WO2015186749A1 - Method for producing l-amino acids - Google Patents

Method for producing l-amino acids Download PDF

Info

Publication number
WO2015186749A1
WO2015186749A1 PCT/JP2015/066072 JP2015066072W WO2015186749A1 WO 2015186749 A1 WO2015186749 A1 WO 2015186749A1 JP 2015066072 W JP2015066072 W JP 2015066072W WO 2015186749 A1 WO2015186749 A1 WO 2015186749A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
protein
gene
activity
acid sequence
Prior art date
Application number
PCT/JP2015/066072
Other languages
French (fr)
Japanese (ja)
Inventor
秀高 土井
晶子 松平
臼田 佳弘
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to EP15803550.1A priority Critical patent/EP3153586B1/en
Priority to BR112016028185A priority patent/BR112016028185A2/en
Publication of WO2015186749A1 publication Critical patent/WO2015186749A1/en
Priority to US15/361,645 priority patent/US10563234B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01003Aconitate hydratase (4.2.1.3)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing L-amino acids using bacteria.
  • L-amino acids are industrially useful as additives for animal feed, ingredients for seasonings and foods and drinks, amino acid infusions, and the like.
  • L-amino acids are industrially produced, for example, by fermentation using various microorganisms capable of producing L-amino acids.
  • methods for producing L-amino acids by fermentation include a method using a wild-type microorganism (wild strain), a method using an auxotrophic strain derived from a wild strain, and various drug-resistant mutant strains derived from a wild strain. And a method using a strain having characteristics of both an auxotrophic strain and a metabolic control mutant.
  • microorganisms whose L-amino acid producing ability has been improved by recombinant DNA technology have been used for the production of L-amino acids.
  • Examples of a method for improving the L-amino acid producing ability of a microorganism include, for example, enhancing the expression of a gene encoding an L-amino acid biosynthetic enzyme (Patent Documents 1 and 2) or an L-amino acid biosynthetic system. To enhance the inflow of the carbon source (Patent Document 3).
  • alcohols such as ethanol can be used as a carbon source.
  • a method for producing L-amino acid by fermentation using ethanol as a carbon source for example, a method utilizing a bacterium of the family Enterobacteriaceae modified so as to express alcohol dehydrogenase under aerobic conditions (Patent Document 4), A method using a bacterium from the family Enterobacteriaceae modified so as to increase the activity of pyruvate synthase or pyruvate: NADP + oxidoreductase (Patent Document 5), and an intestine modified so as to decrease the activity of ribonuclease G A method using an endobacterium (Patent Document 6), a method using an enterobacteriaceae bacteria modified to have a mutant ribosome S1 protein (Patent Document 7), and the activity of the AldB protein decreases.
  • the bacteria of the family Enterobacteriaceae so modified Patent Document 8
  • Aconitase is a dehydratase / hydratase (EC 4.2.1.3) that reversibly catalyzes the isomerization reaction between citric acid and isocitrate in the TCA cycle and the glyoxylate cycle.
  • Escherichia coli has at least two aconitase isozymes, AcnA and AcnB. The amino acid sequence identity between AcnA and AcnB is about 17%.
  • AcnB is a major aconitase in Escherichia coli, and is expressed particularly in the logarithmic growth phase (Non-patent Document 1).
  • AcnA is induced by iron or oxidative stress, and is expressed particularly in the stationary phase (Non-patent Document 1).
  • Acetaldehyde dehydrogenase is an enzyme (EC 1.2.1.3, EC 1.2.1.4, EC 1.2.1.5, EC) that reversibly catalyzes the reaction of producing acetic acid from acetaldehyde using NAD + or NADP + as an electron acceptor. 1.2.1.22 etc.).
  • the Escherichia coli AldB protein has acetaldehyde dehydrogenase activity using NADP + as an electron acceptor.
  • NADP + as an electron acceptor
  • An object of the present invention is to develop a novel technique for improving L-amino acid-producing ability of bacteria and to provide an efficient method for producing L-amino acid.
  • the present inventor has made ethanol carbon by modifying bacteria so that aconitase activity is increased or aconitase activity and acetaldehyde dehydrogenase activity are increased.
  • the present inventors have found that L-amino acid production by the same bacterium can be improved when used as a source.
  • Bacteria belonging to the family Enterobacteriaceae having L-amino acid producing ability are cultured in a medium containing ethanol, and L-amino acid is produced and accumulated in the medium or in the microbial cells, and from the medium or the microbial cells Collecting the L-amino acid, comprising the steps of: The bacterium is modified to increase aconitase activity, The method wherein the aconitase is an AcnB protein.
  • the AcnB protein is a protein described in the following (a), (b), or (c): (A) a protein comprising the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36; (B) In the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36, the amino acid sequence includes substitution, deletion, insertion, or addition of 1 to 10 amino acid residues, and has an aconitase activity. protein; (C) a protein comprising an amino acid sequence having 90% or more identity to the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36 and having aconitase activity.
  • Bacteria belonging to the family Enterobacteriaceae having L-amino acid producing ability are cultured in a medium containing ethanol, and L-amino acid is produced and accumulated in the medium or in the microbial cells, and from the medium or the microbial cells Collecting the L-amino acid, comprising the steps of: A method wherein the bacterium has been modified to increase aconitase activity and acetaldehyde dehydrogenase activity. [4] The method, wherein the aconitase is an AcnA protein or an AcnB protein.
  • the AcnA protein is a protein described in (a), (b), or (c) below:
  • protein (C) a protein comprising an amino acid sequence having 90% or more identity to the amino acid sequence shown in SEQ ID NO: 22, 24, 26, or 28 and having aconitase activity.
  • the AcnB protein is a protein described in the following (a), (b), or (c): (A) a protein comprising the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36; (B) In the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36, the amino acid sequence includes substitution, deletion, insertion, or addition of 1 to 10 amino acid residues, and has an aconitase activity. protein; (C) a protein comprising an amino acid sequence having 90% or more identity to the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36 and having aconitase activity.
  • the acetaldehyde dehydrogenase is an AldB protein.
  • the AldB protein is a protein described in the following (a), (b), or (c): (A) a protein comprising the amino acid sequence shown in SEQ ID NO: 38, 40, 42, or 44; (B) the amino acid sequence shown in SEQ ID NO: 38, 40, 42, or 44, comprising an amino acid sequence comprising substitution, deletion, insertion, or addition of 1 to 10 amino acid residues, and having acetaldehyde dehydrogenase activity A protein having; (C) A protein comprising an amino acid sequence having 90% or more identity to the amino acid sequence shown in SEQ ID NO: 38, 40, 42, or 44 and having acetaldehyde dehydrogenase activity.
  • the method, wherein the bacterium is further modified to increase the activity of an ethanol metabolizing enzyme.
  • the method, wherein the bacterium can assimilate ethanol aerobically.
  • the bacterium has been modified to retain a mutant adhE gene;
  • the method, wherein the mutant adhE gene is an adhE gene encoding a mutant AdhE protein having a mutation that improves resistance to inactivation under aerobic conditions.
  • the mutation is a mutation in which the amino acid residue corresponding to the glutamic acid residue at position 568 in the amino acid sequence shown in SEQ ID NO: 46 is substituted with an amino acid residue other than glutamic acid and aspartic acid in the amino acid sequence of the wild-type AdhE protein. Said method.
  • the mutant AdhE protein further has the following additional mutation: : (A) A mutation in which the amino acid residue corresponding to the glutamic acid residue at position 560 in the amino acid sequence shown in SEQ ID NO: 46 is substituted with another amino acid residue in the amino acid sequence of the wild-type AdhE protein; (B) a mutation in which the amino acid residue corresponding to the phenylalanine residue at position 566 in the amino acid sequence shown in SEQ ID NO: 46 is substituted with another amino acid residue in the amino acid sequence of the wild-type AdhE protein; (C) In the amino acid sequence of the wild-type AdhE protein, the glutamic acid residue at position 22, the methionine residue at position 236, the tyrosine residue at position 461, the isoleucine residue at position 554, and 786 in the amino acid sequence shown in SEQ ID NO: 46 A mutation in which the amino acid residue
  • the method wherein the bacterium further has the following properties: (A) Dihydrodipicolinate reductase, diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semialdehyde dehydrogenase, tetrahydrodipicolinate succinylase, and succinyl diaminopimelate deacylase Modified to increase the activity of one or more enzymes selected from (B) modified to reduce the activity of lysine decarboxylase; (C) A combination of the above properties.
  • A Dihydrodipicolinate reductase, diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semi
  • the figure which shows the alignment of the amino acid sequence of various AldB protein The figure which shows the alignment of the amino acid sequence of various AldB protein (continuation).
  • the figure which shows the alignment of the amino acid sequence of various AdhE protein The figure which shows the alignment of the amino acid sequence of various AdhE protein (continuation).
  • the method of the present invention comprises culturing a bacterium belonging to the family Enterobacteriaceae having an L-amino acid-producing ability in a medium containing ethanol, and producing and accumulating L-amino acid in the medium or in the microbial cells, and A method for producing an L-amino acid comprising collecting an L-amino acid from the medium or microbial cells so that the bacterium has increased aconitase activity or increased aconitase activity and acetaldehyde dehydrogenase activity.
  • the method is characterized in that the method is modified.
  • the bacterium used in this method is also referred to as “the bacterium of the present invention”.
  • the bacterium of the present invention is a bacterium belonging to the family Enterobacteriaceae having L-amino acid-producing ability, and has aconitase activity increased or aconitase activity and acetaldehyde dehydrogenase activity. Bacteria modified to increase.
  • bacteria having L-amino acid-producing ability refers to the extent that a desired L-amino acid can be produced and recovered when cultured in a medium. Refers to bacteria having the ability to accumulate in the medium or in the fungus body.
  • the bacterium having L-amino acid-producing ability may be a bacterium capable of accumulating a larger amount of the target L-amino acid in the medium than the unmodified strain.
  • Non-modified strains include wild strains and parent strains.
  • the bacterium having L-amino acid-producing ability is a bacterium that can accumulate the target L-amino acid in an amount of 0.5 g / L or more, more preferably 1.0 g / L or more in the medium. May be.
  • L-amino acids include basic amino acids such as L-lysine, L-ornithine, L-arginine, L-histidine, L-citrulline, L-isoleucine, L-alanine, L-valine, L-leucine, glycine, etc.
  • Aliphatic amino acids amino acids which are hydroxymonoaminocarboxylic acids such as L-threonine and L-serine, cyclic amino acids such as L-proline, aromatic amino acids such as L-phenylalanine, L-tyrosine and L-tryptophan, L- Examples thereof include sulfur-containing amino acids such as cysteine, L-cystine and L-methionine, acidic amino acids such as L-glutamic acid and L-aspartic acid, and amino acids having an amide group in the side chain such as L-glutamine and L-asparagine.
  • the bacterium of the present invention may have only one L-amino acid producing ability or may have two or more L-amino acid producing ability.
  • any amino acid may be an L-amino acid.
  • the produced L-amino acid may be a free form, a salt thereof, or a mixture thereof. That is, in the present invention, the term “L-amino acid” may mean a free L-amino acid, a salt thereof, or a mixture thereof, unless otherwise specified. Examples of the salt will be described later.
  • NCBI National Center for Biotechnology Information
  • the Escherichia bacterium is not particularly limited, but includes bacteria classified into the genus Escherichia by classification known to microbiologists.
  • Escherichia bacteria include, for example, Neidhardt et al. (Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1.
  • F. D. Nehard (ed.) “Escherichia, coli, and Salmonella, Cellular, and Molecular, Biology / Second Edition, American, Society, for Microbiology, Press, Washington, DC).
  • bacteria belonging to the genus Escherichia include Escherichia coli.
  • Specific examples of Escherichia coli include Escherichia coli W3110 (ATCC11027325) and Escherichia coli MG1655 (ATCC 47076) derived from the prototype wild-type strain K12.
  • the bacteria belonging to the genus Enterobacter are not particularly limited, but include bacteria classified into the genus Enterobacter by classification known to microbiologists.
  • Enterobacter bacteria include Enterobacter agglomerans and Enterobacter aerogenes.
  • Specific examples of Enterobacter agglomerans include the Enterobacter agglomerans ATCC12287 strain.
  • Specific examples of Enterobacter aerogenes include Enterobacter aerogenes ATCC13048, NBRC12010 (BiotechonolonBioeng.eng2007 Mar 27; 98 (2) 340-348), AJ110637 (FERM BP-10955) .
  • Enterobacter bacteria include those described in European Patent Application Publication No. EP0952221. Some Enterobacter agglomerans are classified as Pantoea agglomerans.
  • Pantoea bacterium is not particularly limited, and examples include bacteria classified into the Pantoea genus by classification known to microbiologists.
  • Examples of the genus Pantoea include Pantoea ⁇ ananatis, Pantoea stewartii, Pantoea agglomerans, and Pantoea citrea.
  • Pantoea Ananatis LMG20103 strain AJ13355 strain (FERM ⁇ BP-6614), AJ13356 strain (FERM BP-6615), AJ13601 strain (FERM BP-7207), SC17 strain (FERM BP) -11091), and SC17 (0) strain (VKPM B-9246).
  • Pantoea bacterium also includes a bacterium reclassified as Pantoea in this way.
  • Examples of the genus Erwinia include Erwinia amylovora and Erwinia carotovora.
  • Examples of Klebsiella bacteria include Klebsiella planticola.
  • strains can be sold, for example, from the American Type Culture Collection (address 12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States States of America). That is, a registration number corresponding to each strain is given, and it is possible to receive a sale using this registration number (see http://www.atcc.org/). The registration number corresponding to each strain is described in the catalog of American Type Culture Collection.
  • the bacterium of the present invention may inherently have L-amino acid-producing ability or may have been modified to have L-amino acid-producing ability.
  • a bacterium having L-amino acid-producing ability can be obtained, for example, by imparting L-amino acid-producing ability to the bacterium as described above, or by enhancing the L-amino acid-producing ability of the bacterium as described above. .
  • L-amino acid-producing ability can be imparted or enhanced by a method conventionally used for breeding amino acid-producing bacteria such as coryneform bacteria or Escherichia bacteria (Amino Acid Fermentation, Academic Publishing Center, Inc., 1986). (May 30, 1st edition issued, see pages 77-100). Examples of such methods include acquisition of auxotrophic mutants, acquisition of L-amino acid analog-resistant strains, acquisition of metabolic control mutants, and recombination with enhanced activity of L-amino acid biosynthetic enzymes. The creation of stocks. In the breeding of L-amino acid-producing bacteria, properties such as auxotrophy, analog resistance, and metabolic control mutation that are imparted may be single, or two or more.
  • L-amino acid biosynthetic enzymes whose activities are enhanced in breeding L-amino acid-producing bacteria may be used alone or in combination of two or more.
  • imparting properties such as auxotrophy, analog resistance, and metabolic control mutation may be combined with enhancing the activity of biosynthetic enzymes.
  • An auxotrophic mutant, an analog resistant strain, or a metabolically controlled mutant having L-amino acid production ability is subjected to normal mutation treatment of the parent strain or wild strain, and the auxotrophic, analog It can be obtained by selecting those exhibiting resistance or metabolic control mutations and having the ability to produce L-amino acids.
  • Normal mutation treatments include X-ray and ultraviolet irradiation, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ethyl methane sulfonate (EMS), methyl methane sulfonate (MMS), etc. Treatment with a mutagen is included.
  • the L-amino acid-producing ability can be imparted or enhanced by enhancing the activity of an enzyme involved in the target L-amino acid biosynthesis. Enhancing enzyme activity can be performed, for example, by modifying bacteria so that expression of a gene encoding the enzyme is enhanced. Methods for enhancing gene expression are described in WO00 / 18935 pamphlet, European Patent Application Publication No. 1010755, and the like. A detailed method for enhancing the enzyme activity will be described later.
  • the L-amino acid-producing ability can be imparted or enhanced by reducing the activity of an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of the target L-amino acid to produce a compound other than the target L-amino acid. It can be carried out.
  • an enzyme that catalyzes a reaction that produces a compound other than the target L-amino acid by branching from the biosynthetic pathway of the target L-amino acid includes enzymes involved in the degradation of the target amino acid. It is. A method for reducing the enzyme activity will be described later.
  • L-amino acid-producing bacteria and methods for imparting or enhancing L-amino acid-producing ability are given below.
  • any of the modifications exemplified below for imparting or enhancing the properties of L-amino acid-producing bacteria and L-amino acid-producing ability may be used alone or in appropriate combination.
  • Examples of the method for imparting or enhancing L-glutamic acid-producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-glutamic acid biosynthetic enzymes is increased. .
  • Such enzymes include, but are not limited to, glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), glutamate synthase (gltBD), isocitrate dehydrogenase (icdA), aconite hydratase (acnA, acnB), citrate synthase (GltA), methyl citrate synthase (prpC), pyruvate carboxylase (pyc), pyruvate dehydrogenase (aceEF, lpdA), pyruvate kinase (pykA, pykF), phosphoenolpyruvate synthase (ppsA), enolase (eno) Phosphoglyceromutase (pgmA, pgmI), phosphoglycerate kinase (pgk), glyceraldehyde-3-phosphate dehydrogena
  • the parentheses are examples of genes encoding the enzymes (the same applies to the following description). Among these enzymes, it is preferable to enhance the activity of one or more enzymes selected from, for example, glutamate dehydrogenase, citrate synthase, phosphoenolpyruvate carboxylase, and methyl citrate synthase.
  • Strains belonging to the family Enterobacteriaceae that have been modified to increase expression of the citrate synthase gene, phosphoenolpyruvate carboxylase gene, and / or glutamate dehydrogenase gene include those disclosed in EP1078989A, EP955368A, and EP952221A Can be mentioned.
  • Examples of strains belonging to the family Enterobacteriaceae that have been modified to increase the expression of the Entner-Doudoroff pathway genes (edd, eda) include those disclosed in EP1352966B.
  • the method for imparting or enhancing the ability to produce L-glutamic acid is, for example, selected from enzymes that catalyze a reaction that branches from the biosynthetic pathway of L-glutamic acid to produce a compound other than L-glutamic acid.
  • a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • Such enzymes include, but are not limited to, isocitrate lyase (aceA), ⁇ -ketoglutarate dehydrogenase (sucA), acetolactate synthase (ilvI), formate acetyltransferase (pfl), lactate dehydrogenase (ldh), alcohol dehydrogenase (Adh), glutamate decarboxylase (gadAB), succinate dehydrogenase (sdhABCD).
  • aceA isocitrate lyase
  • sucA ⁇ -ketoglutarate dehydrogenase
  • ilvI acetolactate synthase
  • pfl lactate dehydrogenase
  • Adh alcohol dehydrogenase
  • gadAB glutamate decarboxylase
  • succinate dehydrogenase sdhABCD
  • Escherichia bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity and methods for obtaining them are described in US Pat. Nos. 5,378,616 and 5,573,945.
  • a method for reducing or eliminating ⁇ -ketoglutarate dehydrogenase activity in enteric bacteria such as Pantoea bacteria, Enterobacter bacteria, Klebsiella bacteria, Erwinia bacteria, and the like are disclosed in U.S. Patent No. 6,197,559, U.S. Patent No. 6,682,912, This is disclosed in US Pat. No. 6,331,419, US Pat. No. 8,129,151, and WO2008 / 075483.
  • bacteria belonging to the genus Escherichia with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity include the following strains.
  • E. coli W3110sucA Kmr
  • E. coli AJ12624 (FERM BP-3853)
  • E. coli AJ12628 (FERM BP-3854)
  • E. coli AJ12949 (FERM BP-4881)
  • E. coli W3110sucA is a strain obtained by disrupting the sucA gene encoding the ⁇ -ketoglutarate dehydrogenase of E. coli W3110. This strain is completely deficient in ⁇ -ketoglutarate dehydrogenase activity.
  • L-glutamic acid-producing bacteria or parent strains for inducing them include Pantoea ananatis AJ13355 strain (FERM BP-6614), Pantoea ananatis SC17 strain (FERM BP-11091), Pantoea ananatis SC17 (0) strain (VKPM B) -9246) and the like.
  • the AJ13355 strain is a strain isolated as a strain capable of growing on a medium containing L-glutamic acid and a carbon source at low pH from soil in Iwata City, Shizuoka Prefecture.
  • the SC17 strain is a strain selected from the AJ13355 strain as a low mucus production mutant (US Pat. No. 6,596,517).
  • examples of L-glutamic acid-producing bacteria and parent strains for inducing them also include Pantoea bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity.
  • Pantoea bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity include the AJ13356 strain (US Pat. No. 6,331,419) which is the E1 subunit gene (sucA) deficient strain of the ⁇ -ketoglutarate dehydrogenase of the AJ13355 strain, and the SC17sucA strain which is the sucA gene deficient strain of the SC17 strain ( US Pat. No. 6,596,517).
  • the AJ13356 strain was founded on February 19, 1998 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Patent Biological Depositary Center, Postal Code: 292-0818, Address: Chiba, Japan. Deposited at Kisarazu City Kazusa Kamashichi 2-5-8 120) under the accession number FERM P-16645 and transferred to the international deposit under the Budapest Treaty on 11 January 1999 and given the accession number FERM BP-6616 ing.
  • the SC17sucA strain was also assigned the private number AJ417.
  • the AJ13355 strain was identified as Enterobacter agglomerans at the time of its isolation, but has recently been reclassified as Pantoea anaananatis by 16S rRNA nucleotide sequence analysis and the like. Therefore, the AJ13355 strain and the AJ13356 strain are deposited as Enterobacter agglomerans in the above depository organization, but are described as Pantoea ananatis in this specification.
  • L-glutamic acid-producing bacteria or parent strains for inducing them include Pantoea bacteria such as Pantoea ananatis SC17sucA / RSFCPG + pSTVCB strain, Pantoea ananatis AJ13601 strain, Pantoea ananatis NP106 strain, and Pantoea ananatis NA1 strain .
  • Pantoea bacteria such as Pantoea ananatis SC17sucA / RSFCPG + pSTVCB strain, Pantoea ananatis AJ13601 strain, Pantoea ananatis NP106 strain, and Pantoea ananatis NA1 strain .
  • the SC17sucA / RSFCPG + pSTVCB strain is different from the SC17sucA strain in that the plasmid RSFCPG containing the citrate synthase gene (gltA), the phosphoenolpyruvate carboxylase gene (ppc), and the glutamate dehydrogenase gene (gdhA) derived from Escherichia coli, and Brevi
  • This is a strain obtained by introducing a plasmid pSTVCB containing a citrate synthase gene (gltA) derived from bacteria lactofermentum.
  • the AJ13601 strain was selected from the SC17sucA / RSFCPG + pSTVCB strain as a strain resistant to a high concentration of L-glutamic acid at low pH.
  • the NP106 strain is a strain obtained by removing the plasmid RSFCPG + pSTVCB from the AJ13601 strain.
  • AJ13601 shares were registered with the National Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Biological Depositary Center, Postal Code: 292-0818, Address: Chiba, Japan. Deposited at Kisarazu City Kazusa Kamashika 2-5-8 120) under the accession number FERM P-17516, transferred to an international deposit based on the Budapest Treaty on July 6, 2000 and given the accession number FERM BP-7207 ing.
  • L-glutamic acid-producing bacteria or parent strains for inducing them include strains in which both ⁇ -ketoglutarate dehydrogenase (sucA) activity and succinate dehydrogenase (sdh) activity are reduced or deficient (JP 2010) -041920).
  • specific examples of such a strain include a pantoeaPananatis NA1 sucAsdhA double-deficient strain (Japanese Patent Laid-Open No. 2010-041920).
  • examples of L-glutamic acid-producing bacteria or parent strains for inducing them include auxotrophic mutants.
  • the auxotrophic mutant include E. coli VL334thrC + (VKPM B-8961) (EP 1172433).
  • E. coli VL334 (VKPM B-1641) is an L-isoleucine and L-threonine auxotroph having a mutation in the thrC gene and the ilvA gene (US Pat. No. 4,278,765).
  • E. coli VL334thrC + is an L-isoleucine-requiring L-glutamic acid-producing bacterium obtained by introducing a wild type allele of the thrC gene into VL334. The wild type allele of the thrC gene was introduced by a general transduction method using bacteriophage P1 grown on cells of wild type E. coli K12 strain (VKPM B-7).
  • examples of L-glutamic acid-producing bacteria or parent strains for inducing them also include strains resistant to aspartic acid analogs. These strains may be deficient in ⁇ -ketoglutarate dehydrogenase activity, for example.
  • Specific examples of strains resistant to aspartate analogs and lacking ⁇ -ketoglutarate dehydrogenase activity include, for example, E. coli AJ13199 (FERM BP-5807) (US Pat. No. 5,908,768), and L-glutamic acid.
  • E. coli FFRM P-12379 US Pat. No. 5,393,671
  • E. coli AJ13138 FERM BP-5565
  • a bacterium is modified so that the activity of D-xylulose-5-phosphate-phosphoketolase and / or fructose-6-phosphate phosphoketolase is increased.
  • There is also a method to do (Special Table 2008-509661). Either one or both of D-xylulose-5-phosphate-phosphoketolase activity and fructose-6-phosphate phosphoketolase activity may be enhanced.
  • D-xylulose-5-phosphate phosphoketolase and fructose-6-phosphate phosphoketolase may be collectively referred to as phosphoketolase.
  • D-xylulose-5-phosphate-phosphoketolase activity is the consumption of phosphoric acid to convert xylulose-5-phosphate into glyceraldehyde-3-phosphate and acetyl phosphate, and one molecule of H 2 O Means the activity of releasing. This activity is measured by the method described in Goldberg, M. et al. (Methods Enzymol., 9,515-520 (1966)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
  • fructose-6-phosphate phosphoketolase activity means that phosphoric acid is consumed, fructose 6-phosphate is converted into erythrose-4-phosphate and acetyl phosphate, and one molecule of H 2 O is released. Means activity. This activity is measured by the method described in Racker, E (Methods Enzymol., 5, 276-280 (1962)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
  • Examples of a method for imparting or enhancing L-glutamic acid producing ability include, for example, enhancing expression of yhfK gene (WO2005 / 085419) and ybjL gene (WO2008 / 133161) which are L-glutamic acid excretion genes. It is done.
  • Examples of the method for imparting or enhancing L-glutamine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-glutamine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, glutamate dehydrogenase (gdhA) and glutamine synthetase (glnA).
  • the activity of glutamine synthetase may be enhanced by disrupting the glutamine adenylyltransferase gene (glnE) or the PII regulatory protein gene (glnB) (EP1229121).
  • the method for imparting or enhancing L-glutamine production ability is, for example, selected from an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of L-glutamine to produce a compound other than L-glutamine.
  • an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of L-glutamine to produce a compound other than L-glutamine.
  • a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • Such an enzyme is not particularly limited, and includes glutaminase.
  • L-glutamine producing bacteria or parent strains for inducing them include strains belonging to the genus Escherichia having a mutant glutamine synthetase in which the tyrosine residue at position 397 of glutamine synthetase is substituted with another amino acid residue. (US Patent Application Publication No. 2003-0148474).
  • Examples of the method for imparting or enhancing L-proline production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-proline biosynthesis enzymes is increased.
  • Such enzymes include glutamate-5-kinase (proB), ⁇ -glutamyl-phosphate reductase, pyrroline-5-carboxylate reductase (putA).
  • glutamate-5-kinase proB
  • ⁇ -glutamyl-phosphate reductase ⁇ -glutamyl-phosphate reductase
  • pyrroline-5-carboxylate reductase pyrroline-5-carboxylate reductase
  • the proB gene German Patent No. 3127361 encoding glutamate-5-kinase in which feedback inhibition by L-proline is released can be suitably used.
  • a method for imparting or enhancing L-proline production ability for example, a method of modifying bacteria so that the activity of an enzyme involved in L-proline degradation is reduced.
  • an enzyme include proline dehydrogenase and ornithine aminotransferase.
  • L-proline-producing bacteria or parent strains for deriving them include, for example, E. coli NRRL B-12403 and NRRL B-12404 (British Patent No. 2075056), E. coli VKPM B-8012 ( Russian patent application 2000124295), E. coli plasmid variant described in German Patent 3127361, Bloom FR et al (The 15th Miami winter symposium, 1983, p.34), E. coli plasmid variant, 3, E. coli 702 strain (VKPMB-8011) resistant to 4-dehydroxyproline and azatidine-2-carboxylate, E. coli 702ilvA strain (VKPM B-8012) (EP 1172433) which is a 702 ilvA gene-deficient strain Is mentioned.
  • L-threonine producing bacteria examples include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-threonine biosynthetic enzymes is increased. .
  • enzymes include, but are not limited to, aspartokinase III (lysC), aspartate semialdehyde dehydrogenase (asd), aspartokinase I (thrA), homoserine kinase (thrB), threonine synthase ( threonine synthase) (thrC), aspartate aminotransferase (aspartate transaminase) (aspC).
  • aspartokinase III lysC
  • aspartate semialdehyde dehydrogenase aspartokinase I
  • thrB homoserine kinase
  • thrC threonine synthase
  • aspartate aminotransferase aspartate transaminase
  • the L-threonine biosynthesis gene may be introduced into a strain in which threonine degradation is suppressed.
  • strains in which threonine degradation is suppressed include E. coli TDH6 strain lacking threonine dehydrogenase activity (Japanese Patent Laid-Open No. 2001-346578).
  • the activity of the L-threonine biosynthetic enzyme is inhibited by the final product L-threonine. Therefore, in order to construct an L-threonine-producing bacterium, it is preferable to modify the L-threonine biosynthetic gene so that it is not subject to feedback inhibition by L-threonine.
  • the thrA, thrB, and thrC genes constitute a threonine operon, and the threonine operon forms an attenuator structure. Expression of the threonine operon is inhibited by isoleucine and threonine in the culture medium, and is suppressed by attenuation.
  • Enhanced expression of the threonine operon can be achieved by removing the leader sequence or attenuator in the attenuation region (Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194: 59-69 1987 (1987); WO02 / 26993; WO2005 / 049808; WO2003 / 097839).
  • the threonine operon may be constructed so that a gene involved in threonine biosynthesis is expressed under the control of a lambda phage repressor and promoter (see European Patent No. 0593792).
  • Bacteria modified so as not to be subjected to feedback inhibition by L-threonine can also be obtained by selecting a strain resistant to ⁇ -amino- ⁇ -hydroxyvaleric acid (AHV), which is an L-threonine analog.
  • HAV ⁇ -amino- ⁇ -hydroxyvaleric acid
  • the threonine operon modified so as not to be subjected to feedback inhibition by L-threonine is improved in the expression level in the host by increasing the copy number or being linked to a strong promoter.
  • An increase in copy number can be achieved by introducing a plasmid containing a threonine operon into the host.
  • An increase in copy number can also be achieved by transferring the threonine operon onto the host genome using a transposon, Mu phage, or the like.
  • examples of a method for imparting or enhancing L-threonine production ability include a method for imparting L-threonine resistance to a host and a method for imparting L-homoserine resistance.
  • the imparting of resistance can be achieved, for example, by enhancing the expression of a gene that imparts resistance to L-threonine or a gene that imparts resistance to L-homoserine.
  • genes that confer resistance include rhtA gene (Res. Microbiol. 154: 123-135 (2003)), rhtB gene (European Patent Application Publication No. 0994190), rhtC gene (European Patent Application Publication No.
  • L-threonine-producing bacteria or parent strains for deriving them include, for example, E. coli TDH-6 / pVIC40 (VKPM B-3996) (US Patent No. 5,175,107, US Patent No. 5,705,371), E. coli 472T23 / pYN7 (ATCC 98081) (U.S. Patent No. 5,631,157), E. coli NRRL-21593 (U.S. Patent No. 5,939,307), E. coli FERM BP-3756 (U.S. Patent No. 5,474,918), E. coli FERM BP-3519 and FERM BP-3520 (U.S. Patent No. 5,376,538), E.
  • E. coli MG442 (Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978)), E. coli VL643 and VL2055 ( EP 1149911 A), and E. coli VKPM B-5318 (EP 0593792 B).
  • VKPM B-3996 strain is a strain obtained by introducing plasmid pVIC40 into TDH-6 strain.
  • the TDH-6 strain is sucrose-assimilating, lacks the thrC gene, and has a leaky mutation in the ilvA gene.
  • the VKPM B-3996 strain has a mutation that imparts resistance to a high concentration of threonine or homoserine in the rhtA gene.
  • the plasmid pVIC40 is a plasmid in which a thrA * BC operon containing a mutant thrA gene encoding an aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine and a wild type thrBC gene is inserted into an RSF1010-derived vector (US Patent) No. 5,705,371).
  • This mutant thrA gene encodes aspartokinase homoserine dehydrogenase I substantially desensitized to feedback inhibition by threonine.
  • the strain VKPM B-5318 is non-isoleucine-requiring and retains the plasmid pPRT614 in which the control region of the threonine operon in the plasmid pVIC40 is replaced with a temperature-sensitive lambda phage C1 repressor and a PR promoter.
  • VKPM B-5318 was assigned to Lucian National Collection of Industrial Microorganisms (VKPM) 3 (FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, 1990 Russia) on May 3, 1990. Deposited internationally at B-5318.
  • the thrA gene encoding aspartokinase homoserine dehydrogenase I of E. coli has been elucidated (nucleotide numbers 337-2799, GenBank accession NC — 000913.2, gi: 49175990).
  • the thrA gene is located between the thrL gene and the thrB gene in the chromosome of E. coli K-12.
  • the thrB gene encoding the homoserine kinase of Escherichia coli has been elucidated (nucleotide numbers 2801 to 3733, GenBank accession NC — 000913.2, gi: 49175990).
  • the thrB gene is located between the thrA gene and the thrC gene in the chromosome of E. coli K-12.
  • the thrC gene encoding threonine synthase from E. coli has been elucidated (nucleotide numbers 3734-5020, GenBank accession NC — 000913.2, gi: 49175990).
  • the thrC gene is located between the thrB gene and the yaaX open reading frame in the chromosome of E. coli K-12.
  • thrA * BC operon containing a mutant thrA gene encoding an aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine and a wild type thrBC gene is known in the threonine-producing strain E. coli VKPM B-3996. It can be obtained from plasmid pVIC40 (US Pat. No. 5,705,371).
  • the rhtA gene of E. coli is present at 18 minutes of the E. coli chromosome close to the glnHPQ operon, which encodes a glutamine transport system element.
  • the rhtA gene is the same as ORF1 (ybiF gene, nucleotide numbers 764 to 1651, GenBank accession number AAA218541, gi: 440181), and is located between the pexB gene and the ompX gene.
  • the unit that expresses the protein encoded by ORF1 is called rhtA gene (rht: resistant toosehomoserine andeonthreonine (resistant to homoserine and threonine)).
  • the asd gene of E. coli has already been clarified (nucleotide numbers 3572511 to 3571408, GenBank accession NC_000913.1, gi: 16131307), and can be obtained by PCR using primers prepared based on the nucleotide sequence of the gene ( White, TJ et al., Trends Genet., 5, 185 (1989)).
  • the asd gene of other microorganisms can be obtained similarly.
  • the aspC gene of E. ⁇ ⁇ coli has already been clarified (nucleotide numbers 983742 to 984932, GenBank accession NC_000913.1, gi: 16128895), and obtained by PCR using a primer prepared based on the nucleotide sequence of the gene be able to.
  • the aspC gene of other microorganisms can be obtained similarly.
  • Examples of a method for imparting or enhancing L-lysine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-lysine biosynthesis enzymes is increased.
  • Such enzymes include, but are not limited to, dihydrodipicolinate synthase (dapA), aspartokinase III (lysC), dihydrodipicolinate reductase (dapB), diaminopimelate Diaminopimelate decarboxylase (lysA), diaminopimelate dehydrogenase (ddh) (US Pat. No.
  • phosphoenolpyrvate carboxylase ppc
  • aspartate semialdehyde dehydrogenase phosphoenolpyrvate carboxylase
  • Asd aspartate semialdehyde dehydrogenase
  • aspartate aminotransferase aspartate transaminase
  • aspC diaminopimelate epi Diaminopimelate epimerase
  • dapF diaminopimelate epi Diaminopimelate epimerase
  • dapD tetrahydrodipicolinate succinylase
  • dapE succinyl-diaminopimelate deacylase
  • aspartase aspA (195) ).
  • dihydrodipicolinate reductase diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semialdehyde dehydrogenase, tetrahydrodipicolinate succinylase, and
  • the activity of one or more enzymes selected from succinyl diaminopimelate deacylase is enhanced.
  • a gene (cyo) (EP 1170376 A) involved in energy efficiency, a gene encoding nicotinamide nucleotide transhydrogenase (pntAB) ( US Pat. No. 5,830,716), ybjE gene (WO2005 / 073390), or combinations thereof may have increased expression levels.
  • Aspartokinase III (lysC) is subject to feedback inhibition by L-lysine.
  • a mutant lysC gene encoding aspartokinase III that has been desensitized to feedback inhibition by L-lysine is used. It may be used (US Pat. No.
  • the method for imparting or enhancing L-lysine production ability is, for example, selected from enzymes that catalyze the reaction of branching from the biosynthetic pathway of L-lysine to produce compounds other than L-lysine.
  • enzymes that catalyze the reaction of branching from the biosynthetic pathway of L-lysine to produce compounds other than L-lysine.
  • a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • Such enzymes include, but are not limited to, homoserine dehydrogenase, lysine decarboxylase (US Pat. No. 5,827,698), and malic enzyme (WO2005 / 010175). .
  • L-lysine-producing bacteria or parent strains for inducing them include mutants having resistance to L-lysine analogs.
  • L-lysine analogs inhibit the growth of bacteria such as Enterobacteriaceae and coryneform bacteria, but this inhibition is completely or partially released when L-lysine is present in the medium.
  • the L-lysine analog is not particularly limited, and examples thereof include oxalysine, lysine hydroxamate, S- (2-aminoethyl) -L-cysteine (AEC), ⁇ -methyllysine, and ⁇ -chlorocaprolactam.
  • Mutant strains having resistance to these lysine analogs can be obtained by subjecting bacteria to normal artificial mutation treatment.
  • L-lysine-producing bacteria or parent strains for deriving them include, for example, E. coli AJ11442 (FERM BP-1543, NRRL B-12185; see U.S. Pat. No. 4,346,170) and E. coli VL611. Can be mentioned. In these strains, feedback inhibition of aspartokinase by L-lysine is released.
  • L-lysine-producing bacteria or parent strains for inducing them include E. coli WC196 strain.
  • the WC196 strain was bred by conferring AEC resistance to the W3110 strain derived from E. coli K-12 (US Pat. No. 5,827,698).
  • the WC196 strain was named E.
  • Preferred L-lysine producing bacteria include E.coli WC196 ⁇ cadA ⁇ ldc and E.coli WC196 ⁇ cadA ⁇ ldc / pCABD2 (WO2010 / 061890).
  • WC196 ⁇ cadA ⁇ ldc is a strain constructed by disrupting the cadA and ldcC genes encoding lysine decarboxylase from the WC196 strain.
  • WC196 ⁇ cadA ⁇ ldc / pCABD2 is a strain constructed by introducing plasmid pCABD2 (US Pat. No. 6,040,160) containing a lysine biosynthesis gene into WC196 ⁇ cadA ⁇ ldc.
  • WC196 ⁇ cadA ⁇ ldc was named AJ110692, and on October 7, 2008, National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (currently, National Institute of Technology and Evaluation, Patent Biological Deposit Center, ZIP Code: 292-0818 , Address: 2-5-8 Kazusa, Kazusa Kamashitsu, Kisarazu, Chiba, Japan) Room No. FERM BP-11027.
  • pCABD2 is a mutant dapA gene encoding dihydrodipicolinate synthase (DDPS) derived from Escherichia coli having a mutation that is desensitized to feedback inhibition by L-lysine, and a mutation that is desensitized to feedback inhibition by L-lysine.
  • DDPS dihydrodipicolinate synthase
  • a mutant lysC gene encoding aspartokinase III derived from Escherichia coli, dapB gene encoding dihydrodipicolinate reductase derived from Escherichia coli, and ddh encoding a diaminopimelate dehydrogenase derived from Brevibacterium lactofermentum Contains genes.
  • a preferable L-lysine-producing bacterium includes E.coli AJIK01 strain (NITE BP-01520).
  • the AJIK01 strain was named E. coli AJ111046.
  • Patent Microorganisms Deposit Center Postal Code: 292-0818, Address: Kazusa Kama, Kisarazu City, Chiba Prefecture, Japan
  • Examples of the method for imparting or enhancing L-arginine-producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-arginine biosynthesis enzymes is increased. .
  • Examples of such enzymes include, but are not limited to, N-acetylglutamate synthase (argA), N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine Examples include transaminase (argD), acetylornithine deacetylase (argE) ornithine carbamoyltransferase (argF), argininosuccinate synthase (argG), argininosuccinate lyase (argH), and carbamoyl phosphate synthase (carAB).
  • argA N-acetylglutamate synthase
  • argC N-acetylglutamylphosphate reductase
  • argJ ornithine acetyltransferase
  • N-acetylglutamate synthase (argA) gene examples include mutant N-acetylglutamate synthase in which amino acid residues corresponding to the 15th to 19th positions of the wild type are substituted and feedback inhibition by L-arginine is released. It is preferable to use a gene to be encoded (European Application Publication No. 1170361).
  • L-arginine-producing bacteria or parent strains for deriving them include, for example, E. coli 237 strain (VKPM B-7925) (US Patent Application Publication 2002/058315 A1), mutant N-acetylglutamate Its derivative strain ⁇ ⁇ ( Russian patent application No. 2001112869, EP1170361A1) introduced with the argA gene encoding synthase, E.237coli 382 strain (VKPM B-7926) 237 (VKPM B-7926) EP1170358A1) and E. coli 382ilvA + strain, which is a strain in which the wild-type ilvA gene derived from E. coli K-12 strain is introduced into 382 strain.
  • E. coli 237 strain VKPM B-7925
  • US Patent Application Publication 2002/058315 A1 mutant N-acetylglutamate Its derivative strain ⁇ ⁇
  • E.237coli 382 strain VKPM B-7926
  • VKPM B-7926
  • VKPM Lucian National Collection of Industrial Microorganisms
  • VKPM Lucian National Collection of Industrial Microorganisms
  • FGUP GosNII Genetika 1 Dorozhny proezd., 1 Moscow 117545, Russia
  • L-arginine-producing bacteria or parent strains for inducing them include strains having resistance to amino acid analogs and the like.
  • Such strains include, for example, ⁇ -methylmethionine, p-fluorophenylalanine, D-arginine, arginine hydroxamic acid, S- (2-aminoethyl) -cysteine, ⁇ -methylserine, ⁇ -2-thienylalanine, or Examples include Escherichia coli mutants having resistance to sulfaguanidine (see JP-A-56-106598).
  • L-citrulline and L-ornithine-producing bacteria share a biosynthetic pathway with L-arginine.
  • N-acetylglutamate synthase argA
  • N-acetylglutamylphosphate reductase argC
  • ornithine acetyltransferase argJ
  • N-acetylglutamate kinase argB
  • acetylornithine transaminase argD
  • WO 2006-35831 By increasing the enzyme activity of deacetylase (argE), the ability to produce L-citrulline and / or L-ornithine can be imparted or enhanced (WO 2006-35831).
  • Examples of the method for imparting or enhancing L-histidine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-histidine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, ATP phosphoribosyltransferase (hisG), phosphoribosyl-AMP cyclohydrolase (hisI), phosphoribosyl-ATP pyrophosphohydrolase (hisI), phosphoribosylformimino-5-aminoimidazole carboxamide ribonucleoside.
  • tide isomerase (hisA), amide transferase (hisH), histidinol phosphate aminotransferase (hisC), histidinol phosphatase (hisB), and histidinol dehydrogenase (hisD).
  • hisA tide isomerase
  • hisH amide transferase
  • hisC histidinol phosphate aminotransferase
  • hisB histidinol phosphatase
  • hisD histidinol dehydrogenase
  • L-histidine biosynthetic enzymes encoded by hisG and hisBHAFI are known to be inhibited by L-histidine. Therefore, the ability to produce L-histidine can be imparted or enhanced by introducing a mutation that confers resistance to feedback inhibition in, for example, the ATP phosphoribosyltransferase gene (hisG) ( Russian Patent No. 2003677 and No. 2). 2119536).
  • L-histidine-producing bacteria or parent strains for inducing them include, for example, E. coli 24 strain (VKPM B-5945, RU2003677), E. coli NRRL B-12116-B-12121 (US Patent) No. 4,388,405), E. coli H-9342 (FERM BP-6675) and H-9343 (FERM BP-6676) (U.S. Patent No. 6,344,347), E. coli H-9341 (FERM BP-6674) (EP1085087) E. coli AI80 / pFM201 (US Pat. No. 6,258,554), E.
  • E. coli FERM P-5038 and 5048 into which a vector carrying DNA encoding an L-histidine biosynthetic enzyme was introduced Japanese Patent Laid-Open No. 56-005099
  • E. coli strain EP1016710A
  • E. coli 80 strain VKPM B
  • Sulfaguanidine DL-1,2,4-triazole-3-alanine
  • streptomycin -7270 Russian Patent No. 2119536
  • Examples of the method for imparting or enhancing L-cysteine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-cysteine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, serine acetyltransferase (cysE) and 3-phosphoglycerate dehydrogenase (serA).
  • Serine acetyltransferase activity can be enhanced, for example, by introducing a mutant cysE gene encoding a mutant serine acetyltransferase resistant to feedback inhibition by cysteine into bacteria.
  • Mutant serine acetyltransferases are disclosed, for example, in JP-A-11-155571 and US Patent Publication No. 20050112731. Further, the 3-phosphoglycerate dehydrogenase activity can be enhanced by introducing, for example, a mutant serA gene encoding a mutant 3-phosphoglycerate dehydrogenase resistant to feedback inhibition by serine into a bacterium. Mutant 3-phosphoglycerate dehydrogenase is disclosed, for example, in US Pat. No. 6,180,373.
  • the method for imparting or enhancing L-cysteine production ability is selected from, for example, an enzyme that catalyzes a reaction that branches from the biosynthesis pathway of L-cysteine to produce a compound other than L-cysteine.
  • an enzyme that catalyzes a reaction that branches from the biosynthesis pathway of L-cysteine to produce a compound other than L-cysteine Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • examples of such enzymes include enzymes involved in the degradation of L-cysteine.
  • the enzyme involved in the degradation of L-cysteine is not particularly limited, but cystathionine- ⁇ -lyase (metC) (Japanese Patent Laid-Open No. 11-155571, Chandra et.
  • examples of methods for imparting or enhancing L-cysteine production ability include enhancing the L-cysteine excretion system and enhancing the sulfate / thiosulfate transport system.
  • proteins of the L-cysteine excretion system include proteins encoded by the ydeD gene (JP 2002-233384), proteins encoded by the yfiK gene (JP 2004-49237), emrAB, emrKY, yojIH, acrEF, bcr, And each protein encoded by each gene of cusA (Japanese Patent Laid-Open No.
  • sulfate / thiosulfate transport system protein examples include proteins encoded by the cysPTWAM gene cluster.
  • L-cysteine-producing bacteria or parent strains for deriving them include, for example, E. coli JM15 (US Patent) transformed with various cysE alleles encoding mutant serine acetyltransferase resistant to feedback inhibition. No. 6,218,168, Russian Patent Application No. 2003121601), E. coli W3110 (US Pat.No. 5,972,663), cysteine desulfhydrase, which has an overexpressed gene encoding a protein suitable for excretion of substances toxic to cells Examples include E. coli strain (JP11155571A2) with reduced activity and E. coli W3110 (WO01 / 27307A1) with increased activity of the transcriptional control factor of the positive cysteine regulon encoded by the cysB gene.
  • L-methionine producing bacteria examples include L-threonine-requiring strains and mutants having resistance to norleucine (Japanese Patent Laid-Open No. 2000-139471).
  • examples of L-methionine-producing bacteria or parent strains for deriving them also include strains that retain mutant homoserine transsuccinylase that is resistant to feedback inhibition by L-methionine (Japanese Patent Laid-Open No. 2000-139471). , US20090029424).
  • L-methionine is biosynthesized with L-cysteine as an intermediate, L-methionine production ability can be improved by improving L-cysteine production ability (Japanese Patent Laid-Open No. 2000-139471, US20080311632).
  • L-methionine-producing bacteria or parent strains for inducing them include, for example, E. coli AJ11539 (NRRL B-12399), E. coli AJ11540 (NRRL B-12400), E. coli AJ11541 (NRRL B-12401), E. coli AJ11542 (NRRL B-12402) (British Patent No. 2075055), E. coli 218 strain (VKPM B-8125) having resistance to norleucine, an analog of L-methionine (Russian Patent No. 2209248) No.), 73 shares (VKPM B-8126) (Russian Patent No. 2215782), E.
  • coli AJ13425 (FERM P-16808) (Japanese Patent Laid-Open No. 2000-139471).
  • the AJ13425 strain lacks a methionine repressor, weakens intracellular S-adenosylmethionine synthetase activity, and produces intracellular homoserine transsuccinylase activity, cystathionine ⁇ -synthase activity, and aspartokinase-homoserine dehydrogenase II.
  • L-threonine-requiring strain derived from E. coli W3110 with enhanced activity.
  • Examples of the method for imparting or enhancing the ability to produce L-leucine include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-leucine biosynthesis enzymes is increased. .
  • Examples of such an enzyme include, but are not limited to, an enzyme encoded by a gene of leuABCD operon.
  • a mutant leuA gene US Pat. No. 6,403,342
  • encoding isopropyl malate synthase from which feedback inhibition by L-leucine has been released can be suitably used.
  • L-leucine-producing bacteria or parent strains for inducing the same include, for example, leucine-resistant E. coli strains (eg, 57 strains (VKPM B-7386, US Pat. No. 6,124,121)), ⁇ - E. coli strains resistant to leucine analogs such as 2-thienylalanine, 3-hydroxyleucine, 4-azaleucine, 5,5,5-trifluoroleucine (JP-B-62-34397 and JP-A-8-70879), WO96 And strains belonging to the genus Escherichia such as E. coli strain and E. coli H-9068 (JP-A-8-70879) obtained by the genetic engineering method described in / 06926.
  • leucine-resistant E. coli strains eg, 57 strains (VKPM B-7386, US Pat. No. 6,124,121)
  • ⁇ - E. coli strains resistant to leucine analogs such as 2-thienylalan
  • Examples of the method for imparting or enhancing L-isoleucine producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-isoleucine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, threonine deaminase and acetohydroxy acid synthase (JP-A-2-458, FR 0356739, and US Pat. No. 5,998,178).
  • L-isoleucine-producing bacteria or parent strains for inducing them include mutants having resistance to 6-dimethylaminopurine (Japanese Patent Laid-Open No. 5-304969), thiisoleucine, isoleucine hydroxamate, etc. And an Escherichia bacterium such as a mutant strain resistant to DL-ethionine and / or arginine hydroxamate in addition to the isoleucine analog (Japanese Patent Laid-Open No. 5-130882).
  • Examples of a method for imparting or enhancing L-valine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-valine biosynthetic enzymes is increased.
  • Examples of such enzymes include, but are not limited to, enzymes encoded by genes of ilvGMEDA operon and ilvBNC operon. ilvBN encodes acetohydroxy acid synthase, and ilvC encodes isomeroreductase (WO 00/50624).
  • the ilvGMEDA operon and the ilvBNC operon are subject to expression suppression (attenuation) by L-valine, L-isoleucine, and / or L-leucine. Therefore, in order to enhance the enzyme activity, it is preferable to remove or modify the region necessary for attenuation and to cancel the expression suppression by the produced L-valine.
  • the threonine deaminase encoded by the ilvA gene is an enzyme that catalyzes the deamination reaction from L-threonine to 2-ketobutyric acid, which is the rate-limiting step of the L-isoleucine biosynthesis system. Therefore, for L-valine production, it is preferable that the ilvA gene is disrupted and the threonine deaminase activity is reduced.
  • the method for imparting or enhancing L-valine-producing ability is, for example, selected from enzymes that catalyze a reaction that branches from the biosynthetic pathway of L-valine to produce a compound other than L-valine.
  • enzymes that catalyze a reaction that branches from the biosynthetic pathway of L-valine to produce a compound other than L-valine.
  • a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • examples of such enzymes include, but are not limited to, threonine dehydratase involved in L-leucine synthesis and enzymes involved in D-pantothenic acid synthesis (International Publication No. 00/50624).
  • L-valine-producing bacterium or the parent strain for deriving the same include, for example, the E. coli strain (US Pat. No. 5,998,178) that has been modified to overexpress the ilvGMEDA operon.
  • examples of L-valine-producing bacteria and parent strains for deriving the same also include strains having mutations in aminoacyl t-RNA synthetase (US Pat. No. 5,658,766).
  • examples of such a strain include E. coli VL1970 having a mutation in the ileS gene encoding isoleucine tRNA synthetase.
  • E. coli VL1970 was registered with the accession number VKPM on June 24, 1988 in the Lucian National Collection of Industrial Microorganisms (VKPM) (FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia). Deposited at B-4411.
  • examples of L-valine-producing bacteria or parent strains for deriving the same also include mutant strains (WO96 / 06926) that require lipoic acid for growth and / or lack H + -ATPase. .
  • L-tryptophan producing bacteria L-phenylalanine producing bacteria, L-tyrosine producing bacteria>
  • methods for imparting or enhancing L-tryptophan production ability, L-phenylalanine production ability, and / or L-tyrosine production ability include biosynthesis of L-tryptophan, L-phenylalanine, and / or L-tyrosine.
  • Biosynthetic enzymes common to these aromatic amino acids are not particularly limited, but 3-deoxy-D-arabinohepturonic acid-7-phosphate synthase (aroG), 3-dehydroquinate synthase (aroB) Shikimate dehydrogenase (aroE), shikimate kinase (aroL), 5-enolic acid pyruvylshikimate 3-phosphate synthase (aroA), chorismate synthase (aroC) (European Patent No. 763127). Expression of genes encoding these enzymes is controlled by a tyrosine repressor (tyrR), and the activity of these enzymes may be enhanced by deleting the tyrR gene (European Patent No. 763127).
  • tyrR tyrosine repressor
  • L-tryptophan biosynthesis enzyme examples include, but are not limited to, anthranilate synthase (trpE), tryptophan synthase (trpAB), and phosphoglycerate dehydrogenase (serA).
  • trpE anthranilate synthase
  • trpAB tryptophan synthase
  • serA phosphoglycerate dehydrogenase
  • L-tryptophan production ability can be imparted or enhanced by introducing DNA containing a tryptophan operon.
  • Tryptophan synthase consists of ⁇ and ⁇ subunits encoded by trpA and trpB genes, respectively.
  • anthranilate synthase is subject to feedback inhibition by L-tryptophan
  • a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
  • phosphoglycerate dehydrogenase is feedback-inhibited by L-serine
  • a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used to enhance the activity of the enzyme.
  • L-tryptophan-producing ability is imparted or enhanced by increasing the expression of an operon consisting of malate synthase (aceB), isocitrate lyase (aceA), and isocitrate dehydrogenase kinase / phosphatase (aceK). (WO2005 / 103275).
  • the L-phenylalanine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prefenate dehydratase. Chorismate mutase and prefenate dehydratase are encoded by the pheA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydratase is feedback-inhibited by L-phenylalanine, in order to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
  • the L-tyrosine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prephenate dehydrogenase. Chorismate mutase and prefenate dehydrogenase are encoded by the tyrA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydrogenase is feedback-inhibited by L-tyrosine, to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
  • the L-tryptophan, L-phenylalanine, and / or L-tyrosine producing bacterium may be modified so that biosynthesis of aromatic amino acids other than the target aromatic amino acid is lowered.
  • L-tryptophan, L-phenylalanine, and / or L-tyrosine-producing bacteria may be modified so that the by-product uptake system is enhanced.
  • By-products include aromatic amino acids other than the desired aromatic amino acid. Examples of genes encoding uptake systems of by-products include, for example, uptake systems of tnaB and mtr, which are L-tryptophan uptake systems, and pheP, L-tyrosine, which are genes encoding uptake systems of L-phenylalanine. TyrP, which is a gene coding for (EP1484410).
  • E. coli JP4735 / pMU3028 carrying a mutant trpS gene encoding a partially inactivated tryptophanyl-tRNA synthetase. DSM10122) and JP6015 / pMU91 (DSM10123) (U.S. Patent No. 5,756,345)
  • E. coli SV164 with trpE allele encoding anthranilate synthase not subject to feedback inhibition by tryptophan
  • phosphoglycerate dehydrogenase not subject to feedback inhibition by serine E. coli SV164 pGH5
  • E. coli AJ12739 (tyrA :: Tn10, tyrR) (VKPM) lacking chorismate mutase-prefenate dehydrogenase and tyrosine repressor B-8197) (WO03 / 044191)
  • E. coli HW1089 (ATCC 55371) (U.S. Patent No. 5,354,672), carrying a mutant pheA34 gene encoding chorismate mutase-prefenate dehydratase with released feedback inhibition
  • E.Coli MWEC 101-b KR8903681
  • E.coli NRRL B-12141 NRRL B-12145
  • NRRL B-12146 NRRL B-12147
  • US Pat. No. 4,407,952 E.coli NRRL B-12141
  • NRRL B-12145 NRRL B-12146
  • NRRL B-12147 US Pat. No. 4,407,952
  • E. coli K-12 that retains a gene encoding chorismate mutase-prefenate dehydratase in which feedback inhibition is released.
  • ⁇ W3110 (tyrA) / pPHAB> (FERM BP-3566)
  • L-phenylalanine-producing bacteria or parent strains for inducing them include, for example, strains belonging to the genus Escherichia in which the activity of the protein encoded by the yedA gene or the yddG gene is increased (US2003 / 0148473, US2003 / 0157667, WO03 / 044192).
  • examples of a method for imparting or enhancing L-amino acid-producing ability include a method of modifying a bacterium so that the activity of discharging L-amino acid from the bacterium cell is increased.
  • the activity to excrete L-amino acids can be increased, for example, by increasing the expression of a gene encoding a protein that excretes L-amino acids.
  • genes encoding proteins that excrete various amino acids include b2682 gene (ygaZ), b2683 gene (ygaH), b1242 gene (ychE), and b3434 gene (yhgN) (Japanese Patent Laid-Open No. 2002-300874) .
  • examples of a method for imparting or enhancing L-amino acid producing ability include a method for modifying bacteria so that the activity of a protein involved in sugar metabolism or a protein involved in energy metabolism is increased.
  • Proteins involved in sugar metabolism include proteins involved in sugar uptake and glycolytic enzymes. Genes encoding proteins involved in sugar metabolism include glucose 6-phosphate isomerase gene (pgi; WO 01/02542 pamphlet), pyruvate carboxylase gene (pyc; WO 99/18228 pamphlet, European application Publication 1092776), phosphoglucomutase gene (pgm; International Publication No. 03/04598 pamphlet), fructose diphosphate aldolase gene (pfkB, kfbp; International Publication No.
  • genes encoding proteins involved in energy metabolism include a transhydrogenase gene (pntAB; US Pat. No. 5,830,716), a cytochrome bo type oxidase (cyoB; European Patent Application Publication No. 1070376) Is mentioned.
  • the gene used for breeding the above-mentioned L-amino acid-producing bacteria is not limited to the above-exemplified genes or genes having a known base sequence, as long as it encodes a protein having the original function maintained. There may be.
  • a gene used for breeding an L-amino acid-producing bacterium is an amino acid in which one or several amino acids at one or several positions are substituted, deleted, inserted or added in the amino acid sequence of a known protein. It may be a gene encoding a protein having a sequence.
  • gene and protein variants the descriptions of aconitase and acetaldehyde dehydrogenase described below and conservative variants of genes encoding them can be applied mutatis mutandis.
  • the bacterium of the present invention has been modified to increase aconitase activity or to increase aconitase activity and acetaldehyde dehydrogenase activity.
  • L-amino acid production by the bacterium when ethanol is used as a carbon source can be improved.
  • the bacterium of the present invention can be obtained by modifying a bacterium having an L-amino acid-producing ability so that the aconitase activity is increased or the aconitase activity and the acetaldehyde dehydrogenase activity are increased.
  • the bacterium of the present invention can also be obtained by imparting or enhancing the ability to produce L-amino acid after modifying the bacterium so that aconitase activity is increased or aconitase activity and acetaldehyde dehydrogenase activity are increased. Can do.
  • the bacterium of the present invention may have acquired L-amino acid-producing ability by being modified so that aconitase activity is increased or aconitase activity and acetaldehyde dehydrogenase activity are increased.
  • the modification for constructing the bacterium of the present invention can be performed in any order.
  • Aconitase refers to a protein having an activity of reversibly catalyzing the isomerization reaction between citric acid and isocitrate (EC 4.2.1.3). This activity is also referred to as “aconitase activity”. A gene encoding aconitase is also referred to as “aconitase gene”. Aconitase activity can be measured, for example, by measuring the production of cis-aconitic acid from isocitrate (Gruer MJ, Guest JR., Microbiology., 1994, Oct; 140 (10): 2531-41.).
  • Examples of aconitase include AcnA protein encoded by acnA gene and AcnB protein encoded by acnB gene.
  • the activity of the AcnA protein may be enhanced, the activity of the AcnB protein may be enhanced, or the activities of both the AcnA protein and the AcnB protein may be enhanced.
  • the bacterium of the present invention is not modified so that the activity of acetaldehyde dehydrogenase is increased, at least the activity of AcnB protein is enhanced.
  • AcnA protein and AcnB protein examples include Escherichia coli, Pantoea ananatis, Pectobacterium atrosepticum (former name Erwinia ⁇ ⁇ carotovora), Examples include AcnA protein and AcnB protein of bacteria belonging to the family Enterobacteriaceae such as Salmonella enterica.
  • the acnA gene of Escherichia coli K12-MG1655 strain corresponds to the sequence from positions 1335831 to 1338506 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.3 GI: 556503834) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.3 GI: 556503834
  • the AcnA protein of MG1655 strain is registered as GenBank accession NP_415792 (version NP_415792.1 GI: 16129237).
  • the nucleotide sequence of the acnA gene of MG1655 strain and the amino acid sequence of AcnA protein are shown in SEQ ID NOs: 21 and 22, respectively.
  • the acnA gene of the Pantoea ananatis AJ13355 strain corresponds to the complementary sequence of the sequences 1665661 to 1668362 in the genome sequence registered as GenBank accession NC_017531 (VERSION NC_017531.1GI: 386014600) in the NCBI database.
  • GenBank accession NC_017531 VERSION NC_017531.1GI: 386014600
  • the AcnA protein of AJ13355 strain is registered as GenBank accession YP_005934253 (version YP_005934253.1 GI: 386015968).
  • the nucleotide sequence of the acnA gene of AJ13355 strain and the amino acid sequence of AcnA protein are shown in SEQ ID NOs: 23 and 24, respectively.
  • the acnA gene of the Pectobacterium atrosepticum SCRI1043 strain corresponds to the 2198282 to 2200954 position in the genome sequence registered as GenBank accession NC_004547 (VERSION NC_004547.2 GI: 50119055) in the NCBI database.
  • the AcnA protein of SCRI1043 strain is registered as GenBank accession YP_050038 (version YP_050038.1 GI: 50120871).
  • the nucleotide sequence of the acnA gene of SCRI1043 strain and the amino acid sequence of AcnA protein are shown in SEQ ID NOs: 25 and 26, respectively.
  • the acnA gene of Salmonella enterica serovar Typhi CT18 strain corresponds to the sequence from 1298278 to 1300953 in the genome sequence registered as GenBank accession NC_003198 (VERSION NC_003198.1 GI: 16762629) in the NCBI database.
  • the CT18 strain AcnA protein is registered as GenBank accession NP_455785 (version NP_455785.1 GI: 16760168).
  • the nucleotide sequence of the acnA gene of CT18 strain and the amino acid sequence of AcnA protein are shown in SEQ ID NOs: 27 and 28, respectively.
  • the acnB gene of Escherichia coli K12-MG1655 strain corresponds to the 131615-134212 positions in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.3 GI: 556503834) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.3 GI: 556503834
  • the AcnB protein of the MG1655 strain is registered as GenBank accession NP_414660 (version NP_414660.1 GI: 16128111).
  • the nucleotide sequence of the acnB gene of the MG1655 strain and the amino acid sequence of the AcnB protein are shown in SEQ ID NOs: 29 and 30, respectively.
  • the acnB gene of Pantoea ananatis AJ13355 strain corresponds to the sequence of 116856 to 119552 in the genome sequence registered as GenBank accession NC_017531 (VERSION NC_017531.1GI: 386014600) in the NCBI database.
  • the AcnB protein of the AJ13355 strain is registered as GenBank accession YP_005932972 (version YP_005932972.1 GI: 386014695).
  • the nucleotide sequence of the acnB gene of AJ13355 strain and the amino acid sequence of AcnB protein are shown in SEQ ID NOs: 31 and 32, respectively.
  • the acnB gene of the Pectobacterium atrosepticum SCRI1043 strain corresponds to a complementary sequence of positions 4218908 to 4221505 in the genome sequence registered as GenBank accession NC_004547 (VERSION NC_004547.2 GI: 50119055) in the NCBI database.
  • GenBank accession NC_004547 VERSION NC_004547.2 GI: 50119055
  • the AcnB protein of SCRI1043 strain is registered as GenBank accession YP_051867 (version YP_051867.1 GI: 50122700).
  • the nucleotide sequence of the acnB gene of SCRI1043 strain and the amino acid sequence of AcnB protein are shown in SEQ ID NOs: 33 and 34, respectively.
  • the acnB gene of Salmonella enterica serovar Typhi CT18 strain corresponds to the 189006-191603 sequence in the genome sequence registered as GenBank accession NC_003198 (VERSION NC_003198.1 GI: 16762629) in the NCBI database.
  • the CT18 strain AcnB protein is registered as GenBank accession NP_454772 (version NP_454772.1 GI: 16759155).
  • the nucleotide sequence of the acnB gene of CT18 strain and the amino acid sequence of AcnB protein are shown in SEQ ID NOs: 35 and 36, respectively.
  • “Acetaldehyde dehydrogenase” is a protein (EC 1.2.1.3, EC 1.2.1.4, EC 1.2.) That reversibly catalyzes the reaction of producing acetic acid from acetaldehyde using NAD + or NADP + as an electron acceptor. 1.5, EC 1.2.1.22, etc.). This activity is also referred to as “acetaldehyde dehydrogenase activity”.
  • a gene encoding acetaldehyde dehydrogenase is also referred to as “acetaldehyde dehydrogenase gene”.
  • Acetaldehyde dehydrogenase activity can be measured, for example, by measuring acetaldehyde dehydride-dependent reduction of NAD + or NADP + (Ho KK, Weiner H., J. Bacteriol., 2005, Feb; 187 (3): 1067 -73.)
  • Acetaldehyde dehydrogenase is also referred to as “CoA-independent acetaldehyde dehydrogenase” and is distinguished from CoA-dependent acetaldehyde dehydrogenase (described later).
  • acetaldehyde dehydrogenase is sometimes called “aldehyde dehydrogenase” or “lactoaldehyde dehydrogenase”.
  • acetaldehyde dehydrogenase examples include AldB protein encoded by aldB gene.
  • AldB protein examples include Escherichia coli, Pantoea ananatis, Pectobacterium atrosepticum (former name Erwinia carotovora), Salmonella enterica
  • AldB protein of bacteria belonging to the family Enterobacteriaceae such as (Salmonella ica enterica).
  • the aldb gene of Escherichia coli K12-MG1655 strain corresponds to the complementary sequence of the sequence from 3749773 to 3756511 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.3 GI: 556503834) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.3 GI: 556503834
  • the AldB protein of the MG1655 strain is registered as GenBank accession NP_418045 (version NP_418045.4 GI: 90111619).
  • the nucleotide sequence of aldB gene of MG1655 strain and the amino acid sequence of AldB protein are shown in SEQ ID NOs: 37 and 38, respectively.
  • AldB gene homologue of Pantoea ananatis LMG20103 strain is registered as one of the aldA genes on the database.
  • the aldb gene homolog is treated as an aldb gene.
  • the aldb gene of Pantoea ananatis LMG 20103 strain corresponds to a complementary sequence of positions 2168098 to 2169570 in the genome sequence registered as GenBank accession NC_013956 (VERSION NC_013956.2 GI: 332139403) in the NCBI database.
  • the AldB protein of LMG 20103 strain is registered as GenBank accession YP_003520235 (version YP_003520235.1 GI: 291617493).
  • the nucleotide sequence of the aldB gene of LMGdB20103 strain and the amino acid sequence of the AldB protein are shown in SEQ ID NOs: 39 and 40, respectively.
  • the aldb gene of the Pectobacterium atrosepticum SCRI1043 strain corresponds to the 111626 to 113161 positions in the genome sequence registered as GenBank accession NC_004547 (VERSION NC_004547.2 GI: 50119055) in the NCBI database.
  • the AldB protein of SCRI1043 strain is registered as GenBank accession YP_048222 (version YP_048222.1 GI: 50119055).
  • the nucleotide sequence of the aldB gene of SCRI1043 strain and the amino acid sequence of AldB protein are shown in SEQ ID NOs: 41 and 42, respectively.
  • the aldB gene of Salmonella enterica serovar Typhi CT18 strain corresponds to the sequence of positions 3978586 to 3980124 in the genome sequence registered as GenBank accession NC_003198 (VERSION NC_003198.1 GI: 16762629) in the NCBI database.
  • GenBank accession NC_003198 VERSION NC_003198.1 GI: 16762629
  • the AldB protein of CT18 strain is registered as GenBank accession NP_458246 (version NP_458246.1 GI: 16762629).
  • the nucleotide sequence of the aldb gene of CT18 strain and the amino acid sequence of AldB protein are shown in SEQ ID NOs: 43 and 44, respectively.
  • AldB proteins The alignment results of these AldB proteins are shown in FIGS.
  • the amino acid sequence homology between the AldB protein of Escherichiaichicoli K12 MG1655 and the AldB protein of Pantoea ananatis LMG 20103, Pectobacteriumtoatrosepticum SCRI1043, and Salmonella enterica serovar Typhi CT18 is 64.7%, 5.8%, and 81.4%, respectively. %.
  • the aconitase gene may be a gene having the base sequence shown in SEQ ID NO: 21, 23, 25, 27, 29, 31, 33, or 35, for example.
  • the aconitase may be a protein having an amino acid sequence shown in 22, 24, 26, 28, 30, 32, 34, or 36, for example.
  • the acetaldehyde dehydrogenase gene may be a gene having the base sequence shown in SEQ ID NO: 37, 39, 41, or 43, for example.
  • the acetaldehyde dehydrogenase may be a protein having an amino acid sequence shown in 38, 40, 42, or 44, for example.
  • the expression “having an (amino acid or base) sequence” includes the case of “including the (amino acid or base) sequence” and the case of “consisting of the (amino acid or base) sequence”.
  • the aconitase may be a variant of the above exemplified aconitase, for example, the above exemplified AcnA protein or AcnB protein.
  • the aconitase gene may be a variant of the aconitase gene exemplified above, for example, the acnA gene or the acnB gene exemplified above as long as the original function is maintained.
  • the acetaldehyde dehydrogenase may be a variant of the above-exemplified acetaldehyde dehydrogenase, for example, the above-illustrated AldB protein, as long as the original function is maintained.
  • the acetaldehyde dehydrogenase gene may be a variant of the acetaldehyde dehydrogenase gene exemplified above, for example, the aldb gene exemplified above.
  • Such a variant in which the original function is maintained may be referred to as a “conservative variant”.
  • Conservative variants include, for example, the above-exemplified aconitase and acetaldehyde dehydrogenase, and homologues and artificial modifications of genes encoding them.
  • AcnA protein includes conservative variants thereof in addition to the AcnA protein, AcnB protein, and AldB protein exemplified above, respectively.
  • acnA gene is intended to include conservative variants thereof in addition to the acnA gene, acnB gene, and aldB gene respectively exemplified above. To do.
  • the original function is maintained means that the variant of the gene or protein has a function (activity or property) corresponding to the function (activity or property) of the original gene or protein. That is, “the original function is maintained” means that, in aconitase, a protein variant has aconitase activity, and in acetaldehyde dehydrogenase, a protein variant has acetaldehyde dehydrogenase activity.
  • the original function is maintained means that a variant of the gene encodes a protein in which the original function is maintained (that is, a protein having an aconitase activity).
  • a dehydrogenase gene it means that a variant of the gene encodes a protein whose original function is maintained (that is, a protein having acetaldehyde dehydrogenase activity).
  • homologs of aconitase or acetaldehyde dehydrogenase include proteins obtained from public databases by BLAST search or FASTA search using the amino acid sequence as a query sequence.
  • the homologue of the aconitase gene or the acetaldehyde dehydrogenase gene can be obtained, for example, by PCR using the chromosomes of various microorganisms as templates and oligonucleotides prepared based on the above base sequences as primers.
  • An aconitase or acetaldehyde dehydrogenase may be used as long as the original function is maintained (for example, the amino acid sequence shown in SEQ ID NO: 22, 24, 26, 28, 30, 32, 34, or 36 for aconitase, acetaldehyde dehydrogenase).
  • one or several varies depending on the position and type of the amino acid residue in the three-dimensional structure of the protein, but specifically, for example, 1 to 50, 1 to 40, 1 to 30, Preferably, it means 1-20, more preferably 1-10, even more preferably 1-5, particularly preferably 1-3.
  • substitution, deletion, insertion, or addition of one or several amino acids described above is a conservative mutation that maintains the protein function normally.
  • a typical conservative mutation is a conservative substitution.
  • Conservative substitution is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In this case, between Gln and Asn, when it is a basic amino acid, between Lys, Arg, and His, when it is an acidic amino acid, between Asp and Glu, when it is an amino acid having a hydroxyl group Is a mutation that substitutes between Ser and Thr.
  • substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, Cys to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Substitution from Lys to Asn, Glu, Gln, His or Arg, substitution from Met to Ile, Leu, Val or Phe, substitution from Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution, substitution from Trp to Phe or Tyr, substitution
  • aconitase or acetaldehyde dehydrogenase is 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 97% or more, based on the entire amino acid sequence.
  • it may be a protein having an amino acid sequence having a homology of 99% or more.
  • “homology” may refer to “identity”.
  • aconitase or acetaldehyde dehydrogenase is the above base sequence (for example, the base sequence shown in SEQ ID NO: 21, 23, 25, 27, 29, 31, 33, or 35 for aconitase, acetaldehyde).
  • a DNA that hybridizes under stringent conditions with a probe that can be prepared from the base sequence shown in SEQ ID NO: 37, 39, 41, or 43 for dehydrogenase, for example, a complementary sequence to all or part of the base sequence. May be a protein.
  • Such a probe can be prepared, for example, by PCR using an oligonucleotide prepared based on the base sequence as a primer and a DNA fragment containing the base sequence as a template.
  • “Stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
  • highly homologous DNAs for example, 80% or more, preferably 90% or more, more preferably 95% or more, further preferably 97% or more, particularly preferably 99% or more.
  • hybridization washing conditions 60 ° C., 1 ⁇ SSC, 0.1% SDS, preferably 60 ° C., 0.1 ⁇ SSC And 0.1% SDS, more preferably 68 ° C., 0.1 ⁇ SSC, at a salt concentration and temperature corresponding to 0.1% SDS, conditions of washing once, preferably 2 to 3 times.
  • hybridization washing conditions include 50 ° C., 2 ⁇ SSC, 0.1% SDS.
  • the percentage sequence identity between two sequences can be determined using, for example, a mathematical algorithm.
  • a mathematical algorithm include Myers and Miller (1988) CABIOS 4: 11 17 algorithm, Smith et aldv (1981) Adv. Appl. Math. 2: 482 local homology algorithm, Needleman and Wunsch (1970) J. Mol. Biol. 48: 443 453 homology alignment algorithm, Pearson and Lipman (1988) Proc. Natl. Acad. Sci. 85: 2444 2448 similarity search method, Karlin and Altschul ⁇ (1993) Proc. Natl. Acad. Sci. USA 90: 5873 5877, an improved algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 872264.
