WO2001002545A1 - Process for producing l-amino acid - Google Patents

Process for producing l-amino acid Download PDF

Info

Publication number
WO2001002545A1
WO2001002545A1 PCT/JP2000/004345 JP0004345W WO0102545A1 WO 2001002545 A1 WO2001002545 A1 WO 2001002545A1 JP 0004345 W JP0004345 W JP 0004345W WO 0102545 A1 WO0102545 A1 WO 0102545A1
Authority
WO
WIPO (PCT)
Prior art keywords
lysine
producing
amino acid
acid
fumarase
Prior art date
Application number
PCT/JP2000/004345
Other languages
French (fr)
Japanese (ja)
Inventor
Masakazu Sugimoto
Hisao Ito
Osamu Kurahashi
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to AU57073/00A priority Critical patent/AU5707300A/en
Publication of WO2001002545A1 publication Critical patent/WO2001002545A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine

Definitions

  • the present invention relates to a method for producing an L-amino acid by a fermentation method, and particularly to a method for producing L-lysine and L-glutamic acid.
  • L-lysine is widely used as a feed additive and the like
  • L-glutamic acid is widely used as a seasoning material and the like.
  • L-amino acids such as L-lysine and L-glutamic acid have been obtained by using a coryneform bacterium belonging to the genus Brevipacterium or Corynebacterium having the ability to produce these L-amino acids. It is industrially produced by fermentation. For these coryneform bacteria, strains isolated from the natural world or artificial mutants of the strains are used in order to improve productivity.
  • JP-A-63-2189 discloses that a glutamate dehydrogenase gene, an isocitrate dehydrogenase gene, an aconitate hydrase gene and a citrate synthase gene are amplified or introduced. Accordingly, a technique for increasing the ability to produce L-glucamic acid has been disclosed.
  • An object of the present invention is to provide a method for producing an L-amino acid such as L-lysine or L-amino acid by a fermentation method which is further improved, and a strain used for the same.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by introducing a gene encoding fumarase into coryneform bacteria and enhancing fumarase activity, L-lysine or L-glutamine The inventors have found that the production of evening acid can be increased, and have completed the present invention. That is, the present invention is as follows.
  • a coryneform bacterium having enhanced fumalase activity in cells and capable of producing L-amino acid (1) A coryneform bacterium having enhanced fumalase activity in cells and capable of producing L-amino acid.
  • L-amino acid is selected from L-lysine, L-glutamic acid, L-threonine, L-isoleucine, and L-serine.
  • the gene encoding the humalase is derived from a bacterium belonging to the genus Escherichia.
  • the coryneform bacterium of any of (1) to (4) above is cultured in a medium, L-amino acids are produced and accumulated in the culture, and L-amino acids are collected from the culture.
  • L A method for producing amino acids.
  • the coryneform bacterium of the present invention is a coryneform bacterium having an ability to produce L-amino acid and having enhanced fumarase activity in cells.
  • the L-amino acid include L-lysine, L-glutamic acid, L-threonine, L-isoleucine, L-serine and the like. Of these, L-lysine and L-glutamic acid are preferred.
  • embodiments of the present invention will be described mainly with respect to a coryneform bacterium having L-lysine-producing ability or L-glucaminic acid-producing ability, but the present invention provides a biosynthesis system specific to an L-amino acid of interest. The same applies to those located downstream.
  • coryneform bacteria referred to in the present invention are a group of microorganisms defined in Bergey's Manual of Determinative Bacteriology, 8th edition, p. 599 (1974). , Aerobic, gram positive, It is a non-acid-fast, non-spore-forming bacillus, including bacteria that were previously classified into the genus Brevipacterium but are now integrated as corynebacteria (Int. J. Syst. Bacteriol., 41, 255 (1981)), and also includes bacteria of the genus Brevipacterium and Micropaterims which are very closely related to the genus Corynepacterium. Examples of the strains of coryneform bacteria suitably used for producing L-lysine or L-glutamic acid include, for example, those shown below.
  • Corynebacterium thermoaminogenes AJ12340 (FERM BP-1539) To obtain them, for example, American Type Culture Collective Address 12301 Park lawn Drive, Rockville, Maryland 20852, United States of America). That is, a registration number corresponding to each microorganism is assigned, and the microorganism can be ordered by referring to this registration number. The registration numbers for each microorganism are listed on the catalog of the American Culture's 'Culture' collection.
  • AJ12340 strain was deposited with the Institute of Biotechnology, Industrial Technology Institute of the Ministry of International Trade and Industry (Postal Code 305-856-6 1-3 1-3 Tsukuba-Higashi, Ibaraki, Japan) based on the Budapest Treaty. Have been.
  • mutants having L-amino acid-producing ability such as L-lysine or L-glutamic acid derived from these strains can also be used in the present invention.
  • Such artificial mutants include the following. S- (2-aminoethyl) -cysteine (hereinafter abbreviated as "AEC") resistant mutant (for example, Brevibacterium 'Lactofamentum AJ11082 (NRRL B-11470), Japanese Patent Publication No. 56-1914, Japanese Patent Publication No. No. 56-1915, No. 57-14157, No. 57-14158, No. 57-30474, No. 58-10075, No. 59-4993, No. 61-35840, No.
  • AEC S- (2-aminoethyl) -cysteine
  • L-lysine-producing mutant strains (JP-A-55-9783, JP-A-53-86090) Call resistant, producing L- lysine Burebiba Kuteriumu genus or Corynebacterium Park Teri ⁇ beam genus producing mutant strain (U.S. Patent No. 4,411,997).
  • Examples of coryneform bacteria having L-threonine-producing ability include Corynebacterium acetoacidophilum AJ12318 (FERM BP-1172) (see US Pat. No. 5,188,949) and L-isoleucine-producing ability.
  • Examples of the coryneform bacterium having the above include Brevibacterium flavum AJ12149 (FERM BP-759) (see US Pat. No.
  • the ability to produce L-amino acid such as L-lysine refers to the ability of a coryneform bacterium to accumulate a significant amount of L-amino acid such as L-lysine in the medium when cultured in the medium. Or the ability to increase the content of amino acids such as L-lysine in cells.
  • a gene fragment encoding fumarase is ligated to a vector that functions in the bacterium, preferably a multicopy vector, to produce recombinant DNA. Then, this may be introduced into a coryneform bacterium capable of producing L-lysine or L-glucamic acid for transformation. An increase in the copy number of the gene encoding fumalase in the cells of the transformed strain results in enhanced fumalase activity.
  • Humalase is encoded by the fUDl gene in Escherichia coli.
  • the fumarase gene either a gene of a coryneform bacterium or a gene derived from another organism such as a bacterium belonging to the genus Escherichia can be used.
  • the nucleotide sequence of the fum gene of Escherichia coli has already been clarified (Bell, PJ et al., J. Bacteriol. 171, 3494-3503 (1989), Genbank / EMBL / DDBJ accession No. M27058).
  • a primer prepared based on the base sequence for example, the primers shown in SEQ ID NOs: 1 and 2 in the Sequence Listing, a PCR method using Escherichia coli chromosomal DNA as type I (PCR: polymerase chain reaction; J. et al; Trends Genet. 5, 185 (1989)) to obtain the fum gene.
  • Genes encoding fumarase of other microorganisms such as coryneform bacteria can be obtained in a similar manner.
  • Chromosomal DNA is obtained from bacteria that are DNA donors, for example, by the method of Saito and Miura (H. Saito and .iura Biochem. Biophys. Acta, 72, 619 (1963)), Biological Engineering Experiment, Pp. 97-98, Baifukan, 1992).
  • the gene encoding fumarase amplified by the PCR method is connected to a vector DNA capable of autonomous replication in the cells of Escherichia coli and / or coryneform bacteria to prepare a recombinant DNA, which is then transformed into Escherichia coli. Introduced into cells Then, the operation later becomes difficult.
  • a vector capable of autonomous replication in Escherichia coli cells a plasmid vector is preferable, and a vector capable of autonomous replication in a host cell is preferable.
  • the vector autonomously replicable in cells of coryneform bacteria (see Japanese Patent Laid HirakiAkira 58- 67699) pAM330, P HM1519 (see JP-A-58- 77895) and the Ru mentioned.
  • a DNA fragment capable of autonomously replicating plasmid in coryneform bacteria is extracted from these vectors and inserted into the Escherichia coli vector, whereby autonomous replication in both Escherichia coli and coryneform bacteria occurs. It can be used as a shuttle vector that is not possible. The following are examples of such a shuttle vector.
  • the microorganism holding each vector and the accession number of the international depository organization are shown in parentheses.
  • PAJ611 Escherichia Cori AJ11884 (FERM BP-138)
  • PAJ3148 Coryne ⁇ , ⁇ , ⁇ , ⁇ ⁇ 820 820 SR8203 (ATCC39137)
  • the recombinant DNA is transformed into DNA by transforming the cells of a DNA-accepting bacterium into a protoplast or spheroblast that readily incorporates the recombinant DNA, as is known for Bacillus subtilis, actinomycetes and yeast.
  • Method for introduction into recipient bacteria (Chang, S. and Choen, SN, Molec. Gen. Genet., 168, 111 (1979), -Bibb, MJ, Ward, JMand Hopwood, 0.A., Nature, 274, 398 (1978); Hinnen, A., Hicks, JBand Fink, GR, Proc. Natl. Acad. Sci. USA, 75 1929 (1978)).
  • the transformation method used in the examples of the present invention is the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791).
  • Enhancement of fumarase-encoding activity can also be achieved by the presence of multiple copies of the fumarase-encoding gene on the chromosome DNA of the host.
  • homologous recombination is performed by using a sequence present in multiple copies on chromosome DNA as a target.
  • a sequence present in multiple copies on the chromosomal DNA it is possible to use repetitive DNA and inverted repeats present at the end of a transposable element.
  • a gene encoding fumalase is mounted on a transposon and transferred, and multiple copies are introduced into chromosomal DNA. Is also possible. Either method increases the copy number of the gene encoding fumarase in the transformant, resulting in enhanced fumarase activity.
  • the enhancement of fumarase activity can be achieved not only by the gene amplification described above, but also by replacing the expression regulatory sequence such as the promoter of the gene encoding fumarase on chromosome DNA or plasmid with a strong one. Is also achieved (see Japanese Patent Application Laid-Open No. H11-215280). For example, lac promoter, trp promoter, trc promoter, tac promoter, PR promoter of lambda phage, PL promoter and the like are known as strong promoters. By substituting these promoters, fumarase activity is enhanced by enhancing expression of a gene encoding humalase.
  • the coryneform bacterium of the present invention may have enhanced enzymatic activities thereof by enhancing enzyme genes such as other amino acid synthesizing pathways or glycolytic pathways in addition to the fumarase activity.
