto This can be confirmed by the fact that the enzyme activity of rate dehydrogenase kinase / phosphatase (aceK) is increased compared to the unmodified strain or the wild strain.
 酵素活性の測定は、マレートシンターゼに関してはグリオキシル酸に依存するアセチルCoAのチオエステル結合の分解をA232の減少で測定する方法(Dixon,G.H.,Kornberg,H.L., 1960, Biochem.J, 1;41:p217-233)、イソシトレートリアーゼに関してはイソシトレートから生じるグリオキシル酸を2,4-ジニトロフェニルヒドラゾン誘導体として測定する方法(Roche,T.E..Williams J.O., 1970, Biochim.Biophys.Acta, 22;206(1):p193-195)、イソシトレートデヒドロゲナーゼキナーゼに関してはイソシトレートデヒドロゲナーゼに対するリン酸の脱着を32Pを使用して測定する方法(Wang, J.Y.J. and Koshland, D.E., Jr., 1982, Arch  Biochem. Biophys., 218, p59-67)などで確認出来る。 Enzyme activity was determined by measuring glyoxylic acid-dependent degradation of the thioester bond of acetyl-CoA by reducing A232 for malate synthase (Dixon, GH, Kornberg, HL, 1960, Biochem. J, 1; 41: p217-233), for isocitrate lyase, a method for measuring glyoxylic acid generated from isocitrate as a 2,4-dinitrophenylhydrazone derivative (Roche, TE. Williams JO, 1970, Biochim. Biophys. Acta, 22; 206 (1 ): p193-195), with respect to isocitrate dehydrogenase kinase, a method of measuring desorption of phosphate to isocitrate dehydrogenase using 32 P (Wang, JYJ and Koshland, DE, Jr., 1982, Arch Biochem. Biophys., 218, p59-67).
 抑制を解除するためには、例えば、aceオペロン上のリプレッサー(iclR)の結合部位を、iclRが結合できないように改変すればよい。また、同オペロンのプロモーターを、iclRによって発現抑制を受けない強力なプロモーター(lacプロモーターなど)に置換することによって、抑制を解除することもできる。 In order to release the suppression, for example, the binding site of the repressor (iclR) on the ace operon may be modified so that iclR cannot bind. In addition, the suppression can be released by replacing the promoter of the operon with a strong promoter (such as the lac promoter) that is not subject to expression suppression by iclR.
 また、iclR遺伝子の発現が低下又は欠失するように細菌を改変することによって、aceオペロンの発現を構成的にすることもできる。具体的には、iclRをコードする遺伝子の発現調節配列を同遺伝子が発現しないように改変するか、同リプレッサーの機能が失われるようにコード領域を改変することによって、aceオペロンの発現の抑制を解除することができる。 Also, the expression of the ace operon can be made constitutive by modifying the bacterium so that the expression of the iclR gene is reduced or deleted. Specifically, the expression control sequence of the gene encoding iclR is modified so that the gene does not express, or the coding region is modified so that the function of the repressor is lost, thereby suppressing the expression of the ace operon. Can be released.
 本発明に用いる細菌の好ましい形態は、上記のi)好気的にエタノールを資化できる性質、ii)ピルビン酸シンターゼ、または、ピルビン酸:NADP+オキシドレダクターゼの増大した活性、iii)aceオペロンの構成的な発現又は強化された発現、iv) ピルビン酸デヒドロゲナーゼ活性の低下のいずれかを有するものであるが、i)及びii)の性質を有することが好ましく、これら4つの性質を有することがより好ましい。 The preferred form of the bacterium used in the present invention is the above-mentioned i) the property of aerobically assimilating ethanol, ii) the increased activity of pyruvate synthase or pyruvate: NADP + oxidoreductase, iii) the ace operon It has either constitutive expression or enhanced expression, iv) reduced pyruvate dehydrogenase activity, but preferably has the properties i) and ii), more preferably has these four properties preferable.
 本発明において、L-アミノ酸生産能を有する細菌とは、培地に培養したとき、L-アミノ酸を生産し、培地中に分泌する能力を有する細菌をいう。また、好ましくは、目的とするL-アミノ酸を好ましくは0.5g/L以上、より好ましくは1.0g/L以上の量を培地に蓄積させることができる細菌をいう。L-アミノ酸は、L-アラニン、L-アルギニン、L-アスパラギン、L-アスパラギン酸、L-システイン、L-グルタミン酸、L-グルタミン、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-トリプトファン、L-チロシン及びL-バリンを含む。これらの中では、L-リジン、L-グルタミン酸、L-スレオニン、L-アルギニン、L-ヒスチジン、L-イソロイシン、L-バリン、L-ロイシン、L-フェニルアラニン、L-チロシン、L-トリプトファン、及びL-システインが好ましく、特に、L-スレオニン、L-リジン及びL-グルタミン酸が好ましい。
 なお、本発明において、L-アミノ酸とは、フリー体のL-アミノ酸のみならず、硫酸塩、塩酸塩、炭酸塩、アンモニウム塩、ナトリウム塩、カリウム塩を含む塩も含む。
In the present invention, the bacterium having L-amino acid-producing ability refers to a bacterium having the ability to produce L-amino acid and secrete it into the medium when cultured in the medium. Preferably, it refers to a bacterium capable of accumulating the target L-amino acid in the medium in an amount of preferably 0.5 g / L or more, more preferably 1.0 g / L or more. L-amino acids include L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-cysteine, L-glutamic acid, L-glutamine, glycine, L-histidine, L-isoleucine, L-leucine, L- Includes lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine and L-valine. Among these, L-lysine, L-glutamic acid, L-threonine, L-arginine, L-histidine, L-isoleucine, L-valine, L-leucine, L-phenylalanine, L-tyrosine, L-tryptophan, and L-cysteine is preferred, and L-threonine, L-lysine and L-glutamic acid are particularly preferred.
In the present invention, L-amino acids include not only free L-amino acids but also salts including sulfates, hydrochlorides, carbonates, ammonium salts, sodium salts, and potassium salts.
 以下、前記のような細菌にL-アミノ酸生産能を付与する方法、又は前記のような細菌L-アミノ酸生産能を増強する方法について述べる。 Hereinafter, a method for imparting L-amino acid-producing ability to the bacterium as described above or a method for enhancing the bacterium L-amino acid-producing ability as described above will be described.
 L-アミノ酸生産能を付与するには、栄養要求性変異株、L-アミノ酸のアナログ耐性株又は代謝制御変異株の取得や、L-アミノ酸の生合成系酵素の発現が増強された組換え株の創製等、従来、コリネ型細菌又はエシェリヒア属細菌等のアミノ酸生産菌の育種に採用されてきた方法を適用することができる(アミノ酸発酵、(株)学会出版センター、1986年5月30日初版発行、第77~100頁参照)。ここで、L-アミノ酸生産菌の育種において、付与される栄養要求性、アナログ耐性、代謝制御変異等の性質は、単独でもよく、2種又は3種以上であってもよい。また、発現が増強されるL-アミノ酸生合成系酵素も、単独であっても、2種又は3種以上であってもよい。さらに、栄養要求性、アナログ耐性、代謝制御変異等の性質の付与と、生合成系酵素の増強が組み合わされてもよい。 In order to confer L-amino acid-producing ability, acquisition of auxotrophic mutants, L-amino acid analog resistant strains or metabolic control mutants, and recombinant strains with enhanced expression of L-amino acid biosynthetic enzymes Can be applied to the breeding of amino acid-producing bacteria such as coryneform bacteria or Escherichia bacteria (Amino Acid Fermentation, Academic Publishing Center, Inc., May 30, 1986, first edition) Issue, see pages 77-100). Here, in the breeding of L-amino acid-producing bacteria, the auxotrophy, analog resistance, metabolic control mutation and other properties imparted may be singly or may be two or more. Further, the L-amino acid biosynthetic enzymes whose expression is enhanced may be used alone or in combination of two or more. Furthermore, imparting properties such as auxotrophy, analog resistance, and metabolic regulation mutation may be combined with enhancement of biosynthetic enzymes.
 L-アミノ酸生産能を有する栄養要求性変異株、アナログ耐性株、又は代謝制御変異株を取得するには、親株又は野生株を通常の変異処理、すなわちX線や紫外線の照射、またはN-メチル-N'-ニトロ-N-ニトロソグアニジン等の変異剤処理などによって処理し、得られた変異株の中から、栄養要求性、アナログ耐性、又は代謝制御変異を示し、かつL-アミノ酸生産能を有するものを選択することによって得ることができる。 In order to obtain an auxotrophic mutant, an analog resistant strain, or a metabolically controlled mutant having L-amino acid-producing ability, the parent strain or wild strain is subjected to normal mutation treatment, that is, irradiation with X-rays or ultraviolet rays, or N-methyl. -Treated with a treatment with a mutant such as -N'-nitro-N-nitrosoguanidine, among the obtained mutant strains, shows auxotrophy, analog resistance, or metabolic control mutation, and has an ability to produce L-amino acid It can be obtained by selecting what it has.
 また、L-アミノ酸生産能の付与又は増強は、遺伝子組換えによって、酵素活性を増強することによっても行うことが出来る。酵素活性の増強は、例えば、L-アミノ酸の生合成に関与する酵素をコードする遺伝子の発現が増強するように細菌を改変する方法を挙げることができる。遺伝子の発現を増強するための方法としては、遺伝子を含むDNA断片を、適当なプラスミド、例えば微生物内でプラスミドの複製増殖機能を司る遺伝子を少なくとも含むプラスミドベクターに導入した増幅プラスミドを導入すること、または、これらの遺伝子を染色体上で接合、転移等により多コピー化すること、またこれらの遺伝子のプロモーター領域に変異を導入することにより達成することもできる(国際公開パンフレットWO95/34672号参照)。 Also, the imparting or enhancing of the ability to produce L-amino acid can be performed by enhancing the enzyme activity by gene recombination. The enzyme activity can be enhanced by, for example, a method of modifying a bacterium so that expression of a gene encoding an enzyme involved in L-amino acid biosynthesis is enhanced. As a method for enhancing the expression of a gene, introducing an amplified plasmid in which a DNA fragment containing the gene is introduced into an appropriate plasmid, for example, a plasmid vector containing at least a gene responsible for the replication replication function of the plasmid in a microorganism, Alternatively, it can be achieved by making multiple copies of these genes on the chromosome by joining, transferring, etc., and introducing mutations into the promoter regions of these genes (see International Publication WO95 / 34672).
 上記増幅プラスミドまたは染色体上に目的遺伝子を導入する場合、これらの遺伝子を発現させるためのプロモーターはコリネ型細菌において機能するものであればいかなるプロモーターであっても良く、用いる遺伝子自身のプロモーターであってもよいし、改変したものでもよい。コリネ型細菌で強力に機能するプロモーターを適宜選択することや、プロモーターの-35、-10領域をコンセンサス配列に近づけることによっても遺伝子の発現量の調節が可能である。以上のような、酵素遺伝子の発現を増強する方法は、WO00/18935号パンフレット、欧州特許出願公開1010755号明細書等に記載されている。 When the target genes are introduced onto the amplification plasmid or chromosome, the promoter for expressing these genes may be any promoter that functions in coryneform bacteria, and the promoter of the gene itself used. Or may be modified. The expression level of the gene can also be regulated by appropriately selecting a promoter that functions strongly in coryneform bacteria, or by bringing the −35 and −10 regions of the promoter closer to the consensus sequence. The method for enhancing the expression of the enzyme gene as described above is described in WO00 / 18935 pamphlet, European Patent Application Publication No. 1010755, and the like.
 以下、細菌にL-アミノ酸生産能を付与する具体的方法、及びL-アミノ酸生産能が付与された細菌について例示する。 Hereinafter, specific methods for imparting L-amino acid-producing ability to bacteria and bacteria imparted with L-amino acid-producing ability will be exemplified.
L-スレオニン生産菌
 L-スレオニン生産能を有する微生物として好ましいものは、L-スレオニン生合成系酵素の1種又は2種以上の活性が増強された細菌が挙げられる。L-スレオニン生合成系酵素としては、アスパルトキナーゼIII(lysC)、アスパルテートセミアルデヒドデヒドロゲナーゼ(asd)、アスパルトキナーゼI(thrA)、ホモセリンキナーゼ(thrB)、スレオニンシンターゼ(thrC)、アスパルテートアミノトランスフェラーゼ(アスパルテートトランスアミナーゼ)(aspC)が挙げられる。カッコ内は、その遺伝子の略記号である(以下の記載においても同様)。これらの酵素の中では、アスパルテートセミアルデヒドデヒドロゲナーゼ、アスパルトキナーゼI、ホモセリンキナーゼ、アスパルテートアミノトランスフェラーゼ、及びスレオニンシンターゼが特に好ましい。L-スレオニン生合成系遺伝子は、スレオニン分解が抑制されたエシェリヒア属細菌に導入してもよい。スレオニン分解が抑制されたエシェリヒア属細菌としては、例えば、スレオニンデヒドロゲナーゼ活性が欠損したTDH6株(特開2001-346578号)等が挙げられる。
L-threonine producing bacteria Preferred microorganisms having L-threonine producing ability include bacteria having enhanced activity of one or more L-threonine biosynthetic enzymes. L-threonine biosynthetic enzymes include aspartokinase III (lysC), aspartate semialdehyde dehydrogenase (asd), aspartokinase I (thrA), homoserine kinase (thrB), threonine synthase (thrC), aspartate amino Examples include transferase (aspartate transaminase) (aspC). The parentheses are abbreviations for the genes (the same applies to the following description). Of these enzymes, aspartate semialdehyde dehydrogenase, aspartokinase I, homoserine kinase, aspartate aminotransferase, and threonine synthase are particularly preferred. The L-threonine biosynthesis gene may be introduced into a bacterium belonging to the genus Escherichia in which threonine degradation is suppressed. Examples of the Escherichia bacterium in which threonine degradation is suppressed include, for example, the TDH6 strain lacking threonine dehydrogenase activity (Japanese Patent Laid-Open No. 2001-346578).
 L-スレオニン生合成系酵素は、最終産物のL-スレオニンによって酵素活性が抑制される。従って、L-スレオニン生産菌を構築するためには、L-スレオニンによるフィードバック阻害を受けないようにL-スレオニン生合成系遺伝子を改変することが望ましい。また、上記thrA、thrB、thrC遺伝子は、スレオニンオペロンを構成しているが、スレオニンオペロンは、アテニュエーター構造を形成しており、スレオニンオペロンの発現は、培養液中のイソロイシン、スレオニンに阻害を受け、アテニュエーションにより発現が抑制される。この改変は、アテニュエーション領域のリーダー配列あるいは、アテニュエーターを除去することにより達成出来る(Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194:59-69 (1987); 国際公開第02/26993号パンフレット; 国際公開第2005/049808号パンフレット参照)。 The enzyme activity of the L-threonine biosynthetic enzyme is suppressed by the final product, L-threonine. Therefore, in order to construct an L-threonine-producing bacterium, it is desirable to modify the L-threonine biosynthetic gene so that it is not subject to feedback inhibition by L-threonine. The thrA, thrB, and thrC genes constitute the threonine operon, but the threonine operon forms an attenuator structure, and the expression of the threonine operon inhibits isoleucine and threonine in the culture medium. The expression is suppressed by attenuation. This modification can be achieved by removing the leader sequence or attenuator in the attenuation region (Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M ., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194: 59-69 (1987); International Publication No. 02/26993; International Publication No. 2005/049808) .
 スレオニンオペロンの上流には、固有のプロモーターが存在するが、非天然のプロモーターに置換してもよいし(WO98/04715号パンフレット参照)、スレオニン生合成関与遺伝子の発現がラムダファ-ジのリプレッサーおよびプロモーターにより支配されるようなスレオニンオペロンを構築してもよい。(欧州特許第0593792号明細書参照)また、L-スレオニンによるフィードバック阻害を受けないように細菌を改変するために、α-amino-β-hydroxyvaleric acid (AHV)に耐性な菌株を選抜することも可能である。 A unique promoter exists upstream of the threonine operon, but it may be replaced with a non-natural promoter (see WO98 / 04715 pamphlet), and the expression of a gene involved in threonine biosynthesis is expressed by a lambda phage repressor and A threonine operon as governed by a promoter may be constructed. (See European Patent No. 0593792) In order to modify bacteria so that it is not subject to feedback inhibition by L-threonine, a strain resistant to α-amino-β-hydroxyvaleric acid (AHV) may be selected. Is possible.
 このようにL-スレオニンによるフィ-ドバック阻害を受けないように改変されたスレオニンオペロンは、宿主内でコピー数が上昇しているか、あるいは強力なプロモーターに連結し、発現量が向上していることが好ましい。コピー数の上昇は、プラスミドによる増幅の他、トランスポゾン、Mu-ファ-ジ等でゲノム上にスレオニンオペロンを転移させることによっても達成出来る。 Thus, the threonine operon modified so as not to be subjected to feedback inhibition by L-threonine has an increased copy number in the host or is linked to a strong promoter to improve the expression level. Is preferred. The increase in copy number can be achieved by transferring the threonine operon on the genome by transposon, Mu-fuzzy, etc., in addition to amplification by plasmid.
 L-スレオニン生合成系酵素以外にも、解糖系、TCA回路、呼吸鎖に関する遺伝子や遺伝子の発現を制御する遺伝子、糖の取り込み遺伝子を強化することも好適である。これらのL-スレオニン生産に効果がある遺伝子としては、トランスヒドロナーゼ(pntAB)遺伝子(欧州特許733712号明細書)、ホスホエノールピルビン酸カルボキシラーゼ遺伝子(pepC)(国際公開95/06114号パンフレット)、ホスホエノールピルビン酸シンターゼ遺伝子(pps)(欧州特許877090号明細書)、コリネ型細菌あるいはバチルス属細菌のピルビン酸カルボキシラーゼ遺伝子(国際公開99/18228号パンフレット、欧州出願公開1092776号明細書)が挙げられる。 In addition to the L-threonine biosynthetic enzyme, it is also preferable to enhance the glycolytic system, TCA cycle, genes related to the respiratory chain, genes controlling gene expression, and sugar uptake genes. These genes effective for L-threonine production include transhydronase (pntAB) gene (European Patent 733712), phosphoenolpyruvate carboxylase gene (pepC) (International Publication No. 95/06114 pamphlet), phospho Examples include the enol pyruvate synthase gene (pps) (European Patent No. 877090), the pyruvate carboxylase gene of Coryneform bacteria or Bacillus bacteria (International Publication No. 99/18228, European Application Publication No. 1092776).
 また、L-スレオニンに耐性を付与する遺伝子、L-ホモセリンに耐性を付与する遺伝子の発現を強化することや、宿主にL-スレオニン耐性、L-ホモセリン耐性を付与することも好適である。耐性を付与する遺伝子としては、rhtA遺伝子(Res. Microbiol. 154:123-135 (2003))、rhtB遺伝子(欧州特許出願公開第0994190号明細書)、rhtC遺伝子(欧州特許出願公開第1013765号明細書)、yfiK、yeaS遺伝子(欧州特許出願公開第1016710号明細書)が挙げられる。また宿主にL-スレオニン耐性を付与する方法は、欧州特許出願公開第0994190号明細書や、国際公開第90/04636号パンフレット記載の方法を参照出来る。 It is also preferable to enhance the expression of a gene conferring resistance to L-threonine and a gene conferring resistance to L-homoserine, or confer L-threonine resistance and L-homoserine resistance to the host. Examples of genes that confer resistance include rhtA gene (Res. Microbiol. 154: 123-135 (2003)), rhtB gene (European Patent Application Publication No. 0994190), rhtC gene (European Patent Application Publication No. 1013765) ), YfiK, yeaS gene (European Patent Application Publication No. 1016710). For methods for conferring L-threonine resistance to the host, the methods described in European Patent Application Publication No. 0994190 and International Publication No. 90/04636 can be referred to.
 L-スレオニン生産菌又はそれを誘導するための親株の例としては、E. coli TDH-6/pVIC40 (VKPM B-3996) (米国特許第5,175,107号、米国特許第5,705,371号)、E. coli 472T23/pYN7 (ATCC 98081) (米国特許第5,631,157号)、E. coli NRRL-21593 (米国特許第5,939,307号)、E. coli FERM BP-3756 (米国特許第5,474,918号)、E. coli FERM BP-3519及びFERM BP-3520 (米国特許第5,376,538号)、E. coli MG442 (Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978))、E. coli VL643及びVL2055 (EP 1149911 A)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。 Examples of L-threonine-producing bacteria or parent strains for inducing them include E. coli TDH-6 / pVIC40 (VKPM B-3996) (US Patent No. 5,175,107, US Patent No. 5,705,371), E. coli 472T23 / pYN7 (ATCC 98081) (U.S. Pat.No. 5,631,157), E.coli NRRL-21593 (U.S. Pat.No. 5,939,307), E.coli FERM BP-3756 (U.S. Pat.No. 5,474,918), E.coli FERM BP-3519 And FERM BP-3520 (U.S. Patent No. 5,376,538), E. coli MG442 (Gusyatiner et al., Genetikaet (in Russian), 14, 947-956 (1978)), E. coli VL643 and VL2055 (EP 1149911 A) Strains belonging to the genus Escherichia such as, but not limited to.