  • sequence comparison for determining sequence identity can be performed.
  • the program can be appropriately executed by a computer.
  • Such programs include, but are not limited to, PC / Gene program CLUSTAL (available from Intelligents, Mountain View, Calif.), ALIGN program (Version 2.0), and Wisconsin Genetics Software Package, Version 8 (Genetics Computer Group (GCG), 575 Science Drive, available from Madison, Wis., USA) GAP, BESTFIT, BLAST, FASTA, and TFASTA. Alignment using these programs can be performed using initial parameters, for example.
  • CLUSTAL program Higgins et al. (1988) Gene 73: 237 244 (1988), Higgins et al.
  • Gapped BLAST (BLAST 2.0) can be used to obtain an alignment with a gap added for comparison purposes.
  • PSI-BLAST BLAST 2.0
  • BLAST 2.0 can be used to perform an iterated search that detects distant relationships between sequences.
  • Gapped BLAST and PSI-BLAST see Altschul et al. (1997) Nucleic Acids Res. 25: 3389.
  • the initial parameters of each program eg, BLASTN for nucleotide sequences, BLASTX for amino acid sequences
  • the alignment may be performed manually.
  • sequence identity between two sequences is calculated as the ratio of residues that match between the two sequences when the two sequences are aligned for maximum matching.
  • the aconitase gene or acetaldehyde dehydrogenase gene may be one obtained by substituting an arbitrary codon with an equivalent codon as long as the original function is maintained.
  • the aconitase gene or the acetaldehyde dehydrogenase gene may be modified to have an optimal codon depending on the codon usage frequency of the host to be used.
  • the bacterium of the present invention has ethanol assimilation. “Having ethanol assimilation” means being able to grow in a minimal medium containing ethanol as the sole carbon source.
  • the bacterium of the present invention may inherently have ethanol-assimilating properties, or may be modified to have ethanol-assimilating properties. Bacteria having ethanol-assimilating properties can be obtained, for example, by imparting ethanol-assimilating properties to the bacteria as described above, or by enhancing the ethanol-assimilating properties of bacteria as described above.
  • Ethanol assimilation can be imparted or enhanced by modifying bacteria so that the activity of one or more enzymes selected from ethanol metabolizing enzymes is increased. That is, the bacterium of the present invention may be modified to increase the activity of one or more enzymes selected from ethanol metabolizing enzymes.
  • ethanol metabolism enzyme examples include alcohol dehydrogenase and CoA-dependent acetaldehyde dehydrogenase.
  • Alcohol dehydrogenase means a protein (EC 1.1.1.1, EC 1.1.1.2, EC 1.1.1.71) that has an activity of reversibly catalyzing a reaction for producing acetaldehyde from ethanol using NAD + or NADP + as an electron acceptor. Etc.). This activity is also referred to as “alcohol dehydrogenase activity”. Alcohol dehydrogenase activity can be measured, for example, by measuring ethanol-dependent reduction of NAD + (Clark D, Cronan JE Jr., J Bacteriol., 1980, Jan; 141 (1): 177-83.) .
  • CoA-dependent acetaldehyde dehydrogenase refers to a protein (EC 1.2.1.10) having an activity of reversibly catalyzing the reaction of producing acetyl CoA from acetaldehyde using NAD + or NADP + as an electron acceptor. This activity is also referred to as “CoA-dependent acetaldehyde dehydrogenase activity”. CoA-dependent acetaldehyde dehydrogenase activity can be measured, for example, by measuring acetaldehyde hydride and CoA-dependent reduction of NAD + (Rudolph FB, Purich DL, Fromm HJ., J Biol Chem., 1968, Nov 10; 243 (21): 5539-45.).
  • Examples of ethanol metabolic enzymes include AdhE protein encoded by adhE gene.
  • the AdhE protein is a bifunctional enzyme and has both alcohol dehydrogenase activity and CoA-dependent acetaldehyde dehydrogenase activity.
  • Examples of the AdhE protein include Escherichia coli, Pantoea ananatis, Pectobacterium atrosepticum (former name: Erwinia carotovora), Salmonella en AdhE protein of bacteria belonging to the family Enterobacteriaceae such as (Salmonella enterica).
  • the adhE gene of Escherichia coli K12-MG1655 strain corresponds to a complementary sequence of positions 1295446 to 1298121 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.3 GI: 556503834) in the NCBI database.
  • GenBank accession NC_000913 VERSION NC_000913.3 GI: 556503834
  • the AdhE protein of MG1655 strain is registered as GenBank accession NP_415757 (version NP_415757.1 GI: 16129202).
  • the nucleotide sequence of the adhE gene of the MG1655 strain and the amino acid sequence of the AdhE protein are shown in SEQ ID NOs: 45 and 46, respectively.
  • the adhE gene of Pantoea ananatis LMG 20103 strain corresponds to the sequence from 2335387 to 2233807 in the genome sequence registered as GenBank accession NC_013956 (VERSION NC_013956.2 GI: 332139403) in the NCBI database.
  • the AdhE protein of LMG 20103 strain is registered as GenBank accession YP_003520384 (version YP_003520384.1 GI: 291617642).
  • the nucleotide sequence of the adhE gene of LMGdh20103 strain and the amino acid sequence of the AdhE protein are shown in SEQ ID NOs: 47 and 48, respectively.
  • the adhE gene of the Pectobacterium atrosepticum SCRI1043 strain corresponds to the sequence of 2634501-2637176 in the genome sequence registered as GenBank accession NC_004547 (VERSION NC_004547.2 GI: 50119055) in the NCBI database.
  • the AdhE protein of the SCRI1043 strain is registered as GenBank accession YP_050421 (version YP_050421.1 GI: 50121254).
  • the nucleotide sequence of the adhE gene of SCRI1043 strain and the amino acid sequence of the AdhE protein are shown in SEQ ID NOs: 49 and 50, respectively.
  • the adhE gene homologue of Salmonella enterica serovar Typhi CT18 strain is registered as an adh gene in the database.
  • the adhE gene homolog is treated as an adhE gene.
  • the adhE gene of Salmonella enterica serovar Typhi CT18 strain corresponds to a complementary sequence of sequences 1259893 to 1262571 in the genome sequence registered as GenBank accession NC_003198 (VERSION NC_003198.1 GI: 16762629) in the NCBI database.
  • the CT18 strain AdhE protein is registered as GenBank accession NP_455751 (version NP_455751.1 GI: 16760134).
  • the nucleotide sequence of the adhE gene of CT18 strain and the amino acid sequence of the AdhE protein are shown in SEQ ID NOs: 51 and 52, respectively.
  • AdhE proteins The alignment results of these AdhE proteins are shown in FIGS.
  • the amino acid sequence homology between the AdhE protein of Escherichia coli K12 MG1655 strain and the AdhE protein of Pantoea ananatis LMG 20103 strain, Pectobacterium atrosepticum SCRI1043 strain and Salmonella enterica serovar Typhi CT18 strain is 89.0%, 99.1 %.
  • the ethanol-metabolizing enzyme may be a conservative variant of the above-exemplified ethanol-metabolizing enzyme, for example, the AdhE protein of bacteria belonging to the Enterobacteriaceae family exemplified above.
  • the AdhE protein is a protein having an amino acid sequence in which one or several amino acids at one or several positions are substituted, deleted, inserted or added in the amino acid sequence shown in 46, 48, 50, or 52 It may be.
  • the above descriptions concerning aconitase and acetaldehyde dehydrogenase and conservative variants of the genes encoding them can be applied mutatis mutandis.
  • the bacterium of the present invention has ethanol assimilation property under aerobic conditions (ethanol can be assimilated aerobically). “Having ethanol assimilation under aerobic conditions” means being able to grow under aerobic conditions in a minimal medium with ethanol as the sole carbon source.
  • “having ethanol assimilation under aerobic conditions” means, for example, the specific activity of alcohol dehydrogenase in a cell-free extract prepared from cells obtained by aerobic culture of the bacterium of the present invention. For example, it may be 1.5 ⁇ U / mg protein or more, preferably 5 ⁇ U / mg protein or more, more preferably 10 ⁇ U / mg protein or more.
  • 1 ⁇ ⁇ ⁇ U alcohol dehydrogenase activity is 1 nmol NADH per minute under the above activity measurement conditions (Clark D, Cronan JE Jr., J Bacteriol., 1980, Jan; 141 (1): 177-83.).
  • Is defined as the activity that produces “Aerobic conditions” refers to culture conditions in which oxygen is supplied to the culture system by oxygen supply means such as aeration, shaking, and stirring.
  • the bacterium of the present invention may inherently have ethanol assimilation under aerobic conditions or may be modified to have ethanol assimilation under aerobic conditions.
  • Escherichia coli cannot generally assimilate ethanol aerobically, but Escherichia coli may be modified and used as a bacterium of the present invention so that ethanol can be assimilated aerobically.
  • Ethanol assimilation under aerobic conditions can be imparted or enhanced by modifying bacteria so that the activity under aerobic conditions of one or more enzymes selected from ethanol metabolizing enzymes is increased. That is, the bacterium of the present invention may be modified so that the activity under aerobic conditions of one or more enzymes selected from ethanol metabolizing enzymes is increased.
  • Ethanol assimilation under aerobic conditions can be imparted or enhanced, for example, by modifying the bacterium to retain the adhE gene expressed under the control of a promoter that functions under aerobic conditions.
  • Such modification can be achieved, for example, by replacing the original promoter of the adhE gene on the bacterial genome with a promoter that functions under aerobic conditions.
  • the adhE gene may be bound downstream of a promoter that functions under aerobic conditions and introduced into bacteria, or the adhE gene may be introduced downstream of a promoter that functions under aerobic conditions on the bacterial genome.
  • the description of the “method for increasing the protein activity” described later can be referred to.
  • the promoter that functions under aerobic conditions is not particularly limited as long as it can express the adhE gene under aerobic conditions to the extent that the bacterium of the present invention can assimilate ethanol.
  • Promoters which function under aerobic conditions for example, glycolysis, pentose phosphate pathway, TCA circuit, P 14 promoter used in the promoter and examples of genes of amino acid biosynthesis (SEQ ID NO: 1).
  • Examples of promoters that function under aerobic conditions include strong T7 promoter, trp promoter, lac promoter, thr promoter, tac promoter, trc promoter, tet promoter, araBAD promoter, rpoH promoter, PR promoter, and PL promoter. Also included are promoters.
  • Ethanol assimilation under aerobic conditions is conferred or enhanced, for example, by modifying the bacterium to retain the adhE gene encoding the AdhE protein with a mutation that improves resistance to inactivation under aerobic conditions it can. “Mutation that improves resistance to inactivation under aerobic conditions” is also referred to as “aerobic resistance mutation”.
  • AdhE protein having an aerobic tolerance mutation is also referred to as “mutant AdhE protein”.
  • a gene encoding a mutant AdhE protein is also referred to as a “mutant adhE gene”.
  • AdhE protein that does not have an aerobic tolerance mutation is also referred to as “wild-type AdhE protein”.
  • a gene encoding a wild type AdhE protein is also referred to as a “wild type adhE gene”.
  • wild type here is a description for convenience to distinguish it from the “mutant type”, and is not limited to those obtained naturally unless it has an aerobic tolerance mutation.
  • Examples of the wild-type AdhE protein include the AdhE protein of bacteria belonging to the family Enterobacteriaceae exemplified above.
  • the conservative variants of the AdhE protein of the bacteria belonging to the family Enterobacteriaceae exemplified above are all wild-type AdhE proteins unless they have an aerobic tolerance mutation.
  • the amino acid residue corresponding to the glutamic acid residue at position 568 in the amino acid sequence of the wild type AdhE protein in the amino acid sequence shown in SEQ ID NO: 46 (the amino acid sequence of the wild type AdhE protein of Escherichia coli K12 MG1655 strain) is used.
  • Examples include a mutation in which a group is substituted with an amino acid residue other than glutamic acid and aspartic acid (WO2008 / 010565).
  • amino acid residues after substitution L (Lys), R (Arg), H (His), A (Ala), V (Val), L (Leu), I (Ile), G (Gly) S ( Ser), T (Thr), P (Pro), F (Phe), W (Trp), Y (Tyr), C (Cys), M (Met), N (Asn), Q (Gln) .
  • the amino acid residue after substitution may be, for example, a lysine residue.
  • the same mutation when the amino acid residue after substitution is a lysine residue is also referred to as “Glu568Lys” or “E568K”.
  • the mutant AdhE protein may further have the following additional mutations: (A) A mutation in which the amino acid residue corresponding to the glutamic acid residue at position 560 in the amino acid sequence shown in SEQ ID NO: 46 is substituted with another amino acid residue in the amino acid sequence of the wild-type AdhE protein; (B) a mutation in which the amino acid residue corresponding to the phenylalanine residue at position 566 in the amino acid sequence shown in SEQ ID NO: 46 is substituted with another amino acid residue in the amino acid sequence of the wild-type AdhE protein; (C) In the amino acid sequence of the wild-type AdhE protein, the glutamic acid residue at position 22, the methionine residue at position 236, the tyrosine residue at position 461, the isoleucine residue at position 554, and 786 in the amino acid sequence shown in SEQ ID NO: 46 A mutation in which the amino acid residue corresponding to the alanine residue at the position is substituted with another amino acid residue; (D) Combination of the above mutations.
  • the substituted amino acid residues include L (Lys), R (Arg), H (His), A (Ala), V (Val), L (Leu), and I (Ile). , G (Gly) S (Ser), T (Thr), P (Pro), F (Phe), W (Trp), Y (Tyr), C (Cys), M (Met), D (Asp), Among E (Glu), N (Asn), and Q (Gln), those other than the original amino acid residue can be mentioned.
  • the amino acid residue after substitution may be, for example, a lysine residue.
  • the amino acid residue after substitution may be, for example, a valine residue.
  • the substituted amino acid residues are, for example, glycine residue (Glu22Gly) at position 22, valine residue (Met236Val) at position 236, cysteine residue (Tyr461Cys) at position 461, and position 554. It may be a serine residue (Ile554Ser) and a valine residue (Ala786Val) for position 786.
  • the amino acid residue corresponding to the amino acid residue at position n in the amino acid sequence shown in SEQ ID NO: 46 refers to the amino acid sequence of the target wild-type AdhE protein and SEQ ID NO: 46 It means an amino acid residue corresponding to the amino acid residue at position n in the amino acid sequence shown in SEQ ID NO: 46 in the alignment with the amino acid sequence. That is, in the above mutation, the position of the amino acid residue does not necessarily indicate an absolute position in the amino acid sequence of the wild type AdhE protein, but indicates a relative position based on the amino acid sequence described in SEQ ID NO: 46. is there.
  • the amino acid residue at position n in the amino acid sequence shown in SEQ ID NO: 46 when one amino acid residue is deleted at the N-terminal position from the n-position, the original n-position amino acid residue is counted from the N-terminal.
  • the amino acid residue at the (n-1) th position is regarded as “the amino acid residue corresponding to the amino acid residue at position n in the amino acid sequence shown in SEQ ID NO: 46”.
  • the amino acid residue at position 567 in the amino acid sequence of an AdhE protein homologue of a certain microorganism corresponds to position 568 in the amino acid sequence shown in SEQ ID NO: 46
  • the amino acid residue is the AdhE protein. This is the “amino acid residue corresponding to the amino acid residue at position 568 in the amino acid sequence shown in SEQ ID NO: 46” in the homologue.
  • Alignment can be performed using, for example, known gene analysis software.
  • Specific gene analysis software includes DNA Solutions from Hitachi Solutions, GENETYX from GENETICS, and ClustalW published by DDBJ (Elizabeth C. Tyler et al., Computers and Biomedical Research, 24 (1), 72-96, 1991; Barton GJ et al., Journal of molecular biology, 198 (2), 327-37. 1987; Thompson JD et al., Nucleic acid Reseach, 22 (22), 4673-80. 1994).
  • the mutant adhE gene can be obtained, for example, by modifying the wild-type adhE gene so that the encoded AdhE protein has an aerobic tolerance mutation.
  • the wild-type adhE gene to be modified can be obtained, for example, by cloning from an organism having the wild-type adhE gene or by chemical synthesis.
  • the mutant adhE gene may be obtained directly by, for example, chemical synthesis.
  • the gene can be modified by a known method.
  • a target mutation can be introduced into a target site of DNA by site-specific mutagenesis.
  • site-directed mutagenesis a method using PCR (Higuchi, R., 61, in PCR technology, rlErlich, H. A. Eds., Stockton press (1989); Carter, P., ethMeth. In Enzymol., 154, 382 (1987)) and methods using phage (Kramer, W. and Frits, H. J., Meth. In Enzymol., 154, 350 (1987); Kunkel, T. A. et al., Meth In Enzymol., 154, 367 (1987)).
  • the mutant adhE gene is introduced into the bacterium of the present invention so that it can be expressed.
  • the gene can be introduced into the bacterium of the present invention so as to be expressed under the control of a promoter that functions under aerobic conditions.
  • a promoter that functions under aerobic conditions.
  • For the introduction of the gene reference can be made to the description in “Method of increasing protein activity” described later.
  • pyruvate synthase also referred to as “PS”
  • / or pyruvate: NADP + oxidoreductase also referred to as “PNO”
  • PS pyruvate synthase
  • PNO oxidoreductase
  • “Pyruvate synthase” refers to an enzyme (EC 1.2.7.1) that reversibly catalyzes the reaction of producing pyruvate from acetyl-CoA and CO 2 using reduced ferredoxin or reduced flavodoxin as an electron donor.
  • PS is also referred to as pyruvate oxidoreductase, pyruvate ferredoxin oxidoreductase, or pyruvate flavodoxin oxidoreductase.
  • the activity of PS can be measured, for example, according to the method of Yoon et al. (Yoon, K. S. et al. 1997. Arch. Microbiol. 167: 275-279).
  • PS-encoding genes include PS genes of bacteria having a reductive TCA cycle such as Chlorobium tepidum, Hydrogenobacter thermophilus, and enterobacteria such as Escherichia coli Autotrophic methane-producing archaea such as PS gene of bacteria belonging to the family, Methanococcus maripaludis, Methanococdocus janaschi (Methanocaldococcus jannaschii), Methanothermobacter thermautotrophicus, etc. methanogens) PS gene.
  • enterobacteria such as Escherichia coli Autotrophic methane-producing archaea
  • PS gene of bacteria belonging to the family Methanococcus maripaludis
  • Methanococdocus janaschi Methanocaldococcus jannaschii
  • Methanothermobacter thermautotrophicus etc. methanogens
  • Pyruvate: NADP + oxidoreductase refers to an enzyme (EC 1.2.1.15) that reversibly catalyzes the reaction of generating pyruvate from acetyl-CoA and CO 2 using NADPH or NADH as an electron donor. Pyruvate: NADP + oxidoreductase is also referred to as pyruvate dehydrogenase.
  • the activity of PNO can be measured, for example, according to the method of Inui et al. (Inui, H. et al. 1987. J. Biol. Chem. 262: 9130-9135).
  • PNO gene As a gene encoding PNO (PNO gene), a PNO gene (Nakazawa, M. ⁇ ⁇ ⁇ et al. 2000. FEBS Lett. 479: 155) of Euglena gracilis which is classified as a protozoan in a photosynthetic eukaryotic microorganism. -156; GenBank Accession No. AB021127), PNO gene of protozoan Cryptosporidium parvum (Rotte, C. et al. 2001. Mol. (Tharassiosira pseudonana) PNO homologous gene (Ctrnacta, V. et al. 2006. J. Eukaryot. Microbiol. 53: 225-231).
  • Enhancement of PS activity can be achieved by improving the supply of electron donors required for PS activity in addition to the method for increasing protein activity as described later.
  • PS activity can be enhanced by enhancing the activity of recycling ferredoxin or flavodoxin oxidized form to reduced form, enhancing the biosynthetic ability of ferredoxin or flavodoxin, or a combination thereof (WO2009 / 031565 ).
  • ferredoxin-NADP + reductase examples include ferredoxin-NADP + reductase.
  • Feredoxin-NADP + reductase refers to an enzyme (EC 1.18.1.2) that reversibly catalyzes a reaction of converting ferredoxin or an oxidized form of flavodoxin into a reduced form using NADPH as an electron donor.
  • Ferredoxin-NADP + reductase is also referred to as flavodoxin-NADP + reductase.
  • the activity of ferredoxin-NADP + reductase can be measured, for example, according to the method of Blaschkowski et al. (Blaschkowski, H. P. et al. 1982. Eur. J. Biochem. 123: 563-569).
  • ferredoxin-NADP + reductase The genes encoding ferredoxin-NADP + reductase (ferredoxin-NADP + reductase gene) include the fpr gene of Escherichia coli, the ferredoxin-NADP + reductase gene of Corynebacterium glutamicum, and the NADPH- of Pseedomonas putida. And putidaredoxin reductase gene (Koga, H. et al. 1989. J. Biochem. (Tokyo) 106: 831-836).
  • ferredoxin or flavodoxin can be enhanced by enhancing the expression of a gene encoding ferredoxin (ferredoxin gene) or a gene encoding flavodoxin (flavodoxin gene).
  • the ferredoxin gene or flavodoxin gene is not particularly limited as long as it encodes ferredoxin or flavodoxin that can be used by PS and an electron donor regeneration system.
  • ferredoxin gene examples include Escherichia coli fdx gene and yfhL gene, corynebacterium glutamicum fer gene, bacteria ferredoxin gene having a reductive TCA cycle such as Chlorobium tepidum and Hydrogenobacter thermophilus.
  • flavodoxin gene examples include Escherichia coli fldA gene and fldB gene, and bacterial flavodoxin gene having a reductive TCA cycle.
  • the bacterium of the present invention may be modified so that the activity of ribonuclease G is reduced (Japanese Patent Laid-Open No. 2012-100537).
  • the bacterium of the present invention may be modified so as to have a mutant ribosome S1 protein (JP 2013-074795).
  • the bacterium of the present invention may be modified so that the concentration of intracellular hydrogen peroxide decreases (Japanese Patent Laid-Open No. 2014-036576).
  • the above genes for example, PS gene, PNO gene, ferredoxin-NADP + reductase gene, ferredoxin gene, flavodoxin gene may be a gene having the above-described gene information or a known one as long as the function of the encoded protein is not impaired. It is not limited to a gene having a base sequence, and may be a variant thereof.
  • the gene is a gene encoding a protein having an amino acid sequence in which one or several amino acids at one or several positions are substituted, deleted, inserted or added in the amino acid sequence of a known protein. May be.
  • the above descriptions concerning aconitase and acetaldehyde dehydrogenase and conservative variants of the genes encoding them can be applied mutatis mutandis.
  • Protein activity increases “means that the activity per cell of the protein is increased relative to unmodified strains such as wild strains and parental strains. Note that “increasing protein activity” is also referred to as “enhancing protein activity”. “Protein activity increases” specifically means that the number of molecules per cell of the protein is increased and / or the function per molecule of the protein compared to an unmodified strain. Is increasing. That is, “activity” in the case of “increasing protein activity” means not only the catalytic activity of the protein, but also the transcription amount (mRNA amount) or translation amount (protein amount) of the gene encoding the protein. May be.
  • Protein activity increases means not only to increase the activity of the protein in a strain that originally has the activity of the target protein, but also to the activity of the protein in a strain that does not originally have the activity of the target protein. Including granting. Further, as long as the activity of the protein increases as a result, the activity of the target protein inherent in the host may be reduced or eliminated, and the activity of a suitable target protein may be imparted.
  • the activity of the protein is not particularly limited as long as it is increased compared to the non-modified strain.
  • the protein activity is increased 1.5 times or more, 2 times or more, or 3 times or more compared to the non-modified strain. Good.
  • the protein is generated by introducing a gene encoding the protein.
  • the protein has an enzymatic activity. It may be produced to the extent that it can be measured.
  • Modification that increases the activity of the protein is achieved, for example, by increasing the expression of the gene encoding the protein.
  • Gene expression is increased means that the expression level of the gene per cell is increased as compared to a non-modified strain such as a wild strain or a parent strain.
  • Gene expression increases specifically means that the amount of gene transcription (mRNA amount) increases and / or the amount of gene translation (protein amount) increases. Good.
  • increasing gene expression is also referred to as “enhanced gene expression”.
  • the expression of the gene may be increased 1.5 times or more, 2 times or more, or 3 times or more, for example, as compared to the unmodified strain.
  • increasing gene expression means not only increasing the expression level of a target gene in a strain that originally expresses the target gene, but also in a strain that originally does not express the target gene. Including expressing a gene. That is, “increasing gene expression” includes, for example, introducing the gene into a strain that does not hold the target gene and expressing the gene.
  • An increase in gene expression can be achieved, for example, by increasing the copy number of the gene.
  • Increase in gene copy number can be achieved by introducing the gene into the host chromosome.
  • Introduction of a gene into a chromosome can be performed, for example, using homologous recombination (Miller I, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory).
  • homologous recombination Examples of gene introduction methods using homologous recombination include the Red-driven integration method (Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97).
  • a transduction method using a phage Only one copy of the gene may be introduced, or two copies or more may be introduced.
  • multiple copies of a gene can be introduced into a chromosome by performing homologous recombination with a sequence having multiple copies on the chromosome as a target. Examples of sequences having many copies on a chromosome include repetitive DNA sequences (inverted DNA) and inverted repeats present at both ends of a transposon.
  • homologous recombination may be performed by targeting an appropriate sequence on a chromosome such as a gene unnecessary for production of the target substance.
  • the gene can also be randomly introduced onto the chromosome using transposon or Mini-Mu (Japanese Patent Laid-Open No. 2-109985, US Pat. No. 5,882,888, EP805867B1).
  • An increase in the copy number of a gene can also be achieved by introducing a vector containing the gene into a host.
  • a DNA fragment containing a target gene can be linked to a vector that functions in the host to construct an expression vector for the gene, and the host can be transformed with the expression vector to increase the copy number of the gene. it can.
  • a DNA fragment containing a target gene can be obtained, for example, by PCR using a genomic DNA of a microorganism having the target gene as a template.
  • the vector a vector capable of autonomous replication in a host cell can be used.
  • the vector may be equipped with a promoter or terminator for expressing the inserted gene.
  • the vector is preferably a multicopy vector.
  • the vector preferably has a marker such as an antibiotic resistance gene.
  • the vector may be equipped with a promoter or terminator for expressing the inserted gene.
  • the vector may be, for example, a vector derived from a bacterial plasmid, a vector derived from a yeast plasmid, a vector derived from a bacteriophage, a cosmid, or a phagemid.
  • vectors capable of autonomous replication in bacteria of the Enterobacteriaceae family such as Escherichia coli, specifically, for example, pUC19, pUC18, pHSG299, pHSG399, pHSG398, pBR322, pSTV29 (all available from Takara Bio Inc.), pACYC184, pMW219 (Nippon Gene), pTrc99A (Pharmacia), pPROK vector (Clontech), pKK233-2 (Clontech), pET vector (Novagen), pQE vector (Qiagen), pACYC vector A broad host range vector RSF1010.
  • the gene When a gene is introduced, the gene only needs to be retained in the bacterium of the present invention so that it can be expressed.
  • the gene may be introduced so as to be expressed under the control of a promoter sequence that functions in the bacterium of the present invention.
  • the promoter may be a host-derived promoter or a heterologous promoter.
  • the promoter may be a native promoter of a gene to be introduced or a promoter of another gene.
  • the promoter for example, glycolysis, pentose phosphate pathway, TCA circuit, P 14 promoter used in the promoter and examples of genes of amino acid biosynthesis (SEQ ID NO: 1).
  • As the promoter for example, a stronger promoter as described later may be used.
  • a transcription terminator can be placed downstream of the gene.
  • the terminator is not particularly limited as long as it functions in the bacterium of the present invention.
  • the terminator may be a host-derived terminator or a heterologous terminator.
  • the terminator may be a terminator specific to the gene to be introduced, or may be a terminator of another gene. Specific examples of the terminator include T7 terminator, T4 terminator, fd phage terminator, tet terminator, and trpA terminator.
  • the vectors, promoters, and terminators that can be used in various microorganisms are described in detail in, for example, “Basic Course of Microbiology 8, Genetic Engineering, Kyoritsu Shuppan, 1987”, and these can be used.
  • each gene when two or more genes are introduced, each gene may be retained in the bacterium of the present invention so that it can be expressed. For example, all the genes may be held on a single expression vector, or all may be held on a chromosome. Moreover, each gene may be separately hold
  • the gene to be introduced is not particularly limited as long as it encodes a protein that functions in the host.
  • the introduced gene may be a host-derived gene or a heterologous gene.
  • the gene to be introduced can be obtained by PCR using, for example, a primer designed based on the base sequence of the gene, and using a genomic DNA of an organism having the gene or a plasmid carrying the gene as a template.
  • the introduced gene may be totally synthesized based on the base sequence of the same gene (Gene, 60 (1), 115-127 (1987)).
  • the acquired gene can be used as it is or after being appropriately modified.
  • each subunit constituting the complex may be derived from one organism or two or more different organisms as long as the complex has the function of the target protein. That is, for example, genes derived from the same organism encoding a plurality of subunits may be introduced into the host, or genes derived from different organisms may be introduced into the host.
  • the increase in gene expression can be achieved by improving the transcription efficiency of the gene.
  • the increase in gene expression can be achieved by improving the translation efficiency of the gene. Improvement of gene transcription efficiency and translation efficiency can be achieved, for example, by altering an expression regulatory sequence.
  • “Expression regulatory sequence” is a general term for sites that affect gene expression. Examples of the expression control sequence include a promoter, Shine-Dalgarno (SD) sequence (also referred to as ribosome binding site (RBS)), and a spacer region between RBS and the start codon.
  • SD Shine-Dalgarno
  • RBS ribosome binding site
  • the expression regulatory sequence can be determined using a promoter search vector or gene analysis software such as GENETYX. These expression regulatory sequences can be modified, for example, by a method using a temperature sensitive vector or a Red driven integration method (WO2005 / 010175).
  • Improvement of gene transcription efficiency can be achieved, for example, by replacing a promoter of a gene on a chromosome with a stronger promoter.
  • strong promoter is meant a promoter that improves transcription of the gene over the native wild-type promoter.
  • stronger promoters include the known high expression promoters T7 promoter, trp promoter, lac promoter, thr promoter, thr promoter, tac promoter, trc promoter, tet promoter, araBAD promoter, rpoH promoter, PR promoter, and PL promoter.
  • T7 promoter T7 promoter
  • trp promoter lac promoter
  • thr promoter thr promoter
  • tac promoter trc promoter
  • tet promoter tet promoter
  • araBAD promoter rpoH promoter
  • PR promoter and PL promoter.
  • the activity of the promoter can be increased by bringing the -35 and -10 regions in the promoter region closer to the consensus sequence (WO 00/18935).
  • the highly active promoter include various tac-like promoters (Katashkina JI et al. Russian Patent application 2006134574) and pnlp8 promoter (WO2010 / 027045). Methods for evaluating promoter strength and examples of strong promoters are described in Goldstein et al. (Prokaryotickpromoters in biotechnology. Biotechnol. Annu. Rev.,. 1, 105-128 (1995)).
  • SD Shine-Dalgarno
  • RBS ribosome binding site
  • substitution of several nucleotides in the spacer region between the RBS and the start codon, particularly the sequence immediately upstream of the start codon (5'-UTR), or insertion or deletion contributes to mRNA stability and translation efficiency. It is known to have a great influence, and the translation efficiency of a gene can be improved by modifying them.
  • Improvement of gene translation efficiency can also be achieved, for example, by codon modification.
  • Escherichia coli, etc. there is a clear codon bias among the 61 amino acid codons found in the population of mRNA molecules, and the abundance of a tRNA seems to be directly proportional to the frequency of use of the corresponding codon. (Kane, JF, Curr. Opin. Biotechnol., 6 (5), 494-500 (1995)). That is, if a large amount of mRNA containing an excessive rare codon is present, translation problems may occur. Recent studies suggest that, inter alia, clusters of AGG / AGA, CUA, AUA, CGA, or CCC codons can reduce both the amount and quality of the synthesized protein.
  • the translation efficiency of the gene can be improved by replacing rare codons present in the gene with synonymous codons that are used more frequently. That is, the introduced gene may be modified to have an optimal codon according to, for example, the codon usage frequency of the host to be used. Codon substitution can be performed, for example, by a site-specific mutagenesis method in which a target mutation is introduced into a target site of DNA. As site-directed mutagenesis, a method using PCR (Higuchi, R., 61, in PCR technology, rlErlich, H. A. Eds., Stockton press (1989); Carter, P., ethMeth.
  • the increase in gene expression can be achieved by amplifying a regulator that increases gene expression or by deleting or weakening a regulator that decreases gene expression.
  • the modification that increases the activity of the protein can be achieved, for example, by enhancing the specific activity of the protein.
  • Specific activity enhancement also includes the reduction and elimination of feedback inhibition.
  • Proteins with enhanced specific activity can be obtained by searching for various organisms, for example.
  • a highly active protein may be obtained by introducing a mutation into a conventional protein.
  • the introduced mutation may be, for example, a substitution, deletion, insertion or addition of one or several amino acids at one or several positions of the protein. Mutation can be introduced by, for example, the site-specific mutation method as described above. Moreover, you may introduce
  • Mutation treatments include X-ray irradiation, UV irradiation, and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS), and methylmethanesulfonate (MMS). ) And the like.
  • DNA may be directly treated with hydroxylamine in vitro to induce random mutations.
  • the enhancement of specific activity may be used alone or in any combination with the above-described method for enhancing gene expression.
  • the method of transformation is not particularly limited, and a conventionally known method can be used.
  • recipient cells are treated with calcium chloride to increase DNA permeability (Mandel, M. and Higa, A., J. Mol. Biol. 1970, 53, 159-162) and methods for introducing competent cells from proliferating cells and introducing DNA as reported for Bacillus subtilis (Duncan, C. H., Wilson, G. A. and Young, F. E .., 1997. Gene 1: 153-167) can be used.
  • DNA-receptive cells such as those known for Bacillus subtilis, actinomycetes, and yeast, can be made into protoplasts or spheroplasts that readily incorporate recombinant DNA into recombinant DNA.
  • Introduction method (Chang, S. and Choen, SN, 1979. Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978. Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933) can also be applied.
  • an electric pulse method Japanese Patent Laid-Open No. 2-207791 as reported for coryneform bacteria can also be used.
  • the increase in protein activity can be confirmed by measuring the activity of the protein.
  • the increase in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has increased.
  • An increase in gene expression can be confirmed by confirming that the transcription amount of the gene has increased, or by confirming that the amount of protein expressed from the gene has increased.
  • the transcription amount of the gene has increased by comparing the amount of mRNA transcribed from the gene with an unmodified strain such as a wild strain or a parent strain.
  • Methods for assessing the amount of mRNA include Northern hybridization, RT-PCR, etc. (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual / Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor ( USA), 2001).
  • the amount of mRNA may be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more, compared to the unmodified strain.
  • the amount of protein can be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more, compared to the unmodified strain.
  • the above-described method for increasing the activity of a protein can enhance the activity of any protein, such as an L-amino acid biosynthetic enzyme, or can activate any gene, for example, any of these proteins. It can be used to enhance the expression of the encoding gene.
  • Protein activity decreases means that the activity per cell of the protein is decreased compared to wild-type strains and parental unmodified strains, and the activity is completely lost. including. Specifically, “the activity of the protein is decreased” means that the number of molecules per cell of the protein is decreased and / or the function per molecule of the protein compared to the unmodified strain. Means that it is decreasing. In other words, “activity” in the case of “decrease in protein activity” means not only the catalytic activity of the protein but also the transcription amount (mRNA amount) or translation amount (protein amount) of the gene encoding the protein. May be. Note that “the number of molecules per cell of the protein is decreased” includes a case where the protein does not exist at all.
  • the function per molecule of the protein is reduced includes the case where the function per molecule of the protein is completely lost.
  • the activity of the protein is not particularly limited as long as it is lower than that of the non-modified strain. For example, it is 50% or less, 20% or less, 10% or less, 5% or less, or 0, compared to the non-modified strain. %.
  • the modification that reduces the activity of the protein is achieved, for example, by reducing the expression of a gene encoding the protein.
  • Gene expression decreases means that the expression level of the gene per cell decreases as compared to an unmodified strain such as a wild strain or a parent strain. “Gene expression decreases” specifically means that the amount of gene transcription (mRNA amount) decreases and / or the amount of gene translation (protein amount) decreases. Good. “Gene expression decreases” includes the case where the gene is not expressed at all. In addition, “the expression of the gene is reduced” is also referred to as “the expression of the gene is weakened”. Gene expression may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to an unmodified strain.
  • the decrease in gene expression may be due to, for example, a decrease in transcription efficiency, a decrease in translation efficiency, or a combination thereof.
  • gene expression can be reduced by altering expression regulatory sequences such as the promoter of the gene, Shine-Dalgarno (SD) sequence (also called ribosome binding site (RBS)), spacer region between RBS and start codon. Can be achieved.
  • SD Shine-Dalgarno
  • RBS ribosome binding site
  • the expression control sequence is preferably modified by 1 base or more, more preferably 2 bases or more, particularly preferably 3 bases or more. Further, part or all of the expression regulatory sequence may be deleted.
  • reduction of gene expression can be achieved, for example, by manipulating factors involved in expression control.
  • Factors involved in expression control include small molecules (such as inducers and inhibitors) involved in transcription and translation control, proteins (such as transcription factors), nucleic acids (such as siRNA), and the like.
  • reduction of gene expression can be achieved, for example, by introducing a mutation that reduces gene expression into the coding region of the gene.
  • gene expression can be reduced by replacing codons in the coding region of the gene with synonymous codons that are used less frequently in the host.
  • gene expression itself may be reduced by gene disruption as described below.
  • the modification that decreases the activity of the protein can be achieved, for example, by destroying a gene encoding the protein. “Gene is disrupted” means that the gene is modified so that it does not produce a normally functioning protein. “Does not produce a protein that functions normally” includes the case where no protein is produced from the same gene, or the case where a protein whose function (activity or property) per molecule is reduced or lost is produced from the same gene. It is.
  • Gene disruption can be achieved, for example, by deleting part or all of the coding region of the gene on the chromosome. Furthermore, the entire gene including the sequences before and after the gene on the chromosome may be deleted.
  • the region to be deleted may be any region such as an N-terminal region, an internal region, or a C-terminal region as long as a decrease in protein activity can be achieved. Usually, the longer region to be deleted can surely inactivate the gene. Moreover, it is preferable that the reading frames of the sequences before and after the region to be deleted do not match.
  • gene disruption is, for example, introducing an amino acid substitution (missense mutation) into a coding region of a gene on a chromosome, introducing a stop codon (nonsense mutation), or adding or deleting 1 to 2 bases. It can also be achieved by introducing a frameshift mutation (Journal of Biological Chemistry 272: 8611-8617 (1997), Proceedings of the National Academy of Sciences, USA 95 5511-5515 (1998), Journal of Biological Chemistry 26 116, 20833-20839 (1991)).
  • gene disruption can be achieved, for example, by inserting another sequence into the coding region of the gene on the chromosome.
  • the insertion site may be any region of the gene, but the longer the inserted sequence, the more reliably the gene can be inactivated.
  • the other sequence is not particularly limited as long as it reduces or eliminates the activity of the encoded protein, and examples thereof include marker genes such as antibiotic resistance genes and genes useful for the production of target substances.
  • a deletion type gene modified so as not to produce a normally functioning protein is prepared, and a host is transformed with a recombinant DNA containing the deletion type gene.
  • This can be achieved by causing homologous recombination between the deletion type gene and the wild type gene on the chromosome to replace the wild type gene on the chromosome with the deletion type gene.
  • the recombinant DNA can be easily manipulated by including a marker gene in accordance with a trait such as auxotrophy of the host.
  • Deletion-type genes include genes with deletion of all or part of the gene, genes with missense mutations, genes with transposon and marker genes inserted, genes with nonsense mutations, and frameshift mutations. Gene. Even if the protein encoded by the deletion-type gene is produced, it has a three-dimensional structure different from that of the wild-type protein, and its function is reduced or lost. Gene disruption by gene replacement using such homologous recombination has already been established, and a method called “Red-driven integration” (Datsenko, K. A, and Wanner, B. L. Proc .Natl. Acad. Sci. U S A.
  • the modification that reduces the activity of the protein may be performed by, for example, a mutation treatment.
  • Mutation treatments include X-ray irradiation, UV irradiation, and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS), and methylmethanesulfonate (MMS). ) And the like.
  • all of the plurality of subunits may be modified or only a part may be modified as long as the activity of the protein decreases as a result. . That is, for example, all of a plurality of genes encoding these subunits may be destroyed, or only a part of them may be destroyed.
  • all the activities of the plurality of isozymes may be reduced, or only a part of the activities may be reduced. That is, for example, all of a plurality of genes encoding these isozymes may be destroyed, or only a part of them may be destroyed.
  • the decrease in the activity of the protein can be confirmed by measuring the activity of the protein.
  • the decrease in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has decreased.
  • the decrease in gene expression can be confirmed by confirming that the transcription amount of the gene has decreased, or confirming that the amount of protein expressed from the gene has decreased.
  • the amount of transcription of the gene has been reduced by comparing the amount of mRNA transcribed from the same gene with that of the unmodified strain.
  • Examples of methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR and the like (Molecular Cloning (Cold Spring Laboratory Press, Cold Spring Harbor (USA), 2001)).
  • the amount of mRNA may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
  • the amount of protein may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
  • the gene has been destroyed by determining part or all of the nucleotide sequence, restriction enzyme map, full length, etc. of the gene according to the means used for the destruction.
  • the above-described method for reducing the activity of a protein involves reducing the activity of any protein, for example, an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of the target L-amino acid to produce a compound other than the target L-amino acid. , And can be used to reduce the expression of any gene, for example, a gene encoding any of these proteins.
  • the method of the present invention comprises culturing the bacterium of the present invention in a medium containing ethanol and producing and accumulating L-amino acid in the medium or in the microbial cells. And a method for producing an L-amino acid, which comprises collecting the L-amino acid from the medium or cells.
  • one L-amino acid may be produced, or two or more L-amino acids may be produced.
  • the medium to be used is not particularly limited as long as it contains ethanol and the bacteria of the present invention can grow and L-amino acids are produced.
  • a normal medium used for culturing microorganisms such as bacteria can be used.
  • the medium may contain, in addition to ethanol, a component selected from a carbon source, a nitrogen source, a phosphate source, a sulfur source, and other various organic components and inorganic components as necessary.
  • the type and concentration of the medium component may be appropriately set according to various conditions such as the type of bacteria used and the type of L-amino acid to be produced.
  • ethanol may or may not be used as the sole carbon source. That is, in the method of the present invention, other carbon sources may be used in combination with ethanol.
  • Other carbon sources are not particularly limited as long as they can be assimilated by the bacterium of the present invention to produce L-amino acids.
  • sugars such as glucose, fructose, sucrose, lactose, galactose, arabinose, waste molasses, starch hydrolyzate, biomass hydrolyzate, acetic acid, fumaric acid, citric acid, Examples thereof include organic acids such as succinic acid and malic acid, alcohols such as glycerol and crude glycerol, and fatty acids.
  • the ratio of ethanol in the total carbon source is, for example, 5% by weight or more, 10% by weight or more, 20% by weight or more, preferably 30% by weight or more, more preferably 50% by weight. It may be above.
  • one type of carbon source may be used, or two or more types of carbon sources may be used in combination.
  • the concentration of the carbon source in the medium is not particularly limited as long as the bacterium of the present invention can grow and L-amino acid is produced.
  • the concentration of the carbon source in the medium is preferably as high as possible as long as the production of L-amino acid is not inhibited.
  • the initial concentration of the carbon source in the medium may be, for example, usually 1 to 30% (w / v), preferably 3 to 10% (w / v).
  • the nitrogen source include ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate, organic nitrogen sources such as peptone, yeast extract, meat extract, and soybean protein degradation product, ammonia, and urea.
  • Ammonia gas or ammonia water used for pH adjustment may be used as a nitrogen source.
  • the nitrogen source one kind of nitrogen source may be used, or two or more kinds of nitrogen sources may be used in combination.
  • the phosphoric acid source examples include phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate, and phosphate polymers such as pyrophosphoric acid.
  • phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate
  • phosphate polymers such as pyrophosphoric acid.
  • the phosphoric acid source one type of phosphoric acid source may be used, or two or more types of phosphoric acid sources may be used in combination.
  • the sulfur source include inorganic sulfur compounds such as sulfate, thiosulfate, and sulfite, and sulfur-containing amino acids such as cysteine, cystine, and glutathione.
  • the sulfur source one kind of sulfur source may be used, or two or more kinds of sulfur sources may be used in combination.
  • organic and inorganic components include, for example, inorganic salts such as sodium chloride and potassium chloride; trace metals such as iron, manganese, magnesium and calcium; vitamin B1, vitamin B2, vitamin B6 and nicotine Examples include vitamins such as acid, nicotinamide, and vitamin B12; amino acids; nucleic acids; and organic components such as peptone, casamino acid, yeast extract, and soybean protein degradation products containing these.
  • inorganic salts such as sodium chloride and potassium chloride
  • trace metals such as iron, manganese, magnesium and calcium
  • vitamin B1, vitamin B2, vitamin B6 and nicotine include vitamins such as acid, nicotinamide, and vitamin B12; amino acids; nucleic acids; and organic components such as peptone, casamino acid, yeast extract, and soybean protein degradation products containing these.
  • vitamins such as acid, nicotinamide, and vitamin B12
  • amino acids amino acids
  • nucleic acids amino acids
  • organic components such as peptone, casamino acid, yeast extract, and soybean
  • L-lysine producing bacteria often have an enhanced L-lysine biosynthetic pathway and weakened L-lysine resolution. Therefore, when culturing such L-lysine-producing bacteria, for example, one or more amino acids selected from L-threonine, L-homoserine, L-isoleucine, and L-methionine are supplemented to the medium. Is preferred.
  • Culture conditions are not particularly limited as long as the bacterium of the present invention can grow and L-amino acids are produced.
  • the culture can be performed, for example, under normal conditions used for culture of bacteria such as Escherichia coli.
  • the culture conditions may be appropriately set according to various conditions such as the type of bacteria used and the type of L-amino acid to be produced.
  • Cultivation can be performed using a liquid medium.
  • the culture medium of the bacterium of the present invention cultured in a solid medium such as an agar medium may be directly inoculated into a liquid medium, or the bacterium of the present invention seeded in a liquid medium is used as a liquid for main culture.
  • the medium may be inoculated. That is, the culture may be performed separately for seed culture and main culture. In that case, the culture conditions of the seed culture and the main culture may or may not be the same.
  • the amount of the bacterium of the present invention contained in the medium at the start of culture is not particularly limited.
  • a seed culture solution having an OD660 of 4 to 8 may be added at 0.1 to 30% by mass, preferably 1 to 10% by mass with respect to the medium for main culture at the start of culture.
  • Culture can be performed by batch culture, fed-batch culture, continuous culture, or a combination thereof.
  • the culture medium at the start of the culture is also referred to as “initial culture medium”.
  • a medium supplied to a culture system (fermentor) in fed-batch culture or continuous culture is also referred to as “fed-batch medium”.
  • supplying a feeding medium to a culture system in fed-batch culture or continuous culture is also referred to as “fed-batch”.
  • cultivation is performed by dividing into seed culture and main culture, for example, both seed culture and main culture may be performed by batch culture. Further, for example, seed culture may be performed by batch culture, and main culture may be performed by fed-batch culture or continuous culture.
  • each medium component may be contained in the initial medium, the fed-batch medium, or both.
  • the type of component contained in the initial culture medium may or may not be the same as the type of component contained in the fed-batch medium.
  • concentration of each component contained in a starting culture medium may be the same as the density
  • the ethanol concentration in the medium is not particularly limited as long as the bacterium of the present invention can use ethanol as a carbon source.
  • ethanol may be contained in the medium at a concentration of 10 w / v% or less, preferably 5 w / v% or less, more preferably 2 w / v% or less.
  • ethanol may be contained in the medium at a concentration of, for example, 0.2 w / v% or more, preferably 0.5 w / v% or more, more preferably 1.0 w / v% or more.
  • Ethanol may be contained in the starting medium, fed-batch medium, or both in the concentration ranges exemplified above.
  • the ethanol concentration in the medium after fed-batch is 5 w / v% or less, preferably 2 w / v% or less, more preferably 1 w / v%. It may be contained in a fed-batch medium so that In the case where ethanol is contained in the fed-batch medium, for example, the ethanol concentration in the medium after fed is 0.01 w / v% or more, preferably 0.02 w / v% or more, more preferably You may contain in a feeding medium so that it may become 0.05 w / v% or more.
  • Ethanol may be contained in the concentration range exemplified above when it is used only as a carbon source. Moreover, ethanol may be contained in the concentration range exemplified above when another carbon source is used in combination. In addition, when other carbon sources are used in combination, ethanol may be contained in a concentration range that is appropriately modified from the above-described concentration range, for example, depending on the ratio of ethanol in the total carbon source.
  • Ethanol may or may not be contained in the medium in a certain concentration range during the entire culture period.
  • ethanol may be insufficient for some period. “Insufficient” means that the required amount is not satisfied.
  • the concentration in the medium may be zero.
  • Partial period refers to, for example, a period of 1% or less, a period of 5% or less, a period of 10% or less, a period of 20% or less, a period of 30% or less, or a period of the whole culture period, or It may be a period of 50% or less.
  • cultivation may mean the whole period of main culture, when culture
  • the concentration of various components such as ethanol is determined by gas chromatography (Hashimoto, K. et al. 1996. Biosci. Biotechnol. Biochem. 70: 22-30) or HPLC (Lin, J. T. et al. 1998. J. Chromatogr. A. 808: 43-49).
  • the culture can be performed aerobically, for example.
  • the culture can be performed by aeration culture or shaking culture.
  • the oxygen concentration may be controlled to, for example, 5 to 50%, preferably about 10% of the saturated oxygen concentration.
  • the pH of the medium may be, for example, pH 3 to 10, preferably pH 4.0 to 9.5. During the culture, the pH of the medium can be adjusted as necessary.
  • the pH of the medium is adjusted using various alkaline or acidic substances such as ammonia gas, ammonia water, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide, etc. can do.
  • the culture temperature may be, for example, 20 to 45 ° C, preferably 25 ° C to 37 ° C.
  • the culture period may be, for example, 10 hours to 120 hours.
  • the culture may be continued, for example, until the carbon source in the medium is consumed or until the activity of the bacterium of the present invention is lost.
  • L-amino acids accumulate in the cells and / or in the medium.
  • fed-batch culture or continuous culture fed-batch may be continued throughout the entire culture period or only during a part of the culture period.
  • multiple feedings may be performed intermittently.
  • the duration of one feeding is, for example, 30% or less, preferably 20% or less, more preferably 10% of the total time of the plurality of feedings.
  • the start and stop of fed batch may be repeated so that:
  • the second and subsequent feedings are controlled so that they are started when the carbon source in the fermentation medium is depleted in the immediately preceding feeding stop phase.
  • Carbon source depletion can be detected, for example, by increasing pH or increasing dissolved oxygen concentration.
  • extraction of the culture solution may be continued throughout the entire culture period, or may be continued only during a part of the culture period. Further, in continuous culture, a plurality of culture solutions may be extracted intermittently. Extraction and feeding of the culture solution may or may not be performed simultaneously. For example, the feeding may be performed after the culture solution is extracted, or the culture solution may be extracted after the feeding.
  • the amount of the culture solution to be withdrawn is preferably the same as the amount of the medium to be fed.
  • the “same amount” may be, for example, an amount of 93 to 107% with respect to the amount of medium to be fed.
  • the withdrawal may be started within 5 hours, preferably within 3 hours, more preferably within 1 hour after the start of fed-batch.
  • the bacterial cells can be reused by recovering L-amino acid from the extracted culture medium and recirculating the filtration residue containing the bacterial cells in the fermenter (French Patent No. 2669935). ).
  • L-glutamic acid when producing L-glutamic acid, it is also possible to carry out the culture while precipitating L-glutamic acid in the medium using a liquid medium adjusted to conditions under which L-glutamic acid is precipitated.
  • the conditions under which L-glutamic acid precipitates are, for example, pH 5.0 to 3.0, preferably pH 4.9 to 3.5, more preferably pH 4.9 to 4.0, and particularly preferably around pH 4.7. (European Patent Application Publication No. 1078989).
  • cultivation may be performed at the said pH in the whole period, and may be performed at the said pH only for a part of period.
  • the “partial period” may be, for example, a period of 50% or more, 70% or more, 80% or more, 90% or more, 95% or more, or 99% or more of the entire culture period.
  • a method of fermenting basic amino acid using bicarbonate ion and / or carbonate ion as a main counter ion of basic amino acid may be used.
  • basic amino acids can be produced while reducing the amount of sulfate ions and / or chloride ions that have been conventionally used as counter ions for basic amino acids.
  • the pH of the medium during the culture is controlled to 6.5 to 9.0, preferably 6.5 to 8.0, and the pH of the medium at the end of the culture is controlled to 7.2 to 9.0.
  • the pressure in the fermenter during the fermentation is controlled to be positive, and the carbon dioxide gas is cultured. It is preferred to feed the liquid or both.
  • the supply air pressure may be set higher than the exhaust pressure.
  • the carbon dioxide gas generated by fermentation dissolves in the culture solution to produce bicarbonate ions and / or carbonate ions, and the bicarbonate ions and / or carbonate ions are counter ions of basic amino acids.
  • the fermenter pressure is 0.03 to 0.2 MPa, preferably 0.05 to 0.15 MPa, more preferably 0.1 to 0.3 MPa in terms of gauge pressure (differential pressure relative to atmospheric pressure). Is mentioned.
  • Fermenter pressure, carbon dioxide supply, and limited air supply can be determined, for example, by measuring the pH of the medium, the concentration of bicarbonate and / or carbonate ions in the medium, or the concentration of ammonia in the medium. Can be determined.
  • sulfate ions and / or chloride ions are used as counter ions for basic amino acids, so a sufficient amount of ammonium sulfate and / or ammonium chloride, or sulfate such as protein as a nutrient component Degradation products and / or hydrochloric acid degradation products were added to the medium. Therefore, a large amount of sulfate ion and / or chloride ion was present in the medium, and the weakly acidic carbonate ion concentration was extremely low, on the order of ppm.
  • one of the purposes is to reduce the amount of sulfate ions and / or chloride ions used, so the total molar concentration of sulfate ions and chloride ions contained in the medium is usually 700 mM or less, preferably 500 mM or less, more preferably 300 mM or less, further preferably 200 mM or less, particularly preferably 100 mM or less.
  • the concentration of sulfate ions and / or chloride ions bicarbonate ions and / or carbonate ions can be more easily present in the medium. That is, in this method, compared to the conventional method, it is possible to keep the pH of the medium for making the amount of bicarbonate ions and / or carbonate ions necessary for counter ions of basic amino acids present in the medium low. Become.
  • the concentration of bicarbonate ions and / or anions other than carbonate ions (also referred to as other anions) in the medium only needs to include an amount necessary for the growth of basic amino acid-producing bacteria. Preferably, it is low.
  • other anions include chloride ions, sulfate ions, phosphate ions, ionized organic acids, and hydroxide ions.
  • the total molar concentration of other anions contained in the medium is usually 900 mM or less, preferably 700 mM or less, more preferably 500 mM or less, still more preferably 300 mM or less, and particularly preferably 200 mM or less.
  • ammonium sulfate or the like is fed to the medium at the beginning of the culture, and the feed is stopped during the culture. Or you may feed ammonium sulfate etc., maintaining the balance with the dissolved amount of the carbonate ion and / or bicarbonate ion in a culture medium.
  • ammonia may be fed to the medium as a nitrogen source for basic amino acids.
  • pH is controlled with ammonia
  • ammonia supplied to increase the pH can be used as a nitrogen source for basic amino acids.
  • Ammonia can be supplied to the medium alone or with other gases.
  • the total ammonia concentration in the medium is preferably controlled to a concentration that does not inhibit the production of basic amino acids.
  • the total ammonia concentration that “does not inhibit the production of basic amino acids” is, for example, preferably 50% or more, more preferably compared to the yield and / or productivity in the case of producing basic amino acids under optimum conditions. Examples include a total ammonia concentration that provides a yield and / or productivity of 70% or more, particularly preferably 90% or more.
  • the total ammonia concentration in the medium is preferably a concentration of 300 mM or less, more preferably 250 mM, particularly preferably 200 mM or less. The degree of ammonia dissociation decreases with increasing pH.
  • Undissociated ammonia is more toxic to bacteria than ammonium ions. Therefore, the upper limit of the total ammonia concentration also depends on the pH of the culture solution. That is, the higher the pH of the culture solution, the lower the allowable total ammonia concentration. Therefore, the total ammonia concentration that does not inhibit the production of basic amino acids is preferably set for each pH. However, the total ammonia concentration range allowed at the highest pH during the culture may be used as the total ammonia concentration range throughout the culture period.
  • the total ammonia concentration as a nitrogen source necessary for the growth of basic amino acid-producing bacteria and the production of basic amino acids does not continue to be a state where ammonia is depleted during the culture, and the microorganism is due to a shortage of nitrogen source.
  • the productivity of the target substance is not reduced by the above, it is not particularly limited and can be set as appropriate.
  • the ammonia concentration may be measured over time during the culture, and a small amount of ammonia may be added to the medium when the ammonia in the medium is depleted.
  • the ammonia concentration when ammonia is added is not particularly limited.
  • the total ammonia concentration is preferably 1 mM or more, more preferably 10 mM or more, and particularly preferably 20 mM or more.
  • the medium may contain cations other than basic amino acids.
  • cations other than basic amino acids include K, Na, Mg, and Ca derived from medium components.
  • the total molar concentration of cations other than basic amino acids is preferably 50% or less of the molar concentration of total cations.
  • L-amino acid can be confirmed by a known method used for detection or identification of a compound. Examples of such a method include HPLC, LC / MS, GC / MS, and NMR. These methods can be used in appropriate combination.
  • the produced L-amino acid can be recovered by a known method used for separation and purification of compounds. Examples of such a method include an ion exchange resin method, a membrane treatment method, a precipitation method, and a crystallization method. These methods can be used in appropriate combination. In the case where L-amino acid accumulates in the microbial cells, for example, the microbial cells are crushed with ultrasonic waves, and the microbial cells are removed by centrifugation from the supernatant obtained by ion exchange resin method or the like. Amino acids can be recovered. The recovered L-amino acid may be a free form, a salt thereof, or a mixture thereof.
  • Examples of the salt include sulfate, hydrochloride, carbonate, ammonium salt, sodium salt, and potassium salt.
  • L-lysine may be free L-lysine, L-lysine sulfate, L-lysine hydrochloride, L-lysine carbonate, or a mixture thereof.
  • L-glutamic acid may be free L-glutamic acid, sodium L-glutamate (MSG), ammonium L-glutamate (monoammonium L-glutamate), or a mixture thereof. .
  • ammonium L-glutamate in the fermentation broth is crystallized by adding an acid, and equimolar sodium hydroxide is added to the crystals to obtain sodium L-glutamate (MSG).
  • MSG sodium L-glutamate
  • you may decolorize by adding activated carbon before and after the crystallization see Industrial crystallization of sodium glutamate, Journal of the Seawater Society of Japan, Vol. 56, No. 5, Tetsuya Kawakita).
  • L-amino acid is precipitated in the medium, it can be recovered by centrifugation or filtration.
  • the L-amino acid precipitated in the medium may be isolated together after crystallization of the L-amino acid dissolved in the medium.
  • the recovered L-amino acid may contain components other than the L-amino acid, such as bacterial cells, medium components, water, and bacterial metabolic byproducts.
  • the purity of the recovered L-amino acid is, for example, 30% (w / w) or higher, 50% (w / w) or higher, 70% (w / w) or higher, 80% (w / w) or higher, 90% (W / w) or more, or 95% (w / w) or more.
  • Example 1 Giving ethanol-assimilating ability to L-lysine-producing bacterium AJIK01 strain (NITE BP-01520) With L-lysine-producing bacterium Escherichia coli AJIK01 strain (NITE BP-01520) as a parent strain, An L-lysine-producing bacterium AJIK01m2 strain to which ethanol assimilation was imparted was constructed.
  • P1 lysate was obtained from Escherichia coli MG1655-att-tet-P L-tac adhE * strain (WO2011 / 096554) according to a conventional method, and P1 transduction was performed using AJIK01 strain (NITE BP-01520) as a host. * AJIK01 att-tet-PL -tac adhE * strain into which a cassette containing the gene was introduced was obtained.
  • the adhE * gene is a mutant type adhE encoding a mutant AdhE protein in which six mutations of Glu568Lys, Glu22Gly, Met236Val, Tyr461Cys, Ile554Ser, and Ala786Val are introduced into the wild type AdhE protein of the Escherichia coli K12 MG1655 strain shown in SEQ ID NO: 46. It is a gene (WO2008 / 010565).
  • pMW-intxis-ts is a temperature-sensitive replication plasmid carrying a gene encoding ⁇ phage integrase (Int) and a gene encoding excisionase (Xis).
  • Competent cells of the AJIK01 att-tet-PL -tac adhE * strain obtained above were prepared according to a conventional method, transformed with the helper plasmid pMW-intxis-ts, and 100 mg / L ampicillin at 30 ° C.
  • the transformant was cultured on LB agar medium at 42 ° C. The resulting colonies were tested for ampicillin resistance and tetracycline resistance, and strains sensitive to ampicillin and tetracycline were obtained.
  • the obtained strain is a P L-tac adhE * introduced strain in which the att-tet sequence has been removed from the chromosome genome and pMW-intxis-ts has been removed. This strain was named AJIK01m2.
  • Example 2 Construction of L- lysine-producing bacterium with enhanced expression of acnB gene (1) Construction SEQ ID NO: 2 and SEQ ID NO: 3 in the expression with the promoter P 14 plasmid pMW119-attR-cat-attL- P 14 using the indicated synthetic oligonucleotides as primers, PCR was carried out with the chromosomal DNA of Escherichia coli MG1655 strain as a template to amplify the sequence of gdhA gene containing the promoter P 14 shown in SEQ ID NO: 1.
  • the PCR product was purified, treated with Takara BKL Kit (Takara Bio), ligated to pMW219 (Nippon Gene) digested with SmaI and treated with Takara BKL Kit to obtain plasmid pMW219-P 14 -gdhA It was.
  • PCR was performed using pMW219-P 14 -gdhA as a template to amplify the promoter P 14 sequence (P 14 sequence).
  • PCR was performed using the synthetic oligonucleotides shown in SEQ ID NO: 6 and SEQ ID NO: 7 as primers and the plasmid pMW118-attL-Cm-attR (WO2005 / 010175) as a template, and the sequences attR and attL of the attachment sites of ⁇ phage An attR-cat-attL sequence having a chloramphenicol resistance gene cat in between was amplified.
  • the pMW119 digested with HindIII and SalI (Nippon Gene), and connecting the attR-cat-attL sequence and P 14 sequences using In-Fusion HD Cloning kit (Takara Bio Inc.), with a promoter P 14 the expression plasmid pMW119-attR-cat-attL- P 14 was constructed.
  • the constructed plasmid pMW119-attR-cat-attL-P 14 -acnB was introduced into the AJIK01m2 strain according to a conventional method to obtain AJIK01m2 / pMW119-attR-cat-attL-P 14 -acnB strain. After culturing the obtained strain in LB medium containing 100 mg / L ampicillin at 37 ° C. so that the final OD600 ⁇ 0.6, add the same amount of 40% glycerol solution as the culture solution, and stir, Aliquots were dispensed and stored at -80 ° C. This is called the glycerol stock of the AJIK01m2 / pMW119-attR-cat-attL-P 14 -acnB strain.
  • Example 3 acnB and construction of L- lysine-producing bacterium with enhanced expression of both genes of aldB (1) aldB gene expression enhancing plasmid for pMW119-attR-cat-attL- P 14 -aldB Construction SEQ ID NO: 12 Using the synthetic oligonucleotide shown in SEQ ID NO: 13 as a primer, PCR was performed using the chromosomal DNA of Escherichia coli MG1655 strain as a template to amplify the sequence containing the aldB gene.
  • plasmid pMW119-attR-cat-attL- P 14 PCR performed as a template, a linear pMW119-attR-cat-attL- P 14 Amplified.
  • In-Fusion HD Cloning kit by connecting an array with linear pMW119-attR-cat-attL- P 14 comprising aldB gene (manufactured by Takara Bio Inc.), expressing the aldB gene under the control of a promoter P 14
  • the plasmid pMW119-attR-cat-attL-P 14 -aldB was constructed.
  • PCR was performed using plasmid pMW119-attR-cat-attL-P14-aldB as a template using the synthetic oligonucleotides shown in SEQ ID NO: 16 and SEQ ID NO: 17 as primers, and linear pMW119-attR-cat-attL-P14- aldB was amplified.
  • the constructed plasmid pMW119-attR-cat-attL-P 14 -acnB-P 14 -aldB was introduced into the AJIK01m2 strain in accordance with a conventional method, and AJIK01m2 / pMW119-attR-cat-attL-P 14 -acnB-P 14 -aldB strain Got. After culturing the obtained strain in LB medium containing 100 mg / L ampicillin at 37 ° C. so that the final OD600 ⁇ 0.6, add the same amount of 40% glycerol solution as the culture solution, and stir, Aliquots were dispensed and stored at -80 ° C. This is referred to as glycerol stock of AJIK01m2 / pMW119-attR-cat- attL-P 14 -acnB-P 14 -aldB stock.
  • Example 4 acnA and construction of L- lysine-producing bacterium with enhanced expression of both genes of aldB
  • acnA enhanced gene expression plasmid for pMW119-attR-cat-attL- P 14 -acnA construction SEQ ID NO: 18 PCR was carried out using the chromosomal DNA of Escherichia coli MG1655 strain as a template using the synthetic oligonucleotide shown in SEQ ID NO: 19 as a primer, and the sequence containing the acnA gene was amplified.
  • plasmid pMW119-attR-cat-attL- P 14 PCR performed as a template, a linear pMW119-attR-cat-attL- P 14 Amplified.
  • In-Fusion HD Cloning kit by connecting an array with linear pMW119-attR-cat-attL- P 14 containing acnA gene (manufactured by Takara Bio Inc.), expressing the acnA gene under the control of a promoter P 14 The plasmid pMW119-attR-cat-attL-P 14 -acnA was constructed.
  • PCR was performed using plasmid pMW119-attR-cat-attL-P 14 -aldB as a template using the synthetic oligonucleotides shown in SEQ ID NO: 16 and SEQ ID NO: 17 as primers, and linear pMW119-attR-cat-attL-P 14 -aldB was amplified.
  • the constructed plasmid pMW119-attR-cat-attL-P 14 -acnA-P 14 -aldB was introduced into the AJIK01m2 strain in the usual manner, and AJIK01m2 / pMW119-attR-cat-attL-P 14 -acnA-P 14 -aldB strain Got. After culturing the obtained strain in LB medium containing 100 mg / L ampicillin at 37 ° C. so that the final OD600 ⁇ 0.6, add the same amount of 40% glycerol solution as the culture solution, and stir, Aliquots were dispensed and stored at -80 ° C. This is referred to as glycerol stock of AJIK01m2 / pMW119-attR-cat- attL-P 14 -acnA-P 14 -aldB stock.
  • Example 5 Evaluation of L-lysine-producing ability of L-lysine-producing bacteria
  • Each glycerol stock obtained in Example 2, Example 3, and Example 4 was thawed, and about 100 ⁇ L was added to 100 mg / L of ampicillin.
  • the solution was uniformly applied to an L plate containing and cultured at 37 ° C. for 16 hours.
  • the obtained cells are suspended in 0.85% saline and contain 100 mg / L ampicillin placed in a 500 mL Sakaguchi flask so that the turbidity (OD600) at a wavelength of 600 nm is 0.2.
  • 25 mL of fermentation medium (below) was inoculated and cultured at 37 ° C. for 24 hours under the condition of stirring at 120 rpm in a reciprocating shake culture apparatus.
  • 125 ⁇ L of ethanol was added to each flask, and further cultured under shaking under the same conditions for 17 hours.
  • the composition of the fermentation medium is shown below.
  • the amount of L-lysine accumulated in the medium was measured using Biotech Analyzer AS310 (manufactured by Sakura Seiki Co., Ltd.). In addition, it was confirmed by ethanol using Biotech Analyzer BF-5 (Oji Scientific Instruments) that all the carbon sources added to the medium were consumed. Furthermore, immediately after completion of the culture, the culture solution is appropriately diluted with 0.2N dilute hydrochloric acid, and the turbidity (OD 600 ) at a wavelength of 600 nm is measured with a spectrophotometer U-2000 (manufactured by Hitachi), so that the cells at the end of the culture are obtained. The amount was measured.
  • strain indicates the name of the strain.
  • Los (g / L) indicates the amount of L-lysine accumulated in the medium.
  • enhanced expression strain acnB gene (AJIK01m2 / pMW119-attR-cat -attL-P 14 -acnB strain)
  • control strain (AJIK01m2 / pMW119-attR-cat -attL-P 14 strain)
  • significantly higher L-lysine production was shown. That is, it was shown that the L-lysine production ability is improved by enhancing the expression of the acnB gene.
  • acnB and enhanced expression strain (AJIK01m2 / pMW119-attR-cat -attL-P 14 -acnB-P 14 -aldB strain) of both genes of aldB is control strain (AJIK01m2 / pMW119-attR-cat -attL-P Compared with 14 strains), it showed significantly higher L-lysine production. That is, it was shown that L-lysine production ability was improved by enhancing the simultaneous expression of acnB gene and aldB gene.
  • acnA and enhanced expression strain (AJIK01m2 / pMW119-attR-cat -attL-P 14 -acnA-P 14 -aldB strain) of both genes of aldB is control strain (AJIK01m2 / pMW119-attR-cat -attL-P Compared with 14 strains), it showed significantly higher L-lysine production. That is, it was shown that the L-lysine production ability was improved by enhancing the simultaneous expression of the acnA gene and the aldb gene.
  • the ability of bacteria to produce L-amino acids can be improved, and L-amino acids can be produced efficiently.
  • SEQ ID NO: 1 nucleotide sequence of promoter P 14 SEQ ID NO: 2 to 20: primer SEQ ID NO: 21: nucleotide sequence of acnA gene of Escherichia coli K12 MG1655 strain SEQ ID NO: 22: amino acid sequence of AcnA protein of Escherichia coli K12 MG1655 strain SEQ ID NO: 23 : Nucleotide sequence of the acnA gene of Pantoea ananatis AJ13355 strain SEQ ID NO: 24: amino acid sequence of the AcnA protein of Pantoea ananatis AJ13355 sequence SEQ ID NO: 25: nucleotide sequence of the acnA gene of Pectobacterium atrosepticum SCRI1043 strain: AcnA protein of the Pectobacterium atrosepticum SCRI1043 strain SEQ ID NO: 27: nucleotide sequence of acnA gene of Salmonella enterica serovar Ty