  • enzyme genes such as other amino acid synthesizing pathways or glycolytic pathways in addition to the fumarase activity.
  • examples of genes that can be used for the production of L-lysine include Assubald Kinase Hissubunit protein or / ?, in which synergistic feedback inhibition by L-lysine and L-threonine has been substantially eliminated.
  • a gene encoding a subunit protein (W094 / 25605 International Publication Pamphlet); a wild-type phosphoenolpyruvate carboxylase gene derived from coryneform bacteria (JP-A-60-87788); a wild-type dihydropicolinic acid derived from coryneform bacteria
  • a gene encoding a synthase Japanese Patent Publication No. 6-55149 and the like are known.
  • genes that can be used for the production of L-glutamic acid include glutamate dehydrogenase (GDH, JP-A-61-268185), glutamine synthase, and glutamate synthase.
  • GDH glutamate dehydrogenase
  • glutamine synthase glutamate synthase
  • glutamate synthase glutamate synthase
  • Isosenate dehydrogenase Japanese Patent Application Laid-Open No. 62-166890, Japanese Patent Application Laid-Open No. 63-214189
  • aconitate hydratase Japanese Patent Application Laid-open No. — 294 886
  • Synthetic citrate Synthetic citrate
  • pyruvate carboxylase Japanese Patent Application Laid-Open No. 60-87788, Japanese Patent Application Laid-Open No.
  • an enzyme that catalyzes a reaction that diverges from a target L-amino acid biosynthetic pathway to produce a compound other than the L-amino acid may be reduced or lacking.
  • homoserine dehydrogenase is an enzyme that catalyzes a reaction that diverges from the L-lysine biosynthetic pathway to produce a compound other than L-lysine (see WO95 / 23864).
  • Enzymes that catalyze the reaction that branches off from the L-glutamic acid biosynthetic pathway to produce compounds other than L-glutamic acid include ketoglutaric acid dehydrogenase, isoquenate lyase, and acetyl phosphate.
  • a biotin action inhibitor such as a surfactant to a coryneform bacterium capable of producing L-glutamic acid
  • a biotin action inhibitor in a medium containing an excessive amount of biotin can be obtained.
  • L-glutamic acid can be produced in the absence of E. coli (see W096 / 06180).
  • Examples of such coryneform bacteria include Brevipacterium. Lactofermentum AJ13029 described in W096 / 06180.
  • the AJ13029 strain was granted to the Institute of Biotechnology and Industrial Technology, Institute of Industrial Science and Technology (Postal Code 305-8566, 1-3 1-3 Tsukuba-Higashi, Ibaraki, Japan) on September 2, 1994 under the accession number FERM P-14501. It was deposited and transferred to an international deposit under the Budapest Treaty on August 1, 1995, and given accession number FERM BP-5189.
  • a coryneform bacterium capable of producing L-lysine and L-glutamic acid is given a temperature-sensitive mutation against a substance that suppresses the action of biotin, thereby suppressing the action of biotin in a medium containing an excessive amount of biotin.
  • L-lysine and L-glutamic acid can be produced simultaneously in the absence of a substance (see W096 / 06180).
  • strains include Brevipacterium 'lactofermentum AJ12993 strain described in W096 / 06180.
  • the stock was issued to the Institute of Biotechnology, Institute of Biotechnology, Japan, on June 3, 1999 (Postal Code 305-8566, Tsukuba 1-chome 1-3, Ibaraki, Japan), with accession number FERM P- Deposited at 14348, transferred to an international deposit under the Budapest Treaty on August 1, 1995, and given accession number FERM BP-5188.
  • the phrase “enhanced activity” of an enzyme generally means that the enzyme activity in a cell is higher than that of a wild-type strain, and is modified by a gene recombination technique or the like. When a strain with enhanced enzyme activity is obtained, it means that the enzyme activity in the cell is higher than that of the strain before modification.
  • reduced activity usually means that the enzyme activity in a cell is lower than that of a wild-type strain, and the enzyme activity has been reduced by modification by genetic recombination technology or the like. When a strain is obtained, it means that the enzyme activity in the cell is lower than that of the strain before modification.
  • a coryneform bacterium having enhanced fumarase activity and capable of producing L-amino acid is cultured in a suitable medium, the L-amino acid accumulates in the medium.
  • a coryneform bacterium having enhanced L-lysine activity and capable of producing L-lysine acid is cultured in a suitable medium, L-lysine accumulates in the medium.
  • a coryneform bacterium having enhanced fumarase activity and capable of producing L-glucaminic acid is cultured in a suitable medium, L-glucaminic acid accumulates in the medium.
  • L-lysine and L-glucamic acid accumulate in the medium.
  • the L-lysine-producing bacterium may be cultured under L-glucaminic acid-producing conditions, or it has the ability to produce L-lysine.
  • a coryneform bacterium and a coryneform bacterium having an ability to produce L-glucaminic acid may be mixed and cultured (Japanese Patent Application Laid-Open No. 5-37993).
  • the culture medium used for producing L-amino acids such as L-lysine or L-glumic acid using the microorganism of the present invention contains a carbon source, a nitrogen source, inorganic ions, and other organic micronutrients as required. This is a normal medium.
  • Carbon sources include glucose, lactose, galactose, fructose, sucrose, molasses, carbohydrates such as starch hydrolysates, alcohols such as ethanol and inositol, acetic acid, fumaric acid, citric acid, and succinic acid. And other organic acids can be used.
  • Nitrogen sources include ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium phosphate, ammonium acetate, and other inorganic ammonium salts, ammonia, peptone, meat extract, yeast extract, yeast extract, corn 'steep' liquor, soy hydrolyzate Organic nitrogen, ammonia gas, ammonia water, and the like can be used.
  • inorganic ions small amounts of potassium phosphate, magnesium sulfate, iron ions, manganese ions and the like are added.
  • organic trace nutrients it is desirable to include a required substance such as vitamin B1 or a yeast extract in an appropriate amount as necessary.
  • the cultivation is preferably carried out for 16 to 72 hours under aerobic conditions such as shaking cultivation, aeration and stirring cultivation, and the cultivation temperature is 30 ° C to 45 ° C. Control to ⁇ 9.
  • an inorganic or organic acidic or alkaline substance, ammonia gas or the like can be used.
  • L-amino acid can be collected from the fermentation liquor in the same manner as in the normal L-amino acid production method. Can be done. For example, collection of L-lysine can be usually carried out by combining an ion exchange resin method, a precipitation method and other known methods.
  • the method for collecting L-glutamic acid may be a conventional method, for example, an ion exchange resin method, a crystallization method, or the like. Specifically, L-glutamic acid may be adsorbed and separated by an anion exchange resin, or may be neutralized and crystallized. When producing both L-lysine and L-glutamic acid, when these are used as a mixture, it is unnecessary to separate these amino acids from each other. Examples Hereinafter, the present invention will be described more specifically with reference to Examples.
  • the nucleotide sequence of the fum gene of Escherichia coli has already been elucidated (Bell, P. J. et al., J. Bacteriol. 171, 3494-3503 (1989), Genbank / EMBL / DDBJ accession No. M27058). Based on the reported nucleotide sequence, SEQ ID NOS: 1 and 2: The following primers were synthesized, and the pyruvate dehydrogenase gene was amplified by PCR using the chromosomal DNA of Escherichia coli JM109 strain as type III. did.
  • S sequence number 1 corresponds to the sequence from the 1st to 24th base of the base sequence of the fum gene described in Genbank / EMBL / DDBJ accetion No. M 27058; 2 corresponds to the sequence from the 3162nd base to the 3149th base.
  • the chromosomal DNA of Escherichia coli JM109 strain was prepared according to a conventional method (Biotechnological Experiments, edited by Biotechnology Society of Japan, pp. 97-98, Baifukan, 1992).
  • PCR reaction standard reaction conditions described on page 185 of the PCR method forefront (edited by Takeo Sekiya et al., Kyoritsu Shuppan, 1998) were used.
  • Escherichia coli harboring pHC4 was named the private number AJ12617, and said on April 24, 1999, the Ministry of International Trade and Industry, National Institute of Advanced Industrial Science and Technology, Institute of Biotechnology and Industrial Technology (Zip code 305-8566).
  • the fumalase activity of the JM109 strain and the JM109 strain having pHC4 fum was determined by Kanarek, It was measured by the method described in L. et al., J. Biol. Chem., 239, 4202-4206 (1964). As a result, the JM109 strain having pHC 4 fum exhibited about 17 times the fumarase activity of the JM109 strain without pHC 4 fum, indicating that the fum gene was expressed. confirmed.
  • Brevipacterium lactofermentum AJ13029 was transformed with plasmid pHC4fum by the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791) to obtain the obtained transformant.
  • culture for producing L-glutamic acid was performed as follows. Cells of the AJ13029 / pHC4fum strain obtained by culturing in a CM2B plate medium containing 5 ⁇ g / ml chloramphenicol were mixed with L-cells having the following composition containing 5 ⁇ g / ml chloramphenicol.
  • the medium was inoculated into a glucanic acid production medium, cultured at 31.5 ° C with shaking, and shaken until the sugar in the medium was consumed.
  • the obtained culture was inoculated into a medium having the same composition in an amount of 5%, and cultured at 37 ° C with shaking until the sugar in the medium was consumed.
  • a strain obtained by transforming a plasmid pHC4, which can be autonomously replicated with a previously obtained corynebacterium bacterium, into the corynebacterium bacterium AJ13029 as a control by the electric pulse method and culturing in the same manner as described above did.
  • Protein hydrolyzate (bean concentrate) 30 ml
  • Brevipacterium lactofermentum AJ12993 was transformed with plasmid pHC4fum by the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791) to obtain the obtained transformant.
  • culture for producing L-lysine and L-glucamic acid was carried out as follows.
  • the cells of the AJ12993 / pHC4fum strain obtained by culturing in a CM2B plate medium containing 5 ⁇ g / ml chloramphenicol were mixed with the L-cell containing 5 // g / ml chloramphenicol.
  • a lysine production medium was inoculated and cultured at 31.5 ° C.
  • the culture temperature was shifted to 34 ° C, and the culture was performed with shaking until the sugar in the medium was consumed.
  • a strain obtained by transforming a plasmid PHC4 capable of autonomously replicating with a previously obtained corynebacterium bacterium into an AJ12993 bacterium of the genus Corynebacterium by an electric pulse method was cultured in the same manner as described above.
  • L-amino acid such as L-lysine or L-glucamic acid