 TDH-6株はthrC遺伝子を欠損し、スクロース資化性であり、また、そのilvA遺伝子がリーキー(leaky)変異を有する。この株はまた、rhtA遺伝子に、高濃度のスレオニンまたはホモセリンに対する耐性を付与する変異を有する。B-3996株は、RSF1010由来ベクターに、変異thrA遺伝子を含むthrA*BCオペロンを挿入したプラスミドpVIC40を保持する。この変異thrA遺伝子は、スレオニンによるフィードバック阻害が実質的に解除されたアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする。B-3996株は、1987年11月19日、オールユニオン・サイエンティフィック・センター・オブ・アンチビオティクス(Nagatinskaya Street 3-A, 117105 Moscow, Russia)に、受託番号RIA 1867で寄託されている。この株は、また、1987年4月7日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) に、受託番号B-3996で寄託されている。 The TDH-6 strain lacks the thrC gene, is sucrose-utilizing, and the ilvA gene has a leaky mutation. This strain also has a mutation in the rhtA gene that confers resistance to high concentrations of threonine or homoserine. The B-3996 strain carries the plasmid pVIC40 in which the thrA * BC operon containing the mutated thrA gene is inserted into the RSF1010-derived vector. This mutant thrA gene encodes aspartokinase homoserine dehydrogenase I which is substantially desensitized to feedback inhibition by threonine. B-3996 was deposited on 19 November 1987 at the All Union Scientific Center of Antibiotics (Nagatinskaya Street 3-A, 117105 Moscow, Russia) under the deposit number RIA 1867. . This stock was also deposited on April 7, 1987 at Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) under accession number B-3996 Has been.
 E. coli VKPM B-5318 (EP 0593792B)も、L-スレオニン生産菌又はそれを誘導するための親株として使用できる。B-5318株は、イソロイシン非要求性であり、プラスミドpVIC40中のスレオニンオペロンの制御領域が、温度感受性ラムダファージC1リプレッサー及びPRプロモーターにより置換されている。VKPM B-5318は、1990年5月3日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM B-5318で国際寄託されている。 E. coli VKPM B-5318 (EP 0593792B) can also be used as an L-threonine producing bacterium or a parent strain for inducing it. The B-5318 strain is isoleucine non-required, and the control region of the threonine operon in the plasmid pVIC40 is replaced by a temperature sensitive lambda phage C1 repressor and a PR promoter. VKPM B-5318 was assigned to Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on May 3, 1990 under the accession number VKPM B-5318. Has been deposited internationally.
 Escherichia coliのアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードするthrA遺伝子は明らかにされている(ヌクレオチド番号337~2799, GenBank accession NC_000913.2, gi: 49175990)。thrA遺伝子は、E. coli K-12の染色体において、thrL遺伝子とthrB遺伝子との間に位置する。Escherichia coliのホモセリンキナーゼをコードするthrB遺伝子は明らかにされている(ヌクレオチド番号2801~3733, GenBank accession NC_000913.2, gi: 49175990)。thrB遺伝子は、E. coli K-12の染色体において、thrA遺伝子とthrC遺伝子との間に位置する。Escherichia coliのスレオニンシンターゼをコードするthrC遺伝子は明らかにされている(ヌクレオチド番号3734~5020, GenBank accession NC_000913.2, gi: 49175990)。thrC遺伝子は、E. coli K-12の染色体において、thrB遺伝子とyaaXオープンリーディングフレームとの間に位置する。これら三つの遺伝子は、全て、単一のスレオニンオペロンとして機能する。スレオニンオペロンの発現を増大させるには、転写に影響するアテニュエーター領域を、好ましくは、オペロンから除去する(WO2005/049808, WO2003/097839)。 The thrA gene encoding aspartokinase homoserine dehydrogenase I of Escherichia coli has been clarified (nucleotide numbers 337 to 2799, “GenBank accession” NC_000913.2, “gi”: “49175990”). The thrA gene is located between the thrL gene and the thrB gene in the chromosome of E. coli K-12. The thrB gene encoding homoserine kinase of Escherichia coli has been elucidated (nucleotide numbers 2801 to 3733, GenBank accession NC_000913.2, gi: 49175990). The thrB gene is located between the thrA gene and the thrC gene in the chromosome of E. coli K-12. The thrC gene encoding the threonine synthase of Escherichia coli has been elucidated (nucleotide numbers 3734-5020, GenBank accession NC_000913.2, gi: 49175990). The thrC gene is located between the thrB gene and the yaaX open reading frame in the chromosome of E. coli K-12. All three of these genes function as a single threonine operon. To increase the expression of the threonine operon, the attenuator region that affects transcription is preferably removed from the operon (WO2005 / 049808, WO2003 / 097839).
 スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異thrA遺伝子、ならびに、thrB遺伝子及びthrC遺伝子は、スレオニン生産株E. coli VKPM B-3996に存在する周知のプラスミドpVIC40から一つのオペロンとして取得できる。プラスミドpVIC40の詳細は、米国特許第5,705,371号に記載されている。 The mutant thrA gene encoding aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine, and the thrB and thrC genes are one operon from the well-known plasmid pVIC40 present in the threonine producing strain E. coli VKPM B-3996. Can be obtained as Details of plasmid pVIC40 are described in US Pat. No. 5,705,371.
 rhtA遺伝子は、グルタミン輸送系の要素をコードするglnHPQ オペロンに近いE. coli染色体の18分に存在する。rhtA遺伝子は、ORF1 (ybiF遺伝子, ヌクレオチド番号764~1651, GenBank accession number AAA218541, gi:440181)と同一であり、pexB遺伝子とompX遺伝子との間に位置する。ORF1によりコードされるタンパク質を発現するユニットは、rhtA遺伝子と呼ばれている(rht: ホモセリン及びスレオニンに耐性)。また、rhtA23変異が、ATG開始コドンに対して-1位のG→A置換であることが判明している(ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A)。 The rhtA gene is present on the 18th minute of the E. 染色体 coli chromosome close to the glnHPQ operon, which encodes an element of the glutamine transport system. The rhtA gene is identical to ORF1 (ybiF gene, nucleotide numbers 764 to 1651, GenBank accession number AAA218541, gi: 440181), and is located between the pexB gene and the ompX gene. The unit that expresses the protein encoded by ORF1 is called rhtA gene (rht: resistant to homoserine and threonine). It has also been found that the rhtA23 mutation is a G → A substitution at position -1 relative to the ATG start codon (ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A).
 E. coliのasd遺伝子は既に明らかにされており(ヌクレオチド番号3572511~3571408, GenBank accession NC_000913.1, gi:16131307)、その遺伝子の塩基配列に基づいて作製されたプライマーを用いるPCRにより得ることができる(White, T.J. et al., Trends Genet., 5, 185 (1989)参照)。他の微生物のasd遺伝子も同様に得ることができる。 The E. coli asd gene has already been clarified (nucleotide numbers 3572511 to 3571408, GenBank accession NC_000913.1, gi: 16131307), and can be obtained by PCR using primers prepared based on the nucleotide sequence of the gene. (See White, TJ et al., Trends Genet., 5, 185 (1989)). The asd gene of other microorganisms can be obtained similarly.
 また、E. coliのaspC遺伝子も既に明らかにされており(ヌクレオチド番号983742~984932, GenBank accession NC_000913.1, gi:16128895)、PCRにより得ることができる。他の微生物のaspC遺伝子も同様に得ることができる。 In addition, the aspC gene of E.coli has already been clarified (nucleotide numbers 983742 to 984932, GenBank accession NC_000913.1, gi: 16128895) and can be obtained by PCR. The aspC gene of other microorganisms can be obtained similarly.
L-リジン生産菌
 エシェリヒア属に属するL-リジン生産菌の例としては、L-リジンアナログに耐性を有する変異株が挙げられる。L-リジンアナログはエシェリヒア属に属する細菌の生育を阻害するが、この阻害は、L-リジンが培地に共存するときには完全にまたは部分的に解除される。L-リジンアナログの例としては、オキサリジン、リジンヒドロキサメート、S-(2-アミノエチル)-L-システイン(AEC)、γ-メチルリジン、α-クロロカプロラクタムなどが挙げられるが、これらに限定されない。これらのリジンアナログに対して耐性を有する変異株は、エシェリヒア属に属する細菌を通常の人工変異処理に付すことによって得ることができる。L-リジンの生産に有用な細菌株の具体例としては、Escherichia coli AJ11442 (FERM BP-1543, NRRL B-12185; 米国特許第4,346,170号参照)及びEscherichia coli VL611が挙げられる。これらの微生物では、アスパルトキナーゼのL-リジンによるフィードバック阻害が解除されている。
Examples of L-lysine-producing bacteria belonging to the genus Escherichia include mutants having resistance to L-lysine analogs. L-lysine analogues inhibit the growth of bacteria belonging to the genus Escherichia, but this inhibition is completely or partially desensitized when L-lysine is present in the medium. Examples of L-lysine analogs include, but are not limited to, oxalysine, lysine hydroxamate, S- (2-aminoethyl) -L-cysteine (AEC), γ-methyllysine, α-chlorocaprolactam, and the like. . Mutant strains resistant to these lysine analogs can be obtained by subjecting bacteria belonging to the genus Escherichia to normal artificial mutation treatment. Specific examples of bacterial strains useful for the production of L-lysine include Escherichia coli AJ11442 (FERM BP-1543, NRRL B-12185; see US Pat. No. 4,346,170) and Escherichia coli VL611. In these microorganisms, feedback inhibition of aspartokinase by L-lysine is released.
 L-リジン生産菌又はそれを誘導するための親株の例としては、L-リジン生合成系酵素の1種又は2種以上の活性が増強されている株も挙げられる。かかる酵素の例としては、ジヒドロジピコリン酸シンターゼ(dapA)、アスパルトキナーゼ(lysC)、ジヒドロジピコリン酸レダクターゼ(dapB)、ジアミノピメリン酸デカルボキシラーゼ(lysA)、ジアミノピメリン酸デヒドロゲナーゼ(ddh) (米国特許第6,040,160号)、フォスフォエノールピルビン酸カルボキシラーゼ(ppc)、アスパルテートセミアルデヒドデヒドロゲナーゼ遺伝子、ジアミノピメリン酸エピメラーゼ(dapF)、テトラヒドロジピコリン酸スクシニラーゼ(dapD)、スクシニルジアミノピメリン酸デアシラーゼ(dapE)及びアスパルターゼ(aspA) (EP 1253195 A)が挙げられるが、これらに限定されない。これらの酵素の中では、ジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、フォスフォエノールピルビン酸カルボキシラーゼ、アスパルテートアミノトランスフェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパルテートセミアルデヒドデヒドロゲナーゼ、テトラヒドロジピコリン酸スクシニラーゼ、及び、スクシニルジアミノピメリン酸デアシラーゼが特に好ましい。また、親株は、エネルギー効率に関与する遺伝子(cyo) (EP 1170376 A)、ニコチンアミドヌクレオチドトランスヒドロゲナーゼをコードする遺伝子(pntAB) (米国特許第5,830,716号)、ybjE遺伝子(WO2005/073390)、または、これらの組み合わせの発現レベルが増大していてもよい。 Examples of L-lysine-producing bacteria or parent strains for inducing them include strains in which one or more activities of L-lysine biosynthetic enzymes are enhanced. Examples of such enzymes include dihydrodipicolinate synthase (dapA), aspartokinase (lysC), dihydrodipicolinate reductase (dapB), diaminopimelate decarboxylase (lysA), diaminopimelate dehydrogenase (ddh) (US Pat.No. 6,040,160). ), Phosphoenolpyruvate carboxylase (ppc), aspartate semialdehyde dehydrogenase gene, diaminopimelate epimerase (dapF), tetrahydrodipicolinate succinylase (dapD), succinyl diaminopimelate deacylase (dapE) and aspartase (aspA) ( EP 1253195 A), but is not limited to these. Among these enzymes, dihydrodipicolinate reductase, diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semialdehyde dehydrogenase, tetrahydrodipicolinate succinylase, and Succinyl diaminopimelate deacylase is particularly preferred. The parent strain is a gene involved in energy efficiency (cyo) (EP 1170376 A), a gene encoding nicotinamide nucleotide transhydrogenase (pntAB) (US Patent No. 5,830,716), ybjE gene (WO2005 / 073390), or The expression level of these combinations may be increased.
 L-リジン生産菌又はそれを誘導するための親株の例としては、L-リジンの生合成経路から分岐してL-リジン以外の化合物を生成する反応を触媒する酵素の活性が低下または欠損している株も挙げられる。L-リジンの生合成経路から分岐してL-リジン以外の化合物を生成する反応を触媒する酵素の例としては、ホモセリンデヒドロゲナーゼ、リジンデカルボキシラーゼ(米国特許第5,827,698号)、及び、リンゴ酸酵素(WO2005/010175)が挙げられる。 Examples of L-lysine-producing bacteria or parent strains for deriving the same include reduction or loss of the activity of enzymes that catalyze reactions that branch off from the L-lysine biosynthetic pathway to produce compounds other than L-lysine. There are also stocks. Examples of enzymes that catalyze reactions that branch off from the biosynthetic pathway of L-lysine to produce compounds other than L-lysine include homoserine dehydrogenase, lysine decarboxylase (US Pat. No. 5,827,698), and malate enzyme ( WO2005 / 010175).
 好ましいL-リジン生産菌として、エシェリヒア・コリWC196ΔcadAΔldcC/pCABD2が挙げられる(WO2006/078039)。この菌株は、WC196株より、リジンデカルボキシラーゼをコードするcadA及びldcC遺伝子を破壊し、リジン生合成系遺伝子を含むプラスミドpCABD2(米国特許第6,040,160号)を導入することにより構築した株である。WC196株は、E.coli K-12に由来するW3110株から取得された株で、352位のスレオニンをイソロイシンに置換することによりL-リジンによるフィードバック阻害が解除されたアスパルトキナーゼIIIをコードする変異型lysC遺伝子(米国特許第5,661,012号)でW3110株の染色体上の野生型lysC遺伝子を置き換えた後、AEC耐性を付与することにより育種された(米国特許第5,827,698号)。WC196株は、Escherichia coli AJ13069と命名され、1994年12月6日、工業技術院生命工学工業技術研究所(現 独立行政法人 産業技術総合研究所 特許生物寄託センター、〒305-8566 日本国茨城県つくば市東1丁目1番地1 中央第6)に受託番号FERM P-14690として寄託され、1995年9月29日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-5252が付与されている(米国特許第5,827,698号)。WC196ΔcadAΔldcC自体も、好ましいL-リジン生産菌である。WC196ΔcadAΔldcCは、AJ110692と命名され、2008年10月7日独立行政法人 産業技術総合研究所 特許生物寄託センター(〒305-8566 日本国茨城県つくば市東1丁目1番地1 中央第6)に国際寄託され、受託番号FERM BP-11027が付与されている。 A preferred L-lysine-producing bacterium includes Escherichia coli WC196ΔcadAΔldcC / pCABD2 (WO2006 / 078039). This strain was constructed by disrupting the cadA and ldcC genes encoding lysine decarboxylase and introducing plasmid pCABD2 (US Pat. No. 6,040,160) containing a lysine biosynthesis gene from WC196 strain. The WC196 strain was obtained from the W3110 strain derived from E. coli K-12, and encodes aspartokinase III in which feedback inhibition by L-lysine was released by replacing threonine at position 352 with isoleucine. After the wild type lysC gene on the chromosome of the W3110 strain was replaced with a mutant lysC gene (US Pat. No. 5,661,012), it was bred by conferring AEC resistance (US Pat. No. 5,827,698). The WC196 strain was named Escherichia coli AJ13069. On December 6, 1994, the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently National Institute of Advanced Industrial Science and Technology Patent Biological Depositary Center, 305-8566 茨 Ibaraki, Japan Deposited as FERM P-14690 at Tsukuba City Higashi 1-chome 1-1 1 Chuo 6), transferred to international deposit based on the Budapest Treaty on September 29, 1995, and assigned FERM BP-5252 (US Pat. No. 5,827,698). WC196ΔcadAΔldcC itself is also a preferred L-lysine-producing bacterium. WC196ΔcadAΔldcC was named AJ110692, and was deposited internationally on October 7, 2008, at the National Institute of Advanced Industrial Science and Technology, the Patent Biological Deposit Center (1-6 Chuo, 1-chome, 1-chome, Tsukuba, Ibaraki, Japan, 305-8566) The accession number is FERM BP-11027.
 pCABD2は、L-リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のジヒドロジピコリン酸合成酵素(DDPS)をコードする変異型dapA遺伝子と、L-リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のアスパルトキナーゼIIIをコードする変異型lysC遺伝子と、エシェリヒア・コリ由来のジヒドロジピコリン酸レダクターゼをコードするdapB遺伝子と、ブレビバクテリウム・ラクトファーメンタム由来ジアミノピメリン酸デヒドロゲナーゼをコードするddh遺伝子を含んでいる(国際公開第WO95/16042、WO01/53459号パンフレット)。 pCABD2 is a mutant dapA gene encoding dihydrodipicolinate synthase (DDPS) derived from Escherichia coli having a mutation that is desensitized to feedback inhibition by L-lysine, and a mutation that is desensitized to feedback inhibition by L-lysine. A mutant lysC gene encoding aspartokinase III derived from Escherichia coli, dapB gene encoding dihydrodipicolinate reductase derived from Escherichia coli, and ddh encoding a diaminopimelate dehydrogenase derived from Brevibacterium lactofermentum Contains genes (International Publication Nos. WO95 / 16042 and WO01 / 53459).
L-システイン生産菌
 L-システイン生産菌又はそれを誘導するための親株の例としては、フィードバック阻害耐性のセリンアセチルトランスフェラーゼをコードする異なるcysEアレルで形質転換されたE. coli JM15(米国特許第6,218,168号、ロシア特許出願第2003121601号)、細胞に毒性の物質を排出するのに適したタンパク質をコードする過剰発現遺伝子を有するE. coli W3110 (米国特許第5,972,663号)、システインデスルフォヒドラーゼ活性が低下したE. coli株 (JP11155571A2)、cysB遺伝子によりコードされる正のシステインレギュロンの転写制御因子の活性が上昇したE. coli W3110 (WO0127307A1)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
Examples of L-cysteine producing bacteria L-cysteine producing bacteria or parent strains for deriving them include E. coli JM15 (US Pat. No. 6,218,168) transformed with a different cysE allele encoding a feedback inhibition resistant serine acetyltransferase. , Russian Patent Application No. 2003121601), E. coli W3110 (US Pat.No. 5,972,663) having an overexpressed gene encoding a protein suitable for excretion of a substance toxic to cells, cysteine desulfohydrase activity These include strains belonging to the genus Escherichia such as E. coli strains that have been reduced (JP11155571A2) and E. coli W3110 (WO0127307A1) that have increased the activity of the transcriptional regulator of the positive cysteine regulon encoded by the cysB gene. It is not limited.
L-ロイシン生産菌
 L-ロイシン生産菌又はそれを誘導するための親株の例としては、ロイシン耐性のE. coil株 (例えば、57株 (VKPM B-7386, 米国特許第6,124,121号))またはβ-2-チエニルアラニン、3-ヒドロキシロイシン、4-アザロイシン、5,5,5-トリフルオロロイシンなどのロイシンアナログ耐性のE.coli株(特公昭62-34397号及び特開平8-70879号)、WO96/06926に記載された遺伝子工学的方法で得られたE. coli株、E. coli H-9068 (特開平8-70879号)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
Examples of L-leucine-producing bacteria L-leucine-producing bacteria or parent strains for inducing them include leucine-resistant E. coil strains (eg, 57 strains (VKPM B-7386, US Pat. No. 6,124,121)) or β E. coli strains resistant to leucine analogs such as -2-thienylalanine, 3-hydroxyleucine, 4-azaleucine, 5,5,5-trifluoroleucine (Japanese Patent Publication No. 62-34397 and JP-A-8-70879), Examples include, but are not limited to, strains belonging to the genus Escherichia such as E. coli strains and E. coli H-9068 (JP-A-8-70879) obtained by the genetic engineering method described in WO96 / 06926. .
 本発明に用いる細菌は、L-ロイシン生合成に関与する遺伝子の1種以上の発現が増大されることにより改良されていてもよい。このような遺伝子の例としては、好ましくはL-ロイシンによるフィードバック阻害が解除されたイソプロピルマレートシンターゼをコードする変異leuA遺伝子(米国特許第6,403,342号)に代表される、leuABCDオペロンの遺伝子が挙げられる。さらに、本発明に用いる細菌は、細菌の細胞からL-アミノ酸を排出するタンパク質をコードする遺伝子の1種以上の発現が増大されることにより改良されていてもよい。このような遺伝子の例としては、b2682遺伝子及びb2683遺伝子(ygaZH遺伝子) (EP 1239041 A2)が挙げられる。 The bacterium used in the present invention may be improved by increasing the expression of one or more genes involved in L-leucine biosynthesis. As an example of such a gene, a gene of leuABCD operon represented by a mutant leuA gene (US Pat. No. 6,403,342) encoding isopropyl malate synthase which is preferably desensitized to feedback inhibition by L-leucine can be mentioned. . Furthermore, the bacterium used in the present invention may be improved by increasing the expression of one or more genes encoding proteins that excrete L-amino acids from bacterial cells. Examples of such genes include b2682 gene and b2683 gene (ygaZH gene) (EP 1239041 A2).