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided is a method for producing L-amino acids. L-amino acids are produced by subjecting bacteria belonging to the family Enterobacteriaceae, which have the ability to produce L-amino acids and have been modified such that aconitase activity is increased or aconitase activity and acetaldehyde dehydrogenase activity are increased, to culture in an ethanol-containing culture medium, and collecting the L-amino acids from the culture medium or the bacterial cells.

Description

L-アミノ酸の製造法Method for producing L-amino acid
 本発明は、細菌を用いたL-アミノ酸の製造法に関する。L-アミノ酸は、動物飼料用の添加物、調味料や飲食品の成分、又はアミノ酸輸液等として、産業上有用である。 The present invention relates to a method for producing L-amino acids using bacteria. L-amino acids are industrially useful as additives for animal feed, ingredients for seasonings and foods and drinks, amino acid infusions, and the like.
 L-アミノ酸は、例えば、L-アミノ酸生産能を有する各種微生物を用いた発酵法により工業生産されている。発酵法によるL-アミノ酸の製造法としては、例えば、野生型微生物(野生株)を用いる方法、野生株から誘導された栄養要求株を用いる方法、野生株から種々の薬剤耐性変異株として誘導された代謝調節変異株を用いる方法、栄養要求株と代謝調節変異株の両方の性質を持った株を用いる方法が挙げられる。 L-amino acids are industrially produced, for example, by fermentation using various microorganisms capable of producing L-amino acids. Examples of methods for producing L-amino acids by fermentation include a method using a wild-type microorganism (wild strain), a method using an auxotrophic strain derived from a wild strain, and various drug-resistant mutant strains derived from a wild strain. And a method using a strain having characteristics of both an auxotrophic strain and a metabolic control mutant.
 また、近年は、組換えDNA技術によりL-アミノ酸生産能を向上させた微生物がL-アミノ酸の製造に利用されている。微生物のL-アミノ酸生産能を向上させる方法としては、例えば、L-アミノ酸生合成系酵素をコードする遺伝子の発現を増強すること(特許文献1、特許文献2)やL-アミノ酸生合成系への炭素源の流入を増強すること(特許文献3)が挙げられる。 In recent years, microorganisms whose L-amino acid producing ability has been improved by recombinant DNA technology have been used for the production of L-amino acids. Examples of a method for improving the L-amino acid producing ability of a microorganism include, for example, enhancing the expression of a gene encoding an L-amino acid biosynthetic enzyme (Patent Documents 1 and 2) or an L-amino acid biosynthetic system. To enhance the inflow of the carbon source (Patent Document 3).
 従来、発酵法によるL-アミノ酸等の目的物質の工業生産においては、炭素源として、グルコース、フラクトース、スクロース、廃糖蜜、澱粉加水分解物等が使用されてきた。 Conventionally, in the industrial production of target substances such as L-amino acids by fermentation, glucose, fructose, sucrose, waste molasses, starch hydrolysates and the like have been used as carbon sources.
 一方、エタノール等のアルコール類を炭素源として使用することも可能である。エタノールを炭素源とする発酵によるL-アミノ酸の製造法としては、例えば、好気条件下でアルコールデヒドロゲナーゼを発現するように改変された腸内細菌科の細菌を利用する方法(特許文献4)、ピルビン酸シンターゼまたはピルビン酸:NADP+オキシドレダクターゼの活性が増大するように改変された腸内細菌科の細菌を利用する方法(特許文献5)、リボヌクレアーゼGの活性が低下するように改変された腸内細菌科の細菌を利用する方法(特許文献6)、変異型リボソームS1タンパク質を有するように改変された腸内細菌科の細菌を利用する方法(特許文献7)、AldBタンパク質の活性が低下するように改変された腸内細菌科の細菌を利用する方法(特許文献8)、細胞内の過酸化水素濃度が低下するように改変された腸内細菌科の細菌を利用する方法(特許文献9)が知られている。 On the other hand, alcohols such as ethanol can be used as a carbon source. As a method for producing L-amino acid by fermentation using ethanol as a carbon source, for example, a method utilizing a bacterium of the family Enterobacteriaceae modified so as to express alcohol dehydrogenase under aerobic conditions (Patent Document 4), A method using a bacterium from the family Enterobacteriaceae modified so as to increase the activity of pyruvate synthase or pyruvate: NADP + oxidoreductase (Patent Document 5), and an intestine modified so as to decrease the activity of ribonuclease G A method using an endobacterium (Patent Document 6), a method using an enterobacteriaceae bacteria modified to have a mutant ribosome S1 protein (Patent Document 7), and the activity of the AldB protein decreases. Using the bacteria of the family Enterobacteriaceae so modified (Patent Document 8), the intestines modified so that the intracellular hydrogen peroxide concentration is lowered Methods utilizing bacteria family bacteria (Patent Document 9) are known.
 アコニターゼ(aconitase)は、TCA回路やグリオキシル酸回路において、クエン酸とイソクエン酸間の異性化反応を可逆的に触媒するデヒドラターゼ/ヒドラターゼ(EC 4.2.1.3)である。エシェリヒア・コリは、少なくとも2つのアコニターゼのアイソザイム、AcnAとAcnB、を有する。AcnAとAcnB間のアミノ酸配列の同一性は17%程度である。AcnBは、エシェリヒア・コリにおける主要なアコニターゼであり、特に対数増殖期に発現する(非特許文献1)。一方、AcnAは、鉄や酸化ストレスにより誘導され、特に静止期に発現する(非特許文献1)。 Aconitase is a dehydratase / hydratase (EC 4.2.1.3) that reversibly catalyzes the isomerization reaction between citric acid and isocitrate in the TCA cycle and the glyoxylate cycle. Escherichia coli has at least two aconitase isozymes, AcnA and AcnB. The amino acid sequence identity between AcnA and AcnB is about 17%. AcnB is a major aconitase in Escherichia coli, and is expressed particularly in the logarithmic growth phase (Non-patent Document 1). On the other hand, AcnA is induced by iron or oxidative stress, and is expressed particularly in the stationary phase (Non-patent Document 1).
 アセトアルデヒドデヒドロゲナーゼ(acetaldehyde dehydrogenase)は、NAD+またはNADP+を電子受容体として、アセトアルデヒドから酢酸を生成する反応を可逆的に触媒する酵素(EC 1.2.1.3、EC 1.2.1.4、EC 1.2.1.5、EC 1.2.1.22等)である。例えば、エシェリヒア・コリのAldBタンパク質は、NADP+を電子受容体とするアセトアルデヒドデヒドロゲナーゼ活性を有する。上述のとおり、AldBタンパク質の活性低下がエタノールを炭素源とするL-アミノ酸の生産に有効であることが知られている。 Acetaldehyde dehydrogenase is an enzyme (EC 1.2.1.3, EC 1.2.1.4, EC 1.2.1.5, EC) that reversibly catalyzes the reaction of producing acetic acid from acetaldehyde using NAD + or NADP + as an electron acceptor. 1.2.1.22 etc.). For example, the Escherichia coli AldB protein has acetaldehyde dehydrogenase activity using NADP + as an electron acceptor. As described above, it is known that a decrease in the activity of AldB protein is effective for the production of L-amino acids using ethanol as a carbon source.
米国特許第5,168,056号明細書U.S. Pat.No. 5,168,056 米国特許第5,776,736号明細書U.S. Pat.No. 5,776,736 米国特許第5,906,925号明細書U.S. Pat.No. 5,906,925 WO2008/010565WO2008 / 010565 WO2009/031565WO2009 / 031565 WO2010/101053WO2010 / 101053 WO2011/096554WO2011 / 096554 WO2012/002486WO2012 / 002486 特開2014-036576JP2014-036576
 本発明は、細菌のL-アミノ酸生産能を向上させる新規な技術を開発し、効率的なL-アミノ酸の製造法を提供することを課題とする。 An object of the present invention is to develop a novel technique for improving L-amino acid-producing ability of bacteria and to provide an efficient method for producing L-amino acid.
 本発明者は、上記課題を解決するために鋭意研究を行った結果、アコニターゼ活性が増大するように、または、アコニターゼ活性およびアセトアルデヒドデヒドロゲナーゼ活性が増大するように細菌を改変することによって、エタノールを炭素源として用いる場合の同細菌によるL-アミノ酸生産を向上させることができることを見出し、本発明を完成させた。 As a result of intensive research to solve the above-mentioned problems, the present inventor has made ethanol carbon by modifying bacteria so that aconitase activity is increased or aconitase activity and acetaldehyde dehydrogenase activity are increased. The present inventors have found that L-amino acid production by the same bacterium can be improved when used as a source.
 すなわち、本発明は以下の通り例示できる。
[1]
 L-アミノ酸生産能を有する腸内細菌科に属する細菌をエタノールを含有する培地で培養し、L-アミノ酸を該培地中または該細菌の菌体内に生成蓄積させること、および該培地または菌体よりL-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、
 前記細菌が、アコニターゼ活性が増大するように改変されていることを特徴とし、
 前記アコニターゼが、AcnBタンパク質である、方法。
[2]
 前記AcnBタンパク質が、下記(a)、(b)、または(c)に記載のタンパク質である、前記方法:
(a)配列番号30、32、34、または36に示すアミノ酸配列を含むタンパク質;
(b)配列番号30、32、34、または36に示すアミノ酸配列において、1~10個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を含み、且つ、アコニターゼ活性を有するタンパク質;
(c)配列番号30、32、34、または36に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、アコニターゼ活性を有するタンパク質。
[3]
 L-アミノ酸生産能を有する腸内細菌科に属する細菌をエタノールを含有する培地で培養し、L-アミノ酸を該培地中または該細菌の菌体内に生成蓄積させること、および該培地または菌体よりL-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、
 前記細菌が、アコニターゼ活性およびアセトアルデヒドデヒドロゲナーゼ活性が増大するように改変されていることを特徴とする、方法。
[4]
 前記アコニターゼが、AcnAタンパク質またはAcnBタンパク質である、前記方法。
[5]
 前記AcnAタンパク質が、下記(a)、(b)、または(c)に記載のタンパク質である、前記方法:
(a)配列番号22、24、26、または28に示すアミノ酸配列を含むタンパク質;
(b)配列番号22、24、26、または28に示すアミノ酸配列において、1~10個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を含み、且つ、アコニターゼ活性を有するタンパク質;
(c)配列番号22、24、26、または28に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、アコニターゼ活性を有するタンパク質。
[6]
 前記AcnBタンパク質が、下記(a)、(b)、または(c)に記載のタンパク質である、前記方法:
(a)配列番号30、32、34、または36に示すアミノ酸配列を含むタンパク質;
(b)配列番号30、32、34、または36に示すアミノ酸配列において、1~10個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を含み、且つ、アコニターゼ活性を有するタンパク質;
(c)配列番号30、32、34、または36に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、アコニターゼ活性を有するタンパク質。
[7]
 前記アセトアルデヒドデヒドロゲナーゼが、AldBタンパク質である、前記方法。
[8]
 前記AldBタンパク質が、下記(a)、(b)、または(c)に記載のタンパク質である、前記方法:
(a)配列番号38、40、42、または44に示すアミノ酸配列を含むタンパク質;
(b)配列番号38、40、42、または44に示すアミノ酸配列において、1~10個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を含み、且つ、アセトアルデヒドデヒドロゲナーゼ活性を有するタンパク質;
(c)配列番号38、40、42、または44に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、アセトアルデヒドデヒドロゲナーゼ活性を有するタンパク質。
[9]
 前記細菌が、さらに、エタノール代謝酵素の活性が増大するように改変されている、前記方法。
[10]
 前記細菌が、好気的にエタノールを資化できる、前記方法。
[11]
 前記細菌が、変異型adhE遺伝子を保持するように改変されており、
 前記変異型adhE遺伝子は、好気条件での不活化に対する耐性が向上する変異を有する変異型AdhEタンパク質をコードするadhE遺伝子である、前記方法。
[12]
 前記変異が、野生型AdhEタンパク質のアミノ酸配列において、配列番号46に示すアミノ酸配列における568位のグルタミン酸残基に相当するアミノ酸残基が、グルタミン酸およびアスパラギン酸以外のアミノ酸残基に置換される変異である、前記方法。
[13]
 前記置換後のアミノ酸残基が、リジン残基である、前記方法。
[14]
 前記変異型AdhEタンパク質が、さらに、下記の追加的変異を有する、前記方法。:
(A)野生型AdhEタンパク質のアミノ酸配列において、配列番号46に示すアミノ酸配列における560位のグルタミン酸残基に相当するアミノ酸残基が、他のアミノ酸残基に置換される変異;
(B)野生型AdhEタンパク質のアミノ酸配列において、配列番号46に示すアミノ酸配列における566位のフェニルアラニン残基に相当するアミノ酸残基が、他のアミノ酸残基に置換される変異;
(C)野生型AdhEタンパク質のアミノ酸配列において、配列番号46に示すアミノ酸配列における22位のグルタミン酸残基、236位のメチオニン残基、461位のチロシン残基、554位のイソロイシン残基、及び786位のアラニン残基に相当するアミノ酸残基が、他のアミノ酸残基に置換される変異;
(D)上記変異の組み合わせ。
[15]
 前記細菌が、エシェリヒア属細菌である、前記方法。
[16]
 前記細菌が、エシェリヒア・コリである、前記方法。
[17]
 前記L-アミノ酸が、L-リジンである、前記方法。
[18]
 前記細菌が、さらに、下記の性質を有する、前記方法:
(A)ジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、ホスホエノールピルビン酸カルボキシラーゼ、アスパラギン酸アミノトランスフェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、テトラヒドロジピコリン酸スクシニラーゼ、及びスクシニルジアミノピメリン酸デアシラーゼから選択される1またはそれ以上の酵素の活性が増大するように改変されている;
(B)リジンデカルボキシラーゼの活性が低下するように改変されている;
(C)上記性質の組み合わせ。
That is, the present invention can be exemplified as follows.
[1]
Bacteria belonging to the family Enterobacteriaceae having L-amino acid producing ability are cultured in a medium containing ethanol, and L-amino acid is produced and accumulated in the medium or in the microbial cells, and from the medium or the microbial cells Collecting the L-amino acid, comprising the steps of:
The bacterium is modified to increase aconitase activity,
The method wherein the aconitase is an AcnB protein.
[2]
The aforementioned method, wherein the AcnB protein is a protein described in the following (a), (b), or (c):
(A) a protein comprising the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36;
(B) In the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36, the amino acid sequence includes substitution, deletion, insertion, or addition of 1 to 10 amino acid residues, and has an aconitase activity. protein;
(C) a protein comprising an amino acid sequence having 90% or more identity to the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36 and having aconitase activity.
[3]
Bacteria belonging to the family Enterobacteriaceae having L-amino acid producing ability are cultured in a medium containing ethanol, and L-amino acid is produced and accumulated in the medium or in the microbial cells, and from the medium or the microbial cells Collecting the L-amino acid, comprising the steps of:
A method wherein the bacterium has been modified to increase aconitase activity and acetaldehyde dehydrogenase activity.
[4]
The method, wherein the aconitase is an AcnA protein or an AcnB protein.
[5]
The method, wherein the AcnA protein is a protein described in (a), (b), or (c) below:
(A) a protein comprising the amino acid sequence shown in SEQ ID NO: 22, 24, 26, or 28;
(B) In the amino acid sequence shown in SEQ ID NO: 22, 24, 26, or 28, includes an amino acid sequence including substitution, deletion, insertion, or addition of 1 to 10 amino acid residues, and has an aconitase activity. protein;
(C) a protein comprising an amino acid sequence having 90% or more identity to the amino acid sequence shown in SEQ ID NO: 22, 24, 26, or 28 and having aconitase activity.
[6]
The aforementioned method, wherein the AcnB protein is a protein described in the following (a), (b), or (c):
(A) a protein comprising the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36;
(B) In the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36, the amino acid sequence includes substitution, deletion, insertion, or addition of 1 to 10 amino acid residues, and has an aconitase activity. protein;
(C) a protein comprising an amino acid sequence having 90% or more identity to the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36 and having aconitase activity.
[7]
The method, wherein the acetaldehyde dehydrogenase is an AldB protein.
[8]
The method, wherein the AldB protein is a protein described in the following (a), (b), or (c):
(A) a protein comprising the amino acid sequence shown in SEQ ID NO: 38, 40, 42, or 44;
(B) the amino acid sequence shown in SEQ ID NO: 38, 40, 42, or 44, comprising an amino acid sequence comprising substitution, deletion, insertion, or addition of 1 to 10 amino acid residues, and having acetaldehyde dehydrogenase activity A protein having;
(C) A protein comprising an amino acid sequence having 90% or more identity to the amino acid sequence shown in SEQ ID NO: 38, 40, 42, or 44 and having acetaldehyde dehydrogenase activity.
[9]
The method, wherein the bacterium is further modified to increase the activity of an ethanol metabolizing enzyme.
[10]
The method, wherein the bacterium can assimilate ethanol aerobically.
[11]
The bacterium has been modified to retain a mutant adhE gene;
The method, wherein the mutant adhE gene is an adhE gene encoding a mutant AdhE protein having a mutation that improves resistance to inactivation under aerobic conditions.
[12]
The mutation is a mutation in which the amino acid residue corresponding to the glutamic acid residue at position 568 in the amino acid sequence shown in SEQ ID NO: 46 is substituted with an amino acid residue other than glutamic acid and aspartic acid in the amino acid sequence of the wild-type AdhE protein. Said method.
[13]
The method as described above, wherein the amino acid residue after substitution is a lysine residue.
[14]
The method, wherein the mutant AdhE protein further has the following additional mutation: :
(A) A mutation in which the amino acid residue corresponding to the glutamic acid residue at position 560 in the amino acid sequence shown in SEQ ID NO: 46 is substituted with another amino acid residue in the amino acid sequence of the wild-type AdhE protein;
(B) a mutation in which the amino acid residue corresponding to the phenylalanine residue at position 566 in the amino acid sequence shown in SEQ ID NO: 46 is substituted with another amino acid residue in the amino acid sequence of the wild-type AdhE protein;
(C) In the amino acid sequence of the wild-type AdhE protein, the glutamic acid residue at position 22, the methionine residue at position 236, the tyrosine residue at position 461, the isoleucine residue at position 554, and 786 in the amino acid sequence shown in SEQ ID NO: 46 A mutation in which the amino acid residue corresponding to the alanine residue at the position is substituted with another amino acid residue;
(D) Combination of the above mutations.
[15]
The method, wherein the bacterium is an Escherichia bacterium.
[16]
The method, wherein the bacterium is Escherichia coli.
[17]
The method, wherein the L-amino acid is L-lysine.
[18]
The method, wherein the bacterium further has the following properties:
(A) Dihydrodipicolinate reductase, diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semialdehyde dehydrogenase, tetrahydrodipicolinate succinylase, and succinyl diaminopimelate deacylase Modified to increase the activity of one or more enzymes selected from
(B) modified to reduce the activity of lysine decarboxylase;
(C) A combination of the above properties.
各種AldBタンパク質のアミノ酸配列のアラインメントを示す図。The figure which shows the alignment of the amino acid sequence of various AldB protein. 各種AldBタンパク質のアミノ酸配列のアラインメントを示す図(続き)。The figure which shows the alignment of the amino acid sequence of various AldB protein (continuation). 各種AdhEタンパク質のアミノ酸配列のアラインメントを示す図。The figure which shows the alignment of the amino acid sequence of various AdhE protein. 各種AdhEタンパク質のアミノ酸配列のアラインメントを示す図(続き)。The figure which shows the alignment of the amino acid sequence of various AdhE protein (continuation). 各種AdhEタンパク質のアミノ酸配列のアラインメントを示す図(続き)。The figure which shows the alignment of the amino acid sequence of various AdhE protein (continuation).
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明の方法は、L-アミノ酸生産能を有する腸内細菌科に属する細菌をエタノールを含有する培地で培養し、L-アミノ酸を該培地中または該細菌の菌体内に生成蓄積させること、および該培地または菌体よりL-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、前記細菌が、アコニターゼ活性が増大するように、または、アコニターゼ活性およびアセトアルデヒドデヒドロゲナーゼ活性が増大するように改変されていることを特徴とする、方法である。同方法に用いられる細菌を、「本発明の細菌」ともいう。 The method of the present invention comprises culturing a bacterium belonging to the family Enterobacteriaceae having an L-amino acid-producing ability in a medium containing ethanol, and producing and accumulating L-amino acid in the medium or in the microbial cells, and A method for producing an L-amino acid comprising collecting an L-amino acid from the medium or microbial cells so that the bacterium has increased aconitase activity or increased aconitase activity and acetaldehyde dehydrogenase activity. The method is characterized in that the method is modified. The bacterium used in this method is also referred to as “the bacterium of the present invention”.
<1>本発明の細菌
 本発明の細菌は、L-アミノ酸生産能を有する腸内細菌科に属する細菌であって、且つ、アコニターゼ活性が増大するように、または、アコニターゼ活性およびアセトアルデヒドデヒドロゲナーゼ活性が増大するように改変された細菌である。
<1> Bacterium of the Present Invention The bacterium of the present invention is a bacterium belonging to the family Enterobacteriaceae having L-amino acid-producing ability, and has aconitase activity increased or aconitase activity and acetaldehyde dehydrogenase activity. Bacteria modified to increase.
<1-1>L-アミノ酸生産能を有する細菌
 本発明において、「L-アミノ酸生産能を有する細菌」とは、培地で培養したときに、目的とするL-アミノ酸を生成し、回収できる程度に培地中または菌体内に蓄積する能力を有する細菌をいう。L-アミノ酸生産能を有する細菌は、非改変株よりも多い量の目的とするL-アミノ酸を培地に蓄積することができる細菌であってよい。非改変株としては、野生株や親株が挙げられる。また、L-アミノ酸生産能を有する細菌は、好ましくは0.5g/L以上、より好ましくは1.0g/L以上の量の目的とするL-アミノ酸を培地に蓄積することができる細菌であってもよい。
<1-1> Bacteria having L-amino acid-producing ability In the present invention, “bacteria having L-amino acid-producing ability” refers to the extent that a desired L-amino acid can be produced and recovered when cultured in a medium. Refers to bacteria having the ability to accumulate in the medium or in the fungus body. The bacterium having L-amino acid-producing ability may be a bacterium capable of accumulating a larger amount of the target L-amino acid in the medium than the unmodified strain. Non-modified strains include wild strains and parent strains. The bacterium having L-amino acid-producing ability is a bacterium that can accumulate the target L-amino acid in an amount of 0.5 g / L or more, more preferably 1.0 g / L or more in the medium. May be.
 L-アミノ酸としては、L-リジン、L-オルニチン、L-アルギニン、L-ヒスチジン、L-シトルリン等の塩基性アミノ酸、L-イソロイシン、L-アラニン、L-バリン、L-ロイシン、グリシン等の脂肪族アミノ酸、L-スレオニン、L-セリン等のヒドロキシモノアミノカルボン酸であるアミノ酸、L-プロリン等の環式アミノ酸、L-フェニルアラニン、L-チロシン、L-トリプトファン等の芳香族アミノ酸、L-システイン、L-シスチン、L-メチオニン等の含硫アミノ酸、L-グルタミン酸、L-アスパラギン酸等の酸性アミノ酸、L-グルタミン、L-アスパラギン等の側鎖にアミド基を持つアミノ酸が挙げられる。本発明の細菌は、1種のL-アミノ酸の生産能のみを有していてもよく、2種またはそれ以上のL-アミノ酸の生産能を有していてもよい。 L-amino acids include basic amino acids such as L-lysine, L-ornithine, L-arginine, L-histidine, L-citrulline, L-isoleucine, L-alanine, L-valine, L-leucine, glycine, etc. Aliphatic amino acids, amino acids which are hydroxymonoaminocarboxylic acids such as L-threonine and L-serine, cyclic amino acids such as L-proline, aromatic amino acids such as L-phenylalanine, L-tyrosine and L-tryptophan, L- Examples thereof include sulfur-containing amino acids such as cysteine, L-cystine and L-methionine, acidic amino acids such as L-glutamic acid and L-aspartic acid, and amino acids having an amide group in the side chain such as L-glutamine and L-asparagine. The bacterium of the present invention may have only one L-amino acid producing ability or may have two or more L-amino acid producing ability.
 本発明において、アミノ酸は、特記しない限り、いずれもL-アミノ酸であってよい。また、生産されるL-アミノ酸は、フリー体、その塩、またはそれらの混合物であってよい。すなわち、本発明において、「L-アミノ酸」という用語は、特記しない限り、フリー体のL-アミノ酸、その塩、またはそれらの混合物を意味してよい。塩の例については後述する。 In the present invention, unless otherwise specified, any amino acid may be an L-amino acid. Further, the produced L-amino acid may be a free form, a salt thereof, or a mixture thereof. That is, in the present invention, the term “L-amino acid” may mean a free L-amino acid, a salt thereof, or a mixture thereof, unless otherwise specified. Examples of the salt will be described later.
 腸内細菌科に属する細菌としては、エシェリヒア(Escherichia)属、エンテロバクター(Enterobacter)属、パントエア(Pantoea)属、クレブシエラ(Klebsiella)属、セラチア(Serratia)属、エルビニア(Erwinia)属、フォトラブダス(Photorhabdus)属、プロビデンシア(Providencia)属、サルモネラ(Salmonella)属、モルガネラ(Morganella)等の属に属する細菌が挙げられる。具体的には、NCBI(National Center for Biotechnology Information)のデータベース(http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347)で用いられている分類法により腸内細菌科に分類されている細菌を用いることができる。 The bacteria belonging to the family Enterobacteriaceae include Escherichia, Enterobacter, Pantoea, Klebsiella, Serratia, Erwinia, Photolabdas Examples include bacteria belonging to genera such as (Photorhabdus), Providencia, Salmonella, Morganella, and the like. Specifically, according to the taxonomy used in the NCBI (National Center for Biotechnology Information) database (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347) Bacteria classified in the family Enterobacteriaceae can be used.
 エシェリヒア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエシェリヒア属に分類されている細菌が挙げられる。エシェリヒア属細菌としては、例えば、Neidhardtらの著書(Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1. In F. D. Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washington, D.C.)に記載されたものが挙げられる。エシェリヒア属細菌としては、例えば、エシェリヒア・コリ(Escherichia coli)が挙げられる。エシェリヒア・コリとして、具体的には、例えば、プロトタイプの野生株K12由来のエシェリヒア・コリW3110(ATCC 27325)やエシェリヒア・コリMG1655(ATCC 47076)が挙げられる。 The Escherichia bacterium is not particularly limited, but includes bacteria classified into the genus Escherichia by classification known to microbiologists. Examples of Escherichia bacteria include, for example, Neidhardt et al. (Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1. In F. D. Nehard (ed.), “Escherichia, coli, and Salmonella, Cellular, and Molecular, Biology / Second Edition, American, Society, for Microbiology, Press, Washington, DC). Examples of bacteria belonging to the genus Escherichia include Escherichia coli. Specific examples of Escherichia coli include Escherichia coli W3110 (ATCC11027325) and Escherichia coli MG1655 (ATCC 47076) derived from the prototype wild-type strain K12.
 エンテロバクター属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエンテロバクター属に分類されている細菌が挙げられる。エンテロバクター属細菌としては、例えば、エンテロバクター・アグロメランス(Enterobacter agglomerans)やエンテロバクター・アエロゲネス(Enterobacter aerogenes)が挙げられる。エンテロバクター・アグロメランスとして、具体的には、例えば、エンテロバクター・アグロメランスATCC12287株が挙げられる。エンテロバクター・アエロゲネスとして、具体的には、例えば、エンテロバクター・アエロゲネスATCC13048株、NBRC12010株(Biotechonol Bioeng. 2007 Mar 27; 98(2) 340-348)、AJ110637株(FERM BP-10955)が挙げられる。また、エンテロバクター属細菌としては、例えば、欧州特許出願公開EP0952221号明細書に記載されたものが挙げられる。なお、Enterobacter agglomeransには、Pantoea agglomeransと分類されているものも存在する。 The bacteria belonging to the genus Enterobacter are not particularly limited, but include bacteria classified into the genus Enterobacter by classification known to microbiologists. Examples of Enterobacter bacteria include Enterobacter agglomerans and Enterobacter aerogenes. Specific examples of Enterobacter agglomerans include the Enterobacter agglomerans ATCC12287 strain. Specific examples of Enterobacter aerogenes include Enterobacter aerogenes ATCC13048, NBRC12010 (BiotechonolonBioeng.eng2007 Mar 27; 98 (2) 340-348), AJ110637 (FERM BP-10955) . Examples of Enterobacter bacteria include those described in European Patent Application Publication No. EP0952221. Some Enterobacter agglomerans are classified as Pantoea agglomerans.
 パントエア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりパントエア属に分類されている細菌が挙げられる。パントエア属細菌としては、例えば、パントエア・アナナティス(Pantoea ananatis)、パントエア・スチューアルティ(Pantoea stewartii)、パントエア・アグロメランス(Pantoea agglomerans)、パントエア・シトレア(Pantoea citrea)が挙げられる。パントエア・アナナティスとして、具体的には、例えば、パントエア・アナナティスLMG20103株、AJ13355株(FERM BP-6614)、AJ13356株(FERM BP-6615)、AJ13601株(FERM BP-7207)、SC17株(FERM BP-11091)、及びSC17(0)株(VKPM B-9246)が挙げられる。なお、エンテロバクター・アグロメランスのある種のものは、最近、16S rRNAの塩基配列分析等に基づき、パントエア・アグロメランス、パントエア・アナナティス、パントエア・ステワルティイ等に再分類された(Int. J. Syst. Bacteriol., 43, 162-173 (1993))。本発明において、パントエア属細菌には、このようにパントエア属に再分類された細菌も含まれる。 The Pantoea bacterium is not particularly limited, and examples include bacteria classified into the Pantoea genus by classification known to microbiologists. Examples of the genus Pantoea include Pantoea 、 ananatis, Pantoea stewartii, Pantoea agglomerans, and Pantoea citrea. Specifically, for example, Pantoea Ananatis LMG20103 strain, AJ13355 strain (FERM 、 BP-6614), AJ13356 strain (FERM BP-6615), AJ13601 strain (FERM BP-7207), SC17 strain (FERM BP) -11091), and SC17 (0) strain (VKPM B-9246). Certain types of Enterobacter agglomerans were recently reclassified as Pantoea agglomerans, Pantoea ananatis, Pantoea stewartii, etc. based on 16S rRNA nucleotide sequence analysis (Int. J. Syst. Bacteriol) ., 43, 162-173 (1993)). In the present invention, the Pantoea bacterium also includes a bacterium reclassified as Pantoea in this way.
 エルビニア属細菌としては、エルビニア・アミロボーラ(Erwinia amylovora)、エルビニア・カロトボーラ(Erwinia carotovora)が挙げられる。クレブシエラ属細菌としては、クレブシエラ・プランティコーラ(Klebsiella planticola)が挙げられる。 Examples of the genus Erwinia include Erwinia amylovora and Erwinia carotovora. Examples of Klebsiella bacteria include Klebsiella planticola.
 これらの菌株は、例えば、アメリカン・タイプ・カルチャー・コレクション(住所12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States of America)より分譲を受けることが出来る。すなわち各菌株に対応する登録番号が付与されており、この登録番号を利用して分譲を受けることが出来る(http://www.atcc.org/参照)。各菌株に対応する登録番号は、アメリカン・タイプ・カルチャー・コレクションのカタログに記載されている。 These strains can be sold, for example, from the American Type Culture Collection (address 12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States States of America). That is, a registration number corresponding to each strain is given, and it is possible to receive a sale using this registration number (see http://www.atcc.org/). The registration number corresponding to each strain is described in the catalog of American Type Culture Collection.
 本発明の細菌は、本来的にL-アミノ酸生産能を有するものであってもよく、L-アミノ酸生産能を有するように改変されたものであってもよい。L-アミノ酸生産能を有する細菌は、例えば、上記のような細菌にL-アミノ酸生産能を付与することにより、または、上記のような細菌のL-アミノ酸生産能を増強することにより、取得できる。 The bacterium of the present invention may inherently have L-amino acid-producing ability or may have been modified to have L-amino acid-producing ability. A bacterium having L-amino acid-producing ability can be obtained, for example, by imparting L-amino acid-producing ability to the bacterium as described above, or by enhancing the L-amino acid-producing ability of the bacterium as described above. .
 L-アミノ酸生産能の付与または増強は、従来、コリネ型細菌又はエシェリヒア属細菌等のアミノ酸生産菌の育種に採用されてきた方法により行うことができる(アミノ酸発酵、(株)学会出版センター、1986年5月30日初版発行、第77~100頁参照)。そのような方法としては、例えば、栄養要求性変異株の取得、L-アミノ酸のアナログ耐性株の取得、代謝制御変異株の取得、L-アミノ酸の生合成系酵素の活性が増強された組換え株の創製が挙げられる。L-アミノ酸生産菌の育種において、付与される栄養要求性、アナログ耐性、代謝制御変異等の性質は、単独であってもよく、2種又は3種以上であってもよい。また、L-アミノ酸生産菌の育種において、活性が増強されるL-アミノ酸生合成系酵素も、単独であってもよく、2種又は3種以上であってもよい。さらに、栄養要求性、アナログ耐性、代謝制御変異等の性質の付与と、生合成系酵素の活性の増強が組み合わされてもよい。 L-amino acid-producing ability can be imparted or enhanced by a method conventionally used for breeding amino acid-producing bacteria such as coryneform bacteria or Escherichia bacteria (Amino Acid Fermentation, Academic Publishing Center, Inc., 1986). (May 30, 1st edition issued, see pages 77-100). Examples of such methods include acquisition of auxotrophic mutants, acquisition of L-amino acid analog-resistant strains, acquisition of metabolic control mutants, and recombination with enhanced activity of L-amino acid biosynthetic enzymes. The creation of stocks. In the breeding of L-amino acid-producing bacteria, properties such as auxotrophy, analog resistance, and metabolic control mutation that are imparted may be single, or two or more. In addition, L-amino acid biosynthetic enzymes whose activities are enhanced in breeding L-amino acid-producing bacteria may be used alone or in combination of two or more. Furthermore, imparting properties such as auxotrophy, analog resistance, and metabolic control mutation may be combined with enhancing the activity of biosynthetic enzymes.
 L-アミノ酸生産能を有する栄養要求性変異株、アナログ耐性株、又は代謝制御変異株は、親株又は野生株を通常の変異処理に供し、得られた変異株の中から、栄養要求性、アナログ耐性、又は代謝制御変異を示し、且つL-アミノ酸生産能を有するものを選択することによって取得できる。通常の変異処理としては、X線や紫外線の照射、N-メチル-N’-ニトロ-N-ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、メチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。 An auxotrophic mutant, an analog resistant strain, or a metabolically controlled mutant having L-amino acid production ability is subjected to normal mutation treatment of the parent strain or wild strain, and the auxotrophic, analog It can be obtained by selecting those exhibiting resistance or metabolic control mutations and having the ability to produce L-amino acids. Normal mutation treatments include X-ray and ultraviolet irradiation, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ethyl methane sulfonate (EMS), methyl methane sulfonate (MMS), etc. Treatment with a mutagen is included.
 また、L-アミノ酸生産能の付与又は増強は、目的のL-アミノ酸の生合成に関与する酵素の活性を増強することによっても行うことができる。酵素活性の増強は、例えば、同酵素をコードする遺伝子の発現が増強するように細菌を改変することにより行うことができる。遺伝子の発現を増強する方法は、WO00/18935号パンフレット、欧州特許出願公開1010755号明細書等に記載されている。酵素活性を増強する詳細な手法については後述する。 Also, the L-amino acid-producing ability can be imparted or enhanced by enhancing the activity of an enzyme involved in the target L-amino acid biosynthesis. Enhancing enzyme activity can be performed, for example, by modifying bacteria so that expression of a gene encoding the enzyme is enhanced. Methods for enhancing gene expression are described in WO00 / 18935 pamphlet, European Patent Application Publication No. 1010755, and the like. A detailed method for enhancing the enzyme activity will be described later.
 また、L-アミノ酸生産能の付与又は増強は、目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素の活性を低下させることによっても行うことができる。なお、ここでいう「目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素」には、目的のアミノ酸の分解に関与する酵素も含まれる。酵素活性を低下させる手法については後述する。 Furthermore, the L-amino acid-producing ability can be imparted or enhanced by reducing the activity of an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of the target L-amino acid to produce a compound other than the target L-amino acid. It can be carried out. As used herein, “an enzyme that catalyzes a reaction that produces a compound other than the target L-amino acid by branching from the biosynthetic pathway of the target L-amino acid” includes enzymes involved in the degradation of the target amino acid. It is. A method for reducing the enzyme activity will be described later.
 以下、L-アミノ酸生産菌、およびL-アミノ酸生産能を付与または増強する方法について具体的に例示する。なお、以下に例示するようなL-アミノ酸生産菌が有する性質およびL-アミノ酸生産能を付与または増強するための改変は、いずれも、単独で用いてもよく、適宜組み合わせて用いてもよい。 Specific examples of L-amino acid-producing bacteria and methods for imparting or enhancing L-amino acid-producing ability are given below. In addition, any of the modifications exemplified below for imparting or enhancing the properties of L-amino acid-producing bacteria and L-amino acid-producing ability may be used alone or in appropriate combination.
<L-グルタミン酸生産菌>
 L-グルタミン酸生産能を付与又は増強するための方法としては、例えば、L-グルタミン酸生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、グルタミン酸デヒドロゲナーゼ(gdhA)、グルタミンシンテターゼ(glnA)、グルタミン酸シンターゼ(gltBD)、イソクエン酸デヒドロゲナーゼ(icdA)、アコニテートヒドラターゼ(acnA, acnB)、クエン酸シンターゼ(gltA)、メチルクエン酸シンターゼ(prpC)、ピルビン酸カルボキシラーゼ(pyc)、ピルビン酸デヒドロゲナーゼ(aceEF, lpdA)、ピルベートキナーゼ(pykA, pykF)、ホスホエノールピルビン酸シンターゼ(ppsA)、エノラーゼ(eno)、ホスホグリセロムターゼ(pgmA, pgmI)、ホスホグリセリン酸キナーゼ(pgk)、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ(gapA)、トリオースリン酸イソメラーゼ(tpiA)、フルクトースビスリン酸アルドラーゼ(fbp)、グルコースリン酸イソメラーゼ(pgi)、6-ホスホグルコン酸デヒドラターゼ(edd)、2-ケト-3-デオキシ-6-ホスホグルコン酸アルドラーゼ(eda)、トランスヒドロゲナーゼが挙げられる。なお、カッコ内は、その酵素をコードする遺伝子の一例である(以下の記載においても同様)。これらの酵素の中では、例えば、グルタミン酸デヒドロゲナーゼ、クエン酸シンターゼ、ホスホエノールピルビン酸カルボキシラーゼ、及びメチルクエン酸シンターゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。
<L-glutamic acid producing bacteria>
Examples of the method for imparting or enhancing L-glutamic acid-producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-glutamic acid biosynthetic enzymes is increased. . Such enzymes include, but are not limited to, glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), glutamate synthase (gltBD), isocitrate dehydrogenase (icdA), aconite hydratase (acnA, acnB), citrate synthase (GltA), methyl citrate synthase (prpC), pyruvate carboxylase (pyc), pyruvate dehydrogenase (aceEF, lpdA), pyruvate kinase (pykA, pykF), phosphoenolpyruvate synthase (ppsA), enolase (eno) Phosphoglyceromutase (pgmA, pgmI), phosphoglycerate kinase (pgk), glyceraldehyde-3-phosphate dehydrogenase (gapA), triosephosphate isomerase (tpiA), fructose bisphosphate aldolase (fbp), glucose phosphate isomerase Ze (pgi), 6- phosphogluconate dehydratase (edd), 2-keto-3-deoxy-6-phosphogluconate aldolase (eda), include transhydrogenase. The parentheses are examples of genes encoding the enzymes (the same applies to the following description). Among these enzymes, it is preferable to enhance the activity of one or more enzymes selected from, for example, glutamate dehydrogenase, citrate synthase, phosphoenolpyruvate carboxylase, and methyl citrate synthase.
 クエン酸シンターゼ遺伝子、ホスホエノールピルビン酸カルボキシラーゼ遺伝子、および/またはグルタミン酸デヒドロゲナーゼ遺伝子の発現が増大するように改変された腸内細菌科に属する株としては、EP1078989A、EP955368A、及びEP952221Aに開示されたものが挙げられる。また、エントナー・ドゥドロフ経路の遺伝子(edd, eda)の発現が増大するように改変された腸内細菌科に属する株としては、EP1352966Bに開示されたものが挙げられる。 Strains belonging to the family Enterobacteriaceae that have been modified to increase expression of the citrate synthase gene, phosphoenolpyruvate carboxylase gene, and / or glutamate dehydrogenase gene include those disclosed in EP1078989A, EP955368A, and EP952221A Can be mentioned. Examples of strains belonging to the family Enterobacteriaceae that have been modified to increase the expression of the Entner-Doudoroff pathway genes (edd, eda) include those disclosed in EP1352966B.
 また、L-グルタミン酸生産能を付与又は増強するための方法としては、例えば、L-グルタミン酸の生合成経路から分岐してL-グルタミン酸以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、イソクエン酸リアーゼ(aceA)、α-ケトグルタル酸デヒドロゲナーゼ(sucA)、アセト乳酸シンターゼ(ilvI)、ギ酸アセチルトランスフェラーゼ(pfl)、乳酸デヒドロゲナーゼ(ldh)、アルコールデヒドロゲナーゼ(adh)、グルタミン酸デカルボキシラーゼ(gadAB)、コハク酸デヒドロゲナーゼ(sdhABCD)が挙げられる。これらの酵素の中では、例えば、α-ケトグルタル酸デヒドロゲナーゼ活性を低下又は欠損させることが好ましい。 The method for imparting or enhancing the ability to produce L-glutamic acid is, for example, selected from enzymes that catalyze a reaction that branches from the biosynthetic pathway of L-glutamic acid to produce a compound other than L-glutamic acid. Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned. Examples of such enzymes include, but are not limited to, isocitrate lyase (aceA), α-ketoglutarate dehydrogenase (sucA), acetolactate synthase (ilvI), formate acetyltransferase (pfl), lactate dehydrogenase (ldh), alcohol dehydrogenase (Adh), glutamate decarboxylase (gadAB), succinate dehydrogenase (sdhABCD). Among these enzymes, for example, it is preferable to reduce or eliminate α-ketoglutarate dehydrogenase activity.
 α-ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したエシェリヒア属細菌、及びそれらの取得方法は、米国特許第5,378,616号及び第5,573,945号に記載されている。また、パントエア属細菌、エンテロバクター属細菌、クレブシエラ属細菌、エルビニア属細菌等の腸内細菌においてα-ケトグルタル酸デヒドロゲナーゼ活性を低下または欠損させる方法は、米国特許6,197,559号公報、米国特許6,682,912号公報、米国特許6,331,419号公報、米国特許8,129,151号公報、およびWO2008/075483に開示されている。α-ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したエシェリヒア属細菌として、具体的には、例えば、下記の株が挙げられる。
E. coli W3110sucA::Kmr
E. coli AJ12624 (FERM BP-3853)
E. coli AJ12628 (FERM BP-3854)
E. coli AJ12949 (FERM BP-4881)
Escherichia bacteria with reduced or deficient α-ketoglutarate dehydrogenase activity and methods for obtaining them are described in US Pat. Nos. 5,378,616 and 5,573,945. In addition, a method for reducing or eliminating α-ketoglutarate dehydrogenase activity in enteric bacteria such as Pantoea bacteria, Enterobacter bacteria, Klebsiella bacteria, Erwinia bacteria, and the like are disclosed in U.S. Patent No. 6,197,559, U.S. Patent No. 6,682,912, This is disclosed in US Pat. No. 6,331,419, US Pat. No. 8,129,151, and WO2008 / 075483. Specific examples of bacteria belonging to the genus Escherichia with reduced or deficient α-ketoglutarate dehydrogenase activity include the following strains.
E. coli W3110sucA :: Kmr
E. coli AJ12624 (FERM BP-3853)
E. coli AJ12628 (FERM BP-3854)
E. coli AJ12949 (FERM BP-4881)
 E. coli W3110sucA::Kmr は、E. coli W3110のα-ケトグルタル酸デヒドロゲナーゼをコードするsucA遺伝子を破壊することにより得られた株である。この株は、α-ケトグルタル酸デヒドロゲナーゼ活性を完全に欠損している。 E. coli W3110sucA :: Kmr is a strain obtained by disrupting the sucA gene encoding the α-ketoglutarate dehydrogenase of E. coli W3110. This strain is completely deficient in α-ketoglutarate dehydrogenase activity.
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、Pantoea ananatis AJ13355株(FERM BP-6614)、Pantoea ananatis SC17株(FERM BP-11091)、Pantoea ananatis SC17(0)株(VKPM B-9246)等のパントエア属細菌も挙げられる。AJ13355株は、静岡県磐田市の土壌から、低pHでL-グルタミン酸及び炭素源を含む培地で増殖できる株として分離された株である。SC17株は、AJ13355株から、粘液質低生産変異株として選択された株である(米国特許第6,596,517号)。SC17株は、2009年2月4日に、独立行政法人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に寄託され、受託番号FERM BP-11091が付与されている。AJ13355株は、1998年2月19日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に、受託番号FERM P-16644として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6614が付与されている。 In addition, L-glutamic acid-producing bacteria or parent strains for inducing them include Pantoea ananatis AJ13355 strain (FERM BP-6614), Pantoea ananatis SC17 strain (FERM BP-11091), Pantoea ananatis SC17 (0) strain (VKPM B) -9246) and the like. The AJ13355 strain is a strain isolated as a strain capable of growing on a medium containing L-glutamic acid and a carbon source at low pH from soil in Iwata City, Shizuoka Prefecture. The SC17 strain is a strain selected from the AJ13355 strain as a low mucus production mutant (US Pat. No. 6,596,517). On February 4, 2009, SC17 shares were incorporated by the National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (currently the National Institute of Technology and Evaluation, Patent Biological Depositary Center, ZIP Code: 292-0818, Address: Japan Kazusa Kamashizu 2-5-8-5120, Kisarazu City, Chiba Prefecture, Japan), and has been given the accession number FERM BP-11091. AJ13355 shares were founded on February 19, 1998 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Patent Biological Depositary Center, Postal Code: 292-0818, Address: Chiba, Japan Deposited in Kazusa, Kazusa, Kazusa 2-5-8 120) under the deposit number FERM P-16644, transferred to an international deposit under the Budapest Treaty on January 11, 1999, and given the deposit number FERM BP-6614 Has been.
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、α-ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したパントエア属細菌も挙げられる。そのような株としては、AJ13355株のα-ケトグルタル酸デヒドロゲナーゼのE1サブユニット遺伝子(sucA)欠損株であるAJ13356株(米国特許第6,331,419号)、及びSC17株のsucA遺伝子欠損株であるSC17sucA株(米国特許第6,596,517号)が挙げられる。AJ13356株は、1998年2月19日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-16645として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6616が付与されている。また、SC17sucA株は、ブライベートナンバーAJ417が付与され、2004年2月26日に独立行政法人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM BP-8646として寄託されている。 In addition, examples of L-glutamic acid-producing bacteria and parent strains for inducing them also include Pantoea bacteria with reduced or deficient α-ketoglutarate dehydrogenase activity. Such strains include the AJ13356 strain (US Pat. No. 6,331,419) which is the E1 subunit gene (sucA) deficient strain of the α-ketoglutarate dehydrogenase of the AJ13355 strain, and the SC17sucA strain which is the sucA gene deficient strain of the SC17 strain ( US Pat. No. 6,596,517). The AJ13356 strain was founded on February 19, 1998 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Patent Biological Depositary Center, Postal Code: 292-0818, Address: Chiba, Japan. Deposited at Kisarazu City Kazusa Kamashichi 2-5-8 120) under the accession number FERM P-16645 and transferred to the international deposit under the Budapest Treaty on 11 January 1999 and given the accession number FERM BP-6616 ing. The SC17sucA strain was also assigned the private number AJ417. On February 26, 2004, the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (now the National Institute for Product Evaluation Technology Patent Biological Deposit Center, postal code) : 292-0818, Address: Kazusa Kamashitsu 2-5-8 津 120, Kisarazu, Chiba, Japan), deposited under the accession number FERM BP-8646.
 尚、AJ13355株は、分離された当時はEnterobacter agglomeransと同定されたが、近年、16S rRNAの塩基配列解析などにより、Pantoea ananatisに再分類されている。よって、AJ13355株及びAJ13356株は、上記寄託機関にEnterobacter agglomeransとして寄託されているが、本明細書ではPantoea ananatisとして記載する。 The AJ13355 strain was identified as Enterobacter agglomerans at the time of its isolation, but has recently been reclassified as Pantoea anaananatis by 16S rRNA nucleotide sequence analysis and the like. Therefore, the AJ13355 strain and the AJ13356 strain are deposited as Enterobacter agglomerans in the above depository organization, but are described as Pantoea ananatis in this specification.
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、Pantoea ananatis SC17sucA/RSFCPG+pSTVCB株、Pantoea ananatis AJ13601株、Pantoea ananatis NP106株、及びPantoea ananatis NA1株等のパントエア属細菌も挙げられる。SC17sucA/RSFCPG+pSTVCB株は、SC17sucA株に、エシェリヒア・コリ由来のクエン酸シンターゼ遺伝子(gltA)、ホスホエノールピルビン酸カルボキシラーゼ遺伝子(ppc)、およびグルタミン酸デヒドロゲナーゼ遺伝子(gdhA)を含むプラスミドRSFCPG、並びに、ブレビバクテリウム・ラクトファーメンタム由来のクエン酸シンターゼ遺伝子(gltA)を含むプラスミドpSTVCBを導入して得られた株である。AJ13601株は、このSC17sucA/RSFCPG+pSTVCB株から低pH下で高濃度のL-グルタミン酸に耐性を示す株として選択された株である。また、NP106株は、AJ13601株からプラスミドRSFCPG+pSTVCBを脱落させた株である。AJ13601株は、1999年8月18日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-17516として寄託され、2000年7月6日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-7207が付与されている。 Examples of L-glutamic acid-producing bacteria or parent strains for inducing them include Pantoea bacteria such as Pantoea ananatis SC17sucA / RSFCPG + pSTVCB strain, Pantoea ananatis AJ13601 strain, Pantoea ananatis NP106 strain, and Pantoea ananatis NA1 strain . The SC17sucA / RSFCPG + pSTVCB strain is different from the SC17sucA strain in that the plasmid RSFCPG containing the citrate synthase gene (gltA), the phosphoenolpyruvate carboxylase gene (ppc), and the glutamate dehydrogenase gene (gdhA) derived from Escherichia coli, and Brevi This is a strain obtained by introducing a plasmid pSTVCB containing a citrate synthase gene (gltA) derived from bacteria lactofermentum. The AJ13601 strain was selected from the SC17sucA / RSFCPG + pSTVCB strain as a strain resistant to a high concentration of L-glutamic acid at low pH. The NP106 strain is a strain obtained by removing the plasmid RSFCPG + pSTVCB from the AJ13601 strain. On August 18, 1999, AJ13601 shares were registered with the National Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Biological Depositary Center, Postal Code: 292-0818, Address: Chiba, Japan. Deposited at Kisarazu City Kazusa Kamashika 2-5-8 120) under the accession number FERM P-17516, transferred to an international deposit based on the Budapest Treaty on July 6, 2000 and given the accession number FERM BP-7207 ing.
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、α-ケトグルタル酸デヒドロゲナーゼ(sucA)活性およびコハク酸デヒドロゲナーゼ(sdh)活性の両方が低下または欠損した株も挙げられる(特開2010-041920号)。そのような株として、具体的には、例えば、Pantoea ananatis NA1のsucAsdhA二重欠損株が挙げられる(特開2010-041920号)。 Examples of L-glutamic acid-producing bacteria or parent strains for inducing them include strains in which both α-ketoglutarate dehydrogenase (sucA) activity and succinate dehydrogenase (sdh) activity are reduced or deficient (JP 2010) -041920). Specific examples of such a strain include a pantoeaPananatis NA1 sucAsdhA double-deficient strain (Japanese Patent Laid-Open No. 2010-041920).
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、栄養要求性変異株も挙げられる。栄養要求性変異株として、具体的には、例えば、E. coli VL334thrC+ (VKPM B-8961) (EP 1172433) が挙げられる。E. coli VL334 (VKPM B-1641) は、thrC遺伝子及びilvA遺伝子に変異を有するL-イソロイシン及びL-スレオニン要求性株である (米国特許第4,278,765号)。E. coli VL334thrC+は、thrC遺伝子の野生型アレルをVL334に導入することにより得られた、L-イソロイシン要求性のL-グルタミン酸生産菌である。thrC遺伝子の野生型アレルは、野生型E. coli K12株 (VKPM B-7) の細胞で増殖したバクテリオファージP1を用いる一般的形質導入法により導入された。 In addition, examples of L-glutamic acid-producing bacteria or parent strains for inducing them include auxotrophic mutants. Specific examples of the auxotrophic mutant include E. coli VL334thrC + (VKPM B-8961) (EP 1172433). E. coli VL334 (VKPM B-1641) is an L-isoleucine and L-threonine auxotroph having a mutation in the thrC gene and the ilvA gene (US Pat. No. 4,278,765). E. coli VL334thrC + is an L-isoleucine-requiring L-glutamic acid-producing bacterium obtained by introducing a wild type allele of the thrC gene into VL334. The wild type allele of the thrC gene was introduced by a general transduction method using bacteriophage P1 grown on cells of wild type E. coli K12 strain (VKPM B-7).
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、アスパラギン酸アナログに耐性を有する株も挙げられる。これらの株は、例えば、α-ケトグルタル酸デヒドロゲナーゼ活性を欠損していてもよい。アスパラギン酸アナログに耐性を有し、α-ケトグルタル酸デヒドロゲナーゼ活性を欠損した株として、具体的には、例えば、E. coli AJ13199 (FERM BP-5807) (米国特許第5,908,768号)、さらにL-グルタミン酸分解能が低下したE. coli FFRM P-12379 (米国特許第5,393,671号)、E. coli AJ13138 (FERM BP-5565) (米国特許第6,110,714号) が挙げられる。 In addition, examples of L-glutamic acid-producing bacteria or parent strains for inducing them also include strains resistant to aspartic acid analogs. These strains may be deficient in α-ketoglutarate dehydrogenase activity, for example. Specific examples of strains resistant to aspartate analogs and lacking α-ketoglutarate dehydrogenase activity include, for example, E. coli AJ13199 (FERM BP-5807) (US Pat. No. 5,908,768), and L-glutamic acid. E. coli FFRM P-12379 (US Pat. No. 5,393,671) and E. coli AJ13138 (FERM BP-5565) (US Pat. No. 6,110,714) are known.
 また、L-グルタミン酸生産能を付与又は増強するための方法としては、例えば、D-キシルロース-5-リン酸-ホスホケトラーゼ及び/又はフルクトース-6-リン酸ホスホケトラーゼの活性が増大するように細菌を改変する方法も挙げられる(特表2008-509661)。D-キシルロース-5-リン酸-ホスホケトラーゼ活性及びフルクトース-6-リン酸ホスホケトラーゼ活性はいずれか一方を増強してもよいし、両方を増強してもよい。なお、本明細書ではD-キシルロース-5-リン酸-ホスホケトラーゼとフルクトース-6-リン酸ホスホケトラーゼをまとめてホスホケトラーゼと呼ぶことがある。 As a method for imparting or enhancing L-glutamic acid-producing ability, for example, a bacterium is modified so that the activity of D-xylulose-5-phosphate-phosphoketolase and / or fructose-6-phosphate phosphoketolase is increased. There is also a method to do (Special Table 2008-509661). Either one or both of D-xylulose-5-phosphate-phosphoketolase activity and fructose-6-phosphate phosphoketolase activity may be enhanced. In the present specification, D-xylulose-5-phosphate phosphoketolase and fructose-6-phosphate phosphoketolase may be collectively referred to as phosphoketolase.
 D-キシルロース-5-リン酸-ホスホケトラーゼ活性とは、リン酸を消費して、キシルロース-5-リン酸をグリセルアルデヒド-3-リン酸とアセチルリン酸に変換し、一分子のH2Oを放出する活性を意味する。この活性は、Goldberg, M.らの文献 (Methods Enzymol., 9,515-520 (1966)) またはL.Meileの文献 (J.Bacteriol. (2001) 183; 2929-2936) に記載の方法によって測定することができる。 D-xylulose-5-phosphate-phosphoketolase activity is the consumption of phosphoric acid to convert xylulose-5-phosphate into glyceraldehyde-3-phosphate and acetyl phosphate, and one molecule of H 2 O Means the activity of releasing. This activity is measured by the method described in Goldberg, M. et al. (Methods Enzymol., 9,515-520 (1966)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
 また、フルクトース-6-リン酸ホスホケトラーゼ活性とは、リン酸を消費して、フルクトース6-リン酸をエリスロース-4-リン酸とアセチルリン酸に変換し、一分子のH2Oを放出する活性を意味する。この活性は、Racker, Eの文献 (Methods Enzymol., 5, 276-280 (1962)) またはL.Meileの文献 (J.Bacteriol. (2001) 183; 2929-2936) に記載の方法によって測定することができる。 In addition, fructose-6-phosphate phosphoketolase activity means that phosphoric acid is consumed, fructose 6-phosphate is converted into erythrose-4-phosphate and acetyl phosphate, and one molecule of H 2 O is released. Means activity. This activity is measured by the method described in Racker, E (Methods Enzymol., 5, 276-280 (1962)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
 また、L-グルタミン酸生産能を付与又は増強するための方法としては、例えば、L-グルタミン酸排出遺伝子であるyhfK遺伝子(WO2005/085419)やybjL遺伝子(WO2008/133161)の発現を増強することも挙げられる。 Examples of a method for imparting or enhancing L-glutamic acid producing ability include, for example, enhancing expression of yhfK gene (WO2005 / 085419) and ybjL gene (WO2008 / 133161) which are L-glutamic acid excretion genes. It is done.
<L-グルタミン生産菌>
 L-グルタミン生産能を付与又は増強するための方法としては、例えば、L-グルタミン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、グルタミン酸デヒドロゲナーゼ(gdhA)やグルタミンシンセターゼ(glnA)が挙げられる。なお、グルタミンシンセターゼの活性は、グルタミンアデニリルトランスフェラーゼ遺伝子(glnE)の破壊やPII制御タンパク質遺伝子(glnB)の破壊によって増強してもよい(EP1229121)。
<L-glutamine producing bacteria>
Examples of the method for imparting or enhancing L-glutamine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-glutamine biosynthesis enzymes is increased. . Examples of such an enzyme include, but are not limited to, glutamate dehydrogenase (gdhA) and glutamine synthetase (glnA). The activity of glutamine synthetase may be enhanced by disrupting the glutamine adenylyltransferase gene (glnE) or the PII regulatory protein gene (glnB) (EP1229121).
 また、L-グルタミン生産能を付与又は増強するための方法としては、例えば、L-グルタミンの生合成経路から分岐してL-グルタミン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、グルタミナーゼが挙げられる。 The method for imparting or enhancing L-glutamine production ability is, for example, selected from an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of L-glutamine to produce a compound other than L-glutamine. Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned. Such an enzyme is not particularly limited, and includes glutaminase.
 L-グルタミン生産菌又はそれを誘導するための親株としては、グルタミンシンセターゼの397位のチロシン残基が他のアミノ酸残基に置換された変異型グルタミンシンセターゼを有するエシェリヒア属に属する株が挙げられる(米国特許出願公開第2003-0148474号明細書)。 Examples of L-glutamine producing bacteria or parent strains for inducing them include strains belonging to the genus Escherichia having a mutant glutamine synthetase in which the tyrosine residue at position 397 of glutamine synthetase is substituted with another amino acid residue. (US Patent Application Publication No. 2003-0148474).
<L-プロリン生産菌>
 L-プロリン生産能を付与又は増強するための方法としては、例えば、L-プロリン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、グルタミン酸-5-キナーゼ(proB)、γ‐グルタミル-リン酸レダクターゼ、ピロリン-5-カルボキシレートレダクターゼ(putA)が挙げられる。酵素活性の増強には、例えば、L-プロリンによるフィードバック阻害が解除されたグルタミン酸-5-キナーゼをコードするproB遺伝子(ドイツ特許第3127361号)が好適に利用できる。
<L-proline producing bacteria>
Examples of the method for imparting or enhancing L-proline production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-proline biosynthesis enzymes is increased. . Such enzymes include glutamate-5-kinase (proB), γ-glutamyl-phosphate reductase, pyrroline-5-carboxylate reductase (putA). For the enhancement of the enzyme activity, for example, the proB gene (German Patent No. 3127361) encoding glutamate-5-kinase in which feedback inhibition by L-proline is released can be suitably used.
 また、L-プロリン生産能を付与又は増強するための方法としては、例えば、L-プロリン分解に関与する酵素の活性が低下するように細菌を改変する方法が挙げられる。そのような酵素としては、プロリンデヒドロゲナーゼやオルニチンアミノトランスフェラーゼが挙げられる。 In addition, as a method for imparting or enhancing L-proline production ability, for example, a method of modifying bacteria so that the activity of an enzyme involved in L-proline degradation is reduced. Examples of such an enzyme include proline dehydrogenase and ornithine aminotransferase.
 L-プロリン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli NRRL B-12403及びNRRL B-12404 (英国特許第2075056号)、E. coli VKPM B-8012 (ロシア特許出願2000124295)、ドイツ特許第3127361号に記載のE. coliプラスミド変異体、Bloom F.R. et al (The 15th Miami winter symposium, 1983, p.34)に記載のE. coliプラスミド変異体、3,4-デヒドロキシプロリンおよびアザチジン-2-カルボキシレートに耐性のE. coli 702株(VKPMB-8011)、702株のilvA遺伝子欠損株であるE. coli 702ilvA株(VKPM B-8012) (EP 1172433) が挙げられる。 Specific examples of L-proline-producing bacteria or parent strains for deriving them include, for example, E. coli NRRL B-12403 and NRRL B-12404 (British Patent No. 2075056), E. coli VKPM B-8012 ( Russian patent application 2000124295), E. coli plasmid variant described in German Patent 3127361, Bloom FR et al (The 15th Miami winter symposium, 1983, p.34), E. coli plasmid variant, 3, E. coli 702 strain (VKPMB-8011) resistant to 4-dehydroxyproline and azatidine-2-carboxylate, E. coli 702ilvA strain (VKPM B-8012) (EP 1172433) which is a 702 ilvA gene-deficient strain Is mentioned.
<L-スレオニン生産菌>
 L-スレオニン生産能を付与又は増強するための方法としては、例えば、L-スレオニン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、アスパルトキナーゼIII(lysC)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(asd)、アスパルトキナーゼI(thrA)、ホモセリンキナーゼ(homoserine kinase)(thrB)、スレオニンシンターゼ(threonine synthase)(thrC)、アスパラギン酸アミノトランスフェラーゼ(アスパラギン酸トランスアミナーゼ)(aspC)が挙げられる。これらの酵素の中では、アスパルトキナーゼIII、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、アスパルトキナーゼI、ホモセリンキナーゼ、アスパラギン酸アミノトランスフェラーゼ、及びスレオニンシンターゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。L-スレオニン生合成系遺伝子は、スレオニン分解が抑制された株に導入してもよい。スレオニン分解が抑制された株としては、例えば、スレオニンデヒドロゲナーゼ活性が欠損したE. coli TDH6株(特開2001-346578号)が挙げられる。
<L-threonine producing bacteria>
Examples of the method for imparting or enhancing the ability to produce L-threonine include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-threonine biosynthetic enzymes is increased. . Examples of such enzymes include, but are not limited to, aspartokinase III (lysC), aspartate semialdehyde dehydrogenase (asd), aspartokinase I (thrA), homoserine kinase (thrB), threonine synthase ( threonine synthase) (thrC), aspartate aminotransferase (aspartate transaminase) (aspC). Among these enzymes, it enhances the activity of one or more enzymes selected from aspartokinase III, aspartate semialdehyde dehydrogenase, aspartokinase I, homoserine kinase, aspartate aminotransferase, and threonine synthase. Is preferred. The L-threonine biosynthesis gene may be introduced into a strain in which threonine degradation is suppressed. Examples of strains in which threonine degradation is suppressed include E. coli TDH6 strain lacking threonine dehydrogenase activity (Japanese Patent Laid-Open No. 2001-346578).
 L-スレオニン生合成系酵素の活性は、最終産物のL-スレオニンによって阻害される。従って、L-スレオニン生産菌を構築するためには、L-スレオニンによるフィードバック阻害を受けないようにL-スレオニン生合成系遺伝子を改変するのが好ましい。上記thrA、thrB、thrC遺伝子は、スレオニンオペロンを構成しており、スレオニンオペロンは、アテニュエーター構造を形成している。スレオニンオペロンの発現は、培養液中のイソロイシン、スレオニンに阻害を受け、アテニュエーションにより抑制される。スレオニンオペロンの発現の増強は、アテニュエーション領域のリーダー配列あるいはアテニュエーターを除去することにより達成できる(Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194:59-69 (1987); WO02/26993; WO2005/049808; WO2003/097839参照)。 The activity of the L-threonine biosynthetic enzyme is inhibited by the final product L-threonine. Therefore, in order to construct an L-threonine-producing bacterium, it is preferable to modify the L-threonine biosynthetic gene so that it is not subject to feedback inhibition by L-threonine. The thrA, thrB, and thrC genes constitute a threonine operon, and the threonine operon forms an attenuator structure. Expression of the threonine operon is inhibited by isoleucine and threonine in the culture medium, and is suppressed by attenuation. Enhanced expression of the threonine operon can be achieved by removing the leader sequence or attenuator in the attenuation region (Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194: 59-69 1987 (1987); WO02 / 26993; WO2005 / 049808; WO2003 / 097839).
 スレオニンオペロンの上流には固有のプロモーターが存在するが、同プロモーターを非天然のプロモーターに置換してもよい(WO98/04715号パンフレット参照)。また、スレオニン生合成関与遺伝子がラムダファ-ジのリプレッサーおよびプロモーターの制御下で発現するようにスレオニンオペロンを構築してもよい(欧州特許第0593792号明細書参照)。また、L-スレオニンによるフィードバック阻害を受けないように改変された細菌は、L-スレオニンアナログであるα-amino-β-hydroxyvaleric acid(AHV)に耐性な菌株を選抜することによっても取得できる。 A unique promoter exists upstream of the threonine operon, but this promoter may be replaced with a non-natural promoter (see pamphlet of WO98 / 04715). In addition, the threonine operon may be constructed so that a gene involved in threonine biosynthesis is expressed under the control of a lambda phage repressor and promoter (see European Patent No. 0593792). Bacteria modified so as not to be subjected to feedback inhibition by L-threonine can also be obtained by selecting a strain resistant to α-amino-β-hydroxyvaleric acid (AHV), which is an L-threonine analog.