Abstract

A process for producing an L-amino acid such as L-lysine or L-glutamic acid by an improved fermentation method compared with the conventional methods which comprises transferring a gene encoding fumarase into a coryneform bacterium capable of producing an L-amino acid such as L-lysine or L-glutamic acid and thus enhancing the fumarase activity to thereby elevate the L-amino acid productivity; and strains to be used in this method.

Description

明細  Statement
L一アミノ酸の製造法 技術分野 本発明は、 発酵法による L—アミノ酸の製造法、 特に L—リジン及び L—グル 夕ミン酸の製造法に関する。 L一リジンは飼料添加物等として、 L一グルタミン 酸は調味料原料等として広く用いられている。 背景技術 従来、 L—リジン及び L—グルタ ミン酸等の L—アミノ酸は、 これらの L—ァ ミノ酸生産能を有するブレビパクテリゥム属ゃコリネバクテリゥム属に属するコ リネ型細菌を用いて発酵法により工業生産されている。 これらのコリネ型細菌は、 生産性を向上させるために、 自然界から分離した菌株または該菌株の人工変異株 が用いられている。 TECHNICAL FIELD The present invention relates to a method for producing an L-amino acid by a fermentation method, and particularly to a method for producing L-lysine and L-glutamic acid. L-lysine is widely used as a feed additive and the like, and L-glutamic acid is widely used as a seasoning material and the like. BACKGROUND ART Conventionally, L-amino acids such as L-lysine and L-glutamic acid have been obtained by using a coryneform bacterium belonging to the genus Brevipacterium or Corynebacterium having the ability to produce these L-amino acids. It is industrially produced by fermentation. For these coryneform bacteria, strains isolated from the natural world or artificial mutants of the strains are used in order to improve productivity.
また、 組換え D N A技術により L一アミノ酸の生合成酵素活性を増強すること によって、 L—アミノ酸の生産能を増加させる種々の技術が開示されている。 例 えば、 L一リジン生産能を有するコリネ型細菌において、 L一リジン及び Lース レオニンによるフィードバック阻害が解除されたァスパルトキナーゼをコードす る遺伝子 (変異型 lysC ) 、 ジヒ ドロジピコリン酸レダク夕ーゼ遺伝子 (dapB) 、 ジヒ ドロジピコリン酸シンターゼ遺伝子 (dapA) 、 ジアミノピメ リン酸デカルボ キシラーゼ遺伝子 (lysA) 、 及びジアミノピメ リン酸デヒ ドロゲナーゼ遺伝子 ( ddh) (W096/40934) 、 lysA及び ddh (特開平 9— 322774号) 、 lysCヽ lysA及びホ スホェノールピルビン酸カルボキシラーゼ遺伝子 (ppC) (特開平 10- 165180号) 、 変異型 lysC、 dapB、 dapA、 l ysA及びァスパラギン酸アミノ トランスフェラーゼ遺 伝子 (aspC ) (特開平 10- 215883号) を導入することにより、 同細菌の L一リジン 生産能が向上することが知られている。 In addition, various techniques for increasing L-amino acid producing ability by enhancing L-amino acid biosynthetic enzyme activity by recombinant DNA technology have been disclosed. For example, in a coryneform bacterium capable of producing L-lysine, a gene encoding aspartkinase (mutant lysC) in which feedback inhibition by L-lysine and L-threonine has been released, dihydropicolinic acid phosphate Evening gene (dapB), dihydroxypicolinate synthase gene (dapA), diaminopimeline decarboxylase gene (lysA), and diaminopimeline dehydrogenase gene (ddh) (W096 / 40934), lysA and ddh Kaihei 9-322774), lysCslysA and phosphoenolpyruvate carboxylase gene (pp C ) (JP-A-10-165180), mutant lysC, dapB, dapA, lysA and aspartate aminotransferase gene ( aspC) (Japanese Unexamined Patent Publication (Kokai) No. 10-215883) has been reported to improve the L-lysine production ability of the bacterium. To have.
また、 ェシエリ ヒア厲細菌においては、 dapA、 変異型 lysC、 dapB、 ジアミノビ メ リン酸デヒドロゲナーゼ遺伝子 (ddh) (又はテトラヒ ドロジピコリン酸スクシ 二ラ一ゼ遺伝子 (dapD ) 及びスクシ二ルジアミノピメリン酸デアシラーゼ遺伝子 ( dapE ) ) を順次増幅又は導入すると L—リジン生産能が向上することが知られ ている (W0 95/16042 ) 。 尚、 W0 95/ 16042ではテ トラヒ ドロジピコ リン酸スクシ 二ラーゼがスクシニルジアミノ ピメ リン酸トランスアミナ一ゼと誤記されている。 一方、 コリネパクテリゥム属またはブレビパクテリゥム属細菌において、 ェシ エリヒア · コリ又はコリネバクテリゥム · グルタミクム由来のクェン酸シンター ゼをコ一ドする遺伝子の導入が、 L—グル夕ミン酸生産能の増強に効果的であつ たことが報告されている (特公平 7- 121228号) 。 また、 特開昭 61-268185号公報に は、 コリネバクテリゥム厲細菌由来のグル夕ミン酸デヒ ドロゲナーゼ遺伝子を含 む組換え体 D N Aを保有した細胞が開示されている。 さらに、 特開昭 63-2 189号 公報には、 グルタ ミン酸デヒ ドロゲナーゼ遺伝子、 イソクェン酸デヒ ドロゲナー ゼ遺伝子、 アコニッ ト酸ヒ ドラ夕ーゼ遺伝子、 及びクェン酸シンターゼ遺伝子を 増幅又は導入することによって、 L—グル夕ミン酸の生産能を増加させる技術が 開示されている。 In Escherichia bacteria, dapA, mutant lysC, dapB, diaminobi L-lysine production ability is improved by successively amplifying or introducing the methacrylate dehydrogenase gene (ddh) (or the tetrahydrodpicolinic acid succinylase gene (dapD) and the succinyldiaminopimelate deacylase gene (dapE)). (W0 95/16042). In WO95 / 16042, tetrahydrodipicophosphate succinylase is erroneously described as succinyldiaminopimelate transaminase. On the other hand, in a bacterium of the genus Corynepacterium or Brevipacterium, the introduction of a gene encoding a citrate synthase derived from Escherichia coli or Corynebacterium glutamicum is introduced into L-glutamic acid. It was reported that it was effective in enhancing production capacity (Japanese Patent Publication No. 7-121228). Japanese Patent Application Laid-Open No. 61-268185 discloses a cell having a recombinant DNA containing a glutamate dehydrogenase gene derived from a Corynebacterium bacterium. Further, JP-A-63-2189 discloses that a glutamate dehydrogenase gene, an isocitrate dehydrogenase gene, an aconitate hydrase gene and a citrate synthase gene are amplified or introduced. Accordingly, a technique for increasing the ability to produce L-glucamic acid has been disclosed.
しかし、 フマラーゼをコ一ドする遺伝子の構造はコリネ型細菌では報告されて おらず、 フマラーゼをコ一ドする遺伝子をコリネ型細菌の育種に利用することも 知られていない。 発明の開示 本発明は、 従来よりもさらに改良された発酵法による L一リジン又は Lーグル 夕ミン酸等の L一アミノ酸の製造法、 及びそれに用いる菌株を提供することを課 題とする。  However, the structure of the gene encoding fumarase has not been reported for coryneform bacteria, and the use of the gene encoding fumarase for breeding of coryneform bacteria is not known. DISCLOSURE OF THE INVENTION An object of the present invention is to provide a method for producing an L-amino acid such as L-lysine or L-amino acid by a fermentation method which is further improved, and a strain used for the same.
本発明者等は、 上記課题を解決するために鋭意検討を行った結果、 フマラーゼ をコードする遺伝子をコリネ型細菌に導入し、 フマラーゼ活性を増強することに より、 L—リジン又は L—グル夕 ミン酸の生産量を増大させることができること を見出し、 本発明を完成するに至った。 すなわち本発明は、 以下のとおりである。 The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by introducing a gene encoding fumarase into coryneform bacteria and enhancing fumarase activity, L-lysine or L-glutamine The inventors have found that the production of evening acid can be increased, and have completed the present invention. That is, the present invention is as follows.
( 1 ) 細胞中のフマラ一ゼ活性が増強され、 かつ L—アミノ酸生産能を有するコ リネ型細菌。  (1) A coryneform bacterium having enhanced fumalase activity in cells and capable of producing L-amino acid.
( 2 ) 前記 L—アミノ酸が、 L—リジン、 L—グルタミン酸、 L—スレオニン、 L一イソロイシン、 Lーセリンから選ばれる ( 1 ) のコリネ型細菌。  (2) The coryneform bacterium according to (1), wherein the L-amino acid is selected from L-lysine, L-glutamic acid, L-threonine, L-isoleucine, and L-serine.
( 3 ) 前記フマラーゼ活性の増強が、 前記細菌細胞内のフマラ一ゼをコードする 遺伝子のコピー数を高めることによるものである前記 ( 1 ) のコリネ型細菌。  (3) The coryneform bacterium according to (1), wherein the enhancement of the fumarase activity is due to an increase in the copy number of a gene encoding humalase in the bacterial cell.
( 4 ) 前記フマラ一ゼをコ一ドする遺伝子がェシエリヒア属細菌由来である  (4) The gene encoding the humalase is derived from a bacterium belonging to the genus Escherichia.
( 3 ) のコリネ型細菌。  (3) Coryneform bacterium.
( 5 ) 前記 ( 1 ) 〜 (4 ) のいずれかのコリネ型細菌を培地に培養し、 該培養物 中に L—アミノ酸を生成蓄積せしめ、 該培養物から L一アミノ酸を採取すること を特徴とする L—アミノ酸の製造法。  (5) The coryneform bacterium of any of (1) to (4) above is cultured in a medium, L-amino acids are produced and accumulated in the culture, and L-amino acids are collected from the culture. L—A method for producing amino acids.
( 6 ) 前記 L—アミノ酸が、 L—リジン、 L—グルタミン酸、 L—スレオニン、 L一イソロイシン、 Lーセリンから選ばれる ( 5 ) の方法。 発明を実施するための最良の形態 以下、 本発明を詳細に説明する。  (6) The method according to (5), wherein the L-amino acid is selected from L-lysine, L-glutamic acid, L-threonine, L-isoleucine, and L-serine. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
< 1 >本発明のコリネ型細菌 <1> Coryneform bacterium of the present invention
本発明のコリネ型細菌は、 L一アミノ酸生産能を有し、 細胞中のフマラーゼ活 性が増強されたコリネ型細菌である。 L一アミノ酸としては、 L一リジン、 L一 グルタミン酸、 Lースレオニン、 L—イソロイシン、 Lーセリン等が挙げられる。 これらの中では、 L一リジン及び L一グルタミン酸が好ましい。 以下、 本発明の 実施の形態を、 主として Lーリジン生産能又は L一グル夕ミン酸生産能を有する コリネ型細菌について説明するが、 本発明は、 目的とする L—アミノ酸固有の生 合成系がフマラ一ゼょりも下流に位置するものについては同様に適用され得る。 本発明でいうコリネ型細菌は、 バージーズ · マニュアル · ォブ · デターミネィ ティブ 'ノ、'クテリオロジー (Bergey' s Manual of Determinative Bacteriology) 第 8版 599頁 (1974) に定義されている一群の微生物であり、 好気性、 グラム陽性、 非抗酸性で、 胞子形成能を有しない桿菌であり、 従来ブレビパクテリゥム属に分 類されていたが現在コリネバクテリゥム属細菌として統合された細菌を含み (In t . J . Syst . Bacteriol . , 41, 255 ( 1981 ) ) 、 またコリネパクテリゥム属と非常 に近縁なブレビパクテリゥム属細菌及びミクロパテリゥム属細菌を含む。 Lーリ ジン又は L一グルタミン酸の製造に好適に用いられるコリネ型細菌の菌株として は、 例えば以下に示すものが挙げられる。 The coryneform bacterium of the present invention is a coryneform bacterium having an ability to produce L-amino acid and having enhanced fumarase activity in cells. Examples of the L-amino acid include L-lysine, L-glutamic acid, L-threonine, L-isoleucine, L-serine and the like. Of these, L-lysine and L-glutamic acid are preferred. Hereinafter, embodiments of the present invention will be described mainly with respect to a coryneform bacterium having L-lysine-producing ability or L-glucaminic acid-producing ability, but the present invention provides a biosynthesis system specific to an L-amino acid of interest. The same applies to those located downstream. The coryneform bacteria referred to in the present invention are a group of microorganisms defined in Bergey's Manual of Determinative Bacteriology, 8th edition, p. 599 (1974). , Aerobic, gram positive, It is a non-acid-fast, non-spore-forming bacillus, including bacteria that were previously classified into the genus Brevipacterium but are now integrated as corynebacteria (Int. J. Syst. Bacteriol., 41, 255 (1981)), and also includes bacteria of the genus Brevipacterium and Micropaterims which are very closely related to the genus Corynepacterium. Examples of the strains of coryneform bacteria suitably used for producing L-lysine or L-glutamic acid include, for example, those shown below.
コリネバクテリゥム · ァセ トァシドフィルム ATCC13870  Corynebacterium acetate film ATCC13870
コリネバクテリウム · ァセ トグルタミクム ATCC15806  Corynebacterium acetoglutamicum ATCC15806
コリネバクテリウム · カルナェ ATCC15991  Corynebacterium carnaet ATCC15991
コリネパクテリゥム · グルタミクム ATCC13032  CorynepaterumGlutamicum ATCC13032
(ブレビパクテリゥム · ディバリカタム) ATCC14020  (Brevipactium Divarikatam) ATCC14020
(ブレビパクテリゥム · ラク トフアーメンタム) ATCC13869  (Brevipactium · Lacto Armament) ATCC13869
(コリネバクテリゥム · リ リウム) ATCC15990  (Corynebacterium lilium) ATCC15990