L-ヒスチジン生産菌
 L-ヒスチジン生産菌又はそれを誘導するための親株の例としては、E. coli 24株 (VKPM B-5945, RU2003677)、E. coli 80株 (VKPM B-7270, RU2119536)、E. coli NRRL B-12116 - B12121 (米国特許第4,388,405号)、E. coli H-9342 (FERM BP-6675)及びH-9343 (FERM BP-6676) (米国特許第6,344,347号)、E. coli H-9341 (FERM BP-6674) (EP1085087)、E. coli AI80/pFM201 (米国特許第6,258,554号)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
Examples of L-histidine-producing bacteria L-histidine-producing bacteria or parent strains for inducing them include E. coli 24 strain (VKPM B-5945, RU2003677), E. coli 80 strain (VKPM B-7270, RU2119536) E. coli NRRL B-12116-B12121 (U.S. Pat.No. 4,388,405), E. coli H-9342 (FERM BP-6675) and H-9343 (FERM BP-6676) (U.S. Pat.No. 6,344,347), E. coli. Examples include, but are not limited to, strains belonging to the genus Escherichia, such as E. coli H-9341 (FERM BP-6674) (EP1085087) and E. coli AI80 / pFM201 (US Pat. No. 6,258,554).
 L-ヒスチジン生産菌又はそれを誘導するための親株の例としては、L-ヒスチジン生合成系酵素をコードする遺伝子の1種以上の発現が増大した株も挙げられる。かかる遺伝子の例としては、ATPフォスフォリボシルトランスフェラーゼ遺伝子(hisG)、フォスフォリボシルAMPサイクロヒドロラーゼ遺伝子(hisI)、フォスフォリボシル-ATPピロフォスフォヒドロラーゼ遺伝子(hisI)、フォスフォリボシルフォルミミノ-5-アミノイミダゾールカルボキサミドリボタイドイソメラーゼ遺伝子(hisA)、アミドトランスフェラーゼ遺伝子(hisH)、ヒスチジノールフォスフェイトアミノトランスフェラーゼ遺伝子(hisC)、ヒスチジノールフォスファターゼ遺伝子(hisB)、ヒスチジノールデヒドロゲナーゼ遺伝子(hisD)などが挙げられる。 Examples of L-histidine-producing bacteria or parent strains for inducing them include strains in which expression of one or more genes encoding L-histidine biosynthetic enzymes are increased. Examples of such genes include ATP phosphoribosyltransferase gene (hisG), phosphoribosyl AMP cyclohydrolase gene (hisI), phosphoribosyl-ATP pyrophosphohydrolase gene (hisI), phosphoribosylformimino-5- Examples include aminoimidazole carboxamide ribotide isomerase gene (hisA), amide transferase gene (hisH), histidinol phosphate aminotransferase gene (hisC), histidinol phosphatase gene (hisB), and histidinol dehydrogenase gene (hisD). It is done.
 hisG及びhisBHAFIにコードされるL-ヒスチジン生合成系酵素はL-ヒスチジンにより阻害されることが知られており、従って、L-ヒスチジン生産能は、ATPフォスフォリボシルトランスフェラーゼ遺伝子(hisG)にフィードバック阻害への耐性を付与する変異を導入することにより効率的に増大させることができる(ロシア特許第2003677号及び第2119536号)。 L-histidine biosynthetic enzymes encoded by hisG and hisBHAFI are known to be inhibited by L-histidine, and therefore L-histidine-producing ability is feedback-inhibited by the ATP phosphoribosyltransferase gene (hisG). Can be efficiently increased by introducing mutations that confer resistance to (Russian Patent Nos. 2003677 and 2119536).
 L-ヒスチジン生産能を有する株の具体例としては、L-ヒスチジン生合成系酵素をコードするDNAを保持するベクターを導入したE. coli FERM-P 5038及び5048 (特開昭56-005099号)、アミノ酸輸送の遺伝子を導入したE.coli株(EP1016710A)、スルファグアニジン、DL-1,2,4-トリアゾール-3-アラニン及びストレプトマイシンに対する耐性を付与したE. coli 80株(VKPM B-7270, ロシア特許第2119536号)などが挙げられる。 Specific examples of strains having the ability to produce L-histidine include E. coli FERM-P 5038 and 5048 introduced with a vector carrying a DNA encoding an L-histidine biosynthetic enzyme (Japanese Patent Laid-Open No. 56-005099). E. coli strain (EP1016710A) introduced with a gene for amino acid transport, E. coli 80 strain (VKPM B-7270) to which resistance to sulfaguanidine, DL-1,2,4-triazole-3-alanine and streptomycin was imparted , Russian Patent No. 2119536).
L-グルタミン酸生産菌
 L-グルタミン酸生産菌又はそれを誘導するための親株の例としては、E. coli VL334thrC+ (EP 1172433)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。E. coli VL334 (VKPM B-1641)は、thrC遺伝子及びilvA遺伝子に変異を有するL-イソロイシン及びL-スレオニン要求性株である(米国特許第4,278,765号)。thrC遺伝子の野生型アレルは、野生型E. coli K12株 (VKPM B-7)の細胞で増殖したバクテリオファージP1を用いる一般的形質導入法により導入された。この結果、L-イソロイシン要求性のL-グルタミン酸生産菌VL334thrC+ (VKPM B-8961) が得られた。
Examples of L-glutamic acid-producing bacteria L-glutamic acid-producing bacteria or parent strains for inducing them include, but are not limited to, strains belonging to the genus Escherichia such as E. coli VL334thrC + (EP 1172433). E. coli VL334 (VKPM B-1641) is an L-isoleucine and L-threonine auxotroph having a mutation in the thrC gene and the ilvA gene (US Pat. No. 4,278,765). The wild type allele of the thrC gene was introduced by a general transduction method using bacteriophage P1 grown on cells of wild type E. coli K12 strain (VKPM B-7). As a result, L-isoleucine-requiring L-glutamic acid-producing bacterium VL334thrC + (VKPM B-8961) was obtained.
 L-グルタミン酸生産菌又はそれを誘導するための親株の例としては、L-グルタミン酸生合成系酵素1種又は2種以上の活性が増強された株が挙げられるが、これらに限定されない。かかる遺伝子の例としては、グルタメートデヒドロゲナーゼ(gdhA)、グルタミンシンテターゼ(glnA)、グルタメートシンテターゼ(gltAB)、イソシトレートデヒドロゲナーゼ(icdA)、アコニテートヒドラターゼ(acnA, acnB)、クエン酸シンターゼ(gltA)、メチルクエン酸シンターゼ(prpC)、フォスフォエノールピルベートカルボシラーゼ(ppc)、ピルベートデヒドロゲナーゼ(aceEF, lpdA)、ピルベートキナーゼ(pykA, pykF)、フォスフォエノールピルベートシンターゼ(ppsA)、エノラーゼ(eno)、フォスフォグリセロムターゼ(pgmA, pgmI)、フォスフォグリセレートキナーゼ(pgk)、グリセルアルデヒド-3-フォスフェートデヒドロゲナーゼ(gapA)、トリオースフォスフェートイソメラーゼ(tpiA)、フルクトースビスフォスフェートアルドラーゼ(fbp)、フォスフォフルクトキナーゼ(pfkA, pfkB)、グルコースフォスフェートイソメラーゼ(pgi)などが挙げられる。これらの酵素の中では、グルタメートデヒドロゲナーゼ、クエン酸シンターゼ、フォスフォエノールピルベートカルボキシラーゼ、及びメチルクエン酸シンターゼが好ましい。 Examples of L-glutamic acid-producing bacteria or parent strains for inducing them include, but are not limited to, strains with enhanced activity of one or more L-glutamic acid biosynthetic enzymes. Examples of such genes include glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), glutamate synthetase (gltAB), isocitrate dehydrogenase (icdA), aconitate hydratase (acnA, acnB), citrate synthase (gltA), Methyl citrate synthase (prpC), phosphoenolpyruvate carbocilase (ppc), pyruvate dehydrogenase (aceEF, lpdA), pyruvate kinase (pykA, pykF), phosphoenolpyruvate synthase (ppsA), enolase ( eno), phosphoglyceromutase (pgmA, pgmI), phosphoglycerate kinase (pgk), glyceraldehyde-3-phosphate dehydrogenase (gapA), triphosphate isomerase (tpiA), fructose bisphosphate aldolase ( fbp), phosphofructokinase ( pfkA, pfkB), glucose phosphate isomerase (pgi) and the like. Of these enzymes, glutamate dehydrogenase, citrate synthase, phosphoenolpyruvate carboxylase, and methyl citrate synthase are preferred.
 シトレートシンテターゼ遺伝子、フォスフォエノールピルベートカルボキシラーゼ遺伝子、及び/またはグルタメートデヒドロゲナーゼ遺伝子の発現が増大するように改変された株の例としては、EP1078989A、EP955368A及びEP952221Aに開示されたものが挙げられる。 Examples of strains modified to increase expression of citrate synthetase gene, phosphoenolpyruvate carboxylase gene, and / or glutamate dehydrogenase gene include those disclosed in EP1078989A, EP955368A and EP952221A.
 L-グルタミン酸生産菌又はそれを誘導するための親株の例としては、L-グルタミン酸の生合成経路から分岐してL-グルタミン酸以外の化合物の合成を触媒する酵素の活性が低下または欠損している株も挙げられる。このような酵素の例としては、イソシトレートリアーゼ(aceA)、α-ケトグルタレートデヒドロゲナーゼ(sucA)、フォスフォトランスアセチラーゼ(pta)、アセテートキナーゼ(ack)、アセトヒドロキシ酸シンターゼ(ilvG)、アセトラクテートシンターゼ(ilvI)、フォルメートアセチルトランスフェラーゼ(pfl)、ラクテートデヒドロゲナーゼ(ldh)、グルタメートデカルボキシラーゼ(gadAB)などが挙げられる。α-ケトグルタレートデヒドロゲナーゼ活性が欠損した、または、α-ケトグルタレートデヒドロゲナーゼ活性が低下したエシェリヒア属に属する細菌、及び、それらの取得方法は米国特許第5,378,616 号及び第5,573,945号に記載されている。 Examples of L-glutamic acid-producing bacteria or parent strains for deriving the same are those in which the activity of an enzyme that catalyzes the synthesis of compounds other than L-glutamic acid by diverging from the biosynthetic pathway of L-glutamic acid is reduced or absent Stocks are also mentioned. Examples of such enzymes include isocitrate triase (aceA), α-ketoglutarate dehydrogenase (sucA), phosphotransacetylase (pta), acetate kinase (ack), acetohydroxy acid synthase (ilvG), Examples include acetolactate synthase (ilvI), formate acetyltransferase (pfl), lactate dehydrogenase (ldh), glutamate decarboxylase (gadAB), and the like. Bacteria belonging to the genus Escherichia lacking α-ketoglutarate dehydrogenase activity or having reduced α-ketoglutarate dehydrogenase activity, and methods for obtaining them are described in US Pat. Nos. 5,378,616 and 5,573,945. .
 具体例としては下記のものが挙げられる。
E. coli W3110sucA::Kmr
E. coli AJ12624 (FERM BP-3853)
E. coli AJ12628 (FERM BP-3854)
E. coli AJ12949 (FERM BP-4881)
Specific examples include the following.
E. coli W3110sucA :: Kmr
E. coli AJ12624 (FERM BP-3853)
E. coli AJ12628 (FERM BP-3854)
E. coli AJ12949 (FERM BP-4881)
 E. coli W3110sucA::Kmr は、E. coli W3110のα-ケトグルタレートデヒドロゲナーゼ遺伝子(以下、「sucA遺伝子」ともいう)を破壊することにより得られた株である。この株は、α-ケトグルタレートデヒドロゲナーゼを完全に欠損している。 E. coli W3110sucA :: Kmr is a strain obtained by disrupting the α-ketoglutarate dehydrogenase gene (hereinafter also referred to as "sucA gene") of E. coli W3110. This strain is completely deficient in α-ketoglutarate dehydrogenase.
 L-グルタミン酸生産菌の他の例としては、エシェリヒア属に属し、アスパラギン酸代謝拮抗物質に耐性を有するものが挙げられる。これらの株は、α-ケトグルタレートデヒドロゲナーゼを欠損していてもよく、例えば、E. coli AJ13199 (FERM BP-5807) (米国特許第5.908,768号)、さらにL-グルタミン酸分解能が低下したFFRM P-12379(米国特許第5,393,671号); AJ13138 (FERM BP-5565) (米国特許第6,110,714号)などが挙げられる。 Other examples of L-glutamic acid-producing bacteria include those belonging to the genus Escherichia and having resistance to an aspartic acid antimetabolite. These strains may be deficient in α-ketoglutarate dehydrogenase, for example, E. coli AJ13199 (FERM BP-5807) (US Patent No. 5.908,768), and FFRM with reduced L-glutamate resolution. P-12379 (US Pat. No. 5,393,671); AJ13138 (FERM BP-5565) (US Pat. No. 6,110,714) and the like.
 パントアエ・アナナティスのL-グルタミン酸生産菌の例としては、パントエア・アナナティスAJ13355株が挙げられる。同株は、静岡県磐田市の土壌から、低pHでL-グルタミン酸及び炭素源を含む培地で増殖できる株として分離された株である。パントエア・アナナティスAJ13355は、1998年2月19日に、独立行政法人 産業技術総合研究所 特許生物寄託センター(住所 〒305-8566 日本国茨城県つくば市東1丁目1番地1 中央第6)に、受託番号FERM P-16644として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6614が付与されている。尚、同株は、分離された当時はエンテロバクター・アグロメランス(Enterobacter agglomerans)と同定され、エンテロバクター・アグロメランスAJ13355として寄託されたが、近年16S rRNAの塩基配列解析などにより、パントエア・アナナティス(Pantoea ananatis)に再分類されている。 An example of an L-glutamic acid-producing bacterium of Pantoae ananatis is Pantoea ananatis AJ13355 strain. This strain was isolated from the soil of Iwata City, Shizuoka Prefecture as a strain that can grow on a medium containing L-glutamic acid and a carbon source at a low pH. Pantoea Ananatis AJ13355 was commissioned on February 19, 1998 at the National Institute of Advanced Industrial Science and Technology, the Patent Biological Deposit Center (address: 1st, 1st, 1st, 1-chome, Tsukuba, Ibaraki, Japan, 305-8566). Deposited under the number FERM644P-16644, transferred to an international deposit under the Budapest Treaty on 11 January 1999 and given the accession number FERM BP-6614. The strain was identified as Enterobacter agglomerans at the time of its isolation and deposited as Enterobacter グ ロ agglomerans AJ13355, but recently, Pantoea ananatis (Pantoea ananatis) was analyzed by 16S rRNA sequence analysis. ).
 また、パントアエ・アナナティスのL-グルタミン酸生産菌として、α-ケトグルタレートデヒドロゲナーゼ(αKGDH)活性が欠損した、または、αKGDH活性が低下したパントエア属に属する細菌が挙げられる。このような株としては、AJ13355株のαKGDH-E1サブユニット遺伝子(sucA)を欠損させたAJ13356(米国特許第6,331,419号)、及びAJ13355株から粘液質低生産変異株として選択されたSC17株由来のsucA遺伝子欠損株であるSC17sucA(米国特許第6,596,517号)がある。AJ13356は、1998年2月19日、工業技術院生命工学工業技術研究所(現 独立行政法人 産業技術総合研究所 特許生物寄託センター、〒305-8566 日本国茨城県つくば市東1丁目1番地1 中央第6)に受託番号FERM P-16645として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6616が付与されている。AJ13355及びAJ13356は、上記寄託機関にEnterobacter agglomeransとして寄託されているが、本明細書では、Pantoea ananatisとして記載する。また、SC17sucA株は、ブライベートナンバーAJ417株が付与され、2004年2月26日に産業技術総合研究所特許生物寄託センターに受託番号FERM BP-08646として寄託されている。 Further, examples of L-glutamic acid-producing bacteria of Pantoae ananatis include bacteria belonging to the genus Pantoea in which α-ketoglutarate dehydrogenase (αKGDH) activity is deficient or αKGDH activity is reduced. Such strains include AJ13356 (US Pat. No. 6,331,419) in which the αKGDH-E1 subunit gene (sucA) of AJ13355 strain is deleted, and sucA derived from SC17 strain selected from AJ13355 strain as a low mucus production mutant. There is SC17sucA (US Pat. No. 6,596,517) which is a gene-deficient strain. AJ13356 was founded on February 19, 1998 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center, 1-chome, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan 305-8566 No. 6) was deposited under the deposit number FERM P-16645, transferred to an international deposit under the Budapest Treaty on January 11, 1999, and given the deposit number FERM BP-6616. AJ13355 and AJ13356 are deposited as Enterobacter agglomerans in the above depository organization, but are described as Pantoea ananatis in this specification. The SC17sucA strain has been assigned the private number AJ417, and was deposited at the National Institute of Advanced Industrial Science and Technology as the accession number FERM BP-08646 on February 26, 2004.
 さらに、パントアエ・アナナティスのL-グルタミン酸生産菌として、SC17sucA/RSFCPG+pSTVCB株、AJ13601株、NP106株、及びNA1株が挙げられる。SC17sucA/RSFCPG+pSTVCB株は、SC17sucA株に、エシェリヒア・コリ由来のクエン酸シンターゼ遺伝子(gltA)、ホスホエノールピルビン酸カルボキシラーゼ遺伝子(ppsA)、およびグルタメートデヒドロゲナーゼ遺伝子(gdhA)を含むプラスミドRSFCPG、並びに、ブレビバクテリウム・ラクトファーメンタム由来のクエン酸シンターゼ遺伝子(gltA)を含むプラスミドpSTVCBを導入して得た株である。AJ13601株は、このSC17sucA/RSFCPG+pSTVCB株から低pH下で高濃度のL-グルタミン酸に耐性を示す株として選択された株である。また、NP106株は、AJ13601株からプラスミドRSFCPG+pSTVCBを脱落させた株である。AJ13601株は、1999年8月18日に、独立行政法人 産業技術総合研究所 特許生物寄託センター(〒305-8566 日本国茨城県つくば市東1丁目1番地1 中央第6)に受託番号FERM P-17516として寄託され、2000年7月6日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-7207が付与されている。 Furthermore, as L-glutamic acid-producing bacteria of Pantoae ananatis, SC17sucA / RSFCPG + pSTVCB strain, AJ13601 strain, NP106 strain, and NA1 strain can be mentioned. The SC17sucA / RSFCPG + pSTVCB strain is a plasmid RSFCPG containing the citrate synthase gene (gltA), phosphoenolpyruvate carboxylase gene (ppsA), and glutamate dehydrogenase gene (gdhA) derived from Escherichia coli, This is a strain obtained by introducing a plasmid pSTVCB containing a citrate synthase gene (gltA) derived from bacteria lactofermentum. The AJ13601 strain was selected from the SC17sucA / RSFCPG + pSTVCB strain as a strain resistant to a high concentration of L-glutamic acid at low pH. The NP106 strain is a strain obtained by removing the plasmid RSFCPG + pSTVCB from the AJ13601 strain. On August 18, 1999, AJ13601 shares were registered with the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (305-1856, Ibaraki, Japan, 1st-chome, 1st-chome, 1st-chome, 1st-centre, 6th). Deposited as 17516, transferred to an international deposit under the Budapest Treaty on July 6, 2000, and assigned the deposit number FERM BP-7207.
L-フェニルアラニン生産菌
 L-フェニルアラニン生産菌又はそれを誘導するための親株の例としては、コリスミ酸ムターゼ-プレフェン酸デヒドロゲナーゼ及びチロシンリプレッサーを欠損したE.coli AJ12739 (tyrA::Tn10, tyrR) (VKPM B-8197)(WO03/044191)、フィードバック阻害が解除されたコリスミ酸ムターゼ-プレフェン酸デヒドラターゼをコードする変異型pheA34遺伝子を保持するE.coli HW1089 (ATCC 55371) (米国特許第 5,354,672号)、E.coli MWEC101-b (KR8903681)、E.coli NRRL B-12141, NRRL B-12145, NRRL B-12146及びNRRL B-12147 (米国特許第4,407,952号)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。また、親株として、フィードバック阻害が解除されたコリスミ酸ムターゼ-プレフェン酸デヒドラターゼをコードする遺伝子を保持するE. coli K-12 [W3110 (tyrA)/pPHAB] (FERM BP-3566)、E. coli K-12 [W3110 (tyrA)/pPHAD] (FERM BP-12659)、E. coli K-12 [W3110 (tyrA)/pPHATerm] (FERM BP-12662)及びAJ 12604と命名されたE. coli K-12 [W3110 (tyrA)/pBR-aroG4, pACMAB] (FERM BP-3579)も使用できる(EP 488424 B1)。さらに、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属するL-フェニルアラニン生産菌も使用できる(米国特許出願公開2003/0148473 A1及び2003/0157667 A1、WO03/044192)。
Examples of L-phenylalanine producing bacteria L-phenylalanine producing bacteria or parent strains for deriving them include E. coli AJ12739 (tyrA :: Tn10, tyrR) lacking chorismate mutase-prefenate dehydrogenase and tyrosine repressor ( VKPM B-8197) (WO03 / 044191), E. coli HW1089 (ATCC 55371) (US Pat.No. 5,354,672) carrying a mutant pheA34 gene encoding chorismate mutase-prefenate dehydratase with desensitized feedback inhibition, Strains belonging to the genus Escherichia such as E. coli MWEC101-b (KR8903681), E. coli NRRL B-12141, NRRL B-12145, NRRL B-12146 and NRRL B-12147 (U.S. Pat.No. 4,407,952) However, it is not limited to these. In addition, E. coli K-12 [W3110 (tyrA) / pPHAB] (FERM BP-3566), E. coli K that retains the gene encoding chorismate mutase-prefenate dehydratase whose feedback inhibition has been released. -12 [W3110 (tyrA) / pPHAD] (FERM BP-12659), E. coli K-12 [W3110 (tyrA) / pPHATerm] (FERM BP-12662) and E. coli K-12 named AJ 12604 [W3110 (tyrA) / pBR-aroG4, pACMAB] (FERM BP-3579) can also be used (EP 488424 B1). Furthermore, L-phenylalanine producing bacteria belonging to the genus Escherichia with increased activity of the protein encoded by the yedA gene or the yddG gene can also be used (US Patent Application Publications 2003/0148473 A1 and 2003/0157667 A1, WO03 / 044192).
L-トリプトファン生産菌
 L-トリプトファン生産菌又はそれを誘導するための親株の例としては、変異trpS遺伝子によりコードされるトリプトファニル-tRNAシンテターゼが欠損したE. coli JP4735/pMU3028 (DSM10122)及びJP6015/pMU91 (DSM10123) (米国特許第5,756,345号)、セリンによるフィードバック阻害を受けないフォスフォグリセリレートデヒドロゲナーゼをコードするserAアレル及びトリプトファンによるフィードバック阻害を受けないアントラニレートシンターゼをコードするtrpEアレルを有するE. coli SV164 (pGH5) (米国特許第6,180,373号)、トリプトファナーゼが欠損したE. coli AGX17 (pGX44) (NRRL B-12263)及びAGX6(pGX50)aroP (NRRL B-12264) (米国特許第4,371,614号)、フォスフォエノールピルビン酸生産能が増大したE. coli AGX17/pGX50,pACKG4-pps (WO9708333, 米国特許第6,319,696号)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属するL-トリプトファン生産菌も使用できる(米国特許出願公開2003/0148473 A1及び2003/0157667 A1)。
Examples of L-tryptophan-producing bacteria L-tryptophan-producing bacteria or parent strains for inducing them include E. coli JP4735 / pMU3028 (DSM10122) and JP6015 / pMU91 lacking the tryptophanyl-tRNA synthetase encoded by the mutant trpS gene (DSM10123) (U.S. Pat.No. 5,756,345), E. coli having a serA allele encoding phosphoglycerate dehydrogenase not subject to feedback inhibition by serine and a trpE allele encoding an anthranilate synthase not subject to feedback inhibition by tryptophan. SV164 (pGH5) (US Pat.No. 6,180,373), E. coli AGX17 (pGX44) (NRRL B-12263) and AGX6 (pGX50) aroP (NRRL B-12264) lacking tryptophanase (US Pat.No. 4,371,614) E. coli AGX17 / pGX50, pACKG4-pps (WO9708333, U.S. Pat.No. 6,319,696) with increased ability to produce phosphoenolpyruvate Strains include belonging to Erihia genus, but is not limited thereto. L-tryptophan-producing bacteria belonging to the genus Escherichia with increased activity of the protein encoded by the yedA gene or the yddG gene can also be used (US Patent Application Publications 2003/0148473 A1 and 2003/0157667 A1).
 L-トリプトファン生産菌又はそれを誘導するための親株の例としては、アントラニレートシンターゼ(trpE)、フォスフォグリセレートデヒドロゲナーゼ(serA)、3-デオキシ-D-アラビノヘプツロン酸-7-リン酸シンターゼ(aroG)、3-デヒドロキネートシンターゼ(aroB)、シキミ酸デヒドロゲナーゼ(aroE)、シキミ酸キナーゼ(aroL)、5-エノール酸ピルビルシキミ酸3-リン酸シンターゼ(aroA)、コリスミ酸シンターゼ(aroC)、プレフェン酸デヒドラターゼ、コリスミ酸ムターゼ及び、トリプトファンシンターゼ(trpAB)から選ばれる1種又は2種以上の酵素の活性が増強された株も挙げられる。プレフェン酸デヒドラターゼ及びコリスミ酸ムターゼは、2機能酵素(CM-PD)としてpheA遺伝子によってコードされている。これらの酵素の中では、フォスフォグリセレートデヒドロゲナーゼ、3-デオキシ-D-アラビノヘプツロン酸-7-リン酸シンターゼ、3-デヒドロキネートシンターゼ、シキミ酸デヒドラターゼ、シキミ酸キナーゼ、5-エノール酸ピルビルシキミ酸3-リン酸シンターゼ、コリスミ酸シンターゼ、プレフェン酸デヒドラターゼ、コリスミン酸ムターゼ-プレフェン酸デヒドロゲナーゼが特に好ましい。アントラニレートシンターゼ及びフォスフォグリセレートデヒドロゲナーゼは共にL-トリプトファン及びL-セリンによるフィードバック阻害を受けるので、フィードバック阻害を解除する変異をこれらの酵素に導入してもよい。このような変異を有する株の具体例としては、脱感作型アントラニレートシンターゼを保持するE. coli SV164、及び、フィードバック阻害が解除されたフォスフォグリセレートデヒドロゲナーゼをコードする変異serA遺伝子を含むプラスミドpGH5 (WO 94/08031)をE. coli SV164に導入することにより得られた形質転換株が挙げられる。 Examples of L-tryptophan-producing bacteria or parent strains for inducing them include anthranilate synthase (trpE), phosphoglycerate dehydrogenase (serA), 3-deoxy-D-arabinohepturonic acid-7-phosphorus Acid synthase (aroG), 3-dehydroquinate synthase (aroB), shikimate dehydrogenase (aroE), shikimate kinase (aroL), 5-enolate pyruvylshikimate 3-phosphate synthase (aroA), chorismate synthase (aroC ), Prephenate dehydratase, chorismate mutase and tryptophan synthase (trpAB). One or more strains having enhanced activity are also included. Prefenate dehydratase and chorismate mutase are encoded by the pheA gene as a bifunctional enzyme (CM-PD). Among these enzymes, phosphoglycerate dehydrogenase, 3-deoxy-D-arabinohepturonic acid-7-phosphate synthase, 3-dehydroquinate synthase, shikimate dehydratase, shikimate kinase, 5-enolic acid Pyruvylshikimate 3-phosphate synthase, chorismate synthase, prefenate dehydratase, chorismate mutase-prefenate dehydrogenase are particularly preferred. Since both anthranilate synthase and phosphoglycerate dehydrogenase are subject to feedback inhibition by L-tryptophan and L-serine, mutations that cancel the feedback inhibition may be introduced into these enzymes. Specific examples of strains having such mutations include E. coli SV164 carrying a desensitized anthranilate synthase and a mutant serA gene encoding phosphoglycerate dehydrogenase with desensitized feedback inhibition Examples include a transformant obtained by introducing the plasmid pGH5 (WO 94/08031) into E.coli SV164.
 L-トリプトファン生産菌又はそれを誘導するための親株の例としては、阻害解除型アントラニレートシンターゼをコードする遺伝子を含むトリプトファンオペロンが導入された株(特開昭57-71397号, 特開昭62-244382号, 米国特許第4,371,614号)も挙げられる。さらに、トリプトファンオペロン(trpBA)中のトリプトファンシンターゼをコードする遺伝子の発現を増大させることによりL-トリプトファン生産能を付与してもよい。トリプトファンシンターゼは、それぞれtrpA及びtrpB遺伝子によりコードされるα及びβサブユニットからなる。さらに、イソシトレートリアーゼ-マレートシンターゼオペロンの発現を増大させることによりL-トリプトファン生産能を改良してもよい(WO2005/103275)。 Examples of L-tryptophan-producing bacteria or parent strains for deriving the same include strains into which a tryptophan operon containing a gene encoding an inhibitory anthranilate synthase has been introduced (Japanese Patent Laid-Open Nos. 57-71397 and 1994 62-244382, US Pat. No. 4,371,614). Furthermore, L-tryptophan-producing ability may be imparted by increasing the expression of a gene encoding tryptophan synthase in the tryptophan operon (trpBA). Tryptophan synthase consists of α and β subunits encoded by trpA and trpB genes, respectively. Furthermore, L-tryptophan production ability may be improved by increasing the expression of the isocitrate triase-malate synthase operon (WO2005 / 103275).
L-プロリン生産菌
 L-プロリン生産菌又はそれを誘導するための親株の例としては、ilvA遺伝子が欠損し、L-プロリンを生産できるE. coli 702ilvA (VKPM B-8012) (EP 1172433)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
Examples of L-proline-producing bacteria L-proline-producing bacteria or parent strains for deriving them include E. coli 702ilvA (VKPM B-8012) (EP 1172433) that lacks the ilvA gene and can produce L-proline Strains belonging to the genus Escherichia, but are not limited thereto.
 本発明に用いる細菌は、L-プロリン生合成に関与する遺伝子の一種以上の発現を増大することにより改良してもよい。L-プロリン生産菌に好ましい遺伝子の例としては、L-プロリンによるフィードバック阻害が解除されたグルタメートキナーゼをコードするproB遺伝子(ドイツ特許第3127361号)が挙げられる。さらに、本発明に用いる細菌は、細菌の細胞からL-アミノ酸を排出するタンパク質をコードする遺伝子の一種以上の発現が増大することにより改良してもよい。このような遺伝子としては、b2682 遺伝子及びb2683遺伝子(ygaZH遺伝子) (EP1239041 A2)が挙げられる。 The bacterium used in the present invention may be improved by increasing the expression of one or more genes involved in L-proline biosynthesis. An example of a gene preferable for L-proline-producing bacteria includes a proB gene (German Patent No. 3127361) encoding glutamate kinase that is desensitized to feedback inhibition by L-proline. Furthermore, the bacterium used in the present invention may be improved by increasing the expression of one or more genes encoding proteins that excrete L-amino acids from bacterial cells. Examples of such genes include b2682 gene and b2683 gene (ygaZH gene) gene (EP1239041 gene A2).
 L-プロリン生産能を有するエシェリヒア属に属する細菌の例としては、NRRL B-12403及びNRRL B-12404 (英国特許第2075056号)、VKPM B-8012 (ロシア特許出願2000124295)、ドイツ特許第3127361号に記載のプラスミド変異体、Bloom F.R. et al (The 15th Miami winter symposium, 1983, p.34)に記載のプラスミド変異体などのE. coli 株が挙げられる。 Examples of bacteria belonging to the genus Escherichia having the ability to produce L-proline include NRRL B-12403 and NRRL B-12404 (British Patent No. 2075056), VKPM B-8012 (Russian Patent Application 2000124295), German Patent No. 3127361 And E. coli strains such as the plasmid variants described in Bloom FR et al (The 15th Miami winter symposium, 1983, p.34).
L-アルギニン生産菌
 L-アルギニン生産菌又はそれを誘導するための親株の例としては、E. coli 237株 (VKPM B-7925) (米国特許出願公開2002/058315 A1)、及び、変異N-アセチルグルタメートシンターゼを保持するその誘導株(ロシア特許出願第2001112869号)、E. coli 382株 (VKPM B-7926) (EP1170358A1)、N-アセチルグルタメートシンテターゼをコードするargA遺伝子が導入されたアルギニン生産株(EP1170361A1)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
Examples of L-arginine producing bacteria L-arginine producing bacteria or parent strains for inducing them include E. coli strain 237 (VKPM B-7925) (US Patent Application Publication 2002/058315 A1) and mutant N- Derivatives carrying acetylglutamate synthase (Russian patent application No. 2001112869), E. coli 382 strain (VKPM B-7926) (EP1170358A1), arginine producing strain introduced with argA gene encoding N-acetylglutamate synthetase Examples include, but are not limited to, strains belonging to the genus Escherichia, such as (EP1170361A1).
 L-アルギニン生産菌又はそれを誘導するための親株の例としては、L-アルギニン生合成系酵素をコードする遺伝子の1種以上の発現が増大した株も挙げられる。かかる遺伝子の例としては、N-アセチルグルタミルフォスフェートレダクターゼ遺伝子(argC)、オルニチンアセチルトランスフェラーゼ遺伝子(argJ)、N-アセチルグルタメートキナーゼ遺伝子(argB)、アセチルオルニチントランスアミナーゼ遺伝子(argD)、オルニチンカルバモイルトランスフェラーゼ遺伝子(argF)、アルギノコハク酸シンテターゼ遺伝子(argG)、アルギノコハク酸リアーゼ遺伝子(argH)、カルバモイルフォスフェートシンテターゼ遺伝子(carAB)が挙げられる。 Examples of L-arginine-producing bacteria or parent strains for inducing them include strains in which expression of one or more genes encoding L-arginine biosynthetic enzymes are increased. Examples of such genes include N-acetylglutamylphosphate reductase gene (argC), ornithine acetyltransferase gene (argJ), N-acetylglutamate kinase gene (argB), acetylornithine transaminase gene (argD), ornithine carbamoyltransferase gene ( argF), arginosuccinate synthetase gene (argG), arginosuccinate lyase gene (argH), carbamoylphosphate synthetase gene (carAB).
L-バリン生産菌
 L-バリン生産菌又はそれを誘導するための親株の例としては、ilvGMEDAオペロンを過剰発現するように改変された株(米国特許第5,998,178号)が挙げられるが、これらに限定されない。アテニュエーションに必要なilvGMEDAオペロンの領域を除去し、生産されるL-バリンによりオペロンの発現が減衰しないようにすることが好ましい。さらに、オペロンのilvA遺伝子が破壊され、スレオニンデアミナーゼ活性が減少することが好ましい。
 L-バリン生産菌又はそれを誘導するための親株の例としては、アミノアシルt-RNAシンテターゼの変異を有する変異株(米国特許第5,658,766号)も挙げられる。例えば、イソロイシンtRNAシンテターゼをコードするileS 遺伝子に変異を有するE. coli VL1970が使用できる。E. coli VL1970は、1988年6月24日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM B-4411で寄託されている。
 さらに、生育にリポ酸を要求する、及び/または、H+-ATPaseを欠失している変異株(WO96/06926)を親株として用いることができる。
Examples of L-valine-producing bacteria L-valine-producing bacteria or parent strains for inducing the same include, but are not limited to, strains modified to overexpress the ilvGMEDA operon (US Pat. No. 5,998,178). Not. It is preferable to remove the region of the ilvGMEDA operon necessary for attenuation so that the expression of the operon is not attenuated by the produced L-valine. Furthermore, it is preferred that the ilvA gene of the operon is disrupted and the threonine deaminase activity is reduced.
Examples of L-valine-producing bacteria or parent strains for deriving them also include mutants having aminoacyl t-RNA synthetase mutations (US Pat. No. 5,658,766). For example, E. coli VL1970 having a mutation in the ileS gene encoding isoleucine tRNA synthetase can be used. E. coli VL1970 was registered with Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on June 24, 1988 under the accession number VKPM B-4411. It has been deposited.
Furthermore, a mutant strain (WO96 / 06926) that requires lipoic acid for growth and / or lacks H + -ATPase can be used as a parent strain.
L-イソロイシン生産菌
 L-イソロイシン生産菌又はそれを誘導するための親株の例としては、6-ジメチルアミノプリンに耐性を有する変異株(特開平5-304969号)、チアイソロイシン、イソロイシンヒドロキサメートなどのイソロイシンアナログに耐性を有する変異株、さらにDL-エチオニン及び/またはアルギニンヒドロキサメートに耐性を有する変異株(特開平5-130882号).が挙げられるが、これらに限定されない。さらに、スレオニンデアミナーゼ、アセトヒドロキシ酸シンターゼなどのL-イソロイシン生合成に関与するタンパク質をコードする遺伝子で形質転換された組換え株もまた親株として使用できる(特開平2-458号, FR 0356739, 及び米国特許第5,998,178号)。
Examples of L-isoleucine-producing bacteria and L-isoleucine-producing bacteria or parent strains for inducing them include mutants resistant to 6-dimethylaminopurine (Japanese Patent Laid-Open No. 5-304969), thiisoleucine, isoleucine hydroxamate Mutants having resistance to isoleucine analogs such as the above, and mutants having resistance to DL-ethionine and / or arginine hydroxamate (Japanese Patent Laid-Open No. 5-130882), but are not limited thereto. Furthermore, a recombinant strain transformed with a gene encoding a protein involved in L-isoleucine biosynthesis such as threonine deaminase and acetohydroxy acid synthase can also be used as a parent strain (JP-A-2-458, FR 0356739, and US Pat. No. 5,998,178).
L-チロシン生産菌
 チロシン生産菌としては、チロシンによる阻害を受けない脱感作型のプレフェン酸デヒドラターゼ遺伝子(tyrA)を有するエシェリヒア属細菌(欧州特許出願公開1616940号公報)が挙げられる。
L-tyrosine-producing bacteria Examples of tyrosine-producing bacteria include Escherichia bacteria (European Patent Application Publication No. 1616940) having a desensitized prefenate dehydratase gene (tyrA) that is not inhibited by tyrosine.
 遺伝子組換えにより本発明に用いる細菌を育種する場合、使用する遺伝子は、上述した遺伝子情報を持つ遺伝子や、公知の配列を有する遺伝子に限られず、それらの遺伝子のバリアント、すなわち、コードされるタンパク質の機能が損なわれない限り、それらの遺伝子のホモログや人為的な改変体等、保存的変異を有する遺伝子も使用することができる。すなわち、公知のタンパク質のアミノ酸配列において、1若しくは数個の位置での1若しくは数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタンパク質をコードする遺伝子であってもよい。 When breeding the bacterium used in the present invention by genetic recombination, the gene to be used is not limited to the gene having the genetic information described above or a gene having a known sequence, but variants of those genes, that is, encoded proteins As long as these functions are not impaired, genes having conservative mutations such as homologues and artificially modified variants of those genes can also be used. That is, it may be a gene encoding a protein having a sequence including substitution, deletion, insertion or addition of one or several amino acids at one or several positions in the amino acid sequence of a known protein.
 ここで、「1若しくは数個」とは、アミノ酸残基のタンパク質の立体構造における位置やアミノ酸残基の種類によっても異なるが、具体的には好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個を意味する。また、保存的変異の代表的なものは、保存的置換である。保存的置換とは、置換部位が芳香族アミノ酸である場合には、Phe、Trp、Tyr間で、置換部位が疎水性アミノ酸である場合には、Leu、Ile、Val間で、極性アミノ酸である場合には、Gln、Asn間で、塩基性アミノ酸である場合には、Lys、Arg、His間で、酸性アミノ酸である場合には、Asp、Glu間で、ヒドロキシル基を持つアミノ酸である場合には、Ser、Thr間でお互いに置換する変異である。保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、ArgからGln、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、CysからSer又はAlaへの置換、GlnからAsn、Glu、Lys、His、Asp又はArgへの置換、GluからGly、Asn、Gln、Lys又はAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はPheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換、及び、ValからMet、Ile又はLeuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、遺伝子が由来する微生物の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。このような遺伝子は、例えば、部位特異的変異法によって、コードされるタンパク質の特定の部位のアミノ酸残基が置換、欠失、挿入または付加を含むように公知の遺伝子の塩基配列を改変することによって取得することができる。 Here, “one or several” differs depending on the position of the protein in the three-dimensional structure of the amino acid residue and the type of amino acid residue, but specifically, preferably 1 to 20, more preferably 1 to 10 Means, more preferably 1-5. A typical conservative mutation is a conservative substitution. Conservative substitution is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In this case, between Gln and Asn, when it is a basic amino acid, between Lys, Arg, and His, when it is an acidic amino acid, between Asp and Glu, when it is an amino acid having a hydroxyl group Is a mutation that substitutes between Ser and Thr. Specifically, substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, Cys to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Substitution from Lys to Asn, Glu, Gln, His or Arg, substitution from Met to Ile, Leu, Val or Phe, substitution from Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution, substitution from Thr to Ser or Ala, substitution from Trp to Phe or Tyr, substitution from Tyr to His, Phe or Trp, and substitution from Val to Met, Ile or Leu. In addition, amino acid substitutions, deletions, insertions, additions, or inversions as described above include naturally occurring mutations (mutants or variants) such as those based on individual differences or species differences of the microorganism from which the gene is derived. Also included by Such a gene can be modified, for example, by site-directed mutagenesis so that the amino acid residue at a specific site of the encoded protein contains substitutions, deletions, insertions or additions. Can be obtained by:
 さらに、上記のような保存的変異を有する遺伝子は、コードされるアミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%以上、特に好ましくは97%以上の相同性を有し、かつ、野生型タンパク質と同等の機能を有するタンパク質をコードする遺伝子であってもよい。
 また、遺伝子の配列におけるそれぞれのコドンは、遺伝子が導入される宿主で使用しやすいコドンに置換したものでもよい。
Furthermore, the gene having a conservative mutation as described above has a homology of 80% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more with respect to the entire encoded amino acid sequence. And a gene encoding a protein having a function equivalent to that of a wild-type protein.
In addition, each codon in the gene sequence may be replaced with a codon that is easy to use in the host into which the gene is introduced.
 保存的変異を有する遺伝子は、変異剤処理等、通常変異処理に用いられる方法によって取得されたものであってもよい。 The gene having a conservative mutation may be one obtained by a method usually used for mutation treatment such as treatment with a mutation agent.
