JPS62244382A - Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan - Google Patents

Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan

Info

Publication number
JPS62244382A
JPS62244382A JP61087600A JP8760086A JPS62244382A JP S62244382 A JPS62244382 A JP S62244382A JP 61087600 A JP61087600 A JP 61087600A JP 8760086 A JP8760086 A JP 8760086A JP S62244382 A JPS62244382 A JP S62244382A
Authority
JP
Japan
Prior art keywords
dna
tryptophan
formula
amino acid
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61087600A
Other languages
Japanese (ja)
Other versions
JPH06102024B2 (en
Inventor
Kazuhiko Matsui
和彦 松井
Takanosuke Sano
佐野 孝之輔
Kiyoshi Miwa
清志 三輪
Eiichi Otsubo
大坪 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP61087600A priority Critical patent/JPH06102024B2/en
Publication of JPS62244382A publication Critical patent/JPS62244382A/en
Publication of JPH06102024B2 publication Critical patent/JPH06102024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes

Abstract

PURPOSE:To efficiently produce the titled tryptophan in a large amount, by cultivating a microorganism transformed by a DNA sequence capable of coding an enzymic group of a tryptophan synthetic system, etc., in a culture medium. CONSTITUTION:A chromosomic gene obtained by extracting microbial cells of Brevibacterium lactofermentum, etc., of the genus Brevibacterium is cleaved with a restriction enzyme to give a DNA, consisting of DNA expressed by the formula containing an operator region controlling the synthesis of m-RNA, promoter region controlling the synthesis of m-RAN, etc. The resultant DNA is then subjected to ligation reaction with a plasmid vector to afford a recombinant DNA, which is further introduced into a variant strain requiring tryptophan to carry out transformation and provide coryneform bacteria having the ability to produce tryptophan. The resultant bacteria are then aerobically cultivated in a culture medium containing a carbon source, nitrogen source, etc., to produce and accumulate the aimed tryptophan in the culture medium.

Description

【発明の詳細な説明】 本発明は、組換えDNN性法よるL−1−リプトファン
の生産菌の分子育種や生理活性ペプチドの生産に応用可
能なコリネ型細菌の、さらに限定すればブレビバクテリ
ウムの、トリプトファンオペロン配列に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the use of coryneform bacteria, more specifically Brevibacterium, which can be applied to the molecular breeding of L-1-lyptophan-producing bacteria and the production of physiologically active peptides by recombinant DNN methods. Regarding the tryptophan operon sequence of U.

本発明にいうコリネ型細菌( C’oryneform
bacteria)は、パーシース・マニュアル・オブ
・デターミネイティブ・バタテリオロジ−(Barge
ysManual of Determinative
 Bacteriology)第8版599頁(1 9
 7 4)に定義されている一群の微生物であり、好気
性、ダラム陽性、非抗酸性、胞子形成能を存しない桿菌
である。このようなコリネ型細菌のうち特に以下に述べ
るようなコリネ型グルタミン酸生産性細菌が本発明にお
いては、最も好ましいものである。
Coryneform bacteria (C'oryneform) according to the present invention
bacteria) is described in Percy's Manual of Determinative Bacteriology (Barge
ysManual of Determinative
Bacteriology) 8th edition 599 pages (19
It is a group of microorganisms defined in 7 4), and is an aerobic, Durham-positive, non-acid fasting bacillus that does not have spore-forming ability. Among these coryneform bacteria, the following coryneform glutamate-producing bacteria are particularly preferred in the present invention.

コリネ型グルタミン酸生産性細菌の野性株の例としては
次のようなものがあげられる。
Examples of wild strains of coryneform glutamate-producing bacteria include the following.

ブレビバクテリウム・ディバリカタム へTCC  14020 フレビハクテリウム・ナソカロリティクムATCC14
066 プレビハクテリウム・インマリオフィルムへTCC14
068 フレビパクテリウム・ラクトフェルメンタムATCC1
3869 フ゛レビハクテリウム・ロゼラム ATCC13825
フレヒ゛バクテリウム・フラバム ATCC13826
ブレビハクテリウム・チオゲニタリス へTCC19240 コリネバクテリウム・アセトアシドフィルム八TCC1
3870 コリネバクテリウム・アセトグルタミnムATCC15
806 コリネバクテリウム・カルナエ 八TCC15991コ
リ翠バクテリウム・グルタミン酸 ATCC13032,13060 コリネバクテリウム・リリウム ATCC15990コ
リネバクテリウム・メラセコーラ ATCC17965 ミクロバクテリウム・アンモニアフィラムへTCC15
354 本発明のコリネ型グルタミン酸生産性細菌には上記のよ
うなグルタミン酸生産性を有する野性株のほかにグルタ
ミン酸生産性を有するまたはグルタミン酸生産性を失っ
た変異株も含まれる。
To Brevibacterium divaricatum TCC 14020 Brevibacterium nasocalolyticum ATCC14
066 TCC14 to Prebihacterium inmariophyllum
068 Flevipacterium lactofermentum ATCC1
3869 Verbihacterium roserum ATCC13825
Frechybacterium flavum ATCC13826
To Brevihacterium thiogenitalis TCC19240 Corynebacterium acetoacidophilum 8TCC1
3870 Corynebacterium acetoglutamine ATCC15
806 Corynebacterium carnae 8TCC15991 Corynebacterium glutamic acid ATCC13032,13060 Corynebacterium Lilium ATCC15990 Corynebacterium melasecola ATCC17965 Microbacterium ammoniaphyllum to TCC15
354 The coryneform glutamate-producing bacteria of the present invention include not only wild strains having glutamate productivity as described above, but also mutant strains having glutamate productivity or having lost glutamate productivity.

ここでいうトリプトファンオペロンとは、プロモーター
、およびアテニュエーター、さらにリーダーペプチドを
コードする令頁域(trpL) 、アンスラニル酸シン
ターゼ遺伝子(trpE、 trpG)、ホスホリボシ
ルアンスラニル酸トランスフェラーゼ遺伝子(trpD
) 、N−(5’−ホスホリボシル)アンスラニル酸イ
ンメラーゼーインドール−3−グリセロールリン酸シン
ターゼ遺伝子(trpC) 、)リプトファンシンター
ゼ遺伝子(trpB、 trpA)の各構造遺伝子が隣
接して配置され、一つの転写単位として機能しているも
のをいう。
The tryptophan operon here includes a promoter, an attenuator, a leader region (trpL) encoding a leader peptide, anthranilate synthase genes (trpE, trpG), and a phosphoribosylanthranilate transferase gene (trpD).
), N-(5'-phosphoribosyl) anthranilate inmerase indole-3-glycerol phosphate synthase gene (trpC), and) liptophan synthase genes (trpB, trpA) are arranged adjacently, A transcription unit that functions as one transcription unit.

各構造遺伝子を単離する方法は、コリネ型細菌のトリプ
トファンオペロン、或いは、各構造遺伝子を有している
株より、まず染色体遺伝子を抽出しく例えば11.5a
ito andに、Miura Biochem、Bi
ophys。
The method for isolating each structural gene is to first extract a chromosomal gene from a tryptophan operon of a coryneform bacterium or a strain having each structural gene, for example, 11.5a.
ito and, Miura Biochem, Bi
ophys.

胱ta  72,619(1963)の方法が使用でき
る。)、これを適当な制限酵素で切断する。ついで微生
物細胞内で複製し得て、かつプロモーター活性をもつベ
クターに接続し、得られた組換えDNAを用いて、コリ
ネ型細菌もしくはその他の微生物で、トリプトファン生
合成系の構造遺伝子が変異を受け、酵素が活性を失ない
、そのためにトリプトファン要求性を示すようになって
いる変異株を形質転換し、該酵素活性が回復、上界し、
トリプトファン要求性が消失する菌株を採取し、これよ
り該構造遺伝子をもつ複合プラスミドを分離できる。
The method of Uta 72, 619 (1963) can be used. ), which is then cut with an appropriate restriction enzyme. Next, it is connected to a vector that can replicate in microbial cells and has promoter activity, and the resulting recombinant DNA is used to mutate the structural gene of the tryptophan biosynthesis system in coryneform bacteria or other microorganisms. , by transforming a mutant strain in which the enzyme does not lose its activity and therefore exhibits tryptophan auxotrophy, the enzyme activity is restored or increased,
A strain in which the tryptophan requirement disappears is collected, and a complex plasmid containing the structural gene can be isolated from this strain.

このような方法でも、幸運にしてオペロン全域を’i’
−gllできる場合もあるが、もしもオペロン全域を単
離(クローン化)できなかった場合は、上述の方法によ
り分離した各構造遺伝子の一部もしくは全部をアイソト
−プ等でラベルしそれらをプローブにして、プラスミド
もしくはファージ−\フタ−を用いて作成したコリネ型
細菌の染色体遺伝子のシーンバンクからコロニーハイブ
リダ・イゼイションにより、単離可能である。
Even with this method, if you are lucky enough to cover the entire operon with 'i'
However, if the entire operon cannot be isolated (cloned), label part or all of each structural gene isolated using the above method with an isotope, etc., and use it as a probe. It can be isolated by colony hybridization from a chromosomal gene scene bank of coryneform bacteria created using a plasmid or a phage/lid.

染色体遺伝子を切断するには、切断反応時間等を調節し
て切断の程度を調節すれば、巾広い種類の制限酵素が使
用できる。
To cleave chromosomal genes, a wide variety of restriction enzymes can be used by adjusting the degree of cleavage by adjusting the cleavage reaction time, etc.

本発明のうちトリプトファンオペロンもしくはその1部
をトリプトファンの生産に使用する場合に用いるベクタ
ーは、コリネ型細菌細胞内もしくはE、Goli、 B
、5ubLilisにおいて増殖し得るものであればど
のようなものでも良い。具体的に例示すれば、以下のも
のがあげられる。
In the present invention, the vector used when the tryptophan operon or a part thereof is used for the production of tryptophan can be used in coryneform bacterial cells or in E, Goli, B
, 5ubLilis may be used as long as it can proliferate. Specific examples include the following.

(11pAM 330  特開昭58−67699参照
(21pAM 1519  特開昭58−77895参
照(3)pAJ 655  特開昭58−192900
参照(4) pAJ 611  同上 (511)AJ 1844  同上 (6)pCG 1   特開昭57−134500参照
(7j  pCG 2   特開昭58−35197参
照(81pCG4   特開昭57−183799参照
(91pcc 11   同上 (10) pCC1特開    (Mriutin/A
jico)(11) pBL 100  特開    
(〜)(12)pBR322 (13)  pC194 ヘクターDNAの開裂は、当該DNAを一箇所で切断す
る制限酵素を用いて切断するか、複数部位をりJ LI
Jiする制限酵素を用いて部分的に切断するごとにより
行う。
(11pAM 330 JP-A-58-67699 reference (21pAM 1519 JP-A-58-77895 reference (3) pAJ 655 JP-A-58-192900
Reference (4) pAJ 611 Same as above (511) AJ 1844 Same as above (6) pCG 1 Reference to JP-A-57-134500 (7j pCG 2 Reference to JP-A-58-35197 (81pCG4 Reference to JP-A-57-183799 (91pcc 11 Same as above) 10) pCC1 Unpublished (Mriutin/A
jico) (11) pBL 100 Unpublished
(~) (12) pBR322 (13) pC194 Hector DNA can be cleaved by using a restriction enzyme that cuts the DNA at one site, or by cutting at multiple sites.
Partial cleavage is carried out using restriction enzymes.

ヘクターDNAは、染色体遺伝子を切断した際に用いら
れた制限酵素により切断され、または染色体DNA切断
フラグメント及び切断されたヘクターDNAのそれぞれ
の両端に相補的な塩基配列を有するオリゴヌクレオチド
を接続せしめて、ついでゲラスミ1゛ヘクターと染色体
DNAフラグメントとのライケーション反応に付される
The hector DNA is cut by the restriction enzyme used to cut the chromosomal gene, or oligonucleotides having complementary base sequences are connected to both ends of the cut chromosomal DNA fragment and the cut hector DNA, and Next, 1 hectare of gelatin and chromosomal DNA fragments are subjected to a lysis reaction.

このようにして得られた、染色体DNAとヘクターとの
組換えDNAをコリネ型細菌に屈する受容菌へ’)、7
f−人するには、エシェリヒア・コリに−12について
報告されている様な(Mandel、M、 and I
liga。
The thus obtained recombinant chromosomal DNA and Hector DNA are transferred to recipient bacteria that succumb to coryneform bacteria'), 7
f-person, as reported by Escherichia coli for -12 (Mandel, M. and I.
liga.

八、、J、Mo1.、 Biol、、 53.159(
1970)受容菌細胞を塩化カルシウムで処理してDN
Aの透過性を増す方法、またはバチルス・ズブチリスに
ついて報告されている様に(Duncan、C,H,、
Wilson、G、八、 andYoung、 F、E
、、 Gene、工、153(1977)) t(Il
胞が1)NAを取り込み得る様になる増殖段階(いわゆ
るコンビテンI・セル)に尋人する方法により可能であ
る。
8,,J,Mo1. , Biol,, 53.159 (
(1970) treated recipient cells with calcium chloride to produce DN.
A method to increase the permeability of Bacillus subtilis, or as reported for Bacillus subtilis (Duncan, C.H.,
Wilson, G., and Young, F.E.
,, Gene, Eng., 153 (1977)) t(Il
This is possible by 1) bringing the cells to a proliferation stage (so-called Combiten I cells) in which they become capable of taking up NA;

あるいは、バチルス・ズブチリス、放線菌類および酵母
について知られている様に(Chan[X、 S、 a
ndChoen、 S、N、、 Mo1ec、Gen、
、Genet、、 368.111(1979);Bi
bb、M、J、Jard、J、M、  and  ll
opwood、  O,八、1Nature、γ74.
398<1978);Hinnen、A、、l1ick
s、  J、B。
Alternatively, as is known for Bacillus subtilis, actinomycetes and yeasts (Chan [X, S, a
ndChoen, S.N., Molec, Gen.
, Genet, 368.111 (1979); Bi
bb, M, J, Jard, J, M, and ll
opwood, O, 8, 1 Nature, γ74.
398<1978); Hinnen, A., l1ick
s, J, B.

and  Fr1nk、G、R,、Proc、NaLl
、Δcad、sci、UsA、ヱ互1929(1978
)) 、DNA受容菌を、プラスミF’DNへを容易に
取り込むプロトプラストまたはスフェロプラストにして
組換えDNA受容菌に導入することも可能である。
and Fr1nk, G, R,, Proc, NaLl
, Δcad, sci, UsA, Etou 1929 (1978
)) It is also possible to introduce the recombinant DNA into the recipient bacteria in the form of protoplasts or spheroplasts, which readily incorporate into the plasmid F'DN.

プロトプラスト法では上記のバチルス・ズブチリスにお
いて使用されている方法でも充分高い頻度を得るとかで
きるし、特開昭57−183799に記載されたコリネ
バクテリウム屈またはブレビバクテリウム属のプロトプ
ラストにポリエチレングリコールまたはポリビニルアル
コールと二価金属イオンとの存在下にDNAをとり込ま
せる方法も当然利用できる。ポリエチレングリコールま
たはポリビニルアルコールの代りに、カルボキシメチル
セルロース、デキストラン、フィコール、プルロニック
F68 (セルバ社)などの添加によってONへのとり
込みを促進させる方法でも同等の結果が得られる。
In the protoplast method, it is possible to obtain a sufficiently high frequency using the method used for Bacillus subtilis mentioned above, and polyethylene glycol or polyvinyl Of course, a method of incorporating DNA in the presence of alcohol and divalent metal ions can also be used. Equivalent results can also be obtained by adding carboxymethyl cellulose, dextran, Ficoll, Pluronic F68 (Selva), etc. in place of polyethylene glycol or polyvinyl alcohol to promote uptake into ON.

クローニングしたトリプトファンオペロン、或いは各構
造遺伝子を用いてトリプトファン生産菌の分子育種を行
うには、遺伝子のクローニングの際に用いたトリプトフ
ァン要求性の変異株を宿主として形質転換した株を用い
ることができるが、以下に示すような宿主を用いればよ
りトリプトファンの生産性が高い菌株が得られることが
ある。
To carry out molecular breeding of tryptophan-producing bacteria using the cloned tryptophan operon or each structural gene, a strain transformed with the tryptophan auxotrophic mutant strain used for gene cloning can be used as a host. If the host shown below is used, a strain with higher tryptophan productivity may be obtained.

ブレビバクテリウム屈のフェニルアラニン、チロシンを
要求し、5−メチルトリプトファンに耐性を打する変異
株(1,5hiio、11.5ato、M、Nakag
awa、。
Mutant strains of Brevibacterium that require phenylalanine and tyrosine and are resistant to 5-methyltryptophan (1,5hiio, 11.5ato, M, Nakag
Wow.

Agric、Biol、Chem、、 36.2315
(1972))、ブレビバクテリウム屈のフェニルアラ
ニンを要求し、m−フルオロフェニルアラニン、5−フ
ルオロトリプトファンに耐性を有する変異株(r、5h
iio、 S。
Agric, Biol, Chem, 36.2315
(1972)), a mutant strain of Brevibacterium flexi that requires phenylalanine and is resistant to m-fluorophenylalanine and 5-fluorotryptophan (r, 5h
iio, S.

Sugimoto、M、Nakagawa、、Agri
c、Biol、Chemi、、 39+627 (19
75) )、ブレビバクテリウム属のチロシンを要求し
、5−フルオロトリプトファン、アザ′セリンに耐性を
有する変異株、コリネバクテリウム属のフェニルアラニ
ン、チロシンを要求し、5−メチルトリプトファン、4
−メチルトリプトファン、6−フルオルトリプトファン
、トリブトファンヒドロキサメー1−1p−フルオロフ
ェニルアラニン、チロシンヒドロキサメート、フェニル
アラニンヒドロキサメートに耐性を有する変異株(Il
、Hagino。
Sugimoto, M., Nakagawa, , Agri.
c, Biol, Chemi,, 39+627 (19
75) ), a mutant strain of Brevibacterium that requires tyrosine and is resistant to 5-fluorotryptophan and aza'serine, a mutant strain of Corynebacterium that requires phenylalanine and tyrosine, and is resistant to 5-methyltryptophan, 4
- Mutant strain resistant to methyltryptophan, 6-fluorotryptophan, tributophane hydroxamate 1-1p-fluorophenylalanine, tyrosine hydroxamate, and phenylalanine hydroxamate (Il
, Hagino.

に、Nakagawa、+へ5ric、Bio1.Ch
em、、  39.345(1975))等がある。
, Nakagawa, 5ric to +, Bio1. Ch
Em., 39.345 (1975)).

このようにして得られたトリプトファン生産能を有する
コリネ型細菌を培養してトリプトファンを生成蓄積せし
める方法は、従来コリネ型細菌によるトリプトファンの
製造のために使用されていた方法と特に大きく違う点は
ない。即ち、培地としては、炭素源、窒素源、無機イオ
ン、更に必要に応しアミノ酸、ビタミン等の有機Eaf
fl栄養素を含有する通常のものである。炭素源として
は、グルコース、シュクロース、ラクトース等及びこれ
らを含有する澱粉加水分解液、ホエイ、θg蜜等が用い
られる。窒素源としては、アンモニアガス、アンモニア
水、アンモニウム塩その他が使用できる。
The method of culturing the thus obtained coryneform bacteria capable of producing tryptophan to produce and accumulate tryptophan is not particularly different from the method conventionally used for the production of tryptophan using coryneform bacteria. . That is, the culture medium contains carbon sources, nitrogen sources, inorganic ions, and organic Eaf such as amino acids and vitamins as necessary.
It is the usual one containing fl nutrients. As the carbon source, glucose, sucrose, lactose, etc., starch hydrolyzate containing these, whey, θg honey, etc. are used. As the nitrogen source, ammonia gas, aqueous ammonia, ammonium salt, etc. can be used.

培養ば好気的条件下で培地のρ11及び温度を適宜3J
!II節しつつ、実質的にトリプト77フの生産蓄積が
停止するまで行なわれる。
When culturing, adjust the ρ11 and temperature of the medium to 3 J under aerobic conditions.
! As described in Section II, the process is continued until the production and accumulation of tryptopide-77 is substantially stopped.

トリプトファン生産菌の分子育種に加え、さらに、本発
明によって得られるもう一つの大きな利点は、ブレビバ
クテリウムのトリプトファンオペロンのプロモーターが
E、coliのトリプトファンオペロン い活1にを有し、かつその末尾の構造から予測されろ様
に強いターミネータ−を有しており、またコリ名ホルム
型細菌内においてトリプトファンにより発現調節を受け
るオペレーターを存していることである。E.coli
での異種遺伝子例えば、インク−フェリン、成長ホルモ
ン、インターロイキン、神経成長因子、或いはその他生
理活性ポリペプチド又は酵素等の発現又は異種蛋白の過
剰生産においては、E.coli l−リブトファンプ
ロモーター、オペレーター、及びターミネーターが繁用
されている。即ち、本発明によって得られたトリプトフ
ァンオペロンは、コリネホルム型細菌におけるし一トリ
プトファン生産菌の分子育種を勿論促進するが、さらに
E.coli系、或いは他のコリネボルム型細菌におけ
る遺伝子の強力な発現、及びその調節を行い得るプロモ
ーター、オペレーター、及ヒ、ターミネータ−を有する
ものであり、このDNA配列を用いて上記の異種遺伝子
を強力に発現し、過剰生産することが可能である。
In addition to the molecular breeding of tryptophan-producing bacteria, another great advantage obtained by the present invention is that the promoter of the tryptophan operon of Brevibacterium has the promoter of the tryptophan operon of E. coli and its trailing It has a strong terminator, as expected from its structure, and also contains an operator whose expression is regulated by tryptophan in coli form bacteria. E. coli
Expression of a heterologous gene, such as ink-ferrin, growth hormone, interleukin, nerve growth factor, or other bioactive polypeptides or enzymes, or overproduction of a heterologous protein in E. The E. coli l-ributophane promoter, operator, and terminator is frequently used. That is, the tryptophan operon obtained by the present invention naturally promotes the molecular breeding of tryptophan-producing bacteria in coryneform type bacteria, but it also promotes the molecular breeding of tryptophan-producing bacteria in coryneform bacteria. It has promoters, operators, humans, and terminators that can strongly express and regulate genes in E. coli or other coryneform bacteria, and this DNA sequence can be used to strongly express the above-mentioned heterologous genes. It is possible to express and overproduce.

また、本発明のDNA配列のうち、遺伝子の発現に関与
する部分であるプロモーター領域、オペレーター領域、
アテニュエーター領域ならびにリポソーム結合領域の塩
基配列、及びターミネータ−領域の塩基配列を各々単独
で、或いはいずれかを組合わせた形で(取り出して)使
用する場合、あるいは、各酵素の構造遺伝子の塩基配列
について、コードされたアミノ酸配列が異ならないよう
に置換して得たDNA配列も、更にいえば、本発明のD
NA配列の任意の部分の塩基を他のものと置換したり、
新たに塩基を挿入したり、又は削除した場合、或いは、
塩基配列の一部を転位させた場合に得られる誘4体およ
びそれにコードされるアミノ酸配列の蛋白も、いずれも
遺伝子の発現及びL−トリプトファン 与えるものと想定され、主要部分を本発明に依存する技
術として本発明の範囲に入るものである。
Furthermore, among the DNA sequences of the present invention, promoter regions, operator regions, which are parts involved in gene expression,
When the base sequences of the attenuator region, liposome binding region, and terminator region are used alone or in combination (taken out), or when the base sequences of the structural genes of each enzyme are used. Furthermore, DNA sequences obtained by substituting sequences so that the encoded amino acid sequences do not differ are also included in the D of the present invention.
Substituting bases in any part of the NA sequence with others,
When a new base is inserted or deleted, or
It is assumed that both the derivative obtained by transposing a part of the base sequence and the protein of the amino acid sequence encoded by it provide gene expression and L-tryptophan, and the main part depends on the present invention. This technology falls within the scope of the present invention.

以下、具体例によって本発明のDNA配列を含むプレヒ
バクテリウムラクトフェルメンタJ、のトップ1−ファ
ンオペロンの取得方法、及び本発明のDNAの塩基配列
の決定とアミノ酸配列の決定、並びに本発明のON八を
用いて形質転換して得られるコリネ型綱菌によるL−1
−リプトファンの生産およびプロモーター、オペレータ
ーについて説明す実施例1。
Hereinafter, specific examples will be given of a method for obtaining the top 1-fan operon of Prehybacterium lactofermenta J containing the DNA sequence of the present invention, determination of the base sequence and amino acid sequence of the DNA of the present invention, and the present invention. L-1 produced by Coryneform bacteria obtained by transformation using ON8 of
- Example 1 describing production of liptophan, promoter and operator.

アンスラニル酸シンターゼ遺伝子、ホスホリボシルアン
スラニル酸トランスフェラーゼ遺伝子、トリプトファン
シンターゼβサブユニツト遺伝子のクローニング 1−1ブレビバクテリウムラクトフエルメンタムのトリ
プトファンオペロンを含む染色体DNAの調製 ブレビバクテリウム・ラクトフェルメンタム^J112
25(FIERM−P4370)を1βのCI′lG培
地(ペプトン1g/d1、酵母エキスIg/d1、グル
コース0、5g/d1、及びNaC6 0. 5 g 
/ diを含み、pH7、2に調整したもの)に植菌し
、30°Cで約3時間振盪培養を行ない、対数増殖期の
菌体を集めた。
Cloning of anthranilate synthase gene, phosphoribosyl anthranilate transferase gene, and tryptophan synthase β subunit gene 1-1 Preparation of chromosomal DNA containing the tryptophan operon of Brevibacterium lactofermentum J112
25 (FIERM-P4370) in 1β CI'lG medium (peptone 1 g/d1, yeast extract Ig/d1, glucose 0, 5 g/d1, and NaC6 0.5 g
/di and adjusted to pH 7.2), cultured with shaking at 30°C for about 3 hours, and the cells in the logarithmic growth phase were collected.

この菌体をリゾチーム・SOSで溶菌させたのち、通常
のフェノール処理法により、染色体DNAを抽出精製し
、最終的に3. 5 mgのDNAを得た。
After lysing this bacterial cell with lysozyme/SOS, the chromosomal DNA is extracted and purified using the usual phenol treatment method, and finally 3. 5 mg of DNA was obtained.

1−2ベクターONへの調製 ベクターとしてρ^J184/l  (分子15.4メ
ガダルトン)を用い、そのDNAを次の様にして調製し
た。
1-2 Preparation of Vector ON Using ρ^J184/l (molecule: 15.4 megadaltons) as a vector, its DNA was prepared as follows.

まず面封844をプラスミ1′として保有するブレヒ゛
ハクテリウl、・ラクトノェルシメンタム八月2037
を100m1のCMG培地に接種し、30℃で対数増殖
!IJl後ル1まで培養したのち、リゾチームSDS処
理により溶菌させ、30.000X g、  30分の
超遠心により上清を得た。フェノール処理ののち、2容
のエタノールを加えてDNAを沈澱回収した。これを少
量のTEN緩衝液(20mMトリス塩酸塩、20mM 
hl!、  1mM [EDTA  (pH8,0) 
)に溶解後、塩化セシウムーエヂジウムブロミド密度勾
配平衡遠心によりプラスミド画分を分離し、最終的にp
AJ 1844プラスミドDNA約200μgを得た。
First, Lactonorcimentum August 2037, which holds face seal 844 as plasmid 1'
was inoculated into 100ml of CMG medium and grown logarithmically at 30℃! After culturing to IJ1 to L1, the cells were lysed by lysozyme SDS treatment, and a supernatant was obtained by ultracentrifugation at 30,000×g for 30 minutes. After the phenol treatment, 2 volumes of ethanol were added to precipitate and collect the DNA. This was mixed with a small amount of TEN buffer (20mM Tris-HCl, 20mM
hl! , 1mM [EDTA (pH 8,0)
), the plasmid fraction was separated by cesium chloride-edidium bromide density gradient equilibrium centrifugation, and finally p
Approximately 200 μg of AJ 1844 plasmid DNA was obtained.

La S包体DNA断片のベクターへの挿入1−1で得
た染色体DNAl0μgと1−2で得たブラスミl”D
NA 5μgとを制限エンドヌクレアーゼPst  I
でそれぞれを37℃に1時間保持し、切断した。65°
Cに10分間加熱した後、両反応液を混合し、ATP及
びジチオスレイトール存在下、T4ファージ由来のDN
^リガーゼによって10℃に24時間保持しDNA鎖を
連結せしめた。ついで反応液を、65°Cにて5分間加
熱し、反応液に2倍容のエタノールを加えて連結された
DNAの沈澱を採取した。
Insertion of La S envelope DNA fragment into vector 10 μg of chromosomal DNA obtained in 1-1 and 10 μg of chromosomal DNA obtained in 1-2
5 μg of NA and restriction endonuclease Pst I
Each was held at 37°C for 1 hour and cut. 65°
After heating at C for 10 minutes, both reaction solutions were mixed and the T4 phage-derived DNA
The DNA strands were ligated by holding at 10°C for 24 hours using ligase. The reaction solution was then heated at 65°C for 5 minutes, and 2 volumes of ethanol was added to the reaction solution to collect the ligated DNA precipitate.

1−4アンスラニル酸シンクーゼ遺伝子、ホスホリボシ
ルアンスラニル酸トランスフェラーゼ遺伝子、及びトリ
プトファンシンターゼβサブユニツト遺伝子のクローニ
ング ブレビバクテリウムラクトフェルメンタムのアンスラニ
ル酸シンターゼ欠損株AS60、ホスホリボシルアンス
ラニル酸トランスフェラーゼ欠損株Nc38、トリプト
ファンシンターゼβサブユニット欠損株11kL30 
(いずれも^J12125を親株とし、N−メチル−N
−ニトロ−N−二1−口ソグアニジンにより変異処理す
ることにより分離した)をDNA受容菌として用いた。
1-4 Cloning of anthranilate syncose gene, phosphoribosylanthranilate transferase gene, and tryptophan synthase β subunit gene Brevibacterium lactofermentum anthranilate synthase-deficient strain AS60, phosphoribosylanthranilate transferase-deficient strain Nc38, tryptophan synthase β subunit deletion strain 11kL30
(Both use J12125 as the parent strain, and N-methyl-N
-nitro-N-21-isoguanidine) was used as the DNA recipient.

形質転換の方法としては、プロトプラストトランスフォ
ーメーション法を用いた。まず、菌株を5mlのCMG
液体培地で対数増殖期の初期まで培養し、ペニシリンG
を0゜6ユニソト7ml添加後、さらに1.5時間振盪
培養し、遠心分離により菌体を集め、菌体を0.5 M
シュークロース、20叶マレイン酸、20mM塩化マグ
ネシウム、3.5%ベナ・7セイブロス(Dirco)
からなるSMMP培地(pl+ 6.5 )0.5mf
fで洗浄した。次いでLomg/mAのりゾチームを含
むSMMP培地に懸濁し30℃で20時間プロ1〜プラ
スト化を図った。6000xg、10分間遠心分xtt
 1&、プロトプラストをSMMPで洗浄し0.5m/
、のS)IMPに再度懸濁した。この様にして得られた
プロトプラスト を5mMEDTA存在下で混合し、ポリエチレングリコ
ールを最終濃度が30%になる様に添加した後、DNA
をプロトプラストに取り込ませるために室温に2分間放
置した。このプロトプラストをSMMf’培地1  m
eで洗浄後、SMMP培地1 m(lに再懸濁し、形質
発現のため、30″Cで2時間培養した。この培養液を
pl+7.0のプロトプラスト再生培地上に塗布した。
The protoplast transformation method was used as the transformation method. First, transfer the bacterial strain to 5 ml of CMG.
Cultured in liquid medium until early logarithmic growth phase, then treated with penicillin G.
After adding 7 ml of 0°6 UniSoto, culture with shaking for another 1.5 hours, collect the bacterial cells by centrifugation, and reduce the bacterial cells to 0.5 M.
Sucrose, 20-maleic acid, 20mM magnesium chloride, 3.5% Bena-7 Sabros (Dirco)
SMMP medium (pl+ 6.5) consisting of 0.5mf
Washed with f. Next, the cells were suspended in an SMMP medium containing Lmg/mA norizozyme and allowed to undergo pro1-plast formation at 30°C for 20 hours. Centrifuge at 6000xg for 10 minutes xtt
1&, protoplasts were washed with SMMP and 0.5 m/
, S) resuspended in IMP. The protoplasts thus obtained were mixed in the presence of 5mM EDTA, polyethylene glycol was added to a final concentration of 30%, and then the DNA
The cells were left at room temperature for 2 minutes to allow them to be incorporated into protoplasts. The protoplasts were placed in 1 m of SMMf' medium.
After washing with e.g., the cells were resuspended in 1 ml of SMMP medium and cultured at 30''C for 2 hours for expression. This culture solution was spread on protoplast regeneration medium at pl+7.0.

プロトプラスト再生培地は蒸留水11あたり1−リス(
ヒドロキシメチル)アミノメタン1 2 g, X(1
 0.5 g,グルコース10g1MgCAz・6tl
zO 8.1 g,  CaCjl!z・2Hz0 2
.2 g、ペプトン4g、粉末酵母エキス4g、カザミ
ノ酸(D i f co社)  1 g 、 K2HP
O4.0. 2 g、コハク酸ナトリウム135g、寒
天8g及びクロラムフェニコール3μg7m I!を含
む。
The protoplast regeneration medium is 1-Lis(
1 2 g of hydroxymethyl)aminomethane, X(1
0.5 g, glucose 10g1MgCAz・6tl
zO 8.1 g, CaCjl! z・2Hz0 2
.. 2 g, peptone 4 g, powdered yeast extract 4 g, casamino acid (Difco) 1 g, K2HP
O4.0. 2 g, sodium succinate 135 g, agar 8 g and chloramphenicol 3 μg 7 m I! including.

30℃で2週間培養後、各受容菌について各々&’]2
5000 個のクロラムフェニコール耐性コロニーが出
現してきたのでこれを最少培地(2%グルコース、1%
硫酸アンモニウム、0.3%尿素、0.1%りん酸二水
素カリウム、0.04%硫酸マグネシウム7水塩、2 
ppm鉄イオン、2 ppmマンガンイオン、200μ
g/lサイアミン塩酸塩、50℃g/lビオチン、カザ
ミノ酸(Dirco)  3 g / 7!、クロラム
フェニコール10μg /ln (1 、pH7、 O
 、寒天1、8%)にレプリカし、クロラムフェニコー
ル耐性でかつトリプトファン要求性の消失した株をAS
60を用いた区分から2株、llh 3’ 8を用いた
区分から1株、寛30を用いた区分から1株得た。
After two weeks of incubation at 30°C, each recipient bacterium was incubated with &']2
5,000 chloramphenicol-resistant colonies appeared, which were then transferred to minimal medium (2% glucose, 1%
Ammonium sulfate, 0.3% urea, 0.1% potassium dihydrogen phosphate, 0.04% magnesium sulfate heptahydrate, 2
ppm iron ion, 2 ppm manganese ion, 200μ
g/l thiamine hydrochloride, 50°C g/l biotin, casamino acids (Dirco) 3 g/7! , chloramphenicol 10 μg/ln (1, pH 7, O
, agar 1.8%), and the strain that is chloramphenicol resistant and loses tryptophan auxotrophy was transformed into AS.
Two strains were obtained from the classification using 60, one strain from the classification using llh3'8, and one strain from the classification using Kan30.

上記5株からプラスミドを抽出したところ、いずれのプ
ラスミドもヘクタープラスミドpAJ1844よりも明
らかに大きく、AS60を用いた区分から得た、キ且I
Mえブレスミ1′をptrplE36 、pLrp[i
4、阻38を用いた区分から得た組換えプラスミドをp
trp03851゜No、30を用いた区分から得た3
■換えプラスミドをpLrpB301と名付けた。
When plasmids were extracted from the five strains mentioned above, all of the plasmids were clearly larger than the Hector plasmid pAJ1844.
Me breath 1' ptrplE36, pLrp[i
4. The recombinant plasmids obtained from the partitioning using Inhibi 38 were
3 obtained from classification using trp03851°No.30
(2) The replacement plasmid was named pLrpB301.

1−57f¥形質転換 14で得た組換えプラスミドptrp[i36 、pむ
rpE4、pt、rpD3851 、ptrpB301
上に各々アンスラニル酸シンターゼ遺伝子、ホスホリボ
シルアンスラニル酸トランスフェラーゼ遺伝子、トリプ
トファンシンターゼβザブユニット遺伝子が存在するこ
とを確認するため、ptrpE36 、ptrpE4を
AS60に、ptrpl)3851を階38に、ptr
pB301をNO,30に再度形質11云喚した。
1-57f¥ Recombinant plasmid ptrp[i36, pmurpE4, pt, rpD3851, ptrpB301 obtained in Transformation 14
To confirm the presence of the anthranilate synthase gene, phosphoribosyl anthranilate transferase gene, and tryptophan synthase β subunit gene, respectively, ptrpE36 and ptrpE4 were placed in AS60, ptrpl) 3851 was placed in floor 38, and ptr
pB301 was retransferred to NO. 30.

化したクロラムフェニルコール耐性コロニーのうぢそれ
ぞれ10個を釣り上げ、トリプトファン要求性を調べた
。その結果、いずれもが要求性を消失しており、pLr
pH36、ptrpE4、にはアンスラニル酸シンター
ゼ遺伝子が、ptrpD3851には、ホスホリボシル
アンスラニル酸トランスフェラーゼ遺伝子が、p tr
pB301にはトリプトファンシンターセβナブユニソ
ト遺伝子が存在することが明らかになった。ただしpt
rpE4の形質転換株では栄養要求性の消失の程度、及
び最少培地上でのアンスラニル酸の蓄積がp trpE
36の形質転換株に比較して悪(、ptrpE4にはア
ンスラニル酸シンターゼの遺伝子の一部が欠けているの
ではないかと示唆された。
Ten chloramphenylcol-resistant colonies were picked up and their tryptophan requirement was examined. As a result, all of them lost their requirement, and pLr
pH36, ptrpE4 contains the anthranilate synthase gene, ptrpD3851 contains the phosphoribosyl anthranilate transferase gene, ptr
It was revealed that pB301 contains the tryptophan synthase β nabuunisoto gene. However, pt.
In the rpE4 transformed strain, the degree of loss of auxotrophy and the accumulation of anthranilic acid on the minimal medium were determined by p trpE4.
It was suggested that ptrpE4 may lack part of the anthranilate synthase gene compared to the 36 transformed strains.

1−6 Ml換えプラスミドの挿入DNA断片の制限酵
素地図の作製 実施例1−2で用いた方法により組換えプラスミドpL
rpE36  、ptrp[E4、ptrpD3851
  、ptrpB301を3周製し、常法に従い各種制
限酵素で切断し挿入DNA断片の制限酵素地図を作製し
た(第1図)。
1-6 Preparation of restriction enzyme map of inserted DNA fragment of Ml recombinant plasmid Recombinant plasmid pL was created by the method used in Example 1-2.
rpE36, ptrp[E4, ptrpD3851
, ptrpB301 was prepared three times and cut with various restriction enzymes according to conventional methods to prepare a restriction enzyme map of the inserted DNA fragment (Fig. 1).

実施例2゜ ブレビバクテリウムラクトフェルメンタムのトリプトフ
ァンオペロン ブレビバクテリウムラクトフェルメンタムAJ1122
5から自然突然変異により分離した5−フルオロトリプ
トファン抵抗性のIlh1041(+・リフトファンに
よるアンスラニル酸シンターゼのフィードバック阻害が
解除した株)から実施例1で示した方法により染色体D
NAを調製し、制限酵素Bamlll或いはSail、
又はXholで完全に切断し、E.coliのベクター
pLJ(、18(Messing,J.、et al.
、Gene。
Example 2 Tryptophan operon of Brevibacterium lactofermentum Brevibacterium lactofermentum AJ1122
Chromosomal D
Prepare NA, use restriction enzyme Bamll or Sail,
or complete cleavage with Xhol and E. E.coli vector pLJ (18) (Messing, J., et al.
, Gene.

■,103ー].L9(1985))の各制限酵素切断
部位に連結し、[i.coli J旧09(Messi
ng,J.、et al.+Gene+33+103−
119(1985))を形質転換し、X−Gal (5
−bromo−4chloro−3− indoly+
− β−galactoside) 、 IPTG(i
 Sopropy ’ーβーDーthioーgalac
topyranoside)、アンピシリンを含むし寒
天培地にブレーティングした。37℃で24時間培養後
出現した白色コロニー合計約1500コロニーを二l・
ロセルロースフィルター上に釣り上げた。実施例1で得
たアンスラニル酸シンターゼ遺伝子(trp[i)を有
するp trpE36の1.2kb.のPstI挿入断
片をプローブにして、コロニーハイブリダイゼイション
(Grunstein。
■, 103-]. L9 (1985)) into each restriction enzyme cleavage site, [i. coli J old 09 (Messi
ng, J. , et al. +Gene+33+103-
119 (1985)) and transformed X-Gal (5
-bromo-4chloro-3- indoly+
- β-galactoside), IPTG (i
Sopropy '-β-D-thio-galac
topyranoside) and ampicillin and plated on agar medium. After culturing at 37°C for 24 hours, a total of about 1,500 white colonies appeared in 2 liters.
fished onto a cellulose filter. 1.2 kb of ptrpE36 containing the anthranilate synthase gene (trp[i) obtained in Example 1. Colony hybridization (Grunstein.

M.、Walls,J.:Methods in Ii
nzymoloBy,飢.379、Δcademic 
Press Inc.+New York(1979)
)を行ない制御K11酵素BamH Iを用した区分か
ら1つ、制限酵素Sallを使用した区分から1つのポ
ジティブクローンを得た。[lamH 1区分から得た
組換えプラスミドをptrpE97 、Sa11区分か
ら得たプラスミドをptrpE42と名付け、実施例1
で示した方法に挿入ptrpB301の挿入Pstl断
片と同じ制限酵素地図を有限酵素地図を有していること
が明らかとなった。
M. , Walls, J. :Methods in Ii
nzymoloBy, starvation. 379, Δacademic
Press Inc. +New York (1979)
), and one positive clone was obtained from the section using the control K11 enzyme BamH I and one positive clone was obtained from the section using the restriction enzyme Sall. [The recombinant plasmid obtained from the lamH 1 section was named ptrpE97, and the plasmid obtained from the Sa11 section was named ptrpE42, Example 1
It was revealed that the inserted Pstl fragment of ptrpB301 had the same restriction enzyme map as the inserted Pstl fragment using the method shown in .

又、p trpE97とptrpE42は共通のBam
)II−Sall断片を有していた。
In addition, p trpE97 and ptrpE42 have a common Bam
) II-Sall fragment.

実施例3 N−(5−ホスホリポシル)アンスラニル酸インメラー
ゼーインドール−3−グリセロールリン酸シンターゼ遺
伝子(trpc)のサブクローニング及びトリプトファ
ンシンターゼのサブユニット遺伝子( trpA)のサ
ブクローニング第1図の組換えプラスミドの挿入DNA
断片の制限酵素地図の比較からtrpD遺伝子とtrp
B遺伝子の間にtrpC遺伝子が、trpB遺伝子の下
流にtrpA遺伝子が存在するのでばないかと考えられ
ていた。そこで各遺伝子の存在を確認するため以下の実
験を行った。
Example 3 Subcloning of the N-(5-phospholiposyl)anthranilate inmerase indole-3-glycerol phosphate synthase gene (trpc) and subcloning of the tryptophan synthase subunit gene (trpA) The recombinant plasmid shown in FIG. insert DNA
The trpD gene and trp were identified by comparing the restriction enzyme maps of the fragments.
It was thought that the trpC gene exists between the B genes, and the trpA gene exists downstream of the trpB gene. Therefore, the following experiment was conducted to confirm the existence of each gene.

3−1 trpcl伝子のザブクローニング組換えプラ
スミドp trpE97から第1図に示した約2 kb
、のSst[−1EcoRI断片を分画し、5stl、
EcoRIで切断したpLIC19(Messing、
J、、et al、、Gene、 33゜103−1!
9.1985)に連結し、圏虹プロモーターからの転写
が可能になるように配置した。或いは第1図の約2.6
kb、の5stl−11ind m断片を分画しSs口
3-1 Subcloning of trpcl gene Approximately 2 kb shown in Figure 1 from recombinant plasmid p trpE97
The Sst[-1EcoRI fragment of , 5stl,
pLIC19 (Messing,
J,,et al,,Gene, 33°103-1!
9.1985) and arranged to enable transcription from the Kenji promoter. Or about 2.6 in Figure 1
The 5stl-11ind m fragment of kb was fractionated into Ss.

tlindlIIで切断したpUclB(Messin
B、J、、at al、+Gene。
pUclB (Messin) cut with tlindlII
B, J,, at al, +Gene.

η、 103−119.1985))に連結し、h虹プ
ロモーターからの転写が可能になるように配置し、E、
coli結果、5stl−EcoRI断片、或いは5s
jl暑find Ui断片を有する組換えプラスミドは
、IE、coliの要求性を消失させた。
η, 103-119.1985)), positioned to allow transcription from the h rainbow promoter, E,
coli results, 5stl-EcoRI fragment, or 5s
The recombinant plasmid containing the jl heat find Ui fragment abolished the auxotrophy of IE and coli.

3−2 trpA遺伝子の存在の確認 組換えプラスミドp trpE97から第1図に示した
約2.4kb、のNrur−namllT断片を分画し
、Sma l 。
3-2 Confirmation of existence of trpA gene The approximately 2.4 kb Nrur-namllT fragment shown in FIG. 1 was fractionated from the recombinant plasmid ptrpE97, and was separated into Smal.

[1amll+で切断したpU(,18に連結し、Ia
cプロモーターからの転写が可能になるように配置し、
ε、coli   CGSCNo、5644   (t
rp八3へ+   rha−L   λ −)  を形
質転換した。その結果、Nrul−tlamlll断片
を存する組換えプラスミドを保持する形質転換株では、
トリジ1〜フアン要求性の消失が認められた。
[pU cut with 1amll+ (ligated to , 18, Ia
arranged so that transcription from the c promoter is possible,
ε, coli CGSCNo., 5644 (t
+ rha-L λ −) was transformed into rp83. As a result, in the transformed strain carrying the recombinant plasmid containing the Nrul-tlamllll fragment,
Disappearance of Toriji 1-Fan requirement was observed.

実施例4゜ トリプトファンオペロンの塩基配列の決定実施例1で得
られたptrpE36 、ptrpD3851、ptr
pB301及び実施例2で得られたptrpE97を有
する形質転換株から各々プラスミドの調製を行った。
Example 4 Determination of base sequence of tryptophan operon ptrpE36, ptrpD3851, ptr obtained in Example 1
Plasmids were prepared from each of the transformants having pB301 and ptrpE97 obtained in Example 2.

各々のプラスミドの挿入DNA断片について、UCl3
或いはpU(,19又は旧3mplO(Messing
、J、and Vicira。
For each plasmid insert DNA fragment, UCl3
or pU(, 19 or old 3mplO(Messing
, J., and Vicira.

J、、 Genす、9.269(1982))を用いる
dideoxy chaintermination法
(Sanger、F、eL al、、Proc、Nat
l。
J. Gen. 9.269 (1982)) using the dideoxy chain termination method (Sanger, F., eL al., Proc., Nat.
l.

Acad、Sci、USA74.5463(1977)
)により第2図に示した塩基配列決定のための戦略図に
よって、1−リブトファンオペロン全塩基配列を決定し
た。その結果、次に示すDNA塩基配列が得られ、この
塩基配列はブレビバクテリウムラクトフェルメンタムの
トリプトファンオペロンの発現に必要なRNAポリメラ
ーゼの結合部位(trpプロモーター)、リボゾームの
結合部位、アンスラニル酸シンクーゼ遺伝子(jrpl
E、 trpG) 、ホスホリボシルアンスラニル酸ト
ランスフェラーゼ遺伝子(trpD)、N−(5−ホス
ホリボシル)アンスラニル酸イソメラーゼーインドール
−3−グリセロールリン酸シンターゼ遺伝子(trpC
)、トリプトファンシンターゼ遺伝子(trpH,tr
pA)に対応するDNA配列、及び停止配列(ターミネ
ータ−)を含むことが判明した。
Acad, Sci, USA74.5463 (1977)
), the entire nucleotide sequence of the 1-ributophane operon was determined according to the strategy diagram for nucleotide sequence determination shown in FIG. As a result, the following DNA base sequence was obtained, and this base sequence contains the RNA polymerase binding site (trp promoter) necessary for the expression of the tryptophan operon of Brevibacterium lactofermentum, the ribosome binding site, and the anthranilate syncusase gene. (jrpl
E, trpG), phosphoribosyl anthranilate transferase gene (trpD), N-(5-phosphoribosyl) anthranilate isomerase indole-3-glycerol phosphate synthase gene (trpC
), tryptophan synthase gene (trpH, tr
pA) and a termination sequence (terminator).

又、プロモーターとtrpE構造遺伝子との間は、転写
レベルでの発現調節機構であるリプレッジ:jンに関与
するオペレーター領域及び翻訳レベルでの発現調節機構
アテニュエーションに関与するリーダーペブヂド(tr
pL)をコードする領域とアテニュエータ一様構造が存
在する領域が存在すると推定された(第3図)。ターミ
ネーターの構造は第6図に示した。
Furthermore, between the promoter and the trpE structural gene, there is an operator region involved in the expression regulation mechanism at the transcriptional level, reprej.
pL) and a region in which an attenuator-like structure exists (Fig. 3). The structure of the terminator is shown in FIG.

実施例5゜ プロモーターの単離と活性確認 塩基配列の決定の結果、推定されたトリプトファンオペ
ロンのプロモーターを単離し、その機能を確認するため
、第4図に示したように、ptrpE97、或いはpt
rpE36のEcoRI−Hind III断片(約5
50bp、)をE、coliのプロモータープローブベ
クターpkk+’75−6 (7ンビシリン耐性(Ap
)、テトラサイクリン(Tc)感受性)(Brosiu
s、J、、Gene 27,15H1984))にサブ
クローンした。得られた組換えプラスミドptrpPO
1はE、coli中でTc耐性を発現した。
Example 5 Promoter Isolation and Activity Confirmation As a result of the nucleotide sequence determination, the putative tryptophan operon promoter was isolated, and in order to confirm its function, ptrpE97 or ptrpE97 or pt
EcoRI-Hind III fragment of rpE36 (approximately 5
50 bp, ) to E. coli promoter probe vector pkk+'75-6 (7 nubicillin resistant (Ap
), tetracycline (Tc) sensitive) (Brosiu
Gene 27, 15H1984)). The obtained recombinant plasmid ptrpPO
1 expressed Tc resistance in E. coli.

さらに、94M330  由来のトリフ1〜プリム耐性
のベクター、pAJ226のPstT切断部位にPst
lで切断した上記組換えプラスミドptrpPO1を連
結し、ブレビバクテリウムAJ11225を形質転換し
たところTc耐性の発現が認められた。この組換えプラ
スミドptrρPO2を有する形質転換株のTc耐性度
は第1表に示したように、Trp、存在下ではTcに対
する感受性が増した。従ってこの領域には、プロモータ
ーとオペレーターが存在すると考えられる。
Furthermore, we added Pst to the PstT cleavage site of pAJ226, a 94M330-derived trif1-prim resistant vector.
When Brevibacterium AJ11225 was transformed with the ligated recombinant plasmid ptrpPO1 cut with l, expression of Tc resistance was observed. As shown in Table 1, the Tc resistance of the transformant having this recombinant plasmid ptrρPO2 increased in the presence of Trp. Therefore, it is thought that a promoter and an operator exist in this region.

次にプロモーター領域をさらに限定するため、その結果
Alul−11ind ’M断片(51bP、)及び1
lael−11ind III (135bp)上にプ
ロモーターが存在することが明らかとなった。同様の結
果をE、coliのプロモーターブローブヘクターpK
K232−8(Ap耐性、クロラムフェニコール感受性
)を用いて得ており、Alul−11indlII断片
(51bp、)上にプロモーターが存在することを確認
した。
Next, to further restrict the promoter region, the resulting Alul-11ind'M fragment (51bP,) and 1
It was revealed that a promoter exists on lael-11ind III (135 bp). Similar results were obtained with E. coli promoter probe Hector pK.
K232-8 (Ap resistant, chloramphenicol sensitive) was used, and it was confirmed that the promoter was present on the Alul-11indlII fragment (51 bp).

実施例6゜ ホスホリボシルアンスラニル酸1−ランスフェラーゼ遺
伝子(trpD)、N−(5−ホスホリボシル)アンス
ラニル酸イソメラーゼーインドール−3−グリセロール
リン酸シンターゼ遺伝子(LrpC) 、l・リプトフ
ァンシンターゼ遺伝子(trpH,trpA)の増幅に
よるトリプトファン生産菌の育種。
Example 6 Phosphoribosyl anthranilate 1-transferase gene (trpD), N-(5-phosphoribosyl) anthranilate isomerase indole-3-glycerol phosphate synthase gene (LrpC), l-liptophan synthase gene (trpH Breeding of tryptophan-producing bacteria by amplification of , trpA).

クローニングしたプレビバクテリウムラクトフェルメン
タムトリプトファンオベロンのうちtrpD。
trpD of the cloned Previbacterium lactofermentum tryptophan oberon.

trpC+ trpB、 trpAの4遺伝子を有する
m喚えプラスミI・pAJ234を用いて、L−トリプ
トファン生産について検討した。
L-tryptophan production was investigated using plasmid I pAJ234, which has 4 genes: trpC, trpB, and trpA.

pAJ234ヲ用い、m−フルオロフェニルアラニンベ
だ方法により形質転換し、クロラムフェニコール耐性を
指標として形質転換株を選択した。かくして得られた八
J12195 (FERM−P4O10)を培養し、ト
リプトファン生産能を調べたところ第2表に示す結果を
得た。
Transformation was performed using pAJ234 using the m-fluorophenylalanine method, and transformed strains were selected using chloramphenicol resistance as an indicator. The thus obtained 8J12195 (FERM-P4O10) was cultured and its tryptophan production ability was examined, and the results shown in Table 2 were obtained.

培養はトリプトファン生産培地(グルコース130 g
 、 (Nl14.)zsOa  25 g、フマル酸
12g。
Culture was performed using tryptophan production medium (glucose 130 g
, (Nl14.)zsOa 25 g, fumaric acid 12 g.

酢酸3ml、KHzP041 g 、 Mn5Oa ’
 711zO10mg、MgSO4・711□O1g、
d−ビオチン50μg1サイア)ン塩酸塩2000μg
、メチオニン400■、チIllシン650mg、大豆
蛋白酸加水分解液「味液」50 m12、CaC0:+
 50 gを水1βに含む、pl+6.5゜)20mf
fを500mj+の坂ロフラスコに入れたものに被検菌
株を植えつけ、30°Cにて72時間、振盪下に行なっ
た。培養後、遠心上清中のL−1リプトフアンをロイコ
ノストック・メセンテロイデス(Leuconosto
c mesenteroides)八TCC8042を
定量菌株として用いるバイオアッセイ法によって求めた
3 ml acetic acid, KHzP041 g, Mn5Oa'
711zO10mg, MgSO4・711□O1g,
d-Biotin 50μg 1 Cyane hydrochloride 2000μg
, methionine 400■, thiillin 650mg, soybean protein acid hydrolyzate "Ajiri" 50ml, CaC0:+
50 g in 1β water, pl + 6.5°) 20mf
The test bacterial strain was inoculated into a 500 mj+ Sakalo flask and incubated at 30°C for 72 hours with shaking. After culturing, L-1 lymphophan in the centrifuged supernatant was extracted from Leuconostoc mesenteroides (Leuconosto mesenteroides).
c mesenteroides) 8 TCC8042 was determined by a bioassay method using as a quantitative strain.

第2表 形質転換株のL −トIJブトファン蓄積量尚
、M247を得るためには寄託されたAJ 12195
より宿主細胞を損うことなく宿主細胞中の複合プラスミ
ドを除去することが可能である。即ち、プラスミドは宿
主より自然に失なわれることもあるし、「除去」操作に
よって除くこともできる(Bact、Rev、、 36
.p3(i!−405(1972))。他の除去操作の
例は以下の通りである。AJ 12195をCMG液体
液体1定地種し、37℃で一晩培養(高温処理)後、培
養液を適当に希釈し、クロラムフェニコールを含有し又
は含有しないCMG寒天培地に塗布し、フェニコール感
受性様として分離される1株がM247である。
Table 2 Accumulation amount of L-toIJ butophane in transformed strain In order to obtain M247, deposited AJ 12195
It is possible to remove complex plasmids in host cells without damaging the host cells. That is, the plasmid can be naturally lost from the host, or it can be removed by a "removal" operation (Bact, Rev., 36).
.. p3 (i!-405 (1972)). Examples of other removal operations are as follows. AJ 12195 was inoculated in a CMG liquid 1 field, cultured overnight at 37°C (high temperature treatment), the culture solution was diluted appropriately, and applied to a CMG agar medium containing or not containing chloramphenicol. One strain isolated as being susceptible to call is M247.

【図面の簡単な説明】[Brief explanation of drawings]

第1図 AM +Aえプラスミドの挿入DNA断片の制限酵素地
図 第2図 ブレビバクテリウムラクトフェルメンタムのトリプトフ
ァンオペロン の戦略図 種々の制限酵素で切断したDNA断片をpU(、18 
。 pLIcl 9或いは旧3mplOにクローン化し、矢
印で示した方向へ、dideoxy法により塩基配列を
決定した 第3図 ブレビバクテリウムラクトフェルメンタムのトリプトフ
ァンオペロン −ブレビバクテリウムラクトフェルメンタムのLrpE
構造遺伝子の5′上流域の塩基配列並びに推定されるア
ミノ酸配列、及び、予想されるRNへの2次構造− 第4図 ブレビバクテリウムラクトフェルメンタl、のトリプト
ファンオペロンの構造とプロモーター、オペレーター領
域の単離、同定のための戦略第5図 ブレビバクテリウムラクトフェルメンタムのトリプトフ
ァンオペロンの構造とプロモーター、オペレーター領域
の限定のための戦略 −35及び−10は[E.coliのプロモーターコン
センサス配列の−35、及び−10Tf4域に相当する
領域を示す 第6図 ブレビバクテリウムラクトフェルメンタムのトリプトフ
ァンオペロンのターミネータ−の構造
Figure 1: Restriction enzyme map of the DNA fragment inserted into the AM +A plasmid Figure 2: Strategy diagram of the tryptophan operon of Brevibacterium lactofermentum
. Figure 3: Tryptophan operon of Brevibacterium lactofermentum - LrpE of Brevibacterium lactofermentum, cloned into pLIcl 9 or old 3mplO, and the base sequence determined by the dideoxy method in the direction indicated by the arrow.
Base sequence of the 5' upstream region of the structural gene, deduced amino acid sequence, and predicted secondary structure to RN - Figure 4 Structure, promoter, and operator region of the tryptophan operon of Brevibacterium lactofermenta l. Figure 5. Strategy for isolation and identification of Brevibacterium lactofermentum tryptophan operon structure and strategy for defining promoter and operator regions -35 and -10 are [E. Figure 6 shows the regions corresponding to the -35 and -10Tf4 regions of the coli promoter consensus sequence. Structure of the terminator of the tryptophan operon of Brevibacterium lactofermentum.

Claims (1)

【特許請求の範囲】 1)m−RNAの合成をコントロールするオペレーター
領域、m−RNAの合成をコントロールするプロモータ
ー領域、m−RNAの合成をコントロールするアテニュ
エーター領域、蛋白合成に必要なリボゾームとm−RN
Aとの結合領域、リーダーペプチドをコードする領域、
トリプトファン合成系の酵素群をコードする領域及び最
後にm−RNAの合成を停止させるシグナルを形成する
ターミネーター領域が含まれる下記第一式に示される配
列よりなるDNA第1式 【遺伝子配列があります】 2)特許請求の範囲第1項記載の各種領域よりなる群か
ら選ばれる1以上よりなるDNA。 3)DNAが人工的に合成されたDNA又は微生物に由
来するDNAである特許請求の範囲第1項又は第2項記
載のDNA。 4)微生物がコリネ型細菌である特許請求の範囲第3項
記載のDNA。 5)微生物がブレビバクテリウム属に属する微生物であ
る特許請求の範囲第3項記載のDNA。 6)微生物がブレビバクテリウム・ラクトフェルメンタ
ムに属する微生物である特許請求の範囲第3項記載のD
NA。 7)DNAが1部置換、変異又は削除されたDNAであ
る特許請求の範囲第1項ないし第6項記載のDNA。 8)DNAがプラスミド又はファージ由来のベクターに
組込まれたDNAである特許請求の範囲第1項ないし第
7項記載のDNA。 9)特許請求の範囲第2およびまたは8項記載のDNA
を用いるL−トリプトファンの製造法。 10)下記第2式ないし第7式のアミノ酸配列をもつペ
プチド又は蛋白(第2式ないし第7式中Aアラニン、C
システイン、Dアスパラギン酸、Eグルタミン酸、Fフ
ェニルアラニン、Gグリシン、Hヒスチジン、Iイソロ
イシン、Kリジン、Lロイシン、Mメチオニン、Nアス
パラギン、Pプロリン、Qグルタミン、Rアルギニン、
Sセリン、Tスレオニン、Vバリン、Wトリプトファン
、Yチロシンを示す。 なお、第2式はトリプE酵素、第3式はトリプG酵素、
第4式はトリプD酵素、第5式はトリプC酵素、第6式
はトリプB酵素、第7式はトリプA酵素のアミノ酸配列
を示す。)。 第2式 【アミノ酸配列があります】 第3式 【アミノ酸配列があります】 第4式 【アミノ酸配列があります】 第5式 【アミノ酸配列があります】 第6式 【アミノ酸配列があります】 第7式 【アミノ酸配列があります】 11)アミノ酸配列が1部置換、変異、又は削除された
アミノ酸配列である特許請求の範囲第10項記載のペプ
チド又は蛋白。 12)特許請求の範囲第10項ないし第11項記載のペ
プチド又は蛋白をコードするDNA。 13)特許請求の範囲第1項及び又は第7項記載のプロ
モーター領域の配列を有するDNAを用いる遺伝子発現
法。 14)特許請求の範囲第1項及び又は第7項記載のオペ
レーター領域の配列を有するDNAを用いる遺伝子発現
法。 15)特許請求の範囲第1項及び又は第7項記載のアテ
ニュエーターおよび、またはリーダーペプチド領域の配
列を有するDNAを用いる遺伝子発現法。 16)特許請求の範囲第1項及び又は第7項記載のター
ミネーター領域の配列を有するDNAを用いる遺伝子発
現法。
[Claims] 1) An operator region that controls m-RNA synthesis, a promoter region that controls m-RNA synthesis, an attenuator region that controls m-RNA synthesis, and ribosomes necessary for protein synthesis. m-RN
A binding region, a region encoding a leader peptide,
DNA formula 1 consists of the sequence shown in Formula 1 below, which includes a region encoding the enzyme group of the tryptophan synthesis system and a terminator region that forms a signal to stop synthesis of m-RNA at the end [There is a gene sequence] 2) DNA consisting of one or more selected from the group consisting of various regions described in claim 1. 3) The DNA according to claim 1 or 2, wherein the DNA is artificially synthesized DNA or DNA derived from a microorganism. 4) The DNA according to claim 3, wherein the microorganism is a coryneform bacterium. 5) The DNA according to claim 3, wherein the microorganism belongs to the genus Brevibacterium. 6) D according to claim 3, wherein the microorganism is a microorganism belonging to Brevibacterium lactofermentum.
N.A. 7) The DNA according to claims 1 to 6, wherein the DNA is partially substituted, mutated, or deleted. 8) The DNA according to claims 1 to 7, wherein the DNA is DNA integrated into a plasmid or a phage-derived vector. 9) DNA according to claim 2 and or 8
A method for producing L-tryptophan using 10) Peptides or proteins having the amino acid sequences of formulas 2 to 7 below (A alanine, C
Cysteine, D-aspartic acid, E-glutamic acid, F-phenylalanine, G-glycine, H-histidine, I-isoleucine, K-lysine, L-leucine, M-methionine, N-asparagine, P-proline, Q-glutamine, R-arginine,
Indicates S serine, T threonine, V valine, W tryptophan, and Y tyrosine. In addition, the second formula is tryp-E enzyme, the third formula is tryp-G enzyme,
The fourth formula shows the amino acid sequence of tryp D enzyme, the fifth formula shows the tryp C enzyme, the sixth formula shows the tryp B enzyme, and the seventh formula shows the tryp A enzyme. ). Formula 2 [There is an amino acid sequence] Formula 3 [There is an amino acid sequence] Formula 4 [There is an amino acid sequence] Formula 5 [There is an amino acid sequence] Formula 6 [There is an amino acid sequence] Formula 7 [There is an amino acid sequence] 11) The peptide or protein according to claim 10, wherein the amino acid sequence is partially substituted, mutated, or deleted. 12) DNA encoding the peptide or protein according to claims 10 to 11. 13) A gene expression method using DNA having the promoter region sequence according to claim 1 and/or claim 7. 14) A gene expression method using DNA having the operator region sequence according to claim 1 and/or claim 7. 15) A gene expression method using DNA having the sequence of the attenuator and/or leader peptide region according to claim 1 and/or claim 7. 16) A gene expression method using DNA having the terminator region sequence according to claim 1 and/or claim 7.
JP61087600A 1986-04-16 1986-04-16 Novel promoter and gene expression method using the promoter Expired - Lifetime JPH06102024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61087600A JPH06102024B2 (en) 1986-04-16 1986-04-16 Novel promoter and gene expression method using the promoter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61087600A JPH06102024B2 (en) 1986-04-16 1986-04-16 Novel promoter and gene expression method using the promoter

Publications (2)

Publication Number Publication Date
JPS62244382A true JPS62244382A (en) 1987-10-24
JPH06102024B2 JPH06102024B2 (en) 1994-12-14

Family

ID=13919475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61087600A Expired - Lifetime JPH06102024B2 (en) 1986-04-16 1986-04-16 Novel promoter and gene expression method using the promoter

Country Status (1)

Country Link
JP (1) JPH06102024B2 (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547864A (en) * 1993-01-13 1996-08-20 Ajinomoto Co., Inc. Coryneform bacteria deficient in a cell surface protein
US5563052A (en) * 1988-04-18 1996-10-08 Kyowa Hakko Kogyo Co., Ltd Process for producing L-tryptophan
WO2001005979A1 (en) * 1999-07-19 2001-01-25 Ajinomoto Co., Inc. Process for producing target substance by fermentation method
EP1702980A1 (en) 1999-07-01 2006-09-20 Basf Aktiengesellschaft Corynebacterium glutamicum gene encoding Hpr of phosphoenolpyruvate:sugar phosphotransferase system
WO2007100009A1 (en) 2006-03-03 2007-09-07 Ajinomoto Co., Inc. Method for production of l-amino acid
US7273721B2 (en) 1999-06-25 2007-09-25 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
WO2007114465A1 (en) 2006-03-30 2007-10-11 Ajinomoto Co., Inc. Method for production of carboxylic acid using methanol-utilizing bacterium
WO2007125954A1 (en) 2006-04-28 2007-11-08 Ajinomoto Co., Inc. Microorganism capable of producing l-amino acid, and process for production of l-amino acid
WO2008044409A1 (en) 2006-10-10 2008-04-17 Ajinomoto Co., Inc. Method for production of l-amino acid
WO2008075483A1 (en) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. Process for production of l-amino acid
US7393675B2 (en) 1999-06-25 2008-07-01 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding proteins involved in carbon metabolism and energy production
WO2008090770A1 (en) 2007-01-22 2008-07-31 Ajinomoto Co., Inc. Microorganism capable of producing l-amino acid, and method for production of l-amino acid
WO2008093829A1 (en) 2007-02-01 2008-08-07 Ajinomoto Co., Inc. Method for production of l-amino acid
US7410766B2 (en) 1999-07-01 2008-08-12 Basf Se Corynebacterium glutamicum genes encoding phosphoenolpyruvate: sugar phosphotransferase system proteins
WO2008102861A1 (en) 2007-02-22 2008-08-28 Ajinomoto Co., Inc. Method of producing l-amino acid
WO2008102572A1 (en) 2007-02-20 2008-08-28 Ajinomoto Co., Inc. Method for production of l-amino acid or nucleic acid
US7439050B2 (en) 1999-06-25 2008-10-21 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding diaminopimelate epimerase
WO2009031565A1 (en) 2007-09-04 2009-03-12 Ajinomoto Co., Inc. Amino acid-producing microorganism and method of producing amino acid
EP2055771A2 (en) 2006-03-23 2009-05-06 Ajinomoto Co., Inc. A method for producing an L-amino acid using bacterium of the Enterobacteriaceae family with attenuated expression of a gene coding for small RNA
DE102008049533A1 (en) 2007-09-27 2009-06-18 Ajinomoto Co., Inc. A method for producing amino acids using a bacterium of the family Enterobacteriaceae
WO2009088049A1 (en) 2008-01-10 2009-07-16 Ajinomoto Co., Inc. Method for production of desired substance by fermentation process
WO2009093703A1 (en) 2008-01-23 2009-07-30 Ajinomoto Co., Inc. Method of producing l-amino acid
EP2093291A1 (en) 2008-02-19 2009-08-26 Ajinomoto Co., Inc. A method for constructing an operon containing translationally coupled genes
WO2010027045A1 (en) 2008-09-08 2010-03-11 味の素株式会社 Microorganism capable of producing l-amino acid, and method for producing l-amino acid
WO2010084995A2 (en) 2009-01-23 2010-07-29 Ajinomoto Co.,Inc. A method for producing an l-amino acid
WO2011013707A1 (en) 2009-07-29 2011-02-03 味の素株式会社 Method for producing l-amino acid
WO2011024555A1 (en) 2009-08-28 2011-03-03 味の素株式会社 Process for production of l-amino acid
WO2011055710A1 (en) 2009-11-06 2011-05-12 味の素株式会社 Method for producing l-amino acid
EP2345667A2 (en) 2010-01-15 2011-07-20 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the enterobacteriaceae family
WO2011096554A1 (en) 2010-02-08 2011-08-11 味の素株式会社 MANUFACTURING METHOD FOR MUTANT rpsA GENE AND L-AMINO ACID
WO2011102305A2 (en) 2010-02-18 2011-08-25 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE Enterobacteriaceae FAMILY HAVING A MUTANT ADENYLATE CYCLASE
WO2012011596A1 (en) 2010-07-21 2012-01-26 Ajinomoto Co.,Inc. A method for producing an l- amino acid using a bacterium of the enterobacteriaceae family with enhanced expression of the bssr gene
WO2012011595A1 (en) 2010-07-21 2012-01-26 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE ENTEROBACTERIACEAE FAMILY HAVING ATTENUATED EXPRESSION OF THE astCADBE OPERON
EP2460873A1 (en) 2006-12-12 2012-06-06 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family with attenuated expression of any of the cynT, cynS, cynX or cynR genes or a combination thereof
WO2012077739A1 (en) 2010-12-10 2012-06-14 味の素株式会社 Method for producing l-amino acid
EP2559754A2 (en) 2011-08-18 2013-02-20 Ajinomoto Co., Inc. Method for producing an L-amino acid using a bacterium of the family enterobacteriaceae having enhanced expression of the flagella formation and motility cascade genes
EP2796560A1 (en) 2013-04-23 2014-10-29 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the family Enterobacteriaceae having attenuated expression of the yjjK gene
WO2015030019A1 (en) 2013-08-30 2015-03-05 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE FAMILY ENTEROBACTERIACEAE HAVING ATTENUATED EXPRESSION OF THE znuACB GENE CLUSTER
WO2015041265A1 (en) 2013-09-17 2015-03-26 味の素株式会社 Method for producing l-amino acid from seaweed-derived biomass
WO2015050234A1 (en) 2013-10-02 2015-04-09 味の素株式会社 Ammonia control apparatus and ammonia control method
WO2015050276A1 (en) 2013-10-02 2015-04-09 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having attenuated expression of a phosphate transporter-encoding gene
WO2015060314A1 (en) 2013-10-21 2015-04-30 味の素株式会社 Method for producing l-amino acid
WO2015122544A1 (en) 2014-02-14 2015-08-20 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE FAMILY ENTEROBACTERIACEAE HAVING OVEREXPRESSED THE yajL GENE
EP3098319A1 (en) 2015-05-28 2016-11-30 Ajinomoto Co., Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having an attenuated expression of a gsha gene
WO2017146195A1 (en) 2016-02-25 2017-08-31 Ajinomoto Co., Inc. A method for producing l-amino acids using a bacterium of the family enterobacteriaceae overexpressing a gene encoding an iron exporter
EP3385389A1 (en) 2017-04-03 2018-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid from fructose
WO2020071538A1 (en) 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
WO2020171227A1 (en) 2019-02-22 2020-08-27 Ajinomoto Co., Inc. METHOD FOR PRODUCING L-AMINO ACIDS USING A BACTERIUM BELONGING TO THE FAMILY Enterobacteriaceae HAVING OVEREXPRESSED ydiJ GENE
WO2020204179A1 (en) 2019-04-05 2020-10-08 Ajinomoto Co., Inc. Method of producing l-amino acids
WO2021060438A1 (en) 2019-09-25 2021-04-01 Ajinomoto Co., Inc. Method for producing l-amino acids by bacterial fermentation

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563052A (en) * 1988-04-18 1996-10-08 Kyowa Hakko Kogyo Co., Ltd Process for producing L-tryptophan
US5547864A (en) * 1993-01-13 1996-08-20 Ajinomoto Co., Inc. Coryneform bacteria deficient in a cell surface protein
US7393675B2 (en) 1999-06-25 2008-07-01 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding proteins involved in carbon metabolism and energy production
US7273721B2 (en) 1999-06-25 2007-09-25 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
US7439050B2 (en) 1999-06-25 2008-10-21 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding diaminopimelate epimerase
US7425435B2 (en) 1999-07-01 2008-09-16 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding phosphoenolpyruvate: sugar phosphotransferase system proteins
EP1702980A1 (en) 1999-07-01 2006-09-20 Basf Aktiengesellschaft Corynebacterium glutamicum gene encoding Hpr of phosphoenolpyruvate:sugar phosphotransferase system
US7410766B2 (en) 1999-07-01 2008-08-12 Basf Se Corynebacterium glutamicum genes encoding phosphoenolpyruvate: sugar phosphotransferase system proteins
WO2001005979A1 (en) * 1999-07-19 2001-01-25 Ajinomoto Co., Inc. Process for producing target substance by fermentation method
WO2007100009A1 (en) 2006-03-03 2007-09-07 Ajinomoto Co., Inc. Method for production of l-amino acid
EP2055771A2 (en) 2006-03-23 2009-05-06 Ajinomoto Co., Inc. A method for producing an L-amino acid using bacterium of the Enterobacteriaceae family with attenuated expression of a gene coding for small RNA
EP2351830A1 (en) 2006-03-23 2011-08-03 Ajinomoto Co., Inc. A method for producing an L-amino acid using bacterium of the Enterobacteriaceae family with attenuated expression of a gene coding for small RNA
WO2007114465A1 (en) 2006-03-30 2007-10-11 Ajinomoto Co., Inc. Method for production of carboxylic acid using methanol-utilizing bacterium
WO2007125954A1 (en) 2006-04-28 2007-11-08 Ajinomoto Co., Inc. Microorganism capable of producing l-amino acid, and process for production of l-amino acid
WO2008044409A1 (en) 2006-10-10 2008-04-17 Ajinomoto Co., Inc. Method for production of l-amino acid
EP2460873A1 (en) 2006-12-12 2012-06-06 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family with attenuated expression of any of the cynT, cynS, cynX or cynR genes or a combination thereof
WO2008075483A1 (en) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. Process for production of l-amino acid
WO2008090770A1 (en) 2007-01-22 2008-07-31 Ajinomoto Co., Inc. Microorganism capable of producing l-amino acid, and method for production of l-amino acid
WO2008093829A1 (en) 2007-02-01 2008-08-07 Ajinomoto Co., Inc. Method for production of l-amino acid
US8178322B2 (en) 2007-02-20 2012-05-15 Ajinomoto Co., Inc. Method for producing an L-amino acid or a nucleic acid
WO2008102572A1 (en) 2007-02-20 2008-08-28 Ajinomoto Co., Inc. Method for production of l-amino acid or nucleic acid
WO2008102861A1 (en) 2007-02-22 2008-08-28 Ajinomoto Co., Inc. Method of producing l-amino acid
WO2009031565A1 (en) 2007-09-04 2009-03-12 Ajinomoto Co., Inc. Amino acid-producing microorganism and method of producing amino acid
DE102008049533A1 (en) 2007-09-27 2009-06-18 Ajinomoto Co., Inc. A method for producing amino acids using a bacterium of the family Enterobacteriaceae
WO2009088049A1 (en) 2008-01-10 2009-07-16 Ajinomoto Co., Inc. Method for production of desired substance by fermentation process
EP2749652A2 (en) 2008-01-10 2014-07-02 Ajinomoto Co., Inc. A method for producing a target substance by fermentation
WO2009093703A1 (en) 2008-01-23 2009-07-30 Ajinomoto Co., Inc. Method of producing l-amino acid
EP2093291A1 (en) 2008-02-19 2009-08-26 Ajinomoto Co., Inc. A method for constructing an operon containing translationally coupled genes
WO2010027045A1 (en) 2008-09-08 2010-03-11 味の素株式会社 Microorganism capable of producing l-amino acid, and method for producing l-amino acid
WO2010084995A2 (en) 2009-01-23 2010-07-29 Ajinomoto Co.,Inc. A method for producing an l-amino acid
WO2011013707A1 (en) 2009-07-29 2011-02-03 味の素株式会社 Method for producing l-amino acid
WO2011024555A1 (en) 2009-08-28 2011-03-03 味の素株式会社 Process for production of l-amino acid
WO2011055710A1 (en) 2009-11-06 2011-05-12 味の素株式会社 Method for producing l-amino acid
EP2345667A2 (en) 2010-01-15 2011-07-20 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the enterobacteriaceae family
WO2011096554A1 (en) 2010-02-08 2011-08-11 味の素株式会社 MANUFACTURING METHOD FOR MUTANT rpsA GENE AND L-AMINO ACID
WO2011102305A2 (en) 2010-02-18 2011-08-25 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE Enterobacteriaceae FAMILY HAVING A MUTANT ADENYLATE CYCLASE
WO2012011596A1 (en) 2010-07-21 2012-01-26 Ajinomoto Co.,Inc. A method for producing an l- amino acid using a bacterium of the enterobacteriaceae family with enhanced expression of the bssr gene
WO2012011595A1 (en) 2010-07-21 2012-01-26 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE ENTEROBACTERIACEAE FAMILY HAVING ATTENUATED EXPRESSION OF THE astCADBE OPERON
WO2012077739A1 (en) 2010-12-10 2012-06-14 味の素株式会社 Method for producing l-amino acid
EP2559754A2 (en) 2011-08-18 2013-02-20 Ajinomoto Co., Inc. Method for producing an L-amino acid using a bacterium of the family enterobacteriaceae having enhanced expression of the flagella formation and motility cascade genes
WO2013024904A1 (en) 2011-08-18 2013-02-21 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having enhanced expression of the flagella formation and motility cascade genes
EP2796560A1 (en) 2013-04-23 2014-10-29 Ajinomoto Co., Inc. A method for producing an L-amino acid using a bacterium of the family Enterobacteriaceae having attenuated expression of the yjjK gene
WO2015030019A1 (en) 2013-08-30 2015-03-05 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE FAMILY ENTEROBACTERIACEAE HAVING ATTENUATED EXPRESSION OF THE znuACB GENE CLUSTER
WO2015041265A1 (en) 2013-09-17 2015-03-26 味の素株式会社 Method for producing l-amino acid from seaweed-derived biomass
WO2015050234A1 (en) 2013-10-02 2015-04-09 味の素株式会社 Ammonia control apparatus and ammonia control method
WO2015050276A1 (en) 2013-10-02 2015-04-09 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having attenuated expression of a phosphate transporter-encoding gene
WO2015060314A1 (en) 2013-10-21 2015-04-30 味の素株式会社 Method for producing l-amino acid
WO2015122544A1 (en) 2014-02-14 2015-08-20 Ajinomoto Co.,Inc. A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE FAMILY ENTEROBACTERIACEAE HAVING OVEREXPRESSED THE yajL GENE
EP3098319A1 (en) 2015-05-28 2016-11-30 Ajinomoto Co., Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having an attenuated expression of a gsha gene
WO2017146195A1 (en) 2016-02-25 2017-08-31 Ajinomoto Co., Inc. A method for producing l-amino acids using a bacterium of the family enterobacteriaceae overexpressing a gene encoding an iron exporter
EP3385389A1 (en) 2017-04-03 2018-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid from fructose
WO2020071538A1 (en) 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
WO2020171227A1 (en) 2019-02-22 2020-08-27 Ajinomoto Co., Inc. METHOD FOR PRODUCING L-AMINO ACIDS USING A BACTERIUM BELONGING TO THE FAMILY Enterobacteriaceae HAVING OVEREXPRESSED ydiJ GENE
WO2020204179A1 (en) 2019-04-05 2020-10-08 Ajinomoto Co., Inc. Method of producing l-amino acids
WO2021060438A1 (en) 2019-09-25 2021-04-01 Ajinomoto Co., Inc. Method for producing l-amino acids by bacterial fermentation

Also Published As

Publication number Publication date
JPH06102024B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
JPS62244382A (en) Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan
AU602364B2 (en) Plasmids which resistance to spectinomycin &amp; streptomycin which replicate in corynebacterium and brevibacterium
KR100630604B1 (en) Process for constructing amino acid-producing bacterium and process for producing amino acid by fermentation method with the use of the thus constructed amino acid-producing bacterium
GB2053906A (en) Producing l-phenlalanine by fermentation
EP0088166A2 (en) Method for expressing a gene
Eberz et al. Three trans-acting regulatory functions control hydrogenase synthesis in Alcaligenes eutrophus
JP3979679B2 (en) DNA fragment having promoter function
WO1996026289A1 (en) Stress-tolerant microorganism and method of the production of fermentation product
EP0137348B1 (en) Recombinant dna, bacteria carrying said recombinant dna and a process for producing l-threonine or l-isoleucine using said bacteria
WO1999007853A1 (en) Process for producing l-glutamic acid by fermentation method
US5426050A (en) Plasmid vectors for expression of genes in coryneform bacteria
US4968609A (en) Coryneform bacteria carrying recombinant DNA and a process for producing aromatic amino acids using said bacteria
JPS63240794A (en) Production of l-tryptophan
JPH06225776A (en) Production of riboflavin
CA1283070C (en) Process for production of l-phenylalanine by fermentation
EP0215388B1 (en) Plasmid vector and a method for regulation of gene expression using the same
KR102246288B1 (en) Microorganisms for producing putrescine and process for producing putrescine using them
JPH06125779A (en) Production of aromatic amino acid using coryneform bacterium having recombinant dna
JPS62186795A (en) Production of amino acid
JPS6178378A (en) Coryne-type bacteria having recombinant dna, and production of aromatic amino acid using same
JPS61260892A (en) Production of l-phenylalanine
JPS6030693A (en) Production of l-isoleucine
EP0170257B1 (en) Process for producing l-tryptophan
JPH06277073A (en) Gene dna coding for translocation machinery of protein
EP0085958A2 (en) Method for producing l-phenylalanine by fermentation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term