 このようにL-スレオニンによるフィードバック阻害を受けないように改変されたスレオニンオペロンは、コピー数の上昇により、あるいは強力なプロモーターに連結されることにより、宿主内での発現量が向上しているのが好ましい。コピー数の上昇は、スレオニンオペロンを含むプラスミドを宿主に導入することにより達成できる。また、コピー数の上昇は、トランスポゾン、Muファ-ジ等を利用して、宿主のゲノム上にスレオニンオペロンを転移させることによっても達成できる。 Thus, the threonine operon modified so as not to be subjected to feedback inhibition by L-threonine is improved in the expression level in the host by increasing the copy number or being linked to a strong promoter. Is preferred. An increase in copy number can be achieved by introducing a plasmid containing a threonine operon into the host. An increase in copy number can also be achieved by transferring the threonine operon onto the host genome using a transposon, Mu phage, or the like.
 また、L-スレオニン生産能を付与または増強する方法としては、宿主にL-スレオニン耐性を付与する方法やL-ホモセリン耐性を付与する方法も挙げられる。耐性の付与は、例えば、L-スレオニンに耐性を付与する遺伝子、L-ホモセリンに耐性を付与する遺伝子の発現を強化することにより達成できる。耐性を付与する遺伝子としては、rhtA遺伝子(Res. Microbiol. 154:123-135 (2003))、rhtB遺伝子(欧州特許出願公開第0994190号明細書)、rhtC遺伝子(欧州特許出願公開第1013765号明細書)、yfiK遺伝子、yeaS遺伝子(欧州特許出願公開第1016710号明細書)が挙げられる。また、宿主にL-スレオニン耐性を付与する方法は、欧州特許出願公開第0994190号明細書や国際公開第90/04636号パンフレットに記載の方法を参照出来る。 In addition, examples of a method for imparting or enhancing L-threonine production ability include a method for imparting L-threonine resistance to a host and a method for imparting L-homoserine resistance. The imparting of resistance can be achieved, for example, by enhancing the expression of a gene that imparts resistance to L-threonine or a gene that imparts resistance to L-homoserine. Examples of genes that confer resistance include rhtA gene (Res. Microbiol. 154: 123-135 (2003)), rhtB gene (European Patent Application Publication No. 0994190), rhtC gene (European Patent Application Publication No. 1013765) ), YfiK gene, and yeaS gene (European Patent Application Publication No. 1016710). For methods for imparting L-threonine resistance to a host, methods described in European Patent Application Publication No. 0994190 and International Publication No. 90/04636 can be referred to.
 L-スレオニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli TDH-6/pVIC40 (VKPM B-3996) (米国特許第5,175,107号、米国特許第5,705,371号)、E. coli 472T23/pYN7 (ATCC 98081) (米国特許第5,631,157号)、E. coli NRRL-21593 (米国特許第5,939,307号)、E. coli FERM BP-3756 (米国特許第5,474,918号)、E. coli FERM BP-3519及びFERM BP-3520 (米国特許第5,376,538号)、E. coli MG442 (Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978))、E. coli VL643及びVL2055 (EP 1149911 A)、ならびにE. coli VKPM B-5318 (EP 0593792 B) が挙げられる。 Specific examples of L-threonine-producing bacteria or parent strains for deriving them include, for example, E. coli TDH-6 / pVIC40 (VKPM B-3996) (US Patent No. 5,175,107, US Patent No. 5,705,371), E. coli 472T23 / pYN7 (ATCC 98081) (U.S. Patent No. 5,631,157), E. coli NRRL-21593 (U.S. Patent No. 5,939,307), E. coli FERM BP-3756 (U.S. Patent No. 5,474,918), E. coli FERM BP-3519 and FERM BP-3520 (U.S. Patent No. 5,376,538), E. coli MG442 (Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978)), E. coli VL643 and VL2055 ( EP 1149911 A), and E. coli VKPM B-5318 (EP 0593792 B).
 VKPM B-3996株は、TDH-6株に、プラスミドpVIC40を導入した株である。TDH-6株は、スクロース資化性であり、thrC遺伝子を欠損し、ilvA遺伝子にリーキー(leaky)変異を有する。また、VKPM B-3996株は、rhtA遺伝子に、高濃度のスレオニンまたはホモセリンに対する耐性を付与する変異を有する。プラスミドpVIC40は、RSF1010由来ベクターに、スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異型thrA遺伝子と野生型thrBC遺伝子を含むthrA*BCオペロンが挿入されたプラスミドである(米国特許第5,705,371号)。この変異型thrA遺伝子は、スレオニンによるフィードバック阻害が実質的に解除されたアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする。B-3996株は、1987年11月19日、オールユニオン・サイエンティフィック・センター・オブ・アンチビオティクス(Nagatinskaya Street 3-A, 117105 Moscow, Russia)に、受託番号RIA 1867で寄託されている。この株は、また、1987年4月7日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia) に、受託番号VKPM B-3996で寄託されている。 VKPM B-3996 strain is a strain obtained by introducing plasmid pVIC40 into TDH-6 strain. The TDH-6 strain is sucrose-assimilating, lacks the thrC gene, and has a leaky mutation in the ilvA gene. The VKPM B-3996 strain has a mutation that imparts resistance to a high concentration of threonine or homoserine in the rhtA gene. The plasmid pVIC40 is a plasmid in which a thrA * BC operon containing a mutant thrA gene encoding an aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine and a wild type thrBC gene is inserted into an RSF1010-derived vector (US Patent) No. 5,705,371). This mutant thrA gene encodes aspartokinase homoserine dehydrogenase I substantially desensitized to feedback inhibition by threonine. B-3996 was deposited on 19 November 1987 at the All Union Scientific Center of Antibiotics (Nagatinskaya Street 3-A, 117105 Moscow, Russia) with accession number RIA 1867. . This stock was also assigned to the Lucian National Collection of Industrial Microorganisms (VKPM) on April 7, 1987, under the accession number VKPM (FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia). Deposited at B-3996.
 VKPM B-5318株は、イソロイシン非要求性であり、プラスミドpVIC40中のスレオニンオペロンの制御領域を温度感受性ラムダファージC1リプレッサー及びPRプロモーターにより置換したプラスミドpPRT614を保持する。VKPM B-5318は、1990年5月3日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia) に、受託番号VKPM B-5318で国際寄託されている。 The strain VKPM B-5318 is non-isoleucine-requiring and retains the plasmid pPRT614 in which the control region of the threonine operon in the plasmid pVIC40 is replaced with a temperature-sensitive lambda phage C1 repressor and a PR promoter. VKPM B-5318 was assigned to Lucian National Collection of Industrial Microorganisms (VKPM) 3 (FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, 1990Russia) on May 3, 1990. Deposited internationally at B-5318.
 E. coliのアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードするthrA遺伝子は明らかにされている(ヌクレオチド番号337~2799, GenBank accession NC_000913.2, gi: 49175990)。thrA遺伝子は、E. coli K-12の染色体において、thrL遺伝子とthrB遺伝子との間に位置する。Escherichia coliのホモセリンキナーゼをコードするthrB遺伝子は明らかにされている(ヌクレオチド番号2801~3733, GenBank accession NC_000913.2, gi: 49175990)。thrB遺伝子は、E. coli K-12の染色体において、thrA遺伝子とthrC遺伝子との間に位置する。E. coliのスレオニンシンターゼをコードするthrC遺伝子は明らかにされている(ヌクレオチド番号3734~5020, GenBank accession NC_000913.2, gi: 49175990)。thrC遺伝子は、E. coli K-12の染色体において、thrB遺伝子とyaaXオープンリーディングフレームとの間に位置する。また、スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異型thrA遺伝子と野生型thrBC遺伝子を含むthrA*BCオペロンは、スレオニン生産株E. coli VKPM B-3996に存在する周知のプラスミドpVIC40(米国特許第5,705,371号)から取得できる。 The thrA gene encoding aspartokinase homoserine dehydrogenase I of E. coli has been elucidated (nucleotide numbers 337-2799, GenBank accession NC — 000913.2, gi: 49175990). The thrA gene is located between the thrL gene and the thrB gene in the chromosome of E. coli K-12. The thrB gene encoding the homoserine kinase of Escherichia coli has been elucidated (nucleotide numbers 2801 to 3733, GenBank accession NC — 000913.2, gi: 49175990). The thrB gene is located between the thrA gene and the thrC gene in the chromosome of E. coli K-12. The thrC gene encoding threonine synthase from E. coli has been elucidated (nucleotide numbers 3734-5020, GenBank accession NC — 000913.2, gi: 49175990). The thrC gene is located between the thrB gene and the yaaX open reading frame in the chromosome of E. coli K-12. In addition, a thrA * BC operon containing a mutant thrA gene encoding an aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine and a wild type thrBC gene is known in the threonine-producing strain E. coli VKPM B-3996. It can be obtained from plasmid pVIC40 (US Pat. No. 5,705,371).
 E. coliのrhtA遺伝子は、グルタミン輸送系の要素をコードするglnHPQ オペロンに近いE. coli染色体の18分に存在する。rhtA遺伝子は、ORF1 (ybiF遺伝子, ヌクレオチド番号764~1651, GenBank accession number AAA218541, gi:440181)と同一であり、pexB遺伝子とompX遺伝子との間に位置する。ORF1によりコードされるタンパク質を発現するユニットは、rhtA遺伝子と呼ばれている(rht: resistant to homoserine and threonine(ホモセリン及びスレオニンに耐性))。また、高濃度のスレオニン又はホモセリンへの耐性を付与するrhtA23変異が、ATG開始コドンに対して-1位のG→A置換であることが判明している(ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A)。 The rhtA gene of E. coli is present at 18 minutes of the E. coli chromosome close to the glnHPQ operon, which encodes a glutamine transport system element. The rhtA gene is the same as ORF1 (ybiF gene, nucleotide numbers 764 to 1651, GenBank accession number AAA218541, gi: 440181), and is located between the pexB gene and the ompX gene. The unit that expresses the protein encoded by ORF1 is called rhtA gene (rht: resistant toosehomoserine andeonthreonine (resistant to homoserine and threonine)). It has also been found that the rhtA23 mutation conferring resistance to high concentrations of threonine or homoserine is a G → A substitution at position -1 relative to the ATG initiation codon (ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A).
 E. coliのasd遺伝子は既に明らかにされており(ヌクレオチド番号3572511~3571408, GenBank accession NC_000913.1, gi:16131307)、その遺伝子の塩基配列に基づいて作製されたプライマーを用いるPCRにより取得できる(White, T.J. et al., Trends Genet., 5, 185 (1989)参照)。他の微生物のasd遺伝子も同様に得ることができる。 The asd gene of E. coli has already been clarified (nucleotide numbers 3572511 to 3571408, GenBank accession NC_000913.1, gi: 16131307), and can be obtained by PCR using primers prepared based on the nucleotide sequence of the gene ( White, TJ et al., Trends Genet., 5, 185 (1989)). The asd gene of other microorganisms can be obtained similarly.
 また、E. coliのaspC遺伝子も既に明らかにされており(ヌクレオチド番号983742~984932, GenBank accession NC_000913.1, gi:16128895)、その遺伝子の塩基配列に基づいて作製されたプライマーを用いるPCRにより得ることができる。他の微生物のaspC遺伝子も同様に得ることができる。 In addition, the aspC gene of E. 既 に coli has already been clarified (nucleotide numbers 983742 to 984932, GenBank accession NC_000913.1, gi: 16128895), and obtained by PCR using a primer prepared based on the nucleotide sequence of the gene be able to. The aspC gene of other microorganisms can be obtained similarly.
<L-リジン生産菌>
 L-リジン生産能を付与又は増強するための方法としては、例えば、L-リジン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ジヒドロジピコリン酸シンターゼ(dihydrodipicolinate synthase)(dapA)、アスパルトキナーゼIII(aspartokinase III)(lysC)、ジヒドロジピコリン酸レダクターゼ(dihydrodipicolinate reductase)(dapB)、ジアミノピメリン酸デカルボキシラーゼ(diaminopimelate decarboxylase)(lysA)、ジアミノピメリン酸デヒドロゲナーゼ(diaminopimelate dehydrogenase)(ddh)(米国特許第6,040,160号)、ホスホエノールピルビン酸カルボキシラーゼ(phosphoenolpyrvate carboxylase)(ppc)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(aspartate semialdehyde dehydrogenease)(asd)、アスパラギン酸アミノトランスフェラーゼ(aspartate aminotransferase)(アスパラギン酸トランスアミナーゼ(aspartate transaminase))(aspC)、ジアミノピメリン酸エピメラーゼ(diaminopimelate epimerase)(dapF)、テトラヒドロジピコリン酸スクシニラーゼ(tetrahydrodipicolinate succinylase)(dapD)、スクシニルジアミノピメリン酸デアシラーゼ(succinyl-diaminopimelate deacylase)(dapE)、及びアスパルターゼ(aspartase)(aspA)(EP 1253195 A)が挙げられる。これらの酵素の中では、例えば、ジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、ホスホエノールピルビン酸カルボキシラーゼ、アスパラギン酸アミノトランスフェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、テトラヒドロジピコリン酸スクシニラーゼ、及びスクシニルジアミノピメリン酸デアシラーゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。また、L-リジン生産菌又はそれを誘導するための親株では、エネルギー効率に関与する遺伝子(cyo)(EP 1170376 A)、ニコチンアミドヌクレオチドトランスヒドロゲナーゼ(nicotinamide nucleotide transhydrogenase)をコードする遺伝子(pntAB)(米国特許第5,830,716号)、ybjE遺伝子(WO2005/073390)、またはこれらの組み合わせの発現レベルが増大していてもよい。アスパルトキナーゼIII(lysC)はL-リジンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、L-リジンによるフィードバック阻害が解除されたアスパルトキナーゼIIIをコードする変異型lysC遺伝子を利用してもよい(米国特許5,932,453号明細書)。また、ジヒドロジピコリン酸合成酵素(dapA)L-リジンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、L-リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素をコードする変異型dapA遺伝子を利用してもよい。
<L-lysine producing bacteria>
Examples of a method for imparting or enhancing L-lysine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-lysine biosynthesis enzymes is increased. . Such enzymes include, but are not limited to, dihydrodipicolinate synthase (dapA), aspartokinase III (lysC), dihydrodipicolinate reductase (dapB), diaminopimelate Diaminopimelate decarboxylase (lysA), diaminopimelate dehydrogenase (ddh) (US Pat. No. 6,040,160), phosphoenolpyrvate carboxylase (ppc), aspartate semialdehyde dehydrogenase ) (Asd), aspartate aminotransferase (aspartate transaminase) (aspC), diaminopimelate epi Diaminopimelate epimerase (dapF), tetrahydrodipicolinate succinylase (dapD), succinyl-diaminopimelate deacylase (dapE), and aspartase (aspA) (195) ). Among these enzymes, for example, dihydrodipicolinate reductase, diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semialdehyde dehydrogenase, tetrahydrodipicolinate succinylase, and Preferably, the activity of one or more enzymes selected from succinyl diaminopimelate deacylase is enhanced. In addition, in L-lysine producing bacteria or a parent strain for deriving the same, a gene (cyo) (EP 1170376 A) involved in energy efficiency, a gene encoding nicotinamide nucleotide transhydrogenase (pntAB) ( US Pat. No. 5,830,716), ybjE gene (WO2005 / 073390), or combinations thereof may have increased expression levels. Aspartokinase III (lysC) is subject to feedback inhibition by L-lysine. To enhance the activity of the enzyme, a mutant lysC gene encoding aspartokinase III that has been desensitized to feedback inhibition by L-lysine is used. It may be used (US Pat. No. 5,932,453). In addition, since it is subjected to feedback inhibition by dihydrodipicolinate synthase (dapA) L-lysine, in order to enhance the activity of the enzyme, a mutant type encoding dihydrodipicolinate synthase from which feedback inhibition by L-lysine is released The dapA gene may be used.
 また、L-リジン生産能を付与又は増強するための方法としては、例えば、L-リジンの生合成経路から分岐してL-リジン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、ホモセリンデヒドロゲナーゼ(homoserine dehydrogenase)、リジンデカルボキシラーゼ(lysine decarboxylase)(米国特許第5,827,698号)、及びリンゴ酸酵素(malic enzyme)(WO2005/010175)が挙げられる。 The method for imparting or enhancing L-lysine production ability is, for example, selected from enzymes that catalyze the reaction of branching from the biosynthetic pathway of L-lysine to produce compounds other than L-lysine. Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned. Such enzymes include, but are not limited to, homoserine dehydrogenase, lysine decarboxylase (US Pat. No. 5,827,698), and malic enzyme (WO2005 / 010175). .
 また、L-リジン生産菌又はそれを誘導するための親株としては、L-リジンアナログに耐性を有する変異株が挙げられる。L-リジンアナログは腸内細菌科の細菌やコリネ型細菌等の細菌の生育を阻害するが、この阻害は、L-リジンが培地に共存するときには完全にまたは部分的に解除される。L-リジンアナログとしては、特に制限されないが、オキサリジン、リジンヒドロキサメート、S-(2-アミノエチル)-L-システイン(AEC)、γ-メチルリジン、α-クロロカプロラクタムが挙げられる。これらのリジンアナログに対して耐性を有する変異株は、細菌を通常の人工変異処理に付すことによって得ることができる。 In addition, examples of L-lysine-producing bacteria or parent strains for inducing them include mutants having resistance to L-lysine analogs. L-lysine analogs inhibit the growth of bacteria such as Enterobacteriaceae and coryneform bacteria, but this inhibition is completely or partially released when L-lysine is present in the medium. The L-lysine analog is not particularly limited, and examples thereof include oxalysine, lysine hydroxamate, S- (2-aminoethyl) -L-cysteine (AEC), γ-methyllysine, and α-chlorocaprolactam. Mutant strains having resistance to these lysine analogs can be obtained by subjecting bacteria to normal artificial mutation treatment.
 L-リジン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli AJ11442(FERM BP-1543, NRRL B-12185; 米国特許第4,346,170号参照)及びE. coli VL611が挙げられる。これらの株では、アスパルトキナーゼのL-リジンによるフィードバック阻害が解除されている。 Specific examples of L-lysine-producing bacteria or parent strains for deriving them include, for example, E. coli AJ11442 (FERM BP-1543, NRRL B-12185; see U.S. Pat. No. 4,346,170) and E. coli VL611. Can be mentioned. In these strains, feedback inhibition of aspartokinase by L-lysine is released.
 L-リジン生産菌又はそれを誘導するための親株として、具体的には、E. coli WC196株も挙げられる。WC196株は、E. coli K-12に由来するW3110株にAEC耐性を付与することにより育種された(米国特許第5,827,698号)。WC196株は、E. coli AJ13069と命名され、1994年12月6日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-14690として寄託され、1995年9月29日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-5252が付与されている(米国特許第5,827,698号)。 Specific examples of L-lysine-producing bacteria or parent strains for inducing them include E. coli WC196 strain. The WC196 strain was bred by conferring AEC resistance to the W3110 strain derived from E. coli K-12 (US Pat. No. 5,827,698). The WC196 strain was named E. coli AJ13069, and on December 6, 1994, the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Patent Biological Depositary Center, ZIP Code: 292- 0818, address: 2-5-8 鎌 120, Kazusa Kamashitsu, Kisarazu City, Chiba, Japan), deposited under the accession number FERM P-14690, transferred to an international deposit based on the Budapest Treaty on September 29, 1995. No. FERM BP-5252 (US Pat. No. 5,827,698).
 好ましいL-リジン生産菌として、E. coli WC196ΔcadAΔldcやE. coli WC196ΔcadAΔldc/pCABD2が挙げられる(WO2010/061890)。WC196ΔcadAΔldcは、WC196株より、リジンデカルボキシラーゼをコードするcadA及びldcC遺伝子を破壊することにより構築した株である。WC196ΔcadAΔldc/pCABD2は、WC196ΔcadAΔldcに、リジン生合成系遺伝子を含むプラスミドpCABD2(米国特許第6,040,160号)を導入することにより構築した株である。WC196ΔcadAΔldcは、AJ110692と命名され、2008年10月7日に、独立行政法人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM BP-11027として国際寄託された。pCABD2は、L-リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のジヒドロジピコリン酸合成酵素(DDPS)をコードする変異型dapA遺伝子と、L-リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のアスパルトキナーゼIIIをコードする変異型lysC遺伝子と、エシェリヒア・コリ由来のジヒドロジピコリン酸レダクターゼをコードするdapB遺伝子と、ブレビバクテリウム・ラクトファーメンタム由来ジアミノピメリン酸デヒドロゲナーゼをコードするddh遺伝子を含んでいる。 Preferred L-lysine producing bacteria include E.coli WC196ΔcadAΔldc and E.coli WC196ΔcadAΔldc / pCABD2 (WO2010 / 061890). WC196ΔcadAΔldc is a strain constructed by disrupting the cadA and ldcC genes encoding lysine decarboxylase from the WC196 strain. WC196ΔcadAΔldc / pCABD2 is a strain constructed by introducing plasmid pCABD2 (US Pat. No. 6,040,160) containing a lysine biosynthesis gene into WC196ΔcadAΔldc. WC196ΔcadAΔldc was named AJ110692, and on October 7, 2008, National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (currently, National Institute of Technology and Evaluation, Patent Biological Deposit Center, ZIP Code: 292-0818 , Address: 2-5-8 Kazusa, Kazusa Kamashitsu, Kisarazu, Chiba, Japan) Room No. FERM BP-11027. pCABD2 is a mutant dapA gene encoding dihydrodipicolinate synthase (DDPS) derived from Escherichia coli having a mutation that is desensitized to feedback inhibition by L-lysine, and a mutation that is desensitized to feedback inhibition by L-lysine. A mutant lysC gene encoding aspartokinase III derived from Escherichia coli, dapB gene encoding dihydrodipicolinate reductase derived from Escherichia coli, and ddh encoding a diaminopimelate dehydrogenase derived from Brevibacterium lactofermentum Contains genes.
 好ましいL-リジン生産菌として、E. coli AJIK01株(NITE BP-01520)も挙げられる。AJIK01株は、E. coli AJ111046と命名され、2013年1月29日に、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 122号室)に寄託され、2014年5月15日にブダペスト条約に基づく国際寄託に移管され、受託番号NITE BP-01520が付与されている。 A preferable L-lysine-producing bacterium includes E.coli AJIK01 strain (NITE BP-01520). The AJIK01 strain was named E. coli AJ111046. On January 29, 2013, the National Institute of Technology and Evaluation, Patent Microorganisms Deposit Center (Postal Code: 292-0818, Address: Kazusa Kama, Kisarazu City, Chiba Prefecture, Japan) No. 2-5-8 122), transferred to an international deposit under the Budapest Treaty on May 15, 2014, and assigned the deposit number NITE BP-01520.
<L-アルギニン生産菌>
 L-アルギニン生産能を付与又は増強するための方法としては、例えば、L-アルギニン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、N-アセチルグルタミン酸シンターゼ(argA)、N-アセチルグルタミルリン酸レダクターゼ(argC)、オルニチンアセチルトランスフェラーゼ(argJ)、N-アセチルグルタミン酸キナーゼ(argB)、アセチルオルニチントランスアミナーゼ(argD)、アセチルオルニチンデアセチラーゼ(argE)オルニチンカルバモイルトランスフェラーゼ(argF)、アルギニノコハク酸シンターゼ(argG)、アルギニノコハク酸リアーゼ(argH)、カルバモイルリン酸シンターゼ(carAB)が挙げられる。N-アセチルグルタミン酸シンターゼ(argA)遺伝子としては、例えば、野生型の15位~19位に相当するアミノ酸残基が置換され、L-アルギニンによるフィードバック阻害が解除された変異型N-アセチルグルタミン酸シンターゼをコードする遺伝子を用いると好適である(欧州出願公開1170361号明細書)。
<L-arginine producing bacteria>
Examples of the method for imparting or enhancing L-arginine-producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-arginine biosynthesis enzymes is increased. . Examples of such enzymes include, but are not limited to, N-acetylglutamate synthase (argA), N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine Examples include transaminase (argD), acetylornithine deacetylase (argE) ornithine carbamoyltransferase (argF), argininosuccinate synthase (argG), argininosuccinate lyase (argH), and carbamoyl phosphate synthase (carAB). Examples of the N-acetylglutamate synthase (argA) gene include mutant N-acetylglutamate synthase in which amino acid residues corresponding to the 15th to 19th positions of the wild type are substituted and feedback inhibition by L-arginine is released. It is preferable to use a gene to be encoded (European Application Publication No. 1170361).
 L-アルギニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli 237株 (VKPM B-7925) (米国特許出願公開2002/058315 A1)、変異型N-アセチルグルタメートシンターゼをコードするargA遺伝子が導入されたその誘導株 (ロシア特許出願第2001112869号, EP1170361A1)、237株由来の酢酸資化能が向上した株であるE. coli 382株 (VKPM B-7926) (EP1170358A1)、及び382株にE. coli K-12株由来の野生型ilvA遺伝子が導入された株であるE. coli 382ilvA+株が挙げられる。E. coli 237株は、2000年4月10日にルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia) にVKPM B-7925の受託番号で寄託され、2001年5月18日にブダペスト条約に基づく国際寄託に移管された。E. coli 382株は、2000年4月10日にルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia) にVKPM B-7926の受託番号で寄託されている。 Specific examples of L-arginine-producing bacteria or parent strains for deriving them include, for example, E. coli 237 strain (VKPM B-7925) (US Patent Application Publication 2002/058315 A1), mutant N-acetylglutamate Its derivative strain さ れ (Russian patent application No. 2001112869, EP1170361A1) introduced with the argA gene encoding synthase, E.237coli 382 strain (VKPM B-7926) 237 (VKPM B-7926) EP1170358A1) and E. coli 382ilvA + strain, which is a strain in which the wild-type ilvA gene derived from E. coli K-12 strain is introduced into 382 strain. E. coli 237 shares will be transferred to VKPM B- on April 10, 2000 at Lucian National Collection of Industrial Microorganisms (VKPM) (FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia). Deposited with a deposit number of 7925 and transferred to an international deposit under the Budapest Treaty on 18 May 2001. E. coli 382 shares were established on April 10, 2000 at Lucian National Collection of Industrial Microorganisms (VKPM) (FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia). Deposited with 7926 accession number.
 また、L-アルギニン生産菌又はそれを誘導するための親株としては、アミノ酸アナログ等への耐性を有する株も挙げられる。そのような株としては、例えば、α-メチルメチオニン、p-フルオロフェニルアラニン、D-アルギニン、アルギニンヒドロキサム酸、S-(2-アミノエチル)-システイン、α-メチルセリン、β-2-チエニルアラニン、またはスルファグアニジンに耐性を有するエシェリヒア・コリ変異株(特開昭56-106598号公報参照)が挙げられる。 In addition, examples of L-arginine-producing bacteria or parent strains for inducing them include strains having resistance to amino acid analogs and the like. Such strains include, for example, α-methylmethionine, p-fluorophenylalanine, D-arginine, arginine hydroxamic acid, S- (2-aminoethyl) -cysteine, α-methylserine, β-2-thienylalanine, or Examples include Escherichia coli mutants having resistance to sulfaguanidine (see JP-A-56-106598).
<L-シトルリン生産菌およびL-オルニチン生産菌>
 L-シトルリンおよびL-オルニチンは、L-アルギニンと生合成経路が共通している。よって、N-アセチルグルタミン酸シンターゼ(argA)、N-アセチルグルタミルリン酸レダクターゼ(argC)、オルニチンアセチルトランスフェラーゼ(argJ)、N-アセチルグルタミン酸キナーゼ(argB)、アセチルオルニチントランスアミナーゼ(argD)、および/またはアセチルオルニチンデアセチラーゼ(argE)の酵素活性を上昇させることによって、L-シトルリンおよび/またはL-オルニチンの生産能を付与または増強することができる(国際公開2006-35831号パンフレット)。
<L-citrulline-producing bacteria and L-ornithine-producing bacteria>
L-citrulline and L-ornithine share a biosynthetic pathway with L-arginine. Thus, N-acetylglutamate synthase (argA), N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), and / or acetylornithine By increasing the enzyme activity of deacetylase (argE), the ability to produce L-citrulline and / or L-ornithine can be imparted or enhanced (WO 2006-35831).
<L-ヒスチジン生産菌>
 L-ヒスチジン生産能を付与又は増強するための方法としては、例えば、L-ヒスチジン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ATPホスホリボシルトランスフェラーゼ(hisG)、ホスホリボシル-AMPサイクロヒドロラーゼ(hisI)、ホスホリボシル-ATPピロホスホヒドロラーゼ(hisI)、ホスホリボシルフォルミミノ-5-アミノイミダゾールカルボキサミドリボタイドイソメラーゼ(hisA)、アミドトランスフェラーゼ(hisH)、ヒスチジノールフォスフェイトアミノトランスフェラーゼ(hisC)、ヒスチジノールフォスファターゼ(hisB)、ヒスチジノールデヒドロゲナーゼ(hisD)が挙げられる。
<L-histidine producing bacteria>
Examples of the method for imparting or enhancing L-histidine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-histidine biosynthesis enzymes is increased. . Examples of such an enzyme include, but are not limited to, ATP phosphoribosyltransferase (hisG), phosphoribosyl-AMP cyclohydrolase (hisI), phosphoribosyl-ATP pyrophosphohydrolase (hisI), phosphoribosylformimino-5-aminoimidazole carboxamide ribonucleoside. Examples thereof include tide isomerase (hisA), amide transferase (hisH), histidinol phosphate aminotransferase (hisC), histidinol phosphatase (hisB), and histidinol dehydrogenase (hisD).
 これらの内、hisG及びhisBHAFIにコードされるL-ヒスチジン生合成系酵素は、L-ヒスチジンにより阻害されることが知られている。従って、L-ヒスチジン生産能は、例えば、ATPホスホリボシルトランスフェラーゼ遺伝子(hisG)にフィードバック阻害への耐性を付与する変異を導入することにより、 付与または増強させることができる(ロシア特許第2003677号及び第2119536号)。 Of these, L-histidine biosynthetic enzymes encoded by hisG and hisBHAFI are known to be inhibited by L-histidine. Therefore, the ability to produce L-histidine can be imparted or enhanced by introducing a mutation that confers resistance to feedback inhibition in, for example, the ATP phosphoribosyltransferase gene (hisG) (Russian Patent No. 2003677 and No. 2). 2119536).
 L-ヒスチジン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli 24株 (VKPM B-5945, RU2003677)、E. coli NRRL B-12116~B-12121 (米国特許第4,388,405号)、E. coli H-9342 (FERM BP-6675)及びH-9343 (FERM BP-6676) (米国特許第6,344,347号)、E. coli H-9341 (FERM BP-6674) (EP1085087)、E. coli AI80/pFM201 (米国特許第6,258,554号)、L-ヒスチジン生合成系酵素をコードするDNAを保持するベクターを導入したE. coli FERM P-5038及び5048 (特開昭56-005099号)、アミノ酸輸送の遺伝子を導入したE. coli株(EP1016710A)、スルファグアニジン、DL-1,2,4-トリアゾール-3-アラニン、及びストレプトマイシンに対する耐性を付与したE. coli 80株(VKPM B-7270, ロシア特許第2119536号)などのエシェリヒア属に属する株が挙げられる。 Specific examples of L-histidine-producing bacteria or parent strains for inducing them include, for example, E. coli 24 strain (VKPM B-5945, RU2003677), E. coli NRRL B-12116-B-12121 (US Patent) No. 4,388,405), E. coli H-9342 (FERM BP-6675) and H-9343 (FERM BP-6676) (U.S. Patent No. 6,344,347), E. coli H-9341 (FERM BP-6674) (EP1085087) E. coli AI80 / pFM201 (US Pat. No. 6,258,554), E. coli FERM P-5038 and 5048 into which a vector carrying DNA encoding an L-histidine biosynthetic enzyme was introduced (Japanese Patent Laid-Open No. 56-005099) ), E. coli strain (EP1016710A) introduced with a gene for amino acid transport, E. coli 80 strain (VKPM B) with resistance to sulfaguanidine, DL-1,2,4-triazole-3-alanine, and streptomycin -7270, (Russian Patent No. 2119536) and other strains belonging to the genus Escherichia.
<L-システイン生産菌>
 L-システイン生産能を付与又は増強するための方法としては、例えば、L-システイン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、セリンアセチルトランスフェラーゼ(cysE)や3-ホスホグリセリン酸デヒドロゲナーゼ(serA)が挙げられる。セリンアセチルトランスフェラーゼ活性は、例えば、システインによるフィードバック阻害に耐性の変異型セリンアセチルトランスフェラーゼをコードする変異型cysE遺伝子を細菌に導入することにより増強できる。変異型セリンアセチルトランスフェラーゼは、例えば、特開平11-155571や米国特許公開第20050112731に開示されている。また、3-ホスホグリセリン酸デヒドロゲナーゼ活性は、例えば、セリンによるフィードバック阻害に耐性の変異型3-ホスホグリセリン酸デヒドロゲナーゼをコードする変異型serA遺伝子を細菌に導入することにより増強できる。変異型3-ホスホグリセリン酸デヒドロゲナーゼは、例えば、米国特許第6,180,373号に開示されている。
<L-cysteine producing bacteria>
Examples of the method for imparting or enhancing L-cysteine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-cysteine biosynthesis enzymes is increased. . Examples of such an enzyme include, but are not limited to, serine acetyltransferase (cysE) and 3-phosphoglycerate dehydrogenase (serA). Serine acetyltransferase activity can be enhanced, for example, by introducing a mutant cysE gene encoding a mutant serine acetyltransferase resistant to feedback inhibition by cysteine into bacteria. Mutant serine acetyltransferases are disclosed, for example, in JP-A-11-155571 and US Patent Publication No. 20050112731. Further, the 3-phosphoglycerate dehydrogenase activity can be enhanced by introducing, for example, a mutant serA gene encoding a mutant 3-phosphoglycerate dehydrogenase resistant to feedback inhibition by serine into a bacterium. Mutant 3-phosphoglycerate dehydrogenase is disclosed, for example, in US Pat. No. 6,180,373.
 また、L-システイン生産能を付与又は増強するための方法としては、例えば、L-システインの生合成経路から分岐してL-システイン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、例えば、L-システインの分解に関与する酵素が挙げられる。L-システインの分解に関与する酵素としては、特に制限されないが、シスタチオニン-β-リアーゼ(metC)(特開平11-155571号、Chandra et. al., Biochemistry, 21 (1982) 3064-3069))、トリプトファナーゼ(tnaA)(特開2003-169668、Austin Newton et. al., J. Biol. Chem. 240 (1965) 1211-1218)、O-アセチルセリンスルフヒドリラーゼB(cysM)(特開2005-245311)、malY遺伝子産物(特開2005-245311)、Pantoea ananatisのd0191遺伝子産物(特開2009-232844)が挙げられる。 The method for imparting or enhancing L-cysteine production ability is selected from, for example, an enzyme that catalyzes a reaction that branches from the biosynthesis pathway of L-cysteine to produce a compound other than L-cysteine. Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned. Examples of such enzymes include enzymes involved in the degradation of L-cysteine. The enzyme involved in the degradation of L-cysteine is not particularly limited, but cystathionine-β-lyase (metC) (Japanese Patent Laid-Open No. 11-155571, Chandra et. Al., Biochemistry, 21 (1982) 3064-3069)) Tryptophanase (tnaA) (Japanese Patent Laid-Open No. 2003-169668, Austin 、 Newton et. Al., J. Biol. Chem. 240 (1965) 1211-1218), O-acetylserine sulfhydrylase B (cysM) (special JP 2005-245311), malY gene product (JP 2005-245311), d0191 gene product of Pantoea 遺 伝 子 ananatis (JP 2009-232844).
 また、L-システイン生産能を付与又は増強するための方法としては、例えば、L-システイン排出系を増強することや硫酸塩/チオ硫酸塩輸送系を増強することも挙げられる。L-システイン排出系のタンパク質としては、ydeD遺伝子にコードされるタンパク質(特開2002-233384)、yfiK遺伝子にコードされるタンパク質(特開2004-49237)、emrAB、emrKY、yojIH、acrEF、bcr、およびcusAの各遺伝子にコードされる各タンパク質(特開2005-287333)、yeaS遺伝子にコードされるタンパク質(特開2010-187552)が挙げられる。硫酸塩/チオ硫酸塩輸送系のタンパク質としては、cysPTWAM遺伝子クラスターにコードされるタンパク質が挙げられる。 In addition, examples of methods for imparting or enhancing L-cysteine production ability include enhancing the L-cysteine excretion system and enhancing the sulfate / thiosulfate transport system. Examples of proteins of the L-cysteine excretion system include proteins encoded by the ydeD gene (JP 2002-233384), proteins encoded by the yfiK gene (JP 2004-49237), emrAB, emrKY, yojIH, acrEF, bcr, And each protein encoded by each gene of cusA (Japanese Patent Laid-Open No. 2005-287333), and protein encoded by the yeaS gene (Japanese Patent Laid-Open No. 2010-187552). Examples of the sulfate / thiosulfate transport system protein include proteins encoded by the cysPTWAM gene cluster.
 L-システイン生産菌又はそれを誘導するための親株として、具体的には、例えば、フィードバック阻害耐性の変異型セリンアセチルトランスフェラーゼをコードする種々のcysEアレルで形質転換されたE. coli JM15 (米国特許第6,218,168号、ロシア特許出願第2003121601号)、細胞に毒性の物質を排出するのに適したタンパク質をコードする過剰発現遺伝子を有するE. coli W3110 (米国特許第5,972,663号)、システインデスルフヒドラーゼ活性が低下したE. coli株 (JP11155571A2)、cysB遺伝子によりコードされる正のシステインレギュロンの転写制御因子の活性が上昇したE. coli W3110 (WO01/27307A1)が挙げられる。 Specific examples of L-cysteine-producing bacteria or parent strains for deriving them include, for example, E. coli JM15 (US Patent) transformed with various cysE alleles encoding mutant serine acetyltransferase resistant to feedback inhibition. No. 6,218,168, Russian Patent Application No. 2003121601), E. coli W3110 (US Pat.No. 5,972,663), cysteine desulfhydrase, which has an overexpressed gene encoding a protein suitable for excretion of substances toxic to cells Examples include E. coli strain (JP11155571A2) with reduced activity and E. coli W3110 (WO01 / 27307A1) with increased activity of the transcriptional control factor of the positive cysteine regulon encoded by the cysB gene.
<L-メチオニン生産菌>
 L-メチオニン生産菌又はそれを誘導するための親株としては、L-スレオニン要求株や、ノルロイシンに耐性を有する変異株が挙げられる(特開2000-139471)。また、L-メチオニン生産菌又はそれを誘導するための親株としては、L-メチオニンによるフィードバック阻害に対して耐性をもつ変異型ホモセリントランスサクシニラーゼを保持する株も挙げられる(特開2000-139471、US20090029424)。なお、L-メチオニンはL-システインを中間体として生合成されるため、L-システインの生産能の向上によりL-メチオニンの生産能も向上させることができる(特開2000-139471、US20080311632)。
<L-methionine producing bacteria>
Examples of L-methionine-producing bacteria or parent strains for inducing them include L-threonine-requiring strains and mutants having resistance to norleucine (Japanese Patent Laid-Open No. 2000-139471). In addition, examples of L-methionine-producing bacteria or parent strains for deriving them also include strains that retain mutant homoserine transsuccinylase that is resistant to feedback inhibition by L-methionine (Japanese Patent Laid-Open No. 2000-139471). , US20090029424). Since L-methionine is biosynthesized with L-cysteine as an intermediate, L-methionine production ability can be improved by improving L-cysteine production ability (Japanese Patent Laid-Open No. 2000-139471, US20080311632).
 L-メチオニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli AJ11539 (NRRL B-12399)、E. coli AJ11540 (NRRL B-12400)、E. coli AJ11541 (NRRL B-12401)、E. coli AJ11542 (NRRL B-12402) (英国特許第2075055号)、L-メチオニンのアナログであるノルロイシン耐性を有するE. coli 218株 (VKPM B-8125)(ロシア特許第2209248号)や73株 (VKPM B-8126) (ロシア特許第2215782号)、E. coli AJ13425 (FERM P-16808)(特開2000-139471)が挙げられる。AJ13425株は、メチオニンリプレッサーを欠損し、細胞内のS-アデノシルメチオニンシンセターゼ活性が弱化し、細胞内のホモセリントランスサクシニラーゼ活性、シスタチオニンγ-シンターゼ活性、及びアスパルトキナーゼ-ホモセリンデヒドロゲナーゼII活性が増強された、E. coli W3110由来のL-スレオニン要求株である。 Specific examples of L-methionine-producing bacteria or parent strains for inducing them include, for example, E. coli AJ11539 (NRRL B-12399), E. coli AJ11540 (NRRL B-12400), E. coli AJ11541 (NRRL B-12401), E. coli AJ11542 (NRRL B-12402) (British Patent No. 2075055), E. coli 218 strain (VKPM B-8125) having resistance to norleucine, an analog of L-methionine (Russian Patent No. 2209248) No.), 73 shares (VKPM B-8126) (Russian Patent No. 2215782), E. coli AJ13425 (FERM P-16808) (Japanese Patent Laid-Open No. 2000-139471). The AJ13425 strain lacks a methionine repressor, weakens intracellular S-adenosylmethionine synthetase activity, and produces intracellular homoserine transsuccinylase activity, cystathionine γ-synthase activity, and aspartokinase-homoserine dehydrogenase II. L-threonine-requiring strain derived from E. coli W3110 with enhanced activity.
<L-ロイシン生産菌>
 L-ロイシン生産能を付与又は増強するための方法としては、例えば、L-ロイシン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、leuABCDオペロンの遺伝子にコードされる酵素が挙げられる。また、酵素活性の増強には、例えば、L-ロイシンによるフィードバック阻害が解除されたイソプロピルマレートシンターゼをコードする変異leuA遺伝子(米国特許第6,403,342号)が好適に利用できる。
<L-leucine producing bacteria>
Examples of the method for imparting or enhancing the ability to produce L-leucine include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-leucine biosynthesis enzymes is increased. . Examples of such an enzyme include, but are not limited to, an enzyme encoded by a gene of leuABCD operon. For enhancing enzyme activity, for example, a mutant leuA gene (US Pat. No. 6,403,342) encoding isopropyl malate synthase from which feedback inhibition by L-leucine has been released can be suitably used.
 L-ロイシン生産菌又はそれを誘導するための親株として、具体的には、例えば、ロイシン耐性のE. coli株 (例えば、57株 (VKPM B-7386, 米国特許第6,124,121号))、β-2-チエニルアラニン、3-ヒドロキシロイシン、4-アザロイシン、5,5,5-トリフルオロロイシンなどのロイシンアナログ耐性のE. coli株(特公昭62-34397号及び特開平8-70879号)、WO96/06926に記載された遺伝子工学的方法で得られたE. coli株、E. coli H-9068 (特開平8-70879号)などのエシェリヒア属に属する株が挙げられる。 Specific examples of L-leucine-producing bacteria or parent strains for inducing the same include, for example, leucine-resistant E. coli strains (eg, 57 strains (VKPM B-7386, US Pat. No. 6,124,121)), β- E. coli strains resistant to leucine analogs such as 2-thienylalanine, 3-hydroxyleucine, 4-azaleucine, 5,5,5-trifluoroleucine (JP-B-62-34397 and JP-A-8-70879), WO96 And strains belonging to the genus Escherichia such as E. coli strain and E. coli H-9068 (JP-A-8-70879) obtained by the genetic engineering method described in / 06926.
<L-イソロイシン生産菌>
 L-イソロイシン生産能を付与又は増強するための方法としては、例えば、L-イソロイシン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、スレオニンデアミナーゼやアセトヒドロキシ酸シンターゼが挙げられる(特開平2-458号, FR 0356739, 及び米国特許第5,998,178号)。
<L-isoleucine producing bacterium>
Examples of the method for imparting or enhancing L-isoleucine producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-isoleucine biosynthesis enzymes is increased. . Examples of such an enzyme include, but are not limited to, threonine deaminase and acetohydroxy acid synthase (JP-A-2-458, FR 0356739, and US Pat. No. 5,998,178).
 L-イソロイシン生産菌又はそれを誘導するための親株として、具体的には、例えば、6-ジメチルアミノプリンに耐性を有する変異株(特開平5-304969号)、チアイソロイシン、イソロイシンヒドロキサメートなどのイソロイシンアナログに耐性を有する変異株、イソロイシンアナログに加えてDL-エチオニン及び/またはアルギニンヒドロキサメートに耐性を有する変異株(特開平5-130882号) 等のエシェリヒア属細菌が挙げられる。 Specific examples of L-isoleucine-producing bacteria or parent strains for inducing them include mutants having resistance to 6-dimethylaminopurine (Japanese Patent Laid-Open No. 5-304969), thiisoleucine, isoleucine hydroxamate, etc. And an Escherichia bacterium such as a mutant strain resistant to DL-ethionine and / or arginine hydroxamate in addition to the isoleucine analog (Japanese Patent Laid-Open No. 5-130882).
<L-バリン生産菌>
 L-バリン生産能を付与又は増強するための方法としては、例えば、L-バリン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ilvGMEDAオペロンやilvBNCオペロンの遺伝子にコードされる酵素が挙げられる。ilvBNはアセトヒドロキシ酸シンターゼを、ilvCはイソメロリダクターゼ(国際公開00/50624号)を、それぞれコードする。なお、ilvGMEDAオペロンおよびilvBNCオペロンは、L-バリン、L-イソロイシン、および/またはL-ロイシンによる発現抑制(アテニュエーション)を受ける。よって、酵素活性の増強のためには、アテニュエーションに必要な領域を除去または改変し、生成するL-バリンによる発現抑制を解除するのが好ましい。また、ilvA遺伝子がコードするスレオニンデアミナーゼは、L-イソロイシン生合成系の律速段階であるL-スレオニンから2-ケト酪酸への脱アミノ化反応を触媒する酵素である。よって、L-バリン生産のためには、ilvA遺伝子が破壊等され、スレオニンデアミナーゼ活性が減少しているのが好ましい。
<L-valine producing bacteria>
Examples of a method for imparting or enhancing L-valine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-valine biosynthetic enzymes is increased. . Examples of such enzymes include, but are not limited to, enzymes encoded by genes of ilvGMEDA operon and ilvBNC operon. ilvBN encodes acetohydroxy acid synthase, and ilvC encodes isomeroreductase (WO 00/50624). The ilvGMEDA operon and the ilvBNC operon are subject to expression suppression (attenuation) by L-valine, L-isoleucine, and / or L-leucine. Therefore, in order to enhance the enzyme activity, it is preferable to remove or modify the region necessary for attenuation and to cancel the expression suppression by the produced L-valine. The threonine deaminase encoded by the ilvA gene is an enzyme that catalyzes the deamination reaction from L-threonine to 2-ketobutyric acid, which is the rate-limiting step of the L-isoleucine biosynthesis system. Therefore, for L-valine production, it is preferable that the ilvA gene is disrupted and the threonine deaminase activity is reduced.
 また、L-バリン生産能を付与又は増強するための方法としては、例えば、L-バリンの生合成経路から分岐してL-バリン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、L-ロイシン合成に関与するスレオニンデヒドラターゼやD-パントテン酸合成に関与する酵素が挙げられる(国際公開00/50624号)。 The method for imparting or enhancing L-valine-producing ability is, for example, selected from enzymes that catalyze a reaction that branches from the biosynthetic pathway of L-valine to produce a compound other than L-valine. Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned. Examples of such enzymes include, but are not limited to, threonine dehydratase involved in L-leucine synthesis and enzymes involved in D-pantothenic acid synthesis (International Publication No. 00/50624).
 L-バリン生産菌又はそれを誘導するための親株として、具体的には、例えば、ilvGMEDAオペロンを過剰発現するように改変されたE. coli株(米国特許第5,998,178号) が挙げられる。 Specific examples of the L-valine-producing bacterium or the parent strain for deriving the same include, for example, the E. coli strain (US Pat. No. 5,998,178) that has been modified to overexpress the ilvGMEDA operon.
 また、L-バリン生産菌又はそれを誘導するための親株としては、アミノアシルt-RNAシンテターゼに変異を有する株(米国特許第5,658,766号)も挙げられる。そのような株としては、例えば、イソロイシンtRNAシンテターゼをコードするileS遺伝子に変異を有するE. coli VL1970が挙げられる。E. coli VL1970は、1988年6月24日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM B-4411で寄託されている。また、L-バリン生産菌又はそれを誘導するための親株としては、生育にリポ酸を要求する、および/または、H+-ATPaseを欠失している変異株(WO96/06926)も挙げられる。 In addition, examples of L-valine-producing bacteria and parent strains for deriving the same also include strains having mutations in aminoacyl t-RNA synthetase (US Pat. No. 5,658,766). Examples of such a strain include E. coli VL1970 having a mutation in the ileS gene encoding isoleucine tRNA synthetase. E. coli VL1970 was registered with the accession number VKPM on June 24, 1988 in the Lucian National Collection of Industrial Microorganisms (VKPM) (FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia). Deposited at B-4411. In addition, examples of L-valine-producing bacteria or parent strains for deriving the same also include mutant strains (WO96 / 06926) that require lipoic acid for growth and / or lack H + -ATPase. .
<L-トリプトファン生産菌、L-フェニルアラニン生産菌、L-チロシン生産菌>
 L-トリプトファン生産能、L-フェニルアラニン生産能、および/またはL-チロシン生産能を付与又は増強するための方法としては、例えば、L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。
<L-tryptophan producing bacteria, L-phenylalanine producing bacteria, L-tyrosine producing bacteria>
Examples of methods for imparting or enhancing L-tryptophan production ability, L-phenylalanine production ability, and / or L-tyrosine production ability include biosynthesis of L-tryptophan, L-phenylalanine, and / or L-tyrosine. Examples include a method of modifying a bacterium so that the activity of one or more enzymes selected from system enzymes is increased.
 これらの芳香族アミノ酸に共通する生合成系酵素としては、特に制限されないが、3-デオキシ-D-アラビノヘプツロン酸-7-リン酸シンターゼ(aroG)、3-デヒドロキネートシンターゼ(aroB)、シキミ酸デヒドロゲナーゼ(aroE)、シキミ酸キナーゼ(aroL)、5-エノール酸ピルビルシキミ酸3-リン酸シンターゼ(aroA)、コリスミ酸シンターゼ(aroC)が挙げられる(欧州特許763127号)。これらの酵素をコードする遺伝子の発現はチロシンリプレッサー(tyrR)によって制御されており、tyrR遺伝子を欠損させることによって、これらの酵素の活性を増強してもよい(欧州特許763127号)。 Biosynthetic enzymes common to these aromatic amino acids are not particularly limited, but 3-deoxy-D-arabinohepturonic acid-7-phosphate synthase (aroG), 3-dehydroquinate synthase (aroB) Shikimate dehydrogenase (aroE), shikimate kinase (aroL), 5-enolic acid pyruvylshikimate 3-phosphate synthase (aroA), chorismate synthase (aroC) (European Patent No. 763127). Expression of genes encoding these enzymes is controlled by a tyrosine repressor (tyrR), and the activity of these enzymes may be enhanced by deleting the tyrR gene (European Patent No. 763127).
 L-トリプトファン生合成系酵素としては、特に制限されないが、アントラニル酸シンターゼ(trpE)、トリプトファンシンターゼ(trpAB)、及びホスホグリセリン酸デヒドロゲナーゼ(serA)が挙げられる。例えば、トリプトファンオペロンを含むDNAを導入することにより、L-トリプトファン生産能を付与又は増強できる。トリプトファンシンターゼは、それぞれtrpA及びtrpB遺伝子によりコードされるα及びβサブユニットからなる。アントラニル酸シンターゼはL-トリプトファンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。ホスホグリセリン酸デヒドロゲナーゼはL-セリンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。さらに、マレートシンターゼ(aceB)、イソクエン酸リアーゼ(aceA)、およびイソクエン酸デヒドロゲナーゼキナーゼ/フォスファターゼ(aceK)からなるオペロン(aceオペロン)の発現を増大させることによりL-トリプトファン生産能を付与または増強してもよい(WO2005/103275)。 Examples of the L-tryptophan biosynthesis enzyme include, but are not limited to, anthranilate synthase (trpE), tryptophan synthase (trpAB), and phosphoglycerate dehydrogenase (serA). For example, L-tryptophan production ability can be imparted or enhanced by introducing DNA containing a tryptophan operon. Tryptophan synthase consists of α and β subunits encoded by trpA and trpB genes, respectively. Since anthranilate synthase is subject to feedback inhibition by L-tryptophan, in order to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used. Since phosphoglycerate dehydrogenase is feedback-inhibited by L-serine, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used to enhance the activity of the enzyme. Furthermore, L-tryptophan-producing ability is imparted or enhanced by increasing the expression of an operon consisting of malate synthase (aceB), isocitrate lyase (aceA), and isocitrate dehydrogenase kinase / phosphatase (aceK). (WO2005 / 103275).
 L-フェニルアラニン生合成系酵素としては、特に制限されないが、コリスミ酸ムターゼ及びプレフェン酸デヒドラターゼが挙げられる。コリスミ酸ムターゼ及びプレフェン酸デヒドラターゼは、2機能酵素としてpheA遺伝子によってコードされている。コリスミ酸ムターゼ-プレフェン酸デヒドラターゼはL-フェニルアラニンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。 The L-phenylalanine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prefenate dehydratase. Chorismate mutase and prefenate dehydratase are encoded by the pheA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydratase is feedback-inhibited by L-phenylalanine, in order to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
 L-チロシン生合成系酵素としては、特に制限されないが、コリスミ酸ムターゼ及びプレフェン酸デヒドロゲナーゼが挙げられる。コリスミ酸ムターゼ及びプレフェン酸デヒドロゲナーゼは、2機能酵素としてtyrA遺伝子によってコードされている。コリスミ酸ムターゼ-プレフェン酸デヒドロゲナーゼはL-チロシンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。 The L-tyrosine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prephenate dehydrogenase. Chorismate mutase and prefenate dehydrogenase are encoded by the tyrA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydrogenase is feedback-inhibited by L-tyrosine, to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
 L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生産菌は、目的の芳香族アミノ酸以外の芳香族アミノ酸の生合成が低下するように改変されていてもよい。また、L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生産菌は、副生物の取り込み系が増強されるように改変されていてもよい。副生物としては、目的の芳香族アミノ酸以外の芳香族アミノ酸が挙げられる。副生物の取り込み系をコードする遺伝子としては、例えば、L-トリプトファンの取り込み系をコードする遺伝子であるtnaBやmtr、L-フェニルアラニンの取り込み系をコードする遺伝子であるpheP、L-チロシンの取り込み系をコードする遺伝子であるtyrPが挙げられる(EP1484410)。 The L-tryptophan, L-phenylalanine, and / or L-tyrosine producing bacterium may be modified so that biosynthesis of aromatic amino acids other than the target aromatic amino acid is lowered. In addition, L-tryptophan, L-phenylalanine, and / or L-tyrosine-producing bacteria may be modified so that the by-product uptake system is enhanced. By-products include aromatic amino acids other than the desired aromatic amino acid. Examples of genes encoding uptake systems of by-products include, for example, uptake systems of tnaB and mtr, which are L-tryptophan uptake systems, and pheP, L-tyrosine, which are genes encoding uptake systems of L-phenylalanine. TyrP, which is a gene coding for (EP1484410).
 L-トリプトファン生産菌又はそれを誘導するための親株として、具体的には、例えば、部分的に不活化されたトリプトファニル-tRNAシンテターゼをコードする変異型trpS遺伝子を保持するE. coli JP4735/pMU3028 (DSM10122)及びJP6015/pMU91 (DSM10123) (米国特許第5,756,345号)、トリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを有するE. coli SV164、セリンによるフィードバック阻害を受けないホスホグリセリン酸デヒドロゲナーゼをコードするserAアレル及びトリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを有するE. coli SV164 (pGH5) (米国特許第6,180,373号)、トリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを含むトリプトファンオペロンが導入された株 (特開昭57-71397号, 特開昭62-244382号, 米国特許第4,371,614号)、トリプトファナーゼが欠損したE. coli AGX17 (pGX44) (NRRL B-12263)及びAGX6(pGX50)aroP (NRRL B-12264) (米国特許第4,371,614号)、ホスホエノールピルビン酸生産能が増大したE. coli AGX17/pGX50,pACKG4-pps (WO9708333, 米国特許第6,319,696号)、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属する株 (米国特許出願公開2003/0148473 A1及び2003/0157667 A1) が挙げられる。 As an L-tryptophan-producing bacterium or a parent strain for deriving it, specifically, for example, E. coli JP4735 / pMU3028 carrying a mutant trpS gene encoding a partially inactivated tryptophanyl-tRNA synthetase. DSM10122) and JP6015 / pMU91 (DSM10123) (U.S. Patent No. 5,756,345), E. coli SV164 with trpE allele encoding anthranilate synthase not subject to feedback inhibition by tryptophan, phosphoglycerate dehydrogenase not subject to feedback inhibition by serine E. coli SV164 (pGH5) (U.S. Pat.No. 6,180,373) with serA allele encoding and trpE allele encoding anthranilate synthase not subject to feedback inhibition by tryptophan, coding for anthranilate synthase not subject to feedback inhibition by tryptophan A strain introduced with a tryptophan operon containing a trpE allele (JP 57-71397, JP 62-244382, U.S. Pat.No. 4,371,614), E. coliGX AGX17 (pGX44) lacking tryptophanase NRRL B-12263) and AGX6 (pGX50) aroP (NRRL B-12264) (U.S. Pat.No. 4,371,614), E. coli AGX17 / pGX50, pACKG4-pps (WO9708333, U.S. Patent No. No. 6,319,696), strains belonging to the genus Escherichia with increased activity of the protein encoded by the yedA gene or the yddG gene (US Patent Application Publications 2003/0148473 A1 and 2003/0157667 A1).
 L-フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、例えば、コリスミ酸ムターゼ-プレフェン酸デヒドロゲナーゼ及びチロシンリプレッサーを欠損したE. coli AJ12739 (tyrA::Tn10, tyrR) (VKPM B-8197)(WO03/044191)、フィードバック阻害が解除されたコリスミ酸ムターゼ-プレフェン酸デヒドラターゼをコードする変異型pheA34遺伝子を保持するE. coli HW1089 (ATCC 55371) (米国特許第 5,354,672号)、E. coli MWEC101-b (KR8903681)、E. coli NRRL B-12141、NRRL B-12145、NRRL B-12146、NRRL B-12147 (米国特許第4,407,952号)が挙げられる。また、L-フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、例えば、フィードバック阻害が解除されたコリスミ酸ムターゼ-プレフェン酸デヒドラターゼをコードする遺伝子を保持するE. coli K-12 <W3110 (tyrA)/pPHAB> (FERM BP-3566)、E. coli K-12 <W3110 (tyrA)/pPHAD> (FERM BP-12659)、E. coli K-12 <W3110 (tyrA)/pPHATerm> (FERM BP-12662)、E. coli K-12 AJ 12604 <W3110 (tyrA)/pBR-aroG4, pACMAB> (FERM BP-3579)も挙げられる(EP 488424 B1)。また、L-フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、例えば、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属する株も挙げられる(US2003/0148473、US2003/0157667、WO03/044192)。 As an L-phenylalanine producing bacterium or a parent strain for deriving the same, specifically, for example, E. coli AJ12739 (tyrA :: Tn10, tyrR) (VKPM) lacking chorismate mutase-prefenate dehydrogenase and tyrosine repressor B-8197) (WO03 / 044191), E. coli HW1089 (ATCC 55371) (U.S. Patent No. 5,354,672), carrying a mutant pheA34 gene encoding chorismate mutase-prefenate dehydratase with released feedback inhibition (US Patent No. 5,354,672), E .Coli MWEC 101-b (KR8903681), E.coli NRRL B-12141, NRRL B-12145, NRRL B-12146, NRRL B-12147 (US Pat. No. 4,407,952). Further, as an L-phenylalanine-producing bacterium or a parent strain for deriving the same, specifically, for example, E. coli K-12 that retains a gene encoding chorismate mutase-prefenate dehydratase in which feedback inhibition is released. <W3110 (tyrA) / pPHAB> (FERM BP-3566), E. coli K-12 <W3110 (tyrA) / pPHAD> (FERM BP-12659), E. coli K-12 <W3110 (tyrA) / pPHATerm> (FERM BP-12662), E. coli K-12 AJ 12604 <W3110 (tyrA) / pBR-aroG4, pACMAB> (FERM BP-3579) (EP 488424 B1). Specific examples of L-phenylalanine-producing bacteria or parent strains for inducing them include, for example, strains belonging to the genus Escherichia in which the activity of the protein encoded by the yedA gene or the yddG gene is increased (US2003 / 0148473, US2003 / 0157667, WO03 / 044192).
 また、L-アミノ酸生産能を付与または増強する方法としては、例えば、細菌の細胞からL-アミノ酸を排出する活性が増大するように細菌を改変する方法が挙げられる。L-アミノ酸を排出する活性は、例えば、L-アミノ酸を排出するタンパク質をコードする遺伝子の発現を上昇させることにより、増大させることができる。各種アミノ酸を排出するタンパク質をコードする遺伝子としては、例えば、b2682遺伝子(ygaZ)、b2683遺伝子(ygaH)、b1242遺伝子(ychE)、b3434遺伝子(yhgN)が挙げられる(特開2002-300874号公報)。 In addition, examples of a method for imparting or enhancing L-amino acid-producing ability include a method of modifying a bacterium so that the activity of discharging L-amino acid from the bacterium cell is increased. The activity to excrete L-amino acids can be increased, for example, by increasing the expression of a gene encoding a protein that excretes L-amino acids. Examples of genes encoding proteins that excrete various amino acids include b2682 gene (ygaZ), b2683 gene (ygaH), b1242 gene (ychE), and b3434 gene (yhgN) (Japanese Patent Laid-Open No. 2002-300874) .
 また、L-アミノ酸生産能を付与または増強する方法としては、例えば、糖代謝に関与するタンパク質やエネルギー代謝に関与するタンパク質の活性が増大するように細菌を改変する方法が挙げられる。 In addition, examples of a method for imparting or enhancing L-amino acid producing ability include a method for modifying bacteria so that the activity of a protein involved in sugar metabolism or a protein involved in energy metabolism is increased.
 糖代謝に関与するタンパク質としては、糖の取り込みに関与するタンパク質や解糖系酵素が挙げられる。糖代謝に関与するタンパク質をコードする遺伝子としては、グルコース6-リン酸イソメラーゼ遺伝子(pgi;国際公開第01/02542号パンフレット)、ピルビン酸カルボキシラーゼ遺伝子(pyc;国際公開99/18228号パンフレット、欧州出願公開1092776号明細書)、ホスホグルコムターゼ遺伝子(pgm;国際公開03/04598号パンフレット)、フルクトース二リン酸アルドラーゼ遺伝子(pfkB, fbp;国際公開03/04664号パンフレット)、トランスアルドラーゼ遺伝子(talB;国際公開03/008611号パンフレット)、フマラーゼ遺伝子(fum;国際公開01/02545号パンフレット)、non-PTSスクロース取り込み遺伝子(csc;欧州出願公開149911号パンフレット)、スクロース資化性遺伝子(scrABオペロン;国際公開第90/04636号パンフレット)が挙げられる。 Proteins involved in sugar metabolism include proteins involved in sugar uptake and glycolytic enzymes. Genes encoding proteins involved in sugar metabolism include glucose 6-phosphate isomerase gene (pgi; WO 01/02542 pamphlet), pyruvate carboxylase gene (pyc; WO 99/18228 pamphlet, European application Publication 1092776), phosphoglucomutase gene (pgm; International Publication No. 03/04598 pamphlet), fructose diphosphate aldolase gene (pfkB, kfbp; International Publication No. 03/04664 pamphlet), transaldolase gene (talB; International (Publication 03/008611 pamphlet), fumarase gene (fum; international publication 01/02545 pamphlet), non-PTS sucrose uptake gene (csc; European application publication 149911 pamphlet), sucrose utilization gene (scrAB operon; international publication) No. 90/04636 pamphlet).
 エネルギー代謝に関与するタンパク質をコードする遺伝子としては、トランスヒドロゲナーゼ遺伝子(pntAB;米国特許 5,830,716号明細書)、チトクロムbo型オキシダーゼ(cytochromoe bo type oxidase)遺伝子(cyoB;欧州特許出願公開1070376号明細書)が挙げられる。 Examples of genes encoding proteins involved in energy metabolism include a transhydrogenase gene (pntAB; US Pat. No. 5,830,716), a cytochrome bo type oxidase (cyoB; European Patent Application Publication No. 1070376) Is mentioned.
 なお、上記のL-アミノ酸生産菌の育種に使用される遺伝子は、元の機能が維持されたタンパク質をコードする限り、上記例示した遺伝子や公知の塩基配列を有する遺伝子に限られず、そのバリアントであってもよい。例えば、L-アミノ酸生産菌の育種に使用される遺伝子は、公知のタンパク質のアミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。遺伝子やタンパク質のバリアントについては、後述するアコニターゼおよびアセトアルデヒドデヒドロゲナーゼならびにそれらをコードする遺伝子の保存的バリアントに関する記載を準用できる。 The gene used for breeding the above-mentioned L-amino acid-producing bacteria is not limited to the above-exemplified genes or genes having a known base sequence, as long as it encodes a protein having the original function maintained. There may be. For example, a gene used for breeding an L-amino acid-producing bacterium is an amino acid in which one or several amino acids at one or several positions are substituted, deleted, inserted or added in the amino acid sequence of a known protein. It may be a gene encoding a protein having a sequence. Regarding gene and protein variants, the descriptions of aconitase and acetaldehyde dehydrogenase described below and conservative variants of genes encoding them can be applied mutatis mutandis.
<1-2>アコニターゼ活性およびアセトアルデヒドデヒドロゲナーゼ活性の増強
 本発明の細菌は、アコニターゼ活性が増大するように、または、アコニターゼ活性およびアセトアルデヒドデヒドロゲナーゼ活性が増大するように改変されている。アコニターゼ活性が増大するように、または、アコニターゼ活性およびアセトアルデヒドデヒドロゲナーゼ活性が増大するように細菌を改変することによって、エタノールを炭素源として用いる場合の同細菌によるL-アミノ酸生産を向上させることができる。
<1-2> Enhancement of aconitase activity and acetaldehyde dehydrogenase activity The bacterium of the present invention has been modified to increase aconitase activity or to increase aconitase activity and acetaldehyde dehydrogenase activity. By modifying the bacterium to increase aconitase activity or to increase aconitase activity and acetaldehyde dehydrogenase activity, L-amino acid production by the bacterium when ethanol is used as a carbon source can be improved.
 本発明の細菌は、L-アミノ酸生産能を有する細菌を、アコニターゼ活性が増大するように、または、アコニターゼ活性およびアセトアルデヒドデヒドロゲナーゼ活性が増大するように改変することにより取得できる。また、本発明の細菌は、アコニターゼ活性が増大するように、または、アコニターゼ活性およびアセトアルデヒドデヒドロゲナーゼ活性が増大するように細菌を改変した後に、L-アミノ酸生産能を付与または増強することによっても得ることができる。なお、本発明の細菌は、アコニターゼ活性が増大するように、または、アコニターゼ活性およびアセトアルデヒドデヒドロゲナーゼ活性が増大するように改変されたことにより、L-アミノ酸生産能を獲得したものであってもよい。本発明の細菌を構築するための改変は、任意の順番で行うことができる。 The bacterium of the present invention can be obtained by modifying a bacterium having an L-amino acid-producing ability so that the aconitase activity is increased or the aconitase activity and the acetaldehyde dehydrogenase activity are increased. The bacterium of the present invention can also be obtained by imparting or enhancing the ability to produce L-amino acid after modifying the bacterium so that aconitase activity is increased or aconitase activity and acetaldehyde dehydrogenase activity are increased. Can do. In addition, the bacterium of the present invention may have acquired L-amino acid-producing ability by being modified so that aconitase activity is increased or aconitase activity and acetaldehyde dehydrogenase activity are increased. The modification for constructing the bacterium of the present invention can be performed in any order.
 「アコニターゼ(aconitase)」とは、クエン酸とイソクエン酸間の異性化反応を可逆的に触媒する活性を有するタンパク質(EC 4.2.1.3)をいう。同活性を「アコニターゼ活性」ともいう。また、アコニターゼをコードする遺伝子を「アコニターゼ遺伝子」ともいう。アコニターゼ活性は、例えば、イソクエン酸からのcis-アコニット酸の生成を測定することにより、測定できる(Gruer MJ, Guest JR., Microbiology., 1994, Oct;140(10):2531-41.)。 “Aconitase” refers to a protein having an activity of reversibly catalyzing the isomerization reaction between citric acid and isocitrate (EC 4.2.1.3). This activity is also referred to as “aconitase activity”. A gene encoding aconitase is also referred to as “aconitase gene”. Aconitase activity can be measured, for example, by measuring the production of cis-aconitic acid from isocitrate (Gruer MJ, Guest JR., Microbiology., 1994, Oct; 140 (10): 2531-41.).
 アコニターゼとしては、acnA遺伝子にコードされるAcnAタンパク質やacnB遺伝子にコードされるAcnBタンパク質が挙げられる。本発明においては、例えば、AcnAタンパク質の活性を増強してもよく、AcnBタンパク質の活性を増強してもよく、AcnAタンパク質とAcnBタンパク質の両方の活性を増強してもよい。なお、本発明の細菌がアセトアルデヒドデヒドロゲナーゼの活性が増大するように改変されていない場合は、少なくともAcnBタンパク質の活性を増強する。 Examples of aconitase include AcnA protein encoded by acnA gene and AcnB protein encoded by acnB gene. In the present invention, for example, the activity of the AcnA protein may be enhanced, the activity of the AcnB protein may be enhanced, or the activities of both the AcnA protein and the AcnB protein may be enhanced. When the bacterium of the present invention is not modified so that the activity of acetaldehyde dehydrogenase is increased, at least the activity of AcnB protein is enhanced.
 AcnAタンパク質およびAcnBタンパク質としては、例えば、エシェリヒア・コリ(Escherichia coli)、パントエア・アナナティス(Pantoea ananatis)、ペクトバクテリウム・アトロセプティカム(Pectobacterium atrosepticum)(旧名、エルビニア・カロトボーラ(Erwinia carotovora))、サルモネラ・エンテリカ(Salmonella enterica)等の腸内細菌科に属する細菌のAcnAタンパク質およびAcnBタンパク質が挙げられる。 Examples of AcnA protein and AcnB protein include Escherichia coli, Pantoea ananatis, Pectobacterium atrosepticum (former name Erwinia カ ロ carotovora), Examples include AcnA protein and AcnB protein of bacteria belonging to the family Enterobacteriaceae such as Salmonella enterica.
 Escherichia coli K12 MG1655株のacnA遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.3 GI:556503834)として登録されているゲノム配列中、1335831~1338506位の配列に相当する。また、MG1655株のAcnAタンパク質は、GenBank accession NP_415792 (version NP_415792.1 GI:16129237)として登録されている。MG1655株のacnA遺伝子の塩基配列およびAcnAタンパク質のアミノ酸配列を、それぞれ配列番号21および22に示す。 The acnA gene of Escherichia coli K12-MG1655 strain corresponds to the sequence from positions 1335831 to 1338506 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.3 GI: 556503834) in the NCBI database. The AcnA protein of MG1655 strain is registered as GenBank accession NP_415792 (version NP_415792.1 GI: 16129237). The nucleotide sequence of the acnA gene of MG1655 strain and the amino acid sequence of AcnA protein are shown in SEQ ID NOs: 21 and 22, respectively.
 Pantoea ananatis AJ13355株のacnA遺伝子は、NCBIデータベースに、GenBank accession NC_017531 (VERSION NC_017531.1 GI:386014600)として登録されているゲノム配列中、1665681~1668362位の配列の相補配列に相当する。また、AJ13355株のAcnAタンパク質は、GenBank accession YP_005934253 (version YP_005934253.1 GI:386015968)として登録されている。AJ13355株のacnA遺伝子の塩基配列およびAcnAタンパク質のアミノ酸配列を、それぞれ配列番号23および24に示す。 The acnA gene of the Pantoea ananatis AJ13355 strain corresponds to the complementary sequence of the sequences 1665661 to 1668362 in the genome sequence registered as GenBank accession NC_017531 (VERSION NC_017531.1GI: 386014600) in the NCBI database. The AcnA protein of AJ13355 strain is registered as GenBank accession YP_005934253 (version YP_005934253.1 GI: 386015968). The nucleotide sequence of the acnA gene of AJ13355 strain and the amino acid sequence of AcnA protein are shown in SEQ ID NOs: 23 and 24, respectively.
 Pectobacterium atrosepticum SCRI1043株のacnA遺伝子は、NCBIデータベースに、GenBank accession NC_004547 (VERSION NC_004547.2 GI:50119055)として登録されているゲノム配列中、2198282~2200954位の配列に相当する。また、SCRI1043株のAcnAタンパク質は、GenBank accession YP_050038 (version YP_050038.1 GI:50120871)として登録されている。SCRI1043株のacnA遺伝子の塩基配列およびAcnAタンパク質のアミノ酸配列を、それぞれ配列番号25および26に示す。 The acnA gene of the Pectobacterium atrosepticum SCRI1043 strain corresponds to the 2198282 to 2200954 position in the genome sequence registered as GenBank accession NC_004547 (VERSION NC_004547.2 GI: 50119055) in the NCBI database. In addition, the AcnA protein of SCRI1043 strain is registered as GenBank accession YP_050038 (version YP_050038.1 GI: 50120871). The nucleotide sequence of the acnA gene of SCRI1043 strain and the amino acid sequence of AcnA protein are shown in SEQ ID NOs: 25 and 26, respectively.
 Salmonella enterica serovar Typhi CT18株のacnA遺伝子は、NCBIデータベースに、GenBank accession NC_003198 (VERSION NC_003198.1 GI:16762629)として登録されているゲノム配列中、1298278~1300953位の配列に相当する。また、CT18株のAcnAタンパク質は、GenBank accession NP_455785 (version NP_455785.1 GI:16760168)として登録されている。CT18株のacnA遺伝子の塩基配列およびAcnAタンパク質のアミノ酸配列を、それぞれ配列番号27および28に示す。 The acnA gene of Salmonella enterica serovar Typhi CT18 strain corresponds to the sequence from 1298278 to 1300953 in the genome sequence registered as GenBank accession NC_003198 (VERSION NC_003198.1 GI: 16762629) in the NCBI database. In addition, the CT18 strain AcnA protein is registered as GenBank accession NP_455785 (version NP_455785.1 GI: 16760168). The nucleotide sequence of the acnA gene of CT18 strain and the amino acid sequence of AcnA protein are shown in SEQ ID NOs: 27 and 28, respectively.
 Escherichia coli K12 MG1655株のacnB遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.3 GI:556503834)として登録されているゲノム配列中、131615~134212位の配列に相当する。また、MG1655株のAcnBタンパク質は、GenBank accession NP_414660 (version NP_414660.1 GI:16128111)として登録されている。MG1655株のacnB遺伝子の塩基配列およびAcnBタンパク質のアミノ酸配列を、それぞれ配列番号29および30に示す。 The acnB gene of Escherichia coli K12-MG1655 strain corresponds to the 131615-134212 positions in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.3 GI: 556503834) in the NCBI database. The AcnB protein of the MG1655 strain is registered as GenBank accession NP_414660 (version NP_414660.1 GI: 16128111). The nucleotide sequence of the acnB gene of the MG1655 strain and the amino acid sequence of the AcnB protein are shown in SEQ ID NOs: 29 and 30, respectively.
 Pantoea ananatis AJ13355株のacnB遺伝子は、NCBIデータベースに、GenBank accession NC_017531 (VERSION NC_017531.1 GI:386014600)として登録されているゲノム配列中、116856~119552位の配列に相当する。また、AJ13355株のAcnBタンパク質は、GenBank accession YP_005932972 (version YP_005932972.1 GI:386014695)として登録されている。AJ13355株のacnB遺伝子の塩基配列およびAcnBタンパク質のアミノ酸配列を、それぞれ配列番号31および32に示す。 The acnB gene of Pantoea ananatis AJ13355 strain corresponds to the sequence of 116856 to 119552 in the genome sequence registered as GenBank accession NC_017531 (VERSION NC_017531.1GI: 386014600) in the NCBI database. The AcnB protein of the AJ13355 strain is registered as GenBank accession YP_005932972 (version YP_005932972.1 GI: 386014695). The nucleotide sequence of the acnB gene of AJ13355 strain and the amino acid sequence of AcnB protein are shown in SEQ ID NOs: 31 and 32, respectively.
 Pectobacterium atrosepticum SCRI1043株のacnB遺伝子は、NCBIデータベースに、GenBank accession NC_004547 (VERSION NC_004547.2 GI:50119055)として登録されているゲノム配列中、4218908~4221505位の配列の相補配列に相当する。また、SCRI1043株のAcnBタンパク質は、GenBank accession YP_051867 (version YP_051867.1 GI:50122700)として登録されている。SCRI1043株のacnB遺伝子の塩基配列およびAcnBタンパク質のアミノ酸配列を、それぞれ配列番号33および34に示す。 The acnB gene of the Pectobacterium atrosepticum SCRI1043 strain corresponds to a complementary sequence of positions 4218908 to 4221505 in the genome sequence registered as GenBank accession NC_004547 (VERSION NC_004547.2 GI: 50119055) in the NCBI database. The AcnB protein of SCRI1043 strain is registered as GenBank accession YP_051867 (version YP_051867.1 GI: 50122700). The nucleotide sequence of the acnB gene of SCRI1043 strain and the amino acid sequence of AcnB protein are shown in SEQ ID NOs: 33 and 34, respectively.
 Salmonella enterica serovar Typhi CT18株のacnB遺伝子は、NCBIデータベースに、GenBank accession NC_003198 (VERSION NC_003198.1 GI:16762629)として登録されているゲノム配列中、189006~191603位の配列に相当する。また、CT18株のAcnBタンパク質は、GenBank accession NP_454772 (version NP_454772.1 GI:16759155)として登録されている。CT18株のacnB遺伝子の塩基配列およびAcnBタンパク質のアミノ酸配列を、それぞれ配列番号35および36に示す。 The acnB gene of Salmonella enterica serovar Typhi CT18 strain corresponds to the 189006-191603 sequence in the genome sequence registered as GenBank accession NC_003198 (VERSION NC_003198.1 GI: 16762629) in the NCBI database. The CT18 strain AcnB protein is registered as GenBank accession NP_454772 (version NP_454772.1 GI: 16759155). The nucleotide sequence of the acnB gene of CT18 strain and the amino acid sequence of AcnB protein are shown in SEQ ID NOs: 35 and 36, respectively.
 「アセトアルデヒドデヒドロゲナーゼ(acetaldehyde dehydrogenase)」とは、NAD+またはNADP+を電子受容体として、アセトアルデヒドから酢酸を生成する反応を可逆的に触媒するタンパク質(EC 1.2.1.3、EC 1.2.1.4、EC 1.2.1.5、EC 1.2.1.22等)をいう。同活性を「アセトアルデヒドデヒドロゲナーゼ活性」ともいう。また、アセトアルデヒドデヒドロゲナーゼをコードする遺伝子を「アセトアルデヒドデヒドロゲナーゼ遺伝子」ともいう。アセトアルデヒドデヒドロゲナーゼ活性は、例えば、アセトアルデヒドデヒド依存的なNAD+またはNADP+の還元を測定することにより、測定できる(Ho KK, Weiner H., J. Bacteriol., 2005, Feb;187(3):1067-73.)。 “Acetaldehyde dehydrogenase” is a protein (EC 1.2.1.3, EC 1.2.1.4, EC 1.2.) That reversibly catalyzes the reaction of producing acetic acid from acetaldehyde using NAD + or NADP + as an electron acceptor. 1.5, EC 1.2.1.22, etc.). This activity is also referred to as “acetaldehyde dehydrogenase activity”. A gene encoding acetaldehyde dehydrogenase is also referred to as “acetaldehyde dehydrogenase gene”. Acetaldehyde dehydrogenase activity can be measured, for example, by measuring acetaldehyde dehydride-dependent reduction of NAD + or NADP + (Ho KK, Weiner H., J. Bacteriol., 2005, Feb; 187 (3): 1067 -73.)
 なお、アセトアルデヒドデヒドロゲナーゼは、「CoA非依存的アセトアルデヒドデヒドロゲナーゼ(CoA-independent acetaldehyde dehydrogenase)」ともいい、CoA依存的アセトアルデヒドデヒドロゲナーゼ(CoA-dependent acetaldehyde dehydrogenase)(後述)とは区別される。また、アセトアルデヒドデヒドロゲナーゼは、「アルデヒドデヒドロゲナーゼ」や「ラクトアルデヒドデヒドロゲナーゼ」等と呼ばれている場合もある。 Acetaldehyde dehydrogenase is also referred to as “CoA-independent acetaldehyde dehydrogenase” and is distinguished from CoA-dependent acetaldehyde dehydrogenase (described later). In addition, acetaldehyde dehydrogenase is sometimes called “aldehyde dehydrogenase” or “lactoaldehyde dehydrogenase”.
 アセトアルデヒドデヒドロゲナーゼとしては、aldB遺伝子にコードされるAldBタンパク質が挙げられる。AldBタンパク質としては、例えば、エシェリヒア・コリ(Escherichia coli)、パントエア・アナナティス(Pantoea ananatis)、ペクトバクテリウム・アトロセプティカム(Pectobacterium atrosepticum)(旧名、エルビニア・カロトボーラ(Erwinia carotovora))、サルモネラ・エンテリカ(Salmonella enterica)等の腸内細菌科に属する細菌のAldBタンパク質が挙げられる。 Examples of acetaldehyde dehydrogenase include AldB protein encoded by aldB gene. Examples of the AldB protein include Escherichia coli, Pantoea ananatis, Pectobacterium atrosepticum (former name Erwinia carotovora), Salmonella enterica Examples include AldB protein of bacteria belonging to the family Enterobacteriaceae such as (Salmonella ica enterica).
 Escherichia coli K12 MG1655株のaldB遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.3 GI:556503834)として登録されているゲノム配列中、3754973~3756511位の配列の相補配列に相当する。また、MG1655株のAldBタンパク質は、GenBank accession NP_418045 (version NP_418045.4 GI:90111619)として登録されている。MG1655株のaldB遺伝子の塩基配列およびAldBタンパク質のアミノ酸配列を、それぞれ配列番号37および38に示す。 The aldb gene of Escherichia coli K12-MG1655 strain corresponds to the complementary sequence of the sequence from 3749773 to 3756511 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.3 GI: 556503834) in the NCBI database. The AldB protein of the MG1655 strain is registered as GenBank accession NP_418045 (version NP_418045.4 GI: 90111619). The nucleotide sequence of aldB gene of MG1655 strain and the amino acid sequence of AldB protein are shown in SEQ ID NOs: 37 and 38, respectively.
 Pantoea ananatis LMG 20103株のaldB遺伝子ホモログは、データベース上ではaldA遺伝子の1つとして登録されている。本発明においては、当該aldB遺伝子ホモログをaldB遺伝子として扱う。Pantoea ananatis LMG 20103株のaldB遺伝子は、NCBIデータベースに、GenBank accession NC_013956 (VERSION NC_013956.2 GI:332139403)として登録されているゲノム配列中、2168098~2169570位の配列の相補配列に相当する。また、LMG 20103株のAldBタンパク質は、GenBank accession YP_003520235 (version YP_003520235.1 GI:291617493)として登録されている。LMG 20103株のaldB遺伝子の塩基配列およびAldBタンパク質のアミノ酸配列を、それぞれ配列番号39および40に示す。 AldB gene homologue of Pantoea ananatis LMG20103 strain is registered as one of the aldA genes on the database. In the present invention, the aldb gene homolog is treated as an aldb gene. The aldb gene of Pantoea ananatis LMG 20103 strain corresponds to a complementary sequence of positions 2168098 to 2169570 in the genome sequence registered as GenBank accession NC_013956 (VERSION NC_013956.2 GI: 332139403) in the NCBI database. The AldB protein of LMG 20103 strain is registered as GenBank accession YP_003520235 (version YP_003520235.1 GI: 291617493). The nucleotide sequence of the aldB gene of LMGdB20103 strain and the amino acid sequence of the AldB protein are shown in SEQ ID NOs: 39 and 40, respectively.
 Pectobacterium atrosepticum SCRI1043株のaldB遺伝子は、NCBIデータベースに、GenBank accession NC_004547 (VERSION NC_004547.2 GI:50119055)として登録されているゲノム配列中、111626~113161位の配列に相当する。また、SCRI1043株のAldBタンパク質は、GenBank accession YP_048222 (version YP_048222.1 GI:50119055)として登録されている。SCRI1043株のaldB遺伝子の塩基配列およびAldBタンパク質のアミノ酸配列を、それぞれ配列番号41および42に示す。 The aldb gene of the Pectobacterium atrosepticum SCRI1043 strain corresponds to the 111626 to 113161 positions in the genome sequence registered as GenBank accession NC_004547 (VERSION NC_004547.2 GI: 50119055) in the NCBI database. In addition, the AldB protein of SCRI1043 strain is registered as GenBank accession YP_048222 (version YP_048222.1 GI: 50119055). The nucleotide sequence of the aldB gene of SCRI1043 strain and the amino acid sequence of AldB protein are shown in SEQ ID NOs: 41 and 42, respectively.
 Salmonella enterica serovar Typhi CT18株のaldB遺伝子は、NCBIデータベースに、GenBank accession NC_003198 (VERSION NC_003198.1 GI:16762629)として登録されているゲノム配列中、3978586~3980124位の配列に相当する。また、CT18株のAldBタンパク質は、GenBank accession NP_458246 (version NP_458246.1 GI:16762629)として登録されている。CT18株のaldB遺伝子の塩基配列およびAldBタンパク質のアミノ酸配列を、それぞれ配列番号43および44に示す。 The aldB gene of Salmonella enterica serovar Typhi CT18 strain corresponds to the sequence of positions 3978586 to 3980124 in the genome sequence registered as GenBank accession NC_003198 (VERSION NC_003198.1 GI: 16762629) in the NCBI database. The AldB protein of CT18 strain is registered as GenBank accession NP_458246 (version NP_458246.1 GI: 16762629). The nucleotide sequence of the aldb gene of CT18 strain and the amino acid sequence of AldB protein are shown in SEQ ID NOs: 43 and 44, respectively.
 これらAldBタンパク質のアラインメントの結果を図1および2に示す。Escherichia coli K12 MG1655株のAldBタンパク質と、Pantoea ananatis LMG 20103株、Pectobacterium atrosepticum SCRI1043株、およびSalmonella enterica serovar Typhi CT18株のAldBタンパク質とのアミノ酸配列の相同性は、それぞれ、64.7%、81.4%、および95.8%である。 The alignment results of these AldB proteins are shown in FIGS. The amino acid sequence homology between the AldB protein of Escherichiaichicoli K12 MG1655 and the AldB protein of Pantoea ananatis LMG 20103, Pectobacteriumtoatrosepticum SCRI1043, and Salmonella enterica serovar Typhi CT18 is 64.7%, 5.8%, and 81.4%, respectively. %.
 すなわち、アコニターゼ遺伝子は、例えば、配列番号21、23、25、27、29、31、33、または35に示す塩基配列を有する遺伝子であってよい。また、アコニターゼは、例えば、22、24、26、28、30、32、34、または36に示すアミノ酸配列を有するタンパク質であってよい。また、アセトアルデヒドデヒドロゲナーゼ遺伝子は、例えば、配列番号37、39、41、または43に示す塩基配列を有する遺伝子であってよい。また、アセトアルデヒドデヒドロゲナーゼは、例えば、38、40、42、または44に示すアミノ酸配列を有するタンパク質であってよい。なお、「(アミノ酸または塩基)配列を有する」という表現は、当該「(アミノ酸または塩基)配列を含む」場合および当該「(アミノ酸または塩基)配列からなる」場合を包含する。 That is, the aconitase gene may be a gene having the base sequence shown in SEQ ID NO: 21, 23, 25, 27, 29, 31, 33, or 35, for example. In addition, the aconitase may be a protein having an amino acid sequence shown in 22, 24, 26, 28, 30, 32, 34, or 36, for example. Further, the acetaldehyde dehydrogenase gene may be a gene having the base sequence shown in SEQ ID NO: 37, 39, 41, or 43, for example. The acetaldehyde dehydrogenase may be a protein having an amino acid sequence shown in 38, 40, 42, or 44, for example. In addition, the expression “having an (amino acid or base) sequence” includes the case of “including the (amino acid or base) sequence” and the case of “consisting of the (amino acid or base) sequence”.
 アコニターゼは、元の機能が維持されている限り、上記例示したアコニターゼ、例えば上記例示したAcnAタンパク質やAcnBタンパク質、のバリアントであってもよい。同様に、アコニターゼ遺伝子は、元の機能が維持されている限り、上記例示したアコニターゼ遺伝子、例えば上記例示したacnA遺伝子やacnB遺伝子、のバリアントであってもよい。また、アセトアルデヒドデヒドロゲナーゼは、元の機能が維持されている限り、上記例示したアセトアルデヒドデヒドロゲナーゼ、例えば上記例示したAldBタンパク質、のバリアントであってもよい。同様に、アセトアルデヒドデヒドロゲナーゼ遺伝子は、元の機能が維持されている限り、上記例示したアセトアルデヒドデヒドロゲナーゼ遺伝子、例えば上記例示したaldB遺伝子、のバリアントであってもよい。このような元の機能が維持されたバリアントを「保存的バリアント」という場合がある。保存的バリアントとしては、例えば、上記例示したアコニターゼおよびアセトアルデヒドデヒドロゲナーゼ、並びにそれらをコードする遺伝子の、ホモログや人為的な改変体が挙げられる。 As long as the original function is maintained, the aconitase may be a variant of the above exemplified aconitase, for example, the above exemplified AcnA protein or AcnB protein. Similarly, the aconitase gene may be a variant of the aconitase gene exemplified above, for example, the acnA gene or the acnB gene exemplified above as long as the original function is maintained. Further, the acetaldehyde dehydrogenase may be a variant of the above-exemplified acetaldehyde dehydrogenase, for example, the above-illustrated AldB protein, as long as the original function is maintained. Similarly, as long as the original function is maintained, the acetaldehyde dehydrogenase gene may be a variant of the acetaldehyde dehydrogenase gene exemplified above, for example, the aldb gene exemplified above. Such a variant in which the original function is maintained may be referred to as a “conservative variant”. Conservative variants include, for example, the above-exemplified aconitase and acetaldehyde dehydrogenase, and homologues and artificial modifications of genes encoding them.
 なお、「AcnAタンパク質」、「AcnBタンパク質」、および「AldBタンパク質」という用語は、それぞれ、上記例示したAcnAタンパク質、AcnBタンパク質、およびAldBタンパク質に加えて、それらの保存的バリアントを包含するものとする。同様に、「acnA遺伝子」、「acnB遺伝子」、および「aldB遺伝子」という用語は、それぞれ、上記例示したacnA遺伝子、acnB遺伝子、およびaldB遺伝子に加えて、それらの保存的バリアントを包含するものとする。 In addition, the terms “AcnA protein”, “AcnB protein”, and “AldB protein” include conservative variants thereof in addition to the AcnA protein, AcnB protein, and AldB protein exemplified above, respectively. . Similarly, the terms “acnA gene”, “acnB gene”, and “aldB gene” are intended to include conservative variants thereof in addition to the acnA gene, acnB gene, and aldB gene respectively exemplified above. To do.
 「元の機能が維持されている」とは、遺伝子またはタンパク質のバリアントが、元の遺伝子またはタンパク質の機能(活性や性質)に対応する機能(活性や性質)を有することをいう。すなわち、「元の機能が維持されている」とは、アコニターゼにあっては、タンパク質のバリアントがアコニターゼ活性を有することをいい、アセトアルデヒドデヒドロゲナーゼにあっては、タンパク質のバリアントがアセトアルデヒドデヒドロゲナーゼ活性を有することをいう。また、「元の機能が維持されている」とは、アコニターゼ遺伝子にあっては、遺伝子のバリアントが元の機能が維持されたタンパク質(すなわちアコニターゼ活性を有するタンパク質)をコードすることをいい、アセトアルデヒドデヒドロゲナーゼ遺伝子にあっては、遺伝子のバリアントが元の機能が維持されたタンパク質(すなわちアセトアルデヒドデヒドロゲナーゼ活性を有するタンパク質)をコードすることをいう。 “The original function is maintained” means that the variant of the gene or protein has a function (activity or property) corresponding to the function (activity or property) of the original gene or protein. That is, “the original function is maintained” means that, in aconitase, a protein variant has aconitase activity, and in acetaldehyde dehydrogenase, a protein variant has acetaldehyde dehydrogenase activity. Say. In addition, in the case of an aconitase gene, “the original function is maintained” means that a variant of the gene encodes a protein in which the original function is maintained (that is, a protein having an aconitase activity). In the case of a dehydrogenase gene, it means that a variant of the gene encodes a protein whose original function is maintained (that is, a protein having acetaldehyde dehydrogenase activity).
 以下、保存的バリアントについて例示する。 The following are examples of conservative variants.
 アコニターゼまたはアセトアルデヒドデヒドロゲナーゼのホモログとしては、例えば、上記アミノ酸配列を問い合わせ配列として用いたBLAST検索やFASTA検索によって公開データベースから取得されるタンパク質が挙げられる。また、アコニターゼ遺伝子またはアセトアルデヒドデヒドロゲナーゼ遺伝子のホモログは、例えば、各種微生物の染色体を鋳型にして、上記塩基配列に基づいて作製したオリゴヌクレオチドをプライマーとして用いたPCRにより取得することができる。 Examples of homologs of aconitase or acetaldehyde dehydrogenase include proteins obtained from public databases by BLAST search or FASTA search using the amino acid sequence as a query sequence. Moreover, the homologue of the aconitase gene or the acetaldehyde dehydrogenase gene can be obtained, for example, by PCR using the chromosomes of various microorganisms as templates and oligonucleotides prepared based on the above base sequences as primers.
 アコニターゼまたはアセトアルデヒドデヒドロゲナーゼは、元の機能が維持されている限り、上記アミノ酸配列(例えば、アコニターゼについて配列番号22、24、26、28、30、32、34、または36に示すアミノ酸配列、アセトアルデヒドデヒドロゲナーゼについて配列番号38、40、42、または44に示すアミノ酸配列)において、1若しくは数個の位置での1若しくは数個のアミノ酸が置換、欠失、挿入または付加されたアミノ酸配列を有するタンパク質であってもよい。なお上記「1若しくは数個」とは、アミノ酸残基のタンパク質の立体構造における位置や種類によっても異なるが、具体的には、例えば、1~50個、1~40個、1~30個、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個を意味する。 An aconitase or acetaldehyde dehydrogenase may be used as long as the original function is maintained (for example, the amino acid sequence shown in SEQ ID NO: 22, 24, 26, 28, 30, 32, 34, or 36 for aconitase, acetaldehyde dehydrogenase). A protein having an amino acid sequence in which one or several amino acids at one or several positions are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 38, 40, 42, or 44) Also good. The above “one or several” varies depending on the position and type of the amino acid residue in the three-dimensional structure of the protein, but specifically, for example, 1 to 50, 1 to 40, 1 to 30, Preferably, it means 1-20, more preferably 1-10, even more preferably 1-5, particularly preferably 1-3.
 上記の1若しくは数個のアミノ酸の置換、欠失、挿入、または付加は、タンパク質の機能が正常に維持される保存的変異である。保存的変異の代表的なものは、保存的置換である。保存的置換とは、置換部位が芳香族アミノ酸である場合には、Phe、Trp、Tyr間で、置換部位が疎水性アミノ酸である場合には、Leu、Ile、Val間で、極性アミノ酸である場合には、Gln、Asn間で、塩基性アミノ酸である場合には、Lys、Arg、His間で、酸性アミノ酸である場合には、Asp、Glu間で、ヒドロキシル基を持つアミノ酸である場合には、Ser、Thr間でお互いに置換する変異である。保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、ArgからGln、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、CysからSer又はAlaへの置換、GlnからAsn、Glu、Lys、His、Asp又はArgへの置換、GluからGly、Asn、Gln、Lys又はAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はPheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換、及び、ValからMet、Ile又はLeuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、タンパク質が由来する生物の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。 The substitution, deletion, insertion, or addition of one or several amino acids described above is a conservative mutation that maintains the protein function normally. A typical conservative mutation is a conservative substitution. Conservative substitution is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In this case, between Gln and Asn, when it is a basic amino acid, between Lys, Arg, and His, when it is an acidic amino acid, between Asp and Glu, when it is an amino acid having a hydroxyl group Is a mutation that substitutes between Ser and Thr. Specifically, substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, Cys to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Substitution from Lys to Asn, Glu, Gln, His or Arg, substitution from Met to Ile, Leu, Val or Phe, substitution from Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution, substitution from Thr to Ser or Ala, substitution from Trp to Phe or Tyr, substitution from Tyr to His, Phe or Trp, and substitution from Val to Met, Ile or Leu. In addition, amino acid substitutions, deletions, insertions, additions, or inversions as described above include naturally occurring mutations (mutants or variants) such as those based on individual differences or species differences in the organism from which the protein is derived. Also included by
 また、アコニターゼまたはアセトアルデヒドデヒドロゲナーゼは、元の機能が維持されている限り、上記アミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の相同性を有するアミノ酸配列を有するタンパク質であってもよい。尚、本明細書において、「相同性」(homology)は、「同一性」(identity)を指すことがある。 Further, as long as the original function is maintained, aconitase or acetaldehyde dehydrogenase is 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 97% or more, based on the entire amino acid sequence. Particularly preferably, it may be a protein having an amino acid sequence having a homology of 99% or more. In the present specification, “homology” may refer to “identity”.
 また、アコニターゼまたはアセトアルデヒドデヒドロゲナーゼは、元の機能が維持されている限り、上記塩基配列(例えば、アコニターゼについて配列番号21、23、25、27、29、31、33、または35に示す塩基配列、アセトアルデヒドデヒドロゲナーゼについて配列番号37、39、41、または43に示す塩基配列)から調製され得るプローブ、例えば上記塩基配列の全体または一部に対する相補配列、とストリンジェントな条件下でハイブリダイズするDNAにコードされるタンパク質であってもよい。そのようなプローブは、例えば、上記塩基配列に基づいて作製したオリゴヌクレオチドをプライマーとし、上記塩基配列を含むDNA断片を鋳型とするPCRによって作製することができる。「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。一例を示せば、相同性が高いDNA同士、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の相同性を有するDNA同士がハイブリダイズし、それより相同性が低いDNA同士がハイブリダイズしない条件、あるいは通常のサザンハイブリダイゼーションの洗いの条件である60℃、1×SSC、0.1% SDS、好ましくは60℃、0.1×SSC、0.1% SDS、より好ましくは68℃、0.1×SSC、0.1% SDSに相当する塩濃度および温度で、1回、好ましくは2~3回洗浄する条件を挙げることができる。また、例えば、プローブとして、300 bp程度の長さのDNA断片を用いる場合には、ハイブリダイゼーションの洗いの条件としては、50℃、2×SSC、0.1% SDSが挙げられる。 In addition, as long as the original function is maintained, aconitase or acetaldehyde dehydrogenase is the above base sequence (for example, the base sequence shown in SEQ ID NO: 21, 23, 25, 27, 29, 31, 33, or 35 for aconitase, acetaldehyde). Encoded by a DNA that hybridizes under stringent conditions with a probe that can be prepared from the base sequence shown in SEQ ID NO: 37, 39, 41, or 43 for dehydrogenase, for example, a complementary sequence to all or part of the base sequence. May be a protein. Such a probe can be prepared, for example, by PCR using an oligonucleotide prepared based on the base sequence as a primer and a DNA fragment containing the base sequence as a template. “Stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, highly homologous DNAs, for example, 80% or more, preferably 90% or more, more preferably 95% or more, further preferably 97% or more, particularly preferably 99% or more. Are hybridized and DNAs with lower homology do not hybridize with each other, or normal Southern hybridization washing conditions of 60 ° C., 1 × SSC, 0.1% SDS, preferably 60 ° C., 0.1 × SSC And 0.1% SDS, more preferably 68 ° C., 0.1 × SSC, at a salt concentration and temperature corresponding to 0.1% SDS, conditions of washing once, preferably 2 to 3 times. For example, when a DNA fragment having a length of about 300 bp is used as a probe, hybridization washing conditions include 50 ° C., 2 × SSC, 0.1% SDS.
 2つの配列間の配列同一性のパーセンテージは、例えば、数学的アルゴリズムを用いて決定できる。このような数学的アルゴリズムの限定されない例としては、Myers 及び Miller (1988) CABIOS 4:11 17のアルゴリズム、Smith et al (1981) Adv. Appl. Math. 2:482の局所ホモロジーアルゴリズム、Needleman及びWunsch (1970) J. Mol. Biol. 48:443 453のホモロジーアライメントアルゴリズム、Pearson及びLipman (1988) Proc. Natl. Acad. Sci. 85:2444 2448の類似性を検索する方法、Karlin 及びAltschul (1993) Proc. Natl. Acad. Sci. USA 90:5873 5877に記載されているような、改良された、Karlin及びAltschul (1990) Proc. Natl. Acad. Sci. USA 872264のアルゴリズムが挙げられる。 The percentage sequence identity between two sequences can be determined using, for example, a mathematical algorithm. Non-limiting examples of such mathematical algorithms include Myers and Miller (1988) CABIOS 4: 11 17 algorithm, Smith et aldv (1981) Adv. Appl. Math. 2: 482 local homology algorithm, Needleman and Wunsch (1970) J. Mol. Biol. 48: 443 453 homology alignment algorithm, Pearson and Lipman (1988) Proc. Natl. Acad. Sci. 85: 2444 2448 similarity search method, Karlin and Altschul 類似 (1993) Proc. Natl. Acad. Sci. USA 90: 5873 5877, an improved algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 872264.
 これらの数学的アルゴリズムに基づくプログラムを利用して、配列同一性を決定するための配列比較(アラインメント)を行うことができる。プログラムは、適宜、コンピュータにより実行することができる。このようなプログラムとしては、特に限定されないが、PC/GeneプログラムのCLUSTAL(Intelligenetics, Mountain View, Calif.から入手可能)、ALIGNプログラム(Version 2.0)、並びにWisconsin Genetics Software Package, Version 8(Genetics Computer Group (GCG), 575 Science Drive, Madison, Wis., USAから入手可能)のGAP、BESTFIT、BLAST、FASTA、及びTFASTAが挙げられる。これらのプログラムを用いたアライメントは、例えば、初期パラメーターを用いて行うことができる。CLUSTALプログラムについては、Higgins et al. (1988) Gene 73:237 244 (1988)、Higgins et al. (1989) CABIOS 5:151 153、Corpet et al. (1988) Nucleic Acids Res. 16:10881 90、Huang et al. (1992) CABIOS 8:155 65、及びPearson et al. (1994) Meth. Mol. Biol. 24:307 331によく記載されている。 Using a program based on these mathematical algorithms, sequence comparison (alignment) for determining sequence identity can be performed. The program can be appropriately executed by a computer. Such programs include, but are not limited to, PC / Gene program CLUSTAL (available from Intelligents, Mountain View, Calif.), ALIGN program (Version 2.0), and Wisconsin Genetics Software Package, Version 8 (Genetics Computer Group (GCG), 575 Science Drive, available from Madison, Wis., USA) GAP, BESTFIT, BLAST, FASTA, and TFASTA. Alignment using these programs can be performed using initial parameters, for example. Regarding the CLUSTAL program, Higgins et al. (1988) Gene 73: 237 244 (1988), Higgins et al. (1989) CABIOS 5: 151 153, Corpet et al. (1988) Nucleic Acids Res. 16: 10881 90, Huang et al. (1992) CABIOS 8: 155 65 and Pearson et al. (1994) Meth. Mol. Biol. 24: 307 331.
 対象のタンパク質をコードするヌクレオチド配列と相同性があるヌクレオチド配列を得るために、具体的には、例えば、BLASTヌクレオチド検索を、BLASTNプログラム、スコア=100、ワード長=12にて行うことができる。対象のタンパク質と相同性があるアミノ酸配列を得るために、具体的には、例えば、BLASTタンパク質検索を、BLASTXプログラム、スコア=50、ワード長=3にて行うことができる。BLASTヌクレオチド検索やBLASTタンパク質検索については、http://www.ncbi.nlm.nih.govを参照されたい。また、比較を目的としてギャップを加えたアライメントを得るために、Gapped BLAST(BLAST 2.0)を利用できる。また、PSI-BLAST (BLAST 2.0)を、配列間の離間した関係を検出する反復検索を行うのに利用できる。Gapped BLASTおよびPSI-BLASTについては、Altschul et al. (1997) Nucleic Acids Res. 25:3389を参照されたい。BLAST、Gapped BLAST、またはPSI-BLASTを利用する場合、例えば、各プログラム(例えば、ヌクレオチド配列に対してBLASTN、アミノ酸配列に対してBLASTX)の初期パラメーターが用いられ得る。アライメントは、手動にて行われてもよい。 In order to obtain a nucleotide sequence having homology with the nucleotide sequence encoding the protein of interest, specifically, for example, a BLAST nucleotide search can be performed with the BLASTN program, score = 100, word length = 12. In order to obtain an amino acid sequence having homology with the protein of interest, specifically, for example, a BLAST protein search can be performed with the BLASTX program, score = 50, word length = 3. Please refer to http://www.ncbi.nlm.nih.gov for BLAST nucleotide search and BLAST protein search. In addition, Gapped BLAST (BLAST 2.0) can be used to obtain an alignment with a gap added for comparison purposes. In addition, PSI-BLAST (BLAST 2.0) can be used to perform an iterated search that detects distant relationships between sequences. For Gapped BLAST and PSI-BLAST, see Altschul et al. (1997) Nucleic Acids Res. 25: 3389. When utilizing BLAST, Gapped BLAST, or PSI-BLAST, for example, the initial parameters of each program (eg, BLASTN for nucleotide sequences, BLASTX for amino acid sequences) can be used. The alignment may be performed manually.
 2つの配列間の配列同一性は、2つの配列を最大一致となるように整列したときに2つの配列間で一致する残基の比率として算出される。 The sequence identity between two sequences is calculated as the ratio of residues that match between the two sequences when the two sequences are aligned for maximum matching.
 アコニターゼ遺伝子またはアセトアルデヒドデヒドロゲナーゼ遺伝子は、元の機能が維持されている限り、任意のコドンをそれと等価のコドンに置換したものであってもよい。例えば、アコニターゼ遺伝子またはアセトアルデヒドデヒドロゲナーゼ遺伝子は、使用する宿主のコドン使用頻度に応じて最適なコドンを有するように改変されてよい。 The aconitase gene or acetaldehyde dehydrogenase gene may be one obtained by substituting an arbitrary codon with an equivalent codon as long as the original function is maintained. For example, the aconitase gene or the acetaldehyde dehydrogenase gene may be modified to have an optimal codon depending on the codon usage frequency of the host to be used.
 なお、上記の遺伝子やタンパク質の保存的バリアントに関する記載は、L-アミノ酸生合成系酵素やエタノール代謝酵素等の任意のタンパク質、およびそれらをコードする遺伝子にも準用できる。 In addition, the description regarding the above-mentioned conservative variants of genes and proteins can be applied mutatis mutandis to arbitrary proteins such as L-amino acid biosynthetic enzymes and ethanol metabolizing enzymes, and genes encoding them.
<1-3>エタノール資化性
 本発明の細菌は、エタノール資化性を有する。「エタノール資化性を有する」とは、エタノールを唯一炭素源とする最少培地において生育可能であることをいう。本発明の細菌は、本来的にエタノール資化性を有するものであってもよく、エタノール資化性を有するように改変されたものであってもよい。エタノール資化性を有する細菌は、例えば、上記のような細菌にエタノール資化性を付与することにより、または、上記のような細菌のエタノール資化性を増強することにより、取得できる。
<1-3> Ethanol assimilation The bacterium of the present invention has ethanol assimilation. “Having ethanol assimilation” means being able to grow in a minimal medium containing ethanol as the sole carbon source. The bacterium of the present invention may inherently have ethanol-assimilating properties, or may be modified to have ethanol-assimilating properties. Bacteria having ethanol-assimilating properties can be obtained, for example, by imparting ethanol-assimilating properties to the bacteria as described above, or by enhancing the ethanol-assimilating properties of bacteria as described above.
 エタノール資化性は、エタノール代謝酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変することにより、付与または増強できる。すなわち、本発明の細菌は、エタノール代謝酵素から選択される1またはそれ以上の酵素の活性が増大するよう改変されていてよい。 Ethanol assimilation can be imparted or enhanced by modifying bacteria so that the activity of one or more enzymes selected from ethanol metabolizing enzymes is increased. That is, the bacterium of the present invention may be modified to increase the activity of one or more enzymes selected from ethanol metabolizing enzymes.
 エタノール代謝酵素としては、アルコールデヒドロゲナーゼやCoA依存的アセトアルデヒドデヒドロゲナーゼが挙げられる。 Examples of the ethanol metabolism enzyme include alcohol dehydrogenase and CoA-dependent acetaldehyde dehydrogenase.
 「アルコールデヒドロゲナーゼ」とは、NAD+またはNADP+を電子受容体として、エタノールからアセトアルデヒドを生成する反応を可逆的に触媒する活性を有するタンパク質(EC 1.1.1.1、EC 1.1.1.2、EC 1.1.1.71等)をいう。同活性を「アルコールデヒドロゲナーゼ活性」ともいう。アルコールデヒドロゲナーゼ活性は、例えば、エタノール依存的なNAD+の還元を測定することにより、測定できる(Clark D, Cronan JE Jr., J Bacteriol., 1980, Jan;141(1):177-83.)。 “Alcohol dehydrogenase” means a protein (EC 1.1.1.1, EC 1.1.1.2, EC 1.1.1.71) that has an activity of reversibly catalyzing a reaction for producing acetaldehyde from ethanol using NAD + or NADP + as an electron acceptor. Etc.). This activity is also referred to as “alcohol dehydrogenase activity”. Alcohol dehydrogenase activity can be measured, for example, by measuring ethanol-dependent reduction of NAD + (Clark D, Cronan JE Jr., J Bacteriol., 1980, Jan; 141 (1): 177-83.) .
 「CoA依存的アセトアルデヒドデヒドロゲナーゼ」とは、NAD+またはNADP+を電子受容体として、アセトアルデヒドからアセチルCoAを生成する反応を可逆的に触媒する活性を有するタンパク質(EC 1.2.1.10)をいう。同活性を「CoA依存的アセトアルデヒドデヒドロゲナーゼ活性」ともいう。CoA依存的アセトアルデヒドデヒドロゲナーゼ活性は、例えば、アセトアルデヒドデヒドおよびCoA依存的なNAD+の還元を測定することにより、測定できる(Rudolph FB, Purich DL, Fromm HJ., J Biol Chem., 1968, Nov 10;243(21):5539-45.)。 “CoA-dependent acetaldehyde dehydrogenase” refers to a protein (EC 1.2.1.10) having an activity of reversibly catalyzing the reaction of producing acetyl CoA from acetaldehyde using NAD + or NADP + as an electron acceptor. This activity is also referred to as “CoA-dependent acetaldehyde dehydrogenase activity”. CoA-dependent acetaldehyde dehydrogenase activity can be measured, for example, by measuring acetaldehyde hydride and CoA-dependent reduction of NAD + (Rudolph FB, Purich DL, Fromm HJ., J Biol Chem., 1968, Nov 10; 243 (21): 5539-45.).
 エタノール代謝酵素としては、adhE遺伝子にコードされるAdhEタンパク質が挙げられる。AdhEタンパク質は2機能酵素であり、アルコールデヒドロゲナーゼ活性とCoA依存的アセトアルデヒドデヒドロゲナーゼ活性の両方を有する。AdhEタンパク質としては、例えば、エシェリヒア・コリ(Escherichia coli)、パントエア・アナナティス(Pantoea ananatis)、ペクトバクテリウム・アトロセプティカム(Pectobacterium atrosepticum)(旧名、エルビニア・カロトボーラ(Erwinia carotovora))、サルモネラ・エンテリカ(Salmonella enterica)等の腸内細菌科に属する細菌のAdhEタンパク質が挙げられる。 Examples of ethanol metabolic enzymes include AdhE protein encoded by adhE gene. The AdhE protein is a bifunctional enzyme and has both alcohol dehydrogenase activity and CoA-dependent acetaldehyde dehydrogenase activity. Examples of the AdhE protein include Escherichia coli, Pantoea ananatis, Pectobacterium atrosepticum (former name: Erwinia carotovora), Salmonella en AdhE protein of bacteria belonging to the family Enterobacteriaceae such as (Salmonella enterica).
 Escherichia coli K12 MG1655株のadhE遺伝子は、NCBIデータベースに、GenBank accession NC_000913 (VERSION NC_000913.3 GI:556503834)として登録されているゲノム配列中、1295446~1298121位の配列の相補配列に相当する。また、MG1655株のAdhEタンパク質は、GenBank accession NP_415757 (version NP_415757.1 GI:16129202)として登録されている。MG1655株のadhE遺伝子の塩基配列およびAdhEタンパク質のアミノ酸配列を、それぞれ配列番号45および46に示す。 The adhE gene of Escherichia coli K12-MG1655 strain corresponds to a complementary sequence of positions 1295446 to 1298121 in the genome sequence registered as GenBank accession NC_000913 (VERSION NC_000913.3 GI: 556503834) in the NCBI database. The AdhE protein of MG1655 strain is registered as GenBank accession NP_415757 (version NP_415757.1 GI: 16129202). The nucleotide sequence of the adhE gene of the MG1655 strain and the amino acid sequence of the AdhE protein are shown in SEQ ID NOs: 45 and 46, respectively.
 Pantoea ananatis LMG 20103株のadhE遺伝子は、NCBIデータベースに、GenBank accession NC_013956 (VERSION NC_013956.2 GI:332139403)として登録されているゲノム配列中、2335387~2338071位の配列に相当する。また、LMG 20103株のAdhEタンパク質は、GenBank accession YP_003520384 (version YP_003520384.1 GI:291617642)として登録されている。LMG 20103株のadhE遺伝子の塩基配列およびAdhEタンパク質のアミノ酸配列を、それぞれ配列番号47および48に示す。 The adhE gene of Pantoea ananatis LMG 20103 strain corresponds to the sequence from 2335387 to 2233807 in the genome sequence registered as GenBank accession NC_013956 (VERSION NC_013956.2 GI: 332139403) in the NCBI database. The AdhE protein of LMG 20103 strain is registered as GenBank accession YP_003520384 (version YP_003520384.1 GI: 291617642). The nucleotide sequence of the adhE gene of LMGdh20103 strain and the amino acid sequence of the AdhE protein are shown in SEQ ID NOs: 47 and 48, respectively.
 Pectobacterium atrosepticum SCRI1043株のadhE遺伝子は、NCBIデータベースに、GenBank accession NC_004547 (VERSION NC_004547.2 GI:50119055)として登録されているゲノム配列中、2634501~2637176位の配列に相当する。また、SCRI1043株のAdhEタンパク質は、GenBank accession YP_050421 (version YP_050421.1 GI:50121254)として登録されている。SCRI1043株のadhE遺伝子の塩基配列およびAdhEタンパク質のアミノ酸配列を、それぞれ配列番号49および50に示す。 The adhE gene of the Pectobacterium atrosepticum SCRI1043 strain corresponds to the sequence of 2634501-2637176 in the genome sequence registered as GenBank accession NC_004547 (VERSION NC_004547.2 GI: 50119055) in the NCBI database. The AdhE protein of the SCRI1043 strain is registered as GenBank accession YP_050421 (version YP_050421.1 GI: 50121254). The nucleotide sequence of the adhE gene of SCRI1043 strain and the amino acid sequence of the AdhE protein are shown in SEQ ID NOs: 49 and 50, respectively.
 Salmonella enterica serovar Typhi CT18株のadhE遺伝子ホモログは、データベース上ではadh遺伝子として登録されている。本発明においては、当該adhE遺伝子ホモログをadhE遺伝子として扱う。Salmonella enterica serovar Typhi CT18株のadhE遺伝子は、NCBIデータベースに、GenBank accession NC_003198 (VERSION NC_003198.1 GI:16762629)として登録されているゲノム配列中、1259893~1262571位の配列の相補配列に相当する。また、CT18株のAdhEタンパク質は、GenBank accession NP_455751 (version NP_455751.1 GI:16760134)として登録されている。CT18株のadhE遺伝子の塩基配列およびAdhEタンパク質のアミノ酸配列を、それぞれ配列番号51および52に示す。 The adhE gene homologue of Salmonella enterica serovar Typhi CT18 strain is registered as an adh gene in the database. In the present invention, the adhE gene homolog is treated as an adhE gene. The adhE gene of Salmonella enterica serovar Typhi CT18 strain corresponds to a complementary sequence of sequences 1259893 to 1262571 in the genome sequence registered as GenBank accession NC_003198 (VERSION NC_003198.1 GI: 16762629) in the NCBI database. The CT18 strain AdhE protein is registered as GenBank accession NP_455751 (version NP_455751.1 GI: 16760134). The nucleotide sequence of the adhE gene of CT18 strain and the amino acid sequence of the AdhE protein are shown in SEQ ID NOs: 51 and 52, respectively.
 これらAdhEタンパク質のアラインメントの結果を図3~5に示す。Escherichia coli K12 MG1655株のAdhEタンパク質と、Pantoea ananatis LMG 20103株、Pectobacterium atrosepticum SCRI1043株、およびSalmonella enterica serovar Typhi CT18株のAdhEタンパク質とのアミノ酸配列の相同性は、それぞれ、89.0%、89.1%、および97.2%である。 The alignment results of these AdhE proteins are shown in FIGS. The amino acid sequence homology between the AdhE protein of Escherichia coli K12 MG1655 strain and the AdhE protein of Pantoea ananatis LMG 20103 strain, Pectobacterium atrosepticum SCRI1043 strain and Salmonella enterica serovar Typhi CT18 strain is 89.0%, 99.1 %.
 エタノール代謝酵素は、上記例示したエタノール代謝酵素、例えば上記例示した腸内細菌科に属する細菌のAdhEタンパク質、の保存的バリアントであってもよい。例えば、AdhEタンパク質は、46、48、50、または52に示すアミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有するタンパク質であってもよい。遺伝子やタンパク質のバリアントについては、上述したアコニターゼおよびアセトアルデヒドデヒドロゲナーゼならびにそれらをコードする遺伝子の保存的バリアントに関する記載を準用できる。 The ethanol-metabolizing enzyme may be a conservative variant of the above-exemplified ethanol-metabolizing enzyme, for example, the AdhE protein of bacteria belonging to the Enterobacteriaceae family exemplified above. For example, the AdhE protein is a protein having an amino acid sequence in which one or several amino acids at one or several positions are substituted, deleted, inserted or added in the amino acid sequence shown in 46, 48, 50, or 52 It may be. Regarding the gene and protein variants, the above descriptions concerning aconitase and acetaldehyde dehydrogenase and conservative variants of the genes encoding them can be applied mutatis mutandis.
 本発明の細菌は、特に、好気条件でエタノール資化性を有する(好気的にエタノールを資化できる)のが好ましい。「好気条件でエタノール資化性を有する」とは、エタノールを唯一炭素源とする最少培地において好気条件で生育可能であることをいう。また、「好気条件でエタノール資化性を有する」とは、例えば、本発明の細菌を好気的に培養して得られた菌体から調製した無細胞抽出液におけるアルコールデヒドロゲナーゼの比活性が、例えば、1.5 U/mg protein以上、好ましくは5 U/mg protein以上、より好ましくは10 U/mg protein以上であることであってよい。なお、1 Uのアルコールデヒドロゲナーゼ活性は、上記活性測定条件(Clark D, Cronan JE Jr., J Bacteriol., 1980, Jan;141(1):177-83.)において、1分間に1 nmolのNADHを生じる活性として定義される。「好気条件」とは、通気、振盪、および撹拌等の酸素供給手段によって酸素が培養系に供給される培養条件をいう。本発明の細菌は、本来的に好気条件でエタノール資化性を有するものであってもよく、好気条件でエタノール資化性を有するように改変されたものであってもよい。例えば、エシェリヒア・コリは一般的に好気的にエタノールを資化できないが、好気的にエタノールを資化できるようにエシェリヒア・コリを改変して本発明の細菌として用いてもよい。 It is preferable that the bacterium of the present invention has ethanol assimilation property under aerobic conditions (ethanol can be assimilated aerobically). “Having ethanol assimilation under aerobic conditions” means being able to grow under aerobic conditions in a minimal medium with ethanol as the sole carbon source. In addition, “having ethanol assimilation under aerobic conditions” means, for example, the specific activity of alcohol dehydrogenase in a cell-free extract prepared from cells obtained by aerobic culture of the bacterium of the present invention. For example, it may be 1.5 μU / mg protein or more, preferably 5 μU / mg protein or more, more preferably 10 μU / mg protein or more. In addition, 1 ナ ー ゼ U alcohol dehydrogenase activity is 1 nmol NADH per minute under the above activity measurement conditions (Clark D, Cronan JE Jr., J Bacteriol., 1980, Jan; 141 (1): 177-83.). Is defined as the activity that produces “Aerobic conditions” refers to culture conditions in which oxygen is supplied to the culture system by oxygen supply means such as aeration, shaking, and stirring. The bacterium of the present invention may inherently have ethanol assimilation under aerobic conditions or may be modified to have ethanol assimilation under aerobic conditions. For example, Escherichia coli cannot generally assimilate ethanol aerobically, but Escherichia coli may be modified and used as a bacterium of the present invention so that ethanol can be assimilated aerobically.
 好気条件でのエタノール資化性は、エタノール代謝酵素から選択される1またはそれ以上の酵素の好気条件での活性が増大するように細菌を改変することにより、付与または増強できる。すなわち、本発明の細菌は、エタノール代謝酵素から選択される1またはそれ以上の酵素の好気条件での活性が増大するよう改変されていてよい。 Ethanol assimilation under aerobic conditions can be imparted or enhanced by modifying bacteria so that the activity under aerobic conditions of one or more enzymes selected from ethanol metabolizing enzymes is increased. That is, the bacterium of the present invention may be modified so that the activity under aerobic conditions of one or more enzymes selected from ethanol metabolizing enzymes is increased.
 好気条件でのエタノール資化性は、例えば、好気条件で機能するプロモーターの制御下で発現するadhE遺伝子を保持するように細菌を改変することにより、付与又は増強できる。 Ethanol assimilation under aerobic conditions can be imparted or enhanced, for example, by modifying the bacterium to retain the adhE gene expressed under the control of a promoter that functions under aerobic conditions.
 そのような改変は、例えば、細菌のゲノム上のadhE遺伝子の本来のプロモーターを、好気条件で機能するプロモーターに置換することにより、達成できる。また、好気条件で機能するプロモーターの下流にadhE遺伝子を結合して細菌に導入してもよく、細菌のゲノム上の好気条件で機能するプロモーターの下流にadhE遺伝子を導入してもよい。プロモーターの置換や遺伝子の導入については、後述する「タンパク質の活性を増大させる手法」の記載を参照できる。 Such modification can be achieved, for example, by replacing the original promoter of the adhE gene on the bacterial genome with a promoter that functions under aerobic conditions. Alternatively, the adhE gene may be bound downstream of a promoter that functions under aerobic conditions and introduced into bacteria, or the adhE gene may be introduced downstream of a promoter that functions under aerobic conditions on the bacterial genome. Regarding the replacement of the promoter and the introduction of the gene, the description of the “method for increasing the protein activity” described later can be referred to.
 好気条件で機能するプロモーターは、本発明の細菌がエタノールを資化できる程度に好気条件でadhE遺伝子を発現できる限り、特に制限されない。好気条件で機能するプロモーターとしては、例えば、解糖系、ペントースリン酸経路、TCA回路、アミノ酸生合成系の遺伝子のプロモーターや実施例で用いたP14プロモーター(配列番号1)が挙げられる。また、好気条件で機能するプロモーターとしては、例えば、T7プロモーター、trpプロモーター、lacプロモーター、thrプロモーター、tacプロモーター、trcプロモーター、tetプロモーター、araBADプロモーター、rpoHプロモーター、PRプロモーター、およびPLプロモーター等の強力なプロモーターも挙げられる。 The promoter that functions under aerobic conditions is not particularly limited as long as it can express the adhE gene under aerobic conditions to the extent that the bacterium of the present invention can assimilate ethanol. Promoters which function under aerobic conditions, for example, glycolysis, pentose phosphate pathway, TCA circuit, P 14 promoter used in the promoter and examples of genes of amino acid biosynthesis (SEQ ID NO: 1). Examples of promoters that function under aerobic conditions include strong T7 promoter, trp promoter, lac promoter, thr promoter, tac promoter, trc promoter, tet promoter, araBAD promoter, rpoH promoter, PR promoter, and PL promoter. Also included are promoters.
 好気条件でのエタノール資化性は、例えば、好気条件での不活化に対する耐性が向上する変異を有するAdhEタンパク質をコードするadhE遺伝子を保持するように細菌を改変することにより、付与又は増強できる。「好気条件での不活化に対する耐性が向上する変異」を、「好気耐性変異」ともいう。 Ethanol assimilation under aerobic conditions is conferred or enhanced, for example, by modifying the bacterium to retain the adhE gene encoding the AdhE protein with a mutation that improves resistance to inactivation under aerobic conditions it can. “Mutation that improves resistance to inactivation under aerobic conditions” is also referred to as “aerobic resistance mutation”.
 好気耐性変異を有するAdhEタンパク質を「変異型AdhEタンパク質」ともいう。また、変異型AdhEタンパク質をコードする遺伝子を、「変異型adhE遺伝子」ともいう。 AdhE protein having an aerobic tolerance mutation is also referred to as “mutant AdhE protein”. A gene encoding a mutant AdhE protein is also referred to as a “mutant adhE gene”.
 好気耐性変異を有さないAdhEタンパク質を「野生型AdhEタンパク質」ともいう。また、野生型AdhEタンパク質をコードする遺伝子を、「野生型adhE遺伝子」ともいう。なお、ここでいう「野生型」とは、「変異型」と区別するための便宜上の記載であり、好気耐性変異を有さない限り、天然に得られるものには限定されない。野生型AdhEタンパク質としては、例えば、上記例示した腸内細菌科に属する細菌のAdhEタンパク質が挙げられる。また、上記例示した腸内細菌科に属する細菌のAdhEタンパク質の保存的バリアントは、好気耐性変異を有さない限り、いずれも野生型AdhEタンパク質である。 AdhE protein that does not have an aerobic tolerance mutation is also referred to as “wild-type AdhE protein”. A gene encoding a wild type AdhE protein is also referred to as a “wild type adhE gene”. The “wild type” here is a description for convenience to distinguish it from the “mutant type”, and is not limited to those obtained naturally unless it has an aerobic tolerance mutation. Examples of the wild-type AdhE protein include the AdhE protein of bacteria belonging to the family Enterobacteriaceae exemplified above. Moreover, the conservative variants of the AdhE protein of the bacteria belonging to the family Enterobacteriaceae exemplified above are all wild-type AdhE proteins unless they have an aerobic tolerance mutation.
 好気耐性変異としては、野生型AdhEタンパク質のアミノ酸配列において、配列番号46に示すアミノ酸配列(Escherichia coli K12 MG1655株の野生型AdhEタンパク質のアミノ酸配列)における568位のグルタミン酸残基に相当するアミノ酸残基が、グルタミン酸およびアスパラギン酸以外のアミノ酸残基に置換される変異が挙げられる(WO2008/010565)。置換後のアミノ酸残基としては、L(Lys)、R(Arg)、H(His)、A(Ala)、V(Val)、L(Leu)、I(Ile)、G(Gly)S(Ser)、T(Thr)、P(Pro)、F(Phe)、W(Trp)、Y(Tyr)、C(Cys)、M(Met)、N(Asn)、Q(Gln)が挙げられる。置換後のアミノ酸残基は、例えば、リジン残基であってよい。置換後のアミノ酸残基がリジン残基である場合の同変異を、「Glu568Lys」または「E568K」ともいう。 As the aerobic tolerance mutation, the amino acid residue corresponding to the glutamic acid residue at position 568 in the amino acid sequence of the wild type AdhE protein in the amino acid sequence shown in SEQ ID NO: 46 (the amino acid sequence of the wild type AdhE protein of Escherichia coli K12 MG1655 strain) is used. Examples include a mutation in which a group is substituted with an amino acid residue other than glutamic acid and aspartic acid (WO2008 / 010565). As amino acid residues after substitution, L (Lys), R (Arg), H (His), A (Ala), V (Val), L (Leu), I (Ile), G (Gly) S ( Ser), T (Thr), P (Pro), F (Phe), W (Trp), Y (Tyr), C (Cys), M (Met), N (Asn), Q (Gln) . The amino acid residue after substitution may be, for example, a lysine residue. The same mutation when the amino acid residue after substitution is a lysine residue is also referred to as “Glu568Lys” or “E568K”.
 変異型AdhEタンパク質は、さらに、下記の追加的変異を有していてもよい:
(A)野生型AdhEタンパク質のアミノ酸配列において、配列番号46に示すアミノ酸配列における560位のグルタミン酸残基に相当するアミノ酸残基が、他のアミノ酸残基に置換される変異;
(B)野生型AdhEタンパク質のアミノ酸配列において、配列番号46に示すアミノ酸配列における566位のフェニルアラニン残基に相当するアミノ酸残基が、他のアミノ酸残基に置換される変異;
(C)野生型AdhEタンパク質のアミノ酸配列において、配列番号46に示すアミノ酸配列における22位のグルタミン酸残基、236位のメチオニン残基、461位のチロシン残基、554位のイソロイシン残基、及び786位のアラニン残基に相当するアミノ酸残基が、他のアミノ酸残基に置換される変異;
(D)上記変異の組み合わせ。
The mutant AdhE protein may further have the following additional mutations:
(A) A mutation in which the amino acid residue corresponding to the glutamic acid residue at position 560 in the amino acid sequence shown in SEQ ID NO: 46 is substituted with another amino acid residue in the amino acid sequence of the wild-type AdhE protein;
(B) a mutation in which the amino acid residue corresponding to the phenylalanine residue at position 566 in the amino acid sequence shown in SEQ ID NO: 46 is substituted with another amino acid residue in the amino acid sequence of the wild-type AdhE protein;
(C) In the amino acid sequence of the wild-type AdhE protein, the glutamic acid residue at position 22, the methionine residue at position 236, the tyrosine residue at position 461, the isoleucine residue at position 554, and 786 in the amino acid sequence shown in SEQ ID NO: 46 A mutation in which the amino acid residue corresponding to the alanine residue at the position is substituted with another amino acid residue;
(D) Combination of the above mutations.
 上記の追加的変異において、置換後のアミノ酸残基としては、L(Lys)、R(Arg)、H(His)、A(Ala)、V(Val)、L(Leu)、I(Ile)、G(Gly)S(Ser)、T(Thr)、P(Pro)、F(Phe)、W(Trp)、Y(Tyr)、C(Cys)、M(Met)、D(Asp)、E(Glu)、N(Asn)、Q(Gln)の内、元のアミノ酸残基以外のものが挙げられる。上記変異(A)において、置換後のアミノ酸残基は、例えば、リジン残基であってよい。上記変異(B)において、置換後のアミノ酸残基は、例えば、バリン残基であってよい。上記変異(C)において、置換後のアミノ酸残基は、例えば、22位についてグリシン残基(Glu22Gly)、236位についてバリン残基(Met236Val)、461位についてシステイン残基(Tyr461Cys)、554位についてセリン残基(Ile554Ser)、及び786位についてバリン残基(Ala786Val)であってよい。 In the above additional mutation, the substituted amino acid residues include L (Lys), R (Arg), H (His), A (Ala), V (Val), L (Leu), and I (Ile). , G (Gly) S (Ser), T (Thr), P (Pro), F (Phe), W (Trp), Y (Tyr), C (Cys), M (Met), D (Asp), Among E (Glu), N (Asn), and Q (Gln), those other than the original amino acid residue can be mentioned. In the mutation (A), the amino acid residue after substitution may be, for example, a lysine residue. In the mutation (B), the amino acid residue after substitution may be, for example, a valine residue. In the mutation (C), the substituted amino acid residues are, for example, glycine residue (Glu22Gly) at position 22, valine residue (Met236Val) at position 236, cysteine residue (Tyr461Cys) at position 461, and position 554. It may be a serine residue (Ile554Ser) and a valine residue (Ala786Val) for position 786.
 任意の野生型AdhEタンパク質のアミノ酸配列において、「配列番号46に示すアミノ酸配列におけるn位のアミノ酸残基に相当するアミノ酸残基」とは、対象の野生型AdhEタンパク質のアミノ酸配列と配列番号46のアミノ酸配列とのアラインメントにおいて配列番号46に示すアミノ酸配列におけるn位のアミノ酸残基に相当するアミノ酸残基を意味する。すなわち、上記変異において、アミノ酸残基の位置は、必ずしも野生型AdhEタンパク質のアミノ酸配列における絶対的な位置を示すものではなく、配列番号46に記載のアミノ酸配列に基づく相対的な位置を示すものである。例えば、配列番号46に示すアミノ酸配列からなる野生型AdhEタンパク質において、n位よりもN末端側の位置で1アミノ酸残基が欠失した場合、元のn位のアミノ酸残基はN末端から数えてn-1番目のアミノ酸残基となるが、「配列番号46に示すアミノ酸配列におけるn位のアミノ酸残基に相当するアミノ酸残基」とみなされる。同様に、例えば、ある微生物のAdhEタンパク質ホモログのアミノ酸配列中の567位のアミノ酸残基が、配列番号46に示すアミノ酸配列中の568位に相当するときは、当該アミノ酸残基は、当該AdhEタンパク質ホモログにおける「配列番号46に示すアミノ酸配列における568位のアミノ酸残基に相当するアミノ酸残基」である。 In the amino acid sequence of any wild-type AdhE protein, “the amino acid residue corresponding to the amino acid residue at position n in the amino acid sequence shown in SEQ ID NO: 46” refers to the amino acid sequence of the target wild-type AdhE protein and SEQ ID NO: 46 It means an amino acid residue corresponding to the amino acid residue at position n in the amino acid sequence shown in SEQ ID NO: 46 in the alignment with the amino acid sequence. That is, in the above mutation, the position of the amino acid residue does not necessarily indicate an absolute position in the amino acid sequence of the wild type AdhE protein, but indicates a relative position based on the amino acid sequence described in SEQ ID NO: 46. is there. For example, in the wild-type AdhE protein consisting of the amino acid sequence shown in SEQ ID NO: 46, when one amino acid residue is deleted at the N-terminal position from the n-position, the original n-position amino acid residue is counted from the N-terminal. The amino acid residue at the (n-1) th position is regarded as “the amino acid residue corresponding to the amino acid residue at position n in the amino acid sequence shown in SEQ ID NO: 46”. Similarly, for example, when the amino acid residue at position 567 in the amino acid sequence of an AdhE protein homologue of a certain microorganism corresponds to position 568 in the amino acid sequence shown in SEQ ID NO: 46, the amino acid residue is the AdhE protein. This is the “amino acid residue corresponding to the amino acid residue at position 568 in the amino acid sequence shown in SEQ ID NO: 46” in the homologue.
 アラインメントは、例えば、公知の遺伝子解析ソフトウェアを利用して実施できる。具体的な遺伝子解析ソフトウェアとしては、日立ソリューションズ製のDNASIS、ゼネティックス製のGENETYX、DDBJが公開しているClustalWなどが挙げられる(Elizabeth C. Tyler et al., Computers and Biomedical Research, 24(1), 72-96, 1991;Barton GJ et al., Journal of molecular biology, 198(2), 327-37. 1987;Thompson JD et al., Nucleic acid Reseach, 22(22), 4673-80. 1994)。 Alignment can be performed using, for example, known gene analysis software. Specific gene analysis software includes DNA Solutions from Hitachi Solutions, GENETYX from GENETICS, and ClustalW published by DDBJ (Elizabeth C. Tyler et al., Computers and Biomedical Research, 24 (1), 72-96, 1991; Barton GJ et al., Journal of molecular biology, 198 (2), 327-37. 1987; Thompson JD et al., Nucleic acid Reseach, 22 (22), 4673-80. 1994).
 変異型adhE遺伝子は、例えば、野生型adhE遺伝子を、コードされるAdhEタンパク質が好気耐性変異を有するよう改変することにより取得できる。改変のもとになる野生型adhE遺伝子は、例えば、野生型adhE遺伝子を有する生物からのクローニングにより、または、化学合成により、取得できる。また、変異型adhE遺伝子は、例えば、化学合成等により直接取得してもよい。 The mutant adhE gene can be obtained, for example, by modifying the wild-type adhE gene so that the encoded AdhE protein has an aerobic tolerance mutation. The wild-type adhE gene to be modified can be obtained, for example, by cloning from an organism having the wild-type adhE gene or by chemical synthesis. In addition, the mutant adhE gene may be obtained directly by, for example, chemical synthesis.
 遺伝子の改変は公知の手法により行うことができる。例えば、部位特異的変異法により、DNAの目的部位に目的の変異を導入することができる。部位特異的変異法としては、PCRを用いる方法(Higuchi, R., 61, in PCR technology, Erlich, H. A. Eds., Stockton press (1989);Carter, P., Meth. in Enzymol., 154, 382 (1987))や、ファージを用いる方法(Kramer,W. and Frits, H. J., Meth. in Enzymol., 154, 350 (1987);Kunkel, T. A. et al., Meth. in Enzymol., 154, 367 (1987))が挙げられる。 The gene can be modified by a known method. For example, a target mutation can be introduced into a target site of DNA by site-specific mutagenesis. As site-directed mutagenesis, a method using PCR (Higuchi, R., 61, in PCR technology, rlErlich, H. A. Eds., Stockton press (1989); Carter, P., ethMeth. In Enzymol., 154, 382 (1987)) and methods using phage (Kramer, W. and Frits, H. J., Meth. In Enzymol., 154, 350 (1987); Kunkel, T. A. et al., Meth In Enzymol., 154, 367 (1987)).
 変異型adhE遺伝子は、発現可能に本発明の細菌に導入される。具体的には、遺伝子は、好気条件で機能するプロモーターの制御下で発現するように本発明の細菌に導入することができる。遺伝子の導入については、後述する「タンパク質の活性を増大させる手法」の記載を参照できる。 The mutant adhE gene is introduced into the bacterium of the present invention so that it can be expressed. Specifically, the gene can be introduced into the bacterium of the present invention so as to be expressed under the control of a promoter that functions under aerobic conditions. For the introduction of the gene, reference can be made to the description in “Method of increasing protein activity” described later.
<1-4>その他の改変
 本発明の細菌は、ピルビン酸シンターゼ(「PS」ともいう)、および/または、ピルビン酸:NADP+オキシドレダクターゼ(「PNO」ともいう)の活性が増大するように改変されていてもよい(WO2009/031565)。
<1-4> Other Modifications In the bacterium of the present invention, the activity of pyruvate synthase (also referred to as “PS”) and / or pyruvate: NADP + oxidoreductase (also referred to as “PNO”) is increased. It may be modified (WO2009 / 031565).
 「ピルビン酸シンターゼ」とは、還元型フェレドキシンまたは還元型フラボドキシンを電子供与体として、アセチル-CoAとCO2からピルビン酸を生成する反応を可逆的に触媒する酵素(EC 1.2.7.1)をいう。PSは、ピルビン酸オキシドレダクターゼ、ピルビン酸フェレドキシンオキシドレダクターゼ、またはピルビン酸フラボドキシンオキシドレダクターゼともいう。PSの活性は、例えば、Yoonらの方法(Yoon, K. S. et al. 1997. Arch. Microbiol. 167: 275-279)に従って測定できる。 “Pyruvate synthase” refers to an enzyme (EC 1.2.7.1) that reversibly catalyzes the reaction of producing pyruvate from acetyl-CoA and CO 2 using reduced ferredoxin or reduced flavodoxin as an electron donor. PS is also referred to as pyruvate oxidoreductase, pyruvate ferredoxin oxidoreductase, or pyruvate flavodoxin oxidoreductase. The activity of PS can be measured, for example, according to the method of Yoon et al. (Yoon, K. S. et al. 1997. Arch. Microbiol. 167: 275-279).
 PSをコードする遺伝子(PS遺伝子)としては、クロロビウム・テピダム(Chlorobium tepidum)、ハイドロジェノバクター・サーモフィラス(Hydrogenobacter thermophilus)等の還元的TCAサイクルを有する細菌のPS遺伝子、エシェリヒア・コリ等の腸内細菌科に属する細菌のPS遺伝子、メタノコッカス・マリパルディス(Methanococcus maripaludis)、メタノカルドコッカス・ジャナスチ(Methanocaldococcus jannaschii)、メタノサーモバクター・サーモオートトロフィカス(Methanothermobacter thermautotrophicus)等の独立栄養性メタン生成古細菌(autotrophic methanogens)のPS遺伝子が挙げられる。 PS-encoding genes (PS genes) include PS genes of bacteria having a reductive TCA cycle such as Chlorobium tepidum, Hydrogenobacter thermophilus, and enterobacteria such as Escherichia coli Autotrophic methane-producing archaea such as PS gene of bacteria belonging to the family, Methanococcus maripaludis, Methanococdocus janaschi (Methanocaldococcus jannaschii), Methanothermobacter thermautotrophicus, etc. methanogens) PS gene.
 「ピルビン酸:NADP+オキシドレダクターゼ」とは、NADPHあるいはNADHを電子供与体として、アセチル-CoAとCO2からピルビン酸を生成する反応を可逆的に触媒する酵素(EC 1.2.1.15)をいう。ピルビン酸:NADP+オキシドレダクターゼは、ピルビン酸デヒドロゲナーゼともいう。PNOの活性は、例えば、Inuiらの方法(Inui, H. et al. 1987. J. Biol. Chem. 262: 9130-9135)に従って測定できる。 “Pyruvate: NADP + oxidoreductase” refers to an enzyme (EC 1.2.1.15) that reversibly catalyzes the reaction of generating pyruvate from acetyl-CoA and CO 2 using NADPH or NADH as an electron donor. Pyruvate: NADP + oxidoreductase is also referred to as pyruvate dehydrogenase. The activity of PNO can be measured, for example, according to the method of Inui et al. (Inui, H. et al. 1987. J. Biol. Chem. 262: 9130-9135).
 PNOをコードする遺伝子(PNO遺伝子)としては、光合成真核微生物で原生動物にも分類されるユーグレナ・グラシリス(Euglena gracilis)のPNO遺伝子(Nakazawa, M. et al. 2000. FEBS Lett. 479: 155-156;GenBank Accession No. AB021127)、原生動物クリプトスポリジウム・パルバム(Cryptosporidium parvum)のPNO遺伝子(Rotte, C. et al. 2001. Mol. Biol. Evol. 18: 710-720)、珪藻タラシオシラ・シュードナナ(Tharassiosira pseudonana)のPNO相同遺伝子(Ctrnacta, V. et al. 2006. J. Eukaryot. Microbiol. 53: 225-231)が挙げられる。 As a gene encoding PNO (PNO gene), a PNO gene (Nakazawa, M. さ れ る et al. 2000. FEBS Lett. 479: 155) of Euglena gracilis which is classified as a protozoan in a photosynthetic eukaryotic microorganism. -156; GenBank Accession No. AB021127), PNO gene of protozoan Cryptosporidium parvum (Rotte, C. et al. 2001. Mol. (Tharassiosira pseudonana) PNO homologous gene (Ctrnacta, V. et al. 2006. J. Eukaryot. Microbiol. 53: 225-231).
 PS活性の増強は、後述するようなタンパク質の活性を増大する手法に加えて、PS活性に要求される電子供与体の供給を向上させることによっても達成できる。例えば、フェレドキシンまたはフラボドキシンの酸化型を還元型にリサイクルする活性を増強すること、フェレドキシンまたはフラボドキシンの生合成能を増強すること、またはそれらの組み合わせにより、PS活性を増強することができる(WO2009/031565)。 Enhancement of PS activity can be achieved by improving the supply of electron donors required for PS activity in addition to the method for increasing protein activity as described later. For example, PS activity can be enhanced by enhancing the activity of recycling ferredoxin or flavodoxin oxidized form to reduced form, enhancing the biosynthetic ability of ferredoxin or flavodoxin, or a combination thereof (WO2009 / 031565 ).
 フェレドキシンまたはフラボドキシンの酸化型を還元型にリサイクルする活性を有するタンパク質としては、フェレドキシン-NADP+レダクターゼが挙げられる。「フェレドキシン-NADP+レダクターゼ」とは、NADPHを電子供与体として、フェレドキシンまたはフラボドキシンの酸化型を還元型に変換する反応を可逆的に触媒する酵素(EC 1.18.1.2)をいう。フェレドキシン-NADP+レダクターゼは、フラボドキシン-NADP+レダクターゼともいう。フェレドキシン-NADP+レダクターゼの活性は、例えば、Blaschkowskiらの方法(Blaschkowski, H. P. et al. 1982. Eur. J. Biochem. 123: 563-569)に従って測定できる。 Examples of proteins having the activity of recycling ferredoxin or flavodoxin oxidized form to reduced form include ferredoxin-NADP + reductase. “Ferredoxin-NADP + reductase” refers to an enzyme (EC 1.18.1.2) that reversibly catalyzes a reaction of converting ferredoxin or an oxidized form of flavodoxin into a reduced form using NADPH as an electron donor. Ferredoxin-NADP + reductase is also referred to as flavodoxin-NADP + reductase. The activity of ferredoxin-NADP + reductase can be measured, for example, according to the method of Blaschkowski et al. (Blaschkowski, H. P. et al. 1982. Eur. J. Biochem. 123: 563-569).
 フェレドキシン-NADP+レダクターゼをコードする遺伝子(フェレドキシン-NADP+レダクターゼ遺伝子)としては、エシェリヒア・コリのfpr遺伝子、コリネバクテリウム・グルタミカムのフェレドキシン-NADP+レダクターゼ遺伝子、シュードモナス・プチダ(Psuedomonas putida)のNADPH-プチダレドキシンレダクターゼ(Putidaredoxin reductase)遺伝子(Koga, H. et al. 1989. J. Biochem. (Tokyo) 106: 831-836)が挙げられる。 The genes encoding ferredoxin-NADP + reductase (ferredoxin-NADP + reductase gene) include the fpr gene of Escherichia coli, the ferredoxin-NADP + reductase gene of Corynebacterium glutamicum, and the NADPH- of Pseedomonas putida. And putidaredoxin reductase gene (Koga, H. et al. 1989. J. Biochem. (Tokyo) 106: 831-836).
 フェレドキシンまたはフラボドキシンの生合成能は、フェレドキシンをコードする遺伝子(フェレドキシン遺伝子)またはフラボドキシンをコードする遺伝子(フラボドキシン遺伝子)の発現を増強することにより、増強することができる。フェレドキシン遺伝子またはフラボドキシン遺伝子としては、PSおよび電子供与体再生系が利用可能なフェレドキシンまたはフラボドキシンをコードするものであれば、特に制限されない。 The biosynthetic ability of ferredoxin or flavodoxin can be enhanced by enhancing the expression of a gene encoding ferredoxin (ferredoxin gene) or a gene encoding flavodoxin (flavodoxin gene). The ferredoxin gene or flavodoxin gene is not particularly limited as long as it encodes ferredoxin or flavodoxin that can be used by PS and an electron donor regeneration system.
 フェレドキシン遺伝子としては、エシェリヒア・コリのfdx遺伝子やyfhL遺伝子、コリネバクテリウム・グルタミカムのfer遺伝子、クロロビウム・テピダムやハイドロジェノバクター・サーモフィラス等の還元的TCAサイクルを有する細菌のフェレドキシン遺伝子が挙げられる。フラボドキシン遺伝子としては、エシェリヒア・コリのfldA遺伝子やfldB遺伝子、還元的TCAサイクルを有する細菌のフラボドキシン遺伝子が挙げられる。 Examples of the ferredoxin gene include Escherichia coli fdx gene and yfhL gene, corynebacterium glutamicum fer gene, bacteria ferredoxin gene having a reductive TCA cycle such as Chlorobium tepidum and Hydrogenobacter thermophilus. Examples of the flavodoxin gene include Escherichia coli fldA gene and fldB gene, and bacterial flavodoxin gene having a reductive TCA cycle.
 また、本発明の細菌は、リボヌクレアーゼGの活性が低下するように改変されていてもよい(特開2012-100537)。 Moreover, the bacterium of the present invention may be modified so that the activity of ribonuclease G is reduced (Japanese Patent Laid-Open No. 2012-100537).
 また、本発明の細菌は、変異型リボソームS1タンパク質を有するように改変されていてもよい(特開2013-074795)。 Further, the bacterium of the present invention may be modified so as to have a mutant ribosome S1 protein (JP 2013-074795).
 また、本発明の細菌は、細胞内の過酸化水素濃度が低下するように改変されていてもよい(特開2014-036576)。 Moreover, the bacterium of the present invention may be modified so that the concentration of intracellular hydrogen peroxide decreases (Japanese Patent Laid-Open No. 2014-036576).
 なお、上記の遺伝子、例えば、PS遺伝子、PNO遺伝子、フェレドキシン-NADP+レダクターゼ遺伝子、フェレドキシン遺伝子、フラボドキシン遺伝子は、コードされるタンパク質の機能が損なわれない限り、上述した遺伝子情報を持つ遺伝子や公知の塩基配列を有する遺伝子に限られず、そのバリアントであってもよい。例えば、同遺伝子は、公知のタンパク質のアミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。遺伝子やタンパク質のバリアントについては、上述したアコニターゼおよびアセトアルデヒドデヒドロゲナーゼならびにそれらをコードする遺伝子の保存的バリアントに関する記載を準用できる。 In addition, the above genes, for example, PS gene, PNO gene, ferredoxin-NADP + reductase gene, ferredoxin gene, flavodoxin gene may be a gene having the above-described gene information or a known one as long as the function of the encoded protein is not impaired. It is not limited to a gene having a base sequence, and may be a variant thereof. For example, the gene is a gene encoding a protein having an amino acid sequence in which one or several amino acids at one or several positions are substituted, deleted, inserted or added in the amino acid sequence of a known protein. May be. Regarding the gene and protein variants, the above descriptions concerning aconitase and acetaldehyde dehydrogenase and conservative variants of the genes encoding them can be applied mutatis mutandis.
<1-5>タンパク質の活性を増大させる手法
 以下に、アコニターゼやアセトアルデヒドデヒドロゲナーゼ等のタンパク質の活性を増大させる手法について説明する。
<1-5> Technique for Increasing Protein Activity A technique for increasing the activity of proteins such as aconitase and acetaldehyde dehydrogenase will be described below.
 「タンパク質の活性が増大する」とは、同タンパク質の細胞当たりの活性が野生株や親株等の非改変株に対して増大していることを意味する。なお、「タンパク質の活性が増大する」ことを、「タンパク質の活性が増強される」ともいう。「タンパク質の活性が増大する」とは、具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が増加していること、および/または、同タンパク質の分子当たりの機能が増大していることをいう。すなわち、「タンパク質の活性が増大する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。また、「タンパク質の活性が増大する」とは、もともと標的のタンパク質の活性を有する菌株において同タンパク質の活性を増大させることだけでなく、もともと標的のタンパク質の活性が存在しない菌株に同タンパク質の活性を付与することを含む。また、結果としてタンパク質の活性が増大する限り、宿主が本来有する標的のタンパク質の活性を低下または消失させた上で、好適な標的のタンパク質の活性を付与してもよい。 "" Protein activity increases "means that the activity per cell of the protein is increased relative to unmodified strains such as wild strains and parental strains. Note that “increasing protein activity” is also referred to as “enhancing protein activity”. “Protein activity increases” specifically means that the number of molecules per cell of the protein is increased and / or the function per molecule of the protein compared to an unmodified strain. Is increasing. That is, “activity” in the case of “increasing protein activity” means not only the catalytic activity of the protein, but also the transcription amount (mRNA amount) or translation amount (protein amount) of the gene encoding the protein. May be. “Protein activity increases” means not only to increase the activity of the protein in a strain that originally has the activity of the target protein, but also to the activity of the protein in a strain that does not originally have the activity of the target protein. Including granting. Further, as long as the activity of the protein increases as a result, the activity of the target protein inherent in the host may be reduced or eliminated, and the activity of a suitable target protein may be imparted.
 タンパク質の活性は、非改変株と比較して増大していれば特に制限されないが、例えば、非改変株と比較して、1.5倍以上、2倍以上、または3倍以上に上昇してよい。また、非改変株が標的のタンパク質の活性を有していない場合は、同タンパク質をコードする遺伝子を導入することにより同タンパク質が生成されていればよいが、例えば、同タンパク質はその酵素活性が測定できる程度に生産されていてよい。 The activity of the protein is not particularly limited as long as it is increased compared to the non-modified strain. For example, the protein activity is increased 1.5 times or more, 2 times or more, or 3 times or more compared to the non-modified strain. Good. In addition, when the non-modified strain does not have the activity of the target protein, it is sufficient that the protein is generated by introducing a gene encoding the protein. For example, the protein has an enzymatic activity. It may be produced to the extent that it can be measured.
 タンパク質の活性が増大するような改変は、例えば、同タンパク質をコードする遺伝子の発現を上昇させることによって達成される。「遺伝子の発現が上昇する」とは、同遺伝子の細胞当たりの発現量が野生株や親株等の非改変株と比較して増大することを意味する。「遺伝子の発現が上昇する」とは、具体的には、遺伝子の転写量(mRNA量)が増大すること、および/または、遺伝子の翻訳量(タンパク質の量)が増大することを意味してよい。なお、「遺伝子の発現が上昇する」ことを、「遺伝子の発現が増強される」ともいう。遺伝子の発現は、例えば、非改変株と比較して、1.5倍以上、2倍以上、または3倍以上に上昇してよい。また、「遺伝子の発現が上昇する」とは、もともと標的の遺伝子が発現している菌株において同遺伝子の発現量を上昇させることだけでなく、もともと標的の遺伝子が発現していない菌株において、同遺伝子を発現させることを含む。すなわち、「遺伝子の発現が上昇する」とは、例えば、標的の遺伝子を保持しない菌株に同遺伝子を導入し、同遺伝子を発現させることを含む。 Modification that increases the activity of the protein is achieved, for example, by increasing the expression of the gene encoding the protein. “Gene expression is increased” means that the expression level of the gene per cell is increased as compared to a non-modified strain such as a wild strain or a parent strain. “Gene expression increases” specifically means that the amount of gene transcription (mRNA amount) increases and / or the amount of gene translation (protein amount) increases. Good. Note that “increasing gene expression” is also referred to as “enhanced gene expression”. The expression of the gene may be increased 1.5 times or more, 2 times or more, or 3 times or more, for example, as compared to the unmodified strain. In addition, “increasing gene expression” means not only increasing the expression level of a target gene in a strain that originally expresses the target gene, but also in a strain that originally does not express the target gene. Including expressing a gene. That is, “increasing gene expression” includes, for example, introducing the gene into a strain that does not hold the target gene and expressing the gene.
 遺伝子の発現の上昇は、例えば、遺伝子のコピー数を増加させることにより達成できる。 An increase in gene expression can be achieved, for example, by increasing the copy number of the gene.
 遺伝子のコピー数の増加は、宿主の染色体へ同遺伝子を導入することにより達成できる。染色体への遺伝子の導入は、例えば、相同組み換えを利用して行うことができる(MillerI, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory)。相同組み換えを利用する遺伝子導入法としては、例えば、Redドリブンインテグレーション(Red-driven integration)法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))等の直鎖状DNAを用いる方法、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法、ファージを用いたtransduction法が挙げられる。遺伝子は、1コピーのみ導入されてもよく、2コピーまたはそれ以上導入されてもよい。例えば、染色体上に多数のコピーが存在する配列を標的として相同組み換えを行うことで、染色体へ遺伝子の多数のコピーを導入することができる。染色体上に多数のコピーが存在する配列としては、反復DNA配列(repetitive DNA)、トランスポゾンの両端に存在するインバーテッド・リピートが挙げられる。また、目的物質の生産に不要な遺伝子等の染色体上の適当な配列を標的として相同組み換えを行ってもよい。また、遺伝子は、トランスポゾンやMini-Muを用いて染色体上にランダムに導入することもできる(特開平2-109985号公報、US5,882,888、EP805867B1)。 Increase in gene copy number can be achieved by introducing the gene into the host chromosome. Introduction of a gene into a chromosome can be performed, for example, using homologous recombination (Miller I, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory). Examples of gene introduction methods using homologous recombination include the Red-driven integration method (Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97). : 6640-6645 (2000)) and other methods using linear DNA, a method using a plasmid containing a temperature-sensitive replication origin, a method using a plasmid capable of conjugation transfer, and a suspension vector that does not have an origin of replication and functions in the host And a transduction method using a phage. Only one copy of the gene may be introduced, or two copies or more may be introduced. For example, multiple copies of a gene can be introduced into a chromosome by performing homologous recombination with a sequence having multiple copies on the chromosome as a target. Examples of sequences having many copies on a chromosome include repetitive DNA sequences (inverted DNA) and inverted repeats present at both ends of a transposon. Alternatively, homologous recombination may be performed by targeting an appropriate sequence on a chromosome such as a gene unnecessary for production of the target substance. The gene can also be randomly introduced onto the chromosome using transposon or Mini-Mu (Japanese Patent Laid-Open No. 2-109985, US Pat. No. 5,882,888, EP805867B1).
 染色体上に標的遺伝子が導入されたことの確認は、同遺伝子の全部又は一部と相補的な配列を持つプローブを用いたサザンハイブリダイゼーション、又は同遺伝子の配列に基づいて作成したプライマーを用いたPCR等によって確認できる。 Confirmation of the introduction of the target gene on the chromosome was performed using Southern hybridization using a probe having a sequence complementary to all or part of the gene, or a primer prepared based on the sequence of the gene. It can be confirmed by PCR.
 また、遺伝子のコピー数の増加は、同遺伝子を含むベクターを宿主に導入することによっても達成できる。例えば、標的遺伝子を含むDNA断片を、宿主で機能するベクターと連結して同遺伝子の発現ベクターを構築し、当該発現ベクターで宿主を形質転換することにより、同遺伝子のコピー数を増加させることができる。標的遺伝子を含むDNA断片は、例えば、標的遺伝子を有する微生物のゲノムDNAを鋳型とするPCRにより取得できる。ベクターとしては、宿主の細胞内において自律複製可能なベクターを用いることができる。また、ベクターは、挿入された遺伝子を発現するためのプロモーターやターミネーターを備えていてもよい。ベクターは、マルチコピーベクターであるのが好ましい。また、形質転換体を選択するために、ベクターは抗生物質耐性遺伝子などのマーカーを有することが好ましい。また、ベクターは、挿入された遺伝子を発現するためのプロモーターやターミネーターを備えていてもよい。ベクターは、例えば、細菌プラスミド由来のベクター、酵母プラスミド由来のベクター、バクテリオファージ由来のベクター、コスミド、またはファージミド等であってよい。エシェリヒア・コリ等の腸内細菌科の細菌において自律複製可能なベクターとして、具体的には、例えば、pUC19、pUC18、pHSG299、pHSG399、pHSG398、pBR322、pSTV29(いずれもタカラバイオ社より入手可)、pACYC184、pMW219(ニッポンジーン社)、pTrc99A(ファルマシア社)、pPROK系ベクター(クロンテック社)、pKK233‐2(クロンテック社製)、pET系ベクター(ノバジェン社)、pQE系ベクター(キアゲン社)、pACYC系ベクター、広宿主域ベクターRSF1010が挙げられる。 An increase in the copy number of a gene can also be achieved by introducing a vector containing the gene into a host. For example, a DNA fragment containing a target gene can be linked to a vector that functions in the host to construct an expression vector for the gene, and the host can be transformed with the expression vector to increase the copy number of the gene. it can. A DNA fragment containing a target gene can be obtained, for example, by PCR using a genomic DNA of a microorganism having the target gene as a template. As the vector, a vector capable of autonomous replication in a host cell can be used. Moreover, the vector may be equipped with a promoter or terminator for expressing the inserted gene. The vector is preferably a multicopy vector. In order to select a transformant, the vector preferably has a marker such as an antibiotic resistance gene. Moreover, the vector may be equipped with a promoter or terminator for expressing the inserted gene. The vector may be, for example, a vector derived from a bacterial plasmid, a vector derived from a yeast plasmid, a vector derived from a bacteriophage, a cosmid, or a phagemid. As vectors capable of autonomous replication in bacteria of the Enterobacteriaceae family such as Escherichia coli, specifically, for example, pUC19, pUC18, pHSG299, pHSG399, pHSG398, pBR322, pSTV29 (all available from Takara Bio Inc.), pACYC184, pMW219 (Nippon Gene), pTrc99A (Pharmacia), pPROK vector (Clontech), pKK233-2 (Clontech), pET vector (Novagen), pQE vector (Qiagen), pACYC vector A broad host range vector RSF1010.
 遺伝子を導入する場合、遺伝子は、発現可能に本発明の細菌に保持されていればよい。具体的には、遺伝子は、本発明の細菌で機能するプロモーター配列による制御を受けて発現するように導入されていればよい。プロモーターは、宿主由来のプロモーターであってもよく、異種由来のプロモーターであってもよい。プロモーターは、導入する遺伝子の固有のプロモーターであってもよく、他の遺伝子のプロモーターであってもよい。プロモーターとしては、例えば、解糖系、ペントースリン酸経路、TCA回路、アミノ酸生合成系の遺伝子のプロモーターや実施例で用いたP14プロモーター(配列番号1)が挙げられる。また、プロモーターとしては、例えば、後述するような、より強力なプロモーターを利用してもよい。 When a gene is introduced, the gene only needs to be retained in the bacterium of the present invention so that it can be expressed. Specifically, the gene may be introduced so as to be expressed under the control of a promoter sequence that functions in the bacterium of the present invention. The promoter may be a host-derived promoter or a heterologous promoter. The promoter may be a native promoter of a gene to be introduced or a promoter of another gene. The promoter, for example, glycolysis, pentose phosphate pathway, TCA circuit, P 14 promoter used in the promoter and examples of genes of amino acid biosynthesis (SEQ ID NO: 1). As the promoter, for example, a stronger promoter as described later may be used.
 遺伝子の下流には、転写終結用のターミネーターを配置することができる。ターミネーターは、本発明の細菌において機能するものであれば特に制限されない。ターミネーターは、宿主由来のターミネーターであってもよく、異種由来のターミネーターであってもよい。ターミネーターは、導入する遺伝子の固有のターミネーターであってもよく、他の遺伝子のターミネーターであってもよい。ターミネーターとして、具体的には、例えば、T7ターミネーター、T4ターミネーター、fdファージターミネーター、tetターミネーター、およびtrpAターミネーターが挙げられる。 A transcription terminator can be placed downstream of the gene. The terminator is not particularly limited as long as it functions in the bacterium of the present invention. The terminator may be a host-derived terminator or a heterologous terminator. The terminator may be a terminator specific to the gene to be introduced, or may be a terminator of another gene. Specific examples of the terminator include T7 terminator, T4 terminator, fd phage terminator, tet terminator, and trpA terminator.
 各種微生物において利用可能なベクター、プロモーター、ターミネーターに関しては、例えば「微生物学基礎講座8 遺伝子工学、共立出版、1987年」に詳細に記載されており、それらを利用することが可能である。 The vectors, promoters, and terminators that can be used in various microorganisms are described in detail in, for example, “Basic Course of Microbiology 8, Genetic Engineering, Kyoritsu Shuppan, 1987”, and these can be used.
 また、2またはそれ以上の遺伝子を導入する場合、各遺伝子が、発現可能に本発明の細菌に保持されていればよい。例えば、各遺伝子は、全てが単一の発現ベクター上に保持されていてもよく、全てが染色体上に保持されていてもよい。また、各遺伝子は、複数の発現ベクター上に別々に保持されていてもよく、単一または複数の発現ベクター上と染色体上とに別々に保持されていてもよい。また、2またはそれ以上の遺伝子でオペロンを構成して導入してもよい。「2またはそれ以上の遺伝子を導入する場合」としては、例えば、2またはそれ以上の酵素をそれぞれコードする遺伝子を導入する場合、単一の酵素を構成する2またはそれ以上のサブユニットをそれぞれコードする遺伝子を導入する場合、およびそれらの組み合わせが挙げられる。 In addition, when two or more genes are introduced, each gene may be retained in the bacterium of the present invention so that it can be expressed. For example, all the genes may be held on a single expression vector, or all may be held on a chromosome. Moreover, each gene may be separately hold | maintained on several expression vector, and may be separately hold | maintained on the single or several expression vector and chromosome. Further, an operon may be constructed by introducing two or more genes. “When two or more genes are introduced” means, for example, when a gene encoding each of two or more enzymes is introduced, each of two or more subunits constituting a single enzyme is encoded. And a combination thereof.
 導入される遺伝子は、宿主で機能するタンパク質をコードするものであれば特に制限されない。導入される遺伝子は、宿主由来の遺伝子であってもよく、異種由来の遺伝子であってもよい。導入される遺伝子は、例えば、同遺伝子の塩基配列に基づいて設計したプライマーを用い、同遺伝子を有する生物のゲノムDNAや同遺伝子を搭載するプラスミド等を鋳型として、PCRにより取得することができる。また、導入される遺伝子は、例えば、同遺伝子の塩基配列に基づいて全合成してもよい(Gene, 60(1), 115-127 (1987))。取得した遺伝子は、そのまま、あるいは適宜改変して、利用することができる。 The gene to be introduced is not particularly limited as long as it encodes a protein that functions in the host. The introduced gene may be a host-derived gene or a heterologous gene. The gene to be introduced can be obtained by PCR using, for example, a primer designed based on the base sequence of the gene, and using a genomic DNA of an organism having the gene or a plasmid carrying the gene as a template. The introduced gene may be totally synthesized based on the base sequence of the same gene (Gene, 60 (1), 115-127 (1987)). The acquired gene can be used as it is or after being appropriately modified.
 なお、タンパク質が複数のサブユニットからなる複合体として機能する場合、結果としてタンパク質の活性が増大する限り、それら複数のサブユニットの全てを改変してもよく、一部のみを改変してもよい。すなわち、例えば、遺伝子の発現を上昇させることによりタンパク質の活性を増大させる場合、それらのサブユニットをコードする複数の遺伝子の全ての発現を増強してもよく、一部の発現のみを増強してもよい。通常は、それらのサブユニットをコードする複数の遺伝子の全ての発現を増強するのが好ましい。また、複合体を構成する各サブユニットは、複合体が目的のタンパク質の機能を有する限り、1種の生物由来であってもよく、2種またはそれ以上の異なる生物由来であってもよい。すなわち、例えば、複数のサブユニットをコードする、同一の生物由来の遺伝子を宿主に導入してもよく、それぞれ異なる生物由来の遺伝子を宿主に導入してもよい。 When the protein functions as a complex composed of a plurality of subunits, all of the plurality of subunits may be modified or only a part may be modified as long as the activity of the protein increases as a result. . That is, for example, when the activity of a protein is increased by increasing the expression of a gene, the expression of a plurality of genes encoding those subunits may be enhanced, or only a part of the expression may be enhanced. Also good. Usually, it is preferable to enhance the expression of all of a plurality of genes encoding these subunits. In addition, each subunit constituting the complex may be derived from one organism or two or more different organisms as long as the complex has the function of the target protein. That is, for example, genes derived from the same organism encoding a plurality of subunits may be introduced into the host, or genes derived from different organisms may be introduced into the host.
 また、遺伝子の発現の上昇は、遺伝子の転写効率を向上させることにより達成できる。また、遺伝子の発現の上昇は、遺伝子の翻訳効率を向上させることにより達成できる。遺伝子の転写効率や翻訳効率の向上は、例えば、発現調節配列の改変により達成できる。「発現調節配列」とは、遺伝子の発現に影響する部位の総称である。発現調節配列としては、例えば、プロモーター、シャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)、およびRBSと開始コドンとの間のスペーサー領域が挙げられる。発現調節配列は、プロモーター検索ベクターやGENETYX等の遺伝子解析ソフトを用いて決定することができる。これら発現調節配列の改変は、例えば、温度感受性ベクターを用いた方法や、Redドリブンインテグレーション法(WO2005/010175)により行うことができる。 Moreover, the increase in gene expression can be achieved by improving the transcription efficiency of the gene. Moreover, the increase in gene expression can be achieved by improving the translation efficiency of the gene. Improvement of gene transcription efficiency and translation efficiency can be achieved, for example, by altering an expression regulatory sequence. “Expression regulatory sequence” is a general term for sites that affect gene expression. Examples of the expression control sequence include a promoter, Shine-Dalgarno (SD) sequence (also referred to as ribosome binding site (RBS)), and a spacer region between RBS and the start codon. The expression regulatory sequence can be determined using a promoter search vector or gene analysis software such as GENETYX. These expression regulatory sequences can be modified, for example, by a method using a temperature sensitive vector or a Red driven integration method (WO2005 / 010175).
 遺伝子の転写効率の向上は、例えば、染色体上の遺伝子のプロモーターをより強力なプロモーターに置換することにより達成できる。「より強力なプロモーター」とは、遺伝子の転写が、もともと存在している野生型のプロモーターよりも向上するプロモーターを意味する。より強力なプロモーターとしては、例えば、公知の高発現プロモーターであるT7プロモーター、trpプロモーター、lacプロモーター、thrプロモーター、tacプロモーター、trcプロモーター、tetプロモーター、araBADプロモーター、rpoHプロモーター、PRプロモーター、およびPLプロモーターが挙げられる。また、より強力なプロモーターとしては、各種レポーター遺伝子を用いることにより、在来のプロモーターの高活性型のものを取得してもよい。例えば、プロモーター領域内の-35、-10領域をコンセンサス配列に近づけることにより、プロモーターの活性を高めることができる(国際公開第00/18935号)。高活性型プロモーターとしては、各種tac様プロモーター(Katashkina JI et al. Russian Federation Patent application 2006134574)やpnlp8プロモーター(WO2010/027045)が挙げられる。プロモーターの強度の評価法および強力なプロモーターの例は、Goldsteinらの論文(Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev., 1, 105-128 (1995))等に記載されている。 Improvement of gene transcription efficiency can be achieved, for example, by replacing a promoter of a gene on a chromosome with a stronger promoter. By “stronger promoter” is meant a promoter that improves transcription of the gene over the native wild-type promoter. Examples of stronger promoters include the known high expression promoters T7 promoter, trp promoter, lac promoter, thr promoter, thr promoter, tac promoter, trc promoter, tet promoter, araBAD promoter, rpoH promoter, PR promoter, and PL promoter. Can be mentioned. As a more powerful promoter, a highly active promoter of a conventional promoter may be obtained by using various reporter genes. For example, the activity of the promoter can be increased by bringing the -35 and -10 regions in the promoter region closer to the consensus sequence (WO 00/18935). Examples of the highly active promoter include various tac-like promoters (Katashkina JI et al. Russian Patent application 2006134574) and pnlp8 promoter (WO2010 / 027045). Methods for evaluating promoter strength and examples of strong promoters are described in Goldstein et al. (Prokaryotickpromoters in biotechnology. Biotechnol. Annu. Rev.,. 1, 105-128 (1995)).
 遺伝子の翻訳効率の向上は、例えば、染色体上の遺伝子のシャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)をより強力なSD配列に置換することにより達成できる。「より強力なSD配列」とは、mRNAの翻訳が、もともと存在している野生型のSD配列よりも向上するSD配列を意味する。より強力なSD配列としては、例えば、ファージT7由来の遺伝子10のRBSが挙げられる(Olins P. O. et al, Gene, 1988, 73, 227-235)。さらに、RBSと開始コドンとの間のスペーサー領域、特に開始コドンのすぐ上流の配列(5'-UTR)における数個のヌクレオチドの置換、あるいは挿入、あるいは欠失がmRNAの安定性および翻訳効率に非常に影響を及ぼすことが知られており、これらを改変することによっても遺伝子の翻訳効率を向上させることができる。 Improvement of gene translation efficiency can be achieved, for example, by replacing the Shine-Dalgarno (SD) sequence (also referred to as ribosome binding site (RBS)) of the gene on the chromosome with a stronger SD sequence. By “a stronger SD sequence” is meant an SD sequence in which the translation of mRNA is improved over the originally existing wild-type SD sequence. As a stronger SD sequence, for example, RBS of gene 10 derived from phage T7 can be mentioned (Olins P. O. et al, Gene, 1988, 73, 227-235). Furthermore, substitution of several nucleotides in the spacer region between the RBS and the start codon, particularly the sequence immediately upstream of the start codon (5'-UTR), or insertion or deletion, contributes to mRNA stability and translation efficiency. It is known to have a great influence, and the translation efficiency of a gene can be improved by modifying them.
 遺伝子の翻訳効率の向上は、例えば、コドンの改変によっても達成できる。エシェリヒア・コリ等において、mRNA分子の集団内に見出される61種のアミノ酸コドン間には明らかなコドンの偏りが存在し、あるtRNAの存在量は、対応するコドンの使用頻度と直接比例するようである(Kane, J.F., Curr. Opin. Biotechnol., 6(5), 494-500 (1995))。すなわち、過剰のレアコドンを含むmRNAが大量に存在すると翻訳の問題が生じうる。近年の研究によれば、特に、AGG/AGA、CUA、AUA、CGA、又はCCCコドンのクラスターが、合成されたタンパク質の量および質の両方を低下させ得ることが示唆されている。このような問題は、特に異種遺伝子の発現の際に生じうる。よって、遺伝子の異種発現を行う場合等には、遺伝子中に存在するレアコドンを、より高頻度で利用される同義コドンに置き換えることにより、遺伝子の翻訳効率を向上させることができる。すなわち、導入される遺伝子は、例えば、使用する宿主のコドン使用頻度に応じて最適なコドンを有するように改変されてよい。コドンの置換は、例えば、DNAの目的の部位に目的の変異を導入する部位特異的変異法により行うことができる。部位特異的変異法としては、PCRを用いる方法(Higuchi, R., 61, in PCR technology, Erlich, H. A. Eds., Stockton press (1989);Carter, P., Meth. in Enzymol., 154, 382 (1987))や、ファージを用いる方法(Kramer,W. and Frits, H. J., Meth. in Enzymol., 154, 350 (1987);Kunkel, T. A. et al., Meth. in Enzymol., 154, 367 (1987))が挙げられる。また、コドンが置換された遺伝子断片を全合成してもよい。種々の生物におけるコドンの使用頻度は、「コドン使用データベース」(http://www.kazusa.or.jp/codon; Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000))に開示されている。 Improvement of gene translation efficiency can also be achieved, for example, by codon modification. In Escherichia coli, etc., there is a clear codon bias among the 61 amino acid codons found in the population of mRNA molecules, and the abundance of a tRNA seems to be directly proportional to the frequency of use of the corresponding codon. (Kane, JF, Curr. Opin. Biotechnol., 6 (5), 494-500 (1995)). That is, if a large amount of mRNA containing an excessive rare codon is present, translation problems may occur. Recent studies suggest that, inter alia, clusters of AGG / AGA, CUA, AUA, CGA, or CCC codons can reduce both the amount and quality of the synthesized protein. Such a problem can occur particularly during the expression of heterologous genes. Therefore, when performing heterologous expression of a gene, the translation efficiency of the gene can be improved by replacing rare codons present in the gene with synonymous codons that are used more frequently. That is, the introduced gene may be modified to have an optimal codon according to, for example, the codon usage frequency of the host to be used. Codon substitution can be performed, for example, by a site-specific mutagenesis method in which a target mutation is introduced into a target site of DNA. As site-directed mutagenesis, a method using PCR (Higuchi, R., 61, in PCR technology, rlErlich, H. A. Eds., Stockton press (1989); Carter, P., ethMeth. In Enzymol., 154, 382 (1987)) and methods using phage (Kramer, W. and Frits, H. J., Meth. In Enzymol., 154, 350 (1987); Kunkel, T. A. et al., Meth In Enzymol., 154, 367 (1987)). Alternatively, gene fragments in which codons have been replaced may be fully synthesized. The frequency of codon usage in various organisms can be found in the “Codon Usage Database” (http://www.kazusa.or.jp/codon; Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000)) Is disclosed.
 また、遺伝子の発現の上昇は、遺伝子の発現を上昇させるようなレギュレーターを増幅すること、または、遺伝子の発現を低下させるようなレギュレーターを欠失または弱化させることによっても達成できる。 Also, the increase in gene expression can be achieved by amplifying a regulator that increases gene expression or by deleting or weakening a regulator that decreases gene expression.
 上記のような遺伝子の発現を上昇させる手法は、単独で用いてもよく、任意の組み合わせで用いてもよい。 The techniques for increasing gene expression as described above may be used alone or in any combination.
 また、タンパク質の活性が増大するような改変は、例えば、タンパク質の比活性を増強することによっても達成できる。比活性の増強には、フィードバック阻害の低減および解除も含まれる。比活性が増強されたタンパク質は、例えば、種々の生物を探索し取得することができる。また、在来のタンパク質に変異を導入することで高活性型のものを取得してもよい。導入される変異は、例えば、タンパク質の1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入、又は付加されるものであってよい。変異の導入は、例えば、上述したような部位特異的変異法により行うことができる。また、変異の導入は、例えば、突然変異処理により行ってもよい。突然変異処理としては、X線の照射、紫外線の照射、ならびにN-メチル-N'-ニトロ-N-ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、およびメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。また、in vitroでDNAを直接ヒドロキシルアミンで処理し、ランダム変異を誘発してもよい。比活性の増強は、単独で用いてもよく、上記のような遺伝子の発現を増強させる手法と任意に組み合わせて用いてもよい。 Further, the modification that increases the activity of the protein can be achieved, for example, by enhancing the specific activity of the protein. Specific activity enhancement also includes the reduction and elimination of feedback inhibition. Proteins with enhanced specific activity can be obtained by searching for various organisms, for example. Alternatively, a highly active protein may be obtained by introducing a mutation into a conventional protein. The introduced mutation may be, for example, a substitution, deletion, insertion or addition of one or several amino acids at one or several positions of the protein. Mutation can be introduced by, for example, the site-specific mutation method as described above. Moreover, you may introduce | transduce a variation | mutation by a mutation process, for example. Mutation treatments include X-ray irradiation, UV irradiation, and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS), and methylmethanesulfonate (MMS). ) And the like. Alternatively, DNA may be directly treated with hydroxylamine in vitro to induce random mutations. The enhancement of specific activity may be used alone or in any combination with the above-described method for enhancing gene expression.
 形質転換の方法は特に限定されず、従来知られた方法を用いることができる。例えば、エシェリヒア・コリ K-12について報告されているような、受容菌細胞を塩化カルシウムで処理してDNAの透過性を増す方法(Mandel, M. and Higa, A.,J. Mol. Biol. 1970, 53, 159-162)や、バチルス・ズブチリスについて報告されているような、増殖段階の細胞からコンピテントセルを調製してDNAを導入する方法(Duncan, C. H., Wilson, G. A. and Young, F. E.., 1997. Gene 1: 153-167)を用いることができる。あるいは、バチルス・ズブチリス、放線菌類、及び酵母について知られているような、DNA受容菌の細胞を、組換えDNAを容易に取り込むプロトプラストまたはスフェロプラストの状態にして組換えDNAをDNA受容菌に導入する方法(Chang, S.and Choen, S.N., 1979.Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978.Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933)も応用できる。あるいは、コリネ型細菌について報告されているような、電気パルス法(特開平2-207791)を利用することもできる。 The method of transformation is not particularly limited, and a conventionally known method can be used. For example, as reported for Escherichia coli K-12, recipient cells are treated with calcium chloride to increase DNA permeability (Mandel, M. and Higa, A., J. Mol. Biol. 1970, 53, 159-162) and methods for introducing competent cells from proliferating cells and introducing DNA as reported for Bacillus subtilis (Duncan, C. H., Wilson, G. A. and Young, F. E .., 1997. Gene 1: 153-167) can be used. Alternatively, DNA-receptive cells, such as those known for Bacillus subtilis, actinomycetes, and yeast, can be made into protoplasts or spheroplasts that readily incorporate recombinant DNA into recombinant DNA. Introduction method (Chang, S. and Choen, SN, 1979. Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978. Nature 274: 398-400; Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933) can also be applied. Alternatively, an electric pulse method (Japanese Patent Laid-Open No. 2-207791) as reported for coryneform bacteria can also be used.
 タンパク質の活性が増大したことは、同タンパク質の活性を測定することで確認できる。 The increase in protein activity can be confirmed by measuring the activity of the protein.
 タンパク質の活性が増大したことは、同タンパク質をコードする遺伝子の発現が上昇したことを確認することによっても、確認できる。遺伝子の発現が上昇したことは、同遺伝子の転写量が上昇したことを確認することや、同遺伝子から発現するタンパク質の量が上昇したことを確認することにより確認できる。 The increase in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has increased. An increase in gene expression can be confirmed by confirming that the transcription amount of the gene has increased, or by confirming that the amount of protein expressed from the gene has increased.
 遺伝子の転写量が上昇したことの確認は、同遺伝子から転写されるmRNAの量を野生株または親株等の非改変株と比較することによって行うことができる。mRNAの量を評価する方法としてはノーザンハイブリダイゼーション、RT-PCR等が挙げられる(Sambrook, J., et al., Molecular Cloning: A Laboratory Manual/Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001)。mRNAの量は、非改変株と比較して、例えば、1.5倍以上、2倍以上、または3倍以上に上昇してよい。 It can be confirmed that the transcription amount of the gene has increased by comparing the amount of mRNA transcribed from the gene with an unmodified strain such as a wild strain or a parent strain. Methods for assessing the amount of mRNA include Northern hybridization, RT-PCR, etc. (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual / Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor ( USA), 2001). The amount of mRNA may be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more, compared to the unmodified strain.
 タンパク質の量が上昇したことの確認は、抗体を用いてウェスタンブロットによって行うことができる(Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001))。タンパク質の量は、非改変株と比較して、例えば、1.5倍以上、2倍以上、または3倍以上に上昇してよい。 Confirmation that the amount of protein has increased can be performed by Western blotting using an antibody (Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001)). The amount of protein may be increased by, for example, 1.5 times or more, 2 times or more, or 3 times or more, compared to the unmodified strain.
 上記したタンパク質の活性を増大させる手法は、アコニターゼやアセトアルデヒドデヒドロゲナーゼの活性増強に加えて、任意のタンパク質、例えばL-アミノ酸生合成系酵素、の活性増強や、任意の遺伝子、例えばそれら任意のタンパク質をコードする遺伝子、の発現増強に利用できる。 In addition to enhancing the activity of aconitase and acetaldehyde dehydrogenase, the above-described method for increasing the activity of a protein can enhance the activity of any protein, such as an L-amino acid biosynthetic enzyme, or can activate any gene, for example, any of these proteins. It can be used to enhance the expression of the encoding gene.
<1-6>タンパク質の活性を低下させる手法
 以下に、タンパク質の活性を低下させる手法について説明する。
<1-6> Technique for reducing protein activity A technique for reducing protein activity is described below.
 「タンパク質の活性が低下する」とは、同タンパク質の細胞当たりの活性が野性株や親株等の非改変株と比較して減少していることを意味し、活性が完全に消失している場合を含む。「タンパク質の活性が低下する」とは、具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が低下していること、および/または、同タンパク質の分子当たりの機能が低下していることをいう。すなわち、「タンパク質の活性が低下する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。なお、「タンパク質の細胞当たりの分子数が低下している」ことには、同タンパク質が全く存在していない場合が含まれる。また、「タンパク質の分子当たりの機能が低下している」ことには、同タンパク質の分子当たりの機能が完全に消失している場合が含まれる。タンパク質の活性は、非改変株と比較して低下していれば特に制限されないが、例えば、非改変株と比較して、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。 “Protein activity decreases” means that the activity per cell of the protein is decreased compared to wild-type strains and parental unmodified strains, and the activity is completely lost. including. Specifically, “the activity of the protein is decreased” means that the number of molecules per cell of the protein is decreased and / or the function per molecule of the protein compared to the unmodified strain. Means that it is decreasing. In other words, “activity” in the case of “decrease in protein activity” means not only the catalytic activity of the protein but also the transcription amount (mRNA amount) or translation amount (protein amount) of the gene encoding the protein. May be. Note that “the number of molecules per cell of the protein is decreased” includes a case where the protein does not exist at all. Moreover, “the function per molecule of the protein is reduced” includes the case where the function per molecule of the protein is completely lost. The activity of the protein is not particularly limited as long as it is lower than that of the non-modified strain. For example, it is 50% or less, 20% or less, 10% or less, 5% or less, or 0, compared to the non-modified strain. %.
 タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子の発現を低下させることにより達成される。「遺伝子の発現が低下する」とは、同遺伝子の細胞当たりの発現量が野生株や親株等の非改変株と比較して減少することを意味する。「遺伝子の発現が低下する」とは、具体的には、遺伝子の転写量(mRNA量)が低下すること、および/または、遺伝子の翻訳量(タンパク質の量)が低下することを意味してよい。「遺伝子の発現が低下する」ことには、同遺伝子が全く発現していない場合が含まれる。なお、「遺伝子の発現が低下する」ことを、「遺伝子の発現が弱化される」ともいう。遺伝子の発現は、例えば、非改変株と比較して、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。 The modification that reduces the activity of the protein is achieved, for example, by reducing the expression of a gene encoding the protein. “Gene expression decreases” means that the expression level of the gene per cell decreases as compared to an unmodified strain such as a wild strain or a parent strain. “Gene expression decreases” specifically means that the amount of gene transcription (mRNA amount) decreases and / or the amount of gene translation (protein amount) decreases. Good. “Gene expression decreases” includes the case where the gene is not expressed at all. In addition, “the expression of the gene is reduced” is also referred to as “the expression of the gene is weakened”. Gene expression may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to an unmodified strain.
 遺伝子の発現の低下は、例えば、転写効率の低下によるものであってもよく、翻訳効率の低下によるものであってもよく、それらの組み合わせによるものであってもよい。遺伝子の発現の低下は、例えば、遺伝子のプロモーター、シャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)、RBSと開始コドンとの間のスペーサー領域等の発現調節配列を改変することにより達成できる。発現調節配列を改変する場合には、発現調節配列は、好ましくは1塩基以上、より好ましくは2塩基以上、特に好ましくは3塩基以上が改変される。また、発現調節配列の一部または全部を欠失させてもよい。また、遺伝子の発現の低下は、例えば、発現制御に関わる因子を操作することによっても達成できる。発現制御に関わる因子としては、転写や翻訳制御に関わる低分子(誘導物質、阻害物質など)、タンパク質(転写因子など)、核酸(siRNAなど)等が挙げられる。また、遺伝子の発現の低下は、例えば、遺伝子のコード領域に遺伝子の発現が低下するような変異を導入することによっても達成できる。例えば、遺伝子のコード領域のコドンを、宿主においてより低頻度で利用される同義コドンに置き換えることによって、遺伝子の発現を低下させることができる。また、例えば、後述するような遺伝子の破壊により、遺伝子の発現自体が低下し得る。 The decrease in gene expression may be due to, for example, a decrease in transcription efficiency, a decrease in translation efficiency, or a combination thereof. For example, gene expression can be reduced by altering expression regulatory sequences such as the promoter of the gene, Shine-Dalgarno (SD) sequence (also called ribosome binding site (RBS)), spacer region between RBS and start codon. Can be achieved. In the case of modifying the expression control sequence, the expression control sequence is preferably modified by 1 base or more, more preferably 2 bases or more, particularly preferably 3 bases or more. Further, part or all of the expression regulatory sequence may be deleted. In addition, reduction of gene expression can be achieved, for example, by manipulating factors involved in expression control. Factors involved in expression control include small molecules (such as inducers and inhibitors) involved in transcription and translation control, proteins (such as transcription factors), nucleic acids (such as siRNA), and the like. In addition, reduction of gene expression can be achieved, for example, by introducing a mutation that reduces gene expression into the coding region of the gene. For example, gene expression can be reduced by replacing codons in the coding region of the gene with synonymous codons that are used less frequently in the host. In addition, for example, gene expression itself may be reduced by gene disruption as described below.
 また、タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子を破壊することにより達成できる。「遺伝子が破壊される」とは、正常に機能するタンパク質を産生しないように同遺伝子が改変されることを意味する。「正常に機能するタンパク質を産生しない」ことには、同遺伝子からタンパク質が全く産生されない場合や、同遺伝子から分子当たりの機能(活性や性質)が低下又は消失したタンパク質が産生される場合が含まれる。 Further, the modification that decreases the activity of the protein can be achieved, for example, by destroying a gene encoding the protein. “Gene is disrupted” means that the gene is modified so that it does not produce a normally functioning protein. “Does not produce a protein that functions normally” includes the case where no protein is produced from the same gene, or the case where a protein whose function (activity or property) per molecule is reduced or lost is produced from the same gene. It is.
 遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域の一部又は全部を欠損させることにより達成できる。さらには、染色体上の遺伝子の前後の配列を含めて、遺伝子全体を欠失させてもよい。タンパク質の活性の低下が達成できる限り、欠失させる領域は、N末端領域、内部領域、C末端領域等のいずれの領域であってもよい。通常、欠失させる領域は長い方が確実に遺伝子を不活化することができる。また、欠失させる領域の前後の配列は、リーディングフレームが一致しないことが好ましい。 Gene disruption can be achieved, for example, by deleting part or all of the coding region of the gene on the chromosome. Furthermore, the entire gene including the sequences before and after the gene on the chromosome may be deleted. The region to be deleted may be any region such as an N-terminal region, an internal region, or a C-terminal region as long as a decrease in protein activity can be achieved. Usually, the longer region to be deleted can surely inactivate the gene. Moreover, it is preferable that the reading frames of the sequences before and after the region to be deleted do not match.
 また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域にアミノ酸置換(ミスセンス変異)を導入すること、終止コドンを導入すること(ナンセンス変異)、あるいは1~2塩基を付加または欠失するフレームシフト変異を導入すること等によっても達成できる(Journal of Biological Chemistry 272:8611-8617(1997), Proceedings of the National Academy of Sciences, USA 95 5511-5515(1998), Journal of Biological Chemistry 26 116, 20833-20839(1991))。 In addition, gene disruption is, for example, introducing an amino acid substitution (missense mutation) into a coding region of a gene on a chromosome, introducing a stop codon (nonsense mutation), or adding or deleting 1 to 2 bases. It can also be achieved by introducing a frameshift mutation (Journal of Biological Chemistry 272: 8611-8617 (1997), Proceedings of the National Academy of Sciences, USA 95 5511-5515 (1998), Journal of Biological Chemistry 26 116, 20833-20839 (1991)).
 また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域に他の配列を挿入することによっても達成できる。挿入部位は遺伝子のいずれの領域であってもよいが、挿入する配列は長い方が確実に遺伝子を不活化することができる。また、挿入部位の前後の配列は、リーディングフレームが一致しないことが好ましい。他の配列としては、コードされるタンパク質の活性を低下又は消失させるものであれば特に制限されないが、例えば、抗生物質耐性遺伝子等のマーカー遺伝子や目的物質の生産に有用な遺伝子が挙げられる。 Also, gene disruption can be achieved, for example, by inserting another sequence into the coding region of the gene on the chromosome. The insertion site may be any region of the gene, but the longer the inserted sequence, the more reliably the gene can be inactivated. Moreover, it is preferable that the reading frames of the sequences before and after the insertion site do not match. The other sequence is not particularly limited as long as it reduces or eliminates the activity of the encoded protein, and examples thereof include marker genes such as antibiotic resistance genes and genes useful for the production of target substances.
 染色体上の遺伝子を上記のように改変することは、正常に機能するタンパク質を産生しないように改変した欠失型遺伝子を作製し、該欠失型遺伝子を含む組換えDNAで宿主を形質転換して、欠失型遺伝子と染色体上の野生型遺伝子とで相同組換えを起こさせることにより、染色体上の野生型遺伝子を欠失型遺伝子に置換することによって達成できる。その際、組換えDNAには、宿主の栄養要求性等の形質にしたがって、マーカー遺伝子を含ませておくと操作がしやすい。欠失型遺伝子としては、遺伝子の全領域あるいは一部の領域を欠失した遺伝子、ミスセンス変異を導入した遺伝子、トランスポゾンやマーカー遺伝子を挿入した遺伝子、ナンセンス変異を導入した遺伝子、フレームシフト変異を導入した遺伝子が挙げられる。欠失型遺伝子によってコードされるタンパク質は、生成したとしても、野生型タンパク質とは異なる立体構造を有し、機能が低下又は消失する。このような相同組換えを利用した遺伝子置換による遺伝子破壊は既に確立しており、「Redドリブンインテグレーション(Red-driven integration)」と呼ばれる方法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))、Redドリブンインテグレーション法とλファージ由来の切り出しシステム(Cho, E. H., Gumport, R. I., Gardner, J. F. J. Bacteriol. 184: 5200-5203 (2002))とを組み合わせた方法(WO2005/010175号参照)等の直鎖状DNAを用いる方法や、温度感受性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法などがある(米国特許第6303383号、特開平05-007491号)。 To modify a gene on a chromosome as described above, a deletion type gene modified so as not to produce a normally functioning protein is prepared, and a host is transformed with a recombinant DNA containing the deletion type gene. This can be achieved by causing homologous recombination between the deletion type gene and the wild type gene on the chromosome to replace the wild type gene on the chromosome with the deletion type gene. At this time, the recombinant DNA can be easily manipulated by including a marker gene in accordance with a trait such as auxotrophy of the host. Deletion-type genes include genes with deletion of all or part of the gene, genes with missense mutations, genes with transposon and marker genes inserted, genes with nonsense mutations, and frameshift mutations. Gene. Even if the protein encoded by the deletion-type gene is produced, it has a three-dimensional structure different from that of the wild-type protein, and its function is reduced or lost. Gene disruption by gene replacement using such homologous recombination has already been established, and a method called “Red-driven integration” (Datsenko, K. A, and Wanner, B. L. Proc .Natl. Acad. Sci. U S A. 97: 6640-6645 (2000)), Red-driven integration method and λ phage-derived excision system (Cho, E. H., Gumport, R. I., Gardner, J F. J. Bacteriol. 184: 5200-5203 (2002)), a method using linear DNA such as a method (see WO2005 / 010175), a method using a plasmid containing a temperature-sensitive replication origin, There are a method using a plasmid capable of conjugation transfer and a method using a suicide vector which does not have an origin of replication and functions in a host (US Pat. No. 6,303,383, Japanese Patent Laid-Open No. 05-007491).
 また、タンパク質の活性が低下するような改変は、例えば、突然変異処理により行ってもよい。突然変異処理としては、X線の照射、紫外線の照射、ならびにN-メチル-N'-ニトロ-N-ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、およびメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。 Further, the modification that reduces the activity of the protein may be performed by, for example, a mutation treatment. Mutation treatments include X-ray irradiation, UV irradiation, and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS), and methylmethanesulfonate (MMS). ) And the like.
 なお、タンパク質が複数のサブユニットからなる複合体として機能する場合、結果としてタンパク質の活性が低下する限り、それら複数のサブユニットの全てを改変してもよく、一部のみを改変してもよい。すなわち、例えば、それらのサブユニットをコードする複数の遺伝子の全てを破壊等してもよく、一部のみを破壊等してもよい。また、タンパク質に複数のアイソザイムが存在する場合、結果としてタンパク質の活性が低下する限り、複数のアイソザイムの全ての活性を低下させてもよく、一部のみの活性を低下させてもよい。すなわち、例えば、それらのアイソザイムをコードする複数の遺伝子の全てを破壊等してもよく、一部のみを破壊等してもよい。 When the protein functions as a complex composed of a plurality of subunits, all of the plurality of subunits may be modified or only a part may be modified as long as the activity of the protein decreases as a result. . That is, for example, all of a plurality of genes encoding these subunits may be destroyed, or only a part of them may be destroyed. In addition, when a plurality of isozymes are present in a protein, as long as the activity of the protein is reduced as a result, all the activities of the plurality of isozymes may be reduced, or only a part of the activities may be reduced. That is, for example, all of a plurality of genes encoding these isozymes may be destroyed, or only a part of them may be destroyed.
 タンパク質の活性が低下したことは、同タンパク質の活性を測定することで確認できる。 The decrease in the activity of the protein can be confirmed by measuring the activity of the protein.
 タンパク質の活性が低下したことは、同タンパク質をコードする遺伝子の発現が低下したことを確認することによっても、確認できる。遺伝子の発現が低下したことは、同遺伝子の転写量が低下したことを確認することや、同遺伝子から発現するタンパク質の量が低下したことを確認することにより確認できる。 The decrease in protein activity can also be confirmed by confirming that the expression of the gene encoding the protein has decreased. The decrease in gene expression can be confirmed by confirming that the transcription amount of the gene has decreased, or confirming that the amount of protein expressed from the gene has decreased.
 遺伝子の転写量が低下したことの確認は、同遺伝子から転写されるmRNAの量を非改変株と比較することによって行うことが出来る。mRNAの量を評価する方法としては、ノーザンハイブリダイゼーション、RT-PCR等が挙げられる(Molecular Cloning(Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001))。mRNAの量は、非改変株と比較して、例えば、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。 It can be confirmed that the amount of transcription of the gene has been reduced by comparing the amount of mRNA transcribed from the same gene with that of the unmodified strain. Examples of methods for evaluating the amount of mRNA include Northern hybridization, RT-PCR and the like (Molecular Cloning (Cold Spring Laboratory Press, Cold Spring Harbor (USA), 2001)). The amount of mRNA may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
 タンパク質の量が低下したことの確認は、抗体を用いてウェスタンブロットによって行うことが出来る(Molecular Cloning(Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001))。タンパク質の量は、非改変株と比較して、例えば、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。 Confirmation that the amount of protein has decreased can be performed by Western blotting using an antibody (Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001)). The amount of protein may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the unmodified strain.
 遺伝子が破壊されたことは、破壊に用いた手段に応じて、同遺伝子の一部または全部の塩基配列、制限酵素地図、または全長等を決定することで確認できる。 It can be confirmed that the gene has been destroyed by determining part or all of the nucleotide sequence, restriction enzyme map, full length, etc. of the gene according to the means used for the destruction.
 上記したタンパク質の活性を低下させる手法は、任意のタンパク質、例えば目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素、の活性低下や、任意の遺伝子、例えばそれら任意のタンパク質をコードする遺伝子、の発現低下に利用できる。 The above-described method for reducing the activity of a protein involves reducing the activity of any protein, for example, an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of the target L-amino acid to produce a compound other than the target L-amino acid. , And can be used to reduce the expression of any gene, for example, a gene encoding any of these proteins.
<2>本発明のL-アミノ酸の製造法
 本発明の方法は、本発明の細菌をエタノールを含有する培地で培養してL-アミノ酸を該培地中又は該細菌の菌体内に生成蓄積すること、および該培地又は菌体よりL-アミノ酸を採取することを含む、L-アミノ酸の製造法である。本発明においては、1種のL-アミノ酸が製造されてもよく、2種またはそれ以上のL-アミノ酸が製造されてもよい。
<2> Method for Producing L-Amino Acid of the Present Invention The method of the present invention comprises culturing the bacterium of the present invention in a medium containing ethanol and producing and accumulating L-amino acid in the medium or in the microbial cells. And a method for producing an L-amino acid, which comprises collecting the L-amino acid from the medium or cells. In the present invention, one L-amino acid may be produced, or two or more L-amino acids may be produced.
 使用する培地は、エタノールを含有し、本発明の細菌が増殖でき、L-アミノ酸が生産される限り、特に制限されない。培地としては、例えば、細菌等の微生物の培養に用いられる通常の培地を用いることができる。培地は、エタノールに加えて、炭素源、窒素源、リン酸源、硫黄源、その他の各種有機成分や無機成分から選択される成分を必要に応じて含有してよい。培地成分の種類や濃度は、使用する細菌の種類や製造するL-アミノ酸の種類等の諸条件に応じて適宜設定してよい。 The medium to be used is not particularly limited as long as it contains ethanol and the bacteria of the present invention can grow and L-amino acids are produced. As the medium, for example, a normal medium used for culturing microorganisms such as bacteria can be used. The medium may contain, in addition to ethanol, a component selected from a carbon source, a nitrogen source, a phosphate source, a sulfur source, and other various organic components and inorganic components as necessary. The type and concentration of the medium component may be appropriately set according to various conditions such as the type of bacteria used and the type of L-amino acid to be produced.
 本発明の方法において、エタノールは、唯一炭素源(sole carbon source)として利用されてもよく、そうでなくてもよい。すなわち、本発明の方法においては、エタノールに加えて、他の炭素源を併用してもよい。他の炭素源は、本発明の細菌が資化してL-アミノ酸を生成し得るものであれば、特に限定されない。他の炭素源として、具体的には、例えば、グルコース、フルクトース、スクロース、ラクトース、ガラクトース、アラビノース、廃糖蜜、澱粉加水分解物、バイオマスの加水分解物等の糖類、酢酸、フマル酸、クエン酸、コハク酸、リンゴ酸等の有機酸類、グリセロール、粗グリセロール等のアルコール類、脂肪酸類が挙げられる。他の炭素源を用いる場合には、総炭素源中のエタノールの比率は、例えば、5重量%以上、10重量%以上、20重量%以上、好ましくは30重量%以上、より好ましくは50重量%以上であってよい。他の炭素源としては、1種の炭素源を用いてもよく、2種またはそれ以上の炭素源を組み合わせて用いてもよい。 In the method of the present invention, ethanol may or may not be used as the sole carbon source. That is, in the method of the present invention, other carbon sources may be used in combination with ethanol. Other carbon sources are not particularly limited as long as they can be assimilated by the bacterium of the present invention to produce L-amino acids. As other carbon sources, specifically, sugars such as glucose, fructose, sucrose, lactose, galactose, arabinose, waste molasses, starch hydrolyzate, biomass hydrolyzate, acetic acid, fumaric acid, citric acid, Examples thereof include organic acids such as succinic acid and malic acid, alcohols such as glycerol and crude glycerol, and fatty acids. When other carbon sources are used, the ratio of ethanol in the total carbon source is, for example, 5% by weight or more, 10% by weight or more, 20% by weight or more, preferably 30% by weight or more, more preferably 50% by weight. It may be above. As another carbon source, one type of carbon source may be used, or two or more types of carbon sources may be used in combination.
 培地中での炭素源の濃度は、本発明の細菌が増殖でき、L-アミノ酸が生産される限り、特に制限されない。培地中での炭素源の濃度は、L-アミノ酸の生産が阻害されない範囲で可能な限り高くするのが好ましい。培地中での炭素源の初発濃度は、例えば、通常1~30 %(w/v)、好ましくは3~10 %(w/v)であってよい。また、発酵の進行に伴う炭素源の消費に応じて、炭素源を追加で添加してもよい。 The concentration of the carbon source in the medium is not particularly limited as long as the bacterium of the present invention can grow and L-amino acid is produced. The concentration of the carbon source in the medium is preferably as high as possible as long as the production of L-amino acid is not inhibited. The initial concentration of the carbon source in the medium may be, for example, usually 1 to 30% (w / v), preferably 3 to 10% (w / v). Moreover, you may add a carbon source additionally according to consumption of the carbon source accompanying progress of fermentation.
 窒素源として、具体的には、例えば、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等のアンモニウム塩、ペプトン、酵母エキス、肉エキス、大豆タンパク質分解物等の有機窒素源、アンモニア、ウレアが挙げられる。pH調整に用いられるアンモニアガスやアンモニア水を窒素源として利用してもよい。窒素源としては、1種の窒素源を用いてもよく、2種またはそれ以上の窒素源を組み合わせて用いてもよい。 Specific examples of the nitrogen source include ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate, organic nitrogen sources such as peptone, yeast extract, meat extract, and soybean protein degradation product, ammonia, and urea. Ammonia gas or ammonia water used for pH adjustment may be used as a nitrogen source. As the nitrogen source, one kind of nitrogen source may be used, or two or more kinds of nitrogen sources may be used in combination.
 リン酸源として、具体的には、例えば、リン酸2水素カリウム、リン酸水素2カリウム等のリン酸塩、ピロリン酸等のリン酸ポリマーが挙げられる。リン酸源としては、1種のリン酸源を用いてもよく、2種またはそれ以上のリン酸源を組み合わせて用いてもよい。 Specific examples of the phosphoric acid source include phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate, and phosphate polymers such as pyrophosphoric acid. As the phosphoric acid source, one type of phosphoric acid source may be used, or two or more types of phosphoric acid sources may be used in combination.
 硫黄源として、具体的には、例えば、硫酸塩、チオ硫酸塩、亜硫酸塩等の無機硫黄化合物、システイン、シスチン、グルタチオン等の含硫アミノ酸が挙げられる。硫黄源としては、1種の硫黄源を用いてもよく、2種またはそれ以上の硫黄源を組み合わせて用いてもよい。 Specific examples of the sulfur source include inorganic sulfur compounds such as sulfate, thiosulfate, and sulfite, and sulfur-containing amino acids such as cysteine, cystine, and glutathione. As the sulfur source, one kind of sulfur source may be used, or two or more kinds of sulfur sources may be used in combination.
 その他の各種有機成分や無機成分として、具体的には、例えば、塩化ナトリウム、塩化カリウム等の無機塩類;鉄、マンガン、マグネシウム、カルシウム等の微量金属類;ビタミンB1、ビタミンB2、ビタミンB6、ニコチン酸、ニコチン酸アミド、ビタミンB12等のビタミン類;アミノ酸類;核酸類;これらを含有するペプトン、カザミノ酸、酵母エキス、大豆タンパク質分解物等の有機成分が挙げられる。その他の各種有機成分や無機成分としては、1種の成分を用いてもよく、2種またはそれ以上の成分を組み合わせて用いてもよい。 Other various organic and inorganic components include, for example, inorganic salts such as sodium chloride and potassium chloride; trace metals such as iron, manganese, magnesium and calcium; vitamin B1, vitamin B2, vitamin B6 and nicotine Examples include vitamins such as acid, nicotinamide, and vitamin B12; amino acids; nucleic acids; and organic components such as peptone, casamino acid, yeast extract, and soybean protein degradation products containing these. As other various organic components and inorganic components, one component may be used, or two or more components may be used in combination.
 また、生育にアミノ酸などを要求する栄養要求性変異株を使用する場合には、培地に要求される栄養素を補添することが好ましい。例えば、L-リジン生産菌は、L-リジン生合成経路が強化され、L-リジン分解能が弱化されている場合が多い。よって、そのようなL-リジン生産菌を培養する場合には、例えば、L-スレオニン、L-ホモセリン、L-イソロイシン、L-メチオニンから選ばれる1またはそれ以上のアミノ酸を培地に補添するのが好ましい。 Moreover, when using an auxotrophic mutant strain that requires an amino acid or the like for growth, it is preferable to supplement nutrients required for the medium. For example, L-lysine producing bacteria often have an enhanced L-lysine biosynthetic pathway and weakened L-lysine resolution. Therefore, when culturing such L-lysine-producing bacteria, for example, one or more amino acids selected from L-threonine, L-homoserine, L-isoleucine, and L-methionine are supplemented to the medium. Is preferred.
 培養条件は、本発明の細菌が増殖でき、L-アミノ酸が生産される限り、特に制限されない。培養は、例えば、エシェリヒア・コリ等の細菌の培養に用いられる通常の条件で行うことができる。培養条件は、使用する細菌の種類や製造するL-アミノ酸の種類等の諸条件に応じて適宜設定してよい。 Culture conditions are not particularly limited as long as the bacterium of the present invention can grow and L-amino acids are produced. The culture can be performed, for example, under normal conditions used for culture of bacteria such as Escherichia coli. The culture conditions may be appropriately set according to various conditions such as the type of bacteria used and the type of L-amino acid to be produced.
 培養は、液体培地を用いて行うことができる。培養の際には、本発明の細菌を寒天培地等の固体培地で培養したものを直接液体培地に接種してもよく、本発明の細菌を液体培地で種培養したものを本培養用の液体培地に接種してもよい。すなわち、培養は、種培養と本培養とに分けて行われてもよい。その場合、種培養と本培養の培養条件は、同一であってもよく、そうでなくてもよい。培養開始時に培地に含有される本発明の細菌の量は特に制限されない。例えば、OD660=4~8の種培養液を、培養開始時に、本培養用の培地に対して0.1質量%~30質量%、好ましくは1質量%~10質量%、添加してよい。 Cultivation can be performed using a liquid medium. When culturing, the culture medium of the bacterium of the present invention cultured in a solid medium such as an agar medium may be directly inoculated into a liquid medium, or the bacterium of the present invention seeded in a liquid medium is used as a liquid for main culture. The medium may be inoculated. That is, the culture may be performed separately for seed culture and main culture. In that case, the culture conditions of the seed culture and the main culture may or may not be the same. The amount of the bacterium of the present invention contained in the medium at the start of culture is not particularly limited. For example, a seed culture solution having an OD660 of 4 to 8 may be added at 0.1 to 30% by mass, preferably 1 to 10% by mass with respect to the medium for main culture at the start of culture.
 培養は、回分培養(batch culture)、流加培養(Fed-batch culture)、連続培養(continuous culture)、またはそれらの組み合わせにより実施することができる。なお、培養開始時の培地を、「初発培地」ともいう。また、流加培養または連続培養において培養系(発酵槽)に供給する培地を、「流加培地」ともいう。また、流加培養または連続培養において培養系に流加培地を供給することを、「流加」ともいう。なお、培養が種培養と本培養とに分けて行われる場合、例えば、種培養と本培養を、共に回分培養で行ってもよい。また、例えば、種培養を回分培養で行い、本培養を流加培養または連続培養で行ってもよい。 Culture can be performed by batch culture, fed-batch culture, continuous culture, or a combination thereof. The culture medium at the start of the culture is also referred to as “initial culture medium”. A medium supplied to a culture system (fermentor) in fed-batch culture or continuous culture is also referred to as “fed-batch medium”. In addition, supplying a feeding medium to a culture system in fed-batch culture or continuous culture is also referred to as “fed-batch”. In addition, when culture | cultivation is performed by dividing into seed culture and main culture, for example, both seed culture and main culture may be performed by batch culture. Further, for example, seed culture may be performed by batch culture, and main culture may be performed by fed-batch culture or continuous culture.
 本発明において、各培地成分は、初発培地、流加培地、またはその両方に含有されていてよい。初発培地に含有される成分の種類は、流加培地に含有される成分の種類と、同一であってもよく、そうでなくてもよい。また、初発培地に含有される各成分の濃度は、流加培地に含有される各成分の濃度と、同一であってもよく、そうでなくてもよい。また、含有する成分の種類および/または濃度の異なる2種またはそれ以上の流加培地を用いてもよい。例えば、複数回の流加が間欠的に行われる場合、各流加培地に含有される成分の種類および/または濃度は、同一であってもよく、そうでなくてもよい。 In the present invention, each medium component may be contained in the initial medium, the fed-batch medium, or both. The type of component contained in the initial culture medium may or may not be the same as the type of component contained in the fed-batch medium. Moreover, the density | concentration of each component contained in a starting culture medium may be the same as the density | concentration of each component contained in a feeding culture medium, and may not be so. Moreover, you may use the 2 or more types of feeding culture medium from which the kind and / or density | concentration of a component to contain differ. For example, when multiple feedings are performed intermittently, the types and / or concentrations of the components contained in each feeding medium may or may not be the same.
 培地中のエタノール濃度は、本発明の細菌がエタノールを炭素源として利用できる限り、特に制限されない。エタノールは、例えば、10w/v%以下、好ましくは5w/v%以下、より好ましくは2w/v%以下の濃度で培地に含有されてよい。また、エタノールは、例えば、0.2w/v%以上、好ましくは0.5w/v%以上、より好ましくは1.0w/v%以上の濃度で培地に含有されてよい。エタノールは、初発培地、流加培地、またはその両方に、上記例示した濃度範囲で含有されていてよい。 The ethanol concentration in the medium is not particularly limited as long as the bacterium of the present invention can use ethanol as a carbon source. For example, ethanol may be contained in the medium at a concentration of 10 w / v% or less, preferably 5 w / v% or less, more preferably 2 w / v% or less. Further, ethanol may be contained in the medium at a concentration of, for example, 0.2 w / v% or more, preferably 0.5 w / v% or more, more preferably 1.0 w / v% or more. Ethanol may be contained in the starting medium, fed-batch medium, or both in the concentration ranges exemplified above.
 また、エタノールが流加培地に含有される場合、エタノールは、例えば、流加後の培地中のエタノール濃度が、5w/v%以下、好ましくは2w/v%以下、より好ましくは1w/v%以下となるように、流加培地に含有されてもよい。また、エタノールが流加培地に含有される場合、エタノールは、例えば、流加後の培地中のエタノール濃度が、0.01w/v%以上、好ましくは0.02w/v%以上、より好ましくは0.05w/v%以上となるように、流加培地に含有されてもよい。 When ethanol is contained in the fed-batch medium, for example, the ethanol concentration in the medium after fed-batch is 5 w / v% or less, preferably 2 w / v% or less, more preferably 1 w / v%. It may be contained in a fed-batch medium so that In the case where ethanol is contained in the fed-batch medium, for example, the ethanol concentration in the medium after fed is 0.01 w / v% or more, preferably 0.02 w / v% or more, more preferably You may contain in a feeding medium so that it may become 0.05 w / v% or more.
 エタノールは、唯一炭素源として利用される場合に、上記例示した濃度範囲で含有されていてよい。また、エタノールは、他の炭素源を併用する場合に、上記例示した濃度範囲で含有されてもよい。また、エタノールは、他の炭素源を併用する場合に、例えば、総炭素源中のエタノールの比率等に応じて、上記例示した濃度範囲を適宜修正した濃度範囲で含有されてもよい。 Ethanol may be contained in the concentration range exemplified above when it is used only as a carbon source. Moreover, ethanol may be contained in the concentration range exemplified above when another carbon source is used in combination. In addition, when other carbon sources are used in combination, ethanol may be contained in a concentration range that is appropriately modified from the above-described concentration range, for example, depending on the ratio of ethanol in the total carbon source.
 エタノールは、培養の全期間において一定の濃度範囲で培地に含有されていてもよく、そうでなくてもよい。例えば、一部の期間、エタノールが不足していてもよい。「不足する」とは、要求量を満たさないことをいい、例えば、培地中の濃度がゼロとなることであってよい。「一部の期間」とは、例えば、培養の全期間の内の、1%以下の期間、5%以下の期間、10%以下の期間、20%以下の期間、30%以下の期間、または50%以下の期間であってよい。なお、「培養の全期間」とは、培養が種培養と本培養とに分けて行われる場合には、本培養の全期間を意味してよい。エタノールが不足する期間には、他の炭素源が充足されているのが好ましい。このように、一部の期間、エタノールが不足していても、エタノールを含有する培地での培養期間が存在する限り、「エタノールを含有する培地中で細菌を培養する」ことに含まれる。 Ethanol may or may not be contained in the medium in a certain concentration range during the entire culture period. For example, ethanol may be insufficient for some period. “Insufficient” means that the required amount is not satisfied. For example, the concentration in the medium may be zero. “Partial period” refers to, for example, a period of 1% or less, a period of 5% or less, a period of 10% or less, a period of 20% or less, a period of 30% or less, or a period of the whole culture period, or It may be a period of 50% or less. In addition, "the whole period of culture | cultivation" may mean the whole period of main culture, when culture | cultivation is performed by dividing into seed culture and main culture. It is preferred that other carbon sources be satisfied during the period of ethanol shortage. Thus, even if ethanol is insufficient for a part of the period, it is included in “culturing bacteria in a medium containing ethanol” as long as there is a culture period in a medium containing ethanol.
 エタノール等の各種成分の濃度は、ガスクロマトグラフィー(Hashimoto, K. et al. 1996. Biosci. Biotechnol. Biochem. 70:22-30)やHPLC(Lin, J. T. et al. 1998. J. Chromatogr. A. 808: 43-49)により測定することができる。 The concentration of various components such as ethanol is determined by gas chromatography (Hashimoto, K. et al. 1996. Biosci. Biotechnol. Biochem. 70: 22-30) or HPLC (Lin, J. T. et al. 1998. J. Chromatogr. A. 808: 43-49).
 培養は、例えば、好気的に行うことができる。例えば、培養は、通気培養または振盪培養で行うことができる。酸素濃度は、例えば、飽和酸素濃度の5~50%、好ましくは10%程度に制御されてよい。培地のpHは、例えば、pH 3~10、好ましくはpH 4.0~9.5であってよい。培養中、必要に応じて培地のpHを調整することができる。培地のpHは、アンモニアガス、アンモニア水、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム等の各種アルカリ性または酸性物質を用いて調整することができる。培養温度は、例えば、20~45℃、好ましくは25℃~37℃であってよい。培養期間は、例えば、10時間~120時間であってよい。培養は、例えば、培地中の炭素源が消費されるまで、あるいは本発明の細菌の活性がなくなるまで、継続してもよい。このような条件下で本発明の細菌を培養することにより、菌体内および/または培地中にL-アミノ酸が蓄積する。 The culture can be performed aerobically, for example. For example, the culture can be performed by aeration culture or shaking culture. The oxygen concentration may be controlled to, for example, 5 to 50%, preferably about 10% of the saturated oxygen concentration. The pH of the medium may be, for example, pH 3 to 10, preferably pH 4.0 to 9.5. During the culture, the pH of the medium can be adjusted as necessary. The pH of the medium is adjusted using various alkaline or acidic substances such as ammonia gas, ammonia water, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide, etc. can do. The culture temperature may be, for example, 20 to 45 ° C, preferably 25 ° C to 37 ° C. The culture period may be, for example, 10 hours to 120 hours. The culture may be continued, for example, until the carbon source in the medium is consumed or until the activity of the bacterium of the present invention is lost. By culturing the bacterium of the present invention under such conditions, L-amino acids accumulate in the cells and / or in the medium.
 流加培養または連続培養においては、流加は、培養の全期間を通じて継続されてもよく、培養の一部の期間においてのみ継続されてもよい。また、流加培養または連続培養においては、複数回の流加が間欠的に行われてもよい。 In fed-batch culture or continuous culture, fed-batch may be continued throughout the entire culture period or only during a part of the culture period. In addition, in fed-batch culture or continuous culture, multiple feedings may be performed intermittently.
 複数回の流加が間欠的に行われる場合、1回当たりの流加の継続時間が、複数回の流加の合計時間の、例えば30%以下、好ましくは20%以下、より好ましくは10%以下となるように、流加の開始と停止を繰り返してもよい。 When a plurality of feedings are intermittently performed, the duration of one feeding is, for example, 30% or less, preferably 20% or less, more preferably 10% of the total time of the plurality of feedings. The start and stop of fed batch may be repeated so that:
 また、複数回の流加が間欠的に行われる場合、2回目以降の流加を、その直前の流加停止期において発酵培地中の炭素源が枯渇したときに開始されるように制御することにより、発酵培地中の炭素源濃度を自動的に低レベルに維持することもできる(米国特許5,912,113号明細書)。炭素源の枯渇は、例えば、pHの上昇または溶存酸素濃度の上昇により検出できる。 In addition, when multiple feedings are performed intermittently, the second and subsequent feedings are controlled so that they are started when the carbon source in the fermentation medium is depleted in the immediately preceding feeding stop phase. Can automatically maintain the carbon source concentration in the fermentation medium at a low level (US Pat. No. 5,912,113). Carbon source depletion can be detected, for example, by increasing pH or increasing dissolved oxygen concentration.
 連続培養においては、培養液の引き抜きは、培養の全期間を通じて継続されてもよく、培養の一部の期間においてのみ継続されてもよい。また、連続培養においては、複数回の培養液の引き抜きが間欠的に行われてもよい。培養液の引き抜きと流加は、同時に行われてもよく、そうでなくてもよい。例えば、培養液の引き抜きを行った後で流加を行ってもよく、流加を行った後で培養液の引き抜きを行ってもよい。引き抜く培養液量は、流加させる培地量と同量であるのが好ましい。ここで、「同量」とは、例えば、流加させる培地量に対して93~107%の量であってよい。 In continuous culture, extraction of the culture solution may be continued throughout the entire culture period, or may be continued only during a part of the culture period. Further, in continuous culture, a plurality of culture solutions may be extracted intermittently. Extraction and feeding of the culture solution may or may not be performed simultaneously. For example, the feeding may be performed after the culture solution is extracted, or the culture solution may be extracted after the feeding. The amount of the culture solution to be withdrawn is preferably the same as the amount of the medium to be fed. Here, the “same amount” may be, for example, an amount of 93 to 107% with respect to the amount of medium to be fed.
 培養液を連続的に引き抜く場合には、流加と同時に、または流加の開始後に、引き抜きを開始するのが好ましい。例えば、流加の開始後5時間以内、好ましくは3時間以内、より好ましくは1時間以内に、引き抜きを開始してよい。 When the culture solution is continuously extracted, it is preferable to start the extraction simultaneously with the feeding or after the start of the feeding. For example, the withdrawal may be started within 5 hours, preferably within 3 hours, more preferably within 1 hour after the start of fed-batch.
 培養液を間欠的に引き抜く場合には、予定したL-アミノ酸濃度に到達したときに、培養液を一部引き抜いてL-アミノ酸を回収し、新たに培地を流加して培養を継続するのが好ましい。 When the culture solution is withdrawn intermittently, when the planned L-amino acid concentration is reached, a part of the culture solution is withdrawn to recover the L-amino acid, and the culture is continued by feeding a new medium. Is preferred.
 また、引き抜かれた培養液から、L-アミノ酸を回収し、菌体を含むろ過残留物を発酵槽中に再循環させることにより、菌体を再利用することもできる(フランス特許2669935号明細書)。 In addition, the bacterial cells can be reused by recovering L-amino acid from the extracted culture medium and recirculating the filtration residue containing the bacterial cells in the fermenter (French Patent No. 2669935). ).
 また、L-グルタミン酸を製造する場合、L-グルタミン酸が析出する条件に調整された液体培地を用いて、培地中にL-グルタミン酸を析出させながら培養を行うことも出来る。L-グルタミン酸が析出する条件としては、例えば、pH5.0~3.0、好ましくはpH4.9~3.5、さらに好ましくはpH4.9~4.0、特に好ましくはpH4.7付近の条件が挙げられる(欧州特許出願公開第1078989号明細書)。尚、培養は、その全期間において上記pHで行われてもよく、一部の期間のみ上記pHで行われてもよい。「一部の期間」とは、例えば、培養の全期間の50%以上、70%以上、80%以上、90%以上、95%以上、または99%以上の期間であってよい。 In addition, when producing L-glutamic acid, it is also possible to carry out the culture while precipitating L-glutamic acid in the medium using a liquid medium adjusted to conditions under which L-glutamic acid is precipitated. The conditions under which L-glutamic acid precipitates are, for example, pH 5.0 to 3.0, preferably pH 4.9 to 3.5, more preferably pH 4.9 to 4.0, and particularly preferably around pH 4.7. (European Patent Application Publication No. 1078989). In addition, culture | cultivation may be performed at the said pH in the whole period, and may be performed at the said pH only for a part of period. The “partial period” may be, for example, a period of 50% or more, 70% or more, 80% or more, 90% or more, 95% or more, or 99% or more of the entire culture period.
 また、L-リジン等の塩基性アミノ酸を製造する場合、重炭酸イオン及び/又は炭酸イオンを塩基性アミノ酸の主なカウンタイオンとして利用して塩基性アミノ酸を発酵生産する方法を利用してもよい(特開2002-65287、US2002-0025564A、EP1813677A)。これらの方法によれば、塩基性アミノ酸のカウンタイオンとして従来利用されていた硫酸イオン及び/又は塩化物イオンの使用量を削減しつつ、塩基性アミノ酸を製造することができる。 Further, when a basic amino acid such as L-lysine is produced, a method of fermenting basic amino acid using bicarbonate ion and / or carbonate ion as a main counter ion of basic amino acid may be used. (Unexamined-Japanese-Patent No. 2002-65287, US2002-0025564A, EP1813677A). According to these methods, basic amino acids can be produced while reducing the amount of sulfate ions and / or chloride ions that have been conventionally used as counter ions for basic amino acids.
 同方法においては、培養中の培地のpHを6.5~9.0、好ましくは6.5~8.0、培養終了時の培地のpHを7.2~9.0となるように制御し、重炭酸イオン及び/又は炭酸イオンが培地中に20mM以上、好ましくは30mM以上、より好ましくは40mM以上存在する培養期があるようにする。塩基性アミノ酸のカウンタイオンとして必要な量の重炭酸イオン及び/又は炭酸イオンを培地中に存在させるためには、発酵中の発酵槽内圧力を正となるように制御すること、炭酸ガスを培養液に供給すること、またはその両方を行うのが好ましい。 In this method, the pH of the medium during the culture is controlled to 6.5 to 9.0, preferably 6.5 to 8.0, and the pH of the medium at the end of the culture is controlled to 7.2 to 9.0. In addition, there is a culture period in which bicarbonate ions and / or carbonate ions are present in the medium at 20 mM or more, preferably 30 mM or more, more preferably 40 mM or more. In order to make the necessary amount of bicarbonate ions and / or carbonate ions as counter ions of basic amino acids exist in the medium, the pressure in the fermenter during the fermentation is controlled to be positive, and the carbon dioxide gas is cultured. It is preferred to feed the liquid or both.
 発酵中の発酵槽内圧力を正となるように制御するには、例えば、給気圧を排気圧より高くすればよい。発酵槽内圧力を正にすることによって、発酵により生成する炭酸ガスが培養液に溶解して重炭酸イオン及び/又は炭酸イオンを生じ、重炭酸イオン及び/又は炭酸イオンが塩基性アミノ酸のカウンタイオンとなり得る。発酵槽内圧力として、具体的には、ゲージ圧(大気圧に対する差圧)で、0.03~0.2MPa、好ましくは0.05~0.15MPa、より好ましくは0.1~0.3MPaが挙げられる。また、炭酸ガスを培養液に供給する場合は、例えば、純炭酸ガス又は炭酸ガスを5体積%以上含む混合ガスを培養液に吹き込めばよい。発酵槽内圧力、炭酸ガスの供給量、および制限された給気量は、例えば、培地のpH、培地中の重炭酸イオン及び/又は炭酸イオン濃度、または培地中のアンモニア濃度を測定することにより決定できる。 In order to control the pressure in the fermenter during fermentation to be positive, for example, the supply air pressure may be set higher than the exhaust pressure. By making the pressure in the fermenter positive, the carbon dioxide gas generated by fermentation dissolves in the culture solution to produce bicarbonate ions and / or carbonate ions, and the bicarbonate ions and / or carbonate ions are counter ions of basic amino acids. Can be. Specifically, the fermenter pressure is 0.03 to 0.2 MPa, preferably 0.05 to 0.15 MPa, more preferably 0.1 to 0.3 MPa in terms of gauge pressure (differential pressure relative to atmospheric pressure). Is mentioned. When carbon dioxide is supplied to the culture solution, for example, pure carbon dioxide or a mixed gas containing 5% by volume or more of carbon dioxide may be blown into the culture solution. Fermenter pressure, carbon dioxide supply, and limited air supply can be determined, for example, by measuring the pH of the medium, the concentration of bicarbonate and / or carbonate ions in the medium, or the concentration of ammonia in the medium. Can be determined.
 従来の塩基性アミノ酸の製造方法においては、硫酸イオン及び/又は塩化物イオンを塩基牲アミノ酸のカウンタイオンとして利用するため、十分量の硫酸アンモニウム及び/又は塩化アンモニウム、あるいは、栄養成分として蛋白等の硫酸分解物及び/又は塩酸分解物が培地に添加されていた。そのため、培地中には、硫酸イオン及び/又は塩化物イオンが多量に存在し、弱酸性である炭酸イオン濃度はppmオーダーと極めて低かった。 In conventional methods for producing basic amino acids, sulfate ions and / or chloride ions are used as counter ions for basic amino acids, so a sufficient amount of ammonium sulfate and / or ammonium chloride, or sulfate such as protein as a nutrient component Degradation products and / or hydrochloric acid degradation products were added to the medium. Therefore, a large amount of sulfate ion and / or chloride ion was present in the medium, and the weakly acidic carbonate ion concentration was extremely low, on the order of ppm.
 一方、上記方法(特開2002-65287、US2002-0025564A、EP1813677A)は、これら硫酸イオンおよび塩化物イオンの使用量を減じ、微生物が発酵時に放出する炭酸ガスを培地中に溶解せしめ、カウンタイオンとして利用することに特徴がある。 On the other hand, the above method (Japanese Patent Application Laid-Open No. 2002-65287, US2002-0025564A, EP1813677A) reduces the use amount of these sulfate ions and chloride ions, dissolves carbon dioxide released by microorganisms during fermentation in the medium, It is characterized by use.
 すなわち、同方法においては、硫酸イオン及び/又は塩化物イオンの使用量を削減することが目的の一つであるため、培地に含まれる硫酸イオンおよび塩化物イオンのモル濃度の合計は、通常、700mM以下、好ましくは500mM以下、より好ましくは300mM以下、さらに好ましくは200mM以下、特に好ましくは100mM以下である。硫酸イオン及び/又は塩化物イオン濃度を低減することで、重炭酸イオン及び/又は炭酸イオンをより容易に培地中に存在させることができる。すなわち、同方法においては、従来法に比べて、塩基性アミノ酸のカウンタイオンとして必要な量の重炭酸イオン及び/又は炭酸イオンを培地中に存在させるための培地のpHを低く抑えることが可能となる。 That is, in the same method, one of the purposes is to reduce the amount of sulfate ions and / or chloride ions used, so the total molar concentration of sulfate ions and chloride ions contained in the medium is usually 700 mM or less, preferably 500 mM or less, more preferably 300 mM or less, further preferably 200 mM or less, particularly preferably 100 mM or less. By reducing the concentration of sulfate ions and / or chloride ions, bicarbonate ions and / or carbonate ions can be more easily present in the medium. That is, in this method, compared to the conventional method, it is possible to keep the pH of the medium for making the amount of bicarbonate ions and / or carbonate ions necessary for counter ions of basic amino acids present in the medium low. Become.
 また、同方法においては、培地中の重炭酸イオン及び/又は炭酸イオン以外のアニオン(他のアニオンともいう)の濃度は、塩基性アミノ酸生産菌の生育に必要な量が含まれてさえいれば、低いことが好ましい。他のアニオンとしては、塩化物イオン、硫酸イオン、リン酸イオン、イオン化した有機酸、水酸化物イオンが挙げられる。培地に含まれる他のアニオンのモル濃度の合計は、通常900mM以下、好ましくは700mM以下、より好ましくは500mM以下、さらに好ましくは300mM以下、特に好ましくは200mM以下である。 In this method, the concentration of bicarbonate ions and / or anions other than carbonate ions (also referred to as other anions) in the medium only needs to include an amount necessary for the growth of basic amino acid-producing bacteria. Preferably, it is low. Examples of other anions include chloride ions, sulfate ions, phosphate ions, ionized organic acids, and hydroxide ions. The total molar concentration of other anions contained in the medium is usually 900 mM or less, preferably 700 mM or less, more preferably 500 mM or less, still more preferably 300 mM or less, and particularly preferably 200 mM or less.
 同方法においては、硫酸イオンや塩化物イオンを塩基性アミノ酸生産菌の生育に必要な量以上に培地に添加する必要はない。好ましくは、培養当初は硫酸アンモニウム等を培地に適当量フィードし、培養途中でフィードを止める。あるいは、培地中の炭酸イオン及び/又は重炭酸イオンの溶存量とのバランスを保ちつつ、硫酸アンモニウム等をフィードしてもよい。また、塩基性アミノ酸の窒素源として、アンモニアを培地にフィードしてもよい。例えば、アンモニアでpHを制御する場合、pHを高めるために供給されたアンモニアが、塩基性アミノ酸の窒素源として利用され得る。アンモニアは、単独で、又は他の気体とともに培地に供給することができる。 In this method, it is not necessary to add sulfate ions or chloride ions to the medium beyond the amount necessary for growth of basic amino acid-producing bacteria. Preferably, an appropriate amount of ammonium sulfate or the like is fed to the medium at the beginning of the culture, and the feed is stopped during the culture. Or you may feed ammonium sulfate etc., maintaining the balance with the dissolved amount of the carbonate ion and / or bicarbonate ion in a culture medium. Alternatively, ammonia may be fed to the medium as a nitrogen source for basic amino acids. For example, when pH is controlled with ammonia, ammonia supplied to increase the pH can be used as a nitrogen source for basic amino acids. Ammonia can be supplied to the medium alone or with other gases.
 また、同方法においては、培地中の総アンモニア濃度を、塩基性アミノ酸の生産を阻害しない濃度に制御するのが好ましい。「塩基性アミノ酸の生産を阻害しない」総アンモニア濃度としては、例えば、最適な条件において塩基性アミノ酸を生産する場合の収率及び/又は生産性に比べて、好ましくは50%以上、より好ましくは70%以上、特に好ましくは90%以上の収率及び/又は生産性が得られる総アンモニア濃度が挙げられる。培地中の総アンモニア濃度として、具体的には、好ましくは300mM以下、より好ましくは250mM、特に好ましくは200mM以下の濃度が挙げられる。アンモニアの解離度はpHが高くなると低下する。解離していないアンモニアは、アンモニウムイオンよりも菌に対して毒性が強い。そのため、総アンモニア濃度の上限は、培養液のpHにも依存する。すなわち、培養液のpHが高いほど、許容される総アンモニア濃度は低くなる。したがって、「塩基性アミノ酸の生産を阻害しない」総アンモニア濃度は、pH毎に設定することが好ましい。しかし、培養中の最も高いpHにおいて許容される総アンモニア濃度範囲を、培養期間を通じての総アンモニア濃度範囲として用いてもよい。 In this method, the total ammonia concentration in the medium is preferably controlled to a concentration that does not inhibit the production of basic amino acids. The total ammonia concentration that “does not inhibit the production of basic amino acids” is, for example, preferably 50% or more, more preferably compared to the yield and / or productivity in the case of producing basic amino acids under optimum conditions. Examples include a total ammonia concentration that provides a yield and / or productivity of 70% or more, particularly preferably 90% or more. Specifically, the total ammonia concentration in the medium is preferably a concentration of 300 mM or less, more preferably 250 mM, particularly preferably 200 mM or less. The degree of ammonia dissociation decreases with increasing pH. Undissociated ammonia is more toxic to bacteria than ammonium ions. Therefore, the upper limit of the total ammonia concentration also depends on the pH of the culture solution. That is, the higher the pH of the culture solution, the lower the allowable total ammonia concentration. Therefore, the total ammonia concentration that does not inhibit the production of basic amino acids is preferably set for each pH. However, the total ammonia concentration range allowed at the highest pH during the culture may be used as the total ammonia concentration range throughout the culture period.
 一方、塩基性アミノ酸生産菌の生育及び塩基性アミノ酸の生産に必要な窒素源としての総アンモニア濃度は、培養中にアンモニアが枯渇した状態が継続せず、且つ、窒素源が不足することによる微生物による目的物質の生産性の低下が起こらない限り、特に制限されず、適宜設定することができる。例えば、培養中にアンモニア濃度を経時的に測定し、培地中のアンモニアが枯渇したら少量のアンモニアを培地に添加してもよい。アンモニアを添加したときのアンモニア濃度としては、特に制限されないが、例えば、総アンモニア濃度として好ましくは1mM以上、より好ましくは10mM以上、特に好ましくは20mM以上の濃度が挙げられる。 On the other hand, the total ammonia concentration as a nitrogen source necessary for the growth of basic amino acid-producing bacteria and the production of basic amino acids does not continue to be a state where ammonia is depleted during the culture, and the microorganism is due to a shortage of nitrogen source. As long as the productivity of the target substance is not reduced by the above, it is not particularly limited and can be set as appropriate. For example, the ammonia concentration may be measured over time during the culture, and a small amount of ammonia may be added to the medium when the ammonia in the medium is depleted. The ammonia concentration when ammonia is added is not particularly limited. For example, the total ammonia concentration is preferably 1 mM or more, more preferably 10 mM or more, and particularly preferably 20 mM or more.
 また、同方法において、培地には、塩基性アミノ酸以外のカチオンが含まれ得る。塩基性アミノ酸以外のカチオンとしては、培地成分由来のK、Na、Mg、Caが挙げられる。塩基性アミノ酸以外のカチオンのモル濃度の合計は、好ましくは、総カチオンのモル濃度の50%以下である。 In the same method, the medium may contain cations other than basic amino acids. Examples of cations other than basic amino acids include K, Na, Mg, and Ca derived from medium components. The total molar concentration of cations other than basic amino acids is preferably 50% or less of the molar concentration of total cations.
 L-アミノ酸が生成したことは、化合物の検出または同定に用いられる公知の手法により確認することができる。そのような手法としては、例えば、HPLC、LC/MS、GC/MS、NMRが挙げられる。これらの手法は適宜組み合わせて用いることができる。 The formation of L-amino acid can be confirmed by a known method used for detection or identification of a compound. Examples of such a method include HPLC, LC / MS, GC / MS, and NMR. These methods can be used in appropriate combination.
 生成したL-アミノ酸の回収は、化合物の分離精製に用いられる公知の手法により行うことができる。そのような手法としては、例えば、イオン交換樹脂法、膜処理法、沈殿法、および晶析法が挙げられる。これらの手法は適宜組み合わせて用いることができる。なお、菌体内にL-アミノ酸が蓄積する場合には、例えば、菌体を超音波などにより破砕し、遠心分離によって菌体を除去して得られる上清から、イオン交換樹脂法などによってL-アミノ酸を回収することができる。回収されるL-アミノ酸は、フリー体、その塩、またはそれらの混合物であってよい。塩としては、例えば、硫酸塩、塩酸塩、炭酸塩、アンモニウム塩、ナトリウム塩、カリウム塩が挙げられる。例えば、L-リジンは、フリー体のL-リジン、L-リジン硫酸塩、L-リジン塩酸塩、L-リジン炭酸塩、またはそれらの混合物であってもよい。また、例えば、L-グルタミン酸は、フリー体のL-グルタミン酸、L―グルタミン酸ナトリウム(monosodium L-glutamate;MSG)、L-グルタミン酸アンモニウム塩(monoammonium L-glutamate)、またはそれらの混合物であってもよい。例えば、L-グルタミン酸の場合、発酵液中のL-グルタミン酸アンモニウムを酸を加えて晶析させ、結晶に等モルの水酸化ナトリウムを添加することでL-グルタミン酸ナトリウム(MSG)が得られる。なお、晶析前後に活性炭を加えて脱色してもよい(グルタミン酸ナトリウムの工業晶析 日本海水学会誌 56巻 5号 川喜田哲哉参照)。 The produced L-amino acid can be recovered by a known method used for separation and purification of compounds. Examples of such a method include an ion exchange resin method, a membrane treatment method, a precipitation method, and a crystallization method. These methods can be used in appropriate combination. In the case where L-amino acid accumulates in the microbial cells, for example, the microbial cells are crushed with ultrasonic waves, and the microbial cells are removed by centrifugation from the supernatant obtained by ion exchange resin method or the like. Amino acids can be recovered. The recovered L-amino acid may be a free form, a salt thereof, or a mixture thereof. Examples of the salt include sulfate, hydrochloride, carbonate, ammonium salt, sodium salt, and potassium salt. For example, L-lysine may be free L-lysine, L-lysine sulfate, L-lysine hydrochloride, L-lysine carbonate, or a mixture thereof. Further, for example, L-glutamic acid may be free L-glutamic acid, sodium L-glutamate (MSG), ammonium L-glutamate (monoammonium L-glutamate), or a mixture thereof. . For example, in the case of L-glutamic acid, ammonium L-glutamate in the fermentation broth is crystallized by adding an acid, and equimolar sodium hydroxide is added to the crystals to obtain sodium L-glutamate (MSG). In addition, you may decolorize by adding activated carbon before and after the crystallization (see Industrial crystallization of sodium glutamate, Journal of the Seawater Society of Japan, Vol. 56, No. 5, Tetsuya Kawakita).
 また、L-アミノ酸が培地中に析出する場合は、遠心分離又は濾過等により回収することができる。また、培地中に析出したL-アミノ酸は、培地中に溶解しているL-アミノ酸を晶析した後に、併せて単離してもよい。 If L-amino acid is precipitated in the medium, it can be recovered by centrifugation or filtration. The L-amino acid precipitated in the medium may be isolated together after crystallization of the L-amino acid dissolved in the medium.
 尚、回収されるL-アミノ酸は、L-アミノ酸以外に、例えば、細菌菌体、培地成分、水分、及び細菌の代謝副産物等の成分を含んでいてもよい。回収されたL-アミノ酸の純度は、例えば、30%(w/w)以上、50%(w/w)以上、70%(w/w)以上、80%(w/w)以上、90%(w/w)以上、または95%(w/w)以上であってよい。 The recovered L-amino acid may contain components other than the L-amino acid, such as bacterial cells, medium components, water, and bacterial metabolic byproducts. The purity of the recovered L-amino acid is, for example, 30% (w / w) or higher, 50% (w / w) or higher, 70% (w / w) or higher, 80% (w / w) or higher, 90% (W / w) or more, or 95% (w / w) or more.
 以下、本発明を実施例によりさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
〔実施例1〕L-リジン生産菌AJIK01株(NITE BP-01520)へのエタノール資化性の付与
 L-リジン生産菌Escherichia coli AJIK01株(NITE BP-01520)を親株として、以下の手順により、エタノール資化性を付与されたL-リジン生産菌AJIK01m2株を構築した。
[Example 1] Giving ethanol-assimilating ability to L-lysine-producing bacterium AJIK01 strain (NITE BP-01520) With L-lysine-producing bacterium Escherichia coli AJIK01 strain (NITE BP-01520) as a parent strain, An L-lysine-producing bacterium AJIK01m2 strain to which ethanol assimilation was imparted was constructed.
 まず、Escherichia coli MG1655-att-tet-PL-tacadhE*株(WO2011/096554)から常法に従いP1ライセートを取得し、AJIK01株(NITE BP-01520)を宿主としてP1形質導入を行い、adhE*遺伝子を含むカセットが導入されたAJIK01 att-tet-PL-tacadhE*株を得た。adhE*遺伝子は、配列番号46に示すEscherichia coli K12 MG1655株の野生型AdhEタンパク質にGlu568Lys、Glu22Gly、Met236Val、Tyr461Cys、Ile554Ser、及びAla786Valの6変異が導入された変異型AdhEタンパク質をコードする変異型adhE遺伝子である(WO2008/010565)。 First, P1 lysate was obtained from Escherichia coli MG1655-att-tet-P L-tac adhE * strain (WO2011 / 096554) according to a conventional method, and P1 transduction was performed using AJIK01 strain (NITE BP-01520) as a host. * AJIK01 att-tet-PL -tac adhE * strain into which a cassette containing the gene was introduced was obtained. The adhE * gene is a mutant type adhE encoding a mutant AdhE protein in which six mutations of Glu568Lys, Glu22Gly, Met236Val, Tyr461Cys, Ile554Ser, and Ala786Val are introduced into the wild type AdhE protein of the Escherichia coli K12 MG1655 strain shown in SEQ ID NO: 46. It is a gene (WO2008 / 010565).
 次に、PL-tacプロモーター上流に導入されたatt-tet配列を除去するために、ヘルパープラスミドpMW-intxis-ts(米国特許出願公開20060141586参照)を使用した。pMW-intxis-tsは、λファージのインテグラーゼ(Int)をコードする遺伝子及びエクシジョナーゼ(Xis)をコードする遺伝子を搭載した、温度感受性の複製能を有するプラスミドである。上記で得られたAJIK01 att-tet-PL-tacadhE*株のコンピテントセルを常法に従って作製し、ヘルパープラスミドpMW-intxis-tsにて形質転換し、30℃で100 mg/Lのアンピシリンを含むLB寒天培地上にて平板培養し、アンピシリン耐性株を選択した。pMW-intxis-tsプラスミドを除去するために、形質転換株をLB寒天培地上、42℃で培養した。得られたコロニーのアンピシリン耐性及びテトラサイクリン耐性を試験し、アンピシリン及びテトラサイクリンに感受性の株を取得した。得られた株は、染色体ゲノム中からatt-tet配列が除去され、且つ、pMW-intxis-tsが脱落したPL-tacadhE*導入株である。同株をAJIK01m2株と名づけた。 Next, a helper plasmid pMW-intxis-ts (see US Patent Application Publication No. 20060141586) was used to remove the att-tet sequence introduced upstream of the P L-tac promoter. pMW-intxis-ts is a temperature-sensitive replication plasmid carrying a gene encoding λ phage integrase (Int) and a gene encoding excisionase (Xis). Competent cells of the AJIK01 att-tet-PL -tac adhE * strain obtained above were prepared according to a conventional method, transformed with the helper plasmid pMW-intxis-ts, and 100 mg / L ampicillin at 30 ° C. Was plated on an LB agar medium containing, and an ampicillin resistant strain was selected. In order to remove the pMW-intxis-ts plasmid, the transformant was cultured on LB agar medium at 42 ° C. The resulting colonies were tested for ampicillin resistance and tetracycline resistance, and strains sensitive to ampicillin and tetracycline were obtained. The obtained strain is a P L-tac adhE * introduced strain in which the att-tet sequence has been removed from the chromosome genome and pMW-intxis-ts has been removed. This strain was named AJIK01m2.
〔実施例2〕acnB遺伝子の発現を増強したL-リジン生産菌の構築
(1)プロモーターP14を備えた発現プラスミドpMW119-attR-cat-attL-P14の構築
 配列番号2及び配列番号3に示した合成オリゴヌクレオチドをプライマーとして用いて、エシェリヒア・コリMG1655株の染色体DNAを鋳型としてPCRを行い、配列番号1に示したプロモーターP14を含むgdhA遺伝子の配列を増幅した。PCR産物を精製してTakara BKL Kit(タカラバイオ社製)で処理し、SmaIで消化してTakara BKL Kitで処理したpMW219(ニッポンジーン社製)に連結して、プラスミドpMW219-P14-gdhAを得た。
In Example 2 Construction of L- lysine-producing bacterium with enhanced expression of acnB gene (1) Construction SEQ ID NO: 2 and SEQ ID NO: 3 in the expression with the promoter P 14 plasmid pMW119-attR-cat-attL- P 14 using the indicated synthetic oligonucleotides as primers, PCR was carried out with the chromosomal DNA of Escherichia coli MG1655 strain as a template to amplify the sequence of gdhA gene containing the promoter P 14 shown in SEQ ID NO: 1. The PCR product was purified, treated with Takara BKL Kit (Takara Bio), ligated to pMW219 (Nippon Gene) digested with SmaI and treated with Takara BKL Kit to obtain plasmid pMW219-P 14 -gdhA It was.
 配列番号4及び配列番号5に示した合成オリゴヌクレオチドをプライマーとして用いて、pMW219-P14-gdhAを鋳型としてPCRを行い、プロモーターP14部分の配列(P14配列)を増幅した。 Using the synthetic oligonucleotides shown in SEQ ID NO: 4 and SEQ ID NO: 5 as primers, PCR was performed using pMW219-P 14 -gdhA as a template to amplify the promoter P 14 sequence (P 14 sequence).
 配列番号6及び配列番号7に示した合成オリゴヌクレオチドをプライマーとして用いて、プラスミドpMW118-attL-Cm-attR(WO2005/010175)を鋳型としてPCRを行い、λファージのアタッチメントサイトの配列attRとattLの間にクロラムフェニコール耐性遺伝子catを持つattR-cat-attL配列を増幅した。 PCR was performed using the synthetic oligonucleotides shown in SEQ ID NO: 6 and SEQ ID NO: 7 as primers and the plasmid pMW118-attL-Cm-attR (WO2005 / 010175) as a template, and the sequences attR and attL of the attachment sites of λ phage An attR-cat-attL sequence having a chloramphenicol resistance gene cat in between was amplified.
 HindIIIおよびSalIで消化したpMW119(ニッポンジーン社製)に、In-Fusion HD Cloning kit(タカラバイオ社製)を用いてattR-cat-attL配列とP14配列を連結して、プロモーターP14を備えた発現プラスミドpMW119-attR-cat-attL-P14を構築した。 The pMW119 digested with HindIII and SalI (Nippon Gene), and connecting the attR-cat-attL sequence and P 14 sequences using In-Fusion HD Cloning kit (Takara Bio Inc.), with a promoter P 14 the expression plasmid pMW119-attR-cat-attL- P 14 was constructed.
(2)acnB遺伝子の発現増強用プラスミドpMW119-attR-cat-attL-P14-acnBの構築
 配列番号8及び配列番号9に示した合成オリゴヌクレオチドをプライマーとして用いて、エシェリヒア・コリMG1655株の染色体DNAを鋳型としてPCRを行い、acnB遺伝子を含む配列を増幅した。配列番号10及び配列番号11に示した合成オリゴヌクレオチドをプライマーとして用いて、プラスミドpMW119-attR-cat-attL-P14を鋳型としてPCRを行い、直鎖pMW119-attR-cat-attL-P14を増幅した。In-Fusion HD Cloning kit(タカラバイオ社製)を用いてacnB遺伝子を含む配列と直鎖pMW119-attR-cat-attL-P14を連結して、プロモーターP14の制御下でacnB遺伝子を発現するプラスミドpMW119-attR-cat-attL-P14-acnBを構築した。
(2) the acnB gene expression enhancing plasmid pMW119-attR-cat-attL- P 14 -acnB construction SEQ ID NO: synthetic oligonucleotides shown in 8 and SEQ ID NO: 9 using as primers, the chromosome of E. coli MG1655 strain PCR was performed using DNA as a template to amplify a sequence containing the acnB gene. Using synthetic oligonucleotides shown in SEQ ID NO: 10 and SEQ ID NO: 11 as primers, plasmid pMW119-attR-cat-attL- P 14 PCR performed as a template, a linear pMW119-attR-cat-attL- P 14 Amplified. In-Fusion HD Cloning kit by connecting an array with linear pMW119-attR-cat-attL- P 14 containing acnB gene (manufactured by Takara Bio Inc.), expressing the acnB gene under the control of a promoter P 14 Plasmid pMW119-attR-cat-attL-P 14 -acnB was constructed.
 構築したプラスミドpMW119-attR-cat-attL-P14-acnBをAJIK01m2株に常法に従い導入し、AJIK01m2/pMW119-attR-cat-attL-P14-acnB株を得た。得られた株を100mg/Lのアンピシリンを含むLB培地にて終OD600≒0.6となるように37℃にて培養した後、培養液と等量の40%グリセロール溶液を加えて攪拌した後、適当量ずつ分注し-80℃に保存した。これをAJIK01m2/pMW119-attR-cat-attL-P14-acnB株のグリセロールストックと呼ぶ。 The constructed plasmid pMW119-attR-cat-attL-P 14 -acnB was introduced into the AJIK01m2 strain according to a conventional method to obtain AJIK01m2 / pMW119-attR-cat-attL-P 14 -acnB strain. After culturing the obtained strain in LB medium containing 100 mg / L ampicillin at 37 ° C. so that the final OD600≈0.6, add the same amount of 40% glycerol solution as the culture solution, and stir, Aliquots were dispensed and stored at -80 ° C. This is called the glycerol stock of the AJIK01m2 / pMW119-attR-cat-attL-P 14 -acnB strain.
〔実施例3〕acnBおよびaldBの両遺伝子の発現を増強したL-リジン生産菌の構築
(1)aldB遺伝子の発現増強用プラスミドpMW119-attR-cat-attL-P14-aldBの構築
 配列番号12及び配列番号13に示した合成オリゴヌクレオチドをプライマーとして用いて、エシェリヒア・コリMG1655株の染色体DNAを鋳型としてPCRを行い、aldB遺伝子を含む配列を増幅した。配列番号10及び配列番号11に示した合成オリゴヌクレオチドをプライマーとして用いて、プラスミドpMW119-attR-cat-attL-P14を鋳型としてPCRを行い、直鎖pMW119-attR-cat-attL-P14を増幅した。In-Fusion HD Cloning kit(タカラバイオ社製)を用いてaldB遺伝子を含む配列と直鎖pMW119-attR-cat-attL-P14を連結して、プロモーターP14の制御下でaldB遺伝子を発現するプラスミドpMW119-attR-cat-attL-P14-aldBを構築した。
Example 3 acnB and construction of L- lysine-producing bacterium with enhanced expression of both genes of aldB (1) aldB gene expression enhancing plasmid for pMW119-attR-cat-attL- P 14 -aldB Construction SEQ ID NO: 12 Using the synthetic oligonucleotide shown in SEQ ID NO: 13 as a primer, PCR was performed using the chromosomal DNA of Escherichia coli MG1655 strain as a template to amplify the sequence containing the aldB gene. Using synthetic oligonucleotides shown in SEQ ID NO: 10 and SEQ ID NO: 11 as primers, plasmid pMW119-attR-cat-attL- P 14 PCR performed as a template, a linear pMW119-attR-cat-attL- P 14 Amplified. In-Fusion HD Cloning kit by connecting an array with linear pMW119-attR-cat-attL- P 14 comprising aldB gene (manufactured by Takara Bio Inc.), expressing the aldB gene under the control of a promoter P 14 The plasmid pMW119-attR-cat-attL-P 14 -aldB was constructed.
(2)acnB遺伝子及びaldB遺伝子の発現増強用プラスミドpMW119-attR-cat-attL-P14-acnB-P14-aldBの構築
 配列番号14及び配列番号15に示した合成オリゴヌクレオチドをプライマーとして用いて、プラスミドpMW119-attR-cat-attL-P14-acnBを鋳型としてPCRを行い、P14-acnBを含む配列を増幅した。配列番号16及び配列番号17に示した合成オリゴヌクレオチドをプライマーとして用いて、プラスミドpMW119-attR-cat-attL-P14-aldBを鋳型としてPCRを行い、直鎖pMW119-attR-cat-attL-P14-aldBを増幅した。In-Fusion HD Cloning kit(タカラバイオ社製)を用いてP14-acnBを含む配列と直鎖pMW119-attR-cat-attL-P14-aldBを連結して、プロモーターP14の制御下でacnB遺伝子とaldB遺伝子を発現するプラスミドpMW119-attR-cat-attL-P14-acnB-P14-aldBを構築した。
(2) the acnB gene and aldB gene expression enhancing plasmid for pMW119-attR-cat-attL- P 14 -acnB-P 14 -aldB construction SEQ ID NO: synthetic oligonucleotides shown in 14 and SEQ ID NO: 15 using as primers Then, PCR was performed using the plasmid pMW119-attR-cat-attL-P 14 -acnB as a template to amplify the sequence containing P 14 -acnB. PCR was performed using plasmid pMW119-attR-cat-attL-P14-aldB as a template using the synthetic oligonucleotides shown in SEQ ID NO: 16 and SEQ ID NO: 17 as primers, and linear pMW119-attR-cat-attL-P14- aldB was amplified. Using In-Fusion HD Cloning kit (manufactured by Takara Bio Inc.), the sequence containing P 14 -acnB and the linear pMW119-attR-cat-attL-P 14 -aldB are ligated and acnB under the control of promoter P 14 to construct plasmid pMW119-attR-cat-attL- P 14 -acnB-P 14 -aldB express the gene and aldB gene.
 構築したプラスミドpMW119-attR-cat-attL-P14-acnB-P14-aldBをAJIK01m2株に常法に従い導入し、AJIK01m2/pMW119-attR-cat-attL-P14-acnB-P14-aldB株を得た。得られた株を100mg/Lのアンピシリンを含むLB培地にて終OD600≒0.6となるように37℃にて培養した後、培養液と等量の40%グリセロール溶液を加えて攪拌した後、適当量ずつ分注し-80℃に保存した。これをAJIK01m2/pMW119-attR-cat-attL-P14-acnB-P14-aldB株のグリセロールストックと呼ぶ。 The constructed plasmid pMW119-attR-cat-attL-P 14 -acnB-P 14 -aldB was introduced into the AJIK01m2 strain in accordance with a conventional method, and AJIK01m2 / pMW119-attR-cat-attL-P 14 -acnB-P 14 -aldB strain Got. After culturing the obtained strain in LB medium containing 100 mg / L ampicillin at 37 ° C. so that the final OD600≈0.6, add the same amount of 40% glycerol solution as the culture solution, and stir, Aliquots were dispensed and stored at -80 ° C. This is referred to as glycerol stock of AJIK01m2 / pMW119-attR-cat- attL-P 14 -acnB-P 14 -aldB stock.
〔実施例4〕acnAおよびaldBの両遺伝子の発現を増強したL-リジン生産菌の構築
(1)acnA遺伝子の発現増強用プラスミドpMW119-attR-cat-attL-P14-acnAの構築
 配列番号18及び配列番号19に示した合成オリゴヌクレオチドをプライマーとして用いて、エシェリヒア・コリMG1655株の染色体DNAを鋳型としてPCRを行い、acnA遺伝子を含む配列を増幅した。配列番号10及び配列番号11に示した合成オリゴヌクレオチドをプライマーとして用いて、プラスミドpMW119-attR-cat-attL-P14を鋳型としてPCRを行い、直鎖pMW119-attR-cat-attL-P14を増幅した。In-Fusion HD Cloning kit(タカラバイオ社製)を用いてacnA遺伝子を含む配列と直鎖pMW119-attR-cat-attL-P14を連結して、プロモーターP14の制御下でacnA遺伝子を発現するプラスミドpMW119-attR-cat-attL-P14-acnAを構築した。
Example 4 acnA and construction of L- lysine-producing bacterium with enhanced expression of both genes of aldB (1) acnA enhanced gene expression plasmid for pMW119-attR-cat-attL- P 14 -acnA construction SEQ ID NO: 18 PCR was carried out using the chromosomal DNA of Escherichia coli MG1655 strain as a template using the synthetic oligonucleotide shown in SEQ ID NO: 19 as a primer, and the sequence containing the acnA gene was amplified. Using synthetic oligonucleotides shown in SEQ ID NO: 10 and SEQ ID NO: 11 as primers, plasmid pMW119-attR-cat-attL- P 14 PCR performed as a template, a linear pMW119-attR-cat-attL- P 14 Amplified. In-Fusion HD Cloning kit by connecting an array with linear pMW119-attR-cat-attL- P 14 containing acnA gene (manufactured by Takara Bio Inc.), expressing the acnA gene under the control of a promoter P 14 The plasmid pMW119-attR-cat-attL-P 14 -acnA was constructed.
(2)acnA遺伝子及びaldB遺伝子の発現増強用プラスミドpMW119-attR-cat-attL-P14-acnA-P14-aldBの構築
 配列番号14及び配列番号20に示した合成オリゴヌクレオチドをプライマーとして用いて、プラスミドpMW119-attR-cat-attL-P14-acnAを鋳型としてPCRを行い、P14-acnAを含む配列を増幅した。配列番号16及び配列番号17に示した合成オリゴヌクレオチドをプライマーとして用いて、プラスミドpMW119-attR-cat-attL-P14-aldBを鋳型としてPCRを行い、直鎖pMW119-attR-cat-attL-P14-aldBを増幅した。In-Fusion HD Cloning kit(タカラバイオ社製)を用いてP14-acnAを含む配列と直鎖pMW119-attR-cat-attL-P14-aldBを連結して、プロモーターP14の制御下でacnA遺伝子とaldB遺伝子を発現するプラスミドpMW119-attR-cat-attL-P14-acnA-P14-aldBを構築した。
(2) The acnA gene and aldB gene expression enhancing plasmid for pMW119-attR-cat-attL- P 14 -acnA-P 14 -aldB construction SEQ ID NO: synthetic oligonucleotides shown in 14 and SEQ ID NO: 20 is used as a primer the plasmid pMW119-attR-cat-attL- P 14 -acnA PCR performed as a template to amplify the sequence containing the P14-acnA. PCR was performed using plasmid pMW119-attR-cat-attL-P 14 -aldB as a template using the synthetic oligonucleotides shown in SEQ ID NO: 16 and SEQ ID NO: 17 as primers, and linear pMW119-attR-cat-attL-P 14 -aldB was amplified. Using In-Fusion HD Cloning kit (Takara Bio), the sequence containing P 14 -acnA and the linear pMW119-attR-cat-attL-P 14 -aldB are ligated and acnA under the control of promoter P 14 to construct plasmid pMW119-attR-cat-attL- P 14 -acnA-P 14 -aldB express the gene and aldB gene.
 構築したプラスミドpMW119-attR-cat-attL-P14-acnA-P14-aldBをAJIK01m2株に常法に従い導入し、AJIK01m2/pMW119-attR-cat-attL-P14-acnA-P14-aldB株を得た。得られた株を100mg/Lのアンピシリンを含むLB培地にて終OD600≒0.6となるように37℃にて培養した後、培養液と等量の40%グリセロール溶液を加えて攪拌した後、適当量ずつ分注し-80℃に保存した。これをAJIK01m2/pMW119-attR-cat-attL-P14-acnA-P14-aldB株のグリセロールストックと呼ぶ。 The constructed plasmid pMW119-attR-cat-attL-P 14 -acnA-P 14 -aldB was introduced into the AJIK01m2 strain in the usual manner, and AJIK01m2 / pMW119-attR-cat-attL-P 14 -acnA-P 14 -aldB strain Got. After culturing the obtained strain in LB medium containing 100 mg / L ampicillin at 37 ° C. so that the final OD600≈0.6, add the same amount of 40% glycerol solution as the culture solution, and stir, Aliquots were dispensed and stored at -80 ° C. This is referred to as glycerol stock of AJIK01m2 / pMW119-attR-cat- attL-P 14 -acnA-P 14 -aldB stock.
〔実施例5〕L-リジン生産菌のL-リジン生産能の評価
 実施例2、実施例3、および実施例4で得られた各グリセロールストックを融解し、約100μLを、100mg/Lのアンピシリンを含むLプレートに均一に塗布し、37℃にて16時間静置培養した。静置培養後、得られた菌体を0.85%の食塩水に懸濁し、波長600nmの濁度(OD600)が0.2となるように、500mL容の坂口フラスコに入れた100mg/Lのアンピシリンを含む25 mLの発酵培地(下記)に接種し、往復振とう培養装置で攪拌120rpmの条件の下、37℃で24時間培養した。24時間の振とう培養後、各フラスコに125μLのエタノールを添加し、さらに同様の条件で17時間振とう培養した。
[Example 5] Evaluation of L-lysine-producing ability of L-lysine-producing bacteria Each glycerol stock obtained in Example 2, Example 3, and Example 4 was thawed, and about 100 μL was added to 100 mg / L of ampicillin. The solution was uniformly applied to an L plate containing and cultured at 37 ° C. for 16 hours. After static culture, the obtained cells are suspended in 0.85% saline and contain 100 mg / L ampicillin placed in a 500 mL Sakaguchi flask so that the turbidity (OD600) at a wavelength of 600 nm is 0.2. 25 mL of fermentation medium (below) was inoculated and cultured at 37 ° C. for 24 hours under the condition of stirring at 120 rpm in a reciprocating shake culture apparatus. After 24 hours of shaking culture, 125 μL of ethanol was added to each flask, and further cultured under shaking under the same conditions for 17 hours.
 発酵培地の組成を下記に示す。
エタノール                          10 ml/L
(NH42SO4                           24 g/L
KH2PO4                               1.0 g/L
MgSO4・7H2O                           1.0 g/L
FeSO4・7H2O                           0.01 g/L
MnSO4・5H2O                           0.082 g/L
Yeast Extract(Difco社製)           2.0 g/L
CaCO3(日本薬局方)                 40 g/L
蒸留水                        最終量 1 L
The composition of the fermentation medium is shown below.
Ethanol 10 ml / L
(NH 4 ) 2 SO 4 24 g / L
KH 2 PO 4 1.0 g / L
MgSO 4・ 7H 2 O 1.0 g / L
FeSO 4・ 7H 2 O 0.01 g / L
MnSO 4・ 5H 2 O 0.082 g / L
Yeast Extract (Difco) 2.0 g / L
CaCO 3 (Japanese Pharmacopoeia) 40 g / L
Distilled water Final volume 1 L
 培養終了後に、培地中に蓄積したL-リジンの量をバイオテックアナライザーAS310(サクラ精機社製)を用いて測定した。また、培地中に添加した炭素源を全て消費したことを、エタノールについてバイオテックアナライザーBF-5(王子計測機器)を用いて確認した。さらに、培養終了直後に培養液を0.2N希塩酸で適宜希釈して分光光度計U-2000(日立社製)で波長600nmの濁度(OD600)を測定することにより、培養終了時の菌体量を測定した。 After completion of the culture, the amount of L-lysine accumulated in the medium was measured using Biotech Analyzer AS310 (manufactured by Sakura Seiki Co., Ltd.). In addition, it was confirmed by ethanol using Biotech Analyzer BF-5 (Oji Scientific Instruments) that all the carbon sources added to the medium were consumed. Furthermore, immediately after completion of the culture, the culture solution is appropriately diluted with 0.2N dilute hydrochloric acid, and the turbidity (OD 600 ) at a wavelength of 600 nm is measured with a spectrophotometer U-2000 (manufactured by Hitachi), so that the cells at the end of the culture are obtained. The amount was measured.
 結果を表1に示す。表1において、「Strain」は菌株の名前を示す。また、表1において、「Lys (g/L)」は培地中に蓄積したL-リジン量を示す。acnB遺伝子の発現増強株(AJIK01m2/pMW119-attR-cat-attL-P14-acnB株)は、対照株(AJIK01m2/pMW119-attR-cat-attL-P14株)と比較して、有意に高いL-リジン生産を示した。すなわち、acnB遺伝子の発現増強により、L-リジン生産能が向上することが示された。また、acnBおよびaldBの両遺伝子の発現増強株(AJIK01m2/pMW119-attR-cat-attL-P14-acnB-P14-aldB株)は、対照株(AJIK01m2/pMW119-attR-cat-attL-P14株)と比較して、有意に高いL-リジン生産を示した。すなわち、acnB遺伝子およびaldB遺伝子の同時発現増強により、L-リジン生産能が向上することが示された。また、acnAおよびaldBの両遺伝子の発現増強株(AJIK01m2/pMW119-attR-cat-attL-P14-acnA-P14-aldB株)は、対照株(AJIK01m2/pMW119-attR-cat-attL-P14株)と比較して、有意に高いL-リジン生産を示した。すなわち、acnA遺伝子およびaldB遺伝子の同時発現増強により、L-リジン生産能が向上することが示された。 The results are shown in Table 1. In Table 1, “Strain” indicates the name of the strain. In Table 1, “Lys (g / L)” indicates the amount of L-lysine accumulated in the medium. enhanced expression strain acnB gene (AJIK01m2 / pMW119-attR-cat -attL-P 14 -acnB strain), compared to the control strain (AJIK01m2 / pMW119-attR-cat -attL-P 14 strain), significantly higher L-lysine production was shown. That is, it was shown that the L-lysine production ability is improved by enhancing the expression of the acnB gene. Further, acnB and enhanced expression strain (AJIK01m2 / pMW119-attR-cat -attL-P 14 -acnB-P 14 -aldB strain) of both genes of aldB is control strain (AJIK01m2 / pMW119-attR-cat -attL-P Compared with 14 strains), it showed significantly higher L-lysine production. That is, it was shown that L-lysine production ability was improved by enhancing the simultaneous expression of acnB gene and aldB gene. Further, acnA and enhanced expression strain (AJIK01m2 / pMW119-attR-cat -attL-P 14 -acnA-P 14 -aldB strain) of both genes of aldB is control strain (AJIK01m2 / pMW119-attR-cat -attL-P Compared with 14 strains), it showed significantly higher L-lysine production. That is, it was shown that the L-lysine production ability was improved by enhancing the simultaneous expression of the acnA gene and the aldb gene.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、細菌のL-アミノ酸生産能を向上させることができ、L-アミノ酸を効率よく製造することができる。 According to the present invention, the ability of bacteria to produce L-amino acids can be improved, and L-amino acids can be produced efficiently.
<配列表の説明>
配列番号1:プロモーターP14の塩基配列
配列番号2~20:プライマー
配列番号21:Escherichia coli K12 MG1655株のacnA遺伝子の塩基配列
配列番号22:Escherichia coli K12 MG1655株のAcnAタンパク質のアミノ酸配列
配列番号23:Pantoea ananatis AJ13355株のacnA遺伝子の塩基配列
配列番号24:Pantoea ananatis AJ13355株のAcnAタンパク質のアミノ酸配列
配列番号25:Pectobacterium atrosepticum SCRI1043株のacnA遺伝子の塩基配列
配列番号26:Pectobacterium atrosepticum SCRI1043株のAcnAタンパク質のアミノ酸配列
配列番号27:Salmonella enterica serovar Typhi CT18株のacnA遺伝子の塩基配列
配列番号28:Salmonella enterica serovar Typhi CT18株のAcnAタンパク質のアミノ酸配列
配列番号29:Escherichia coli K12 MG1655株のacnB遺伝子の塩基配列
配列番号30:Escherichia coli K12 MG1655株のAcnBタンパク質のアミノ酸配列
配列番号31:Pantoea ananatis AJ13355株のacnB遺伝子の塩基配列
配列番号32:Pantoea ananatis AJ13355株のAcnBタンパク質のアミノ酸配列
配列番号33:Pectobacterium atrosepticum SCRI1043株のacnB遺伝子の塩基配列
配列番号34:Pectobacterium atrosepticum SCRI1043株のAcnBタンパク質のアミノ酸配列
配列番号35:Salmonella enterica serovar Typhi CT18株のacnB遺伝子の塩基配列
配列番号36:Salmonella enterica serovar Typhi CT18株のAcnBタンパク質のアミノ酸配列
配列番号37:Escherichia coli K12 MG1655株のaldB遺伝子の塩基配列
配列番号38:Escherichia coli K12 MG1655株のAldBタンパク質のアミノ酸配列
配列番号39:Pantoea ananatis LMG 20103株のaldB遺伝子の塩基配列
配列番号40:Pantoea ananatis LMG 20103株のAldBタンパク質のアミノ酸配列
配列番号41:Pectobacterium atrosepticum SCRI1043株のaldB遺伝子の塩基配列
配列番号42:Pectobacterium atrosepticum SCRI1043株のAldBタンパク質のアミノ酸配列
配列番号43:Salmonella enterica serovar Typhi CT18株のaldB遺伝子の塩基配列
配列番号44:Salmonella enterica serovar Typhi CT18株のAldBタンパク質のアミノ酸配列
配列番号45:Escherichia coli K12 MG1655株のadhE遺伝子の塩基配列
配列番号46:Escherichia coli K12 MG1655株のAdhEタンパク質のアミノ酸配列
配列番号47:Pantoea ananatis LMG 20103株のadhE遺伝子の塩基配列
配列番号48:Pantoea ananatis LMG 20103株のAdhEタンパク質のアミノ酸配列
配列番号49:Pectobacterium atrosepticum SCRI1043株のadhE遺伝子の塩基配列
配列番号50:Pectobacterium atrosepticum SCRI1043株のAdhEタンパク質のアミノ酸配列
配列番号51:Salmonella enterica serovar Typhi CT18株のadhE遺伝子の塩基配列
配列番号52:Salmonella enterica serovar Typhi CT18株のAdhEタンパク質のアミノ酸配列
<Explanation of Sequence Listing>
SEQ ID NO: 1: nucleotide sequence of promoter P 14 SEQ ID NO: 2 to 20: primer SEQ ID NO: 21: nucleotide sequence of acnA gene of Escherichia coli K12 MG1655 strain SEQ ID NO: 22: amino acid sequence of AcnA protein of Escherichia coli K12 MG1655 strain SEQ ID NO: 23 : Nucleotide sequence of the acnA gene of Pantoea ananatis AJ13355 strain SEQ ID NO: 24: amino acid sequence of the AcnA protein of Pantoea ananatis AJ13355 sequence SEQ ID NO: 25: nucleotide sequence of the acnA gene of Pectobacterium atrosepticum SCRI1043 strain: AcnA protein of the Pectobacterium atrosepticum SCRI1043 strain SEQ ID NO: 27: nucleotide sequence of acnA gene of Salmonella enterica serovar Typhi CT18 strain SEQ ID NO: 28: amino acid sequence of AcnA protein of Salmonella enterica serovar Typhi CT18 strain SEQ ID NO: 29: nucleotide sequence of acnB gene of Escherichia coli K12 MG1655 strain SEQ ID NO: 30: AcnB protein amino acid of Escherichia coli K12 MG1655 strain Acid sequence SEQ ID NO: 31: nucleotide sequence of the acnB gene of Pantoea ananatis AJ13355 strain SEQ ID NO: 32: amino acid sequence of the AcnB protein of Pantoea ananatis AJ13355 strain SEQ ID NO: 33: nucleotide sequence of the acnB gene of Pectobacterium atrosepticum SCRI1043 strain SEQ ID NO: 34: Pectobacterium atrosepticum The amino acid sequence of the AcnB protein of SCRI1043 strain SEQ ID NO: 35: The nucleotide sequence of the acnB gene of Salmonella enterica serovar Typhi CT18 strain SEQ ID NO: 36: The amino acid sequence of the AcnB protein of Salmonella enterica serovar Typhi CT18 strain SEQ ID NO: 37: Escherichia coli K12 MG1655 strain Base sequence of aldB gene SEQ ID NO: 38: Amino acid sequence of AldB protein of Escherichia coli K12 MG1655 strain SEQ ID NO: 39: Base sequence of aldB gene of Pantoea ananatis LMG 20103 strain SEQ ID NO: 40: Amino acid sequence of AldB protein of Pantoea ananatis LMG 20103 strain SEQ ID NO: 41: aldb gene of Pectobacterium atrosepticum SCRI1043 strain Base sequence SEQ ID NO: 42: amino acid sequence of AldB protein of Pectobacterium atrosepticum SCRI1043 strain SEQ ID NO: 43: Base sequence sequence number of aldB gene of Salmonella enterica serovar Typhi CT18 strain 44: Amino acid sequence sequence number of AldB protein of Salmonella enterica serovar Typhi CT18 strain 45: base sequence of the adhE gene of Escherichia coli K12 MG1655 strain SEQ ID NO: 46: amino acid sequence of the AdhE protein of Escherichia coli K12 MG1655 strain SEQ ID NO: 47: base sequence of the adhE gene of Pantoea ananatis LMG 20103 strain SEQ ID NO: 48: Pantoea ananatis LMG AdhE protein of the 20103 strain SEQ ID NO: 49: nucleotide sequence of the adhE gene of the Pectobacterium atrosepticum SCRI1043 strain SEQ ID NO: 50: amino acid sequence of the AdhE protein of the Pectobacterium atrosepticum SCRI1043 strain SEQ ID NO: 51: adhE gene of the Salmonella enterica serovar Typhi CT18 strain Base sequence SEQ ID NO: 52: Salmonella enterica serovar Amino acid sequence of AdhE protein of Typhi CT18 strain

Claims (18)

  1.  L-アミノ酸生産能を有する腸内細菌科に属する細菌をエタノールを含有する培地で培養し、L-アミノ酸を該培地中または該細菌の菌体内に生成蓄積させること、および該培地または菌体よりL-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、
     前記細菌が、アコニターゼ活性が増大するように改変されていることを特徴とし、
     前記アコニターゼが、AcnBタンパク質である、方法。
    Bacteria belonging to the family Enterobacteriaceae having L-amino acid producing ability are cultured in a medium containing ethanol, and L-amino acid is produced and accumulated in the medium or in the microbial cells, and from the medium or the microbial cells Collecting the L-amino acid, comprising the steps of:
    The bacterium is modified to increase aconitase activity,
    The method wherein the aconitase is an AcnB protein.
  2.  前記AcnBタンパク質が、下記(a)、(b)、または(c)に記載のタンパク質である、請求項1に記載の方法:
    (a)配列番号30、32、34、または36に示すアミノ酸配列を含むタンパク質;
    (b)配列番号30、32、34、または36に示すアミノ酸配列において、1~10個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を含み、且つ、アコニターゼ活性を有するタンパク質;
    (c)配列番号30、32、34、または36に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、アコニターゼ活性を有するタンパク質。
    The method according to claim 1, wherein the AcnB protein is a protein described in the following (a), (b), or (c):
    (A) a protein comprising the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36;
    (B) In the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36, the amino acid sequence includes substitution, deletion, insertion, or addition of 1 to 10 amino acid residues, and has an aconitase activity. protein;
    (C) a protein comprising an amino acid sequence having 90% or more identity to the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36 and having aconitase activity.
  3.  L-アミノ酸生産能を有する腸内細菌科に属する細菌をエタノールを含有する培地で培養し、L-アミノ酸を該培地中または該細菌の菌体内に生成蓄積させること、および該培地または菌体よりL-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、
     前記細菌が、アコニターゼ活性およびアセトアルデヒドデヒドロゲナーゼ活性が増大するように改変されていることを特徴とする、方法。
    Bacteria belonging to the family Enterobacteriaceae having L-amino acid producing ability are cultured in a medium containing ethanol, and L-amino acid is produced and accumulated in the medium or in the microbial cells, and from the medium or the microbial cells Collecting the L-amino acid, comprising the steps of:
    A method wherein the bacterium has been modified to increase aconitase activity and acetaldehyde dehydrogenase activity.
  4.  前記アコニターゼが、AcnAタンパク質またはAcnBタンパク質である、請求項3に記載の方法。 The method according to claim 3, wherein the aconitase is an AcnA protein or an AcnB protein.
  5.  前記AcnAタンパク質が、下記(a)、(b)、または(c)に記載のタンパク質である、請求項4に記載の方法:
    (a)配列番号22、24、26、または28に示すアミノ酸配列を含むタンパク質;
    (b)配列番号22、24、26、または28に示すアミノ酸配列において、1~10個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を含み、且つ、アコニターゼ活性を有するタンパク質;
    (c)配列番号22、24、26、または28に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、アコニターゼ活性を有するタンパク質。
    The method according to claim 4, wherein the AcnA protein is a protein described in the following (a), (b), or (c):
    (A) a protein comprising the amino acid sequence shown in SEQ ID NO: 22, 24, 26, or 28;
    (B) In the amino acid sequence shown in SEQ ID NO: 22, 24, 26, or 28, includes an amino acid sequence including substitution, deletion, insertion, or addition of 1 to 10 amino acid residues, and has an aconitase activity. protein;
    (C) a protein comprising an amino acid sequence having 90% or more identity to the amino acid sequence shown in SEQ ID NO: 22, 24, 26, or 28 and having aconitase activity.
  6.  前記AcnBタンパク質が、下記(a)、(b)、または(c)に記載のタンパク質である、請求項4に記載の方法:
    (a)配列番号30、32、34、または36に示すアミノ酸配列を含むタンパク質;
    (b)配列番号30、32、34、または36に示すアミノ酸配列において、1~10個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を含み、且つ、アコニターゼ活性を有するタンパク質;
    (c)配列番号30、32、34、または36に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、アコニターゼ活性を有するタンパク質。
    The method according to claim 4, wherein the AcnB protein is a protein described in (a), (b), or (c) below:
    (A) a protein comprising the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36;
    (B) In the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36, the amino acid sequence includes substitution, deletion, insertion, or addition of 1 to 10 amino acid residues, and has an aconitase activity. protein;
    (C) a protein comprising an amino acid sequence having 90% or more identity to the amino acid sequence shown in SEQ ID NO: 30, 32, 34, or 36 and having aconitase activity.
  7.  前記アセトアルデヒドデヒドロゲナーゼが、AldBタンパク質である、請求項3~6のいずれか1項に記載の方法。 The method according to any one of claims 3 to 6, wherein the acetaldehyde dehydrogenase is an AldB protein.
  8.  前記AldBタンパク質が、下記(a)、(b)、または(c)に記載のタンパク質である、請求項7に記載の方法:
    (a)配列番号38、40、42、または44に示すアミノ酸配列を含むタンパク質;
    (b)配列番号38、40、42、または44に示すアミノ酸配列において、1~10個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を含み、且つ、アセトアルデヒドデヒドロゲナーゼ活性を有するタンパク質;
    (c)配列番号38、40、42、または44に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、アセトアルデヒドデヒドロゲナーゼ活性を有するタンパク質。
    The method according to claim 7, wherein the AldB protein is a protein described in the following (a), (b), or (c):
    (A) a protein comprising the amino acid sequence shown in SEQ ID NO: 38, 40, 42, or 44;
    (B) the amino acid sequence shown in SEQ ID NO: 38, 40, 42, or 44, comprising an amino acid sequence comprising substitution, deletion, insertion, or addition of 1 to 10 amino acid residues, and having acetaldehyde dehydrogenase activity A protein having;
    (C) A protein comprising an amino acid sequence having 90% or more identity to the amino acid sequence shown in SEQ ID NO: 38, 40, 42, or 44 and having acetaldehyde dehydrogenase activity.
  9.  前記細菌が、さらに、エタノール代謝酵素の活性が増大するように改変されている、請求項1~8のいずれか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein the bacterium is further modified to increase the activity of an ethanol metabolizing enzyme.
  10.  前記細菌が、好気的にエタノールを資化できる、請求項1~9のいずれか1項に記載の方法。 The method according to any one of claims 1 to 9, wherein the bacterium can assimilate ethanol aerobically.
  11.  前記細菌が、変異型adhE遺伝子を保持するように改変されており、
     前記変異型adhE遺伝子は、好気条件での不活化に対する耐性が向上する変異を有する変異型AdhEタンパク質をコードするadhE遺伝子である、請求項1~10のいずれか1項に記載の方法。
    The bacterium has been modified to retain a mutant adhE gene;
    The method according to any one of claims 1 to 10, wherein the mutant adhE gene is an adhE gene encoding a mutant AdhE protein having a mutation that improves resistance to inactivation under aerobic conditions.
  12.  前記変異が、野生型AdhEタンパク質のアミノ酸配列において、配列番号46に示すアミノ酸配列における568位のグルタミン酸残基に相当するアミノ酸残基が、グルタミン酸およびアスパラギン酸以外のアミノ酸残基に置換される変異である、請求項11に記載の方法。 The mutation is a mutation in which the amino acid residue corresponding to the glutamic acid residue at position 568 in the amino acid sequence shown in SEQ ID NO: 46 is substituted with an amino acid residue other than glutamic acid and aspartic acid in the amino acid sequence of the wild-type AdhE protein. The method of claim 11, wherein:
  13.  前記置換後のアミノ酸残基が、リジン残基である、請求項12に記載の方法。 The method according to claim 12, wherein the amino acid residue after substitution is a lysine residue.
  14.  前記変異型AdhEタンパク質が、さらに、下記の追加的変異を有する、請求項12または13に記載の方法。:
    (A)野生型AdhEタンパク質のアミノ酸配列において、配列番号46に示すアミノ酸配列における560位のグルタミン酸残基に相当するアミノ酸残基が、他のアミノ酸残基に置換される変異;
    (B)野生型AdhEタンパク質のアミノ酸配列において、配列番号46に示すアミノ酸配列における566位のフェニルアラニン残基に相当するアミノ酸残基が、他のアミノ酸残基に置換される変異;
    (C)野生型AdhEタンパク質のアミノ酸配列において、配列番号46に示すアミノ酸配列における22位のグルタミン酸残基、236位のメチオニン残基、461位のチロシン残基、554位のイソロイシン残基、及び786位のアラニン残基に相当するアミノ酸残基が、他のアミノ酸残基に置換される変異;
    (D)上記変異の組み合わせ。
    The method according to claim 12 or 13, wherein the mutant AdhE protein further has the following additional mutation. :
    (A) A mutation in which the amino acid residue corresponding to the glutamic acid residue at position 560 in the amino acid sequence shown in SEQ ID NO: 46 is substituted with another amino acid residue in the amino acid sequence of the wild-type AdhE protein;
    (B) a mutation in which the amino acid residue corresponding to the phenylalanine residue at position 566 in the amino acid sequence shown in SEQ ID NO: 46 is substituted with another amino acid residue in the amino acid sequence of the wild-type AdhE protein;
    (C) In the amino acid sequence of the wild-type AdhE protein, the glutamic acid residue at position 22, the methionine residue at position 236, the tyrosine residue at position 461, the isoleucine residue at position 554, and 786 in the amino acid sequence shown in SEQ ID NO: 46 A mutation in which the amino acid residue corresponding to the alanine residue at the position is substituted with another amino acid residue;
    (D) Combination of the above mutations.
  15.  前記細菌が、エシェリヒア属細菌である、請求項1~14のいずれか1項に記載の方法。 The method according to any one of claims 1 to 14, wherein the bacterium is an Escherichia bacterium.
  16.  前記細菌が、エシェリヒア・コリである、請求項15に記載の方法。 The method according to claim 15, wherein the bacterium is Escherichia coli.
  17.  前記L-アミノ酸が、L-リジンである、請求項1~16のいずれか1項に記載の方法。 The method according to any one of claims 1 to 16, wherein the L-amino acid is L-lysine.
  18.  前記細菌が、さらに、下記の性質を有する、請求項17に記載の方法:
    (A)ジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、ホスホエノールピルビン酸カルボキシラーゼ、アスパラギン酸アミノトランスフェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、テトラヒドロジピコリン酸スクシニラーゼ、及びスクシニルジアミノピメリン酸デアシラーゼから選択される1またはそれ以上の酵素の活性が増大するように改変されている;
    (B)リジンデカルボキシラーゼの活性が低下するように改変されている;
    (C)上記性質の組み合わせ。
    18. The method of claim 17, wherein the bacterium further has the following properties:
    (A) Dihydrodipicolinate reductase, diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semialdehyde dehydrogenase, tetrahydrodipicolinate succinylase, and succinyl diaminopimelate deacylase Modified to increase the activity of one or more enzymes selected from
    (B) modified to reduce the activity of lysine decarboxylase;
    (C) A combination of the above properties.
PCT/JP2015/066072 2014-06-03 2015-06-03 Method for producing l-amino acids WO2015186749A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15803550.1A EP3153586B1 (en) 2014-06-03 2015-06-03 Method for producing l-amino acids
BR112016028185A BR112016028185A2 (en) 2014-06-03 2015-06-03 method for producing an 1-amino acid.
US15/361,645 US10563234B2 (en) 2014-06-03 2016-11-28 Method for producing L-amino acids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014114799A JP2017131111A (en) 2014-06-03 2014-06-03 Method for producing L-amino acid
JP2014-114799 2014-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/361,645 Continuation US10563234B2 (en) 2014-06-03 2016-11-28 Method for producing L-amino acids

Publications (1)

Publication Number Publication Date
WO2015186749A1 true WO2015186749A1 (en) 2015-12-10

Family

ID=54766818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066072 WO2015186749A1 (en) 2014-06-03 2015-06-03 Method for producing l-amino acids

Country Status (5)

Country Link
US (1) US10563234B2 (en)
EP (1) EP3153586B1 (en)
JP (1) JP2017131111A (en)
BR (1) BR112016028185A2 (en)
WO (1) WO2015186749A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110804602B (en) * 2019-11-18 2021-01-29 江南大学 L-aspartic acid beta-decarboxylase mutant and application thereof
CN111334535B (en) * 2020-03-26 2021-11-30 廊坊梅花生物技术开发有限公司 Recombinant strain for producing L-amino acid and application thereof
US20230295645A1 (en) * 2020-06-08 2023-09-21 Heilongjiang Eppen Biotech Co., Ltd. Recombinant strain producing l-lysine and construction methods therefor and use thereof
CN111850010B (en) * 2020-06-08 2021-04-09 黑龙江伊品生物科技有限公司 dapB gene modified recombinant strain and construction method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101053A1 (en) * 2009-03-06 2010-09-10 味の素株式会社 Method for producing l-amino acid
WO2011096554A1 (en) * 2010-02-08 2011-08-11 味の素株式会社 MANUFACTURING METHOD FOR MUTANT rpsA GENE AND L-AMINO ACID
WO2012077739A1 (en) * 2010-12-10 2012-06-14 味の素株式会社 Method for producing l-amino acid
JP2014506466A (en) * 2011-02-11 2014-03-17 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Cells and methods for producing isobutyric acid

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168056A (en) 1991-02-08 1992-12-01 Purdue Research Foundation Enhanced production of common aromatic pathway compounds
US5776736A (en) 1992-12-21 1998-07-07 Purdue Research Foundation Deblocking the common pathway of aromatic amino acid synthesis
MX9702011A (en) 1994-09-16 1998-04-30 Texas A & M Univ Sys Microorganisms and methods for overproduction of dahp by cloned pps gene.
JP2003250544A (en) 2002-03-04 2003-09-09 National Institute Of Technology & Evaluation Method for modifying property of protein
ATE413456T1 (en) * 2002-03-13 2008-11-15 Evonik Degussa Gmbh METHOD FOR PRODUCING L-AMINO ACIDS USING STRAINS OF THE ENTEROBACTERIACEAE FAMILY
JP2007117082A (en) 2005-09-27 2007-05-17 Ajinomoto Co Inc L-amino acid producing bacteria and preparation process of l-amino acid
BRPI0715584B8 (en) 2006-07-19 2017-02-21 Ajinomoto Kk method to produce an l-amino acid
EP2094858B1 (en) 2006-12-11 2015-02-18 Ajinomoto Co., Inc. Method for producing an l-amino acid
CN101688176B (en) 2007-04-17 2013-11-06 味之素株式会社 Method for production of acidic substance having carboxyl group
JP2010226956A (en) 2007-07-23 2010-10-14 Ajinomoto Co Inc Method for producing l-lysine
BRPI0816429A2 (en) 2007-09-04 2019-09-24 Ajinomoto Kk microorganism, and method for producing an 1-amino acid.
WO2009093703A1 (en) 2008-01-23 2009-07-30 Ajinomoto Co., Inc. Method of producing l-amino acid
JP2011167071A (en) * 2008-05-22 2011-09-01 Ajinomoto Co Inc Method for producing l-amino acid
JP2012223092A (en) 2009-08-28 2012-11-15 Ajinomoto Co Inc Method for producing l-amino acid
DE102010003419B4 (en) * 2010-03-30 2019-09-12 Evonik Degussa Gmbh Process for the fermentative production of L-ornithine
JP2013176301A (en) 2010-07-01 2013-09-09 Ajinomoto Co Inc Method for producing l-amino acid
CN103173504B (en) * 2013-04-07 2014-07-23 宁夏伊品生物科技股份有限公司 Method for producing L-threonine by adopting bacterial fermentation with weakened aconitase expression and/or reduced enzymatic activity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101053A1 (en) * 2009-03-06 2010-09-10 味の素株式会社 Method for producing l-amino acid
WO2011096554A1 (en) * 2010-02-08 2011-08-11 味の素株式会社 MANUFACTURING METHOD FOR MUTANT rpsA GENE AND L-AMINO ACID
WO2012077739A1 (en) * 2010-12-10 2012-06-14 味の素株式会社 Method for producing l-amino acid
JP2014506466A (en) * 2011-02-11 2014-03-17 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Cells and methods for producing isobutyric acid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153586A4 *

Also Published As

Publication number Publication date
JP2017131111A (en) 2017-08-03
EP3153586A1 (en) 2017-04-12
EP3153586A4 (en) 2017-11-22
EP3153586B1 (en) 2023-05-10
US20170073714A1 (en) 2017-03-16
US10563234B2 (en) 2020-02-18
BR112016028185A2 (en) 2017-10-24

Similar Documents

Publication Publication Date Title
CN107893089B (en) Method for producing L-amino acid
US7833762B2 (en) Method for producing L-amino acid
CN108690856B (en) Process for producing L-amino acid
JP2010110217A (en) L-amino acid-producing microorganism and method for producing l-amino acid
US20130260425A1 (en) Method for Producing an L-Amino Acid
JP2019165635A (en) Method for producing L-amino acid
EP2382320B1 (en) Process for producing l-amino acids employing bacteria of the enterobacteriacea family in a culture medium with controlled glycerol concentration
US10787691B2 (en) Method for producing L-amino acid
US10563234B2 (en) Method for producing L-amino acids
WO2012002486A1 (en) Method for producing l-amino acid
JP6459962B2 (en) Method for producing L-amino acid
US20150211033A1 (en) Method for Producing L-Amino Acid
US20150218605A1 (en) Method for Producing L-Amino Acid
WO2010101053A1 (en) Method for producing l-amino acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803550

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015803550

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015803550

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016028185

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: 112016028185

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161130