 また、遺伝子は、公知の遺伝子配列の相補配列又はその相補配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズし、公知の遺伝子産物と同等の機能を有するタンパク質をコードするDNAであってもよい。ここで、「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。一例を示せば、相同性が高いDNA同士、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、特に好ましくは97%以上の相同性を有するDNA同士がハイブリダイズし、それより相同性が低いDNA同士がハイブリダイズしない条件、あるいは通常のサザンハイブリダイゼーションの洗いの条件である60℃、1×SSC、0.1% SDS、好ましくは、0.1×SSC、0.1% SDS、さらに好ましくは、68℃、0.1×SSC、0.1% SDSに相当する塩濃度、温度で、1回、より好ましくは2~3回洗浄する条件が挙げられる。 A gene is a DNA that hybridizes with a probe complementary to a known gene sequence or a probe that can be prepared from the complementary sequence under stringent conditions and encodes a protein having a function equivalent to that of a known gene product. Also good. Here, “stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. As an example, DNAs having high homology, for example, 80% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more, are hybridized to each other. Conditions under which DNAs with low homology do not hybridize, or conditions for washing of ordinary Southern hybridization, 60 ° C., 1 × SSC, 0.1% SDS, preferably 0.1 × SSC, 0.1% SDS, more preferably The conditions include washing once at a salt concentration and temperature corresponding to 68 ° C., 0.1 × SSC, and 0.1% SDS, more preferably 2 to 3 times.
 プローブとしては、遺伝子の相補配列の一部を用いることもできる。そのようなプローブは、公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとし、これらの塩基配列を含むDNA断片を鋳型とするPCRによって作製することができる。例えば、プローブとして、300 bp程度の長さのDNA断片を用いる場合には、ハイブリダイゼーションの洗いの条件は、50℃、2×SSC、0.1% SDSが挙げられる。 As the probe, a part of the complementary sequence of the gene can also be used. Such a probe can be prepared by PCR using an oligonucleotide prepared on the basis of a known gene sequence as a primer and a DNA fragment containing these base sequences as a template. For example, when a DNA fragment having a length of about 300 bp is used as a probe, hybridization washing conditions include 50 ° C., 2 × SSC, and 0.1% SDS.
 上記した遺伝子のバリアントに関する記載は、下記のrng遺伝子及び本明細書に記載した他の遺伝子についても同様に適用される。 The above description regarding gene variants also applies to the following rng genes and other genes described herein.
<1-2>リボヌクレアーゼG活性の低下
 次に、腸内細菌科の属する細菌のリボヌクレアーゼGの活性を低下させる改変について説明する。
<1-2> Decrease in Ribonuclease G Activity Next, modifications that reduce the activity of ribonuclease G in bacteria belonging to the family Enterobacteriaceae will be described.
 本発明において「リボヌクレアーゼG(RNaseG)活性」とは、RNaseGの基質となるRNAを分解する活性をいう。
 RNaseGの基質となるRNAとしては、例えば、エノラーゼをコードする遺伝子eno(GenBank Accession No.X82400)やアルコールデヒドロゲナーゼをコードする遺伝子adhE(GenBank Accession No.M33504)から転写されたRNAなどを挙げることができる。活性測定は、例えば、リファンピシンによりRNA合成を抑制した菌株よりRNAを抽出し、eno遺伝子又はadhE遺伝子のmRNAの分解半減期を測定することで、その活性を間接的に知ることができる。また、RNaseGを単離精製し、RNaseG切断部位を含むオリゴリボヌクレオチドのような人工基質の切断反応を測定することにより、その活性を知ることもできる。このような活性測定方法は既に開示されている(J. Biol. Chem., 275, 8726-8732, 2000)。
In the present invention, “ribonuclease G (RNaseG) activity” refers to an activity of degrading RNA serving as a substrate for RNaseG.
Examples of RNA serving as a substrate for RNaseG include RNA transcribed from the gene eno (GenBank Accession No. X82400) encoding enolase and the gene adhE (GenBank Accession No. M33504) encoding alcohol dehydrogenase. . In the activity measurement, for example, RNA can be extracted from a strain in which RNA synthesis is suppressed by rifampicin, and the activity can be indirectly known by measuring the degradation half-life of mRNA of the eno gene or adhE gene. Further, the activity can be determined by isolating and purifying RNaseG and measuring the cleavage reaction of an artificial substrate such as an oligoribonucleotide containing an RNaseG cleavage site. Such an activity measurement method has already been disclosed (J. Biol. Chem., 275, 8726-8732, 2000).
 「RNaseG活性が低下するように改変された」とは、細菌の細胞あたりのRNaseG活性が、非改変株、例えば野生型の腸内細菌科に属する菌株よりも低くなったことをいう。例えば、細胞あたりのRNaseGの分子数が低下した場合や、分子あたりのRNaseG活性が低下した場合等が該当する。細胞あたりのRNaseG活性の比較は、例えば、同じ条件で培養した細菌の細胞抽出液に含まれるRNaseG活性を比較することによって、行うことができる。尚、活性の「低下」には、活性が完全に消失した場合も含まれる。比較の対照となる野生型のエシェリヒア属細菌としては、例えば、エシェリヒア・コリMG1655株などが挙げられる。 The phrase “modified so that the RNaseG activity is reduced” means that the RNaseG activity per bacterial cell is lower than that of an unmodified strain, for example, a strain belonging to the wild type Enterobacteriaceae. For example, the case where the number of RNaseG molecules per cell decreases, the case where the RNaseG activity per molecule decreases, and the like are applicable. The comparison of the RNaseG activity per cell can be performed, for example, by comparing the RNaseG activity contained in the cell extract of bacteria cultured under the same conditions. The “decrease” in activity includes a case where the activity is completely lost. Examples of wild-type bacteria belonging to the genus Escherichia that serve as a comparative control include Escherichia coli MG1655 strain.
 RNaseGの活性の低下は、RNaseGをコードする遺伝子(rng)を不活化することによって達成される。rng遺伝子の「不活化」とは、同遺伝子によってコードされるRNaseGの活性が低下又は消失するように、同遺伝子を遺伝子組換えにより改変するか、又は、同遺伝子に変異を導入することをいう。 The decrease in the activity of RNaseG is achieved by inactivating the gene (rng) encoding RNaseG. “Inactivation” of the rng gene means that the gene is modified by genetic recombination or a mutation is introduced into the gene so that the activity of RNaseG encoded by the gene is reduced or eliminated. .
 rng遺伝子としては、GenBankに登録されているエシェリヒア・コリのrng遺伝子(GenBank Accession No. NC_000913.2の塩基番号3394348~3395817の相補鎖:配列番号1)が挙げられる。このrng遺伝子がコードするRNaseGのアミノ酸配列を配列番号2に示す。rng遺伝子は、これらの配列に基づき、合成オリゴヌクレオチドを合成し、エシェリヒア・コリの染色体を鋳型としてPCR反応を行うことによってクローニングすることができる。また、相同組換えによってrng遺伝子を欠損させる場合には、染色体上のrng遺伝子と一定以上の相同性、例えば、80%以上、好ましくは90%以上、より好ましくは95%以上の相同性を有する遺伝子を用いることもできる。また、染色体上のrng遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子を用いることもできる。ストリンジェントな条件としては、例えば、60℃、1×SSC,0.1%SDS、好ましくは、0.1×SSC、0.1%SDSに相当する塩濃度で、1回より好ましくは2~3回洗浄する条件が挙げられる。 Examples of the rng gene include Escherichia coli rng gene registered in GenBank (complementary strand of base numbers 3394348 to 3395817 of GenBank Accession No. NC_000913.2: SEQ ID NO: 1). The amino acid sequence of RNaseG encoded by this rng gene is shown in SEQ ID NO: 2. The rng gene can be cloned by synthesizing a synthetic oligonucleotide based on these sequences and performing a PCR reaction using Escherichia coli chromosome as a template. When the rng gene is deleted by homologous recombination, it has a certain degree of homology with the rng gene on the chromosome, for example, 80% or more, preferably 90% or more, more preferably 95% or more. Genes can also be used. A gene that hybridizes with a rng gene on a chromosome under stringent conditions can also be used. The stringent conditions include, for example, a salt concentration corresponding to 60 ° C., 1 × SSC, 0.1% SDS, preferably 0.1 × SSC, 0.1% SDS, more preferably 1 to 2 times. The condition of washing three times is mentioned.
 rng遺伝子の不活化は、具体的には例えば、染色体上のrng遺伝子のコード領域の一部又は全部を欠損させたり、コード領域中に他の配列を挿入することによって達成される。これらの手法は、遺伝子破壊とも呼ばれる。
 また、rng遺伝子のプロモーターやシャインダルガルノ(SD)配列等の発現調節配列を改変することなどによって、rng遺伝子の発現を低下させることによっても、rng遺伝子を不活化することができる。発現の低下には、転写の低下と翻訳の低下が含まれる。また、発現調節配列以外の非翻訳領域の改変によっても、遺伝子の発現を低下させることができる。
Specifically, inactivation of the rng gene is achieved, for example, by deleting a part or all of the coding region of the rng gene on the chromosome, or by inserting another sequence into the coding region. These techniques are also called gene disruption.
The rng gene can also be inactivated by reducing the expression of the rng gene, for example, by modifying the expression regulatory sequence such as the promoter of the rng gene or Shine-Dalgarno (SD) sequence. Decreased expression includes reduced transcription and reduced translation. Moreover, gene expression can also be reduced by modifying non-translated regions other than the expression regulatory sequences.
 さらには、染色体上の標的遺伝子の前後の配列を含めて、標的遺伝子全体を欠失させてもよい。また、rng遺伝子の不活化は、染色体上のrng遺伝子のコード領域にアミノ酸置換(ミスセンス変異)を導入すること、また終始コドンを導入すること(ナンセンス変異)、あるいは一~二塩基付加・欠失するフレームシフト変異を導入することによっても達成出来る(Journal of Biological Chemistry 272:8611-8617(1997) Proceedings of the National Academy of Sciences,USA 95 5511-5515(1998), Journal of Biological Chemistry 266, 20833-20839(1991))。 Furthermore, the entire target gene may be deleted, including sequences before and after the target gene on the chromosome. Inactivation of the rng gene can be achieved by introducing an amino acid substitution (missense mutation) into the coding region of the rng gene on the chromosome, introducing a stop codon (nonsense mutation), or adding or deleting one or two bases. (Journal of Biological Chemistry 272: 8611-8617 (1997) Proceedings of the National Academy of Sciences, USA 95 5511-5515 (1998), Journal of Biological Chemistry 266, 20833- 20839 (1991)).
 各遺伝子の改変は、遺伝子組換えにより行われることが好ましい。遺伝子組換えによる方法として具体的には、相同組換えを利用して、染色体上の標的遺伝子の発現調節配列、例えばプロモーター領域、又はコード領域、もしくは非コード領域の一部又は全部を欠損させること、又はこれらの領域に他の配列を挿入することが挙げられる。 The modification of each gene is preferably performed by gene recombination. Specifically, the gene recombination method uses homologous recombination to delete the expression regulatory sequence of the target gene on the chromosome, for example, the promoter region, the coding region, or a part or all of the non-coding region. Or insertion of other sequences into these regions.
 発現調節配列の改変は、好ましくは1塩基以上、より好ましくは2塩基以上、特に好ましくは3塩基以上である。また、コード領域を欠失させる場合は、各遺伝子が産生するタンパク質の機能が低下又は欠失するのであれば、欠失させる領域は、N末端領域、内部領域、C末端領域のいずれの領域であってもよく、コード領域全体であってよい。通常、欠失させる領域は長い方が確実に標的遺伝子を不活化することができる。また、欠失させる領域の上流と下流のリーディングフレームは一致しないことが好ましい。 The modification of the expression regulatory sequence is preferably 1 base or more, more preferably 2 bases or more, particularly preferably 3 bases or more. When the coding region is deleted, if the function of the protein produced by each gene is reduced or deleted, the region to be deleted is any of the N-terminal region, internal region, and C-terminal region. It may be the entire code area. Usually, the longer region to be deleted can surely inactivate the target gene. Moreover, it is preferable that the upstream and downstream reading frames of the region to be deleted do not match.
 コード領域に他の配列を挿入する場合も、挿入する位置は標的遺伝子のいずれに領域であってもよいが、挿入する配列は長い方が、確実に標的遺伝子を不活化することができる。挿入部位の前後の配列は、リーディングフレームが一致しないことが好ましい。他の配列としては、標的遺伝子がコードするタンパク質の機能を低下又は欠損させるものであれば特に制限されないが、例えば、抗生物質耐性遺伝子やL-グルタミン酸生産に有用な遺伝子を搭載したトランスポゾン等が挙げられる。 When inserting other sequences into the coding region, the insertion position may be any region of the target gene, but the longer the sequence to be inserted, the more reliably the target gene can be inactivated. The sequences before and after the insertion site preferably do not match the reading frame. Other sequences are not particularly limited as long as they reduce or eliminate the function of the protein encoded by the target gene. Examples include antibiotic resistance genes and transposons carrying genes useful for L-glutamic acid production. It is done.
 染色体上の標的遺伝子を上記のように改変するには、例えば、標的遺伝子の部分配列を欠失し、正常に機能するタンパク質を産生しないように改変した欠失型遺伝子を作製し、該遺伝子を含むDNAで細菌を形質転換して、欠失型遺伝子と染色体上の標的遺伝子とで相同組換えを起こさせることにより、染色体上の標的遺伝子を欠失型遺伝子に置換することによって達成できる。欠失型標的遺伝子によってコードされるタンパク質は、生成したとしても、野生型タンパク質とは異なる立体構造を有し、機能が低下又は消失する。このような相同組換えを利用した遺伝子置換による遺伝子破壊は既に確立しており、「Redドリブンインテグレーション(Red-driven integration)」と呼ばれる方法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))、又は、Redドリブンインテグレーション法とλファージ由来の切り出しシステム(Cho, E. H., Gumport, R. I., Gardner, J. F. J. Bacteriol. 184: 5200-5203 (2002))とを組合わせた方法(WO2005/010175号参照)等の直鎖状DNAを用いる方法や、温度感受性複製起点を含むプラスミド、接合伝達可能なプラスミドを用いる方法、宿主内で複製起点を持たないスイサイドベクターを利用する方法などがある(米国特許第6303383号明細書、または特開平05-007491号公報)。 In order to modify a target gene on a chromosome as described above, for example, a deletion type gene is prepared by deleting a partial sequence of the target gene and modifying it so as not to produce a protein that functions normally. This can be accomplished by replacing the target gene on the chromosome with the deleted gene by transforming bacteria with the contained DNA and causing homologous recombination between the deleted gene and the target gene on the chromosome. Even if the protein encoded by the deletion-type target gene is produced, it has a three-dimensional structure different from that of the wild-type protein, and its function decreases or disappears. Gene disruption by gene replacement using such homologous recombination has already been established, and a method called “Red-driven integration” (Datsenko, K. A, and Wanner, B. L. Proc Natl. Acad. Sci. U S A. 97: 6640-6645 (2000)), or Red-driven integration method and λ phage-derived excision system (Cho, E. H., Gumport, R. I., Gardner , J. F. J. Bacteriol. 184: 5200-5203 (2002)), a method using linear DNA such as a method (see WO2005 / 010175), a plasmid containing a temperature-sensitive replication origin, There are a method using a plasmid capable of conjugation transfer and a method using a suicide vector which does not have an origin of replication in the host (US Pat. No. 6,303,383 or Japanese Patent Laid-Open No. 05-007491).
 標的遺伝子の転写量が低下したことの確認は、標的遺伝子から転写されるmRNAの量を野生株、あるいは非改変株と比較することによって行うことが出来る。mRNAの量を評価する方法としては、ノーザンハイブリダイゼーション、RT-PCR等が挙げられる(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。転写量の低下は、野生株あるいは非改変株と比較して低下していれば、いずれでもよいが、例えば野生株、非改変株と比べて少なくとも75%以下、50%以下、25%以下、又は10%以下に低下していることが望ましく、全く発現していないことが特に好ましい。 It can be confirmed that the amount of transcription of the target gene is reduced by comparing the amount of mRNA transcribed from the target gene with a wild strain or an unmodified strain. Examples of methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR, and the like (Molecular cloning (Cold spring spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001)). The decrease in the amount of transcription may be any as long as it is reduced compared to the wild strain or the unmodified strain, but for example, at least 75% or less, 50% or less, 25% or less, compared to the wild strain or the unmodified strain, Alternatively, it is desirable that the concentration is reduced to 10% or less, and it is particularly preferable that no expression occurs.
 標的遺伝子がコードするタンパク質の量が低下したことの確認は、同タンパク質に結合する抗体を用いてウェスタンブロットによって行うことが出来る(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。タンパク質量の低下は、野生株あるいは非改変株と比較して、低下していればいずれでもよいが、例えば野生株、非改変株と比べて、野生株あるいは非改変株と比べて少なくとも75%以下、50%以下、25%以下、又は10%以下以下に減少していることが望ましく、全くタンパク質を産生していない(完全に活性が消失している)ことが特に好ましい。 Confirmation that the amount of the protein encoded by the target gene has decreased can be confirmed by Western blotting using an antibody that binds to the protein (Molecular cloning (Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001) )). The decrease in the amount of protein may be any as long as it is lower than that of the wild strain or non-modified strain, but for example, at least 75% compared to the wild strain or non-modified strain compared to the wild strain or non-modified strain. In the following, it is desirable to decrease to 50% or less, 25% or less, or 10% or less, and it is particularly preferable that no protein is produced (the activity is completely lost).
 また、rng遺伝子を変異処理して、低活性のRNaseGをコードする遺伝子を取得することもできる。例えば、アルコールデヒドロゲナーゼをコードする遺伝子adhEの発現はrng遺伝子の機能に依存するため(Biochem. Biophys. Res. Commun., 295 (2002) 92-97)、adhEとβガラクトシダーゼのようなレポーター遺伝子を結合した融合タンパク質を発現するプラスミドを細胞内で変異型rng遺伝子と共存させ、βガラクトシダーゼ活性を測定することにより、活性低下型のrng遺伝子をスクリーニングすることもできる。 It is also possible to obtain a gene encoding RNaseG having a low activity by mutating the rng gene. For example, the expression of the adhE gene encoding alcohol dehydrogenase depends on the function of the rng gene (Biochem. Biophys. Res. Commun., 295 (2002) 92-97), so that adhE and a reporter gene such as β-galactosidase are combined. The activity-reduced rng gene can also be screened by allowing the plasmid expressing the fusion protein to coexist in the cell with the mutant rng gene and measuring β-galactosidase activity.
 RNaseGの活性を低下させるには、上述の遺伝子操作法以外に、例えば、エシェリヒア属細菌を紫外線照射または、N-メチル-N'-ニトロ-N-ニトロソグアニジン(NTG)もしくは亜硝酸等の通常変異処理に用いられている変異剤によって処理し、RNaseGの活性が低下した菌株を選択する方法が挙げられる。RNaseG活性が低下した変異株としては、16S rRNAの5'末端の成熟活性は残存しながらmRNAの分解活性のみが低下したような株、例えば、変異株DC430株やGM1430株など(Biochem. Biophys. Res. Commun., 289(5),1301-1306, 201) が挙げられる。 In order to reduce the activity of RNaseG, in addition to the above-described genetic manipulation methods, for example, Escherichia bacteria are irradiated with ultraviolet light, or normal mutation such as N-methyl-N′-nitro-N-nitrosoguanidine (NTG) or nitrite Examples include a method of selecting a strain that has been treated with the mutagen used in the treatment and has reduced RNaseG activity. Examples of mutant strains with reduced RNaseG activity include strains in which the maturation activity at the 5 'end of 16S rRNA remains but only mRNA degradation activity has decreased, such as mutant DC430 strain and GM1430 strain (Biochem. Biobios. Res. Commun., 289 (5), 1301-1306, 201).
<2>本発明のL-アミノ酸の製造法
 本発明のL-アミノ酸の製造法においては、エタノールを炭素源として含む培地で、腸内細菌科に属し、L-アミノ酸生産能を有し、かつ、RNaseGの活性が低下するように改変された細菌を培養して、培養物中にL-アミノ酸を生産蓄積させ、該培養物からL-アミノ酸を採取する。
<2> Method for Producing L-Amino Acid of the Present Invention In the method for producing L-amino acid of the present invention, a medium containing ethanol as a carbon source, belonging to the family Enterobacteriaceae, having L-amino acid producing ability, Then, the bacterium modified so that the activity of RNaseG is decreased, L-amino acid is produced and accumulated in the culture, and L-amino acid is collected from the culture.
 使用するエタノールは、L-アミノ酸を製造するのに適した濃度であればどのような濃度で用いてもかまわない。培地中の単独の炭素源として用いる場合、エタノールは培地中に炭素源として資化できるだけ含まれていればいずれでもよいが、0.001w/v%以上、好ましくは0.05w/v%以上、さらに好ましくは0.1w/v%以上含まれていることが望ましい。また、培地中のエタノール濃度は、20w/V%以下、好ましくは10w/v%以下、さらに好ましくは2w/v%以下であることが好ましい。 The ethanol to be used may be used at any concentration that is suitable for producing L-amino acids. When used as a sole carbon source in the medium, ethanol may be any ethanol as long as it is contained as much as a carbon source in the medium, but is 0.001 w / v% or more, preferably 0.05 w / v% or more, more preferably It is desirable to contain 0.1 w / v% or more. The ethanol concentration in the medium is preferably 20 w / V% or less, preferably 10 w / v% or less, more preferably 2 w / v% or less.
 また流加培地として使用する場合は、エタノールは培地中に0.001w/v%以上、好ましくは0.05w/v%以上、さらに好ましくは0.1w/v%以上含まれていることが望ましく、10w/v%以下、好ましくは5w/v%以下、さらに好ましくは1w/v%以下含むことが好ましい。
 なお、エタノールの濃度は、様々な方法で測定することが可能であるが、酵素法による測定が、簡便かつ一般的である(Swift, R. 2003. Addiction 98: 73-80)。
When used as a fed-batch medium, ethanol is desirably contained in the medium in an amount of 0.001 w / v% or more, preferably 0.05 w / v% or more, more preferably 0.1 w / v% or more. It is preferable to contain v% or less, preferably 5 w / v% or less, more preferably 1 w / v% or less.
The concentration of ethanol can be measured by various methods, but measurement by an enzyme method is simple and general (Swift, R. 2003. Addiction 98: 73-80).
 さらに、本発明の方法に使用する培地には、エタノールに加え、他の炭素源を添加してもよい。好ましいのは、グルコース、フラクトース、スクロース、ラクトース、ガラクトース、廃糖蜜、澱粉加水分解物などの糖類、グリセロールなどの多価アルコール類、フマル酸、クエン酸、コハク酸などの有機酸類を用いることが出来る。炭素源は1種でもよく、2種以上の混合物であってもよい。 Furthermore, other carbon sources may be added to the medium used in the method of the present invention in addition to ethanol. Preferred are sugars such as glucose, fructose, sucrose, lactose, galactose, molasses, starch hydrolysate, polyhydric alcohols such as glycerol, and organic acids such as fumaric acid, citric acid, and succinic acid. . One carbon source may be used, or a mixture of two or more carbon sources may be used.
 エタノールと他の炭素源は任意の比率で混合することが可能であるが、炭素源中のエタノールの比率は、20重量%以上、より好ましくは30重量%以上、より好ましくは37重量%であることが望ましい。特に、ピルビン酸シンターゼ活性、または、ピルビン酸:NADP+オキシドレダクターゼ活性が強化されていない細菌を用いる場合は、生産されるアミノ酸の収率の観点から、エタノールの割合は上記範囲が好ましい。 Although ethanol and other carbon sources can be mixed in any ratio, the ratio of ethanol in the carbon source is 20% by weight or more, more preferably 30% by weight or more, more preferably 37% by weight. It is desirable. In particular, in the case of using a bacterium in which pyruvate synthase activity or pyruvate: NADP + oxidoreductase activity is not enhanced, the ratio of ethanol is preferably within the above range from the viewpoint of the yield of amino acid produced.
 本発明において、ピルビン酸シンターゼ活性、または、ピルビン酸:NADP+オキシドレダクターゼ活性を強化した細菌を用いる場合には、エタノールと他の炭素源との混合比率は、エタノール濃度が高いほうが好ましく、80%以上、好ましくは90%以上、より好ましくは100%である。 In the present invention, when a bacterium with enhanced pyruvate synthase activity or pyruvate: NADP + oxidoreductase activity is used, the mixing ratio of ethanol and other carbon source is preferably higher in ethanol concentration, 80% Above, preferably 90% or more, more preferably 100%.
 なお、本発明において、エタノールは、培養の全工程において一定濃度含まれてもよいし、流加培地のみあるいは初発培地のみに添加されていてもよく、その他の炭素源が充足していれば、一定時間エタノールが不足している期間があってもよい。一時的とは、例えば発酵全体の時間のうち10%以下、又は20%以下、最大で30%の時間でエタノールが不足していてもよい。 In the present invention, ethanol may be contained at a constant concentration in all the steps of the culture, may be added only to the fed-batch medium or only to the initial medium, and if other carbon sources are satisfied, There may be a period of ethanol shortage for a certain period of time. The term “temporary” means that ethanol may be insufficient for a time of 10% or less, or 20% or less, and a maximum of 30% of the entire fermentation time.
 培地中に添加するその他の成分としては、炭素源に加えて、窒素源、無機イオン及び必要に応じその他の有機成分を含有する通常の培地を用いることができる。本発明の培地中に含まれる窒素源としては、アンモニア、硫酸アンモニウム、炭酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、酢酸アンモニウム、ウレア等のアンモニウム塩または硝酸塩等が使用することができ、pH調整に用いられるアンモニアガス、アンモニア水も窒素源として利用できる。また、ペプトン、酵母エキス、肉エキス、麦芽エキス、コーンスティープリカー、大豆加水分解物等も利用出来る。培地中にこれらの窒素源を1種のみ含まれていてもよいし、2種以上含んでいてもよい。これらの窒素源は、初発培地にも流加培地にも用いることができる。また、初発培地、流加培地とも、同じ窒素源を用いてもよいし、流加培地の窒素源を初発培地と変更してもよい。 As other components to be added to the medium, a normal medium containing a nitrogen source, inorganic ions and other organic components as required can be used in addition to the carbon source. As the nitrogen source contained in the culture medium of the present invention, ammonium salts such as ammonia, ammonium sulfate, ammonium carbonate, ammonium chloride, ammonium phosphate, ammonium acetate, urea, or nitrates can be used, and are used for pH adjustment. Ammonia gas and aqueous ammonia can also be used as a nitrogen source. Moreover, peptone, yeast extract, meat extract, malt extract, corn steep liquor, soybean hydrolyzate and the like can also be used. Only one of these nitrogen sources may be included in the medium, or two or more thereof may be included. These nitrogen sources can be used for both the initial medium and the fed-batch medium. In addition, the same nitrogen source may be used for both the initial culture medium and the feed medium, or the nitrogen source of the feed medium may be changed to the initial culture medium.
 本発明の培地には、炭素源、窒素源の他にリン酸源、硫黄源が含まれていることが好ましい。リン酸源としては、リン酸2水素カリウム、リン酸水素2カリウム、ピロリン酸などのリン酸ポリマー等が利用出来る。また、硫黄源とは、硫黄原子を含んでいるものであればいずれでもよいが、硫酸塩、チオ硫酸塩、亜硫酸塩等の硫酸塩、システイン、シスチン、グルタチオン等の含硫アミノ酸が望ましく、なかでも硫酸アンモニウムが望ましい。 The medium of the present invention preferably contains a phosphate source and a sulfur source in addition to a carbon source and a nitrogen source. As the phosphoric acid source, phosphoric acid polymers such as potassium dihydrogen phosphate, dipotassium hydrogen phosphate and pyrophosphoric acid can be used. The sulfur source may be any one containing sulfur atoms, but sulfates such as sulfates, thiosulfates and sulfites, and sulfur-containing amino acids such as cysteine, cystine and glutathione are desirable. However, ammonium sulfate is desirable.
 また、培地には、炭素源、窒素源、硫黄源の他に、増殖促進因子(増殖促進効果を持つ栄養素)が含まれていてもよい。増殖促進因子とは、微量金属類、アミノ酸、ビタミン、核酸、更にこれらのものを含有するペプトン、カザミノ酸、酵母エキス、大豆たん白分解物等が使用できる。微量金属類としては、鉄、マンガン、マグネシウム、カルシウム等が挙げられ、ビタミンとしては、ビタミンB1、ビタミンB2、ビタミンB6、ニコチン酸、ニコチン酸アミド、ビタミンB12等が挙げられる。これらの増殖促進因子は初発培地に含まれていてもよいし、流加培地に含まれていてもよい。 The medium may contain a growth promoting factor (a nutrient having a growth promoting effect) in addition to the carbon source, nitrogen source, and sulfur source. Examples of the growth promoting factor include trace metals, amino acids, vitamins, nucleic acids, and peptone, casamino acid, yeast extract, soybean protein degradation products, and the like containing these. Examples of trace metals include iron, manganese, magnesium, calcium, and vitamins include vitamin B1, vitamin B2, vitamin B6, nicotinic acid, nicotinamide, and vitamin B12. These growth promoting factors may be contained in the initial culture medium or in the fed-batch medium.
 また、培地には、生育にアミノ酸などを要求する栄養要求性変異株を使用する場合には要求される栄養素を補添することが好ましい。特に本発明に用いることができるL-リジン生産菌は、後述のようにL-リジン生合成経路が強化されており、L-リジン分解能が弱化されているものが多いので、L-スレオニン、L-ホモセリン、L-イソロイシン、L-メチオニンから選ばれる1種又は2種以上を添加することが望ましい。初発培地と流加培地は、培地組成が同じであってもよく、異なっていてもよい。また、初発培地と流加培地は、培地組成が同じであってもよく、異なっていてもよい。さらには、流加培地の流加が多段階で行われる場合、各々の流加培地の組成は同じであってもよく、異なっていてもよい。 In addition, it is preferable to supplement the medium with nutrients required in the case of using an auxotrophic mutant strain that requires amino acids for growth. In particular, L-lysine-producing bacteria that can be used in the present invention have many L-lysine biosynthetic pathways as described later, and L-lysine resolution is weakened. It is desirable to add one or more selected from homoserine, L-isoleucine, and L-methionine. The initial medium and fed-batch medium may have the same or different medium composition. In addition, the initial culture medium and the fed-batch medium may have the same or different medium composition. Furthermore, when the feeding of the feeding medium is performed in multiple stages, the composition of each feeding medium may be the same or different.
 培養は、発酵温度20~45℃、特に好ましくは33~42℃で通気培養を行うことが好ましい。ここで酸素濃度は、5~50%に、望ましくは10%程度に調節して行う。また、pHを5~9に制御し、通気培養を行うことが好ましい。培養中にpHが下がる場合には、例えば、炭酸カルシウムを加えるか、アンモニアガス、アンモニア水等のアルカリで中和することができる。このような条件下で、好ましくは10時間~120時間程度培養することにより、培養液中に著量のL-アミノ酸が蓄積される。蓄積されるL-アミノ酸の濃度は野生株より高く、培地中から採取・回収できる濃度であればいずれでもよいが、50g/L以上、望ましくは75g/L以上、さらに望ましくは100g/L以上である。 The culture is preferably carried out by aeration culture at a fermentation temperature of 20 to 45 ° C, particularly preferably 33 to 42 ° C. Here, the oxygen concentration is adjusted to 5 to 50%, preferably about 10%. Further, it is preferable to perform aeration culture while controlling the pH to 5 to 9. When the pH falls during the culture, for example, calcium carbonate can be added or neutralized with an alkali such as ammonia gas or ammonia water. By culturing preferably for about 10 to 120 hours under such conditions, a significant amount of L-amino acid is accumulated in the culture solution. The concentration of the accumulated L-amino acid is higher than that of the wild strain, and any concentration can be used as long as it can be collected and recovered from the medium, but it is 50 g / L or more, preferably 75 g / L or more, more preferably 100 g / L or more. is there.
 目的アミノ酸が塩基性アミノ酸である場合は、培養中のpHが6.5~9.0、培養終了時の培地のpHが7.2~9.0となるように制御し、発酵中の発酵槽内圧力が正となるように制御する、あるいは又は、炭酸ガスもしくは炭酸ガスを含む混合ガスを培地に供給して、培地中の重炭酸イオン及び/または炭酸イオンが少なくとも20mM以上存在する培養期があるようにし、前記重炭酸イオン及び/または炭酸イオンを塩基性アミノ酸を主とするカチオンのカウンタイオンとする方法で発酵し、目的の塩基性アミノ酸を回収する方法で製造を行ってもよい(特開2002-065287号、米国特許出願公開第2002025564号、EP1813677A参照)。 When the target amino acid is a basic amino acid, the pH during the culture is controlled to 6.5 to 9.0, and the pH of the medium at the end of the culture is controlled to 7.2 to 9.0. A culture period in which the pressure in the tank is controlled to be positive, or carbon dioxide gas or a mixed gas containing carbon dioxide gas is supplied to the medium so that bicarbonate ions and / or carbonate ions are present in the medium at least 20 mM or more. And may be produced by a method of fermenting the bicarbonate ion and / or carbonate ion with a counter ion of a cation mainly composed of a basic amino acid, and recovering the target basic amino acid ( JP 2002-065287, US Patent Application Publication No. 2002025564, EP1813677A).
 上記態様においては、発酵中の発酵槽内の圧力が正となるように制御すること、及び、炭酸ガスもしくは炭酸ガスを含む混合ガスを培地に供給することの両方を行ってもよい。いずれの場合も、培地中の重炭酸イオン及び/又は炭酸イオンが、好ましくは20mM以上、より好ましくは30mM以上、特に好ましくは40mM以上存在する培養期があるようにすることが好ましい。発酵槽内圧力、炭酸ガス又は炭酸ガスを含む混合ガスの供給量、又は制限された給気量は、例えば培地中の重炭酸イオン又は炭酸イオンを測定することや、pHやアンモニア濃度を測定することによって、決定することができる。 In the above aspect, both the control so that the pressure in the fermenter during the fermentation may be positive and the supply of carbon dioxide or a mixed gas containing carbon dioxide to the medium may be performed. In any case, it is preferable that there is a culture period in which bicarbonate ions and / or carbonate ions in the medium are preferably present at 20 mM or more, more preferably 30 mM or more, and particularly preferably 40 mM or more. The pressure in the fermenter, the supply amount of carbon dioxide or a mixed gas containing carbon dioxide, or the limited supply amount is measured, for example, by measuring bicarbonate ions or carbonate ions in the medium, or by measuring pH or ammonia concentration. Can be determined.
 上記態様においては、培養中の培地のpHが6.0~9.0、好ましくは6.5~8.0、培養終了時の培地のpHが7.2~9.0となるように制御する。上記態様によれば、従来の方法に比べて、カウンタイオンとして必要な量の重炭酸イオン及び/又は炭酸イオンを培地中に存在させるための培地のpHを低く抑えることが可能となる。アンモニアでpHを制御する場合、pHを高めるためにアンモニアが供給され、塩基性アミノ酸のN源となり得る。培地に含まれる塩基性アミノ酸以外のカチオンとしては、培地成分由来のK、Na、Mg、Ca等が挙げられる。これらは、好ましくは総カチオンの50%以下であることが好ましい。 In the above embodiment, the pH of the medium during the culture is controlled to 6.0 to 9.0, preferably 6.5 to 8.0, and the pH of the medium at the end of the culture is controlled to 7.2 to 9.0. To do. According to the said aspect, compared with the conventional method, it becomes possible to hold down the pH of the culture medium for making the quantity of bicarbonate ion and / or carbonate ion which are required as a counter ion exist in a culture medium. When the pH is controlled with ammonia, ammonia is supplied to increase the pH, which can serve as an N source for basic amino acids. Examples of cations other than basic amino acids contained in the medium include K, Na, Mg, Ca and the like derived from medium components. These are preferably 50% or less of the total cations.
 また、発酵中の発酵槽内圧力が正となるようにするには、例えば、給気圧を排気圧より高くすればよい。発酵槽内圧力を正にすることによって、発酵により生成する炭酸ガスが培養液に溶解し、重炭酸イオン又は炭酸イオンを生じ、これらは塩基性アミノ酸のカウンタイオンとなり得る。発酵槽内圧力として具体的には、ゲージ圧(大気圧に対する差圧)で、0.03~0.2MPa、好ましくは0.05~0.15MPa、さらに好ましくは0.1~0.3MPaが挙げられる。また、培養液に炭酸ガス、又は炭酸ガスを含む混合ガスを供給することによって、培養液に炭酸ガスを溶解させてもよい。例えば、純炭酸ガス、又は炭酸ガスを5体積%以上含む混合ガスを吹き込めばよい。さらには、培養液に炭酸ガス又は炭酸ガスを含む混合ガスを供給しつつ、発酵槽内圧力が正となるように調節してもよい。 Moreover, in order to make the fermenter internal pressure during fermentation positive, for example, the supply air pressure may be set higher than the exhaust pressure. By making the pressure in the fermenter positive, the carbon dioxide gas generated by fermentation dissolves in the culture solution to produce bicarbonate ions or carbonate ions, which can be counter ions of basic amino acids. Specifically, the pressure in the fermenter is 0.03 to 0.2 MPa, preferably 0.05 to 0.15 MPa, more preferably 0.1 to 0.3 MPa in terms of gauge pressure (differential pressure with respect to atmospheric pressure). Can be mentioned. In addition, carbon dioxide gas may be dissolved in the culture solution by supplying carbon dioxide gas or a mixed gas containing carbon dioxide gas to the culture solution. For example, pure carbon dioxide or a mixed gas containing 5% by volume or more of carbon dioxide may be blown. Furthermore, you may adjust so that a fermenter internal pressure may become positive, supplying carbon dioxide or the mixed gas containing carbon dioxide to a culture solution.
 尚、培地に重炭酸イオン及び/又は炭酸イオンを溶解させる上記の方法は、単独でもよいし、複数を組み合わせてもよい。 In addition, the above-mentioned method for dissolving bicarbonate ions and / or carbonate ions in the medium may be used alone or in combination.
 従来法では、通常、生成する塩基牲アミノ酸のカウンタアニオンとすべく、十分量の硫酸アンモニウムや塩化アンモニウムが、又、栄養成分として蛋白等の硫酸分解物もしくは塩酸分解物が培地に添加され、これらから与えられる硫酸イオン、塩化物イオンが培地に含まれる。従って、弱酸性である炭酸イオン濃度は培養中極めて低く、ppm単位である。上記態様では、これら硫酸イオン、塩化物イオンを減じ、微生物が発酵中に放出する炭酸ガスを上記発酵環境にて培地中に溶解せしめ、カウンタイオンとすることに特徴がある。したがって、上記態様においては、硫酸イオンや塩化物イオンを生育に必要な量以上培地に添加する必要はない。好ましくは、培養当初は硫酸アンモニウム等を培地に適当量フィードし、培養途中でフィードを止める。あるいは、培地中の炭酸イオン又は重炭酸イオンの溶存量とのバランスを保ちつつ、硫酸アンモニウム等をフィードしてもよい。また、塩基性アミノ酸の窒素源として、アンモニアを培地にフィードしてもよい。アンモニアは、単独で、又は他の気体とともに培地に供給することができる。 In the conventional method, a sufficient amount of ammonium sulfate or ammonium chloride is usually added to the medium as a counter anion of the basic amino acid to be produced, and a sulfate or hydrolyzate of protein or the like as a nutrient component is added to the medium. The culture medium contains sulfate ions and chloride ions. Therefore, the concentration of carbonate ion, which is weakly acidic, is extremely low during the culture, and is in ppm. The above aspect is characterized in that the sulfate ions and chloride ions are reduced, and carbon dioxide released by the microorganisms during fermentation is dissolved in the medium in the fermentation environment to form counter ions. Therefore, in the above-described embodiment, it is not necessary to add sulfate ions or chloride ions to the culture medium in an amount necessary for growth. Preferably, an appropriate amount of ammonium sulfate or the like is fed to the medium at the beginning of the culture, and the feed is stopped during the culture. Or you may feed ammonium sulfate etc., maintaining the balance with the dissolved amount of the carbonate ion or bicarbonate ion in a culture medium. Alternatively, ammonia may be fed to the medium as a nitrogen source for basic amino acids. Ammonia can be supplied to the medium alone or with other gases.
 培地に含まれる重炭酸イオン及び/又は炭酸イオン以外の他のアニオンの濃度は、微生物の生育に必要な量であれば、低いことが好ましい。このようなアニオンには、塩化物イオン、硫酸イオン、リン酸イオン、イオン化した有機酸、及び水酸化物イオン等が挙げられる。これらの他のイオンのモル濃度の合計は、好ましくは通常は900mM以下、より好ましくは700mM以下、特により好ましくは500mM以下、さらに好ましくは300mM以下、特に好ましくは200mM以下である。 The concentration of bicarbonate ions and / or other anions other than carbonate ions contained in the medium is preferably low as long as it is an amount necessary for the growth of microorganisms. Such anions include chloride ions, sulfate ions, phosphate ions, ionized organic acids, hydroxide ions, and the like. The total molar concentration of these other ions is preferably usually 900 mM or less, more preferably 700 mM or less, particularly preferably 500 mM or less, still more preferably 300 mM or less, and particularly preferably 200 mM or less.
 上記態様においては、硫酸イオン、及び/又は、塩化物イオンの使用量を削減することが目的の一つであり、培地に含まれる硫酸イオンもしくは塩化物イオン、又はこれらの合計は、通常、700mM以下、好ましくは500mM以下、より好ましくは300mM以下、さらに好ましくは200mM以下、特に好ましくは100mM以下である。 In the above embodiment, one of the purposes is to reduce the amount of sulfate ion and / or chloride ion used, and the sulfate ion or chloride ion contained in the medium, or the total of these, is usually 700 mM. Hereinafter, it is preferably 500 mM or less, more preferably 300 mM or less, still more preferably 200 mM or less, and particularly preferably 100 mM or less.
 通常は、塩基性アミノ酸のカウンタイオン源として培地に硫酸アンモニウムを添加すると、硫酸イオンによって培養液中の炭酸ガスが放出してしまう。それに対して、上記態様においては、過剰量の硫酸アンモニウムを培地に添加する必要がないので、炭酸ガスを発酵液中に容易に溶解させることができる。 Normally, when ammonium sulfate is added to the medium as a counter ion source for basic amino acids, carbon dioxide in the culture medium is released by sulfate ions. On the other hand, in the above embodiment, it is not necessary to add an excessive amount of ammonium sulfate to the medium, so that carbon dioxide gas can be easily dissolved in the fermentation broth.
 また、上記態様においては、「塩基性アミノ酸の生産を阻害しない」程度に培地中の総アンモニア濃度を制御することが好ましい。そのような条件としては、例えば、最適な条件において塩基性アミノ酸を生産する場合の収率及び/又は生産性に比べて、好ましくは50%以上、より好ましくは70%以上、特に好ましくは90%以上の収率及び/又は生産性が得られる条件が含まれる。具体的には、培地中の総アンモニア濃度としては、好ましくは300mM以下、より好ましくは250mM、特に好ましくは200mM以下の濃度が挙げられる。アンモニアの解離度はpHが高くなると低下する。解離していないアンモニアは、アンモニウムイオンよりも菌に対して毒性が強い。そのため、総アンモニア濃度の上限は、培養液のpHにも依存する。すなわち、培養液のpHが高いほど、許容される総アンモニア濃度は低くなる。したがって、前記「塩基性アミノ酸の生産を阻害しない」総アンモニア濃度は、pH毎に設定することが好ましい。しかし、培養中の最も高いpHにおいて許容される総アンモニア濃度範囲を、培養期間を通じての総アンモニア濃度の上限値範囲としてもよい。 In the above embodiment, it is preferable to control the total ammonia concentration in the medium to such an extent that “the production of basic amino acids is not inhibited”. Such conditions include, for example, preferably 50% or more, more preferably 70% or more, particularly preferably 90%, as compared to the yield and / or productivity in the case of producing a basic amino acid under optimum conditions. Conditions for obtaining the above yield and / or productivity are included. Specifically, the total ammonia concentration in the medium is preferably 300 mM or less, more preferably 250 mM, and particularly preferably 200 mM or less. The degree of ammonia dissociation decreases with increasing pH. Undissociated ammonia is more toxic to bacteria than ammonium ions. Therefore, the upper limit of the total ammonia concentration also depends on the pH of the culture solution. That is, the higher the pH of the culture solution, the lower the allowable total ammonia concentration. Therefore, the total ammonia concentration that “does not inhibit the production of basic amino acids” is preferably set for each pH. However, the total ammonia concentration range allowed at the highest pH during the culture may be the upper limit range of the total ammonia concentration throughout the culture period.
 一方、微生物の生育及び塩基性物質の生産に必要な窒素源としての総アンモニア濃度としては、培養中にアンモニアが継続して枯渇しない窒素源が不足することにより微生物による目的物質の生産性を低下させない限り特に制限されず、適宜設定することができる。例えば、培養中にアンモニア濃度を経時的に測定し、培地中のアンモニアが枯渇したら少量のアンモニアを培地に添加してもよい。アンモニアを添加したときの濃度としては、特に制限されないが、例えば、総アンモニア濃度として好ましくは1mM以上、より好ましくは10mM以上、特に好ましくは20mM以上の濃度が挙げられる。 On the other hand, the total ammonia concentration as a nitrogen source necessary for the growth of microorganisms and the production of basic substances decreases the productivity of target substances by microorganisms due to the lack of a nitrogen source that does not continuously deplete ammonia during culture. There is no particular limitation as long as it is not set, and it can be set as appropriate. For example, the ammonia concentration may be measured over time during the culture, and a small amount of ammonia may be added to the medium when the ammonia in the medium is depleted. The concentration when ammonia is added is not particularly limited. For example, the total ammonia concentration is preferably 1 mM or more, more preferably 10 mM or more, and particularly preferably 20 mM or more.
 本発明においては、L-アミノ酸蓄積を一定以上に保つために、微生物の培養を種培養と本培養とに分けて行ってもよく、種培養をフラスコ等を用いたしんとう培養、又は回分培養で行い、本培養を流加培養、又は連続培養で行ってもよく、種培養、本培養ともに回分培養で行ってもよい。 In the present invention, in order to keep L-amino acid accumulation at a certain level or more, the culture of microorganisms may be performed separately in seed culture and main culture, and the seed culture is performed in a flask culture or a batch culture. The main culture may be performed by fed-batch culture or continuous culture, and both seed culture and main culture may be performed by batch culture.
 本発明において、流加培養、あるいは連続培養を行う際には、一時的にエタノールまたはその他の炭素源の流加が停止するように間欠的に流加培地を流加してもよい。また、流加を行う時間の最大で30%以下、望ましくは20%以下、特に望ましくは10%以下で流加培地の供給を停止することが好ましい。流加培養液を間欠的に流加させる場合には、流加培地を一定時間添加し、2回目以降の添加はある添加期に先行する添加停止期において発酵培地中の炭素源が枯渇するときのpH上昇または溶存酸素濃度の上昇がコンピューターで検出されるときに開始するように制御を行い、培養槽内の基質濃度を常に自動的に低レベルに維持してもよい(米国特許5,912,113号明細書)。 In the present invention, when fed-batch culture or continuous culture is performed, the feed medium may be fed intermittently so that the feed of ethanol or other carbon source is temporarily stopped. In addition, it is preferable to stop the feeding of the fed-batch medium at a maximum of 30% or less, desirably 20% or less, particularly desirably 10% or less of the feeding time. When the fed-batch culture is fed intermittently, the fed-batch medium is added for a certain period of time, and the second and subsequent additions are performed when the carbon source in the fermentation medium is depleted in the addition stop period preceding the addition stage. Control to start when a rise in pH or an increase in dissolved oxygen concentration is detected by the computer, so that the substrate concentration in the culture tank may always be automatically maintained at a low level (US Pat. No. 5,912,113). book).
 流加培養に用いられる流加培地は、エタノールまたその他の炭素源及び増殖促進効果を持つ栄養素(増殖促進因子)を含む培地が好ましく、発酵培地中のエタノールの濃度が一定以下になるように制御してもよい。ここで一定濃度以下とは、10w/v%以下、好ましくは5w/v%以下、さらに好ましくは1w/v%以下になるように添加する培地を調製することを意味する。 The fed-batch medium used for fed-batch culture is preferably a medium containing ethanol or other carbon source and a nutrient (growth promoting factor) that has a growth promoting effect, and is controlled so that the concentration of ethanol in the fermentation medium is below a certain level. May be. Here, the term “below a certain concentration” means preparing a medium to be added so that the concentration is 10 w / v% or less, preferably 5 w / v% or less, and more preferably 1 w / v% or less.
 培養液からのL-アミノ酸の回収は通常イオン交換樹脂法、沈殿法その他の公知の方法を組み合わせることにより実施できる。なお、菌体内にL-アミノ酸が蓄積する場合には、例えば菌体を超音波などにより破砕し、遠心分離によって菌体を除去して得られる上清からイオン交換樹脂法などによって、L-アミノ酸を回収することができる。回収されるL-アミノ酸は、フリー体のL-アミノ酸であっても、硫酸塩、塩酸塩、炭酸塩、アンモニウム塩、ナトリウム塩、カリウム塩を含む塩であってもよい。 The L-amino acid can be collected from the culture solution by combining an ion exchange resin method, a precipitation method and other known methods. In addition, when L-amino acid accumulates in the microbial cells, for example, the microbial cells are crushed by ultrasonic waves and the microbial cells are removed by centrifugation, and the L-amino acid is removed from the supernatant obtained by ion exchange resin method or the like. Can be recovered. The recovered L-amino acid may be a free L-amino acid or a salt containing sulfate, hydrochloride, carbonate, ammonium salt, sodium salt, or potassium salt.
 また、本発明において採取されるL-アミノ酸は、目的とするL-アミノ酸以外に微生物菌体、培地成分、水分、及び微生物の代謝副産物を含んでいてもよい。採取されたL-アミノ酸の純度は、50%以上、好ましくは85%以上、特に好ましくは95%以上である (US5,431,933, JP1214636B, US4,956,471, US4,777,051, US4946654, US5,840358, US6,238,714, US2005/0025878)。 Further, the L-amino acid collected in the present invention may contain microbial cells, medium components, moisture, and microbial metabolic byproducts in addition to the target L-amino acid. The purity of the collected L-amino acid is 50% or more, preferably 85% or more, particularly preferably 95% or more. , 238,714, US2005 / 0025878).
 また、L-アミノ酸が培地中に析出する場合は、遠心分離又は濾過等により回収することができる。また、培地中に析出したL-アミノ酸は、培地中に溶解しているL-アミノ酸を晶析した後に、併せて単離してもよい。 If L-amino acid is precipitated in the medium, it can be recovered by centrifugation or filtration. The L-amino acid precipitated in the medium may be isolated together after crystallization of the L-amino acid dissolved in the medium.
 以下、本発明を実施例により更に具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
〔実施例1〕リボヌクレアーゼG活性が低下したL-リジン生産菌の構築
<1-1>WC196ΔcadAΔldcC株へのエタノール資化性の付与
 L-リジン生産菌にエタノール資化性を付与するため、変異型アルコールデヒドロゲナーゼ遺伝子(adhE*)の導入を行った。変異型アルコールデヒドロゲナーゼ遺伝子として、MG1655::PL-tacadhE*(WO2008/010565)由来の遺伝子を用いた。MG1655::PL-tacadhE*株は、クロラムフェニコール耐性遺伝子(cat)と、PL-tacプロモーターにより制御される変異型adhE遺伝子が連結したDNA断片を、エシェリヒア・コリMG1655株のゲノムに挿入して得た株である。cat遺伝子をゲノムから除去できるようにするため、cat遺伝子を、ラムダファージのアタッチメントサイトとテトラサイクリン耐性遺伝子を連結したDNA断片(att-tet)へ置き換えた。
[Example 1] Construction of L-lysine-producing bacterium with reduced ribonuclease G activity <1-1> Giving ethanol-assimilating ability to WC196ΔcadAΔldcC strain An alcohol dehydrogenase gene (adhE *) was introduced. As the mutant alcohol dehydrogenase gene, a gene derived from MG1655 :: PL -tac adhE * (WO2008 / 010565) was used. The MG1655 :: PL L-tac adhE * strain contains a chloramphenicol resistance gene (cat) and a DNA fragment linked to the mutant adhE gene controlled by the PL-tac promoter in the genome of Escherichia coli MG1655 strain. It is a strain obtained by insertion. In order to be able to remove the cat gene from the genome, the cat gene was replaced with a DNA fragment (att-tet) linking the attachment site of lambda phage and the tetracycline resistance gene.
 cat遺伝子のatt-tet遺伝子への置き換えは、WO2005/010175に記載の、DatsenkoとWannerによって最初に開発された「Red-driven integration」と呼ばれる方法(Proc. Natl. Acad. Sci. USA, 2000, vol. 97, No. 12, p6640-6645)によって行った。「Red-driven integration」方法によれば、目的とする遺伝子の一部を合成オリゴヌクレオチドの5’側に、抗生物質耐性遺伝子の一部を3’側にデザインした合成オリゴヌクレオチドをプライマーとして用いて得られたPCR産物を用いて、一段階で遺伝子破壊株を構築することができる。さらにλファージ由来の切り出しシステム(J. Bacteriol. 2002 Sep; 184(18): 5200-3. Interactions between integrase and excisionase in the phage lambda excisive nucleoprotein complex. Cho EH, Gumport RI, Gardner JF.)を組み合わせることにより、遺伝子破壊株に組み込んだ抗生物質耐性遺伝子を除去することが出来る。cat遺伝子をatt-tet遺伝子で置換えるためのプライマーとして、配列番号5及び6のプライマーを使用して行った。こうして、MG1655::PL-tacadhE*のcat遺伝子がatt-tet遺伝子に置き換えられたMG1655-att-tet-PL-tacadhE*株を得た。 Replacement of the cat gene with the att-tet gene is a method called “Red-driven integration” originally developed by Datsenko and Wanner described in WO2005 / 010175 (Proc. Natl. Acad. Sci. USA, 2000, vol. 97, No. 12, p6640-6645). According to the “Red-driven integration” method, a synthetic oligonucleotide designed with a part of the target gene on the 5 ′ side of the synthetic oligonucleotide and a part of the antibiotic resistance gene on the 3 ′ side is used as a primer. Using the obtained PCR product, a gene-disrupted strain can be constructed in one step. In addition, a lambda phage-derived excision system (J. Bacteriol. 2002 Sep; 184 (18): 5200-3. Interactions between integrase and excisionase in the phage lambda excisive nucleoprotein complex. Cho EH, Gumport RI, Gardner JF.) Thus, the antibiotic resistance gene incorporated in the gene disruption strain can be removed. The primers of SEQ ID NOs: 5 and 6 were used as primers for replacing the cat gene with the att-tet gene. Thus, MG1655-att-tet-PL -tac adhE * strain in which the cat gene of MG1655 :: PL -tac adhE * was replaced with the att-tet gene was obtained.
 L-リジン生産菌にエタノール資化性を付与するため、MG1655-att-tet-PL-tacadhE*をドナーとして、L-リジン生産菌WC196ΔcadAΔldcC株にP1トランスダクションを行い、WC196ΔcadAΔldcC-att-tet-PL-tacadhE*株を得た。 In order to confer ethanol-assimilating properties to L-lysine-producing bacteria, MG1655-att-tet-P L-tac adhE * was used as a donor, P1 transduction was performed on L-lysine-producing bacteria WC196ΔcadAΔldcC, and WC196ΔcadAΔldcC-att-tet -P L-tac adhE * strain was obtained.
 次に、PL-tacプロモーター上流に導入されたatt-tet遺伝子を除去するために、ヘルパープラスミドpMW-intxis-ts(米国特許出願公開20060141586)を使用した。pMW-intxis-tsは、λファージのインテグラーゼ(Int)をコードする遺伝子、エクシジョナーゼ(Xis)をコードする遺伝子を搭載し、温度感受性の複製能を有するプラスミドである。 Next, a helper plasmid pMW-intxis-ts (US Patent Application Publication 20060141586) was used to remove the att-tet gene introduced upstream of the P L-tac promoter. pMW-intxis-ts is a plasmid carrying a gene encoding λ phage integrase (Int) and gene encoding excisionase (Xis) and having temperature-sensitive replication ability.
 上記で得られたWC196ΔcadAΔldcC-att-tet-PL-tacadhE*株のコンピテントセルを常法に従って作製し、ヘルパープラスミドpMW-intxis-tsにて形質転換し、30℃で50 mg/Lのアンピシリンを含むLB寒天培地上にて平板培養し、アンピシリン耐性株を選択した。pMW-intxis-tsプラスミドを除去するために、LB寒天培地上、42℃で培養し、得られたコロニーのアンピシリン耐性、及びテトラサイクリン耐性を試験し、att-tet及びpMW-intxis-tsが脱落しているPL-tacadhE*導入株であるテトラサイクリン、アンピシリン感受性株を取得した。この株をWC196ΔcadAΔldcC PL-tacadhE*株と名づけた。 Competent cells of the WC196ΔcadAΔldcC-att-tet-PL -tac adhE * strain obtained above were prepared according to a conventional method, transformed with the helper plasmid pMW-intxis-ts, and 50 mg / L at 30 ° C. Plates were plated on LB agar medium containing ampicillin, and ampicillin resistant strains were selected. In order to remove the pMW-intxis-ts plasmid, it was cultured on LB agar medium at 42 ° C, and the resulting colonies were tested for ampicillin resistance and tetracycline resistance. Att-tet and pMW-intxis-ts were removed. We obtained tetracycline and ampicillin sensitive strains, which are P L-tac adhE * introduced strains. This strain was named WC196ΔcadAΔldcC PL -tac adhE * strain.
<1-2>WC196ΔcadAΔldcC PL-tacadhE*株からのリボヌクレアーゼG非産生株(rng遺伝子欠損株WC196ΔcadAΔldcΔrng PL-tacadhE*株)の構築
 MG1655株に対して、「Red-driven integration」方法により、rng遺伝子の欠失を行った。rng遺伝子の欠失用プライマーとして、配列番号7及び8のプライマーを使用して行うことができる。これによって、MG1655Δrng::Cm株を得た。MG1655Δrng::Cm株をドナーとして、L-リジン生産菌WC196ΔcadAΔldcC PL-tacadhE*株にP1トランスダクションを行い、リボヌクレアーゼG非産生株WC196ΔcadAΔldcC PL-tacadhE*Δrng::Cm株を得た。
<1-2> against WC196ΔcadAΔldcC P L-tac adhE * ribonuclease G non-producing strains from stock (rng gene-deficient strain WC196ΔcadAΔldcΔrng P L-tac adhE * stock) Construction of strain MG1655, by the method "Red-driven integration" The deletion of the rng gene was performed. As a primer for deletion of the rng gene, the primers of SEQ ID NOs: 7 and 8 can be used. As a result, the MG1655Δrng :: Cm strain was obtained. Using the MG1655Δrng :: Cm strain as a donor, P1 transduction was performed on the L- lysine-producing WC196ΔcadAΔldcC PL -tac adhE * strain to obtain a ribonuclease G non-producing strain WC196ΔcadAΔldcCP L-tac adhE * Δrng :: Cm strain.
 WC196ΔcadAΔldcC PL-tacadhE*株、WC196ΔcadAΔldcC PL-tacadhE*Δrng::Cm株を、dapA、dapB及びlysC遺伝子を搭載したLys生産用プラスミドpCABD2(国際公開第WO01/53459号パンフレット)で常法に従い形質転換し、WC196ΔcadAΔldcC PL-tacadhE*/pCABD2株、及び、WC196ΔcadAΔldcC PL-tacadhE*Δrng::Cm/pCABD2を得た。これらの株を20mg/Lのストレプトマイシンを含むL培地にて終OD600≒0.6となるように37℃にて培養した後、培養液と等量の40%グリセロール溶液を加えて攪拌した後、適当量ずつ分注し-80℃に保存した。これをグリセロールストックと呼ぶ。 WC196ΔcadAΔldcC P L-tac adhE * strain and WC196ΔcadAΔldcC P L-tac adhE * Δrng :: Cm strain are routinely used in the Lys production plasmid pCABD2 (International Publication No. WO01 / 53459 pamphlet) carrying the dapA, dapB and lysC genes. Then, WC196ΔcadAΔldcC P L-tac adhE * / pCABD2 strain and WC196ΔcadAΔldcC P L-tac adhE * Δrng :: Cm / pCABD2 were obtained. After culturing these strains in L medium containing 20 mg / L streptomycin at 37 ° C. so that the final OD600≈0.6, an equal amount of 40% glycerol solution and the same amount as the culture solution were added and stirred. Aliquots were stored at -80 ° C. This is called glycerol stock.
〔実施例2〕リボヌクレアーゼG非産生株のL-リジン生産能の評価
 前記の株のグリセロールストックを融解し、各100μLを、20mg/Lのストレプトマイシンを含むLプレートに均一に塗布し、37℃にて15時間培養した。得られた菌体を0.85%の食塩水に懸濁し、初発OD=0.25となるように、太試験管(内径18 mm)の、20mg/Lのストレプトマイシンを含む発酵培地の5 mLに接種し、往復振とう培養装置で、攪拌120rpmの条件下、37℃において16時間培養した。培養後、培地中に蓄積したリジンの量を公知の方法(サクラ精機 バイオテックアナライザーAS210)により測定した。
 発酵培地の組成を以下に示す。
[Example 2] Evaluation of L-lysine producing ability of a ribonuclease G non-producing strain Melt the glycerol stock of the above strain, apply 100 μL of each uniformly onto an L plate containing 20 mg / L of streptomycin, and maintain at 37 ° C. For 15 hours. Suspend the obtained cells in 0.85% saline, inoculate 5 mL of fermentation medium containing 20 mg / L streptomycin in a large test tube (inner diameter 18 mm) so that the initial OD = 0.25, The cells were cultured for 16 hours at 37 ° C. in a reciprocal shaking culture apparatus under the condition of stirring at 120 rpm. After the cultivation, the amount of lysine accumulated in the medium was measured by a known method (Sakura Seiki Biotech Analyzer AS210).
The composition of the fermentation medium is shown below.
[L-リジン発酵培地組成]
エタノール                             10 ml/L
(NH4)2SO4                             24 g/L
K2HPO4                                 1.0 g/L
MgSO4・7H2O                            1.0 g/L
FeSO4・7H2O                            0.01 g/L
MnSO4・5H2O                            0.01 g/L
イーストエキストラクト                 2.0 g/L
CaCO3(日本薬局方)                   30 g/L
蒸留水              最終量1L
 KOHでpH5.7に調整し、115℃で10分オートクレーブを行った。但しMgSO4・7H2Oは別に殺菌し、エタノールはフィルターろ過により滅菌した。CaCO3は、180℃で2時間乾熱滅菌したものを入れた。
 抗生物質として、20mg/Lのストレプトマイシンを添加した。
[L-lysine fermentation medium composition]
Ethanol 10 ml / L
(NH 4 ) 2 SO 4 24 g / L
K 2 HPO 4 1.0 g / L
MgSO 4・ 7H 2 O 1.0 g / L
FeSO 4・ 7H 2 O 0.01 g / L
MnSO 4・ 5H 2 O 0.01 g / L
Yeast Extract 2.0 g / L
CaCO 3 (Japanese Pharmacopoeia) 30 g / L
Distilled water Final volume 1L
The pH was adjusted to 5.7 with KOH and autoclaved at 115 ° C. for 10 minutes. However, MgSO 4 · 7H 2 O was sterilized separately, and ethanol was sterilized by filter filtration. CaCO 3 was sterilized by dry heat at 180 ° C. for 2 hours.
20 mg / L streptomycin was added as an antibiotic.
 結果を表1に示す。収率(%)は、エタノールからのL-リジン収率(w/w)を示す。表1から分かるように、WC196ΔcadAΔldcC PL-tacadhE*Δrng::Cm/pCABD2株は、rng遺伝子を欠損していないWC196ΔcadAΔldcC PL-tacadhE*/pCABD2株と比較して多量のL-リジンを蓄積した。 The results are shown in Table 1. Yield (%) indicates L-lysine yield (w / w) from ethanol. As can be seen from Table 1, the WC196ΔcadAΔldcC P L-tac adhE * Δrng :: Cm / pCABD2 strain contains a larger amount of L-lysine than the WC196ΔcadAΔldcC P L-tac adhE * / pCABD2 strain which does not lack the rng gene. Accumulated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔配列表の説明〕
配列番号1:Escherichia coiのリボヌクレアーゼG遺伝子(rng)の塩基配列
配列番号2:Escherichia coiのリボヌクレアーゼGのアミノ酸配列
配列番号3:Escherichia coliのアルコールデヒドロゲナーゼ遺伝子(adhE)の塩基配列
配列番号4:Escherichia coliのアルコールデヒドロゲナーゼのアミノ酸配列
配列番号5:cat遺伝子をatt-tet遺伝子で置換えるためのプライマー
配列番号6:cat遺伝子をatt-tet遺伝子で置換えるためのプライマー
配列番号7:rng遺伝子の欠失用プライマー
配列番号8:rng遺伝子の欠失用プライマー
配列番号9:Chlorobium tepidumのピルビン酸シンターゼ遺伝子の塩基配列
配列番号10:Chlorobium tepidumのピルビン酸シンターゼのアミノ酸配列
配列番号11:Escherichia coliのピルビン酸シンターゼ遺伝子(ydbK)の塩基配列
配列番号12:Escherichia coliのピルビン酸シンターゼ(YdbK)のアミノ酸配列
配列番号13:Methanococcus maripaludisのピルビン酸シンターゼγサブユニット遺伝子(porA)の塩基配列
配列番号14:Methanococcus maripaludisのピルビン酸シンターゼγサブユニットのアミノ酸配列
配列番号15:Methanococcus maripaludisのピルビン酸シンターゼδサブユニット遺伝子(porB)の塩基配列
配列番号16:Methanococcus maripaludisのピルビン酸シンターゼδサブユニットのアミノ酸配列
配列番号17:Methanococcus maripaludisのピルビン酸シンターゼαサブユニット遺伝子(porC)の塩基配列
配列番号18:Methanococcus maripaludisのピルビン酸シンターゼαサブユニットのアミノ酸配列
配列番号19:Methanococcus maripaludisのピルビン酸シンターゼβサブユニット遺伝子(porD)の塩基配列
配列番号20:Methanococcus maripaludisのピルビン酸シンターゼβサブユニットのアミノ酸配列
配列番号21:Methanococcus maripaludisのピルビン酸シンターゼporE遺伝子の塩基配列
配列番号22:Methanococcus maripaludisのピルビン酸シンターゼPorEのアミノ酸配列
配列番号23:Methanococcus maripaludisのピルビン酸シンターゼporF遺伝子の塩基配列
配列番号24:Methanococcus maripaludisのピルビン酸シンターゼPorFのアミノ酸配列
配列番号25:Euglena gracilisのピルビン酸:NADP+オキシドレダクターゼ遺伝子の塩基配列
配列番号26:Euglena gracilisのピルビン酸:NADP+オキシドレダクターゼのアミノ酸配列
配列番号27:Escherichia coliのフラボドキシン-NADP+レダクターゼ遺伝子(fpr)の塩基配列
配列番号28:Escherichia coliのフラボドキシン-NADP+レダクターゼ遺伝子(fpr)がコードするアミノ酸配列
配列番号29:Escherichia coliのフェレドキシン遺伝子(fdx)の塩基配列
配列番号30:Escherichia coliのフェレドキシン遺伝子(fdx)がコードするアミノ酸配列
配列番号31:Escherichia coliのフェレドキシン遺伝子(yfhL)の塩基配列
配列番号32:Escherichia coliのフェレドキシン遺伝子(yhfL)がコードするアミノ酸配列
配列番号33:Escherichia coliのフラボドキシン遺伝子(fldA)の塩基配列
配列番号34:Escherichia coliのフラボドキシン遺伝子(fldA)がコードするアミノ酸配列
配列番号35:Escherichia coliのフラボドキシン遺伝子(fldB)の塩基配列
配列番号36:Escherichia coliのフラボドキシン遺伝子(fldB)がコードするアミノ酸配列
配列番号37:Chlorobium tepidumのフェレドキシンI遺伝子の塩基配列
配列番号38:Chlorobium tepidumのフェレドキシンI遺伝子がコードするアミノ酸配列
配列番号39:Chlorobium tepidumのフェレドキシンII遺伝子の塩基配列
配列番号40:Chlorobium tepidumのフェレドキシンII遺伝子がコードするアミノ酸配列
配列番号41:Chlorobium tepidumのピルビン酸シンターゼ遺伝子増幅プライマー1
配列番号42:Chlorobium tepidumのピルビン酸シンターゼ遺伝子増幅プライマー2
配列番号43:Escherichia coliのピルビン酸シンターゼ遺伝子増幅プライマー1
配列番号44:Escherichia coliのピルビン酸シンターゼ遺伝子増幅プライマー2
配列番号45:Euglena gracilisのピルビン酸:NADP+オキシドレダクターゼ遺伝子増幅プライマー1
配列番号46:Euglena gracilisのピルビン酸:NADP+オキシドレダクターゼ遺伝子増幅プライマー2
配列番号47:Escherichia coliのフラボドキシン-NADP+リダクターゼ遺伝子増幅用プライマー1
配列番号48:Escherichia coliのフラボドキシン-NADP+リダクターゼ遺伝子増幅用プライマー2
配列番号49:Escherichia coliのfdx遺伝子増幅用プライマー1
配列番号50:Escherichia coliのfdx遺伝子増幅用プライマー2
配列番号51:Escherichia coliのNADP型マリックエンザイムをコードする遺伝子(b2463)の塩基配列
配列番号53:Escherichia coliのNAD型マリックエンザイムをコードする遺伝子(sfcA)の塩基配列
配列番号55:Escherichia coliのピルビン酸デヒドロゲナーゼEp1サブユニット遺伝子(aceE)の塩基配列
配列番号56:Escherichia coliのピルビン酸デヒドロゲナーゼEp1サブユニットのアミノ酸配列
配列番号57:Escherichia coliのピルビン酸デヒドロゲナーゼE2サブユニット遺伝子(aceF)の塩基配列
配列番号58:Escherichia coliのピルビン酸デヒドロゲナーゼE2サブユニットのアミノ酸配列
配列番号59:Escherichia coliのピルビン酸デヒドロゲナーゼE3サブユニット遺伝子(lpdA)の塩基配列
配列番号60:Escherichia coliのピルビン酸デヒドロゲナーゼE3サブユニットのアミノ酸配列
[Explanation of Sequence Listing]
SEQ ID NO: 1: Escherichia coi ribonuclease G gene (rng) nucleotide sequence SEQ ID NO: 2: Escherichia coi ribonuclease G amino acid sequence SEQ ID NO: 3: Escherichia coli alcohol dehydrogenase gene (adhE) nucleotide sequence SEQ ID NO: 4: Escherichia coli Amino acid sequence of alcohol dehydrogenase of SEQ ID NO: 5: primer for replacing cat gene with att-tet gene SEQ ID NO: 6: primer for replacing cat gene with att-tet gene SEQ ID NO: 7: for deletion of rng gene Primer SEQ ID NO: 8: primer for deletion of rng gene SEQ ID NO: 9: nucleotide sequence of Chlorobium tepidum pyruvate synthase gene SEQ ID NO: 10: amino acid sequence of Chlorobium tepidum pyruvate synthase SEQ ID NO: 11: pyruvate synthase gene of Escherichia coli (ydbK) nucleotide sequence SEQ ID NO: 12: Escherichia coli pyruvate syn Tyrosine (YdbK) amino acid sequence SEQ ID NO: 13: Methanococcus maripaludis pyruvate synthase γ subunit gene (porA) nucleotide sequence SEQ ID NO: 14: Methanococcus maripaludis pyruvate synthase γ subunit amino acid sequence SEQ ID NO: 15: Methanococcus maripaludis Pyruvate synthase δ subunit gene (porB) nucleotide sequence SEQ ID NO: 16: Methanococcus maripaludis pyruvate synthase δ subunit amino acid sequence SEQ ID NO: 17: Methanococcus maripaludis pyruvate synthase α subunit gene (porC) nucleotide sequence Number 18: amino acid sequence of pyruvate synthase α subunit of Methanococcus maripaludis SEQ ID NO: 19: nucleotide sequence of pyruvate synthase β subunit gene (porD) of Methanococcus maripaludis SEQ ID NO: 20: pyruvate synthase β subunit of Methanococcus maripaludis Minoic acid sequence SEQ ID NO: 21: base sequence of the pyruvate synthase porE gene of Methanococcus maripaludis SEQ ID NO: 22: amino acid sequence of the pyruvate synthase PorE of Methanococcus maripaludis SEQ ID NO: 23: base sequence of the pyruvate synthase porF gene of Methanococcus maripaludis : Methanococcus maripaludis pyruvate synthase PorF amino acid sequence SEQ ID NO: 25: Euglena gracilis pyruvate: NADP + oxidoreductase gene nucleotide sequence SEQ ID NO: 26: Euglena gracilis pyruvate: NADP + oxidoreductase amino acid sequence SEQ ID NO: 27: Escherichia coli of flavodoxin-NADP + reductase gene (fpr) the nucleotide sequence SEQ ID NO: 28: amino acid sequence SEQ ID NO: 29 Escherichia coli of flavodoxin-NADP + reductase gene (fpr) encoded: salts of Escherichia coli ferredoxin gene (fdx) SEQ ID NO: 30: amino acid sequence encoded by the ferredoxin gene (fdx) of Escherichia coli SEQ ID NO: 31: base sequence of the ferredoxin gene (yfhL) of Escherichia coli SEQ ID NO: 32: amino acid sequence encoded by the ferredoxin gene (yhfL) of Escherichia coli SEQ ID NO: 33: Escherichia coli flavodoxin gene (fldA) nucleotide sequence SEQ ID NO: 34: Escherichia coli flavodoxin gene (fldA) encoded amino acid sequence SEQ ID NO: 35: Escherichia coli flavodoxin gene (fldB) nucleotide sequence SEQ ID NO: 36 : Amino acid sequence encoded by the flavodoxin gene (fldB) of Escherichia coli SEQ ID NO: 37: nucleotide sequence of ferredoxin I gene of Chlorobium tepidum 38: amino acid sequence encoded by ferredoxin I gene of Chlorobium tepidum SEQ ID NO: 39: ferredoxin of Chlorobium tepidum Base sequence of gene II SEQ ID NO: 40: Chlor Amino acid sequence encoded by the ferredoxin II gene of obium tepidum SEQ ID NO: 41: Chlorobium tepidum pyruvate synthase gene amplification primer 1
SEQ ID NO: 42: Chlorobium tepidum pyruvate synthase gene amplification primer 2
SEQ ID NO: 43: Escherichia coli pyruvate synthase gene amplification primer 1
SEQ ID NO: 44: Escherichia coli pyruvate synthase gene amplification primer 2
SEQ ID NO: 45: Euglena gracilis pyruvate: NADP + oxidoreductase gene amplification primer 1
SEQ ID NO: 46: Euglena gracilis pyruvate: NADP + oxidoreductase gene amplification primer 2
SEQ ID NO: 47: Primer 1 for amplification of Escherichia coli flavodoxin-NADP + reductase gene
SEQ ID NO: 48: Escherichia coli flavodoxin-NADP + reductase gene amplification primer 2
SEQ ID NO: 49: Escherichia coli fdx gene amplification primer 1
SEQ ID NO: 50: Primer 2 for amplifying the fdx gene of Escherichia coli
SEQ ID NO: 51: Nucleotide sequence of the gene (b2463) encoding the NADP-type malic enzyme of Escherichia coli SEQ ID NO: 53: Base sequence of the gene (sfcA) encoding the NAD-type malic enzyme of Escherichia coli SEQ ID NO: 55: Pilvin of Escherichia coli Nucleotide sequence number of acid dehydrogenase Ep1 subunit gene (aceE) SEQ ID NO: 56: Amino acid sequence number of pyruvate dehydrogenase Ep1 subunit of Escherichia coli SEQ ID NO: 57: Nucleotide sequence number of pyruvate dehydrogenase E2 subunit gene (aceF) of Escherichia coli 58: amino acid sequence of the pyruvate dehydrogenase E2 subunit of Escherichia coli SEQ ID NO: 59: base sequence of the pyruvate dehydrogenase E3 subunit gene (lpdA) of Escherichia coli SEQ ID NO: 60: amino acid sequence of the pyruvate dehydrogenase E3 subunit of Escherichia coli
 本発明によれば、エタノールを炭素源として、効率よくL-アミノ酸を製造することができる。 According to the present invention, L-amino acid can be efficiently produced using ethanol as a carbon source.

Claims (13)

  1.  腸内細菌科に属し、L-アミノ酸生産能を有する細菌を、エタノールを炭素源として含む培地に培養し、培養物中にL-アミノ酸を生産蓄積させ、該培養物からL-アミノ酸を採取することを特徴とするL-アミノ酸の製造法であって、前記細菌が、リボヌクレアーゼGの活性が低下するように改変された細菌である方法。 Bacteria belonging to the family Enterobacteriaceae and having the ability to produce L-amino acids are cultured in a medium containing ethanol as a carbon source, L-amino acids are produced and accumulated in the culture, and L-amino acids are collected from the culture. A method for producing an L-amino acid, wherein the bacterium is a bacterium modified so that the activity of ribonuclease G is reduced.
  2.  リボヌクレアーゼGをコードするrng遺伝子が不活化されたことにより、リボヌクレアーゼGの活性が低下した、請求項1に記載の方法。 The method according to claim 1, wherein the activity of ribonuclease G is reduced by inactivation of the rng gene encoding ribonuclease G.
  3.  前記rng遺伝子が、配列番号2のアミノ酸配列をコードするDNA又はそのバリアントである、請求項2に記載の方法。 The method according to claim 2, wherein the rng gene is DNA encoding the amino acid sequence of SEQ ID NO: 2 or a variant thereof.
  4.  前記細菌が、好気的にエタノールを資化できるように改変された、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the bacterium is modified so as to assimilate ethanol aerobically.
  5.  前記細菌が、好気条件で機能する非天然型プロモーターの制御下で発現するように改変されたadh遺伝子を保持し、それによって好気的にエタノールを資化できる、請求項4に記載の方法。 5. The method of claim 4, wherein the bacterium retains an adh gene that has been modified to be expressed under the control of a non-native promoter that functions under aerobic conditions, thereby aerobically assimilating ethanol. .
  6.  前記細菌が、変異型adhE遺伝子を保持するように改変され、それによって好気的にエタノールを資化できる、請求項4又は5に記載の方法。 The method according to claim 4 or 5, wherein the bacterium is modified so as to retain a mutated adhE gene, whereby ethanol can be assimilated aerobically.
  7.  前記変異型adhE遺伝子が、568位のグルタミン酸残基が他のアミノ酸残基に置換された以外は配列番号4のアミノ酸配列を有するタンパク質又はその保存的バリアントをコードする、請求項6に記載の方法。 The method according to claim 6, wherein the mutant adhE gene encodes a protein having the amino acid sequence of SEQ ID NO: 4 or a conservative variant thereof except that the glutamic acid residue at position 568 is substituted with another amino acid residue. .
  8.  前記L-アミノ酸がL-リジン、L-グルタミン酸、L-スレオニン、L-アルギニン、L-ヒスチジン、L-イソロイシン、L-バリン、L-ロイシン、L-フェニルアラニン、L-チロシン、L-トリプトファン、L-プロリン、及びL-システインからなる群から選択される一種または二種以上のL-アミノ酸である請求項1~7のいずれか一項に記載の方法。 The L-amino acid is L-lysine, L-glutamic acid, L-threonine, L-arginine, L-histidine, L-isoleucine, L-valine, L-leucine, L-phenylalanine, L-tyrosine, L-tryptophan, L The method according to any one of claims 1 to 7, which is one or more L-amino acids selected from the group consisting of -proline and L-cysteine.
  9.  前記L-アミノ酸がL-リジンであり、前記細菌がジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、フォスフォエノールピルベートカルボキシラーゼ、アスパルテートアミノトランスフェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパルテートセミアルデヒドデヒドロゲナーゼ、テトラヒドロジピコリン酸スクシニラーゼ、及び、スクシニルジアミノピメリン酸デアシラーゼからなる群より選択される1種または2種以上の酵素の活性が増強されている、及び/または、リジンデカルボキシラーゼの活性が弱化されている請求項8に記載の方法。 The L-amino acid is L-lysine, and the bacterium is dihydrodipicolinate reductase, diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semialdehyde dehydrogenase, The activity of one or more enzymes selected from the group consisting of tetrahydrodipicolinate succinylase and succinyldiaminopimelate deacylase is enhanced and / or the activity of lysine decarboxylase is weakened The method of claim 8.
  10.  前記L-アミノ酸がL-スレオニンであり、前記細菌がアスパルテートセミアルデヒドデヒドロゲナーゼ、アスパルトキナーゼI、ホモセリンキナーゼ、アスパルテートアミノトランスフェラーゼ、及び、スレオニンシンターゼからなる群より選択される1種または2種以上の酵素の活性が増強されている請求項8に記載の方法。 The L-amino acid is L-threonine, and the bacterium is one or more selected from the group consisting of aspartate semialdehyde dehydrogenase, aspartokinase I, homoserine kinase, aspartate aminotransferase, and threonine synthase. The method according to claim 8, wherein the activity of said enzyme is enhanced.
  11.  前記腸内細菌科に属する細菌が、エシェリヒア属細菌、エンテロバクター属細菌またはパントエア属細菌である請求項1~10のいずれか一項に記載の方法。 The method according to any one of claims 1 to 10, wherein the bacterium belonging to the family Enterobacteriaceae is an Escherichia bacterium, an Enterobacter bacterium, or a Pantoea bacterium.
  12.  前記細菌が、エシェリヒア・コリである請求項11に記載の方法。 The method according to claim 11, wherein the bacterium is Escherichia coli.
  13.  エタノールが培地中に0.001w/v%以上含まれる請求項1~12のいずれか一項に記載の方法。 The method according to any one of claims 1 to 12, wherein ethanol is contained in the medium in an amount of 0.001 w / v% or more.
PCT/JP2010/052845 2009-03-06 2010-02-24 Method for producing l-amino acid WO2010101053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009053325A JP2012100537A (en) 2009-03-06 2009-03-06 Method for producing l-amino acid
JP2009-053325 2009-03-06

Publications (1)

Publication Number Publication Date
WO2010101053A1 true WO2010101053A1 (en) 2010-09-10

Family

ID=42709612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052845 WO2010101053A1 (en) 2009-03-06 2010-02-24 Method for producing l-amino acid

Country Status (2)

Country Link
JP (1) JP2012100537A (en)
WO (1) WO2010101053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186749A1 (en) * 2014-06-03 2015-12-10 味の素株式会社 Method for producing l-amino acids

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3058306A1 (en) 2017-03-28 2018-10-04 Ajinomoto Co., Inc. Additive for undifferentiation maintaining medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010565A2 (en) * 2006-07-19 2008-01-24 Ajinomoto Co., Inc. A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010565A2 (en) * 2006-07-19 2008-01-24 Ajinomoto Co., Inc. A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LEE, K. ET AL.: "RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli.", MOL. MICROBIOL., vol. 43, no. 6, 2002, pages 1445 - 1456 *
OW, M. C. ET AL.: "RNase G of Escherichia coli exhibits only limited functional overlap with its essential homologue, RNase E.", MOL. MICROBIOL., vol. 49, no. 3, 2003, pages 607 - 622 *
UMITSUKI, G. ET AL.: "Involvement of RNase G in in vivo mRNA metabolism in Escherichia coli.", GENES TO CELLS, vol. 6, 2001, pages 403 - 410 *
WACHI, M. ET AL.: "A Novel RNase G Mutant That Is Defective in Degradation of adhE mRNA but Proficient in the Processing of 16S rRNA Precursor.", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 289, 2001, pages 1301 - 1306 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186749A1 (en) * 2014-06-03 2015-12-10 味の素株式会社 Method for producing l-amino acids
US10563234B2 (en) 2014-06-03 2020-02-18 Ajinomoto Co., Inc. Method for producing L-amino acids

Also Published As

Publication number Publication date
JP2012100537A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
US8512987B2 (en) Method of producing L-amino acid
JP5407858B2 (en) Method for producing L-amino acid using bacteria of Enterobacteriaceae
EP2121953B1 (en) A method for producing an l-amino acid by fermentation using a bacterium having an enhanced ability to utilize glycerol
EP1999266B1 (en) Method for producing l-amino acid
US8293505B2 (en) L-amino acid-producing microorganism and a method for producing an L-amino acid
US8951760B2 (en) Method for producing an L-amino acid
US8394612B2 (en) Method for production of an L-amino acid
EP1899452B1 (en) A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family with enhanced expression of the fucpikur operon
JP2007185184A (en) L-amino acid-productive microorganism and method for producing l-amino acid
JP2010226957A (en) Method for producing l-amino acid
EP2382320B1 (en) Process for producing l-amino acids employing bacteria of the enterobacteriacea family in a culture medium with controlled glycerol concentration
JP2020115860A (en) Method for producing L-amino acid
WO2012002486A1 (en) Method for producing l-amino acid
WO2015186749A1 (en) Method for producing l-amino acids
JP2010263789A (en) L-amino acid-producing microorganism and method for producing l-amino acid
JP6459962B2 (en) Method for producing L-amino acid
JP2010246483A (en) Method for producing l-amino acid
WO2010101053A1 (en) Method for producing l-amino acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP