WO2001005979A1 - Process for producing target substance by fermentation method - Google Patents

Process for producing target substance by fermentation method Download PDF

Info

Publication number
WO2001005979A1
WO2001005979A1 PCT/JP2000/004774 JP0004774W WO0105979A1 WO 2001005979 A1 WO2001005979 A1 WO 2001005979A1 JP 0004774 W JP0004774 W JP 0004774W WO 0105979 A1 WO0105979 A1 WO 0105979A1
Authority
WO
WIPO (PCT)
Prior art keywords
target substance
microorganism
culture
rna polymerase
dna
Prior art date
Application number
PCT/JP2000/004774
Other languages
French (fr)
Japanese (ja)
Inventor
Eiichiro Kimura
Hisao Ito
Osamu Kurahashi
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to AU60184/00A priority Critical patent/AU6018400A/en
Publication of WO2001005979A1 publication Critical patent/WO2001005979A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1247DNA-directed RNA polymerase (2.7.7.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine

Definitions

  • the present invention relates to a method for producing a target substance using a microorganism, and more particularly, to a method for producing a target substance such as L-amino acid, an antibiotic, a vitamin, a growth factor, or a physiologically active substance. It discloses a means for improving the productivity of a target substance in a method of producing using a microorganism.
  • a target substance such as L-amino acid, an antibiotic, a vitamin, a growth factor, or a physiologically active substance.
  • BACKGROUND ART As a typical method for producing a substance using a microorganism, a method for producing L-amino acid by a fermentation method is known. L-amino acid is used not only as a seasoning and food, but also as a component of various nutrient mixtures for medical purposes.
  • L-amino acids such as L-lysine and L-homoserine by microorganisms.
  • Known microorganisms capable of producing L-amino acids by fermentation include coryneform bacteria, Escherichia bacteria, Bacillus bacteria, and Serratia bacteria.
  • the productivity of target substances has been remarkably improved by the above-mentioned microorganism breeding technology.
  • the present invention relates to a method for producing a target substance such as an L-amino acid, an antibiotic, a vitamin, a growth factor, or a physiologically active substance using a microorganism. It is an object to provide a method for improvement.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that when the RNA polymerase activity of a microorganism is enhanced, the growth of the microorganism is improved and the production amount of a target substance is increased.
  • the invention has been completed.
  • the present invention is as follows.
  • a microorganism capable of producing a target substance and having enhanced RNA polymerase activity (1) A microorganism capable of producing a target substance and having enhanced RNA polymerase activity.
  • microorganism (4) The microorganism according to (1), wherein the microorganism is a bacterium belonging to the genus Escherichia or a coryneform bacterium.
  • a method comprising culturing the microorganism according to any of (1) to (4) in a medium, producing and accumulating a target substance in the culture, and collecting the target substance from the culture. Method of manufacturing a material.
  • target substance producing ability refers to the microorganism of the present invention in a medium. The ability to accumulate a significant amount of a target substance in a medium or cells when cultured.
  • present invention will be described in detail.
  • the target substance produced by the present invention is not particularly limited as long as it can be produced by a microorganism.
  • a microorganism For example, L-threonine, L-lysine, L-glutamic acid, L-one-isine, L-isoleucine, L-valine, L- Various L-amino acids such as phenylalanine are exemplified.
  • substances that are biosynthesized by microorganisms such as nucleic acids such as guanylic acid and inosinic acid, vitamins, antibiotics, growth factors, and bioactive substances.
  • the present invention can be used for substances that are not currently produced using microorganisms, as long as they can be produced by microorganisms.
  • the microorganism used in the present invention is not particularly limited, and any microorganism conventionally used for producing a useful substance by a fermentation method can be used.
  • the present invention can be applied to microorganisms that have not been conventionally used industrially as long as they have the ability to produce the target substance.
  • the microorganism of the present invention may originally have the ability to produce the target substance, or may be given the ability to produce the target substance by breeding using a mutation method or recombinant DNA technology. It may be something.
  • Escherichia coli bacteria such as Escherichia coli
  • coryneform bacteria such as Brevibacterium lactofermenum
  • Bacillus bacteria such as Bacillus subtilis
  • Serratia bacteria such as Serratia marcescens.
  • the target substance is L-threonine, Escherichia coli VKPM B-3996 (RIA 1867) (see US Pat. No. 5,175,107), Corynebacterium acetoacidophilum AJ12318 (FERM BP-1172) (See U.S. Pat. No. 5,188,949), and in the case of L-lysine, Escherichia coli AJ11442 (NRRL B-12185, FERM BP-1543) (see U.S. Pat. No.
  • the microorganism used in the present invention is a microorganism having an ability to produce a target substance and having enhanced RNA polymerase activity.
  • RNA polymerase is composed of the subunits of HI, ⁇ ,? ', And HI, and HI, ⁇ , and ⁇ ' are encoded by rpoA, rpoB, and rpoC genes, respectively.
  • rpoA, rpoB and rpoC genes respectively.
  • Escherichia coli rpo B and rpo C form an operon.
  • there are a plurality of types of ⁇ subunits and in Escherichia coli, 32 and 72 are known, each of which is coded by rpoH and rpoD. Of these, rp0D functions specifically during the growth phase and is preferred in the present invention.
  • RNA polymerase subunit a gene fragment encoding each RNA polymerase subunit is ligated to a vector, preferably a multicopy vector, that functions in the target microorganism to produce recombinant DNA. Then, it may be introduced into a target microorganism and transformed. Increased intracellular copy number of each gene results in enhanced RNA polymerase activity.
  • RNA polymerase As a gene encoding each subunit of RNA polymerase, a gene of any microorganism such as a bacterium belonging to the genus Escherichia such as Escherichia coli or a coryneform bacterium can be used.
  • a gene of any microorganism such as a bacterium belonging to the genus Escherichia such as Escherichia coli or a coryneform bacterium can be used.
  • rp oA GenBank / EMBL / DDBJ Accession J01685
  • rpo D GenBank / EMBL / DDBJ Accession J01687
  • a primer can be synthesized based on these nucleotide sequences, and the chromosomal DNA of Escherichia coli can be transformed into a type II and obtained by PCR.
  • the primers shown in SEQ ID NOs: 1 and 2 were used as primers for amplifying the rp0A gene
  • the primers shown in SEQ ID NOS: 3 and 4 were used as primers for amplifying the rpo BC op
  • Primers for amplification include the primers shown in SEQ ID NOS: 5 and 6.
  • Each gene amplified by the PCR method is connected to a vector DNA capable of autonomous replication in cells such as Escherichia coli 'corynecoryneform bacteria' to prepare recombinant DNA, which is then introduced into Escherichia coli cells. , The subsequent operations become slow.
  • a vector capable of autonomous replication in Escherichia coli cells a brassmid vector is preferable, and a vector capable of autonomous replication in host cells is preferable.
  • Examples of vectors capable of autonomous replication in coryneform bacterium cells include pAM330 (see Japanese Patent Application Publication No. 58-67699), pHM1519 (see Japanese Patent Application Publication No. 58-77895), and the like.
  • pAM330 see Japanese Patent Application Publication No. 58-67699
  • pHM1519 see Japanese Patent Application Publication No. 58-77895
  • a DNA fragment having the ability to enable autonomous replication of plasmid in coryneform bacteria is extracted from these vectors and inserted into the Escherichia coli vector, whereby autonomous replication in both Escherichia coli and coryneform bacteria occurs. Not possible Can be used as a shuttle vector.
  • Such shuttle vectors include the following. Microorganisms carrying the respective vectors and the accession numbers of the international depository organizations are shown in parentheses.
  • PAJ611 Escherichia Cori AJ11884 (FERM BP-138)
  • vectors are obtained from the deposited microorganism as follows.
  • the cells collected during the logarithmic growth phase were lysed using lysozyme and SDS, centrifuged at 300,000 X g, and polyethylene glycol was added to the supernatant obtained from the lysate. Separate and purify the mixture by centrifugation at the equilibrium density gradient of ethidium.
  • a recombinant DNA In order to prepare a recombinant DNA by ligating a gene encoding each subunit of RNA polymerase and a vector, the vector is cut with a restriction enzyme that matches the end of the DNA fragment containing each gene. The DNA fragment and the vector are ligated. Ligation is usually performed using a ligase such as T4DNA ligase. All of the genes encoding each subunit may be inserted into a single vector, or may be separately inserted into two or three or more different vectors. In the examples described below, two types of recombinant vectors, one obtained by inserting the rpoA gene and the rpo BC operon into the same vector and the other obtained by inserting the rpoD gene into another vector, were used. Each of these genes was introduced into a coryneform bacterium by using a recombinant vector.
  • Transformation by introducing the recombinant DNA prepared as described above into a microorganism may be performed according to a transformation method according to the microorganism to be used which has been reported so far.
  • a transformation method for example, a method of increasing the permeability of DNA by treating recipient cells with calcium chloride, as reported for Escherichia coli K-12 (Mandel, M. and Higa, A., J. Mol. Biol., 53, 159 (1970)), and a method for preparing DNA from transgenic cells and introducing DNA as described in Bacillus' subtilis (Duncan, CH, Wilson, GA and Young, FE, Gene, 1, 153 (19 77)).
  • the recombinant DNA is introduced into the DNA recipient by transforming the cells of the DNA recipient into protoplasts or spheroplasts that readily incorporate the recombinant DNA, as is known for Bacillus subtilis, actinomycetes, and yeast.