(ブレビバクテリゥム · フラバム) ATCC 14067  (Brevibacterium flavum) ATCC 14067
コリネバクテリゥム メフセ:3—フ ATCC17965  Corynebacterium mefse: 3-f ATCC17965
ブレビパクテリゥム サッカロリティクム ATCC14066  Brevi Pacterium Saccharolyticum ATCC14066
ブレビパクテリゥム インマリオフィルム ATCC14068  Brevi Pacterium Inmario Film ATCC14068
ブレビパクテリゥム ロゼゥム ATCC13825  Brevi Pacterium Rosemze ATCC13825
ブレビバクテリウム チォゲ二夕リス ATCC19240  Brevibacterium choge niyu squirrel ATCC19240
ミクロバクテリゥム アンモニアフィラム ATCC15354  Microbacterium Ammonia Filum ATCC15354
コリネバクテリゥム サーモアミノゲネス AJ12340(FERM BP - 1539 ) これらを入手するには、 例えばァメ リカン · タイプ · カルチャー · コレクショ ン (American Type Culture Col lectioru 住所 12301 Park lawn Drive, Rockvi l l e, Maryland 20852, United States of America) より分譲を受けることができ る。 すなわち、 各微生物ごとに対応する登録番号が付与されており、 この登録番 号を引用して分譲を受けることができる。 各微生物に対応する登録番号はァメ リ カン · 夕イブ ' カルチャー ' コレクションのカタ口グに記載されている。 また、 AJ12340株は、 通商産業省工業技術院生命工学工業技術研究所 (郵便番号 305-856 6 日本国茨城県つくば巿東一丁目 1番 3号) にブダペス ト条約に基づいて寄託さ れている。 Corynebacterium thermoaminogenes AJ12340 (FERM BP-1539) To obtain them, for example, American Type Culture Collective Address 12301 Park lawn Drive, Rockville, Maryland 20852, United States of America). That is, a registration number corresponding to each microorganism is assigned, and the microorganism can be ordered by referring to this registration number. The registration numbers for each microorganism are listed on the catalog of the American Culture's 'Culture' collection. In addition, AJ12340 strain was deposited with the Institute of Biotechnology, Industrial Technology Institute of the Ministry of International Trade and Industry (Postal Code 305-856-6 1-3 1-3 Tsukuba-Higashi, Ibaraki, Japan) based on the Budapest Treaty. Have been.
また、 上記菌株以外にも、 これらの菌株から誘導された L一リジン又は Lーグ ルタミン酸等の L一アミノ酸生産能を有する変異株等も、 本発明に利用できる。 この様な人工変異株としては次の様なものがある。 S— ( 2—アミノエチル) 一 システィン (以下、 「AEC」 と略記する) 耐性変異株 (例えば、 ブレビバクテリウ ム ' ラク トフアーメンタム AJ11082 ( NRRL B- 11470 ) 、 特公昭 56- 1914号、 特公昭 56-1915号、 特公昭 57- 14157号、 特公昭 57- 14158号、 特公昭 57- 30474号、 特公昭 5 8-10075号、 特公昭 59- 4993号、 特公昭 61-35840号、 特公昭 62-24074号、 特公昭 62 -36673号、 特公平 5- 11958号、 特公平 7- 112437号、 特公平 7- 112438号参照) 、 その 成長に L一ホモセリン等のアミノ酸を必要とする変異株 (特公昭 48- 28078号、 特 公昭 56-6499号) 、 AECに耐性を示し、 更に L一口イシン、 L—ホモセリン、 L— プロリン、 L—セリン、 L—アルギニン、 Lーァラニン、 L—バリン等のアミノ 酸を要求する変異株 (米国特許第 3708395号及び第 3825472号) 、 D L—ひ一アミ ノー £一力プロラク夕ム、 ひ一アミノーラウリルラクタム、 ァスパラギン酸一ァ ナログ、 スルファ剤、 キノイ ド、 N—ラウロイルロイシンに耐性を示す Lーリジ ン生産変異株、 ォキザ口酢酸脱炭酸酵素 (デカルボキシラーゼ) または呼吸系酵 素阻害剤の耐性を示す L一リジン生産変異株 (特開昭 50- 53588号、 特開昭 50- 310 93号、 特開昭 52- 102498号、 特開昭 53- 9394号、 特開昭 53- 86089号、 特開昭 55- 978 3号、 特開昭 55-9759号、 特開昭 56- 32995号、 特開昭 56-39778号、 特公昭 53- 43591 号、 特公昭 53- 1833号) 、 イノシトールまたは酢酸を要求する L一リジン生産変異 株 (特開昭 55-9784号、 特開昭 56-8692号) 、 フルォロピルビン酸または 34°C以上 の温度に対して感受性を示す L一リジン生産変異株 (特開昭 55- 9783号、 特開昭 5 3-86090号) 、 エチレングリコールに耐性を示し、 L—リジンを生産するブレビバ クテリゥム属またはコリネパクテリゥム属の生産変異株 (米国特許第 4411997号) 。 また、 Lースレオニン生産能を有するコリネ型細菌としては、 コリネパクテリ ゥム · ァセ トァシドフィラム AJ 12318 ( FERM BP- 1172 ) (米国特許第 5, 188,949号参 照) 等が、 L—イソロイシン生産能を有するコリネ型細菌としてはブレビバクテ リウム · フラバム AJ12149 ( FERM BP- 759 ) (米国特許第 4,656, 135号参照) 等が挙 げられる。 なお、 本明細書において 「L—リジン等の L一アミノ酸生産能」 とは、 コリネ 型細菌を培地に培養したときに、 培地中に有意な量の Lーリジン等の Lーァミノ 酸を蓄積する能力、 又は菌体中の L—リジン等のアミノ酸含量を増加させる能力 をいう。 In addition to the above strains, mutants having L-amino acid-producing ability such as L-lysine or L-glutamic acid derived from these strains can also be used in the present invention. Such artificial mutants include the following. S- (2-aminoethyl) -cysteine (hereinafter abbreviated as "AEC") resistant mutant (for example, Brevibacterium 'Lactofamentum AJ11082 (NRRL B-11470), Japanese Patent Publication No. 56-1914, Japanese Patent Publication No. No. 56-1915, No. 57-14157, No. 57-14158, No. 57-30474, No. 58-10075, No. 59-4993, No. 61-35840, No. 61-35840, No. No. 62-24074, Japanese Patent Publication No. 62-36673, Japanese Patent Publication No. 5-11958, Japanese Patent Publication No. 7-112437, Japanese Patent Publication No. 7-112438), mutants that require amino acids such as L-homoserine for their growth (JP-B-48-28078, JP-B-56-6499), shows resistance to AEC, and furthermore L-mouth isin, L-homoserine, L-proline, L-serine, L-arginine, L-alanine, L-valine, etc. Mutant strains requiring amino acids (US Pat. Nos. 3,708,395 and 3,825,472), DL—amino acid L-lysine-producing enzyme, H-amino-lauryl lactam, aspartate mono-analog, sulfa drugs, quinoids, L-lysine-producing mutants resistant to N-lauroylleucine, oxaxate acetate decarboxylase (decarboxylase) or L-lysine-producing mutants showing resistance to respiratory enzyme inhibitors (JP-A-50-53588, JP-A-50-31093, JP-A-52-102498, JP-A-53-9394, JP-A-53-86089, JP-A-55-9783, JP-A-55-9759, JP-A-56-32995, JP-A-56-39778, JP-B-53-43591, JP-B-53-43591 53-1833), L-lysine-producing mutants that require inositol or acetic acid (JP-A-55-9784, JP-A-56-8692), and are sensitive to fluoropyruvic acid or temperatures above 34 ° C. L-lysine-producing mutant strains (JP-A-55-9783, JP-A-53-86090) Call resistant, producing L- lysine Burebiba Kuteriumu genus or Corynebacterium Park Teri © beam genus producing mutant strain (U.S. Patent No. 4,411,997). Examples of coryneform bacteria having L-threonine-producing ability include Corynebacterium acetoacidophilum AJ12318 (FERM BP-1172) (see US Pat. No. 5,188,949) and L-isoleucine-producing ability. Examples of the coryneform bacterium having the above include Brevibacterium flavum AJ12149 (FERM BP-759) (see US Pat. No. 4,656,135) and the like. As used herein, “the ability to produce L-amino acid such as L-lysine” refers to the ability of a coryneform bacterium to accumulate a significant amount of L-amino acid such as L-lysine in the medium when cultured in the medium. Or the ability to increase the content of amino acids such as L-lysine in cells.
< 2〉フマラ一ゼ活性の増強  <2> Enhancement of humalase activity
コリネ型細菌細胞中のフマラーゼ活性を増強するには、 フマラーゼをコ一ドす る遺伝子断片を、 該細菌で機能するベクター、 好ましくはマルチコピー型のべク 夕一と連結して組み換え D N Aを作製し、 これを Lーリジン又は L—グル夕ミン 酸生産能を有するコリネ型細菌に導入して形質転換すればよい。 形質転換株の細 胞内のフマラ一ゼをコ一ドする遺伝子のコピー数が上昇する結果、 フマラ一ゼ活 性が増強される。 フマラ一ゼは、 ェシエリヒア ' コリでは fUDl遺伝子にコードされ ている。  To enhance fumarase activity in coryneform bacterium cells, a gene fragment encoding fumarase is ligated to a vector that functions in the bacterium, preferably a multicopy vector, to produce recombinant DNA. Then, this may be introduced into a coryneform bacterium capable of producing L-lysine or L-glucamic acid for transformation. An increase in the copy number of the gene encoding fumalase in the cells of the transformed strain results in enhanced fumalase activity. Humalase is encoded by the fUDl gene in Escherichia coli.
フマラーゼ遺伝子は、 コリネ型細菌の遺伝子を用いることも、 ェシエリヒア属 細菌等の他の生物由来の遺伝子のいずれも使用することができる。  As the fumarase gene, either a gene of a coryneform bacterium or a gene derived from another organism such as a bacterium belonging to the genus Escherichia can be used.
ェシエリヒア · コリの fum遺伝子の塩基配列は既に明らかにされている (Bell , P. J. et al ., J. Bacteriol . 171, 3494-3503 ( 1989) , Genbank/EMBL/DDBJ ac cetion No. M27058) ので、 その塩基配列に基づいて作製したプライマ一、 例えば 配列表配列番号 1及び 2に示すプライマーを用いて、 ェシヱリヒア · コリ染色体 D N Aを铸型とする P C R法 (P C R : polymerase chain reaction; Whi te, T. J . et al ; Trends Genet. 5 , 185( 1989 )参照) によって、 fum遺伝子を取得するこ とができる。 コリネ型細菌等の他の微生物のフマラーゼをコ一ドする遺伝子も、 同様にして取得され得る。  The nucleotide sequence of the fum gene of Escherichia coli has already been clarified (Bell, PJ et al., J. Bacteriol. 171, 3494-3503 (1989), Genbank / EMBL / DDBJ accession No. M27058). Using a primer prepared based on the base sequence, for example, the primers shown in SEQ ID NOs: 1 and 2 in the Sequence Listing, a PCR method using Escherichia coli chromosomal DNA as type I (PCR: polymerase chain reaction; J. et al; Trends Genet. 5, 185 (1989)) to obtain the fum gene. Genes encoding fumarase of other microorganisms such as coryneform bacteria can be obtained in a similar manner.
染色体 D N Aは、 D N A供与体である細菌から、 例えば、 斎藤、 三浦の方法 (H. Saito and . iura Biochem. Biophys. Acta, 72, 619 ( 1963 )、 生物工学 実験書、 日本生物工学会編、 9 7〜9 8頁、 培風館、 1 9 9 2年参照) 等により 調製することができる。  Chromosomal DNA is obtained from bacteria that are DNA donors, for example, by the method of Saito and Miura (H. Saito and .iura Biochem. Biophys. Acta, 72, 619 (1963)), Biological Engineering Experiment, Pp. 97-98, Baifukan, 1992).
P C R法により増幅されたフマラーゼをコ一ドする遺伝子は、 ェシエリヒア コリ及び/又はコリネ型細菌の細胞内において自律複製可能なベクタ一 D N Aに 接続して組換え D N Aを調製し、 これをェシヱリヒア · コリ細胞に導入しておく と、 後の操作がしゃすくなる。 ェシヱリヒア ' コリ細胞内において自律複製可能 なべクタ一としては、 プラスミ ドベクターが好ましく、 宿主の細胞内で自立複製 可能なものが好ましく、 例えば pUC19、 pUC18、 pBR322、 pHSG299、 pHSG399、 pHS G398、 RSF1010等が挙げられる。 The gene encoding fumarase amplified by the PCR method is connected to a vector DNA capable of autonomous replication in the cells of Escherichia coli and / or coryneform bacteria to prepare a recombinant DNA, which is then transformed into Escherichia coli. Introduced into cells Then, the operation later becomes difficult. As a vector capable of autonomous replication in Escherichia coli cells, a plasmid vector is preferable, and a vector capable of autonomous replication in a host cell is preferable.For example, pUC19, pUC18, pBR322, pHSG299, pHSG399, pHSG398, RSF1010, etc. Is mentioned.
コリネ型細菌の細胞内において自律複製可能なベクターとしては、 pAM330 (特 開昭 58- 67699号公報参照) 、 PHM1519 (特開昭 58- 77895号公報参照) 等が挙げられ る。 また、 これらのベクターからコリネ型細菌中でプラスミ ドを自律複製可能に する能力を持つ DNA断片を取り出し、 前記ェシェリヒア . コリ用のベクターに 挿入すると、 ェシエリヒア · コリ及びコリネ型細菌の両方で自律複製可能ないわ ゆるシャ トルベクターとして使用することができる。 このようなシャ トルベクタ 一としては、 以下のものが挙げられる。 尚、 それそれのベクタ一を保持する微生 物及び国際寄託機関の受託番号をかっこ内に示した。 The vector autonomously replicable in cells of coryneform bacteria (see Japanese Patent Laid HirakiAkira 58- 67699) pAM330, P HM1519 (see JP-A-58- 77895) and the Ru mentioned. In addition, a DNA fragment capable of autonomously replicating plasmid in coryneform bacteria is extracted from these vectors and inserted into the Escherichia coli vector, whereby autonomous replication in both Escherichia coli and coryneform bacteria occurs. It can be used as a shuttle vector that is not possible. The following are examples of such a shuttle vector. In addition, the microorganism holding each vector and the accession number of the international depository organization are shown in parentheses.
PAJ655 ェシエリヒア,コリ AJ11882(FERM BP-136)  PAJ655 Escherichia, Kori AJ11882 (FERM BP-136)
コリネハ、、クテリウム 'ク"ルタミクム SR8201(ATCC39135)  Coryneha, Cterium 'K' Ruta Mikum SR8201 (ATCC39135)
PAJ1844 ェシエリヒア'コリ AJ11883(FERM BP- 137)  PAJ1844 Escherichia Cori AJ11883 (FERM BP-137)
コリネハ、、クテリウム'ク '、ルタミクム SR8202(ATCC39136)  Coryneha, Cterium 'ku', Lutamicum SR8202 (ATCC39136)
PAJ611 ェシエリヒア'コリ AJ11884(FERM BP-138)  PAJ611 Escherichia Cori AJ11884 (FERM BP-138)
PAJ3148 コリネ Λ、、クテリゥム'ク、、ルタミクム SR8203(ATCC39137)  PAJ3148 Coryne Λ, テ, ル, ル ミ 820 820 SR8203 (ATCC39137)
PAJ440 Λ、、チルス ·Γフ"チリス AJ1190UFERM BP-140)  PAJ440 Λ, chillsΓ Γ "Chillis AJ1190UFERM BP-140)
PHC シェリヒア 'コリ AJ12617(FERM BP- 3532)  PHC Sherihia 'Kori AJ12617 (FERM BP-3532)
フマラーゼをコードする遺伝子とコリネ型細菌で機能するベクターを連結して 組み換え DN Aを調製するには、 フマラーゼをコ一ドする遺伝子の末端に合うよ うな制限酵素でベクターを切断する。 連結は、 T 4 D NAリガーゼ等のリガ一ゼ を用いて行うのが普通である。  To prepare recombinant DNA by ligating the gene encoding fumarase with a vector that functions in coryneform bacteria, cut the vector with a restriction enzyme that matches the end of the gene encoding fumarase. Ligation is usually performed using a ligase such as T4 DNA ligase.
上記のように調製した組み換え DN Aをコリネ型細菌に導入するには、 これま でに報告されている形質転換法に従って行えばよい。 例えば、 ェシエリヒア - コ リ K— 1 2について報告されているような、 受容菌細胞を塩化カルシウムで処 理して D N Aの透過性を増す方法 (Mandel,M.and Higa,A.,J. Mol. Biol., 53, 159 (1970)) があり、 バチルス ' ズブチリスについて報告されているような、 増 殖段階の細胞からコンビテン トセルを調製して D N Aを導入する方法 ( Duncan, C.H. , Wilson, G. A. and Young, F.E., Gene, 1, 153 (1977)) がある。 あるいは、 バ チルス ' ズプチリス、 放線菌類及び酵母について知られているような、 DNA受 容菌の細胞を、 組換え DNAを容易に取り込むプロ トプラス トまたはスフエロブ ラス トの状態にして組換え D N Aを DNA受容菌に導入する方法 ( Chang, S. and Choen,S.N.,Molec. Gen. Genet., 168, 111 (1979),-Bibb,M. J. ,Ward, J.M.and H opwood,0. A., Nature, 274, 398 (1978);Hinnen, A. , Hicks, J.B.and Fink,G.R.,Pr oc. Natl. Acad. Sci. USA, 75 1929 (1978)) も応用できる。 本発明の実施例で 用いた形質転換の方法は、 電気パルス法 (特開平 2— 2 07 79 1号公報参照) である。 To introduce the recombinant DNA prepared as described above into a coryneform bacterium, it may be carried out according to a transformation method reported so far. For example, a method of increasing the permeability of DNA by treating recipient cells with calcium chloride, as reported for Escherichia coli K-12 (Mandel, M. and Higa, A., J. Mol. Biol., 53, 159 (1970)), as reported for Bacillus' subtilis. There is a method of preparing a competent cell from cells at the stage of breeding and introducing DNA (Duncan, CH, Wilson, GA and Young, FE, Gene, 1, 153 (1977)). Alternatively, the recombinant DNA is transformed into DNA by transforming the cells of a DNA-accepting bacterium into a protoplast or spheroblast that readily incorporates the recombinant DNA, as is known for Bacillus subtilis, actinomycetes and yeast. Method for introduction into recipient bacteria (Chang, S. and Choen, SN, Molec. Gen. Genet., 168, 111 (1979), -Bibb, MJ, Ward, JMand Hopwood, 0.A., Nature, 274, 398 (1978); Hinnen, A., Hicks, JBand Fink, GR, Proc. Natl. Acad. Sci. USA, 75 1929 (1978)). The transformation method used in the examples of the present invention is the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791).
フマラーゼをコ一ドする活性の増強は、 フマラーゼをコ一ドする遺伝子を上記 宿主の染色体 D N A上に多コピー存在させることによつても達成できる。 コリネ 型細菌に属する微生物の染色体 DN A上にフマラーゼをコ一ドする遺伝子を多コ ピーで導入するには、 染色体 D N A上に多コピー存在する配列を標的に利用して 相同組換えにより行う。 染色体 DNA上に多コピー存在する配列としては、 レぺ ッティ ブ DNA、 転移因子の端部に存在するインバーティ ヅ ド · リピートが利用 できる。 あるいは、 特開平 2 - 1 09985号公報に開示されているように、 フ マラ一ゼをコ一ドする遺伝子を 卜ランスポゾンに搭載してこれを転移させて染色 体 D N A上に多コピー導入することも可能である。 いずれの方法によっても形質 転換株内のフマラーゼをコ一ドする遺伝子のコピー数が上昇する結果、 フマラー ゼ活性が増強される。  Enhancement of fumarase-encoding activity can also be achieved by the presence of multiple copies of the fumarase-encoding gene on the chromosome DNA of the host. In order to introduce a gene encoding fumarase into a chromosome DNA of a microorganism belonging to a coryneform bacterium in multiple copies, homologous recombination is performed by using a sequence present in multiple copies on chromosome DNA as a target. As a sequence present in multiple copies on the chromosomal DNA, it is possible to use repetitive DNA and inverted repeats present at the end of a transposable element. Alternatively, as disclosed in Japanese Patent Application Laid-Open No. 2-109985, a gene encoding fumalase is mounted on a transposon and transferred, and multiple copies are introduced into chromosomal DNA. Is also possible. Either method increases the copy number of the gene encoding fumarase in the transformant, resulting in enhanced fumarase activity.
フマラーゼ活性の増強は、 上記の遺伝子増幅による以外に、 染色体 DN A上又 はプラスミ ド上のフマラーゼをコ一ドする遺伝子のプロモーター等の発現調節配 列を強力なものに置換することによつても達成される (特開平 1一 2 1 5280 号公報参照) 。 たとえば、 l a cプロモーター、 t rpプロモーター、 t r cプ 口モーター、 t a cブロモータ一、 ラムダファージの P Rプロモーター、 PLプ 口モーター等が強力なプロモーターとして知られている。 これらのプロモーター への置換により、 フマラ一ゼをコ一ドする遺伝子の発現が強化されることによつ てフマラーゼ活性が増強される。 また、 本発明のコリネ型細菌は、 フマラーゼ活性に加えて、 他のアミノ酸生合 成経路又は解糖系等の酵素遺伝子を強化することによって、 それらの酵素活性が 増強されてもよい。 例えば、 L一リジンの製造に利用可能な遺伝子の例としては、 L—リジン及び Lースレオニンによる相乗的なフィ一ドバック阻害が実質的に解 除されたァスバルトキナーゼひサブュニッ ト蛋白質又は/?サブュニッ ト蛋白質を コードする遺伝子 (W094/25605国際公開パンフレッ ト) 、 コリネホルム細菌由来 の野生型ホスホェノールピルビン酸カルボキシラーゼ遺伝子 (特開昭 60-87788号 公報) 、 コリネホルム細菌由来の野生型ジヒ ドロジピコリン酸合成酵素をコード する遺伝子 (特公平 6- 55149号公報) 等が知られている。 The enhancement of fumarase activity can be achieved not only by the gene amplification described above, but also by replacing the expression regulatory sequence such as the promoter of the gene encoding fumarase on chromosome DNA or plasmid with a strong one. Is also achieved (see Japanese Patent Application Laid-Open No. H11-215280). For example, lac promoter, trp promoter, trc promoter, tac promoter, PR promoter of lambda phage, PL promoter and the like are known as strong promoters. By substituting these promoters, fumarase activity is enhanced by enhancing expression of a gene encoding humalase. In addition, the coryneform bacterium of the present invention may have enhanced enzymatic activities thereof by enhancing enzyme genes such as other amino acid synthesizing pathways or glycolytic pathways in addition to the fumarase activity. For example, examples of genes that can be used for the production of L-lysine include Assubald Kinase Hissubunit protein or / ?, in which synergistic feedback inhibition by L-lysine and L-threonine has been substantially eliminated. A gene encoding a subunit protein (W094 / 25605 International Publication Pamphlet); a wild-type phosphoenolpyruvate carboxylase gene derived from coryneform bacteria (JP-A-60-87788); a wild-type dihydropicolinic acid derived from coryneform bacteria A gene encoding a synthase (Japanese Patent Publication No. 6-55149) and the like are known.
また、 L一グルタミン酸の製造に利用可能な遺伝子の例としては、 グルタミン 酸デヒ ドロゲナーゼ (G D H、 特開昭 6 1— 2 6 8 1 8 5号) 、 グルタミンシン テ夕ーゼ、 グルタミン酸シン夕一ゼ、 イソクェン酸デヒ ドロゲナーゼ (特開昭 6 2— 1 6 6 8 9 0号、 特開昭 6 3— 2 1 4 1 8 9号) 、 アコニッ ト酸ヒ ドラター ゼ (特開昭 6 2— 2 9 4 0 8 6号) 、 クェン酸シン夕一ゼ、 ピルビン酸カルボキ シラーゼ (特開昭 6 0— 8 7 7 8 8号、 特開昭 6 2— 5 5 0 8 9号) 、 ホスホェ ノールピルビン酸カルポキシラーゼ、 ホスホェノールピルビン酸シン夕ーゼ、 ェ ノラーゼ、 ホスホグリセロム夕一ゼ、 ホスホグリセリン酸キナーゼ、 グリセルァ ルデヒ ドー 3—リン酸デヒ ドロゲナ一ゼ、 ト リオースリン酸イソメラ一ゼ、 フル トースビスリン酸アルドラ一ゼ、 ホスホフルク トキナーゼ (特開昭 6 3— 1 0 2 6 9 2号) 、 グルコースリン酸ィソメラ一ゼ等がある。  Examples of genes that can be used for the production of L-glutamic acid include glutamate dehydrogenase (GDH, JP-A-61-268185), glutamine synthase, and glutamate synthase. Isosenate dehydrogenase (Japanese Patent Application Laid-Open No. 62-166890, Japanese Patent Application Laid-Open No. 63-214189), aconitate hydratase (Japanese Patent Application Laid-open No. — 294 886), Synthetic citrate, pyruvate carboxylase (Japanese Patent Application Laid-Open No. 60-87788, Japanese Patent Application Laid-Open No. 62-55089), Phosphoe Nol-pyruvate carboxylase, phosphoenol-pyruvate synthase, enolase, phosphoglycerome kinase, phosphoglycerate kinase, glyceraldehyde 3-phosphate dehydrogenase, triosephosphate isomerase, frutoosebisphosphate Aldraise And phosphofructokinase (Japanese Unexamined Patent Publication No. 63-102692), glucose phosphate isomerase and the like.
さらに、 目的とする L一アミノ酸の生合成経路から分岐して同 L一アミノ酸以 外の化合物を生成する反応を触媒する酵素の活性が低下または欠損していてもよ い。 例えば、 L一リジンの生合成経路から分岐して L一リジン以外の化合物を生 成する反応を触媒する酵素としては、 ホモセリンデヒ ドロゲナーゼがある (W0 9 5/23864参照) 。 また、 L—グルタミン酸の生合成経路から分岐して L—グルタミ ン酸以外の化合物を生成する反応を触媒する酵素としては、 ひケ トグルタール酸 デヒ ドロゲナ一ゼ、 イソクェン酸リアーゼ、 リン酸ァセチルトランスフェラ一ゼ、 酢酸キナーゼ、 ァセ トヒ ドロキシ酸シン夕ーゼ、 ァセ ト乳酸シンターゼ、 ギ酸ァ セチルトランスフヱラーゼ、 乳酸デヒ ドロゲナーゼ、 グルタ ミン酸デカルボキシ ラーゼ、 1—ピロリン酸デヒ ドロゲナ一ゼ、 等がある。 Further, the activity of an enzyme that catalyzes a reaction that diverges from a target L-amino acid biosynthetic pathway to produce a compound other than the L-amino acid may be reduced or lacking. For example, homoserine dehydrogenase is an enzyme that catalyzes a reaction that diverges from the L-lysine biosynthetic pathway to produce a compound other than L-lysine (see WO95 / 23864). Enzymes that catalyze the reaction that branches off from the L-glutamic acid biosynthetic pathway to produce compounds other than L-glutamic acid include ketoglutaric acid dehydrogenase, isoquenate lyase, and acetyl phosphate. Transferase, acetate kinase, acetate hydroxysynthase, acetate lactate synthase, acetate acetyl formate, lactate dehydrogenase, glutamate decarboxylate And 1-pyrophosphate dehydrogenase.
さらに、 L一グルタミン酸生産能を有するコリネ型細菌に、 界面活性剤等のビ ォチン作用抑制物質に対する温度感受性変異を付与することにより、 過剰量のビ ォチンを含有する培地中にてピオチン作用抑制物質の非存在下で L—グル夕 ミン 酸を生産させることができる (W096/06180号参照) 。 このようなコリネ型細菌と しては、 W096/06180号に記載されているブレビパクテリゥム . ラク トファーメン タム AJ 13029が挙げられる。 AJ13029株は、 1994年 9月 2日付けで工業技術院生命 工学工業技術研究所 (郵便番号 305-8566 日本国茨城県つくば巿東一丁目 1番 3 号) に、 受託番号 FERM P- 14501として寄託され、 1 9 9 5年 8月 1 日にブダぺス ト条約に基づく国際寄託に移管され、 受託番号 FERM BP- 5189が付与されている。 また、 L一リジン及び L—グルタ ミン酸生産能を有するコリネ型細菌に、 ピオ チン作用抑制物質に対する温度感受性変異を付与することにより、 過剰量のピオ チンを含有する培地中にてピオチン作用抑制物質の非存在下で Lーリジン及び L 一グルタミン酸を同時生産させることができる (W096/06180号参照) 。 このよう な菌株としては、 W096/06180号に記載されているブレビパクテリゥム ' ラク トフ ァ一メンタム AJ12993株が挙げられる。 同株は 1 9 9 4年 6月 3日付けで工業技術 院生命工学工業技術研究所 (郵便番号 305- 8566 日本国茨城県つくば巿東一丁目 1 番 3号) に、 受託番号 FERM P- 14348で寄託され、 1 9 9 5年 8月 1 日にブダぺス ト条約に基づく国際寄託に移管され、 受託番号 FERM BP- 5188が付与されている。 なお、 本明細書において、 酵素の 「活性が増強されている」 とは、 通常には、 野生株よりも細胞内のその酵素活性が高いことを意味し、 遺伝子組換え技術等に よる改変によりその酵素活性が増強された菌株を得た場合には、 改変前の菌株よ りも細胞内のその酵素活性が高いことを意味する。 また、 酵素の 「活性が低下し ている」 とは、 通常には、 野生株よりも細胞内のその酵素活性が低いことを意味 し、 遺伝子組換え技術等による改変によりその酵素活性が低下した菌株を得た場 合には、 改変前の菌株よりも細胞内のその酵素活性が低いことを意味する。  Furthermore, by imparting a temperature-sensitive mutation to a biotin action inhibitor such as a surfactant to a coryneform bacterium capable of producing L-glutamic acid, a biotin action inhibitor in a medium containing an excessive amount of biotin can be obtained. L-glutamic acid can be produced in the absence of E. coli (see W096 / 06180). Examples of such coryneform bacteria include Brevipacterium. Lactofermentum AJ13029 described in W096 / 06180. The AJ13029 strain was granted to the Institute of Biotechnology and Industrial Technology, Institute of Industrial Science and Technology (Postal Code 305-8566, 1-3 1-3 Tsukuba-Higashi, Ibaraki, Japan) on September 2, 1994 under the accession number FERM P-14501. It was deposited and transferred to an international deposit under the Budapest Treaty on August 1, 1995, and given accession number FERM BP-5189. In addition, a coryneform bacterium capable of producing L-lysine and L-glutamic acid is given a temperature-sensitive mutation against a substance that suppresses the action of biotin, thereby suppressing the action of biotin in a medium containing an excessive amount of biotin. L-lysine and L-glutamic acid can be produced simultaneously in the absence of a substance (see W096 / 06180). Examples of such strains include Brevipacterium 'lactofermentum AJ12993 strain described in W096 / 06180. The stock was issued to the Institute of Biotechnology, Institute of Biotechnology, Japan, on June 3, 1999 (Postal Code 305-8566, Tsukuba 1-chome 1-3, Ibaraki, Japan), with accession number FERM P- Deposited at 14348, transferred to an international deposit under the Budapest Treaty on August 1, 1995, and given accession number FERM BP-5188. As used herein, the phrase “enhanced activity” of an enzyme generally means that the enzyme activity in a cell is higher than that of a wild-type strain, and is modified by a gene recombination technique or the like. When a strain with enhanced enzyme activity is obtained, it means that the enzyme activity in the cell is higher than that of the strain before modification. The term “reduced activity” of an enzyme usually means that the enzyme activity in a cell is lower than that of a wild-type strain, and the enzyme activity has been reduced by modification by genetic recombination technology or the like. When a strain is obtained, it means that the enzyme activity in the cell is lower than that of the strain before modification.
く 3 > L—アミノ酸の生産 3> L—Production of amino acids
フマラーゼ活性が増強され、 かつ、 L一アミノ酸生産能を有するコリネ型細菌 を好適な培地で培養すれば、 同 L—アミノ酸が培地に蓄積する。 例えば、 フマラ ーゼ活性が増強され、 かつ Lーリジン酸生産能を有するコリネ型細菌を好適な培 地で培養すれば、 L—リジンが培地に蓄積する。 また、 フマラーゼ活性が増強さ れ、 かつ L一グル夕 ミン酸生産能を有するコ リネ型細菌を好適な培地で培養すれ ば、 L—グル夕 ミン酸が培地に蓄積する。 If a coryneform bacterium having enhanced fumarase activity and capable of producing L-amino acid is cultured in a suitable medium, the L-amino acid accumulates in the medium. For example, Humara If a coryneform bacterium having enhanced L-lysine activity and capable of producing L-lysine acid is cultured in a suitable medium, L-lysine accumulates in the medium. In addition, if a coryneform bacterium having enhanced fumarase activity and capable of producing L-glucaminic acid is cultured in a suitable medium, L-glucaminic acid accumulates in the medium.
さらに、 フマラ一ゼ活性が増強され、 かつ L一リジン及び L一グルタ ミン酸生 産能を有するコ リネ型細菌を培地で培養すれば、 L—リジン及び L一グル夕ミン 酸が培地に蓄積する。 Lーリジンと L一グル夕ミン酸を同時に K酵生産する場合 には、 L—リジン生産菌を L—グル夕 ミン酸の生産条件下で培養してもよいし、 あるいは Lーリジン生産能を有するコリネ型細菌と L一グル夕 ミン酸生産能を有 するコリネ型細菌を混合培養してもよい (特開平 5 — 3 7 9 3号公報) 。  Furthermore, when choline-type bacteria having enhanced humalase activity and capable of producing L-lysine and L-glutamic acid are cultured in the medium, L-lysine and L-glucamic acid accumulate in the medium. . When L-lysine and L-glucaminic acid are simultaneously produced in the K-enzyme, the L-lysine-producing bacterium may be cultured under L-glucaminic acid-producing conditions, or it has the ability to produce L-lysine. A coryneform bacterium and a coryneform bacterium having an ability to produce L-glucaminic acid may be mixed and cultured (Japanese Patent Application Laid-Open No. 5-37993).
本発明の微生物を用いて L一リジン又は L—グル夕 ミン酸等の L—アミノ酸を 製造するのに用いる培地は、 炭素源、 窒素源、 無機イオン及び必要に応じその他 の有機微量栄養素を含有する通常の培地である。 炭素源としては、 グルコース、 ラク トース、 ガラク トース、 フラク トース、 シュクロース、 廃糖蜜、 澱粉加水分 解物などの炭水化物、 エタノールやイノシトールなどのアルコール類、 酢酸、 フ マール酸、 クェン酸、 コハク酸等の有機酸類を用いることができる。  The culture medium used for producing L-amino acids such as L-lysine or L-glumic acid using the microorganism of the present invention contains a carbon source, a nitrogen source, inorganic ions, and other organic micronutrients as required. This is a normal medium. Carbon sources include glucose, lactose, galactose, fructose, sucrose, molasses, carbohydrates such as starch hydrolysates, alcohols such as ethanol and inositol, acetic acid, fumaric acid, citric acid, and succinic acid. And other organic acids can be used.
窒素源としては、 硫酸アンモニゥム、 硝酸アンモニゥム、 塩化アンモニゥム、 リン酸アンモニゥム、 酢酸アンモニゥ厶等の無機アンモニゥム塩、 アンモニア、 ペプトン、 肉エキス、 酵母エキス、 酵母エキス、 コーン ' スティープ ' リカー、 大豆加水分解物などの有機窒素、 アンモニアガス、 アンモニア水等を用いること ができる。  Nitrogen sources include ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium phosphate, ammonium acetate, and other inorganic ammonium salts, ammonia, peptone, meat extract, yeast extract, yeast extract, corn 'steep' liquor, soy hydrolyzate Organic nitrogen, ammonia gas, ammonia water, and the like can be used.
無機イオンとしては、 リン酸カリウム、 硫酸マグネシウム、 鉄イオン、 マンガ ンイオン等が少量添加される。 有機微量栄養素としては、 ビタミン B 1などの要 求物質または酵母エキス等を必要に応じ適量含有させることが望ましい。  As inorganic ions, small amounts of potassium phosphate, magnesium sulfate, iron ions, manganese ions and the like are added. As organic trace nutrients, it is desirable to include a required substance such as vitamin B1 or a yeast extract in an appropriate amount as necessary.
培養は、 振とう培養、 通気撹拌培養等による好気的条件下で 1 6〜 7 2時間実 施するのがよく、 培養温度は 3 0 °C〜4 5てに、 培養中 p Hは 5〜 9に制御する。 尚、 p H調整には無機あるいは有機の酸性あるいはアルカリ性物質、 更にアンモ ニァガス等を使用することができる。  The cultivation is preferably carried out for 16 to 72 hours under aerobic conditions such as shaking cultivation, aeration and stirring cultivation, and the cultivation temperature is 30 ° C to 45 ° C. Control to ~ 9. For pH adjustment, an inorganic or organic acidic or alkaline substance, ammonia gas or the like can be used.
発酵液からの L—ァミノ酸の採取は、 通常の L—ァミノ酸の製造法と同様にし て行うことができる。 例えば、 L一リジンの採取は、 通常イオン交換樹脂法、 沈 法その他の公知の方法を組み合わせることにより実施できる。 また、 Lーグル タミン酸を採取する方法も常法によって行えばよく、 例えばイオン交換樹脂法、 晶析法等によることができる。 具体的には、 L—グルタ ミン酸を陰イオン交換樹 脂により吸着、 分離させるか、 または中和晶析させればよい。 L—リジン及び L 一グルタミン酸の両方を製造する場合、 これらを混合物として用いる場合には、 これらのアミノ酸を相互に分離することは不要である。 実施例 以下、 本発明を実施例によりさらに具体的に説明する。 L-amino acid can be collected from the fermentation liquor in the same manner as in the normal L-amino acid production method. Can be done. For example, collection of L-lysine can be usually carried out by combining an ion exchange resin method, a precipitation method and other known methods. The method for collecting L-glutamic acid may be a conventional method, for example, an ion exchange resin method, a crystallization method, or the like. Specifically, L-glutamic acid may be adsorbed and separated by an anion exchange resin, or may be neutralized and crystallized. When producing both L-lysine and L-glutamic acid, when these are used as a mixture, it is unnecessary to separate these amino acids from each other. Examples Hereinafter, the present invention will be described more specifically with reference to Examples.
く 1〉ェシエリヒア ' コリ JM109株の fum遺伝子のクローニング <1> Cloning of the fum gene of Escherichia coli JM109
ェシエリヒア · コリの fum遺伝子の塩基配列は既に明らかにされている (Bell, P. J. et al., J. Bacteriol. 171, 3494-3503 (1989), Genbank/EMBL/DDBJ ac cetion No. M27058) 。 報告されている塩基配列に基づいて配列表配列番号 1及び 2:こ示すプライマ一を合成し、 ェシェリヒア ' コリ JM109株の染色体 D N Aを铸型 にして P CR法によりピルビン酸デヒ ドロゲナーゼ遺伝子を増幅した。  The nucleotide sequence of the fum gene of Escherichia coli has already been elucidated (Bell, P. J. et al., J. Bacteriol. 171, 3494-3503 (1989), Genbank / EMBL / DDBJ accession No. M27058). Based on the reported nucleotide sequence, SEQ ID NOS: 1 and 2: The following primers were synthesized, and the pyruvate dehydrogenase gene was amplified by PCR using the chromosomal DNA of Escherichia coli JM109 strain as type III. did.
合成したブライマーの内、 S己列番号 1は、 Genbank/EMBL/DDBJ accetion No. M 27058に記載されている fum遺伝子の塩基配列の 1番目から 24番目の塩基に至る 配列に相当し、 配列番号 2は、 3 1 6 2番目から 3 1 4 9番目の塩基に至る配列 に相当する。  Among the synthesized primers, S sequence number 1 corresponds to the sequence from the 1st to 24th base of the base sequence of the fum gene described in Genbank / EMBL / DDBJ accetion No. M 27058; 2 corresponds to the sequence from the 3162nd base to the 3149th base.
ェシヱリヒア · コリ JM109株の染色体 DNAの調製は常法によった (生物工学実 験書、 日本生物工学会編、 9 7〜98頁、 培風館、 1 9 92年) 。 また、 P CR 反応は、 P CR法最前線 (関谷剛男ほか編、 共立出版社、 1 98 9年) 1 85頁 に記載されている標準反応条件を用いた。  The chromosomal DNA of Escherichia coli JM109 strain was prepared according to a conventional method (Biotechnological Experiments, edited by Biotechnology Society of Japan, pp. 97-98, Baifukan, 1992). For the PCR reaction, standard reaction conditions described on page 185 of the PCR method forefront (edited by Takeo Sekiya et al., Kyoritsu Shuppan, 1998) were used.
主成した P CR産物を常法により精製後、 Smalで切断したプラスミ ド pHC 4 と、 ライゲーシヨンキッ ト (宝酒造社製) を用いて連結した後、 ェシエリヒア ' コ リ JM109のコンビテン トセル (宝酒造社製) を用いて形質転換を行い、 クロラム フエ二コール 3 0 g/mlを含む L培地 (パク 卜 ト リブトン 10g/L、 バク トイース ト エキス トラク ト 5g/L、 NaCl 5g/L、 寒天 15g/L、 PH7.2) に塗布し、 一晩培養後、 出現した白色のコロニーを釣り上げ、 単コロニー分離し、 形質転換株を得た。 取 得した形質転換体よりプラスミ ドを抽出し、 ベクターに fum遺伝子が結合したブ ラスミ ド pHC 4 f umを得た。 After purifying the main PCR product by a conventional method, it was ligated with plasmid pHC4 cut with Smal using a ligation kit (Takara Shuzo), and then combined with Escherichia coli KM JM109 competent cell (Takara Shuzo). Transformation was performed using an L medium containing 10 g / ml of chloram fenicol (10 g / L of pact tribton, Bacterial yeast). Extract tractor DOO 5 g / L, was applied NaCl 5 g / L, agar 15 g / L, the P H7.2), after overnight incubation, appeared white colonies were picked up and separated into single colonies to obtain transformants . Plasmid was extracted from the obtained transformant to obtain a plasmid pHC 4 fum in which the fum gene was linked to the vector.
p H C 4を保持するェシェリヒア ' コリは、 プライべ一トナンバー AJ12617と命 名され、 1 99 1年 4月 24曰に、 通商産業省工業技術院生命工学工業技術研究 所 (郵便番号 305- 8566 日本国茨城県つくば巿東一丁目 1番 3号) に受託番号 FE RM P— 1 22 1 5として寄託され、 1 99 1年 8月 26日に、 ブタペス ト条 約に基く国際寄託に移管され、 受託番号 FERM BP— 3 5 3 2が付与されて いる。  Escherichia coli harboring pHC4 was named the private number AJ12617, and said on April 24, 1999, the Ministry of International Trade and Industry, National Institute of Advanced Industrial Science and Technology, Institute of Biotechnology and Industrial Technology (Zip code 305-8566). Deposit No. FE RM P—122 1-5 at Tsukuba 1-chome 1-3, Ibaraki, Japan; transferred to an international deposit based on the Budapest Convention on August 26, 1999 Accession number FERM BP—3532 is assigned.
次に、 クローニングされた D N A断片がフマラーゼ活性を有するタンパク質を コードしていることを確認するため、 JM 1 09株及び、 pHC 4 f umを保持 する JM 1 09株のフマラ一ゼ活性を Kanarek, L. et al., J. Biol. Chem., 23 9, 4202-4206 (1964)に記載の方法により測定した。 その結果、 pHC 4 f umを 保持する JM 1 09株は、 pHC 4 f umを保持しない JM 1 0 9株の約 1 7倍 のフマラーゼ活性を示すことから、 fum遺伝子が発現していることを確認した。 < 2 >コリネ型細菌の L一グル夕 ミン酸生産株への p H C 4 f umの導入と L一 グルタミン酸生産  Next, in order to confirm that the cloned DNA fragment encodes a protein having a fumarase activity, the fumalase activity of the JM109 strain and the JM109 strain having pHC4 fum was determined by Kanarek, It was measured by the method described in L. et al., J. Biol. Chem., 239, 4202-4206 (1964). As a result, the JM109 strain having pHC 4 fum exhibited about 17 times the fumarase activity of the JM109 strain without pHC 4 fum, indicating that the fum gene was expressed. confirmed. <2> Introduction of pH 4 f um into L-glucamic acid-producing strain of coryneform bacteria and L-glutamic acid production
ブレビパクテリゥム · ラク トファーメン夕ム AJ13029を電気パルス法 (特開平 2 -207791号公報参照) によりプラスミ ド pHC4fumで形質転換し、 得られた形質転換 株を得た。 得られた形質転換株 AJ13029/pHC4fumを用いて L—グルタミン酸生産の ための培養を以下のように行った。 5〃g/mlのクロラムフエ二コールを含む CM 2 Bブレート培地にて培養して得た AJ13029/pHC4fum株の菌体を、 5〃g/mlのクロラ ムフエ二コールを含む下記組成を有する L—グル夕 ミン酸生産培地に接種し、 31. 5°Cにて振とう培養し、 培地中の糖が消費されるまで振とう培養した。 得られた培 養物を、 同じ組成の培地に 5 %量接種し、 37°Cにて培地中の糖が消費されるまで 振とう培養した。 コン トロールとしてコリネパクテリゥム属細菌 AJ13029株に、 既 に取得されているコリネパクテリゥム属細菌で自律複製可能なプラスミ ド pHC 4を電気パルス法により形質転換した菌株を上記と同様にして培養した。 〔Lーグルタミン酸生産培地〕 Brevipacterium lactofermentum AJ13029 was transformed with plasmid pHC4fum by the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791) to obtain the obtained transformant. Using the obtained transformant AJ13029 / pHC4fum, culture for producing L-glutamic acid was performed as follows. Cells of the AJ13029 / pHC4fum strain obtained by culturing in a CM2B plate medium containing 5 μg / ml chloramphenicol were mixed with L-cells having the following composition containing 5 μg / ml chloramphenicol. The medium was inoculated into a glucanic acid production medium, cultured at 31.5 ° C with shaking, and shaken until the sugar in the medium was consumed. The obtained culture was inoculated into a medium having the same composition in an amount of 5%, and cultured at 37 ° C with shaking until the sugar in the medium was consumed. A strain obtained by transforming a plasmid pHC4, which can be autonomously replicated with a previously obtained corynebacterium bacterium, into the corynebacterium bacterium AJ13029 as a control by the electric pulse method and culturing in the same manner as described above did. (L-glutamic acid production medium)
下記成分 ( 1 L中) を溶解し、 K0Hで pH8.0に調製し、 115°Cで 15分殺菌する。 グルコース 150g  Dissolve the following components (in 1 L), adjust to pH 8.0 with K0H, and sterilize at 115 ° C for 15 minutes. Glucose 150g
K H 2 P 0 2g KH 2 P 0 2g
Figure imgf000015_0001
Figure imgf000015_0001
大豆蛋白加水分解液 50ml  Soy protein hydrolyzate 50ml
ピオチン 2mg  Piotin 2mg
サイアミン塩酸塩 3mg  Siamin hydrochloride 3mg
培養終了後、 培養液中の L一グル夕 ミン酸蓄積量を旭化成工業社製バイオテツ クアナライザー A S— 2 1 0により測定した。 このときの結果を表 1に示した。 表 1 菌 株 L一グルタ ミン酸生成量(g/L )  After completion of the culture, the amount of L-glucamic acid accumulated in the culture solution was measured using a Biotech Analyzer AS-210 manufactured by Asahi Kasei Corporation. Table 1 shows the results. Table 1 Strain L-glutamic acid production (g / L)
AJ13029/pHC4 1 9 . 2AJ13029 / pHC4 19.2
Figure imgf000015_0002
Figure imgf000015_0002
< 3 >コリネ型細菌の Lーリジン生産株への pHC4fumの導入と Lーリジン生産 ブレビパクテリゥム · ラク トファーメン夕ム AJ11082を電気パルス法 (特開平 2 -207791号公報参照) によりプラスミ ド pHC4fumで形質転換し、 得られた形質転換 株を得た。 得られた形質転換株 AJ11082/pHC4fumを用いて L—リジン生産のための 培養を以下のように行った。 5 g/mlのクロラムフエ二コールを含む C M 2 Bプレ 一ト培地にて培養して得た AJ11082/pHC4f um株の菌体を、 5〃 g/mlのクロラムフエ 二コールを含む下記組成の Lーリジン生産培地に接種し、 31. 5てにて培地中の糖 が消費されるまで振とう培養した。 コン トロールとしてコリネパクテリゥム属細 菌 AJ11082株に、 既に取得されているコリネパクテリゥム属細菌で自律複製可能な ブラスミ ド pHC4を電気パルス法により形質転換した菌株を上記と同様にして培養 した。 <3> Introduction of pHC4fum into L-lysine-producing strain of coryneform bacterium and L-lysine production Transformation of Brevipacterium lactofermen AJ11082 with plasmid pHC4fum by the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791) The transformant was obtained. Using the obtained transformant AJ11082 / pHC4fum, culture for producing L-lysine was performed as follows. Cells of the AJ11082 / pHC4fum strain obtained by culturing in a CM2B plate medium containing 5 g / ml chloramphenicol were transformed into L-lysine having the following composition containing 5 μg / ml chloramphenicol. The production medium was inoculated and shake-cultured at 31.5 until the sugar in the medium was consumed. Corynebacterium as control A strain obtained by transforming the AJ11082 strain with a Brassmid pHC4, which can be autonomously replicated by a corynepacterium bacterium already obtained, by the electric pulse method was cultured in the same manner as described above.
ブレビパクテリゥム ' ラクトファーメン夕ム AJ11082は、 1981年 1月 31日に農学 研究菌培養収集所 (Agricultural Research Culture Collection^ ァメリカ合衆 国 イリノイ州 6 1 6 0 4ピオリア ノースュニバーシティ通り 1 8 1 5(1815 N. University Street, Peoria, Illinois 61604 U.S.A.)) に国際寄託され、 受 託番号 NRRL B-11470が付与されている。  Brevi Pacterium 'Lactofermen AJ11082 was established on January 31, 1981 at the Agricultural Research Culture Collection ^ America, United States of America 6 1 6 0 4 Peoria Northuniversity Street International Deposit No. 1815 (1815 N. University Street, Peoria, Illinois 61604 USA) with accession number NRRL B-11470.
〔Lーリジン生産培地〕  (L-lysine production medium)
炭酸カルシウム以外の下記成分 ( 1 L中) を溶解し、 K0Hで pH8.0に調製し、 11 5°Cで 15分殺菌した後、 別に乾熱殺菌した炭酸カルシウムを 50 g加える。  Dissolve the following ingredients (in 1 L) other than calcium carbonate, adjust to pH 8.0 with K0H, sterilize at 115 ° C for 15 minutes, and add 50 g of dry-heat-killed calcium carbonate.
グルコース 100 g 100 g glucose
Figure imgf000016_0001
Figure imgf000016_0001
ΚΗ2Ρ 04 1ΚΗ 2 Ρ 0 4 1
Figure imgf000016_0002
Figure imgf000016_0002
ピオチン 500 g  Piotin 500 g
チアミン 2000 g  Thiamine 2000 g
F e S〇 7 H20 0.01 g F e S〇 7 H 2 0 0.01 g
Mn S〇 7 H2O 0.01 g  Mn S〇 7 H2O 0.01 g
ニコチンアミ ド 5 mg  Nicotinamide 5 mg
蛋白質加水分解物 (豆濃) 30 ml  Protein hydrolyzate (bean concentrate) 30 ml
炭酸カルシウム 50 g  50 g calcium carbonate
培養終了後、 培養液中の L一リジン蓄積量を旭化成工業社製バイォテックアナ ライザ一 AS— 2 1 0により測定した。 このときの結果を表 2に示した。 表 2 菌 株 Lーリジン生成量(g/L ) After the completion of the culture, the amount of L-lysine accumulated in the culture solution was measured using a Biotech Analyzer AS-210 manufactured by Asahi Kasei Corporation. Table 2 shows the results. Table 2 L-Lysine production (g / L)
AJ11082/pHC4 2 9 . 9 AJ11082 / pHC4 29.9
AJ 11082/pHC4fura 3 3 . 4  AJ 11082 / pHC4fura 3 3.4
く 4 >コリネ型細菌の L一リジン及び L一グル夕ミン酸生産株への pHC4fumの導入 と Lーリジン及び L一グルタ ミン酸同時生産 Introduction of pHC4fum into L-lysine and L-glutamic acid producing strains of coryneform bacteria and simultaneous production of L-lysine and L-glutamic acid
ブレビパクテリゥム · ラク トフアーメンタム AJ12993を電気パルス法 (特開平 2 -207791号公報参照) によりプラスミ ド pHC4fumで形質転換し、 得られた形質転換 株を得た。 得られた形質転換株 AJ12993/pHC4fumを用いて L—リジン及び Lーグル 夕ミン酸生産のための培養を以下のように行った。 5〃g/mlのクロラムフエニコー ルを含む C M 2 Bブレート培地にて培養して得た AJ 12993/pHC4fum株の菌体を、 5 // g/mlのクロラムフヱニコ一ルを含む前記 L—リジン生産培地に接種して 31 . 5°C にて培養した。 培養を開始してから 1 2時間後に培養温度を 3 4 °Cにシフ ト し、 培地中の糖が消費されるまで振とう培養した。 コン トロールとしてコリネバクテ リゥム属細菌 AJ12993株に、 既に取得されているコリネバクテリゥム属細菌で自律 複製可能なプラスミ ド PHC4を電気パルス法により形質転換した菌株を上記と同様 にして培養した。  Brevipacterium lactofermentum AJ12993 was transformed with plasmid pHC4fum by the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791) to obtain the obtained transformant. Using the obtained transformant AJ12993 / pHC4fum, culture for producing L-lysine and L-glucamic acid was carried out as follows. The cells of the AJ12993 / pHC4fum strain obtained by culturing in a CM2B plate medium containing 5 μg / ml chloramphenicol were mixed with the L-cell containing 5 // g / ml chloramphenicol. A lysine production medium was inoculated and cultured at 31.5 ° C. After 12 hours from the start of the culture, the culture temperature was shifted to 34 ° C, and the culture was performed with shaking until the sugar in the medium was consumed. As a control, a strain obtained by transforming a plasmid PHC4 capable of autonomously replicating with a previously obtained corynebacterium bacterium into an AJ12993 bacterium of the genus Corynebacterium by an electric pulse method was cultured in the same manner as described above.
培養終了後、 培養液中の Lーリジン及び L一グル夕ミン酸蓄積量を旭化成工業 社製バイオテックアナライザー A S— 2 1 0により測定した。 このときの結果を 表 3に示した。 表 3 株 L一リジン生成量(g/L) L—グルタミン酸生成量(g/L) After completion of the culture, the accumulated amounts of L-lysine and L-glucamic acid in the culture solution were measured using a Biotech Analyzer AS-210 manufactured by Asahi Kasei Corporation. Table 3 shows the results. Table 3 Strains L-Lysine production (g / L) L-Glutamic acid production (g / L)
AJ12993/pHC4 9, 9 19. 5 AJ12993 / pHC49, 919.5
AJ12993/pHC4fum 1 3. 1 22. 8  AJ12993 / pHC4fum 1 3.1 22.8
産業上の利用可能性 本発明により、 コリネ型細菌の L—リジン又は L一グル夕ミン酸等の L一アミ ノ酸の生産能を向上させることができる。 INDUSTRIAL APPLICABILITY According to the present invention, the ability of coryneform bacteria to produce L-amino acid such as L-lysine or L-glucamic acid can be improved.

Claims

請求の範囲 The scope of the claims
1 . 細胞中のフマラーゼ活性が増強され、 かつ L—アミノ酸生産能を有するコ リネ型細菌。 1. Coryneform bacterium with enhanced fumarase activity in cells and L-amino acid producing ability.
2 . 前記 L一アミノ酸が、 L—リジン、 L一グルタミン酸、 Lースレオニン、 L—イソロイシン、 Lーセリンから選ばれる請求項 1記載のコリネ型細菌。 2. The coryneform bacterium according to claim 1, wherein the L-amino acid is selected from L-lysine, L-glutamic acid, L-threonine, L-isoleucine, and L-serine.
3 . 前記フマラーゼ活性の増強が、 前記細菌細胞内のフマラーゼをコードする 遺伝子のコピー数を高めることによるものである請求項 1記載のコリネ型細菌。 3. The coryneform bacterium according to claim 1, wherein the enhancement of the fumarase activity is caused by increasing the copy number of a gene encoding fumarase in the bacterial cell.
4 . 前記フマラーゼをコードする遺伝子がェシエリヒア属細菌由来である請求 項 3記載のコリネ型細菌。 4. The coryneform bacterium according to claim 3, wherein the gene encoding the fumarase is derived from a bacterium belonging to the genus Escherichia.
5 . 請求項 1〜4のいずれか一項に記載のコリネ型細菌を培地に培養し、 該培 養物中に L—アミノ酸を生成蓄積せしめ、 該培養物から L一アミノ酸を採取する ことを特徴とする L一アミノ酸の製造法。 5. culturing the coryneform bacterium according to any one of claims 1 to 4 in a medium, producing and accumulating L-amino acid in the culture, and collecting L-amino acid from the culture. Characteristic method for producing L-amino acids.
6 . 前記 L一アミノ酸が、 L一リジン、 L—グルタミン酸、 Lースレオニン、 L—イソロイシン、 Lーセリンから選ばれる請求項 5記載の方法。 6. The method according to claim 5, wherein the L-amino acid is selected from L-lysine, L-glutamic acid, L-threonine, L-isoleucine, and L-serine.
PCT/JP2000/004345 1999-07-02 2000-06-30 Process for producing l-amino acid WO2001002545A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU57073/00A AU5707300A (en) 1999-07-02 2000-06-30 Process for producing l-amino acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/189517 1999-07-02
JP18951799A JP2003144160A (en) 1999-07-02 1999-07-02 Method for producing l-amino acid

Publications (1)

Publication Number Publication Date
WO2001002545A1 true WO2001002545A1 (en) 2001-01-11

Family

ID=16242618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004345 WO2001002545A1 (en) 1999-07-02 2000-06-30 Process for producing l-amino acid

Country Status (3)

Country Link
JP (1) JP2003144160A (en)
AU (1) AU5707300A (en)
WO (1) WO2001002545A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044409A1 (en) 2006-10-10 2008-04-17 Ajinomoto Co., Inc. Method for production of l-amino acid
WO2008075483A1 (en) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. Process for production of l-amino acid
WO2008102572A1 (en) 2007-02-20 2008-08-28 Ajinomoto Co., Inc. Method for production of l-amino acid or nucleic acid
WO2008114721A1 (en) 2007-03-14 2008-09-25 Ajinomoto Co., Inc. Microorganism capable of producing l-glutamic acid-type amino acid, and method for production of amino acid
EP2202299A1 (en) 2008-12-22 2010-06-30 Ajinomoto Co., Inc. A method for producing L-lysine
WO2014185430A1 (en) 2013-05-13 2014-11-20 味の素株式会社 Method for manufacturing l-amino acid
WO2015005406A1 (en) 2013-07-09 2015-01-15 味の素株式会社 Method for manufacturing useful substance
WO2015060391A1 (en) 2013-10-23 2015-04-30 味の素株式会社 Method for producing target substance
WO2015060314A1 (en) 2013-10-21 2015-04-30 味の素株式会社 Method for producing l-amino acid
EP3165608A1 (en) 2015-10-30 2017-05-10 Ajinomoto Co., Inc. Method for producing l-amino acid of glutamate family
EP3385389A1 (en) 2017-04-03 2018-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid from fructose
WO2020071538A1 (en) 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
WO2022092018A1 (en) 2020-10-28 2022-05-05 味の素株式会社 Method of producing l-amino acid
EP4345166A2 (en) 2022-09-30 2024-04-03 Ajinomoto Co., Inc. Method for producing l-amino acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340603A (en) * 2003-06-23 2006-12-21 Ajinomoto Co Inc Method for producing l-glutamic acid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119688A (en) * 1986-11-07 1988-05-24 Kyowa Hakko Kogyo Co Ltd Production of l-glutamic acid and l-proline
JPS63214189A (en) * 1987-03-04 1988-09-06 Asahi Chem Ind Co Ltd Novel glutamic acid-producing coryneform bacteria and production of l-glutamic acid using said bacteria
JPH04349879A (en) * 1991-05-28 1992-12-04 Mitsubishi Petrochem Co Ltd Incubation of brevibacterium microorganism
EP0841395A1 (en) * 1995-06-07 1998-05-13 Ajinomoto Co., Inc. Process for producing l-lysine
EP0857784A2 (en) * 1996-12-05 1998-08-12 Ajinomoto Co., Inc. Method for producing L-lysine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119688A (en) * 1986-11-07 1988-05-24 Kyowa Hakko Kogyo Co Ltd Production of l-glutamic acid and l-proline
JPS63214189A (en) * 1987-03-04 1988-09-06 Asahi Chem Ind Co Ltd Novel glutamic acid-producing coryneform bacteria and production of l-glutamic acid using said bacteria
JPH04349879A (en) * 1991-05-28 1992-12-04 Mitsubishi Petrochem Co Ltd Incubation of brevibacterium microorganism
EP0841395A1 (en) * 1995-06-07 1998-05-13 Ajinomoto Co., Inc. Process for producing l-lysine
EP0857784A2 (en) * 1996-12-05 1998-08-12 Ajinomoto Co., Inc. Method for producing L-lysine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BELL PHILIP J. ET AL.: "Nucleotide sequence of the FNR-regulated fumarase gene (fumB) of escherichia coli K-12", JOURNAL OF BACTERIOLOGY, vol. 171, no. 6, June 1989 (1989-06-01), pages 3494 - 3503, XP002932510 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044409A1 (en) 2006-10-10 2008-04-17 Ajinomoto Co., Inc. Method for production of l-amino acid
WO2008075483A1 (en) 2006-12-19 2008-06-26 Ajinomoto Co., Inc. Process for production of l-amino acid
WO2008102572A1 (en) 2007-02-20 2008-08-28 Ajinomoto Co., Inc. Method for production of l-amino acid or nucleic acid
WO2008114721A1 (en) 2007-03-14 2008-09-25 Ajinomoto Co., Inc. Microorganism capable of producing l-glutamic acid-type amino acid, and method for production of amino acid
EP2657332A1 (en) 2007-03-14 2013-10-30 Ajinomoto Co., Inc. Methods for producing an amino acid of the L-glutamic acid family
EP2202299A1 (en) 2008-12-22 2010-06-30 Ajinomoto Co., Inc. A method for producing L-lysine
WO2014185430A1 (en) 2013-05-13 2014-11-20 味の素株式会社 Method for manufacturing l-amino acid
EP3521433A1 (en) 2013-07-09 2019-08-07 Ajinomoto Co., Inc. Process for producing l-glutamic acid
WO2015005406A1 (en) 2013-07-09 2015-01-15 味の素株式会社 Method for manufacturing useful substance
WO2015060314A1 (en) 2013-10-21 2015-04-30 味の素株式会社 Method for producing l-amino acid
WO2015060391A1 (en) 2013-10-23 2015-04-30 味の素株式会社 Method for producing target substance
EP3165608A1 (en) 2015-10-30 2017-05-10 Ajinomoto Co., Inc. Method for producing l-amino acid of glutamate family
EP3385389A1 (en) 2017-04-03 2018-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid from fructose
WO2020071538A1 (en) 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
WO2022092018A1 (en) 2020-10-28 2022-05-05 味の素株式会社 Method of producing l-amino acid
EP4345166A2 (en) 2022-09-30 2024-04-03 Ajinomoto Co., Inc. Method for producing l-amino acid

Also Published As

Publication number Publication date
JP2003144160A (en) 2003-05-20
AU5707300A (en) 2001-01-22

Similar Documents

Publication Publication Date Title
US8628941B2 (en) L-amino acid-producing bacterium and a method for producing L-amino acid
JP4035855B2 (en) Method for producing L-lysine
US7205132B2 (en) L-glutamic acid-producing microorganism and a method for producing L-glutamic acid
EP1786899B1 (en) L-glutamic acid-producing microorganism and a method for producing l-glutamic acid
JP4306169B2 (en) L-amino acid production method and novel gene
WO2001002542A1 (en) Process for producing l-amino acid
WO2001002545A1 (en) Process for producing l-amino acid
WO2000056858A1 (en) Process for producing l-lysine
WO2001002543A1 (en) Process for producing l-amino acid
JP3965821B2 (en) Method for producing L-lysine
WO2001002546A1 (en) Process for producing l-amino acid
AU5106800A (en) Process for producing l-lysine
WO2001002544A1 (en) Process for producing l-amino acid
JP4239334B2 (en) Method for producing L-glutamic acid by fermentation
JP4576850B2 (en) Method for producing L-arginine or L-lysine by fermentation
WO2001002547A1 (en) Process for producing l-lysine
WO2000056859A1 (en) Process for producing l-amino acid
WO2001005960A1 (en) Process for producing l-amino acid
WO2001005979A1 (en) Process for producing target substance by fermentation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase