JPH11155571A - Production of l-cysteine - Google Patents

Production of l-cysteine

Info

Publication number
JPH11155571A
JPH11155571A JP9323210A JP32321097A JPH11155571A JP H11155571 A JPH11155571 A JP H11155571A JP 9323210 A JP9323210 A JP 9323210A JP 32321097 A JP32321097 A JP 32321097A JP H11155571 A JPH11155571 A JP H11155571A
Authority
JP
Japan
Prior art keywords
cysteine
ala
residue
sat
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9323210A
Other languages
Japanese (ja)
Other versions
JP4151094B2 (en
Inventor
Shigeru Nakamori
茂 中森
Hiroshi Takagi
博史 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP32321097A priority Critical patent/JP4151094B2/en
Publication of JPH11155571A publication Critical patent/JPH11155571A/en
Application granted granted Critical
Publication of JP4151094B2 publication Critical patent/JP4151094B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably produce L-cysteine by a microbial strain belonging to the genus Escherichia holding SAT (serine acetyltransferase) having decreased feedback inhibition with L-cysteine by lowering cysteine desulfhydrase activity in the cell. SOLUTION: L-cysteine is produced by a bacterial strain belonging to the genus Escherichia characterized by (A) the suppressed L-cysteine decomposition system and (B) the retention of SAT having decreased feedback inhibition by L-cysteine, e.g. a bacterial strain having an L-cysteine decomposition system suppressed e.g. by the lowering of cysteine desulfhydrase activity in the cell. The feedback inhibition by L-cysteine can be decreased by introducing e.g. a mutation to substitute the amino acid residue corresponding to the 256th methionine residue of the wild-type SAT with an amino acid residue other than lysine residue and leucine residue.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、L−システインの
製造法に関し、詳しくはL−システインの製造に好適な
新エシェリヒア属細菌、及びそれを用いたL−システイ
ンの製造法に関する。L−システイン及びL−システイ
ンの誘導体は、医薬品、化粧品及び食品分野で利用され
ている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing L-cysteine, and more particularly to a novel Escherichia bacterium suitable for producing L-cysteine, and a method for producing L-cysteine using the same. L-cysteine and derivatives of L-cysteine are used in the pharmaceutical, cosmetic and food fields.

【0002】[0002]

【従来の技術】従来、L−システインは、毛髪、角、羽
毛等のケラチン含有物質から抽出することにより、ある
いはDL−2−アミノチアゾリン−4−カルボン酸を前
駆体とする微生物酵素変換により得られている。また、
新規な酵素を用いた固定化酵素法によるL−システイン
の大量生産も計画されている。さらに、微生物を用いた
発酵法によるL−システインの生産も試みられている。
2. Description of the Related Art Conventionally, L-cysteine has been obtained by extraction from keratin-containing substances such as hair, horns and feathers, or by microbial enzyme conversion using DL-2-aminothiazoline-4-carboxylic acid as a precursor. Have been. Also,
Mass production of L-cysteine by an immobilized enzyme method using a novel enzyme is also planned. Furthermore, production of L-cysteine by a fermentation method using a microorganism has been attempted.

【0003】L−システインの生合成について、エシェ
リヒア・コリ等の細菌では詳細に研究されており(Kred
ich, N. M. et al., J. Biol. Chem., 241, 4955-4965
(1966), Kredich, N. M. et al., 1987, Biosynthesis
of Cysteine. In: Neidhardt, F.C., et al., (eds) Es
cherichia coli and Salmonella typhimurium: cellula
r and molecular biology, Vol.1, American Society f
or Microbiology, Washington D.C., 419-428)、L−
セリンから2段階の反応によりL−システインが生成す
ることがわかっている。エシェリヒア・コリでは、第一
の反応は、アセチル−CoAによるL−セリンの活性化
であり、セリンアセチルトランスフェラーゼ(serine a
cetyltransferase(EC 2.3.1.30):以下、「SAT」
ともいう)により触媒される。第二の反応は、上記反応
により生成するO−アセチルセリンからL−システイン
が生成する反応であり、O−アセチルセリン(チオー
ル)リアーゼにより触媒される。
[0003] The biosynthesis of L-cysteine has been studied in detail in bacteria such as Escherichia coli (Kred).
ich, NM et al., J. Biol. Chem., 241, 4955-4965
(1966), Kredich, NM et al., 1987, Biosynthesis
of Cysteine. In: Neidhardt, FC, et al., (eds) Es
cherichia coli and Salmonella typhimurium: cellula
r and molecular biology, Vol. 1, American Society f
or Microbiology, Washington DC, 419-428), L-
It has been found that L-cysteine is produced from serine by a two-step reaction. In Escherichia coli, the first reaction is the activation of L-serine by acetyl-CoA, and serine acetyltransferase (serine a).
cetyltransferase (EC 2.3.1.30): Hereinafter, "SAT"
). The second reaction is a reaction in which L-cysteine is generated from O-acetylserine generated by the above reaction, and is catalyzed by O-acetylserine (thiol) lyase.

【0004】SATをコードする遺伝子(cysE)
は、エシェリヒア・コリにおいては、野生株及びL−シ
ステイン分泌変異株よりクローニングされている(Den
k, D. and Bock, A., J. General Microbiol., 133, 51
5-525 (1987))。また、これらのcysEの塩基配列が
決定され、L−システインによるフィードバック阻害が
減少したSATは、256位のメチオニン残基がイソロ
イシン残基に置換されていたことが報告されている。さ
らに、上記変異とは異なる変異によりL−システインに
よるフィードバック阻害が低減されたSATをコードす
るDNAを用いて、L−システイン等を製造する方法が
開示されている(WO 97/15673号国際公開パンフレッ
ト)。このSATは、97位のアミノ酸残基から273
位のアミノ酸残基までの領域における変異、又は227
位のアミノ酸残基からC末端領域の欠失を有する。
[0004] Gene encoding SAT (cysE)
Has been cloned in Escherichia coli from wild-type and L-cysteine secretion mutants (Den
k, D. and Bock, A., J. General Microbiol., 133, 51
5-525 (1987)). In addition, the base sequences of these cysEs were determined, and it has been reported that the SAT in which feedback inhibition by L-cysteine was reduced had the methionine residue at position 256 replaced with an isoleucine residue. Furthermore, a method for producing L-cysteine or the like using DNA encoding SAT in which feedback inhibition by L-cysteine is reduced by a mutation different from the above mutation is disclosed (WO 97/15673 International Publication Pamphlet). ). This SAT is derived from the amino acid residue at position 97 to 273
Mutation in the region up to the amino acid residue at position 227, or
It has a deletion of the C-terminal region from the amino acid residue at the position.

【0005】[0005]

【発明が解決しようとする課題】上述のように、L−シ
ステインによるフィードバック阻害が低減したSATを
コードする遺伝子を利用してL−システインを製造する
技術が知られているが、未だ改良の余地が残されてい
る。すなわち、本発明者は、エシェリヒア属細菌のL−
システイン生合成について研究を行ったところ、L−シ
ステインによるフィードバック阻害が低減されたSAT
を保持するエシェリヒア属細菌は、L−システインの生
産性が不安定であることを見出した。本発明は、エシェ
リヒア属細菌を用いたL−システインの改良された製造
法及びこの方法に用いるエシェリヒア属細菌を提供する
ことを課題とする。
As described above, a technique for producing L-cysteine using a gene encoding SAT with reduced feedback inhibition by L-cysteine is known, but there is still room for improvement. Is left. That is, the present inventor has proposed that L-
A study on cysteine biosynthesis revealed that SAT with reduced feedback inhibition by L-cysteine
Was found to be unstable in L-cysteine productivity. An object of the present invention is to provide an improved method for producing L-cysteine using a bacterium belonging to the genus Escherichia and a bacterium belonging to the genus Escherichia used in the method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究を重ねた結果、上記のL−シ
ステイン生産の不安定性は、細胞中のシステインデスル
フヒドラーゼ活性を低下させることにより安定化される
ことを見出し、本発明を完成させるに至った。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, the instability of L-cysteine production has shown that cysteine desulfhydrase activity in cells is reduced. The inventors have found that stabilization is achieved by lowering the content, and have completed the present invention.

【0007】すなわち本発明は、L−システイン分解系
が抑制され、かつ、L−システインによるフィードバッ
ク阻害が低減されたセリンアセチルトランスフェラーゼ
を保持するエシェリヒア属細菌である。前記エシェリヒ
ア細菌としては、細胞中のシステインデスルフヒドラー
ゼ(cystein desulfhydrase:以下、「CDase」と
もいう)活性の低下によりL−システイン分解系が抑制
されたエシェリヒア属細菌が挙げられる。
[0007] That is, the present invention is a bacterium belonging to the genus Escherichia, which retains a serine acetyltransferase in which the L-cysteine degradation system is suppressed and feedback inhibition by L-cysteine is reduced. Examples of the Escherichia bacteria include bacteria belonging to the genus Escherichia in which the L-cysteine degradation system is suppressed due to a decrease in cysteine desulfhydrase (hereinafter, also referred to as “CDase”) activity in cells.

【0008】前記L−システインによるフィードバック
阻害が低減されたセリンアセチルトランスフェラーゼと
しては、野生型セリンアセチルトランスフェラーゼの2
56位のメチオニン残基に相当するアミノ酸残基をリジ
ン残基及びロイシン残基以外のアミノ酸残基に置換する
変異、又は256位のメチオニン残基に相当するアミノ
酸残基からC末端側の領域を欠失させる変異を有するセ
リンアセチルトランスフェラーゼが挙げられる。
[0008] The serine acetyltransferase with reduced feedback inhibition by L-cysteine is the wild-type serine acetyltransferase.
A mutation that substitutes an amino acid residue corresponding to a methionine residue at position 56 with an amino acid residue other than a lysine residue and a leucine residue, or a C-terminal region from an amino acid residue corresponding to a methionine residue at position 256 Serine acetyltransferase having a mutation to be deleted is exemplified.

【0009】また本発明は、前記エシェリヒア属細菌を
培地に培養し、該培養物中にL−システインを生成蓄積
せしめ、該培養物からL−システインを採取することを
特徴とするL−システインの製造法を提供する。
[0009] The present invention also provides a method for producing L-cysteine, comprising culturing the bacterium belonging to the genus Escherichia in a medium, producing and accumulating L-cysteine in the culture, and collecting L-cysteine from the culture. Provide a manufacturing method.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0011】<1>本発明のエシェリヒア属細菌 本発明のエシェリヒア属細菌としては、例えばエシェリ
ヒア・コリ(E. coli)が挙げられる。
<1> Escherichia bacterium of the present invention Examples of the Escherichia bacterium of the present invention include Escherichia coli (E. coli).

【0012】本発明のエシェリヒア属細菌は、L−シス
テイン分解系が抑制され、かつ、L−システインによる
フィードバック阻害が低減されたSAT(以下、「変異
型SAT」ともいう)を保持するものであり、L−シス
テイン分解系が抑制されたエシェリヒア属細菌(以下、
「L−システイン分解系抑制株」ともいう)に変異型S
ATを保持させるか、あるいは変異型SATを保持する
エシェリヒア属細菌に、細胞中のL−システイン分解系
が抑制されるような変異を生じさせることにより得るこ
とができる。尚、「L−システイン分解系の抑制」と
は、システインの分解に関与する酵素のうち少なくとも
一つの活性が低下又は消失していることをいう。また、
「フィードバック阻害の低減」とは、低減されたフィー
ドバック阻害が残存している場合の他、フィードバック
阻害が実質的に解除されている場合を含む。前記L−シ
ステインの分解に関与する酵素としては、CDase及
びシスタチオンβリアーゼが挙げられる。CDase活
性が低下又は消失した株(以下、「CDase活性低下
株」ともいう)は、野生型CDaseを保持するエシェ
リヒア属細菌を変異処理し、L−システインを唯一の窒
素源とする培地で生育できず、かつ、通常の窒素源を含
む培地で生育できる変異株を選択することによって取得
することができる。変異処理としては、紫外線照射また
はN−メチル−N'−ニトロ−N−ニトロソグアニジン(NT
G)もしくは亜硝酸等の通常の突然変異に用いられてい
る変異剤による処理が挙げられる。得られた候補株のC
Dase活性が低下していることは、候補株の菌体抽出
液について、Kredichらの方法(J. Biol. Chem., 248,
6187-6196 (1973))等により、CDase活性を測定
し、親株のCDase活性と比較することにより確認す
ることができる。同様に、野生型シスタチオンβリアー
ゼを保持するエシェリヒア属細菌を変異処理し、シスタ
チオンβリアーゼ活性が低下又は消失している株を選択
することにより、シスタチオンβリアーゼ活性低下株を
取得することができる。
The bacterium belonging to the genus Escherichia of the present invention has a SAT in which the L-cysteine degradation system is suppressed and feedback inhibition by L-cysteine is reduced (hereinafter, also referred to as “mutant SAT”). , A bacterium belonging to the genus Escherichia in which the L-cysteine degradation system is suppressed (hereinafter, referred to as “
"L-cysteine-degrading strain-suppressed strain")
It can be obtained by retaining AT or by causing mutation in an Escherichia bacterium retaining mutant SAT to suppress the L-cysteine degradation system in cells. In addition, "inhibition of L-cysteine degradation system" means that at least one activity of enzymes involved in cysteine degradation is reduced or eliminated. Also,
The term “reduction of feedback inhibition” includes a case where feedback inhibition is substantially canceled, in addition to a case where reduced feedback inhibition remains. Enzymes involved in the decomposition of L-cysteine include CDase and cystathion β-lyase. A strain in which CDase activity is reduced or eliminated (hereinafter, also referred to as “CDase activity-reduced strain”) can be mutated to a bacterium belonging to the genus Escherichia holding wild-type CDase and grown on a medium containing L-cysteine as a sole nitrogen source. And can be obtained by selecting a mutant strain that can grow on a medium containing a normal nitrogen source. Mutation treatment includes UV irradiation or N-methyl-N'-nitro-N-nitrosoguanidine (NT
G) or treatment with a mutagen used in normal mutations such as nitrite. C of the obtained candidate strain
The decrease in Dase activity was confirmed by the method of Kredich et al. (J. Biol. Chem., 248,
6187-6196 (1973)) can be confirmed by measuring the CDase activity and comparing it with the CDase activity of the parent strain. Similarly, a strain with reduced cystation β-lyase activity can be obtained by mutagenizing a bacterium belonging to the genus Escherichia carrying wild-type cystathion β-lyase and selecting a strain having reduced or eliminated cystation β-lyase activity.

【0013】エシェリヒア属細菌に変異型SATを保持
させるには、野生型SATを保持するエシェリヒア属細
菌を変異処理し、変異型SATを保持する変異株を選択
するか、あるいは、変異型SATをコードするDNA
(以下、「変異型cysE」ともいう)をエシェリヒア
属細菌に導入することによって行うことができる。変異
型cysEは、野生型cysEに、コードするSATが
L−システインによるフィードバック阻害が解除される
ような変異を導入することによって得られる。このよう
な変異としては、コードされるSATのアセチル−Co
AによるL−セリンの活性化を触媒する活性を実質的に
損なわないものであれば特に制限されないが、具体的に
は、野生型SATの256位のメチオニン残基又はこの
メチオニン残基に相当するアミノ酸残基をリジン残基及
びロイシン残基以外のアミノ酸残基に置換する変異、又
は256位のメチオニン残基に相当するアミノ酸残基か
らC末端側の領域を欠失させる変異が挙げられる。前記
他のアミノ酸残基としては、通常のタンパク質を構成す
るアミノ酸のうち、メチオニン残基、リジン残基及びロ
イシン残基を除く17種類のアミノ酸残基が挙げられ
る。また、変異型cysEが有する変異としては、WO 9
7/15673号国際公開パンフレットに記載されている変異
であってもよい。
In order to allow the bacterium belonging to the genus Escherichia to carry the mutant SAT, the bacterium belonging to the genus Escherichia carrying the wild-type SAT is subjected to mutation treatment, and a mutant strain carrying the mutant SAT is selected, or the mutant SAT is encoded. DNA
(Hereinafter, also referred to as “mutant cysE”) into Escherichia bacteria. Mutated cysE can be obtained by introducing a mutation into wild-type cysE such that the feedback inhibition of L-cysteine of the encoded SAT is released. Such mutations include the acetyl-Co of the encoded SAT.
There is no particular limitation as long as it does not substantially impair the activity of catalyzing the activation of L-serine by A. Specifically, it corresponds to the methionine residue at position 256 of wild-type SAT or this methionine residue. Mutations in which an amino acid residue is substituted with an amino acid residue other than a lysine residue and a leucine residue, or mutation in which a C-terminal region is deleted from an amino acid residue corresponding to a methionine residue at position 256 are exemplified. Examples of the other amino acid residues include 17 types of amino acid residues excluding methionine residues, lysine residues, and leucine residues among amino acids constituting ordinary proteins. In addition, the mutation possessed by mutant cysE includes WO 9
It may be a mutation described in International Publication Pamphlet No. 7/15673.

【0014】本発明における変異型SATとしては、上
記のL−システインによるフィードバック阻害を低減す
る変異に加えて、アセチル−CoAによるL−セリンの
活性化を触媒する活性を実質的に損なわないような1若
しくは数個のアミノ酸残基の置換、欠失、挿入、付加、
又は逆位を含むアミノ酸配列を有するものであってもよ
い。そのような変異を有するSATにおいては、256
位のメチオニン残基の位置が変わっている場合もある
が、そのような場合であっても、256位のメチオニン
残基に相当するアミノ酸残基をリジン残基及びロイシン
残基以外のアミノ酸残基に置換することによって、L−
システインによるフィードバック阻害が低減した変異型
SATが取得され得る。
The mutated SAT of the present invention includes, in addition to the above-mentioned mutation that reduces the feedback inhibition by L-cysteine, a SAT that does not substantially impair the activity of catalyzing the activation of L-serine by acetyl-CoA. Substitution, deletion, insertion, addition of one or several amino acid residues,
Alternatively, it may have an amino acid sequence containing an inversion. In a SAT having such a mutation, 256
In some cases, the position of the methionine residue at position is changed, but even in such a case, the amino acid residue corresponding to the methionine residue at position 256 is replaced with an amino acid residue other than a lysine residue and a leucine residue. By substituting L-
A mutant SAT with reduced feedback inhibition by cysteine can be obtained.

【0015】野生型cysEは、デンクらによって報告
されている方法(Denk, D. and Bock, A., J. general
Microbiol., 133, 515-525 (1987))、あるいはこの報
告に記載されているcysEの塩基配列に基づいて作製
したオリゴヌクレオチドをプライマーとし、エシェリヒ
ア属細菌染色体DNAを鋳型とするPCR(ポリメラー
ゼ・チェイン・リアクション;White,T.J. et al ;Tren
ds Genet. 5,185(1989)参照)により、cysEを含む
DNA断片を増幅することによって得られる。前記プラ
イマーとして具体的には、配列番号1及び2に示される
塩基配列を有するオリゴヌクレオチドが挙げられる。参
考として、配列番号5及び6に、デンクらによって報告
されている野生型cysEの塩基配列及びコードされる
アミノ酸配列を示す。
[0015] Wild-type cysE can be prepared by the method reported by Denk et al. (Denk, D. and Bock, A., J. general).
Microbiol., 133, 515-525 (1987)) or PCR (polymerase chain) using an oligonucleotide prepared based on the cysE nucleotide sequence described in this report as a primer and chromosomal DNA of a bacterium belonging to the genus Escherichia as a template.・ Reaction : White, TJ et al; Tren
ds Genet. 5,185 (1989)) by amplifying a DNA fragment containing cysE. Specific examples of the primer include oligonucleotides having the nucleotide sequences shown in SEQ ID NOS: 1 and 2. For reference, SEQ ID NOS: 5 and 6 show the nucleotide sequence and encoded amino acid sequence of wild-type cysE reported by Denk et al.

【0016】得られたcysEに所望の変異を導入する
方法としては、部位特異的変異が挙げられる。部位特異
的変異に用いるプライマーとしては、例えば、配列番号
3及び4に示す塩基配列を有するオリゴヌクレオチドが
挙げられる。変異が導入されたcysE断片から変異が
導入された部位を含む領域を切り出し、野生型cysE
と、相当する領域を入れ換えることにより、変異型cy
sEを得ることができる。
A method for introducing a desired mutation into the obtained cysE includes site-specific mutation. Examples of primers used for site-specific mutation include oligonucleotides having the nucleotide sequences shown in SEQ ID NOs: 3 and 4. A region including the site where the mutation was introduced was cut out from the cysE fragment into which the mutation was introduced, and the wild-type cysE fragment was cut out.
And by replacing the corresponding region, the mutant cy
sE can be obtained.

【0017】上記のようにして得られる変異型cysE
を含むDNA断片をエシェリヒア属細菌に導入するに
は、通常のタンパク質発現に用いられる種々のベクター
を用いることができる。その際、変異型cysE遺伝子
を自律複製可能なベクターに挿入したものを宿主に導入
し、プラスミドのように染色体外DNAとして宿主エシ
ェリヒア属細菌に保持させてもよいが、変異型cysE
遺伝子を、トランスダクション、トランスポゾン(Ber
g,D.E. and Berg,C.M.,Bio/Technol.,1,417(1983))、
Muファージ(特開平2−109985)または相同性
組換え(Experiments in Molecular Genetics, Cold Sp
ring Harbor Lab.(1972))を用いた方法で宿主エシェリ
ヒア属細菌の染色体に組み込んでもよい。
The mutated cysE obtained as described above
In order to introduce a DNA fragment containing E. coli into a bacterium belonging to the genus Escherichia, various vectors used for normal protein expression can be used. At this time, the mutant cysE gene inserted into a vector capable of autonomously replicating may be introduced into a host, and may be retained in the host Escherichia bacterium as extrachromosomal DNA such as a plasmid.
Gene, transduction, transposon (Ber
g, DE and Berg, CM, Bio / Technol., 1,417 (1983)),
Mu phage (JP-A-2-109985) or homologous recombination (Experiments in Molecular Genetics, Cold Sp
(ring Harbor Lab. (1972)) may be incorporated into the chromosome of the host Escherichia bacterium.

【0018】プロモーターとしては、cysE固有のプ
ロモーターを用いてもよいが、発現ベクターに含まれて
いるプロモーターを用いて、これにcysEコード領域
を連結してもよい。発現ベクターとしては、pBluescrip
tII SK+(STRATAGENE社)、pGEMEX-1(プロメガ社
製)、pUC系(宝酒造(株)等)、pPROK系(クロンテッ
ク製)、pKK233-2(クロンテック製)等、市販のベクタ
ーを使用することができる。
As the promoter, a cysE-specific promoter may be used. Alternatively, a cysE coding region may be ligated to a promoter contained in an expression vector. As an expression vector, pBluescrip
Commercially available vectors such as tII SK + (STRATAGENE), pGEMEX-1 (Promega), pUC (Takara Shuzo), pPROK (Clontech), and pKK233-2 (Clontech) can be used. it can.

【0019】cysEを含む発現ベクターをエシェリヒ
ア属細菌に導入するには、D.M.Morrisonの方法(Method
s in Enzymology 68, 326 (1979))あるいは受容菌細胞
を塩化カルシウムで処理してDNAの透過性を増す方法
(Mandel,M. and Higa,A.,J.Mol.Biol.,53,159(1970))
等、エシェリヒア属細菌の形質転換に通常用いられてい
る方法により行うことができる。
In order to introduce an expression vector containing cysE into a bacterium belonging to the genus Escherichia, the method of DM Morrison (Method
s in Enzymology 68, 326 (1979)) or a method of treating recipient cells with calcium chloride to increase DNA permeability (Mandel, M. and Higa, A., J. Mol. Biol., 53, 159 (1970)). )
Etc. can be carried out by a method usually used for transformation of Escherichia bacteria.

【0020】<2>L−システインの製造法 上記のようにして細胞中のシステインデスルフヒドラー
ゼ活性が低下又は消失し、かつ、L−システインによる
フィードバック阻害が低減されたセリンアセチルトラン
スフェラーゼを保持するエシェリヒア属細菌を好適な培
地で培養し、該培養物中にL−システインを生産蓄積せ
しめ、該培養物からL−システインを採取することによ
り、L−システインを効率よく、かつ、安定に製造する
ことができる。尚、本発明の方法により製造されるL−
システインには、還元型のシステインに加えてシスチン
も含まれる場合があるが、本発明の製造法の対象物には
シスチン又は還元型のシステイン及びシスチンの混合物
も含まれる。
<2> Method for Producing L-Cysteine As described above, cysteine desulfhydrase activity in cells is reduced or eliminated, and serine acetyltransferase having reduced L-cysteine feedback inhibition is retained. Escherichia bacteria are cultured in a suitable medium, L-cysteine is produced and accumulated in the culture, and L-cysteine is collected from the culture to efficiently and stably produce L-cysteine. be able to. In addition, L- produced by the method of the present invention.
Cysteine may include cystine in addition to reduced cysteine, and the subject of the production method of the present invention also includes cystine or a mixture of reduced cysteine and cystine.

【0021】使用する培地としては、炭素源、窒素源、
イオウ源、無機イオン及び必要に応じその他の有機成分
を含有する通常の培地が挙げられる。炭素源としては、
グルコース、フラクトース、シュクロース、糖蜜やでん
ぷんの加水分解物などの糖類、フマール酸、クエン酸、
コハク酸等の有機酸類を用いることができる。
The medium to be used includes a carbon source, a nitrogen source,
Examples of the medium include a usual medium containing a sulfur source, inorganic ions, and if necessary, other organic components. As a carbon source,
Sugars such as glucose, fructose, sucrose, molasses and starch hydrolysates, fumaric acid, citric acid,
Organic acids such as succinic acid can be used.

【0022】窒素源としては、硫酸アンモニウム、塩化
アンモニウム、リン酸アンモニウム等の無機アンモニウ
ム塩、大豆加水分解物などの有機窒素、アンモニアガ
ス、アンモニア水等を用いることができる。
As the nitrogen source, inorganic ammonium salts such as ammonium sulfate, ammonium chloride and ammonium phosphate, organic nitrogen such as soybean hydrolysate, ammonia gas, aqueous ammonia and the like can be used.

【0023】イオウ源としては、硫酸塩、亜硫酸塩、硫
化物、次亜硫酸塩、チオ硫酸塩等の無機硫黄化合物が挙
げられる、有機微量栄養源としては、ビタミンB1など
の要求物質または酵母エキス等を適量含有させることが
望ましい。これらの他に、必要に応じてリン酸カリウ
ム、硫酸マグネシウム、鉄イオン、マンガンイオン等が
少量添加される。
Examples of the sulfur source include inorganic sulfur compounds such as sulfates, sulfites, sulfides, hyposulfites, and thiosulfates. Examples of organic trace nutrients include required substances such as vitamin B1 and yeast extract. Is desirably contained. In addition to these, small amounts of potassium phosphate, magnesium sulfate, iron ions, manganese ions and the like are added as necessary.

【0024】培養は好気的条件下で30〜90時間実施する
のがよく、培養温度は25℃〜37℃に、培養中pHは
5〜8に制御することが好ましい。尚、pH調整には無
機あるいは有機の酸性あるいはアルカリ性物質、更にア
ンモニアガス等を使用することができる。培養物からの
L−システインの採取は通常のイオン交換樹脂法、沈澱
法その他の公知の方法を組み合わせることにより実施で
きる。
The cultivation is preferably carried out under aerobic conditions for 30 to 90 hours. The cultivation temperature is preferably controlled at 25 ° C. to 37 ° C., and the pH during cultivation is preferably controlled at 5 to 8. In addition, an inorganic or organic acidic or alkaline substance, furthermore, ammonia gas or the like can be used for pH adjustment. Collection of L-cysteine from the culture can be carried out by a combination of a conventional ion exchange resin method, a precipitation method and other known methods.

【0025】[0025]

【実施例】以下、本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0026】<1>変異型cysE遺伝子の及び該遺伝
子導入用プラスミドの構築 エシェリヒア・コリJM240(Hfr ProC47 Cys-54 supE4
2)から染色体DNAを常法により調製し、これを鋳型
として用い、公知のcysEの塩基配列に基づいて合成
したオリゴヌクレオチド(配列番号1、2)をプライマ
ーとするPCRによって、cysEを含むDNA断片を
増幅した。プライマーは、増幅される配列がコード領域
及びプロモーター配列を含むように設計した。PCR反
応は、宝酒造(株)製DNAサーマルサイクラー PJ200
0型を用い、Taq DNAポリメラーゼを用い、供給者により
指定された方法に従って行なった。
<1> Construction of mutant cysE gene and plasmid for introducing the gene Escherichia coli JM240 (Hfr ProC47 Cys-54 supE4
A DNA fragment containing cysE is prepared by PCR using a chromosomal DNA prepared from 2) by a conventional method, using this as a template and oligonucleotides (SEQ ID NOS: 1 and 2) synthesized based on the known cysE nucleotide sequence as primers. Was amplified. Primers were designed so that the sequence to be amplified contained a coding region and a promoter sequence. The PCR reaction was performed using DNA Thermal Cycler PJ200 manufactured by Takara Shuzo Co., Ltd.
The procedure was performed using type 0 and using Taq DNA polymerase according to the method specified by the supplier.

【0027】増幅された1.2kbのDNA断片につい
て、EcoRVで切断したpBluescriptIISK+を用いてTAク
ローニングを行い、4.2kbのプラスミドを得た。こ
のプラスミドをpCEと名付けた。得られたクローニン
グ断片の塩基配列を決定し、野生型のcysEと同一の
塩基配列を含むことを確認した。
TA cloning was performed on the amplified 1.2 kb DNA fragment using pBluescriptIISK + cut with EcoRV to obtain a 4.2 kb plasmid. This plasmid was named pCE. The nucleotide sequence of the obtained cloned fragment was determined, and it was confirmed that it contained the same nucleotide sequence as that of wild-type cysE.

【0028】上記のようにして得られたcysEに、コ
ードされるSATの256位のメチオニン残基を他の1
9種類のアミノ酸残基又は終止コドンに置換する変異
を、配列番号3及び4に示す塩基配列を有する相補的な
オリゴヌクレオチド対を用い、pCEを鋳型とする部位
特異的変異により導入した。変異が導入されたcysE
の一部を含む断片とpCEをPstIとBstEIIで消化し、生
じた0.31kbの断片を入れ換え、変異型cysEを含むプ
ラスミドを得た(図1)。得られたプラスミドについて
塩基配列決定を行い、変異型cysEの目的の部位に変
異が導入されたこと、及び目的部位以外の部位にミスマ
ッチ変異が生じていないことを確認した。但し、256
位のメチオニン残基をリジン残基に置換したものは、2
24位のセリン残基がプロリン残基に置換されるミスマ
ッチ変異が生じていた。こうして得られたプラスミドの
シリーズを総称してpCEM256*と名付けた。尚、
「*」はメチオニン残基以外のアミノ酸残基を表す記号
を代表し、例えば、pCEM256Aは、256位のメ
チオニン残基がアラニン残基に置換されたSATをコー
ドする変異型cysEを含むプラスミドを表す。
In the cysE obtained as described above, a methionine residue at position 256 of the encoded SAT was added to the other one.
Mutations that substitute nine amino acid residues or termination codons were introduced by site-specific mutation using pCE as a template, using complementary oligonucleotide pairs having the nucleotide sequences shown in SEQ ID NOs: 3 and 4. CysE into which the mutation was introduced
Was digested with PstI and BstEII, and the resulting 0.31 kb fragment was replaced to obtain a plasmid containing mutant cysE (FIG. 1). The nucleotide sequence of the obtained plasmid was determined, and it was confirmed that a mutation was introduced into the target site of the mutant cysE and that no mismatch mutation occurred in a site other than the target site. However, 256
When the methionine residue at position 2 is replaced with a lysine residue,
There was a mismatch mutation in which the serine residue at position 24 was replaced with a proline residue. The series of plasmids thus obtained was generically named pCEM256 *. still,
“*” Represents a symbol representing an amino acid residue other than a methionine residue. For example, pCEM256A represents a plasmid containing a mutant cysE encoding SAT in which the methionine residue at position 256 has been substituted with an alanine residue. .

【0029】プラスミドpCE及び上記のようにして得
られたpCEM256*で、cysE欠損株であるエシ
ェリヒア・コリJM39(F+ cysE51 tfr-8)(Denk, D. a
nd Bock, A., J. Gene. Microbiol, 133, 515-525(198
7))を形質転換し、得られた形質転換株をそれぞれJM39
(pCE)及びJM39(pCEM256*)と名付けた。
With the plasmid pCE and the pCEM256 * obtained as described above, the cysE-deficient strain Escherichia coli JM39 (F + cysE51 tfr-8) (Denk, D. a.
nd Bock, A., J. Gene.Microbiol, 133, 515-525 (198
7)), and the resulting transformants were each subjected to JM39.
(pCE) and JM39 (pCEM256 *).

【0030】アンピシリン 50mg/Lを含むLB(Bacto-T
ryptone 10g/L、Bacto-Yeast Extract 5g/L、NaCl 5g/
L、pH7.0)プレート培地で30℃、24時間培養した各
形質転換体1白金耳を、アンピシリン 50mg/Lを添加し
た下記液体培地(組成は下記のとおり)3mlを入れた
試験管にそれぞれ接種し、30℃で72時間培養した。
培養は、各形質転換体について2連で行った。培養後、
生育、pH及びシステイン蓄積量を調べた。生育は、培
養液を0.1N HClで26倍希釈し、562nmにおける吸
光度(OD562)を測定することにより調べた。L−シス
テインの蓄積量は、沈澱したシスチンを溶かすため培養
液をO.5N HClで希釈したものを、ロイコノストック・メ
センテロイデス(Leuconostoc mesenteroides)を用い
るバイオアッセイ(Tsunoda, T. et al., Amino acids,
3, 7-13 (1961))により、還元型システイン及びシス
チンの総量として測定した。その結果を表1に示す。表
中の「256th」は、256位のアミノ酸残基を示す。ま
た、「stop」は、256位が終止コドンに置換されたこ
とを示す。
LB (Bacto-T) containing 50 mg / L of ampicillin
ryptone 10g / L, Bacto-Yeast Extract 5g / L, NaCl 5g /
L, pH 7.0) One loopful of each transformant cultured on a plate medium at 30 ° C. for 24 hours was placed in a test tube containing 3 ml of the following liquid medium (composition is as described below) to which 50 mg / L of ampicillin was added. The cells were inoculated and cultured at 30 ° C. for 72 hours.
Culture was performed in duplicate for each transformant. After culture
Growth, pH and cysteine accumulation were examined. Growth was determined by diluting the culture 26-fold with 0.1N HCl and measuring the absorbance at 562 nm (OD 562 ). The amount of L-cysteine accumulated was determined by diluting the culture solution with 0.5N HCl to dissolve the precipitated cystine, and using a bioassay using Leuconostoc mesenteroides (Tsunoda, T. et al., Amino). acids,
3, 7-13 (1961)) as the total amount of reduced cysteine and cystine. Table 1 shows the results. “256th” in the table indicates the amino acid residue at position 256. “Stop” indicates that position 256 was replaced with a stop codon.

【0031】野生型cysEを含むプラスミドを保持す
るJM39(pCE)に比べて、変異型cysEを含むプラスミ
ドを保持するJM39(pCEM256*)では、256位のメチオニ
ン残基がロイシン残基又はリジン残基に置換されたもの
(JM39(pCEM256L、JM39(pCEM256K)を除いて、システイ
ン蓄積量が大幅に増加したが、結果にばらつきがあり、
システイン生産性は不安定であった。
Compared to JM39 (pCE) which carries a plasmid containing wild-type cysE, the methionine residue at position 256 is a leucine residue or a lysine residue in JM39 (pCEM256 *) which carries a plasmid containing a mutant cysE. (Except for JM39 (pCEM256L, JM39 (pCEM256K), the amount of cysteine accumulation increased significantly, but the results varied)
Cysteine productivity was unstable.

【0032】(培地組成) グルコース 30g/L 塩化アンモニウム 10g/L KH2PO4 2g/L MgSO4・7H2O 1g/L FeSO4・7H2O 10mg/L MnCl2・4H2O 10mg/L CaCO3 20g/L[0032] (Medium composition) Glucose 30 g / L of ammonium chloride 10g / L KH 2 PO 4 2g / L MgSO 4 · 7H 2 O 1g / L FeSO 4 · 7H 2 O 10mg / L MnCl 2 · 4H 2 O 10mg / L CaCO 3 20g / L

【0033】[0033]

【表1】 [Table 1]

【0034】<2>CDase低下株の取得 エシェリヒア・コリJM39を、0.1mg/mlのNTG溶液中で
15分変異処理し、塩化アンモニウムをL−システイン
(0.3g/L)に置換したM9培地(組成は下記のとおり)
プレートでは生育できず、L−シテステイン0.1g/Lを含
むM9培地で生育する変異株、39-8株を選択した。
<2> Acquisition of CDase-lowering strain Escherichia coli JM39 was subjected to mutation treatment in a 0.1 mg / ml NTG solution for 15 minutes, and an ammonium chloride-substituted M9 medium (0.3 g / L) was substituted for L-cysteine (0.3 g / L). The composition is as follows)
Mutants, 39-8 strains, which cannot grow on the plate and grow on M9 medium containing 0.1 g / L of L-cysteine, were selected.

【0035】(培地組成) Na2HPO4 6g/L KH2PO4 3g/L NaCl 0.5g/L MgSO4・7H2O 0.25g/L CaCl2・4H2O 0.015mg/L グルコース 4g/L チアミン・HCl 0.001g/L[0035] (Medium composition) Na 2 HPO 4 6g / L KH 2 PO 4 3g / L NaCl 0.5g / L MgSO 4 · 7H 2 O 0.25g / L CaCl 2 · 4H 2 O 0.015mg / L glucose 4g / L Thiamine / HCl 0.001g / L

【0036】次に、得られたL−システイン非資化性株
である39-8株のCDase活性を次のようにして測定し
た。39-8株を、LB培地にL−システイン−HCl1mg/
mlを添加した培地で37℃、8時間培養し、菌体を超音
波処理し、30,000×gで30分遠心し、上清を採取して
粗酵素液とした。この粗酵素液について、Kredichらの
方法(J. Biol. Chem., 248, 6187-6196 (1973))でC
Dase活性を測定した。すなわち、0.1M Tris-HCl、5
mM ピリドキサールリン酸、2mM L−システイン・HC
l、0.3ml粗酵素液からなる反応液1.5mlを37℃で30
分反応させ、生成するピルビン酸を定量し、タンパク当
たりの生成量をCDase活性とした。結果を表2に示
す。39-8株のCDase活性は、親株に比べて明らかに
低下していた。
Next, the CDase activity of the obtained L-cysteine non-assimilating strain 39-8 was measured as follows. 39-8 strain was added to LB medium in an amount of 1 mg / L-cysteine-HCl.
After culturing at 37 ° C. for 8 hours in a medium containing ml, the cells were sonicated, centrifuged at 30,000 × g for 30 minutes, and the supernatant was collected as a crude enzyme solution. The crude enzyme solution was treated with Credich et al. (J. Biol. Chem., 248, 6187-6196 (1973)).
Dase activity was measured. That is, 0.1M Tris-HCl, 5
mM pyridoxal phosphate, 2 mM L-cysteine / HC
l, 1.5 ml of a reaction solution consisting of 0.3 ml crude enzyme solution at 37 ° C for 30 minutes.
The amount of pyruvic acid produced was quantified, and the amount produced per protein was defined as CDase activity. Table 2 shows the results. The CDase activity of the 39-8 strain was clearly lower than that of the parent strain.

【0037】[0037]

【表2】 [Table 2]

【0038】<3>CDAse低下株への変異型cys
E遺伝子の導入及びL−システインの生産 上記で得られたCDase低下株である39-8株を、pC
E及びpCEM256*で形質転換した。得られた形質
転換株をそれぞれ39-8(pCE)及び39-8(pCEM256*)と名付
けた。これらの形質転換株を、アンピシリン 50mg/Lを
含むLBプレート培地で30℃、24時間培養した各形
質転換体1白金耳を、アンピシリン 50mg/Lを添加した
C1培地(組成は下記のとおり)20mlを入れた坂口
フラスコにそれぞれ接種し、30℃で72時間振盪培養
した。培養は、各形質転換体について2連で行った。培
養後、生育、培養液のpH、残糖、L−システインの蓄
積量、及び対糖収率を調べた。生育及びL−システイン
量は、前記と同様にして行った。結果を表3に示す。
<3> Mutant cys to CDAase reduced strain
Introduction of E gene and production of L-cysteine The CDase-reduced strain 39-8 obtained above was purified by pC
Transformed with E and pCEM256 *. The resulting transformants were named 39-8 (pCE) and 39-8 (pCEM256 *), respectively. These transformants were cultured in an LB plate medium containing 50 mg / L of ampicillin at 30 ° C. for 24 hours. One platinum loop of each transformant was added to 20 ml of C1 medium (composition is as described below) to which 50 mg / L of ampicillin was added. Were inoculated into Sakaguchi flasks, and cultured at 30 ° C. with shaking for 72 hours. Culture was performed in duplicate for each transformant. After the culture, growth, pH of the culture solution, residual sugar, accumulated amount of L-cysteine, and yield to sugar were examined. The growth and the amount of L-cysteine were performed as described above. Table 3 shows the results.

【0039】また、39(pCE)及び39(pCEM256*)を上記と
同様にして培養し、L−システインの蓄積量を調べた結
果を表4に示す。この結果から、変異型cysEをCD
ase低下株に導入することによって、L−システイン
生産量が増加し、かつ、安定した生産性を示すことが明
らかである。
Table 4 shows the results obtained by culturing 39 (pCE) and 39 (pCEM256 *) in the same manner as described above and examining the amount of L-cysteine accumulated. From this result, the mutant cysE was converted to CD
It is apparent that the introduction into the ase-reduced strain increases L-cysteine production and shows stable productivity.

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】256位のメチオニン残基をグルタミン酸
残基に置換したSATをコードする変異型cysEを含
むpCEM256Eを保持する39-8株(E. coli 39-8(p
CEM256 )、プライベートナンバー:AJ13391)
は、平成9年11月20日より工業技術院生命工学工業
技術研究所(郵便番号305 日本国茨城県つくば市東
一丁目1番3号)に、FERM P−16527の受託
番号のもとで寄託されている。上記寄託菌株よりpCE
M256Eを取得し、部位特異的変異を導入することに
よって、256位のメチオニン残基を所望のアミノ酸残
基に置換したSATをコードする変異型cysEを得る
ことができる。
A 39-8 strain (E. coli 39-8 (p.) Carrying pCEM256E containing a mutant cysE encoding SAT in which the methionine residue at position 256 has been replaced with a glutamic acid residue.
CEM256), private number: AJ13391)
Was deposited with the National Institute of Advanced Industrial Science and Technology (Postal Code 305, 1-3 1-3 Higashi, Tsukuba, Ibaraki, Japan) under the accession number of FERM P-16527 from November 20, 1997. Have been. PCE from the deposited strain
By obtaining M256E and introducing a site-specific mutation, a mutant cysE encoding SAT in which the methionine residue at position 256 is substituted with a desired amino acid residue can be obtained.

【0043】<4>変異型cysE遺伝子を導入したC
Dase低下株のSAT活性の測定 39-8(pCE)及び39-8(pCEM256*)株を、アンピシリン 50mg
/Lを添加したC1培地(組成は下記のとおり)20ml
を入れた坂口フラスコに接種し、30℃で48時間振盪
培養した後、集菌した。菌体を、氷冷した50mM Tris-HC
l(pH7.5)で2回洗浄し、2mM ジチオスレイトールを含む
50mM Tris-HCl(pH7.5)に懸濁し、超音波処理により菌体
を破砕した。破砕物を30,000×gで30分遠心し、上清
を粗抽出液としてSAT活性の測定に用いた。
<4> C into which mutant cysE gene has been introduced
Measurement of SAT activity of Dase-reduced strains 39-8 (pCE) and 39-8 (pCEM256 *) were combined with 50 mg of ampicillin.
20 ml of C1 medium (composition is as described below) supplemented with / L
Was inoculated into a Sakaguchi flask containing, and cultured with shaking at 30 ° C. for 48 hours. The cells were ice-cold 50 mM Tris-HC
1 × (pH 7.5), containing 2 mM dithiothreitol
The cells were suspended in 50 mM Tris-HCl (pH 7.5) and disrupted by sonication. The crushed product was centrifuged at 30,000 × g for 30 minutes, and the supernatant was used as a crude extract for measurement of SAT activity.

【0044】SAT活性の測定は、50mM Tris-HCl(pH7.
5)、1mM L−セリン、0.1mM アセチル−CoA及び粗酵
素液を含む1mlの反応液を30℃で15分反応させ、
アセチル−CoAのチオエステル結合の開裂による232n
mの吸光度の減少を測定することによって行った。前記
反応液からL−セリンを除いたものをブランクとした。
また、前記反応液にL−システイン10μMを加えて同様
に反応を行い、L−システインによるフィードバック阻
害の程度を調べた。尚、アセチル−CoAのε値は6.5
×103M-1cm-1である。L−システインを添加しない場合
のSAT比活性及びL−システインを加えたときの残存
活性(%)を表5に示す。
The SAT activity was measured using 50 mM Tris-HCl (pH 7.
5) 1 ml of a reaction solution containing 1 mM L-serine, 0.1 mM acetyl-CoA and a crude enzyme solution was reacted at 30 ° C. for 15 minutes,
232n by cleavage of thioester bond of acetyl-CoA
This was done by measuring the decrease in absorbance in m. The reaction solution from which L-serine was removed was used as a blank.
Further, 10 μM of L-cysteine was added to the reaction solution, and the reaction was carried out in the same manner, and the degree of feedback inhibition by L-cysteine was examined. The ε-value of acetyl-CoA was 6.5.
× 10 3 M -1 cm -1 . Table 5 shows the SAT specific activity when L-cysteine was not added and the residual activity (%) when L-cysteine was added.

【0045】256位のメチオニン残基を他のアミノ酸
残基に置換したSATは、いずれもL−システインによ
るフィードバック阻害が低減されていた。尚、256位
のメチオニン残基をロイシン残基又はリジン残基に置換
したSATは、SAT活性が認められなかった。
In all SATs in which the methionine residue at position 256 was substituted with another amino acid residue, feedback inhibition by L-cysteine was reduced. SAT in which the methionine residue at position 256 was substituted with a leucine residue or a lysine residue did not show SAT activity.

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【発明の効果】本発明のエシェリヒア属細菌は、L−シ
ステインを高効率かつ安定に生産する能力を有してい
る。
The Escherichia bacterium of the present invention has the ability to produce L-cysteine with high efficiency and stability.

【0048】[0048]

【配列表】[Sequence list]

配列番号:1 配列の長さ:26 配列の型:核酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成オリゴヌクレオチド アンチセンス:NO 配列 GGGAATTCAT CGCTTCGGCG TTGAAA 26 SEQ ID NO: 1 Sequence length: 26 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: Other nucleic acid Synthetic oligonucleotide Antisense: NO sequence GGGAATTCAT CGCTTCGGCG TTGAAA 26

【0049】配列番号:2 配列の長さ:27 配列の型:核酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成オリゴヌクレオチド アンチセンス:YES 配列 GGCTCTAGAA GCGGTATTGA GAGATTA 27SEQ ID NO: 2 Sequence length: 27 Sequence type: Number of nucleic acid strands: Single strand Topology: Linear Sequence type: Other nucleic acid Synthetic oligonucleotide Antisense: YES sequence GGCTCTAGAA GCGGTATTGA GAGATTA 27

【0050】配列番号:3 配列の長さ:17 配列の型:核酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成オリゴヌクレオチド アンチセンス:NO 配列の特徴: 特徴を表す記号: 存在位置:8..10 特徴を決定した方法: その他の情報:NNNはメチオニン以外のアミノ酸をコー
ドするコドンを表す 配列 GCTGGTCNNN ATCCATT 17
SEQ ID NO: 3 Sequence length: 17 Sequence type: Number of nucleic acid strands: Single-stranded Topology: Linear Sequence type: Other nucleic acid Synthetic oligonucleotide Antisense: NO Sequence characteristics: Features Symbol to represent: Location: 8..10 Method for determining characteristics: Other information: NNN represents a codon encoding an amino acid other than methionine Sequence GCTGGTCNNN ATCCATT 17

【0051】配列番号:4 配列の長さ:17 配列の型:核酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成オリゴヌクレオチド アンチセンス:YES 配列の特徴: 特徴を表す記号: 存在位置:8..10 特徴を決定した方法: その他の情報:NNNはメチオニン以外のアミノ酸をコー
ドするコドンを表す 配列 AATGGATNNN GACCAGC 17
SEQ ID NO: 4 Sequence length: 17 Sequence type: Number of nucleic acid strands: Single strand Topology: Linear Sequence type: Other nucleic acid Synthetic oligonucleotide Antisense: YES Sequence characteristics: Features Representation symbol: Location: 8..10 Method for determining characteristics: Other information: NNN represents a codon encoding an amino acid other than methionine Sequence AATGGATNNN GACCAGC 17

【0052】配列番号:5 配列の長さ:1134 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源 生物名:エシェリヒア・コリ 株名:JM39 配列の特徴 特徴を表す記号:CDS 存在位置:223..1044 特徴を決定した方法:S 配列 TCCGCGAACT GGCGCATCGC TTCGGCGTTG AAATGCCAAT AACCGAGGAA ATTTATCAAG 60 TATTATATTG CGGAAAAAAC GCGCGCGAGG CAGCATTGAC TTTACTAGGT CGTGCACGCA 120 AGGACGAGCG CAGCAGCCAC TAACCCCAGG GAACCTTTGT TACCGCTATG ACCCGGCCCG 180 CGCAGAACGG GCCGGTCATT ATCTCATCGT GTGGAGTAAG CA ATG TCG TGT GAA 234 Met Ser Cys Glu 1 GAA CTG GAA ATT GTC TGG AAC AAT ATT AAA GCC GAA GCC AGA ACG CTG 282 Glu Leu Glu Ile Val Trp Asn Asn Ile Lys Ala Glu Ala Arg Thr Leu 5 10 15 20 GCG GAC TGT GAG CCA ATG CTG GCC AGT TTT TAC CAC GCG ACG CTA CTC 330 Ala Asp Cys Glu Pro Met Leu Ala Ser Phe Tyr His Ala Thr Leu Leu 25 30 35 AAG CAC GAA AAC CTT GGC AGT GCA CTG AGC TAC ATG CTG GCG AAC AAG 378 Lys His Glu Asn Leu Gly Ser Ala Leu Ser Tyr Met Leu Ala Asn Lys 40 45 50 CTG TCA TCG CCA ATT ATG CCT GCT ATT GCT ATC CGT GAA GTG GTG GAA 426 Leu Ser Ser Pro Ile Met Pro Ala Ile Ala Ile Arg Glu Val Val Glu 55 60 65 GAA GCC TAC GCC GCT GAC CCG GAA ATG ATC GCC TCT GCG GCC TGT GAT 474 Glu Ala Tyr Ala Ala Asp Pro Glu Met Ile Ala Ser Ala Ala Cys Asp 70 75 80 ATT CAG GCG GTG CGT ACC CGC GAC CCG GCA GTC GAT AAA TAC TCA ACC 522 Ile Gln Ala Val Arg Thr Arg Asp Pro Ala Val Asp Lys Tyr Ser Thr 85 90 95 100 CCG TTG TTA TAC CTG AAG GGT TTT CAT GCC TTG CAG GCC TAT CGC ATC 570 Pro Leu Leu Tyr Leu Lys Gly Phe His Ala Leu Gln Ala Tyr Arg Ile 105 110 115 GGT CAC TGG TTG TGG AAT CAG GGG CGT CGC GCA CTG GCA ATC TTT CTG 618 Gly His Trp Leu Trp Asn Gln Gly Arg Arg Ala Leu Ala Ile Phe Leu 120 125 130 CAA AAC CAG GTT TCT GTG ACG TTC CAG GTC GAT ATT CAC CCG GCA GCA 666 Gln Asn Gln Val Ser Val Thr Phe Gln Val Asp Ile His Pro Ala Ala 135 140 145 AAA ATT GGT CGC GGT ATC ATG CTT GAC CAC GCG ACA GGC ATC GTC GTT 714 Lys Ile Gly Arg Gly Ile Met Leu Asp His Ala Thr Gly Ile Val Val 150 155 160 GGT GAA ACG GCG GTG ATT GAA AAC GAC GTA TCG ATT CTG CAA TCT GTG 762 Gly Glu Thr Ala Val Ile Glu Asn Asp Val Ser Ile Leu Gln Ser Val 165 170 175 180 ACG CTT GGC GGT ACG GGT AAA TCT GGT GGT GAC CGT CAC CCG AAA ATT 810 Thr Leu Gly Gly Thr Gly Lys Ser Gly Gly Asp Arg His Pro Lys Ile 185 190 195 CGT GAA GGT GTG ATG ATT GGC GCG GGC GCG AAA ATC CTC GGC AAT ATT 858 Arg Glu Gly Val Met Ile Gly Ala Gly Ala Lys Ile Leu Gly Asn Ile 200 205 210 GAA GTT GGG CGC GGC GCG AAG ATT GGC GCA GGT TCC GTG GTG CTG CAA 906 Glu Val Gly Arg Gly Ala Lys Ile Gly Ala Gly Ser Val Val Leu Gln 215 220 225 CCG GTG CCG CCG CAT ACC ACC GCC GCT GGC GTT CCG GCT CGT ATT GTC 954 Pro Val Pro Pro His Thr Thr Ala Ala Gly Val Pro Ala Arg Ile Val 230 235 240 GGT AAA CCA GAC AGC GAT AAG CCA TCA ATG GAT ATG GAC CAG CAT TTC 1002 Gly Lys Pro Asp Ser Asp Lys Pro Ser Met Asp Met Asp Gln His Phe 245 250 255 260 AAC GGT ATT AAC CAT ACA TTT GAG TAT GGG GAT GGG ATC TAATGTCCTG 1051 Asn Gly Ile Asn His Thr Phe Glu Tyr Gly Asp Gly Ile 265 270 TGATCGTGCC GGATGCGATG TAATCATCTA TCCGGCCTAC AGTAACTAAT CTCTCAATAC 1111 CGCTCCCGAT ACCCCAACTG TCG 1134SEQ ID NO: 5 Sequence length: 1134 Sequence type: nucleic acid Number of strands: double-stranded Topology: linear Sequence type: Genomic DNA Origin Organism name: Escherichia coli Strain name: JM39 Sequence characteristics symbols have the features: CDS existing position: 223..1044 method to determine the characteristics: S sequence TCCGCGAACT GGCGCATCGC TTCGGCGTTG AAATGCCAAT AACCGAGGAA ATTTATCAAG 60 TATTATATTG CGGAAAAAAC GCGCGCGAGG CAGCATTGAC TTTACTAGGT CGTGCACGCA 120 AGGACGAGCG CAGCAGCCAC TAACCCCAGG GAACCTTTGT TACCGCTATG ACCCGGCCCG 180 CGCAGAACGG GCCGGTCATT ATCTCATCGT GTGGAGTAAG CA ATG TCG TGT GAA 234 Met Ser Cys Glu 1 GAA CTG GAA ATT GTC TGG AAC AAT ATT AAA GCC GAA GCC AGA ACG CTG 282 Glu Leu Glu Ile Val Trp Asn Asn Ile Lys Ala Glu Ala Arg Thr Leu 5 10 15 20 GCG GAC TGT GAG CCA ATG CTG GCC AGT TTT TAC CAC GCG ACG CTA CTC 330 Ala Asp Cys Glu Pro Met Leu Ala Ser Phe Tyr His Ala Thr Leu Leu 25 30 35 AAG CAC GAA AAC CTT GGC AGT GCA CTG AGC TAC ATG CTG GCG AAC AAG 378 Lys His Glu Asn Leu Gly Ser Ala Leu Ser Tyr Met Leu Ala Asn Lys 40 45 50 CTG TCA TCG CCA ATT ATG CCT GCT ATT GCT ATC CGT GAA GTG GTG GAA 426 Leu Ser Ser Pro Ile Met Pro Ala Ile Ala Ile Arg Glu Val Val Glu 55 60 65 GAA GCC TAC GCC GCT GAC CCG GAA ATG ATC GCC TCT GCG GCC TGT GAT 474 Glu Ala Tyr Ala Ala Asp Pro Glu Met Ile Ala Ser Ala Ala Ala Cys Asp 70 75 80 ATT CAG GCG GTG CGT ACC CGC GAC CCG GCA GTC GAT AAA TAC TCA ACC 522 Ile Gln Ala Val Arg Thr Arg Asp Pro Ala Val Asp Lys Tyr Ser Thr 85 90 95 100 CCG TTG TTA TAC CTG AAG GGT TTT CAT GCC TTG CAG GCC TAT CGC ATC 570 Pro Leu Leu Tyr Leu Lys Gly Phe His Ala Leu Gln Ala Tyr Arg Ile 105 110 115 GGT CAC TGG TTG TGG AAT CAG GGG CGT CGC GCA CTG GCA ATC TTT CTG 618 Gly His Trp Leu Trp Asn Gln Gly Arg Arg Ala Leu Ala Ile Phe Leu 120 125 130 CAA AAC CAG GTT TCT GTG ACG TTC CAG GTC GAT ATT CAC CCG GCA GCA 666 Gln Asn Gln Val Ser Val Thr Phe Gln Val Asp Ile His Pro Ala Ala 135 140 145 AAA ATT GGT CGC GGT ATC ATG CTT GAC CAC GCG ACA GGC ATC GTC GTT 714 Lys Ile Gly Arg Gly Ile Met Leu Asp His Ala Thr Gly Ile Val Val 150 155 160 GGT GAA ACG GCG GTG ATT GAA AAC GAC GTA TCG ATT CTG CAA TCT GTG 762 Gly Glu Thr Ala Val Ile Glu Asn Asp Val Ser Ile Leu Gln Ser Val 165 170 175 180 ACG CTT GGC GGT ACG GGT AAA TCT GGT GGT GAC CGT CAC CCG AAA ATT 810 Thr Leu Gly Gly Thr Gly Lys Ser Gly Gly Asp Arg His Pro Lys Ile 185 190 195 CGT GAA GGT GTG ATG ATT GGC GCG GGC GCG AAA ATC CTC GGC AAT ATT 858 Arg Glu Gly Val Met Ile Gly Ala Gly Ala Lys Ile Leu Gly Asn Ile 200 205 210 GAA GTT GGG CGC GGC GCG AAG ATT GGC GCA GGT TCC GTG GTG CTG CAA 906 Glu Val Gly Arg Gly Ala Lys Ile Gly Ala Gly Ser Val Val Leu Gln 215 220 225 CCG GTG CCG CCG CAT ACC ACC GCC GCT GGC GTT CCG GCT CGT ATT GTC 954 Pro Val Pro Pro His Thr Thr Ala Ala Gly Val Pro Ala Arg Ile Val 230 235 240 GGT AAA CCA GAC AGC GAT AAG CCA TCA ATG GAT ATG GAC CAG CAT TTC 1002 Gly Lys Pro Asp Ser Asp Lys Pro Ser Met Asp Met Asp Gln His Phe 245 250 255 260 AAC GGT ATT AAC CAT ACA TTT GAG TAT GGG GAT GGG ATC TAATGTCCTG 105 1 Asn Gly Ile Asn His Thr Phe Glu Tyr Gly Asp Gly Ile 265 270 TGATCGTGCC GGATGCGATG TAATCATCTA TCCGGCCTAC AGTAACTAAT CTCTCAATAC 1111 CGCTCCCGAT ACCCCAACTG TCG 1134

【0053】配列番号:6 配列の長さ:272 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列 Met Ser Cys Glu Glu Leu Glu Ile Val Trp Asn Asn Ile Lys Ala Glu 1 5 10 15 Ala Arg Thr Leu Ala Asp Cys Glu Pro Met Leu Ala Ser Phe Tyr His 20 25 30 Ala Thr Leu Leu Lys His Glu Asn Leu Gly Ser Ala Leu Ser Tyr Met 35 40 45 Leu Ala Asn Lys Leu Ser Ser Pro Ile Met Pro Ala Ile Ala Ile Arg 50 55 60 Glu Val Val Glu Glu Ala Tyr Ala Ala Asp Pro Glu Met Ile Ala Ser 65 70 75 80 Ala Ala Cys Asp Ile Gln Ala Val Arg Thr Arg Asp Pro Ala Val Asp 85 90 95 Lys Tyr Ser Thr Pro Leu Leu Tyr Leu Lys Gly Phe His Ala Leu Gln 100 105 110 Ala Tyr Arg Ile Gly His Trp Leu Trp Asn Gln Gly Arg Arg Ala Leu 115 120 125 Ala Ile Phe Leu Gln Asn Gln Val Ser Val Thr Phe Gln Val Asp Ile 130 135 140 His Pro Ala Ala Lys Ile Gly Arg Gly Ile Met Leu Asp His Ala Thr 145 150 155 160 Gly Ile Val Val Gly Glu Thr Ala Val Ile Glu Asn Asp Val Ser Ile 165 170 175 Leu Gln Ser Val Thr Leu Gly Gly Thr Gly Lys Ser Gly Gly Asp Arg 180 185 190 His Pro Lys Ile Arg Glu Gly Val Met Ile Gly Ala Gly Ala Lys Ile 195 200 205 Leu Gly Asn Ile Glu Val Gly Arg Gly Ala Lys Ile Gly Ala Gly Ser 210 215 220 Val Val Leu Gln Pro Val Pro Pro His Thr Thr Ala Ala Gly Val Pro 225 230 235 240 Ala Arg Ile Val Gly Lys Pro Asp Ser Asp Lys Pro Ser Met Asp Met 245 250 255 Asp Gln His Phe Asn Gly Ile Asn His Thr Phe Glu Tyr Gly Asp Gly 260 265 270 IleSEQ ID NO: 6 Sequence length: 272 Sequence type: amino acid Topology: linear Sequence type: protein sequence Met Ser Cys Glu Glu Leu Glu Ile Val Trp Asn Asn Ile Lys Ala Glu 1 5 10 15 Ala Arg Thr Leu Ala Asp Cys Glu Pro Met Leu Ala Ser Phe Tyr His 20 25 30 Ala Thr Leu Leu Lys His Glu Asn Leu Gly Ser Ala Leu Ser Tyr Met 35 40 45 Leu Ala Asn Lys Leu Ser Ser Pro Ile Met Pro Ala Ile Ala Ile Arg 50 55 60 Glu Val Val Glu Glu Ala Tyr Ala Ala Asp Pro Glu Met Ile Ala Ser 65 70 75 80 Ala Ala Cys Asp Ile Gln Ala Val Arg Thr Arg Asp Pro Ala Val Asp 85 90 95 Lys Tyr Ser Thr Pro Leu Leu Tyr Leu Lys Gly Phe His Ala Leu Gln 100 105 110 Ala Tyr Arg Ile Gly His Trp Leu Trp Asn Gln Gly Arg Arg Ala Leu 115 120 125 Ala Ile Phe Leu Gln Asn Gln Val Ser Val Thr Phe Gln Val Asp Ile 130 135 140 His Pro Ala Ala Lys Ile Gly Arg Gly Ile Met Leu Asp His Ala Thr 145 150 155 160 Gly Ile Val Val Gly Glu Thr Ala Val Ile Glu Asn Asp Val Ser Ile 165 170 175 Leu Gln Ser Val T hr Leu Gly Gly Thr Gly Lys Ser Gly Gly Asp Arg 180 185 190 His Pro Lys Ile Arg Glu Gly Val Met Ile Gly Ala Gly Ala Lys Ile 195 200 205 Leu Gly Asn Ile Glu Val Gly Arg Gly Ala Lys Ile Gly Ala Gly Ser 210 215 220 Val Val Leu Gln Pro Val Pro Pro Thr Thr Ala Ala Gly Val Pro 225 230 235 240 Ala Arg Ile Val Gly Lys Pro Asp Ser Asp Lys Pro Ser Met Asp Met 245 250 255 Asp Gln His Phe Asn Gly Ile Asn His Thr Phe Glu Tyr Gly Asp Gly 260 265 270 Ile

【図面の簡単な説明】[Brief description of the drawings]

【図1】 pCEM256*の構築の概略を示す図。FIG. 1 is a diagram showing the outline of the construction of pCEM256 *.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI (C12P 13/12 C12R 1:19) ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI (C12P 13/12 C12R 1:19)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 L−システイン分解系が抑制され、か
つ、L−システインによるフィードバック阻害が低減さ
れたセリンアセチルトランスフェラーゼを保持するエシ
ェリヒア属細菌。
1. A bacterium belonging to the genus Escherichia which retains a serine acetyltransferase in which an L-cysteine degradation system is suppressed and feedback inhibition by L-cysteine is reduced.
【請求項2】 前記L−システイン分解系の抑制が、細
胞中のシステインデスルフヒドラーゼ活性の低下による
ものである請求項1記載のエシェリヒア属細菌。
2. The bacterium according to claim 1, wherein the suppression of the L-cysteine degradation system is due to a decrease in cysteine desulfhydrase activity in the cell.
【請求項3】 前記L−システインによるフィードバッ
ク阻害が低減されたセリンアセチルトランスフェラーゼ
が、野生型セリンアセチルトランスフェラーゼの256
位のメチオニン残基に相当するアミノ酸残基をリジン残
基及びロイシン残基以外のアミノ酸残基に置換する変
異、又は256位のメチオニン残基に相当するアミノ酸
残基からC末端側の領域を欠失させる変異を有する請求
項1記載のエシェリヒア属細菌。
3. The serine acetyltransferase having reduced feedback inhibition by L-cysteine is a wild-type serine acetyltransferase of 256.
Mutation in which the amino acid residue corresponding to the methionine residue at position 2 is replaced with an amino acid residue other than lysine residue and leucine residue, or the region at the C-terminal side is deleted from the amino acid residue corresponding to the methionine residue at position 256. 2. The bacterium of the genus Escherichia according to claim 1, which has a mutation to be eliminated.
【請求項4】 請求項1〜3のいずれか一項に記載のエ
シェリヒア属細菌を培地に培養し、該培養物中にL−シ
ステインを生成蓄積せしめ、該培養物からL−システイ
ンを採取することを特徴とするL−システインの製造
法。
4. The Escherichia bacterium according to any one of claims 1 to 3 is cultured in a medium, L-cysteine is produced and accumulated in the culture, and L-cysteine is collected from the culture. A method for producing L-cysteine, comprising:
JP32321097A 1997-11-25 1997-11-25 Method for producing L-cysteine Expired - Lifetime JP4151094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32321097A JP4151094B2 (en) 1997-11-25 1997-11-25 Method for producing L-cysteine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32321097A JP4151094B2 (en) 1997-11-25 1997-11-25 Method for producing L-cysteine

Publications (2)

Publication Number Publication Date
JPH11155571A true JPH11155571A (en) 1999-06-15
JP4151094B2 JP4151094B2 (en) 2008-09-17

Family

ID=18152279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32321097A Expired - Lifetime JP4151094B2 (en) 1997-11-25 1997-11-25 Method for producing L-cysteine

Country Status (1)

Country Link
JP (1) JP4151094B2 (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233384A (en) * 2001-02-09 2002-08-20 Ajinomoto Co Inc L-cysteine-producing bacterium and method for producing l-cysteine
EP1298200A2 (en) * 2001-09-28 2003-04-02 Ajinomoto Co., Inc. L-Cysteine producing bacterium and method for producing l-cysteine
JP2004149426A (en) * 2002-10-29 2004-05-27 Takeda Chem Ind Ltd L-cysteine-containing solid pharmaceutical preparation and method for stabilizing the same
WO2005007841A1 (en) * 2003-07-16 2005-01-27 Ajinomoto Co., Inc. Variant serine acetyltransferase and process for producing l-cysteine
EP1571223A2 (en) 2004-03-04 2005-09-07 Ajinomoto Co., Inc. L-cysteine-producing microorganism and a method for producing L-cysteine
WO2007100009A1 (en) 2006-03-03 2007-09-07 Ajinomoto Co., Inc. Method for production of l-amino acid
WO2007125954A1 (en) 2006-04-28 2007-11-08 Ajinomoto Co., Inc. Microorganism capable of producing l-amino acid, and process for production of l-amino acid
WO2008075483A1 (en) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. Process for production of l-amino acid
WO2008090770A1 (en) 2007-01-22 2008-07-31 Ajinomoto Co., Inc. Microorganism capable of producing l-amino acid, and method for production of l-amino acid
WO2008093829A1 (en) 2007-02-01 2008-08-07 Ajinomoto Co., Inc. Method for production of l-amino acid
WO2008102861A1 (en) 2007-02-22 2008-08-28 Ajinomoto Co., Inc. Method of producing l-amino acid
WO2008102572A1 (en) 2007-02-20 2008-08-28 Ajinomoto Co., Inc. Method for production of l-amino acid or nucleic acid
EP2055771A2 (en) 2006-03-23 2009-05-06 Ajinomoto Co., Inc. A method for producing an L-amino acid using bacterium of the Enterobacteriaceae family with attenuated expression of a gene coding for small RNA
WO2009088049A1 (en) 2008-01-10 2009-07-16 Ajinomoto Co., Inc. Method for production of desired substance by fermentation process
WO2009093703A1 (en) 2008-01-23 2009-07-30 Ajinomoto Co., Inc. Method of producing l-amino acid
EP2093291A1 (en) 2008-02-19 2009-08-26 Ajinomoto Co., Inc. A method for constructing an operon containing translationally coupled genes
WO2009104731A1 (en) 2008-02-21 2009-08-27 味の素株式会社 L-cysteine-producing bacterium, and method for production of l-cysteine
EP2133429A1 (en) 2008-03-06 2009-12-16 Ajinomoto Co., Inc. An L-cysteine-producing bacterium and a method for producing L-cysteine
WO2010027045A1 (en) 2008-09-08 2010-03-11 味の素株式会社 Microorganism capable of producing l-amino acid, and method for producing l-amino acid
WO2010084995A2 (en) 2009-01-23 2010-07-29 Ajinomoto Co.,Inc. A method for producing an l-amino acid
EP2230302A1 (en) 2009-03-12 2010-09-22 Ajinomoto Co., Inc. An L-cysteine-producing bacterium and a method for producing L-cysteine
WO2011013707A1 (en) 2009-07-29 2011-02-03 味の素株式会社 Method for producing l-amino acid
WO2011043485A1 (en) 2009-10-05 2011-04-14 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-CYSTEINE, L-CYSTINE, A DERIVATIVE OR PRECURSOR THEREOF OR A MIXTURE THEREOF USING A BACTERIUM OF Enterobacteriaceae FAMILY
WO2011065469A1 (en) 2009-11-30 2011-06-03 味の素株式会社 L-cysteine-producing bacterium, and process for production of l-cysteine
EP2345667A2 (en) 2010-01-15 2011-07-20 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the enterobacteriaceae family
WO2011096554A1 (en) 2010-02-08 2011-08-11 味の素株式会社 MANUFACTURING METHOD FOR MUTANT rpsA GENE AND L-AMINO ACID
WO2011102305A2 (en) 2010-02-18 2011-08-25 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE Enterobacteriaceae FAMILY HAVING A MUTANT ADENYLATE CYCLASE
WO2012011595A1 (en) 2010-07-21 2012-01-26 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE ENTEROBACTERIACEAE FAMILY HAVING ATTENUATED EXPRESSION OF THE astCADBE OPERON
WO2012011596A1 (en) 2010-07-21 2012-01-26 Ajinomoto Co.,Inc. A method for producing an l- amino acid using a bacterium of the enterobacteriaceae family with enhanced expression of the bssr gene
WO2012036151A1 (en) 2010-09-14 2012-03-22 味の素株式会社 Sulfur amino acid-producing bacteria and method for producing sulfur amino acids
EP2460873A1 (en) 2006-12-12 2012-06-06 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family with attenuated expression of any of the cynT, cynS, cynX or cynR genes or a combination thereof
WO2012077739A1 (en) 2010-12-10 2012-06-14 味の素株式会社 Method for producing l-amino acid
WO2012114802A1 (en) 2011-02-22 2012-08-30 味の素株式会社 L-cysteine-producing bacterium and method for producing l-cysteine
WO2012137689A1 (en) 2011-04-01 2012-10-11 味の素株式会社 Method for producing l-cysteine
US8293506B2 (en) 2009-02-25 2012-10-23 Ajinomoto Co., Inc. L-cysteine-producing bacterium and a method for producing L-cysteine
WO2012144472A1 (en) 2011-04-18 2012-10-26 味の素株式会社 Process for producing l-cysteine
EP2559754A2 (en) 2011-08-18 2013-02-20 Ajinomoto Co., Inc. Method for producing an L-amino acid using a bacterium of the family enterobacteriaceae having enhanced expression of the flagella formation and motility cascade genes
US8383372B2 (en) 2008-03-06 2013-02-26 Ajinomoto Co., Inc. L-cysteine producing bacterium and a method for producing L-cysteine
EP2796560A1 (en) 2013-04-23 2014-10-29 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the family Enterobacteriaceae having attenuated expression of the yjjK gene
WO2014185430A1 (en) 2013-05-13 2014-11-20 味の素株式会社 Method for manufacturing l-amino acid
WO2015005406A1 (en) 2013-07-09 2015-01-15 味の素株式会社 Method for manufacturing useful substance
WO2015030019A1 (en) 2013-08-30 2015-03-05 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE FAMILY ENTEROBACTERIACEAE HAVING ATTENUATED EXPRESSION OF THE znuACB GENE CLUSTER
WO2015050234A1 (en) 2013-10-02 2015-04-09 味の素株式会社 Ammonia control apparatus and ammonia control method
WO2015050276A1 (en) 2013-10-02 2015-04-09 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having attenuated expression of a phosphate transporter-encoding gene
WO2015060314A1 (en) 2013-10-21 2015-04-30 味の素株式会社 Method for producing l-amino acid
WO2015060391A1 (en) 2013-10-23 2015-04-30 味の素株式会社 Method for producing target substance
WO2015122544A1 (en) 2014-02-14 2015-08-20 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE FAMILY ENTEROBACTERIACEAE HAVING OVEREXPRESSED THE yajL GENE
US9234223B2 (en) 2011-04-01 2016-01-12 Ajinomoto Co., Inc. Method for producing L-cysteine
US9458206B2 (en) 2009-02-16 2016-10-04 Ajinomoto Co., Inc. L-amino acid-producing bacterium and a method for producing an L-amino acid
EP3098319A1 (en) 2015-05-28 2016-11-30 Ajinomoto Co., Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having an attenuated expression of a gsha gene
WO2017146195A1 (en) 2016-02-25 2017-08-31 Ajinomoto Co., Inc. A method for producing l-amino acids using a bacterium of the family enterobacteriaceae overexpressing a gene encoding an iron exporter
EP3385389A1 (en) 2017-04-03 2018-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid from fructose
WO2020071538A1 (en) 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
WO2020171227A1 (en) 2019-02-22 2020-08-27 Ajinomoto Co., Inc. METHOD FOR PRODUCING L-AMINO ACIDS USING A BACTERIUM BELONGING TO THE FAMILY Enterobacteriaceae HAVING OVEREXPRESSED ydiJ GENE
WO2020204179A1 (en) 2019-04-05 2020-10-08 Ajinomoto Co., Inc. Method of producing l-amino acids
WO2021060438A1 (en) 2019-09-25 2021-04-01 Ajinomoto Co., Inc. Method for producing l-amino acids by bacterial fermentation

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1234874A1 (en) * 2001-02-09 2002-08-28 Ajinomoto Co., Ltd. L-cysteine producing bacterium and method for producing L-cysteine
JP4622111B2 (en) * 2001-02-09 2011-02-02 味の素株式会社 L-cysteine producing bacterium and method for producing L-cysteine
JP2002233384A (en) * 2001-02-09 2002-08-20 Ajinomoto Co Inc L-cysteine-producing bacterium and method for producing l-cysteine
CN1330749C (en) * 2001-02-09 2007-08-08 味之素株式会社 Process for producing L-cysteine bacterium and L-cysteine
EP1645623A1 (en) 2001-09-28 2006-04-12 Ajinomoto Co., Inc. L-cysteine producing bacterium and method for producing L-cysteine
EP1298200A2 (en) * 2001-09-28 2003-04-02 Ajinomoto Co., Inc. L-Cysteine producing bacterium and method for producing l-cysteine
US6946268B2 (en) 2001-09-28 2005-09-20 Ajinomoto Co., Inc. L-cysteine producing bacterium and method for producing L-cysteine
EP1298200B1 (en) * 2001-09-28 2006-03-29 Ajinomoto Co., Inc. L-Cysteine producing bacterium and method for producing l-cysteine
JP2004149426A (en) * 2002-10-29 2004-05-27 Takeda Chem Ind Ltd L-cysteine-containing solid pharmaceutical preparation and method for stabilizing the same
WO2005007841A1 (en) * 2003-07-16 2005-01-27 Ajinomoto Co., Inc. Variant serine acetyltransferase and process for producing l-cysteine
JPWO2005007841A1 (en) * 2003-07-16 2006-11-09 味の素株式会社 Method for producing mutant serine acetyltransferase and L-cysteine
US7312058B2 (en) 2003-07-16 2007-12-25 Ajinomoto Co., Ltd. Mutant serine acetyltransferase
JP4923573B2 (en) * 2003-07-16 2012-04-25 味の素株式会社 Method for producing mutant serine acetyltransferase and L-cysteine
EP1571223A3 (en) * 2004-03-04 2005-11-30 Ajinomoto Co., Inc. L-cysteine-producing microorganism and a method for producing L-cysteine
EP1849874A1 (en) * 2004-03-04 2007-10-31 Ajinomoto Co., Inc. L-cysteine producing microorganism and a method for producing L-cysteine
EP1571223A2 (en) 2004-03-04 2005-09-07 Ajinomoto Co., Inc. L-cysteine-producing microorganism and a method for producing L-cysteine
US8114649B2 (en) 2004-03-04 2012-02-14 Ajinomoto Co., Inc. L-cysteine producing microorganism and a method for producing L-cysteine
WO2007100009A1 (en) 2006-03-03 2007-09-07 Ajinomoto Co., Inc. Method for production of l-amino acid
EP2055771A2 (en) 2006-03-23 2009-05-06 Ajinomoto Co., Inc. A method for producing an L-amino acid using bacterium of the Enterobacteriaceae family with attenuated expression of a gene coding for small RNA
EP2351830A1 (en) 2006-03-23 2011-08-03 Ajinomoto Co., Inc. A method for producing an L-amino acid using bacterium of the Enterobacteriaceae family with attenuated expression of a gene coding for small RNA
WO2007125954A1 (en) 2006-04-28 2007-11-08 Ajinomoto Co., Inc. Microorganism capable of producing l-amino acid, and process for production of l-amino acid
EP2460873A1 (en) 2006-12-12 2012-06-06 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family with attenuated expression of any of the cynT, cynS, cynX or cynR genes or a combination thereof
WO2008075483A1 (en) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. Process for production of l-amino acid
WO2008090770A1 (en) 2007-01-22 2008-07-31 Ajinomoto Co., Inc. Microorganism capable of producing l-amino acid, and method for production of l-amino acid
WO2008093829A1 (en) 2007-02-01 2008-08-07 Ajinomoto Co., Inc. Method for production of l-amino acid
WO2008102572A1 (en) 2007-02-20 2008-08-28 Ajinomoto Co., Inc. Method for production of l-amino acid or nucleic acid
WO2008102861A1 (en) 2007-02-22 2008-08-28 Ajinomoto Co., Inc. Method of producing l-amino acid
WO2009088049A1 (en) 2008-01-10 2009-07-16 Ajinomoto Co., Inc. Method for production of desired substance by fermentation process
EP2749652A2 (en) 2008-01-10 2014-07-02 Ajinomoto Co., Inc. A method for producing a target substance by fermentation
WO2009093703A1 (en) 2008-01-23 2009-07-30 Ajinomoto Co., Inc. Method of producing l-amino acid
EP2093291A1 (en) 2008-02-19 2009-08-26 Ajinomoto Co., Inc. A method for constructing an operon containing translationally coupled genes
US8278075B2 (en) 2008-02-21 2012-10-02 Ajinomoto Co., Inc. L-cysteine-producing bacterium and a method for producing L-cysteine
WO2009104731A1 (en) 2008-02-21 2009-08-27 味の素株式会社 L-cysteine-producing bacterium, and method for production of l-cysteine
US8008048B2 (en) 2008-03-06 2011-08-30 Ajinomoto Co., Inc. L-cysteine-producing bacterium and a method for producing L-cysteine
US8383372B2 (en) 2008-03-06 2013-02-26 Ajinomoto Co., Inc. L-cysteine producing bacterium and a method for producing L-cysteine
EP2133429A1 (en) 2008-03-06 2009-12-16 Ajinomoto Co., Inc. An L-cysteine-producing bacterium and a method for producing L-cysteine
WO2010027045A1 (en) 2008-09-08 2010-03-11 味の素株式会社 Microorganism capable of producing l-amino acid, and method for producing l-amino acid
WO2010084995A2 (en) 2009-01-23 2010-07-29 Ajinomoto Co.,Inc. A method for producing an l-amino acid
US9458206B2 (en) 2009-02-16 2016-10-04 Ajinomoto Co., Inc. L-amino acid-producing bacterium and a method for producing an L-amino acid
US8293506B2 (en) 2009-02-25 2012-10-23 Ajinomoto Co., Inc. L-cysteine-producing bacterium and a method for producing L-cysteine
EP2230302A1 (en) 2009-03-12 2010-09-22 Ajinomoto Co., Inc. An L-cysteine-producing bacterium and a method for producing L-cysteine
WO2011013707A1 (en) 2009-07-29 2011-02-03 味の素株式会社 Method for producing l-amino acid
WO2011043485A1 (en) 2009-10-05 2011-04-14 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-CYSTEINE, L-CYSTINE, A DERIVATIVE OR PRECURSOR THEREOF OR A MIXTURE THEREOF USING A BACTERIUM OF Enterobacteriaceae FAMILY
US8647847B2 (en) 2009-11-30 2014-02-11 Ajinomoto Co., Inc. L-cysteine-producing bacterium and a method for producing L-cysteine
WO2011065469A1 (en) 2009-11-30 2011-06-03 味の素株式会社 L-cysteine-producing bacterium, and process for production of l-cysteine
CN102639691A (en) * 2009-11-30 2012-08-15 味之素株式会社 L-cysteine-producing bacterium, and process for production of L-cysteine
EP2345667A2 (en) 2010-01-15 2011-07-20 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the enterobacteriaceae family
WO2011096554A1 (en) 2010-02-08 2011-08-11 味の素株式会社 MANUFACTURING METHOD FOR MUTANT rpsA GENE AND L-AMINO ACID
WO2011102305A2 (en) 2010-02-18 2011-08-25 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE Enterobacteriaceae FAMILY HAVING A MUTANT ADENYLATE CYCLASE
WO2012011596A1 (en) 2010-07-21 2012-01-26 Ajinomoto Co.,Inc. A method for producing an l- amino acid using a bacterium of the enterobacteriaceae family with enhanced expression of the bssr gene
WO2012011595A1 (en) 2010-07-21 2012-01-26 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE ENTEROBACTERIACEAE FAMILY HAVING ATTENUATED EXPRESSION OF THE astCADBE OPERON
US8962284B2 (en) 2010-09-14 2015-02-24 Ajinomoto Co., Inc. Sulfur-containing amino acid-producing bacterium and method for producing sulfur-containing amino acid
WO2012036151A1 (en) 2010-09-14 2012-03-22 味の素株式会社 Sulfur amino acid-producing bacteria and method for producing sulfur amino acids
WO2012077739A1 (en) 2010-12-10 2012-06-14 味の素株式会社 Method for producing l-amino acid
WO2012114802A1 (en) 2011-02-22 2012-08-30 味の素株式会社 L-cysteine-producing bacterium and method for producing l-cysteine
US9234223B2 (en) 2011-04-01 2016-01-12 Ajinomoto Co., Inc. Method for producing L-cysteine
WO2012137689A1 (en) 2011-04-01 2012-10-11 味の素株式会社 Method for producing l-cysteine
WO2012144472A1 (en) 2011-04-18 2012-10-26 味の素株式会社 Process for producing l-cysteine
EP2559754A2 (en) 2011-08-18 2013-02-20 Ajinomoto Co., Inc. Method for producing an L-amino acid using a bacterium of the family enterobacteriaceae having enhanced expression of the flagella formation and motility cascade genes
WO2013024904A1 (en) 2011-08-18 2013-02-21 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having enhanced expression of the flagella formation and motility cascade genes
EP2796560A1 (en) 2013-04-23 2014-10-29 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the family Enterobacteriaceae having attenuated expression of the yjjK gene
WO2014185430A1 (en) 2013-05-13 2014-11-20 味の素株式会社 Method for manufacturing l-amino acid
EP3521433A1 (en) 2013-07-09 2019-08-07 Ajinomoto Co., Inc. Process for producing l-glutamic acid
WO2015005406A1 (en) 2013-07-09 2015-01-15 味の素株式会社 Method for manufacturing useful substance
WO2015030019A1 (en) 2013-08-30 2015-03-05 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE FAMILY ENTEROBACTERIACEAE HAVING ATTENUATED EXPRESSION OF THE znuACB GENE CLUSTER
WO2015050276A1 (en) 2013-10-02 2015-04-09 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having attenuated expression of a phosphate transporter-encoding gene
WO2015050234A1 (en) 2013-10-02 2015-04-09 味の素株式会社 Ammonia control apparatus and ammonia control method
WO2015060314A1 (en) 2013-10-21 2015-04-30 味の素株式会社 Method for producing l-amino acid
WO2015060391A1 (en) 2013-10-23 2015-04-30 味の素株式会社 Method for producing target substance
WO2015122544A1 (en) 2014-02-14 2015-08-20 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE FAMILY ENTEROBACTERIACEAE HAVING OVEREXPRESSED THE yajL GENE
EP3098319A1 (en) 2015-05-28 2016-11-30 Ajinomoto Co., Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having an attenuated expression of a gsha gene
WO2017146195A1 (en) 2016-02-25 2017-08-31 Ajinomoto Co., Inc. A method for producing l-amino acids using a bacterium of the family enterobacteriaceae overexpressing a gene encoding an iron exporter
EP3385389A1 (en) 2017-04-03 2018-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid from fructose
WO2020071538A1 (en) 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
WO2020171227A1 (en) 2019-02-22 2020-08-27 Ajinomoto Co., Inc. METHOD FOR PRODUCING L-AMINO ACIDS USING A BACTERIUM BELONGING TO THE FAMILY Enterobacteriaceae HAVING OVEREXPRESSED ydiJ GENE
WO2020204179A1 (en) 2019-04-05 2020-10-08 Ajinomoto Co., Inc. Method of producing l-amino acids
WO2021060438A1 (en) 2019-09-25 2021-04-01 Ajinomoto Co., Inc. Method for producing l-amino acids by bacterial fermentation

Also Published As

Publication number Publication date
JP4151094B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
JPH11155571A (en) Production of l-cysteine
JP4088982B2 (en) Method for producing L-amino acid by fermentation
JP3692538B2 (en) Novel lysine decarboxylase gene and method for producing L-lysine
JP4273661B2 (en) L-amino acid producing bacterium and method for producing L-amino acid
JP2001037494A (en) Dna encoding variant isopropyl maleate synthase, l- leucine-producing microorganism and production of l- leucine
JP4186564B2 (en) L-cysteine producing bacterium and method for producing L-cysteine
JPH07155184A (en) Production of l-lysine by fermentation method
WO1995023864A1 (en) Process for producing l-lysine
WO1994025605A1 (en) Variant aspartokinase gene
US6737255B2 (en) Mutant ilvH gene and method for producing L-valine
JP2001136991A (en) Method for producing l-amino acid by fermentation method
AU779019B2 (en) Metabolic engineering of amino acid production
TWI785327B (en) Microorganism producing l-amino acid and method of producing l-amino acid using the same
EP0834559A1 (en) Process for producing l-lysine by fermentation
JP4292724B2 (en) Organic nitrogen-containing composition and fertilizer containing the same
KR20110105662A (en) Microorganism having enhanced 5&#39;-xanthosine monophosphate and 5&#39;-guanine monophosphate productivity and a method of producing 5&#39;-xanthosine monophosphate or 5&#39;-guanine monophosphate using the same
EP1298200B1 (en) L-Cysteine producing bacterium and method for producing l-cysteine
US6599732B1 (en) Regulation of carbon assimilation
CN115044521B (en) Corynebacterium glutamicum mutant strain having improved L-lysine productivity and method for producing L-lysine using same
JP4152320B2 (en) Amino acid production method
US8895285B2 (en) Modified ethylenediamine-N, N′-disuccinate: ethylenediamine lyase
US7202060B2 (en) Process for producing L-amino acids via fermentation method
CN115052976B (en) Novel acetohydroxyacid synthase variants and microorganisms comprising same
EP1196611A1 (en) Regulation of carbon assimilation
KR20220107795A (en) Phospho-2-dehydro-3-deoxyheptonate aldolase variant and method for producing branched amino acid using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term