  • Bacillus subtilis, actinomycetes, and yeast are also applicable.
  • the electric pulse method see Japanese Patent Application Laid-Open No. 2-207791 is available. It is effective.
  • Enhancement of RNA polymerase activity can also be achieved by allowing multiple copies of the gene encoding each of the RNA polymerase subunits to be present on the chromosome DNA of the microorganism.
  • homologous recombination is performed using a sequence present on the chromosome DNA in multiple copies as a target.
  • Sequences present in multiple copies on the chromosome DNA include native DNA and inverted repeats present at the end of the transposable element.
  • a gene encoding each of the RNA polymerase subunits may be mounted on a transposon and transferred to introduce multiple copies into chromosomal DNA. It is possible. Either method results in an increase in the copy number of the gene encoding each of the RNA polymerase subunits in the transformant, resulting in an increase in RNA polymerase activity.
  • the enhancement of RNA polymerase activity can also be achieved by replacing the expression regulatory sequence such as the promoter of the gene encoding each of the subunits of RNA polymerase with a strong one. Is achieved (see Japanese Patent Application Laid-Open No. 1-215280). For example, lac promoter evening one, trp promoter, trc promoter evening one, tac promoter, P R promoter of lambda phage, P L promoter, tet promoter evening one, amyE promoter evening one, spac promoter and so forth are known as strong promoters I have. Replacement with these promoters enhances RNA polymerase activity by enhancing expression of genes encoding each of the RNA polymerase subunits.
  • the enhancement of expression control sequences may be combined with increasing the copy number of each gene.
  • the microorganism of the present invention has other properties such as enhanced RNA polymerase activity and enhanced biosynthetic enzymes of the target substance. It may be provided.
  • the biosynthetic enzymes of the target substance for example, when the target substance is L-glutamic acid, glutamate dehydrogenase, glutamine synthetase, glutamate synthase, isoquenate dehydrogenase, Aconitate hydrase, citrate synthase, pyruvate carboxylase, phosphoenolpyruvate carboxylase, enolase, phosphogly Cellom enzyme, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, triosulfose isomerase, fructose bisphosphate aldolase, phosphofructokinase, glucose phosphate isomerase, etc.
  • the microorganism of the present invention may have a reduced or defective activity of an enzyme that catalyzes a reaction that produces a compound other than the target substance by branching off from the target substance biosynthetic pathway.
  • the enzyme may be a-ketoglutarate dehydrogenase, isoquenate lyase, acetyl phosphate transferase, acetate kinase, acetate hydroxy acid synthase Acetolactate synthase, acetyl formate transferase, lactate dehydrogenase, L-glutamate decarboxylase, 1-pyrroline dehydrogenase and the like.
  • the microorganism of the present invention may be provided with other properties that are favorable for production of the target substance.
  • the target substance is L-glutamic acid and the microorganism is a coryneform bacterium
  • a temperature-sensitive mutation to a biotin-inhibiting substance such as a surfactant is imparted to a medium containing an excessive amount of biotin.
  • L-glutamic acid can be produced in the absence of a biotin action inhibitor (see W096 / 06180).
  • Examples of such coryneform bacteria include Brevibacterium lactofermenum AJ13029 described in W096 / 06180.
  • the AJ13029 strain was submitted to the Institute of Biotechnology and Industrial Technology, Institute of Industrial Science and Technology (Postal Code 305-8566, Tsukuba 1-3-1-3, Ibaraki, Japan) on September 2, 1994 under the accession number FERM P-14501. Deposited and transferred to an international deposit under the Budapest Treaty on August 1, 1995, and given accession number FE RM BP-5189.
  • a coryneform bacterium capable of producing L-lysine and L-glutamic acid is subjected to a temperature-sensitive mutation against a biotin-inhibiting substance, so that the biotin-inhibiting substance can be expressed in a medium containing an excessive amount of biotin.
  • L-Lysine and L-glutamic acid can be produced simultaneously in the absence (see W096 / 06180). Examples of such strains include Brevipacterium lactofermentum AJ12993 strain described in W096 / 06180.
  • the target substance is produced by culturing a microorganism having an improved target substance production ability in a medium as described above, producing and accumulating the target substance in the medium, and collecting the target substance from the culture. be able to.
  • the medium a well-known medium conventionally used depending on the microorganism to be used may be used. That is, it is a normal medium containing a carbon source, a nitrogen source, inorganic ions and other organic components as required. A special medium for carrying out the present invention is not particularly required.
  • the carbon source sugars such as glucose, lactose, galactose, hydrolysates of fructose and starch, alcohols such as glycerol and sorbitol, and organic acids such as fumaric acid, citric acid, and succinic acid are used. be able to.
  • the nitrogen source inorganic ammonium salts such as ammonium sulfate, ammonium chloride and ammonium phosphate, organic nitrogen such as soybean hydrolysate, ammonia gas, ammonia water and the like can be used.
  • organic trace nutrients it is desirable to include required substances such as vitamin B1, L-homoserine, and L-tyrosine, or an appropriate amount of yeast extract and the like.
  • required substances such as vitamin B1, L-homoserine, and L-tyrosine, or an appropriate amount of yeast extract and the like.
  • small amounts of potassium phosphate, magnesium sulfate, iron ions, manganese ions, etc. are added as needed.
  • the cultivation may be performed under well-known conditions conventionally used depending on the microorganism to be used.
  • culture is preferably performed under aerobic conditions for 16 to 120 hours, and the culture temperature is controlled at 25 ° C to 45 ° C, and the pH is controlled at 5 to 8 during the culture.
  • an inorganic or organic acidic or alkaline substance, ammonia gas or the like can be used.
  • No special method is required in the present invention for collecting the target substance from the medium after the culture. That is, the present invention can be carried out by combining conventionally known ion exchange resin methods, precipitation methods and other methods.
  • RNA polymerase subunit gene rpo A: GenBank / EMBL / DDBJ Accession J01685, rpo B, rpo C: GenBank / EMBL / DDBJ Accession J01678, rpo D: GenBank / EMBL / DDBJ Accession J01687 ).
  • the primers shown in SEQ ID NOS: 1 and 2 were used as primers for amplifying the rpoA gene
  • the primers shown in SEQ ID NOS: 3 and 4 were used as primers for amplifying the rpo BC operon
  • the primers used for amplifying the rpo D gene were used.
  • the primers shown in SEQ ID NOS: 5 and 6 were used as primers.
  • the chromosomal DNA was transformed into type III, the fragment obtained by PCR using the primers shown in SEQ ID NOs: 5 and 6 was digested with EcoRI, and the plasmid pVC7 (described later) was digested with EcoRI. Plasmid pVCD was prepared by insertion into the site.
  • the chromosomal DNA was subjected to PCR using the primers shown in SEQ ID NOs: 3 and 4, and the obtained fragment was subjected to DNA blunting kit (Takara Shuzo (strain) )), And inserted into the smal site of pVCD to construct pVCBCD.
  • PCR was performed using the chromosome DNA as type III and the primers shown in SEQ ID NOS: 1 and 2 and the obtained fragment was blunt-ended in the same manner as described above.
  • the plasmid was blunt-ended in the same manner as described above, and ligated to the blunt-ended rpoA gene fragment to construct plasmid pVCBCAD.
  • the pVC7 is as follows, a vector one for Eshierihia coli pHSG39 9 (Cm r;. Takeshita , S. et al, Gene, 61, 63-74, (1987) see) Burebibaku Teriumu - easy to It was constructed by combining pAM330, which is a cloved plasmid of Tofarmentum. pAM330 was prepared from Brevibacterium lactofermentum ATCC13869 strain.
  • pHSG399 is cleaved with Avail (manufactured by Takara Shuzo Co., Ltd.), which is a single-site cleavage enzyme, blunt-ended with T4 DNA polymerase, and then cut with Hindlll (manufactured by Takara Shuzo Co., Ltd.). It was connected to PAM330, which had been blunt-ended with 4 DNA polymerase.
  • pVC7 is capable of autonomous replication in E. coli and Brevibacterium lactofamentum cells, and retains the phZ299-derived multiburg cloning site and lacZ '.
  • Brevibacterium lactofermentum AJ13029 was transformed with plasmid pVCBCAD by the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791).
  • the strain carrying pVCBCAD was selected on a medium containing 5 mg / ml chloramphenicol.
  • culture for producing L-glucamic acid was performed as follows.
  • AJ13029 / pVCBCAD cells obtained by culturing in a CM2B plate medium containing 5 ⁇ g / ml chloramphenicol were inoculated into a seed culture medium containing the same drug concentration and having the composition shown in Table 1.
  • the seed culture was obtained by shaking culture at 31.5 ° C for 24 hours.
  • the main culture medium having the composition shown in Table 1 was dispensed at a rate of 300 ml each in a 500-ml glass jar fermenter, sterilized by heating, and then inoculated with 40 ml of the above seed culture.
  • the culture was started at a culture temperature of 31.5 ° C with a stirring speed of 800 to 1300 rpm and an aeration rate of 1/2 to 1 / lvvm.
  • the pH of the culture was maintained at 7.5 with ammonia gas.
  • Eight hours after the start of the culture the culture temperature was shifted to 37 ° C.
  • a strain obtained by transforming a corynebacterium genus AJ13029 strain with pVC7 was used as described above. Table 1 Concentration
  • Protein hydrolyzate (bean concentrate) 30 ml
  • the culture temperature was shifted to 34 ° C, and the culture was performed with shaking until the sugar in the medium was consumed.
  • a strain obtained by transforming Corynepacterium bacterium AJ12993 with pVC7 was cultured in the same manner as described above.
  • the growth of microorganisms that produce a target substance and the productivity of the target substance can be improved.

Abstract

A process for producing a target substance by using a microorganism which comprises culturing the microorganism in a medium, producing and accumulating the target substance in the medium, and then collecting the target substance, wherein use is made of a microorganism capable of producing the target substance and having an enhanced RNA polymerase activity as the microorganism to thereby improve the productivity of the target substance.

Description

明細: 発酵法による目的物質の製造法 技術分野 本発明は、 微生物を利用した目的物質の製造法に関し、 詳しくは、 Lーァミノ 酸、 抗生物質、 ビタミン、 成長因子、 生理活性物質などの目的物質を微生物を利 用して製造する方法において、 目的物質の生産性を改善するための手段を開示す るものである。 背景技術 微生物を利用した物質の製造法の代表的なものとして発酵法による L一アミノ 酸の製造法が知られている。 L一アミノ酸は、 調味料や、 食品として用いられる だけでなく、 医療を目的とする様々な栄養混合物のコンポーネン トとして利用さ れる。 さらに、 動物用飼料添加物として、 製薬業および化学工業における試薬と して、 微生物による L—リジンや L一ホモセリンなどの L—アミノ酸産生のため の成長因子として利用される。 発酵法によって L一アミノ酸を製造できる微生物 としては、 コリネ型細菌、 ェシヱリ ヒア属細菌、 バチルス属細菌、 セラチア属細 菌等が知られている。  TECHNICAL FIELD The present invention relates to a method for producing a target substance using a microorganism, and more particularly, to a method for producing a target substance such as L-amino acid, an antibiotic, a vitamin, a growth factor, or a physiologically active substance. It discloses a means for improving the productivity of a target substance in a method of producing using a microorganism. BACKGROUND ART As a typical method for producing a substance using a microorganism, a method for producing L-amino acid by a fermentation method is known. L-amino acid is used not only as a seasoning and food, but also as a component of various nutrient mixtures for medical purposes. In addition, it is used as an animal feed additive, as a reagent in the pharmaceutical and chemical industries, and as a growth factor for the production of L-amino acids such as L-lysine and L-homoserine by microorganisms. Known microorganisms capable of producing L-amino acids by fermentation include coryneform bacteria, Escherichia bacteria, Bacillus bacteria, and Serratia bacteria.
発酵法によって L—アミノ酸を製造するには、 野生型微生物 (野生株) を用い る方法、 野生株から誘導された栄養要求株を用いる方法、 野生株から種々の薬剤 耐性変異株として誘導された代謝調節変異株を用いる方法、 栄養要求株と代謝調 節変異株の両方の性質を持った株を用いる方法等がある。  To produce L-amino acids by fermentation, a method using a wild-type microorganism (wild strain), a method using an auxotroph derived from the wild strain, and various drug-resistant mutants derived from the wild strain There are methods using metabolic regulatory mutants, and methods using strains having both auxotrophic and metabolic regulatory mutants.
さらに近年は L一アミノ酸の発酵生産に、 組換え D N A技術を用いることが行 われてきた。 この技術では L—アミノ酸生合成系酵素をコードする遺伝子を増強 することにより宿主微生物の L一アミノ酸生合成系を強化することを、 その原理 としている。 これらの事情については例えば 「アミノ酸発酵 学会出版センター In recent years, recombinant DNA technology has been used for fermentative production of L-amino acids. In this technology, the principle is to enhance the L-amino acid biosynthesis system of the host microorganism by enhancing the gene encoding the L-amino acid biosynthesis enzyme. For more information on these circumstances, see, for example,
1 9 8 6年」 に解説されている。 1986 ”.
また、 L—アミノ酸以外にも微生物を用いた発酵法で生産されている物質は多 い。 例えば抗生物質や、 ビタミン等もその例である。 これらの物質の発酵生産に おいても、 組換え DNA技術の利用は、 目的物質又はその前駆体の生合成系酵素 をコードする遺伝子の増強が主なものである。 In addition to L-amino acids, many substances are produced by fermentation using microorganisms. No. For example, antibiotics and vitamins are examples. In the fermentative production of these substances, the use of recombinant DNA technology mainly involves enhancement of genes encoding biosynthetic enzymes of the target substance or its precursor.
上記のような微生物の育種技術により、 目的物質の生産性は著しく改善されて きている。  The productivity of target substances has been remarkably improved by the above-mentioned microorganism breeding technology.
一方、 微生物が産生する物質は、 その物質の生合成系以外にも種々の生化学的 反応の影響を受け、 微生物の生育によっても左右される。 したがって、 目的物質 の生産効率を向上させるために、 培地や培養方法等の培養条件に関する検討が種 々行われている。 しかし、 R N Aポリメラーゼ活性と微生物の生育や目的物質の 生産性との関係については、 検討がなされていない。 発明の開示 本発明は、 L—アミノ酸、 抗生物質、 ビタミン、 成長因子、 生理活性物質など の目的物質を微生物を利用して製造する方法において、 従来の方法と異なる原理 によって目的物質の生産性を改善する方法を提供することを課題とする。  On the other hand, substances produced by microorganisms are affected by various biochemical reactions in addition to the biosynthetic system of the substance, and are affected by the growth of microorganisms. Therefore, in order to improve the production efficiency of the target substance, various studies on culture conditions such as a culture medium and a culture method have been conducted. However, the relationship between the RNA polymerase activity and the growth of microorganisms and the productivity of the target substance has not been studied. DISCLOSURE OF THE INVENTION The present invention relates to a method for producing a target substance such as an L-amino acid, an antibiotic, a vitamin, a growth factor, or a physiologically active substance using a microorganism. It is an object to provide a method for improvement.
本発明者は、 上記課題を解決するために鋭意研究を行った結果、 微生物の RN Aポリメラーゼ活性を増強すると、 同微生物の生育が向上し、 目的物質の生産量 が増大することを見出し、 本発明を完成するに至った。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that when the RNA polymerase activity of a microorganism is enhanced, the growth of the microorganism is improved and the production amount of a target substance is increased. The invention has been completed.
すなわち本発明は、 以下のとおりである。  That is, the present invention is as follows.
( 1 ) 目的物質の生産能を有し、 かつ、 RNAポリメラーゼ活性が増強された微 生物。  (1) A microorganism capable of producing a target substance and having enhanced RNA polymerase activity.
( 2) 前記目的物質が L—アミノ酸である ( 1 ) の微生物。  (2) The microorganism according to (1), wherein the target substance is an L-amino acid.
( 3) RN Aポリメラ一ゼ活性の増強が、 r p oA、 r p o B、 00及び p oDの各遺伝子のコピー数を高めることによるものである ( 1 ) の微生物。 (3) The microorganism of (1), wherein the RNA polymerase activity is enhanced by increasing the copy number of each of the rpoA, rpoB, 00, and poD genes.
(4) 微生物がェシヱリヒア属細菌又はコリネ型細菌である ( 1 ) の微生物。(4) The microorganism according to (1), wherein the microorganism is a bacterium belonging to the genus Escherichia or a coryneform bacterium.
( 5) 前記 ( 1 ) 〜 (4 ) のいずれかの微生物を培地に培養し、 該培養物中に目 的物質を生成蓄積せしめ、 該培養物から目的物質を採取することを特徴とする目 的物質の製造法。 (5) A method comprising culturing the microorganism according to any of (1) to (4) in a medium, producing and accumulating a target substance in the culture, and collecting the target substance from the culture. Method of manufacturing a material.
なお、 本明細書において 「目的物質の生産能」 とは、 本発明の微生物を培地に 培養したときに、 培地中又は菌体中に有意な量の目的物質を蓄積する能力をいう。 以下、 本発明を詳細に説明する。 As used herein, the term “target substance producing ability” refers to the microorganism of the present invention in a medium. The ability to accumulate a significant amount of a target substance in a medium or cells when cultured. Hereinafter, the present invention will be described in detail.
本発明により製造される目的物質は、 微生物によって生産され得る物質であれ ば特に制限されず、 例えば Lースレオニン、 L—リジン、 L—グルタミン酸、 L 一口イシン、 L—イソロイシン、 L—バリン、 L—フエ二ルァラニン等の種々の L一アミノ酸が挙げられる。 その他にも、 グァニル酸、 イノシン酸等の核酸類、 ビタミン類、 抗生物質、 成長因子、 生理活性物質など、 微生物により生合成され る物質が挙げられる。 また、 現在微生物を利用して生産されていない物質であつ ても、 微生物によって生産され得るものであれば本願発明が利用できることはい うまでもない。  The target substance produced by the present invention is not particularly limited as long as it can be produced by a microorganism. For example, L-threonine, L-lysine, L-glutamic acid, L-one-isine, L-isoleucine, L-valine, L- Various L-amino acids such as phenylalanine are exemplified. In addition, substances that are biosynthesized by microorganisms, such as nucleic acids such as guanylic acid and inosinic acid, vitamins, antibiotics, growth factors, and bioactive substances. In addition, it goes without saying that the present invention can be used for substances that are not currently produced using microorganisms, as long as they can be produced by microorganisms.
本発明に用いる微生物は特に制限されず、 従来発酵法による有用物質の生産に 用いられている微生物であれば使用することができる。 また、 従来、 産業上利用 されていない微生物であっても、 目的物質を生産する能力を有する限り、 本発明 を適用することができる。 本発明の微生物は、 本来目的物質を生産する能力を有 するものであってもよいし、 変異法や組換え DN A技術などを利用した育種によ り目的物質を生産する能力を付与されたものであってもよい。  The microorganism used in the present invention is not particularly limited, and any microorganism conventionally used for producing a useful substance by a fermentation method can be used. In addition, the present invention can be applied to microorganisms that have not been conventionally used industrially as long as they have the ability to produce the target substance. The microorganism of the present invention may originally have the ability to produce the target substance, or may be given the ability to produce the target substance by breeding using a mutation method or recombinant DNA technology. It may be something.
具体的には、 ェシエリヒア ' コリ等のェシエリヒア属細菌、 ブレビバクテリウ ム · ラク トファーメン夕ム等のコリネ型細菌、 バチルス · サブチリス等のバチル ス属細菌、 セラチア · マルセッセンス等のセラチア属細菌等が挙げられるが、 こ れらに制限されない。  Specific examples include Escherichia coli bacteria such as Escherichia coli, coryneform bacteria such as Brevibacterium lactofermenum, Bacillus bacteria such as Bacillus subtilis, and Serratia bacteria such as Serratia marcescens. , But not limited to these.
より具体的には以下の菌株が挙げられる。 例えば目的物質が Lースレオニンの 場合はェシヱリヒア ·コリ VKPM B-3996(RIA 1867) (米国特許第 5, 175, 107号参照) 、 コリネバクテリゥム · ァセトァシドフィラム AJ12318 (FERM BP-1172) (米国特許 第 5,188, 949号参照) 等であり、 L—リジンの場合はェシヱリヒア ' コリ AJ1144 2 (NRRL B-12185, FERM BP- 1543) (米国特許第 4, 346, 170号参照) 、 ブレビバクテ リウム ' ラク トファ一メン夕ム AJ11082 (NRRL B-11470) 、 ブレビバクテリウム • ラク トフアーメンタム AJ3990 11 31269)(米国特許第4,066,501号参照) 等 であり、 L—グルタミン酸の場合はェシエリヒア ' コリ AJ12624 (FERM BP- 3853) (フランス特許出願公開第 2,680,178号参照) 、 ブレビパクテリゥム . ラク トファ —メンタム AJ12475 (FERM BP- 2922) (米国特許第 5, 272, 067号参照) 等であり、 L —ロイシンの場合はェシエリ ヒア . コ リ AJ11478 (FERM P- 5274) (特公昭 62-343 97号参照) 、 ブレビパクテリゥム ' ラク トファーメンタム AJ3718 (FERM P-2516) (米国特許第 3, 970, 519号参照) 等であり、 L—イソロイシンの場合はェシヱリ ヒ ァ . コリ KX141 (VKPM B-4781) (欧州特許出願公開第 519, 113号参照) 、 ブレビバ クテリ ゥム · フラバム AJ12149 (FERM BP- 759) (米国特許第 4, 656, 135号参照) 等 であり、 L—パリンの場合はェシエリヒア ' コリ VL1970 (VKPM B-4411)) (欧州 特許出願公開第 519, 113号参照) 、 ブレビパクテリゥム ' ラク トフアーメンタム AJ12341 (FERM BP-1763) (米国特許第 5,188,948号参照) 等であり、 L—フヱニル ァラニンの場合は、 ェシヱリ ヒア . コリ AJ12604 (FERM BP- 3579) (欧州特許出願 公開第 488, 424号参照) 、ブレビパクテリゥム · ラク トフアーメンタム AJ12637 (FERM BP- 4160) (フランス特許出願公開第 2, 686, 898号参照) 等である。 More specifically, the following strains can be mentioned. For example, when the target substance is L-threonine, Escherichia coli VKPM B-3996 (RIA 1867) (see US Pat. No. 5,175,107), Corynebacterium acetoacidophilum AJ12318 (FERM BP-1172) (See U.S. Pat. No. 5,188,949), and in the case of L-lysine, Escherichia coli AJ11442 (NRRL B-12185, FERM BP-1543) (see U.S. Pat. No. 4,346,170), Brevibacte Lium lactofermentum AJ11082 (NRRL B-11470), Brevibacterium lactofamentum AJ3990 1 1 31269) (see U.S. Pat. No. 4,066,501) and the like in the case of L-glutamic acid. '' Kori AJ12624 (FERM BP-3853) (See French Patent Application Publication No. 2,680,178), Brevipacterium. Lactofa-mentum AJ12475 (FERM BP-2922) (see US Pat. No. 5,272,067), and L—leucine for Essieri. Here. AJ11478 (FERM P-5274) (see Japanese Patent Publication No. 62-34397), Brevipacterium 'Lactofermentum AJ3718 (FERM P-2516) (see US Patent No. 3,970,519), etc. In the case of L-isoleucine, Escherichia coli KX141 (VKPM B-4781) (see EP-A-519,113), Brevibacterium flavum AJ12149 (FERM BP-759) (US patent) No. 4, 656, 135), and in the case of L-palin, Escherichia coli VL1970 (VKPM B-4411)) (see European Patent Application Publication No. 519, 113), Brevipacterium 'Lactov Amentham AJ12341 (FERM BP-1763) (see US Pat. No. 5,188,948) and the like. In the case of L-phenylalanine, Escherichia coli AJ12604 (FERM BP-3579) (see European Patent Application Publication No. 488,424), Brevipacterium lactofermentum AJ12637 (FERM BP-4160) (See French Patent Application Publication No. 2,686,898).
本発明に用いる微生物は、 目的物質の産生能を有し、 かつ、 RNAポリメラー ゼ活性が増強された微生物である。 RNAポリメラーゼは、 ひ、 β、 ?' 及びび の各サブユニッ トから構成され、 ひ、 β、 β ' は各々 r p oA、 r p o B、 r p o Cの各遺伝子によりコードされている。 ェシエリヒア ' コリでは、 r p o B及 び r p o Cはオペロンを形成している。 また、 σサブユニッ トは、 複数種存在し、 ェシエリヒア · コリではび 32、 び72等が知られており、 それそれ r p o H、 r p o Dによりコードされている。 これらのうち、 r p 0 Dは増殖期に特異的に機能 するものであり、 本発明には好ましい。 The microorganism used in the present invention is a microorganism having an ability to produce a target substance and having enhanced RNA polymerase activity. RNA polymerase is composed of the subunits of HI, β,? ', And HI, and HI, β, and β' are encoded by rpoA, rpoB, and rpoC genes, respectively. In Escherichia coli, rpo B and rpo C form an operon. Also, there are a plurality of types of σ subunits, and in Escherichia coli, 32 and 72 are known, each of which is coded by rpoH and rpoD. Of these, rp0D functions specifically during the growth phase and is preferred in the present invention.
RN Aポリメラーゼ活性を増強するには、 RN Aポリメラーゼの各サブュニッ トをコードする遺伝子断片を、 目的の微生物で機能するべクタ一、 好ましくはマ ルチコピー型ベクターと連結して組換え DN Aを作製し、 これを目的微生物に導 入して形質転換すればよい。 各遺伝子の細胞内のコピー数が上昇する結果、 RN Aポリメラーゼ活性が増強される。  To enhance RNA polymerase activity, a gene fragment encoding each RNA polymerase subunit is ligated to a vector, preferably a multicopy vector, that functions in the target microorganism to produce recombinant DNA. Then, it may be introduced into a target microorganism and transformed. Increased intracellular copy number of each gene results in enhanced RNA polymerase activity.
RNAポリメラーゼの各サブュニヅ トをコードする遺伝子としては、 ェシエリ ヒア ' コリ等のェシヱリヒア属細菌、 コリネ型細菌等、 いずれの微生物の遺伝子 も用いることができる。 ェシエリヒア · コリでは r p oA、 rp o B、 rp o C、 r p o Dの各遺伝子の塩基配列は明らかにされているので ( r p 0 A : GenBank/ EMBL/DDBJ Access ion J01685, r p o B , r p o C : GenBank/EMBL/DDBJ Access ion J01678, r p o D : GenBank/EMBL/DDBJ Accessi on J01687) 、 これらの塩基 配列に基づいてプライマーを合成し、 ェシエリヒア ' コリの染色体 D N Aを銪型 にして P C R法により取得することが可能である。 As a gene encoding each subunit of RNA polymerase, a gene of any microorganism such as a bacterium belonging to the genus Escherichia such as Escherichia coli or a coryneform bacterium can be used. In Escherichia coli, rp oA, rp o B, rp o C, Since the nucleotide sequence of each gene of rpo D has been elucidated (rp0A: GenBank / EMBL / DDBJ Accession J01685, rpo B, rpo C: GenBank / EMBL / DDBJ Accession J01678, rpo D: GenBank / EMBL / DDBJ Accession J01687), a primer can be synthesized based on these nucleotide sequences, and the chromosomal DNA of Escherichia coli can be transformed into a type II and obtained by PCR.
r p 0 A遺伝子を増幅するためのプライマーとしては配列番号 1及び 2に示す プライマーが、 r p o B Cオペ口ンを増幅するためのプライマーとしては配列番 号 3及び 4に示すプライマーが、 r p o D遺伝子を増幅するためのプライマーと しては配列番号 5及び 6に示すブライマーが挙げられる。  The primers shown in SEQ ID NOs: 1 and 2 were used as primers for amplifying the rp0A gene, the primers shown in SEQ ID NOS: 3 and 4 were used as primers for amplifying the rpo BC op Primers for amplification include the primers shown in SEQ ID NOS: 5 and 6.
P C R法により増幅された各遺伝子は、 ェシエリヒア ' コリゃコリネ型細菌等 細胞内において自律複製可能なベクター D N Aに接続して組換え D N Aを調製し、 これをェシエリヒア · コリ細胞に導入しておくと、 後の操作がしゃすくなる。 ェ シエリヒア · コリ細胞内において自律複製可能なベクターとしては、 ブラスミ ド ベクターが好ましく、 宿主の細胞内で自立複製可能なものが好ましく、 例えば p UC19、 pUC18、 pBR322, pHSG299、 pHSG399、 pHSG398、 RSF1010等が挙げられる。 コリネ型細菌の細胞内において自律複製可能なベクターとしては、 pAM330 (特 開昭 58- 67699号公報参照) 、 pHM1519 (特閧昭 58- 77895号公報参照) 等が挙げら れる。 また、 これらのベクターからコリネ型細菌中でプラスミ ドを自律複製可能 にする能力を持つ D N A断片を取り出し、 前記ェシェリヒア . コリ用のベクター に挿入すると、 ェシエリヒア · コリ及びコリネ型細菌の両方で自律複製可能ない わゆるシャ トルべクタ一として使用することができる。  Each gene amplified by the PCR method is connected to a vector DNA capable of autonomous replication in cells such as Escherichia coli 'corynecoryneform bacteria' to prepare recombinant DNA, which is then introduced into Escherichia coli cells. , The subsequent operations become slow. As a vector capable of autonomous replication in Escherichia coli cells, a brassmid vector is preferable, and a vector capable of autonomous replication in host cells is preferable.For example, pUC19, pUC18, pBR322, pHSG299, pHSG399, pHSG398, RSF1010, etc. Is mentioned. Examples of vectors capable of autonomous replication in coryneform bacterium cells include pAM330 (see Japanese Patent Application Publication No. 58-67699), pHM1519 (see Japanese Patent Application Publication No. 58-77895), and the like. In addition, a DNA fragment having the ability to enable autonomous replication of plasmid in coryneform bacteria is extracted from these vectors and inserted into the Escherichia coli vector, whereby autonomous replication in both Escherichia coli and coryneform bacteria occurs. Not possible Can be used as a shuttle vector.
このようなシャ トルベクターとしては、 以下のものが挙げられる。 尚、 それそ れのベクターを保持する微生物及び国際寄託機関の受託番号をかっこ内に示した。  Such shuttle vectors include the following. Microorganisms carrying the respective vectors and the accession numbers of the international depository organizations are shown in parentheses.
PAJ655 ェシエリヒア · ]リ AJ11882( FERM BP- 136 )  PAJ655 Escherichia ·] Re AJ11882 (FERM BP-136)
コリネハ、、クテリウム ·ク、、ルタミクム SR8201 (ATCC39135 )  Coryneha, Cterium-ku, Rutamicum SR8201 (ATCC39135)
PAJ1844 ェシエリヒア 'コリ AJ11883( FERM BP- 137 )  PAJ1844 Escherichia 'Kori AJ11883 (FERM BP-137)
コリネハ、、クテリゥム 'ク、、ルタミクム SR8202(ATCC39136 )  Coryneha ,, ゥ, ', ル ミ 820 SR8202 (ATCC39136)
PAJ611 ェシエリヒア'コリ AJ11884( FERM BP-138 )  PAJ611 Escherichia Cori AJ11884 (FERM BP-138)
PAJ3148 コリネハ、、クテリゥム'ク、、ルタミクム SR8203(ATCC39137) PAJ440 A^ X- ^7^'JXAJ11901(FERM BP-140) PAJ3148 Coryneha, Cterizum, Rutamicum SR8203 (ATCC39137) PAJ440 A ^ X- ^ 7 ^ 'JXAJ11901 (FERM BP-140)
pHC4 ェシエリヒア 'コリ AJ12617(FERM BP- 3532)  pHC4 Escherichia coli AJ12617 (FERM BP-3532)
これらのベクターは、 寄託微生物から次のようにして得られる。 対数増殖期に 集められた細胞をリゾチーム及び S D Sを用いて溶菌し、 3 0 0 0 0 X gで遠心 分離して溶解物から得た上澄液にポリエチレングリコールを添加し、 セシウムク 口ライ ド—ェチジゥムブ口マイ ド平衡密度勾配遠心分離により分別精製する。  These vectors are obtained from the deposited microorganism as follows. The cells collected during the logarithmic growth phase were lysed using lysozyme and SDS, centrifuged at 300,000 X g, and polyethylene glycol was added to the supernatant obtained from the lysate. Separate and purify the mixture by centrifugation at the equilibrium density gradient of ethidium.
RNAポリメラ一ゼの各サブュニッ トをコ一ドする遺伝子とベクターを連結し て組換え D N Aを調製するには、 各遺伝子を含む D N A断片の末端に合うような 制限酵素でベクタ一を切断し、 同 D N A断片とベクターを連結する。 連結は、 T 4 D N Aリガーゼ等のリガーゼを用いて行うのが普通である。 各サブユニッ ト をコードする遺伝子は、 単一のベクターにすべてを挿入してもよく、 異なる 2種 又は 3種以上のベクターに別々に揷入してもよい。 後記実施例では、 r p oA遺 伝子及び r p o B Cオペロンを同一のベクターに挿入して得た組換えべクタ一と、 r p o D遺伝子を別のベクターに挿入して得た組換えベクターの 2種の組換えべ クタ一を用いて、 コリネ型細菌にこれらの各遺伝子を導入した。  In order to prepare a recombinant DNA by ligating a gene encoding each subunit of RNA polymerase and a vector, the vector is cut with a restriction enzyme that matches the end of the DNA fragment containing each gene. The DNA fragment and the vector are ligated. Ligation is usually performed using a ligase such as T4DNA ligase. All of the genes encoding each subunit may be inserted into a single vector, or may be separately inserted into two or three or more different vectors. In the examples described below, two types of recombinant vectors, one obtained by inserting the rpoA gene and the rpo BC operon into the same vector and the other obtained by inserting the rpoD gene into another vector, were used. Each of these genes was introduced into a coryneform bacterium by using a recombinant vector.
上記のように調製した組換え D N Aを微生物に導入して形質転換するには、 こ れまでに報告されている用いる微生物に応じた形質転換法に従って行えばよい。 例えば、 ェシヱリヒア · コリ K— 1 2について報告されているような、 受容菌 細胞を塩化カルシウムで処理して D N Aの透過性を増す方法 (Mandel,M.and Hig a,A.,J. Mol. Biol., 53, 159 (1970)) があり、 バチルス 'ズブチリスについて 報告されているような、 増殖段階の細胞からコンビテントセルを調製して DNA を導入する方法 ( Duncan, C.H.,Wilson,G.A. and Young, F.E., Gene, 1, 153 (19 77)) がある。 あるいは、 バチルス · ズブチリス、 放線菌類及び酵母について知 られているような、 DNA受容菌の細胞を、 組換え D N Aを容易に取り込むプロ トプラストまたはスフエロプラス トの状態にして組換え D N Aを D N A受容菌に 導入する方法 (Chang, S. and Choen, S.N.,Molec. Gen. Genet., 168, 111 (1979) ; Bibb, M. J., Ward, J. M. and Hopwood,0. A., Nature, 274, 398 ( 1978);Hin腿, A.,H icks,J.B.and Fink,G.R.,Proc. Natl. Acad. Sci. USA, 75 1929 (1978)) も応 用できる。 コリネ型細菌には、 電気パルス法 (特開平 2-207791号公報参照) が有 効である。 Transformation by introducing the recombinant DNA prepared as described above into a microorganism may be performed according to a transformation method according to the microorganism to be used which has been reported so far. For example, a method of increasing the permeability of DNA by treating recipient cells with calcium chloride, as reported for Escherichia coli K-12 (Mandel, M. and Higa, A., J. Mol. Biol., 53, 159 (1970)), and a method for preparing DNA from transgenic cells and introducing DNA as described in Bacillus' subtilis (Duncan, CH, Wilson, GA and Young, FE, Gene, 1, 153 (19 77)). Alternatively, the recombinant DNA is introduced into the DNA recipient by transforming the cells of the DNA recipient into protoplasts or spheroplasts that readily incorporate the recombinant DNA, as is known for Bacillus subtilis, actinomycetes, and yeast. (Chang, S. and Choen, SN, Molec. Gen. Genet., 168, 111 (1979); Bibb, MJ, Ward, JM and Hopwood, 0. A., Nature, 274, 398 (1978); Hin Thigh, A., Hicks, JBand Fink, GR, Proc. Natl. Acad. Sci. USA, 75 1929 (1978)) are also applicable. For the coryneform bacterium, the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791) is available. It is effective.
RN Aポリメラーゼ活性の増強は、 R N Aポリメラーゼの各サブュニヅ トをコ -ドする遺伝子を微生物の染色体 D N A上に多コピー存在させることによつても 達成できる。 微生物の染色体 D N A上に D N A断片を多コピーで導入するには、 染色体 D N A上に多コピー存在する配列を標的に利用して相同組換えにより行う。 染色体 D N A上に多コピー存在する配列としては、 レぺヅティブ DNA、 転移因 子の端部に存在するインバーティ ッ ド · リピートが利用できる。 あるいは、 特開 平 2-109985号公報に開示されているように、 RN Aポリメラーゼの各サブュニッ トをコードする遺伝子をトランスポゾンに搭載してこれを転移させて染色体 D N A上に多コピー導入することも可能である。 いずれの方法によっても形質転換株 内の R NAポリメラーゼの各サブュニヅ トをコードする遺伝子のコピー数が上昇 する結果、 R N Aポリメラーゼ活性が増殖される。  Enhancement of RNA polymerase activity can also be achieved by allowing multiple copies of the gene encoding each of the RNA polymerase subunits to be present on the chromosome DNA of the microorganism. In order to introduce multiple copies of a DNA fragment on the chromosome DNA of a microorganism, homologous recombination is performed using a sequence present on the chromosome DNA in multiple copies as a target. Sequences present in multiple copies on the chromosome DNA include native DNA and inverted repeats present at the end of the transposable element. Alternatively, as disclosed in Japanese Patent Application Laid-Open No. 2-109985, a gene encoding each of the RNA polymerase subunits may be mounted on a transposon and transferred to introduce multiple copies into chromosomal DNA. It is possible. Either method results in an increase in the copy number of the gene encoding each of the RNA polymerase subunits in the transformant, resulting in an increase in RNA polymerase activity.
RN Aポリメラーゼ活性の増強は、 上記の遺伝子増幅による以外に、 RNAポ リメラーゼの各サブュニッ トをコ一ドする遺伝子のプロモータ一等の発現調節配 列を強力なものに置換することによつても達成される (特開平 1-215280号公報参 照) 。 たとえば、 l a cプロモー夕一、 t r pプロモーター、 t r cプロモー夕 一、 t a cプロモーター、 ラムダファージの PRプロモーター、 PLプロモーター、 t e tプロモー夕一、 amyEプロモー夕一、 s p a cプロモーター等が強力な プロモーターとして知られている。 これらのプロモーターへの置換により、 RN Aポリメラーゼの各サブュニッ トをコ一ドする遺伝子の発現が強化されることに よって RNAポリメラーゼ活性が増殖される。 発現調節配列の増強は、 各遺伝子 のコピー数を高めることと組み合わせてもよい。 In addition to the above-described gene amplification, the enhancement of RNA polymerase activity can also be achieved by replacing the expression regulatory sequence such as the promoter of the gene encoding each of the subunits of RNA polymerase with a strong one. Is achieved (see Japanese Patent Application Laid-Open No. 1-215280). For example, lac promoter evening one, trp promoter, trc promoter evening one, tac promoter, P R promoter of lambda phage, P L promoter, tet promoter evening one, amyE promoter evening one, spac promoter and so forth are known as strong promoters I have. Replacement with these promoters enhances RNA polymerase activity by enhancing expression of genes encoding each of the RNA polymerase subunits. The enhancement of expression control sequences may be combined with increasing the copy number of each gene.
本発明の微生物は、 本発明の効果が損なわれない限り、 RN Aポリメラーゼ活 性が増強されていることに加えて、 目的物質の生合成系酵素が増強されているな ど、 他の性質が付与されていてもよい。 目的物質の生合成系酵素としては、 例え ば目的物質が L—グル夕ミン酸である場合には、 グル夕ミン酸デヒドロゲナーゼ、 グルタミンシンテ夕ーゼ、 グルタミン酸シンターゼ、 イソクェン酸デヒ ドロゲナ —ゼ、 アコニッ ト酸ヒドラ夕ーゼ、 クェン酸シン夕一ゼ、 ピルビン酸カルボキシ ラーゼ、 ホスホェノールピルビン酸カルボキシラーゼ、 エノラーゼ、 ホスホグリ セロム夕一ゼ、 ホスホグリセリン酸キナーゼ、 グリセルアルデヒ ド一 3—リン酸 デヒドロゲナ一ゼ、 トリオ一スリン酸イソメラ一ゼ、 フルク トースビスリン酸ァ ルドラーゼ、 ホスホフルク トキナ一ゼ、 グルコースリン酸イソメラ一ゼ等がある。 また、 本発明の微生物は、 目的物質の生合成経路から分岐して目的物質以外の 化合物を生成する反応を触媒する酵素の活性が低下あるいは欠損していてもよい。 例えば、 目的物質が L—グルタミン酸である場合には、 前記酵素としては、 a— ケトグルタル酸デヒ ドロゲナ一ゼ、 イソクェン酸リアーゼ、 リン酸ァセチルトラ ンスフェラーゼ、 酢酸キナーゼ、 ァセトヒドロキシ酸シン夕ーゼ、 ァセ ト乳酸シ ン夕ーゼ、 ギ酸ァセチルトランスフェラーゼ、 乳酸デヒ ドロゲナーゼ、 Lーグル 夕ミン酸デカルボキシラーゼ、 1 _ピロリンデヒ ドロゲナーゼ等が挙げられる。 さらに、 本発明の微生物は、 目的物質の生産にとって好ましい他の性質が付与 されていてもよい。 例えば目的物質が L—グルタミン酸であり、 微生物がコリネ 型細菌である場合には、 界面活性剤等のピオチン作用抑制物質に対する温度感受 性変異を付与することにより、 過剰量のピオチンを含有する培地中にてピオチン 作用抑制物質の非存在下で L一グルタミン酸を生産させることができる (W096/0 6180号参照) 。 このようなコリネ型細菌としては、 W096/06180号に記載されてい るブレビバクテリゥム · ラク トフアーメン夕ム AJ13029が挙げられる。 AJ13029株 は、 1994年 9月 2日付けで工業技術院生命工学工業技術研究所 (郵便番号 305-8566 日本国茨城県つくば巿東一丁目 1番 3号) に、 受託番号 FERM P- 14501として寄託 され、 1995年 8月 1日にブダペス ト条約に基づく国際寄託に移管され、 受託番号 FE RM BP- 5189が付与されている。 As long as the effects of the present invention are not impaired, the microorganism of the present invention has other properties such as enhanced RNA polymerase activity and enhanced biosynthetic enzymes of the target substance. It may be provided. As the biosynthetic enzymes of the target substance, for example, when the target substance is L-glutamic acid, glutamate dehydrogenase, glutamine synthetase, glutamate synthase, isoquenate dehydrogenase, Aconitate hydrase, citrate synthase, pyruvate carboxylase, phosphoenolpyruvate carboxylase, enolase, phosphogly Cellom enzyme, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, triosulfose isomerase, fructose bisphosphate aldolase, phosphofructokinase, glucose phosphate isomerase, etc. is there. The microorganism of the present invention may have a reduced or defective activity of an enzyme that catalyzes a reaction that produces a compound other than the target substance by branching off from the target substance biosynthetic pathway. For example, when the target substance is L-glutamic acid, the enzyme may be a-ketoglutarate dehydrogenase, isoquenate lyase, acetyl phosphate transferase, acetate kinase, acetate hydroxy acid synthase Acetolactate synthase, acetyl formate transferase, lactate dehydrogenase, L-glutamate decarboxylase, 1-pyrroline dehydrogenase and the like. Furthermore, the microorganism of the present invention may be provided with other properties that are favorable for production of the target substance. For example, when the target substance is L-glutamic acid and the microorganism is a coryneform bacterium, a temperature-sensitive mutation to a biotin-inhibiting substance such as a surfactant is imparted to a medium containing an excessive amount of biotin. Thus, L-glutamic acid can be produced in the absence of a biotin action inhibitor (see W096 / 06180). Examples of such coryneform bacteria include Brevibacterium lactofermenum AJ13029 described in W096 / 06180. The AJ13029 strain was submitted to the Institute of Biotechnology and Industrial Technology, Institute of Industrial Science and Technology (Postal Code 305-8566, Tsukuba 1-3-1-3, Ibaraki, Japan) on September 2, 1994 under the accession number FERM P-14501. Deposited and transferred to an international deposit under the Budapest Treaty on August 1, 1995, and given accession number FE RM BP-5189.
また、 L—リジン及び L一グルタミン酸生産能を有するコリネ型細菌に、 ピオ チン作用抑制物質に対する温度感受性変異を付与することにより、 過剰量のピオ チンを含有する培地中にてビォチン作用抑制物質の非存在下で L—リジン及び L —グルタミン酸を同時生産させることができる (W096/06180号参照) 。 このよう な菌株としては、 W096/06180号に記載されているブレビパクテリゥム · ラク トフ ァーメンタム AJ12993株が挙げられる。 同株は 1994年 6月 3日付けで工業技術院生 命工学工業技術研究所 (郵便番号 305- 8566 日本国茨城県つくば巿東一丁目 1番 3 号) に、 受託番号 FERM P- 14348で寄託され、 1995年 8月 1日にブダペス ト条約に基 づく国際寄託に移管され、 受託番号 FERM BP- 5188が付与されている。 本発明の微生物の構築に必要な染色体 D N Aの調製、 遺伝子断片とプラスミ ド との連結、 P C R、 プラスミ ド D N Aの調製、 D N Aの切断及び連結、 形質転換、 プライマーとして用いるオリゴヌクレオチドの設定等の方法は、 当業者によく知 られている通常の方法を採用することができる。 これらの方法は、 Sambrook, J. , Friisch, E . F . , and Maniati s, T . , "Molecular Cl oning A Laboratory Manua 1 , Second Edi tion" , Cold Spring Harbor Laboratory Press , ( 1989 )等に言己載 されている。 In addition, a coryneform bacterium capable of producing L-lysine and L-glutamic acid is subjected to a temperature-sensitive mutation against a biotin-inhibiting substance, so that the biotin-inhibiting substance can be expressed in a medium containing an excessive amount of biotin. L-Lysine and L-glutamic acid can be produced simultaneously in the absence (see W096 / 06180). Examples of such strains include Brevipacterium lactofermentum AJ12993 strain described in W096 / 06180. The strain was deposited on June 3, 1994 with the Institute of Life Science and Industrial Technology, National Institute of Advanced Industrial Science and Technology (zip code 305-8566, 1-3 1-3 Tsukuba, Higashi, Ibaraki, Japan) under the accession number FERM P-14348. It was transferred to an international deposit under the Budapest Treaty on August 1, 1995, and given the accession number FERM BP-5188. Preparation of chromosomal DNA required for construction of the microorganism of the present invention, ligation of gene fragment to plasmid, PCR, preparation of plasmid DNA, DNA cleavage and ligation, transformation, setting of oligonucleotides used as primers, etc. Can employ ordinary methods well known to those skilled in the art. These methods are described in Sambrook, J., Friisch, E.F., and Maniatis, T., "Molecular Cloning A Laboratory Manua 1, Second Edition", Cold Spring Harbor Laboratory Press, (1989). It is self-published.
上記のようにして目的物質の生産能が向上した微生物を培地中に培養し、 該培 地中に目的物質を生成蓄積せしめ、 該培養物から目的物質を採取することにより、 目的物質を製造することができる。  The target substance is produced by culturing a microorganism having an improved target substance production ability in a medium as described above, producing and accumulating the target substance in the medium, and collecting the target substance from the culture. be able to.
培地は、 使用する微生物に応じて従来より用いられてきた周知の培地を用いて かまわない。 つまり、 炭素源、 窒素源、 無機イオン及び必要に応じその他の有機 成分を含有する通常の培地である。 本発明を実施するための特別な培地は特に必 要とされない。  As the medium, a well-known medium conventionally used depending on the microorganism to be used may be used. That is, it is a normal medium containing a carbon source, a nitrogen source, inorganic ions and other organic components as required. A special medium for carrying out the present invention is not particularly required.
炭素源としては、 グルコース、 ラク トース、 ガラク トース、 フラク トースやで んぷんの加水分解物などの糖類、 グリセロールやソルビトールなどのアルコール 類、 フマール酸、 クェン酸、 コハク酸等の有機酸類等を用いることができる。 窒素源としては、 硫酸アンモニゥム、 塩化アンモニゥム、 リン酸アンモニゥム 等の無機アンモニゥム塩、 大豆加水分解物などの有機窒素、 アンモニアガス、 ァ ンモニァ水等を用いることができる。  As the carbon source, sugars such as glucose, lactose, galactose, hydrolysates of fructose and starch, alcohols such as glycerol and sorbitol, and organic acids such as fumaric acid, citric acid, and succinic acid are used. be able to. As the nitrogen source, inorganic ammonium salts such as ammonium sulfate, ammonium chloride and ammonium phosphate, organic nitrogen such as soybean hydrolysate, ammonia gas, ammonia water and the like can be used.
有機微量栄養源としては、 ビタミン B l、 L—ホモセリン、 Lーチロシンなど の要求物質または酵母エキス等を適量含有させることが望ましい。 これらの他に、 必要に応じて、 リン酸カリウム、 硫酸マグネシウム、 鉄イオン、 マンガンイオン 等が少量添加される。  As organic trace nutrients, it is desirable to include required substances such as vitamin B1, L-homoserine, and L-tyrosine, or an appropriate amount of yeast extract and the like. In addition to these, small amounts of potassium phosphate, magnesium sulfate, iron ions, manganese ions, etc. are added as needed.
培養は、 利用される微生物に応じて従来より用いられてきた周知の条件で行つ てかまわない。 例えば、 好気的条件下で 1 6〜 1 2 0時間培養を実施するのがよ く、 培養温度は 2 5 °C〜 4 5 °Cに、 培養中 p Hは 5〜 8に制御する。 尚、 p H調 整には無機あるいは有機の酸性あるいはアルカリ性物質、 更にアンモニアガス等 を使用することができる。 培養終了後の培地液からの目的物質の採取は、 本願発明において特別な方法が 必要とされることはない。 すなわち、 本発明は従来より周知となっているイオン 交換樹脂法、 沈澱法その他の方法を組み合わせることにより実施できる。 発明を実施するための最良の形態 以下、 本発明を実施例によりさらに具体的に説明する。 The cultivation may be performed under well-known conditions conventionally used depending on the microorganism to be used. For example, culture is preferably performed under aerobic conditions for 16 to 120 hours, and the culture temperature is controlled at 25 ° C to 45 ° C, and the pH is controlled at 5 to 8 during the culture. For pH adjustment, an inorganic or organic acidic or alkaline substance, ammonia gas or the like can be used. No special method is required in the present invention for collecting the target substance from the medium after the culture. That is, the present invention can be carried out by combining conventionally known ion exchange resin methods, precipitation methods and other methods. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically with reference to examples.
< 1 >ェシエリヒア ' コリの RN Aポリメラ一ゼ遺伝子の単離と RN Aポリメラ ーゼ遺伝子導入用プラスミ ドの作製 <1> Isolation of RNA polymerase gene from Escherichia coli and preparation of plasmid for RNA polymerase gene transfer
E. coli W3110株の全ゲノム D N Aを、 斎藤、 三浦の方法 (Biochem.Biophys. A cta., 72,619(1963)) により調製した。 このゲノム D N Aを銪型として、 P CR により RN Aポリメラーゼの各サブュニッ トをコードする遺伝子を増幅した。 ブライマーは、 公知の RNAポリメラ一ゼサブユニッ ト遺伝子の塩基配列 (r p o A : GenBank/EMBL/DDBJ Accession J01685, r p o B, r p o C : GenBank/ EMBL/DDBJ Accession J01678、 r p o D : GenBank/EMBL/DDBJ Accession J01687) に基づいて合成した。  Whole genome DNA of E. coli W3110 strain was prepared by the method of Saito and Miura (Biochem. Biophys. Acta., 72, 619 (1963)). Using this genomic DNA as type III, PCR was used to amplify the gene encoding each of the RNA polymerase subunits. The primers are known nucleotide sequences of the RNA polymerase subunit gene (rpo A: GenBank / EMBL / DDBJ Accession J01685, rpo B, rpo C: GenBank / EMBL / DDBJ Accession J01678, rpo D: GenBank / EMBL / DDBJ Accession J01687 ).
r p o A遺伝子を増幅するためのプライマーとして配列番号 1及び 2に示すプ ライマ一を、 r p o B Cオペロンを増幅するためのプライマーとして配列番号 3 及び 4に示すプライマーを、 r p o D遺伝子を增幅するためのプライマーとして 配列番号 5及び 6に示すプライマーを、 それそれ使用した。  The primers shown in SEQ ID NOS: 1 and 2 were used as primers for amplifying the rpoA gene, the primers shown in SEQ ID NOS: 3 and 4 were used as primers for amplifying the rpo BC operon, and the primers used for amplifying the rpo D gene were used. The primers shown in SEQ ID NOS: 5 and 6 were used as primers.
r p o D遺伝子を取得するために、 前記染色体 D N Aを錶型とし、 配列番号 5 及び 6に示すプライマーを用いた P CRにより得られた断片を EcoRIで消化した 後、 プラスミ ド pVC7 (後述) の EcoRI部位に挿入し、 ブラスミ ド pVCDを作製した。 次に、 r p o B C遺伝子を取得するために、 前記染色体 DNAを錶型とし、 配列 番号 3及び 4に示すプライマーを用いて P C Rを行い、 得られた断片を D N Aブ ランティングキッ ト (宝酒造 (株) 製) を用いて平滑末端化し、 前記 pVCDの smal 部位に挿入し、 pVCBCDを構築した。 続いて、 rpoA遺伝子を取得するために、 前記 染色体 DN Aを铸型として配列番号 1及び 2に示すブライマ一を用いて P CRを 行い、 得られた断片を上記と同様に平滑末端化した。 pVCBCDを Saclで消化した後 に、 上記と同様に平滑末端化し、 それを平滑末端化した rpoA遺伝子断片と結合さ せて、 プラスミ ド pVCBCADを構築した。 In order to obtain the rpoD gene, the chromosomal DNA was transformed into type III, the fragment obtained by PCR using the primers shown in SEQ ID NOs: 5 and 6 was digested with EcoRI, and the plasmid pVC7 (described later) was digested with EcoRI. Plasmid pVCD was prepared by insertion into the site. Next, in order to obtain the rpo BC gene, the chromosomal DNA was subjected to PCR using the primers shown in SEQ ID NOs: 3 and 4, and the obtained fragment was subjected to DNA blunting kit (Takara Shuzo (strain) )), And inserted into the smal site of pVCD to construct pVCBCD. Subsequently, in order to obtain the rpoA gene, PCR was performed using the chromosome DNA as type III and the primers shown in SEQ ID NOS: 1 and 2 and the obtained fragment was blunt-ended in the same manner as described above. After digesting pVCBCD with Sacl Then, the plasmid was blunt-ended in the same manner as described above, and ligated to the blunt-ended rpoA gene fragment to construct plasmid pVCBCAD.
前記 pVC7は、 以下のようにして、 ェシエリヒア · コリ用ベクタ一である pHSG39 9 (Cmr; Takeshita, S. et al., Gene, 61, 63-74, (1987)参照) にブレビバク テリゥム · ラク トフアーメンタムのクリブティ ヅクプラスミ ドである pAM330を結 合することによって構築した。 pAM330は、 ブレビパクテリゥム · ラク トファーメ ン夕ム ATCC13869株より調製した。 pHSG399を一箇所切断酵素である Avail (宝酒 造 (株) 製) にて切断し、 T 4 DNAポリメラーゼにて平滑末端化したのち、 Hi ndlll (宝酒造 (株) 製) にて切断し、 T 4 D NAポリメラーゼにて平滑末端化 した PAM330と接続した。 pVC7は、 E. coli及びブレビパクテリゥム . ラク トファ ーメンタムの細胞中で自律複製可能であり、 かつ、 PHSG299由来のマルチブルク ローニングサイ トと lacZ' を保持している。 The pVC7 is as follows, a vector one for Eshierihia coli pHSG39 9 (Cm r;. Takeshita , S. et al, Gene, 61, 63-74, (1987) see) Burebibaku Teriumu - easy to It was constructed by combining pAM330, which is a cloved plasmid of Tofarmentum. pAM330 was prepared from Brevibacterium lactofermentum ATCC13869 strain. pHSG399 is cleaved with Avail (manufactured by Takara Shuzo Co., Ltd.), which is a single-site cleavage enzyme, blunt-ended with T4 DNA polymerase, and then cut with Hindlll (manufactured by Takara Shuzo Co., Ltd.). It was connected to PAM330, which had been blunt-ended with 4 DNA polymerase. pVC7 is capable of autonomous replication in E. coli and Brevibacterium lactofamentum cells, and retains the phZ299-derived multiburg cloning site and lacZ '.
< 2 >RNAポリメラーゼ遺伝子で形質転換されたコリネ型細菌の L—アミノ酸 生産菌の作製及び L—ァミノ酸の製造  <2> Preparation of L-amino acid-producing bacteria and production of L-amino acid of coryneform bacterium transformed with RNA polymerase gene
( 1 ) コリネ型細菌の L一グル夕ミン酸生産株への pVCBCADの導入と L一グル夕 ミン酸生産  (1) Introduction of pVCBCAD into L-glucaminic acid producing strain of coryneform bacterium and L-glucaminic acid production
ブレビパクテリゥム . ラク トファーメンタム AJ13029を電気パルス法 (特開平 2 -207791号公報参照) によりプラスミ ド pVCBCADで形質転換した。 pVCBCADを保持 する株は 5〃g/mlのクロラムフェニコールを、 それそれ含む培地で選択した。 得られた形質転換株 AJ13029/pVCBCADを用いて L—グル夕ミン酸生産のための 培養を以下のように行った。 5〃g/mlのクロラムフエ二コールを含む CM 2 Bブ レート培地にて培養して得た AJ13029/pVCBCADの菌体を、 同じ濃度の薬剤を含む 表 1に示す組成の種培養培地に接種し、 3 1. 5°Cで 2 4時間振とう培養して種 培養を得た。 表 1に示す組成の本培養培地を 5 0 0ml容ガラス製ジャーファーメ ン夕一に 3 0 0mlずつ分注し加熱殺菌した後、 上記種培養を 4 0ml接種した。 撹 拌速度を 8 0 0〜 1 3 0 0 rpm、 通気量を 1/2〜 1/lvvmとし、 培養温度 3 1. 5°Cにて培養を開始した。 培養液の p Hはアンモニアガスで 7. 5に維持した。 培養を開始してから 8時間後に培養温度を 3 7 °Cにシフ トした。 コントロールと してコリネパクテリゥム属細菌 AJ13029株を pVC7で形質転換した菌株を上記と同 様にして培養した, 表 1 濃 度 Brevibacterium lactofermentum AJ13029 was transformed with plasmid pVCBCAD by the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791). The strain carrying pVCBCAD was selected on a medium containing 5 mg / ml chloramphenicol. Using the obtained transformant AJ13029 / pVCBCAD, culture for producing L-glucamic acid was performed as follows. AJ13029 / pVCBCAD cells obtained by culturing in a CM2B plate medium containing 5 μg / ml chloramphenicol were inoculated into a seed culture medium containing the same drug concentration and having the composition shown in Table 1. The seed culture was obtained by shaking culture at 31.5 ° C for 24 hours. The main culture medium having the composition shown in Table 1 was dispensed at a rate of 300 ml each in a 500-ml glass jar fermenter, sterilized by heating, and then inoculated with 40 ml of the above seed culture. The culture was started at a culture temperature of 31.5 ° C with a stirring speed of 800 to 1300 rpm and an aeration rate of 1/2 to 1 / lvvm. The pH of the culture was maintained at 7.5 with ammonia gas. Eight hours after the start of the culture, the culture temperature was shifted to 37 ° C. As a control, a strain obtained by transforming a corynebacterium genus AJ13029 strain with pVC7 was used as described above. Table 1 Concentration
成 分  Component
本培養 グルコース 5 g/dl 1 5 g/dl Main culture glucose 5 g / dl 15 g / dl
KH2P 04 0 1 g/dl 0 2 g/dl Mg S 04 · 7 H20 0 04 g/dl 0 1 5 g/dl F e S 04 · 7 H2O 1 mg/dl 1 5 mg/dl Mn S 04 · 4 H2O 1 mg/dl 1 5 mg/dl 大豆蛋白加水分解液 2 ml/dl 5 ml/dl ピオチン 50 g/1 2 00 g/dl サイアミン塩酸塩 2 00 g/1 3 00 〃g/dl KH 2 P 0 4 1 g / dl 0 2 g / dl Mg S 047 H 2 00 04 g / dl 0 15 g / dl Fe S 047 H2O 1 mg / dl 15 mg / dl Mn S 044 H2O 1 mg / dl 15 mg / dl Soybean protein hydrolyzate 2 ml / dl 5 ml / dl Pyotin 50 g / 1 200 g / dl Siamin hydrochloride 200 g / 1 300 〃g / dl
培養終了後、 培養液中の L一グル夕ミン酸蓄積量を旭化成工業社製バイオテツ クアナライザー AS— 2 1 0により測定した。 このときの結果を表 2に示した。 After completion of the culture, the accumulated amount of L-glucamic acid in the culture solution was measured using a Biotech Analyzer AS-210 manufactured by Asahi Kasei Corporation. Table 2 shows the results.
¾ 株 L-ク、、ルタミン酸生成量(g/L) 培養時間(h) 株 Strain L-cu, glutamic acid production (g / L) Incubation time (h)
AJ13029/pVC7 83 3 0 AJ13029 / pVC7 83 3 0
AJ13029/pVCBCAD 89 23  AJ13029 / pVCBCAD 89 23
( 2 ) コリネ型細菌の L—リジン生産株への pVCBCADの導入と L -リジン生産 ブレビパクテリゥム . ラク トファーメン夕ム AJ11082に、 前記と同様にして pVC BCADを導入して AJ11082/pVCBCADを得た。 5〃 g/mlのクロラムフエ二コールを含む CM 2 Bブレート培地にて培養して得た AJ13029/pVCBCADの菌体を、 同じ濃度の 薬剤を含む下記組成の L—リジン生産培地に接種し、 31.5°Cにて培地中の糖が消 費されるまで振とう培養した。 コントロールとしてブレビパクテリゥム · ラク ト フアーメンタム AJ11082株を pVC7で形質転換した菌株を上記と同様にして培養し た。 (2) Introduction of pVCBCAD into L-lysine-producing strains of coryneform bacterium and production of L-lysine Brevipacterium lactofermentum AJ11082 / pVCBCAD by introducing pVCBCAD into AJ11082 in the same manner Was. AJ13029 / pVCBCAD cells obtained by culturing in CM2B plate medium containing 5 g / ml chloramphenicol were inoculated into an L-lysine production medium containing the same concentration of the drug and having the following composition. Sugar in the medium disappears at ° C Shake culture until spent. As a control, a strain obtained by transforming Brevibacterium lactofermentum AJ11082 with pVC7 was cultured in the same manner as described above.
〔L—リジン生産培地〕 [L-lysine production medium]
炭酸カルシウム以外の下記成分 ( 1 L中) を溶解し、 K0Hで pH8.0に調製し、 11 5°Cで 15分殺菌した後、 別に乾熱殺菌した炭酸カルシウムを 50 g加える。  Dissolve the following ingredients (in 1 L) other than calcium carbonate, adjust to pH 8.0 with K0H, sterilize at 115 ° C for 15 minutes, and add 50 g of dry-heat-killed calcium carbonate.
グルコース 100 g  100 g glucose
(NH4) 2S 04 55 g
Figure imgf000014_0001
(NH 4 ) 2 S 0 4 55 g
Figure imgf000014_0001
ピオチン 500 fig  Piotin 500 fig
チアミン 2000 mg
Figure imgf000014_0002
Thiamine 2000 mg
Figure imgf000014_0002
ニコチンアミ ド 5 mg  Nicotinamide 5 mg
蛋白質加水分解物 (豆濃) 30 ml  Protein hydrolyzate (bean concentrate) 30 ml
炭酸カルシウム 50 g 培養終了後、 培養液中の L—リジン蓄積量を旭化成工業社製バイオテックアナ ライザ一 AS— 2 1 0により測定した。 このときの結果を表 3に示した。  After the completion of the culture of 50 g of calcium carbonate, the amount of L-lysine accumulated in the culture solution was measured using a Biotech Analyzer AS-210 manufactured by Asahi Kasei Corporation. Table 3 shows the results.
菌 株 L—リジン生成量(g/dl) 培養時間(h) Strain L-Lysine production (g / dl) Incubation time (h)
AJ13029/pVC7 2 8. 9 7 2 AJ13029 / pVC7 2 8.9 7 2
AJ13029/pVCBCAD 3 0. 1 6 0  AJ13029 / pVCBCAD 3 0.1 6 0
( 3 ) コリネ型細菌の L—リジン及び L—グル夕ミン酸生産株への pVCBCADの導 入と Lーリジン及び L—グル夕ミン酸同時生産 ブレビバクテリウム · ラク トフアーメンタム AJ12993に、 前記と同様にして pVC BCADを導入して AJ12993/pVCBCADを得た。 5〃 g/mlのクロラムフエ二コールを含む C M 2 Bプレート培地にて培養して得た AJ13029/pVCBCADの菌体を、 同じ濃度の 薬剤を含む前記 L—リジン生産培地に接種して 31 . 5°Cにて培養した。 培養を開始 してから 1 2時間後に培養温度を 3 4 °Cにシフ ト し、 培地中の糖が消費されるま で振とう培養した。 コントロールとしてコリネパクテリゥム属細菌 AJ12993株を p VC7で形質転換した菌株を上記と同様にして培養した。 (3) Introduction of pVCBCAD into L-lysine and L-glucamic acid producing strains of coryneform bacteria and simultaneous production of L-lysine and L-glucamic acid PVCBCAD was introduced into Brevibacterium lactofermentum AJ12993 in the same manner as described above to obtain AJ12993 / pVCBCAD. AJ13029 / pVCBCAD cells obtained by culturing in a CM2B plate medium containing 5 g / ml of chloramphenicol were inoculated into the L-lysine production medium containing the same concentration of the drug, 31.5. Cultured at ° C. After 12 hours from the start of the culture, the culture temperature was shifted to 34 ° C, and the culture was performed with shaking until the sugar in the medium was consumed. As a control, a strain obtained by transforming Corynepacterium bacterium AJ12993 with pVC7 was cultured in the same manner as described above.
培養終了後、 培養液中の Lーリジン及び L—グル夕ミン酸蓄積量を旭化成工業 社製バイオテックアナライザー A S— 2 1 0により測定した。 このときの結果を 表 4に示した。  After the completion of the culture, the accumulated amounts of L-lysine and L-glucamic acid in the culture solution were measured with a Biotech Analyzer AS210 manufactured by Asahi Kasei Corporation. Table 4 shows the results.
菌 株 L-リシ、ン生成置(g/dl ) L- -ク、、ルタミン酸生成量(g/dl ) 培養時間 Bacterial strain L-lysine, production unit (g / dl) L-cu, production amount of glutamic acid (g / dl) Culture time
AJ12993/pVC7 1 0 . 5 1 8 . 9 6 0AJ12993 / pVC7 10 5 1 8 .9 6 0
AJ12993/pVCBCAD 1 1 . 2 2 0 . 1 4 5 AJ12993 / pVCBCAD 1 1.2 2 0 .1 4 5
産業上の利用可能性 本発明により、 目的物質を産生する微生物の生育及び目的物質の生産性を向上 させることができる。 INDUSTRIAL APPLICABILITY According to the present invention, the growth of microorganisms that produce a target substance and the productivity of the target substance can be improved.

Claims

請求の範囲 The scope of the claims
1. 目的物質の生産能を有し、 かつ、 RN Aポリメラーゼ活性が増強された 微生物。 1. A microorganism that has the ability to produce the target substance and has enhanced RNA polymerase activity.
2. 前記目的物質が L一アミノ酸である請求項 1記載の微生物。  2. The microorganism according to claim 1, wherein the target substance is an L-amino acid.
3. RN Aポリメラーゼ活性の増強が、 r p oA、 r p o B、 r p o C及び r p o Dの各遺伝子のコピー数を高めることによるものである請求項 1記載の微 生物。  3. The microorganism according to claim 1, wherein the RNA polymerase activity is enhanced by increasing the copy number of each of the rpoA, rpoB, rpoC, and rpoD genes.
4. 微生物がェシエリヒア属細菌又はコリネ型細菌である請求項 1記載の微 生物。  4. The microorganism according to claim 1, wherein the microorganism is a bacterium belonging to the genus Escherichia or a coryneform bacterium.
5. 請求項 1〜4のいずれか一項に記載の微生物を培地に培養し、 該培養物 中に目的物質を生成蓄積せしめ、 該培養物から目的物質を採取することを特徴と する目的物質の製造法。  5. A target substance characterized by culturing the microorganism according to any one of claims 1 to 4 in a medium, producing and accumulating the target substance in the culture, and collecting the target substance from the culture. Manufacturing method.
PCT/JP2000/004774 1999-07-19 2000-07-14 Process for producing target substance by fermentation method WO2001005979A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU60184/00A AU6018400A (en) 1999-07-19 2000-07-14 Process for producing target substance by fermentation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/205267 1999-07-19
JP20526799A JP2003204783A (en) 1999-07-19 1999-07-19 Method for producing target substance by fermentation method

Publications (1)

Publication Number Publication Date
WO2001005979A1 true WO2001005979A1 (en) 2001-01-25

Family

ID=16504161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004774 WO2001005979A1 (en) 1999-07-19 2000-07-14 Process for producing target substance by fermentation method

Country Status (3)

Country Link
JP (1) JP2003204783A (en)
AU (1) AU6018400A (en)
WO (1) WO2001005979A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520219B2 (en) * 2004-05-28 2010-08-04 協和発酵バイオ株式会社 Process for producing 5-aminolevulinic acid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041767A2 (en) * 1980-06-06 1981-12-16 Biogen, Inc. Improved vectors and methods for making such vectors and for expressing cloned genes
JPS62244382A (en) * 1986-04-16 1987-10-24 Ajinomoto Co Inc Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan
WO1997008333A1 (en) * 1995-08-30 1997-03-06 Ajinomoto Co., Inc. Process for producing l-amino acids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041767A2 (en) * 1980-06-06 1981-12-16 Biogen, Inc. Improved vectors and methods for making such vectors and for expressing cloned genes
JPS62244382A (en) * 1986-04-16 1987-10-24 Ajinomoto Co Inc Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan
WO1997008333A1 (en) * 1995-08-30 1997-03-06 Ajinomoto Co., Inc. Process for producing l-amino acids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATYA Z. ET AL.: "Recombinant RNA polymerase: inducible overexpression, purification and assembly of escherichia coli rpo gene products", GENE, vol. 89, 1990, pages 7 - 12, XP002932587 *

Also Published As

Publication number Publication date
JP2003204783A (en) 2003-07-22
AU6018400A (en) 2001-02-05

Similar Documents

Publication Publication Date Title
JP4595506B2 (en) L-amino acid-producing bacterium and method for producing L-amino acid
US7846698B2 (en) Method of producing L-lysine
JP4035855B2 (en) Method for producing L-lysine
JP4265093B2 (en) Method for producing threonine and isoleucine
EP1010755B1 (en) Method for producing L-Glutamic acid by fermentation
KR20100056460A (en) Method for production of l-lysine
JP4306169B2 (en) L-amino acid production method and novel gene
WO2001002542A1 (en) Process for producing l-amino acid
WO2001002545A1 (en) Process for producing l-amino acid
JP2003135066A (en) Method for producing l-lysine
US20050106688A1 (en) Method for producing L-amino acid
JP2000201692A (en) Production of l-glutamic acid by fermentation
EP1158043B1 (en) Process for producing l-lysine
WO2001002543A1 (en) Process for producing l-amino acid
WO2001002546A1 (en) Process for producing l-amino acid
WO2001005959A1 (en) Process for producing target substance by fermentation method
JP2008029202A (en) Method of producing l-glutamic acid
WO2001005979A1 (en) Process for producing target substance by fermentation method
WO2001002544A1 (en) Process for producing l-amino acid
WO2013154182A1 (en) Method for producing amino acid
JP2000050894A (en) Production of fermented product and stress resistant microorganism
WO2022092018A1 (en) Method of producing l-amino acid
JP3651002B2 (en) Method for constructing amino acid-producing bacteria and method for producing amino acids by fermentation using the constructed amino acid-producing bacteria
JP2003169674A (en) Method for producing l-lysine
JP2006129840A (en) Method for producing l-glutamic acid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP