WO2000056859A1 - Process for producing l-amino acid - Google Patents

Process for producing l-amino acid Download PDF

Info

Publication number
WO2000056859A1
WO2000056859A1 PCT/JP2000/001655 JP0001655W WO0056859A1 WO 2000056859 A1 WO2000056859 A1 WO 2000056859A1 JP 0001655 W JP0001655 W JP 0001655W WO 0056859 A1 WO0056859 A1 WO 0056859A1
Authority
WO
WIPO (PCT)
Prior art keywords
lysine
producing
acid
amino acid
gene
Prior art date
Application number
PCT/JP2000/001655
Other languages
French (fr)
Japanese (ja)
Inventor
Masakazu Sugimoto
Hisao Ito
Osamu Kurahashi
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to AU31943/00A priority Critical patent/AU3194300A/en
Publication of WO2000056859A1 publication Critical patent/WO2000056859A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the present invention relates to a method for producing an L-amino acid by a fermentation method, and particularly to a method for producing L-lysine and L-glutamic acid.
  • L-lysine is widely used as a feed additive
  • L-glutamic acid is widely used as a seasoning material.
  • L-amino acids such as L-lysine and L-glutamic acid have been produced by fermentation using a coryneform bacterium belonging to the genus Brevibacterium or Corynebacterium having the ability to produce L-amino acid. It is industrially produced.
  • coryneform bacteria strains isolated from the natural world or human mutants of the strains are used in order to improve productivity.
  • various techniques have been disclosed for increasing the activity of producing L-amino acids by enhancing the activity of L-amino acid biosynthetic enzymes by recombinant DNA technology.
  • a gene encoding aspartokinase (mutant lysC) in which feedback inhibition by L-lysine and L-threonine has been released a dihydrodipicolinate reductase gene ( dapB), the dihydrodibicolinate synthase gene (dapA), the diaminopimelate decarboxylase gene (lysA), and the diaminopimelate dehydrogenase gene (ddh) (W096 / 40934), LysA and DDH (JP-A-9-1322774).
  • LysC-LysA and phosphoenolpyruvate carboxylase gene (ppc) (Japanese Patent Application Laid-Open No. 10-165180), mutant lysC, dapB, dapA, lysA and aspartic acid aminotransferase gene (aspC) (Kaihei 10-215883) is known to improve the L-lysine-producing ability of the bacterium. .
  • 63-214189 discloses that the glutamate dehydrogenase gene, the disoquatate dehydrogenase gene, the aconitate hydrase enzyme, and the citrate synthase gene are enhanced. A technique for increasing the ability to produce L-glucamic acid has been disclosed.
  • An object of the present invention is to provide a method for producing an L-amino acid such as L-lysine or L-glutamic acid by a fermentation method which has been further improved than before, and a strain used therefor.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, introduced a gene encoding phosphoeno-rubyruvic acid synthase into coryneform bacteria, It has been found that the production of L-lysine or L-glucaminic acid can be increased by enhancing the zease activity, thereby completing the present invention.
  • the present invention is as follows.
  • a coryneform bacterium which has enhanced phosphoenolpyruvate synthase activity in cells and has the ability to produce amino acids.
  • the coryneform bacterium according to any one of (1) to (4) is cultured in a medium, L-amino acid is produced and accumulated in the culture, and L-amino acid is collected from the culture. Method for producing L-amino acid.
  • L-amino acid is selected from L-lysine, L-glutamic acid, L-threonine, L-isoleucine and L-serine.
  • the coryneform bacterium of the present invention is a coryneform bacterium having L-amino acid-producing ability and enhanced phosphoenorubyruvate synthase activity in cells.
  • the L-amino acid include L-lysine, L-glutamic acid, L-threonine, L-isoleucine, L-serine and the like. Among these, L-lysine and L-glutamic acid are preferred.
  • the power of describing an embodiment of the present invention mainly for a coryneform bacterium having an L-lysine-producing ability or an L-glucamic acid-producing ability
  • the present invention provides a biosynthesis system specific to an L-amino acid. Phosphoenolpyruvate synthase can be similarly applied to those located downstream.
  • coryneform bacteria As the coryneform bacteria referred to in the present invention, a group defined in Bergey's Manual of Determinative Bacteriology, 8th edition, p. 599 (1974) It is an aerobic, gram-positive, non-acid-fast, non-sporulating bacillus that was previously classified as Brevibacterium, but is now integrated as Corynepacterium. Bactenol., 41, 255 (1981), and also includes bacteria of the genus Brevibacterium and Micropaterium, which are closely related to the genus Corynebacterium. The strains of coryneform bacteria suitably used for the production of L-lysine or L-glutamic acid include, for example, those shown below.
  • mutants having L-lysine-producing ability or L-glutamic acid-producing ability derived from these strains can also be used in the present invention.
  • Such human mutants include the following. S— (2-aminoethyl) monocysteine (hereinafter abbreviated as “AEC”) resistant mutant (for example, Brevibacterium Tof amentum AJ11082 (NRRL B-11470), JP-B 56-1914, JP-B 56-1915, JP-B 57-14157, JP-B 57-14158, JP-B 57-30474, JP-B 58- 10075, JP-B-59-4993, JP-B-61-35840, JP-B-62-24074, JP-B-62-36673, JP-B-5-11958, JP-B7-11-112437, JP-B7-112438 Mutants that require amino acids such as L-homoserine for their growth (Japanese Patent Publication
  • L-amino acid-producing ability refers to the ability of a coryneform bacterium to accumulate a significant amount of L-amino acid in a medium when cultured in the medium, or the L-amino acid in the cells. Refers to the ability to increase amino acid content.
  • a gene fragment encoding phosphoenolpyruvate synthase must be isolated from a vector, preferably a multicopy vector, which functions in the bacterium. Ligation may be performed to produce a recombinant DNA, which may be introduced into a coryneform bacterium capable of producing L-lysine or L-glucamic acid for transformation. An increase in the copy number of the gene encoding phosphoenol pyruvate synthase in the cells of the transformed strain resulted in phosphoenol Rubilate synthase activity is enhanced. Phosphoenorubyruvate synthase is encoded by the pps gene in Escherichia coli.
  • phosphoenol pyruvate synthase gene a gene of a coryneform bacterium or a gene derived from another organism such as a bacterium belonging to the genus Escherichia can be used.
  • the nucleotide sequence of the pps gene of Escherichia coli has already been determined (Mol. Gen. Genet., 231 (2), 332-336 (1992), Genbank / EMBL / DDBJ accession No. M69116).
  • a primer prepared based on the sequence for example, the primers shown in SEQ ID NOs: 1 and 2 in the Sequence Listing, a PCR method using Escherichia coli chromosome DNA as type III (PCR: polymerase chain reaction; White, TJ et al. ., Trends Genet. 5, 185 (1989)) to obtain the pps gene.
  • Genes encoding phosphoenolpyruvate synthase of other microorganisms such as coryneform bacteria can be obtained in a similar manner.
  • Chromosomal DNA can be obtained from bacteria that are DNA donors, for example, by the method of Saito and Miura (H. Saito and K. Miura, Biochem. Biophys. Acta, 72, 619 (1963), Bioengineering Experiments, Edited by the Society, pp. 97-98, Baifukan, 1992).
  • the gene encoding phosphoenolpyruvate synthase amplified by the PCR method is connected to a vector DNA that can be replicated autonomously in cells of Escherichia coli and / or coryneform bacteria to transform the recombinant DNA. If prepared and introduced into Escherichia coli cells, subsequent operations will be difficult.
  • a vector capable of autonomous replication in Escherichia coli cells a plasmid vector is preferable, and a vector capable of autonomous replication in a host cell is preferable.
  • Examples of vectors that can replicate autonomously in coryneform bacteria cells include PAM330 (see Japanese Patent Application Laid-Open No. 58-67699) and PHM1519 (see Japanese Patent Application Laid-Open No. 58-77895).
  • a DNA fragment capable of autonomously replicating plasmid in coryneform bacteria is extracted from these vectors and inserted into the Escherichia coli vector, and then autonomously expressed in both Escherichia coli and coryneform bacteria. Cannot be duplicated It can be used as a so-called shuttle vector.
  • the accession number of the international depository organization of the microorganisms holding each vector is shown in parentheses.
  • PAJ440 C Chills, Chillis AJ11901 (FEM BP-140)
  • cells of DNA recipients such as those known for Bacillus subtilis, actinomycetes and yeast, can be transformed into protoplasts or spheroplasts that readily incorporate the recombinant DNA and the recombinant DNA can be converted to DNA.
  • Method for introduction into recipient bacteria (Chang, S. and Choen, SN, Molec. Gen. Genet., 168, 111 (1979); Bibb'MJ, Ward, JM and Hopwood, OA, Nature, 274, 398 (1978) Hinnen, A., Hicks. JB and Fink, GR, Proc. Natl. Acad. Sci. USA, 751929 (1978)).
  • the transformation method used in the examples is the electric pulse method (see Japanese Patent Application Laid-Open No. Hei 2-20771).
  • Enhancement of phosphoenol pyruvate synthase-encoding activity can also be achieved by allowing the gene encoding phosphoenolpyruvate synthase to be present in multiple copies on the chromosomal DNA of the host.
  • multiple copies of the gene on chromosomal DNA can be used as a target. Performed by homologous recombination.
  • a relative DNA and an inverted repeat at the end of a transposable element can be used as a sequence present in multiple copies on the chromosomal DNA.
  • a gene encoding phosphoenol pyruvate synthase is mounted on a transposon, transferred, and placed on chromosomal DNA. It is also possible to introduce multiple copies. Either method results in an increase in the number of coenzymes encoding phosphoenolpyruvate synthase in the transformed strain, resulting in an increase in phosphoenolpyruvate synthase activity.
  • Enhancement of phosphoenolpyruvate synthase activity can be achieved not only by the gene amplification described above, but also by the expression control sequences such as the promoter of the gene encoding phosphoenolpyruvate synthase on chromosomal DNA or plasmid. It can also be achieved by replacing it with a powerful one. For example, lac promoter, trp promoter evening -, trc promoter one, tac promoter, P R promoter one evening one lambda phage, P L promoter Isseki Chief is known as a powerful promoter evening one. Substitution with these promoters enhances phosphoenol pyruvate synthase activity by enhancing the expression of genes encoding phosphoenol pyruvate synthase.
  • the coryneform bacterium of the present invention is characterized in that, by introducing or amplifying an enzyme gene of another amino acid biosynthetic pathway or glycolytic pathway in addition to the phosphoenol pyruvate synthase activity, the enzyme activity of the coryneform bacterium is increased. May be enhanced.
  • genes that can be used for the production of L-lysine include aspartokinase subunits in which synergistic feedback inhibition by L-lysine and L-threonine has been substantially eliminated.
  • genes that can be used for the production of L-glutamic acid include glycosylated phosphofructokinase (PFK, Japanese Patent Application Laid-Open No. 63-169292), and phosphoenolpyruvine in the anaplerotidic pathway.
  • Acid carboxylase PEPC, JP-A-60-87788, JP-A-62-55089
  • citrate synthase of the TCA cycle CS, JP-A-62-2010 No. 1985, JP-A-63-119968, a.
  • a biotin action inhibitor such as a surfactant to a coryneform bacterium capable of producing L-glutamic acid
  • the biotin action inhibitor in a medium containing an excessive amount of biotin can be added.
  • L-glutamic acid can be produced in the absence of E. coli (see W096 / 06180).
  • An example of such a coryneform bacterium is Brevipacterium 'lactofarmentum AJ13029 described in W096 / 06180.
  • the AJ13029 strain was registered on September 2, 1994 with the Institute of Biotechnology and Industrial Technology, Institute of Industrial Science and Technology, Ministry of International Trade and Industry (zip code 305-8566, 1-3 1-3 Higashi, Tsukuba, Ibaraki, Japan) and the accession number FERM. Deposited as P-14501, transferred to an international deposit under the Budapest Treaty on August 1, 1995, and given accession number FERM BP-5189.
  • the biotin-inhibiting substance can be expressed in a medium containing an excessive amount of biotin.
  • L-Lysine and L-glutamic acid can be produced simultaneously in the absence (see W096 / 06180).
  • Examples of such a strain include Brevibacterium 'Lactofamentum AJ12993 strain described in W096 / 06180. The shares were issued by the Ministry of International Trade and Industry on June 3, 1994. Deposited at the National Institute of Advanced Industrial Science and Technology (Postal Code: 305-8566, 1-3 1-3 Higashi, Tsukuba, Ibaraki, Japan) under the accession number FERM P-14348. It has been transferred to an international deposit under the United Nations Convention and has been assigned the accession number FERM BP-5188.
  • the phrase “enhanced activity” of an enzyme generally means that the enzyme activity in a cell is higher than that of a wild-type strain, and is modified by genetic recombination technology or the like. When a strain with enhanced enzyme activity is obtained, it means that the enzyme activity in the cell is higher than that of the strain before modification.
  • L-amino acid When a coryneform bacterium having enhanced phosphoenorubyruvate synthase activity and capable of producing L-amino acid is cultured in a suitable medium, L-amino acid accumulates in the medium. For example, when a coryneform bacterium having enhanced phosphoenolpyruvate synthase activity and capable of producing L-lysine acid is cultured in a suitable medium, L-lysine is accumulated in the medium. In addition, when a coryneform bacterium having enhanced phosphoenol pyruvate synthase activity and having L-gluminic acid producing ability is cultured in a suitable medium, L-gluminic acid accumulates in the medium.
  • L-lysine and L-glucamic acid accumulate in the medium. I do.
  • L-lysine and L-glucaminic acid are simultaneously produced by fermentation, the L-lysine-producing bacterium may be cultured under L-glucaminic acid production conditions or L-lysine-producing ability.
  • a coryneform bacterium having an ability to produce L-glucamic acid may be mixed and cultured (Japanese Patent Application Laid-Open No. 5-37993).
  • the medium used to produce L-amino acids using the microorganism of the present invention is a normal medium containing a carbon source, a nitrogen source, inorganic ions and, if necessary, other organic micronutrients.
  • Carbon sources include glucose, lactose, galactose, fructose, sucrose, molasses, carbohydrates such as starch hydrolysates, alcohols such as ethanolinositol, acetic acid, fumaric acid, and citric acid.
  • organic acids such as succinic acid.
  • Nitrogen sources include ammonium sulfate, ammonium nitrate, ammonium chloride, Inorganic ammonium salts such as ammonium phosphate and ammonium acetate, ammonia, peptone, meat extract, yeast extract, yeast extract, organic nitrogen such as soybean hydrolysate, soybean hydrolyzate, ammonia gas, ammonia water, etc. Can be used.
  • inorganic ions small amounts of potassium phosphate, magnesium sulfate, iron ions, manganese ions and the like are added.
  • organic trace nutrients it is desirable to include a required substance such as a vitamin or a yeast extract in an appropriate amount as necessary.
  • the cultivation is preferably carried out for 16 to 72 hours under aerobic conditions such as shaking cultivation and aeration / agitation cultivation.
  • aerobic conditions such as shaking cultivation and aeration / agitation cultivation.
  • pH adjustment an inorganic or organic acidic or alkaline substance, ammonia gas or the like can be used.
  • the L-amino acid can be collected from the fermentation liquor in the same manner as in the usual method for producing an L-amino acid.
  • L-lysine can be usually carried out by a combination of an ion exchange resin method, a precipitation method and other known methods.
  • the method for collecting L-glutamic acid may be a conventional method, for example, an ion exchange resin method, a crystallization method, or the like.
  • L-glutamic acid may be adsorbed and separated by an anion exchange resin, or may be neutralized and crystallized.
  • the nucleotide sequence of the pps gene of Escherichia coli has already been elucidated (Mol. Gen. Genet., 231 (2), 332-336 (1992), Genbank / EMBL / DDBJ accession No. M69116). Based on the reported nucleotide sequence, the primers shown in SEQ ID NOs: 1 and 2 in the Sequence Listing were synthesized, and the chromosomal DNA of Escherichia coli 'JM109 strain was type III, and the phosphoenolpyruvate synthase gene was subjected to PCR by PCR. Was amplified.
  • SEQ ID NO: 1 is Genbank / EMBL / DDBJ accession No. It corresponds to the sequence from the first to the 23rd base of the base sequence of the PPS gene described in M69116, and SEQ ID NO: 2 corresponds to the sequence from the 366 to the 3640th base.
  • the chromosome DNA of Escherichia coli JM109 strain was prepared by a conventional method (Bioengineering Experiments, edited by Biotechnology Society of Japan, pp. 97-98, Baifukan, 1992).
  • PCR reaction standard reaction conditions described on page 185 of the PCR method front line (Takeo Sekiya et al., Edited by Kyoritsu Shuppan, 1989) were used.
  • the purified PCR product is purified by a conventional method, and then ligated with Smal-cleaved plasmid pHC4 using the Reigession Kit (Takara Shuzo). Then, the Escherichia coli KM JM109 Combinent Cell (Takara Shuzo) ) And transformed into L medium containing 30 zg / ml of chloramphenicol (Bacto Tryptone 10 g / L, Pactoist Extract 5 g / L NaCl 5 g / L, Agar 15 g / L, pH 7.2) ), And after overnight culture, appeared white colonies were picked up and separated into single colonies to obtain transformed strains. Plasmid was extracted from the obtained transformant to obtain a plasmid pHC4 pps in which the pps gene was bound to the vector.
  • Escherichia coli harboring pHC4 was named private number AJ12617, and on April 24, 1991, the Institute of Biotechnology and Industrial Technology, Institute of Industrial Science and Technology, Ministry of International Trade and Industry (zip code 305-8566, Ibaraki, Japan) Deposit No. FERM P-12215 at Tsukuba Higashi 1-chome 1-3), transferred to an international deposit based on the Budapest Treaty on August 26, 1991, and given a deposit number FERM BP-35332. ing.
  • the JM109 strain and the JM109 strain retaining pH pps 4 pps were used.
  • the JM109 strain having pHC of 4 pps showed about 15 times the phosphoenolylrubic acid synthase activity of the JM109 strain not having pHC of 4 pps.
  • Cells of the AJ13029 / pHC4pps strain obtained by culturing in a CM2B plate medium containing 5 g / ml chloramphenicol were mixed with L-gluminamine having the following composition containing 5 g / ml chloramphenicol.
  • An acid production medium was inoculated, shake-cultured at 31.5 ° C, and shake-cultured until the sugar in the medium was consumed.
  • the obtained culture was inoculated into a medium having the same composition in an amount of 5%, and cultured at 37 ° C with shaking until the sugar in the medium was consumed.
  • a corynebacterium bacterium AJ13029 strain was cultured in the same manner as described above, and a strain transformed with an already obtained corynebacterium bacterium autonomously replicating plasmid pHC4 by the electric pulse method was cultured as described above. .
  • Corynebacterium sp.AJ11082 was used as a control with a plasmid pHC4 that can replicate autonomously with already obtained Corynebacterium sp. Transformation by electric pulse method The transformed strain was cultured as described above.
  • Protein hydrolyzate (bean concentrate) 30 ml
  • Brevibacterium lactofermentum AJ12993 was transformed with plasmid pHC4pps by the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791) to obtain the resulting transformant.
  • culture for producing L-lysine and L-glucamic acid was performed as follows.
  • the AJ12993 / pHC4pps strain obtained by culturing on a CM2B plate medium containing 5 g / ml chloramphenicol was inoculated into the L-lysine production medium containing Sg / ml chloramphenicol. And cultured at 31.5 ° C.
  • the culture temperature was shifted to 34 ° C, and the culture was performed with shaking until the sugar in the medium was consumed.
  • a strain of Corynebacterium sp. AJ12993 was transformed by an electropulse method with a plasmid PHC4 capable of autonomous replication with a previously obtained Corynebacterium sp., And cultured in the same manner as described above.
  • the ability of coryneform bacteria to produce L-amino acid such as L-lysine or L-glutamic acid can be improved. Also, an efficient method for producing an L-amino acid such as L-lysine or L-glutamic acid is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A coryneform bacterium having a potentiated phosphoenolpyruvate synthase activity in the cell and being capable of producing an L-amino acid; and a process for producing the L-amino acid characterized by comprising culturing this coryneform bacterium in a medium, thus forming and accumulating the L-amino acid in the medium, and then collecting the L-amino acid from the culture medium.

Description

明細書  Specification
L一アミノ酸の製造法 技術分野  Manufacturing method of L-amino acid
本発明は、 発酵法による L一アミノ酸の製造法、 特に L—リジン及び L—グル 夕ミン酸の製造法に関する。 L一リジンは飼料添加物等として、 L—グルタミン 酸は調味料原料等として広く用いられている。 背景技術  The present invention relates to a method for producing an L-amino acid by a fermentation method, and particularly to a method for producing L-lysine and L-glutamic acid. L-lysine is widely used as a feed additive, and L-glutamic acid is widely used as a seasoning material. Background art
従来、 L—リジン及び L—グルタミン酸等の L—アミノ酸は、 これらの Lーァ ミノ酸生産能を有するブレビバクテリゥム属ゃコリネバクテリゥム属に属するコ リネ型細菌を用いて発酵法により工業生産されている。 これらのコリネ型細菌と しては、 生産性を向上させるために、 自然界から分離した菌株または該菌株の人 ェ変異株が用いられている。  Conventionally, L-amino acids such as L-lysine and L-glutamic acid have been produced by fermentation using a coryneform bacterium belonging to the genus Brevibacterium or Corynebacterium having the ability to produce L-amino acid. It is industrially produced. As these coryneform bacteria, strains isolated from the natural world or human mutants of the strains are used in order to improve productivity.
また、 組換え D N A技術により L一アミノ酸の生合成酵素の活性を増強するこ とによって、 L一アミノ酸の生産能を増加させる種々の技術が開示されている。 例えば、 L一リジン生産能を有するコリネ型細菌において、 L—リジン及び L一 スレオニンによるフィードバック阻害が解除されたァスパルトキナ一ゼをコード する遺伝子 (変異型 lysC) 、 ジヒドロジピコリン酸レダク夕一ゼ遺伝子 (dapB) 、 ジヒドロジビコリン酸シンタ一ゼ遺伝子 (dapA) 、 ジアミノピメリン酸デカルボ キシラーゼ遺伝子 (lysA) 、 及びジアミノピメ リン酸デヒ ドロゲナーゼ遺伝子 (ddh) (W096/40934) 、 LysA及び DDH (特開平 9一 322774号) 、 LysCヽ LysA及び ホスホエノ一ルビルビン酸カルボキシラーゼ遺伝子 (ppc) (特開平 10-165180号) 、 変異型 lysC、 dapB、 dapA、 lysA及びァスパラギン酸ァミノ トランスフェラ一ゼ遺 伝子 (aspC) (特開平 10- 215883号) を導入することにより、 同細菌の Lーリジ ン生産能が向上することが知られている。  Also, various techniques have been disclosed for increasing the activity of producing L-amino acids by enhancing the activity of L-amino acid biosynthetic enzymes by recombinant DNA technology. For example, in a coryneform bacterium capable of producing L-lysine, a gene encoding aspartokinase (mutant lysC) in which feedback inhibition by L-lysine and L-threonine has been released, a dihydrodipicolinate reductase gene ( dapB), the dihydrodibicolinate synthase gene (dapA), the diaminopimelate decarboxylase gene (lysA), and the diaminopimelate dehydrogenase gene (ddh) (W096 / 40934), LysA and DDH (JP-A-9-1322774). No.), LysC-LysA and phosphoenolpyruvate carboxylase gene (ppc) (Japanese Patent Application Laid-Open No. 10-165180), mutant lysC, dapB, dapA, lysA and aspartic acid aminotransferase gene (aspC) (Kaihei 10-215883) is known to improve the L-lysine-producing ability of the bacterium. .
また、 ェシエリヒア属細菌においては、 dapA、 変異型 lysC、 dapB、 ジアミノビ メリン酸デヒドロゲナ一ゼ遺伝子 (ddh) (又はテトラヒ ドロジピコリン酸スク シニラーゼ遺伝子 (dapD) 及びスクシ二ルジアミノピメリン酸デアシラーゼ遺伝 子 (dapE ) ) を順次増強すると L一リジン生産能が向上することが知られている (W0 95/16042 ) 。 尚、 W0 95/16042ではテトラヒドロジピコリン酸スクシ二ラー ゼがスクシニルジアミノピメリン酸トランスアミナーゼと誤記されている。 In the bacterium belonging to the genus Escherichia, dapA, mutant lysC, dapB, diaminobimeric dehydrogenase gene (ddh) (or tetrahydroxypicolinic acid succinylase gene (dapD), and succinyldiaminopimelate deacylase gene are also available. It is known that L-lysine-producing ability is improved by sequentially increasing the number of offspring (dapE)) (W095 / 16042). In WO95 / 16042, tetrahydrodipicolinate succinylase is erroneously described as succinyldiaminopimelate transaminase.
一方、 コリネパクテリゥム属またはブレビパクテリゥム属細菌において、 ェシ エリヒア . コリ又はコリネバクテリウム · グル夕ミクム由来のクェン酸シン夕一 ゼをコ一ドする遺伝子の導入が、 L—グルタミン酸生産能の増強に効果的であつ たことが報告されている (特公平 7- 121228号) 。 また、 特開昭 61- 268185号公報 には、 コリネバクテリゥム属細菌由来のグル夕ミン酸デヒドロゲナ一ゼ遺伝子を 含む組換え体 D N Aを保有した細胞が開示されている。 さらに、 特開昭 63- 21418 9号公報には、 グル夕ミン酸デヒドロゲナーゼ遺伝子、 ィソクェン酸デヒドロゲ ナーゼ遺伝子、 アコニッ ト酸ヒドラ夕一ゼ遺伝子、 及びクェン酸シン夕ーゼ遺伝 子を増強することによって、 L一グル夕ミン酸の生産能を増加させる技術が開示 されている。  On the other hand, in a bacterium belonging to the genus Corynepacterium or Brevipacterium, introduction of a gene encoding citrate synthase derived from Escherichia coli or Corynebacterium gulurica is introduced by L-glutamic acid. It was reported that it was effective in enhancing production capacity (Japanese Patent Publication No. 7-121228). Also, Japanese Patent Application Laid-Open No. 61-268185 discloses a cell having a recombinant DNA containing a glutamate dehydrogenase gene derived from a bacterium belonging to the genus Corynebacterium. Further, Japanese Patent Application Laid-Open No. 63-214189 discloses that the glutamate dehydrogenase gene, the disoquatate dehydrogenase gene, the aconitate hydrase enzyme, and the citrate synthase gene are enhanced. A technique for increasing the ability to produce L-glucamic acid has been disclosed.
しかし、 ホスホェノールピルビン酸シンターゼをコ一ドする遺伝子の構造はコ リネ型細菌では報告されておらず、 ホスホエノールビルビン酸シン夕一ゼをコ— ドする遺伝子をコリネ型細菌の育種に利用することも知られていない。 発明の開示  However, the structure of the gene encoding phosphoenolpyruvate synthase has not been reported in coryneform bacteria, and the gene encoding phosphoenolpyruvate synthase is used for breeding of coryneform bacteria. Not even known. Disclosure of the invention
本発明は、 従来よりもさらに改良された発酵法による Lーリジン又は Lーグル 夕ミン酸等の L一アミノ酸の製造法、 及びそれに用いる菌株を提供することを課 題とする。  An object of the present invention is to provide a method for producing an L-amino acid such as L-lysine or L-glutamic acid by a fermentation method which has been further improved than before, and a strain used therefor.
本発明者等は、 上記課題を解决するために鋭意検討を行った結果、 ホスホエノ —ルビルビン酸シン夕一ゼをコ一ドする遺伝子をコリネ型細菌に導入し、 ホスホ エノ一ルビルビン酸シン夕一ゼ活性を増強することにより、 Lーリジン又は L一 グル夕ミン酸の生産量を増大させることができることを見出し、 本発明を完成す るに至った。  The present inventors have conducted intensive studies to solve the above problems, and as a result, introduced a gene encoding phosphoeno-rubyruvic acid synthase into coryneform bacteria, It has been found that the production of L-lysine or L-glucaminic acid can be increased by enhancing the zease activity, thereby completing the present invention.
すなわち本発明は、 以下のとおりである。  That is, the present invention is as follows.
( 1 ) 細胞中のホスホエノ一ルビルビン酸シン夕一ゼ活性が増強され、 かっし— アミノ酸生産能を有するコリネ型細菌。 ( 2 ) 前記 L—アミノ酸が、 L一リジン及び L—グルタミン酸から選ばれる ( 1 ) のコリネ型細菌。 (1) A coryneform bacterium which has enhanced phosphoenolpyruvate synthase activity in cells and has the ability to produce amino acids. (2) The coryneform bacterium according to (1), wherein the L-amino acid is selected from L-lysine and L-glutamic acid.
( 3 ) 前記ホスホェノールピルビン酸シン夕一ゼ活性の増強が、 前記細菌細胞内 のホスホェノールピルビン酸シン夕一ゼをコ一ドする遺伝子のコビ一数を高める ことによるものである前記 ( 1 ) のコリネ型細菌。  (3) The enhancement of phosphoenol pyruvate synthase activity is due to an increase in the number of genes encoding phosphoenol pyruvate synthase in the bacterial cells. ) Coryneform bacteria.
( 4 ) 前記ホスホェノールピルビン酸シン夕一ゼをコ一ドする遺伝子がェシエリ ヒア属細菌由来である (3 ) のコリネ型細菌。  (4) The coryneform bacterium according to (3), wherein the gene encoding the phosphoenol pyruvate synthase is derived from a bacterium belonging to the genus Escherichia.
( 5 ) 前記 ( 1 ) 〜 (4 ) のいずれかのコリネ型細菌を培地に培養し、 該培養物 中に L一アミノ酸を生成蓄積せしめ、 該培養物から L—アミノ酸を採取すること を特徴とする L一アミノ酸の製造法。  (5) The coryneform bacterium according to any one of (1) to (4) is cultured in a medium, L-amino acid is produced and accumulated in the culture, and L-amino acid is collected from the culture. Method for producing L-amino acid.
. ( 6 ) 前記 L—アミノ酸力 L—リジン、 L—グルタミン酸、 L—スレオニン、 L—イソロイシン及び L—セリンから選ばれる ( 5 ) の方法。 発明を実施するための最良の形態  (6) The method according to (5), wherein said L-amino acid is selected from L-lysine, L-glutamic acid, L-threonine, L-isoleucine and L-serine. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
< 1〉本発明のコリネ型細菌 <1> Coryneform bacterium of the present invention
本発明のコリネ型細菌は、 L—アミノ酸生産能を有し、 細胞中のホスホエノ一 ルビルビン酸シン夕一ゼ活性が増強されたコリネ型細菌である。 L一アミノ酸と しては、 L一リジン、 L 一グルタミン酸、 Lースレオニン、 L 一イソロイシン、 Lーセリン等が挙げられる。 これらの中では、 L—リジン及び L—グルタミン酸 が好ましい。 以下、 本発明の実施の形態を、 主として L—リジン生産能又は L— グル夕ミン酸生産能を有するコリネ型細菌について説明する力 本発明は、 目的 とする L—アミノ酸固有の生合成系がホスホェノールピルビン酸シンターゼょり も下流に位置するものについては同様に適用され得る。  The coryneform bacterium of the present invention is a coryneform bacterium having L-amino acid-producing ability and enhanced phosphoenorubyruvate synthase activity in cells. Examples of the L-amino acid include L-lysine, L-glutamic acid, L-threonine, L-isoleucine, L-serine and the like. Among these, L-lysine and L-glutamic acid are preferred. Hereinafter, the power of describing an embodiment of the present invention mainly for a coryneform bacterium having an L-lysine-producing ability or an L-glucamic acid-producing ability The present invention provides a biosynthesis system specific to an L-amino acid. Phosphoenolpyruvate synthase can be similarly applied to those located downstream.
本発明でいうコリネ型細菌としては、 バ一ジーズ ·マニュアル 'ォブ ·デ夕ー ミネィティフ 'ノ、'クテリォロシ一 ( Bergey's Manual of Determinative Bacteriology) 第 8版 599頁 (1974) に定義されている一群の微生物であり、 好気 性, グラム陽性, 非抗酸性で、 胞子形成能を有しない桿菌であり、 従来ブレビバ クテリウム属に分類されていたが現在コリネパクテリゥム属細菌として統合され た細菌を含み (Int. J. Syst. Bactenol., 41, 255 (1981)) 、 またコリネバクテリ ゥム属と非常に近縁なブレビバクテリゥム属細菌及びミクロパテリゥム属細菌を 含む。 Lーリジン又は L一グル夕ミン酸の製造に好適に用いられるコリネ型細菌 の菌株としては、 例えば以下に示すものが挙げられる。 As the coryneform bacteria referred to in the present invention, a group defined in Bergey's Manual of Determinative Bacteriology, 8th edition, p. 599 (1974) It is an aerobic, gram-positive, non-acid-fast, non-sporulating bacillus that was previously classified as Brevibacterium, but is now integrated as Corynepacterium. Bactenol., 41, 255 (1981), and also includes bacteria of the genus Brevibacterium and Micropaterium, which are closely related to the genus Corynebacterium. The strains of coryneform bacteria suitably used for the production of L-lysine or L-glutamic acid include, for example, those shown below.
コリネバクテリゥム · ァセ トァシ ドフィルム ATCC13870  Corynebacterium acetate film ATCC13870
コリネバクテリウム · ァセ トグル夕ミクム ATCC15806  Corynebacterium case Toggle evening Mikum ATCC15806
コリネバクテリゥム ' カルナェ ATCC15991  Corynebacterium '' Carnaet ATCC15991
コリネバクテリゥム · グル夕ミクム ATCC13032  Corynebacterium · Guru Yu Mikum ATCC13032
(ブレビバクテリウム ·ディバリカタム) ATCC14020  (Brevibacterium divaricatum) ATCC14020
(ブレビパクテリゥム · ラク トファ一メンタム) ATCC13869  (Brevipactium / LactoFammentum) ATCC13869
(コリネバクテリゥム · リ リゥム) ATCC15990  (Corynebacterium ream) ATCC15990
(ブレビバクテリゥム · フラバム) ATCC14067  (Brevibacterium flavum) ATCC14067
コリネバクテリゥム メフセコーフ ATCC17965  Corynebacterium mefsekoff ATCC17965
ブレビパクテリゥム サッカロリティクム ATCC14066  Brevi Pacterium Saccharolyticum ATCC14066
ブレビバクテリゥム インマリオフィルム ATCC14068  Brevibacterium in Mario film ATCC14068
ブレビパクテリゥム ロゼゥム ATCC13825  Brevi Pacterium Rosemze ATCC13825
ブレビパクテリゥム チォゲ二夕リス ATCC19240  Brevi Pacterium Choge Niyu Squirrel ATCC19240
ミクロパクテリゥム アンモニアフィ フム ATCC15354  Micropacterium ammonia ammonia ATCC15354
コリネバクテリゥム · サーモアミノゲネス AJ12340(FERM BP-1539)  Corynebacterium thermoaminogenes AJ12340 (FERM BP-1539)
これらを入手するには、 例えばァメ リカン ' タイプ ' カルチャー · コレクショ ンより分譲を受けることができる。 すなわち、 各微生物ごとに対応する登録番号 が付与されており、 この登録番号を引用して分譲を受けることができる。 各微生 物に対応する登録番号はァメ リカン · タイプ ' カルチャー · コレクションの力夕 ログに記載されている。 また、 AJ12340株は、 通商産業省工業技術院生命工学ェ 業技術研究所にブダぺス ト条約に基づいて寄託されている。  These can be obtained, for example, from the American 'Type' Culture Collection. That is, a registration number corresponding to each microorganism is assigned, and the microorganism can be ordered by referring to this registration number. The registration number corresponding to each microbe is listed in the American Type 'Culture Collection Log. The AJ12340 strain has been deposited under the Budapest Treaty with the Institute of Biotechnology and Industrial Technology, the Ministry of International Trade and Industry.
また、 上記菌株以外にも、 これらの菌株から誘導された L一リジン生産能又は L—グルタミン酸生産能を有する変異株等も、 本発明に利用できる。 この様な人 ェ変異株としては次の様なものがある。 S— ( 2—アミノエチル) 一システィン (以下、 「AEC」 と略記する) 耐性変異株 (例えば、 ブレビバクテリウム ' ラク トフアーメンタム AJ11082 ( NRRL B- 11470) 、 特公昭 56-1914号、 特公昭 56- 1915 号、 特公昭 57-14157号、 特公昭 57- 14158号、 特公昭 57- 30474号、 特公昭 58-10075 号、 特公昭 59- 4993号、 特公昭 61-35840号、 特公昭 62- 24074号、 特公昭 62- 36673 号、 特公平 5- 11958号、 特公平 7- 112437号、 特公平 7-112438号参照) 、 その成長 に L一ホモセリン等のアミノ酸を必要とする変異株 (特公昭 48- 28078号、 特公昭 56-6499号) 、 AECに耐性を示し、 更に L一口イシン、 L一ホモセリン、 L—プロ リン、 Lーセリン、 L—アルギニン、 Lーァラニン、 Lーバリン等のアミノ酸を 要求する変異株 (米国特許第 3708395号及び第 3825472号) 、 D L—ひ一アミノー £—力プロラクタム、 ひーァミノ一ラウリルラクタム、 ァスパラギン酸一アナ口 グ、 スルファ剤、 キノイ ド、 N—ラウロイルロイシンに耐性を示す L—リジン生 産変異株、 ォキザ口酢酸脱炭酸酵素 (デカルボキシラ一ゼ) または呼吸系酵素阻 害剤に耐性を示す L—リジン生産変異株 (特開昭 50- 53588号、 特開昭 50-31093号、 特開昭 52- 102498号、 特開昭 53-9394号、 特開昭 53- 86089号、 特開昭 55- 9783号、 特開昭 55-9759号、 特開昭 56-32995号、 特開昭 56- 39778号、 特公昭 53-43591号、 特公昭 53-1833号) 、 イノシトールまたは酢酸を要求する L—リジン生産変異株 (特開昭 55- 9784号、 特開昭 56-8692号) 、 フルォロピルビン酸または 34°C以上の 温度に対して感受性を示す L一リジン生産変異株 (特開昭 55-9783号、 特開昭 53 - 86090号) 、 エチレングリコールに耐性を示し、 L一リジンを生産するブレビバ クテリゥム属またはコリネパクテリゥム属の変異株 (米国特許第 4411997号) 。 尚、 本明細書において 「L一アミノ酸生産能」 とは、 コリネ型細菌を培地に培 養したときに、 培地中に有意な量の L—アミノ酸を蓄積する能力、 又は菌体中の L一アミノ酸含量を増加させる能力をいう。 In addition to the above strains, mutants having L-lysine-producing ability or L-glutamic acid-producing ability derived from these strains can also be used in the present invention. Such human mutants include the following. S— (2-aminoethyl) monocysteine (hereinafter abbreviated as “AEC”) resistant mutant (for example, Brevibacterium Tof amentum AJ11082 (NRRL B-11470), JP-B 56-1914, JP-B 56-1915, JP-B 57-14157, JP-B 57-14158, JP-B 57-30474, JP-B 58- 10075, JP-B-59-4993, JP-B-61-35840, JP-B-62-24074, JP-B-62-36673, JP-B-5-11958, JP-B7-11-112437, JP-B7-112438 Mutants that require amino acids such as L-homoserine for their growth (Japanese Patent Publication No. 48-28078, Japanese Patent Publication No. 56-6499), are resistant to AEC, and furthermore are L-mouth isine, L-homoserine, Mutants requiring amino acids such as L-proline, L-serine, L-arginine, L-alanine and L-valine (US Pat. Nos. 3,708,395 and 3,825,472), DL-amino- £ -caprolactam, hyamino Monolauryl lactam, monoaspartic acid, sulfa drugs, quinoids, N-lauroy L-lysine-producing mutants that are resistant to leucine, L-lysine-producing mutants that are resistant to oxazate acetic acid decarboxylase (decarboxylase) or respiratory enzyme inhibitors (Japanese Patent Application Laid-Open No. 5058853/1983) JP-A-50-31093, JP-A-52-102498, JP-A-53-9394, JP-A-53-86089, JP-A-55-9783, JP-A-55-9759, JP-A-55-9759 JP-A-56-32995, JP-A-56-39778, JP-B-53-43591, JP-B-53-1833), L-lysine-producing mutants requiring inositol or acetic acid (JP-A-55-9784, JP-A-56-8692), Fluoropyruvate or an L-lysine-producing mutant which is sensitive to a temperature of 34 ° C or higher (JP-A-55-9783, JP-A-53-86090), ethylene glycol Mutants of the genus Brevibacterium or Corynepacterium which are resistant to L-lysine and produce L-lysine (US Patent No. 4411997) . As used herein, the term “L-amino acid-producing ability” refers to the ability of a coryneform bacterium to accumulate a significant amount of L-amino acid in a medium when cultured in the medium, or the L-amino acid in the cells. Refers to the ability to increase amino acid content.
< 2 >ホスホェノールピルビン酸シン夕一ゼ活性の増強 <2> Enhancement of phosphoenol pyruvate synthase activity
コリネ型細菌細胞中のホスホェノールピルビン酸シンターゼ活性を増強するに は、 ホスホェノールピルビン酸シン夕一ゼをコードする遺伝子断片を、 該細菌で 機能するべクタ一、 好ましくはマルチコピー型のベクターと連結して組み換え D N Aを作製し、 これを L一リジン又は L—グル夕ミン酸生産能を有するコリネ型 細菌に導入して形質転換すればよい。 形質転換株の細胞内のホスホェノールピル ビン酸シン夕一ゼをコ一ドする遺伝子のコピー数が上昇する結果、 ホスホエノー ルビルビン酸シン夕ーゼ活性が増強される。 ホスホエノ一ルビルビン酸シン夕一 ゼは、 ェシエリヒア ·コリでは pps遺伝子にコードされている。 To enhance phosphoenolpyruvate synthase activity in coryneform bacterium cells, a gene fragment encoding phosphoenolpyruvate synthase must be isolated from a vector, preferably a multicopy vector, which functions in the bacterium. Ligation may be performed to produce a recombinant DNA, which may be introduced into a coryneform bacterium capable of producing L-lysine or L-glucamic acid for transformation. An increase in the copy number of the gene encoding phosphoenol pyruvate synthase in the cells of the transformed strain resulted in phosphoenol Rubilate synthase activity is enhanced. Phosphoenorubyruvate synthase is encoded by the pps gene in Escherichia coli.
ホスホェノールピルビン酸シンタ一ゼ遺伝子は、 コリネ型細菌の遺伝子を用い ることも、 ェシエリヒア属細菌等の他の生物由来の遺伝子を使用することもでき る。  As the phosphoenol pyruvate synthase gene, a gene of a coryneform bacterium or a gene derived from another organism such as a bacterium belonging to the genus Escherichia can be used.
ェシエリヒア ·コリの pps遺伝子の塩基配列は既に明らかにされている (Mol. Gen. Genet., 231(2), 332-336(1992), Genbank/EMBL/DDBJ accession No. M69116) ので、 その塩基配列に基づいて作製したプライマ一、 例えば配列表配 列番号 1及び 2に示すプライマ一を用いて、 ェシエリヒア 'コリ染色体 D N Aを 鎵型とする P C R法 (P C R : polymerase chain reaction; White, T.J. et al., Trends Genet. 5, 185(1989)参照) によって、 pps遺伝子を取得することができる。 コリネ型細菌等の他の微生物のホスホエノ一ルビルビン酸シンターゼをコードす る遺伝子も、 同様にして取得され得る。  The nucleotide sequence of the pps gene of Escherichia coli has already been determined (Mol. Gen. Genet., 231 (2), 332-336 (1992), Genbank / EMBL / DDBJ accession No. M69116). Using a primer prepared based on the sequence, for example, the primers shown in SEQ ID NOs: 1 and 2 in the Sequence Listing, a PCR method using Escherichia coli chromosome DNA as type III (PCR: polymerase chain reaction; White, TJ et al. ., Trends Genet. 5, 185 (1989)) to obtain the pps gene. Genes encoding phosphoenolpyruvate synthase of other microorganisms such as coryneform bacteria can be obtained in a similar manner.
染色体 D N Aは、 D N A供与体である細菌から、 例えば、 斎藤、 三浦の方法 (H. Saito and K. Miura, Biochem. Biophys. Acta, 72, 619(1963)、 生物工学実 験書、 日本生物工学会編、 9 7〜9 8頁、 培風館、 1 9 9 2年参照) 等により調 製することができる。  Chromosomal DNA can be obtained from bacteria that are DNA donors, for example, by the method of Saito and Miura (H. Saito and K. Miura, Biochem. Biophys. Acta, 72, 619 (1963), Bioengineering Experiments, Edited by the Society, pp. 97-98, Baifukan, 1992).
P C R法により増幅されたホスホエノールビルビン酸シン夕一ゼをコ一ドする 遺伝子は、 ェシエリヒア ' コリ及び/又はコリネ型細菌の細胞内において自律複 製可能なベクター D N Aに接続して組換え D N Aを調製し、 これをェシエリヒア •コリ細胞に導入しておくと、 後の操作がしゃすくなる。 ェシエリヒア ' コリ細 胞内において自律複製可能なベクタ一としては、 プラスミ ドベクターが好ましく、 また、 宿主の細胞内で自立複製可能なものが好ましく、 例えば pUC19、 pUC 18、 p BR322、 pHSG299, pHSG399、 pHSG398、 HSF 1010等が挙げられる。  The gene encoding phosphoenolpyruvate synthase amplified by the PCR method is connected to a vector DNA that can be replicated autonomously in cells of Escherichia coli and / or coryneform bacteria to transform the recombinant DNA. If prepared and introduced into Escherichia coli cells, subsequent operations will be difficult. As a vector capable of autonomous replication in Escherichia coli cells, a plasmid vector is preferable, and a vector capable of autonomous replication in a host cell is preferable.For example, pUC19, pUC18, pBR322, pHSG299, pHSG399, pHSG398, HSF 1010 and the like.
コリネ型細菌の細胞内において自律複製可能なベクタ一としては、 PAM330 (特 開昭 58-67699号公報参照) 、 PHM1519 (特開昭 58- 77895号公報参照) 等が挙げら れる。 また、 これらのベクターからコリネ型細菌中でプラスミ ドを自律複製可能 にする能力を持つ D N A断片を取り出し、 前記ェシエリヒア · コリ用のベクター に揷入すると、 ェシヱリヒア 'コリ及びコリネ型細菌の両方で自律複製可能ない わゆるシャ トルベクターとして使用することができる。 このようなシャトルべク 夕一としては、 以下のものが挙げられる。 尚、 それそれのベクタ一を保持する微 生物の国際寄託機関の受託番号をかっこ内に示した。 Examples of vectors that can replicate autonomously in coryneform bacteria cells include PAM330 (see Japanese Patent Application Laid-Open No. 58-67699) and PHM1519 (see Japanese Patent Application Laid-Open No. 58-77895). In addition, a DNA fragment capable of autonomously replicating plasmid in coryneform bacteria is extracted from these vectors and inserted into the Escherichia coli vector, and then autonomously expressed in both Escherichia coli and coryneform bacteria. Cannot be duplicated It can be used as a so-called shuttle vector. The following are examples of such shuttle shuttles. The accession number of the international depository organization of the microorganisms holding each vector is shown in parentheses.
PAJ655 ェシエリヒア ·]リ AJ11882(FERM BP - 136)  PAJ655 Escherichia ·] Re AJ11882 (FERM BP-136)
コリネハ"クテリゥム' ルタミクム SR8201(ATCC39135)  Coryneha "Cterium" Rutamikum SR8201 (ATCC39135)
PAJ1844 ェシエリヒア ·]リ AJ11883(FERM BP- 137)  PAJ1844 Escherichia ·] Re AJ11883 (FERM BP-137)
コリネハ'、クテリゥム 'ク"ルタミクム SR8202(ATCC39136)  Coryneha ', Cterium' K 'Ruta Mikum SR8202 (ATCC39136)
PAJ611 工シエリヒア 'コリ AJ11884(FERM BP- 138)  PAJ611 Engineering Serihir 'Kori AJ11884 (FERM BP-138)
pA J3148 コリネハ、、クテリウム-グ、ルタミクム SR8203 ( ATCC 39137 )  pA J3148 Coryneha, Cterium-g, Rutamicum SR8203 (ATCC 39137)
PAJ440 ハ、、チルス ·Γフ、、チリス AJ11901(FEM BP - 140)  PAJ440 C, Chills, Chillis AJ11901 (FEM BP-140)
. pHC4 Iシエリヒア ·]リ AJ12617(FERM BP- 3532) pHC4 I.] AJ12617 (FERM BP-3532)
ホスホエノールビルビン酸シン夕一ゼをコ一ドする遺伝子とコリネ型細菌で機 能するベクターを連結して組み換え DN Aを調製するには、 ホスホェノールピル ビン酸シンターゼをコードする遺伝子の末端に合うような制限酵素でぺク夕一を 切断する。 連結は、 T 4 DNAリガ一ゼ等のリガ一ゼを用いて行うのが普通であ る。  In order to prepare recombinant DNA by ligating a gene encoding phosphoenolpyruvate synthase and a vector that functions in coryneform bacteria, it is necessary to match the end of the gene encoding phosphoenol pyruvate synthase. Cut the enzyme with such a restriction enzyme. Ligation is usually performed using a ligase such as T4 DNA ligase.
上記のように調製した組み換え DN Aをコリネ型細菌に導入するには、 これま でに報告されている形質転換法に従って行えばよい。 冽えば、 ェシエリヒア -コ リ K— 12について報告されているような、 受容菌細胞を塩化カルシウムで処 理して DN Aの透過性を増す方法 (Mandel, M. and Higa, A., J. Mol. Biol., 53, 159 (1970)) があり、 バチルス ·ズブチリスについて報告されているような、 増 殖段階の細胞からコンビテントセルを調製して D N Aを導入する方法 (Duncan, C.H., Wilson, G.A. and Young, F.E., Gene, 1, 153 (1977)) がある。 あるいは、 バチルス ·ズブチリス、 放線菌類及び酵母について知られているような、 DNA 受容菌の細胞を、 組換え DN Aを容易に取り込むプロトプラス 卜またはスフエロ プラストの状態にして組換え DN Aを DN A受容菌に導入する方法 (Chang, S. and Choen, S.N., Molec. Gen. Genet., 168, 111 (1979); Bibb'M.J., Ward, J.M. and Hopwood, O.A., Nature, 274, 398 (1978); Hinnen, A., Hicks. J.B. and Fink, G.R., Proc. Natl. Acad. Sci. USA, 751929 (1978)) も応用できる。 本発明の実施 例で用いた形質転換の方法は、 電気パルス法 (特開平 2— 2 0 7 7 9 1号公報参 照) である。 To introduce the recombinant DNA prepared as described above into a coryneform bacterium, it may be carried out according to a transformation method reported so far. Upon cooling, treatment of recipient cells with calcium chloride to increase DNA permeability, as reported for Escherichia coli K-12 (Mandel, M. and Higa, A., J. Mol. Biol., 53, 159 (1970)) and a method for preparing DNA from transgenic cells and introducing DNA as described in Bacillus subtilis (Duncan, CH, Wilson). , GA and Young, FE, Gene, 1, 153 (1977)). Alternatively, cells of DNA recipients, such as those known for Bacillus subtilis, actinomycetes and yeast, can be transformed into protoplasts or spheroplasts that readily incorporate the recombinant DNA and the recombinant DNA can be converted to DNA. Method for introduction into recipient bacteria (Chang, S. and Choen, SN, Molec. Gen. Genet., 168, 111 (1979); Bibb'MJ, Ward, JM and Hopwood, OA, Nature, 274, 398 (1978) Hinnen, A., Hicks. JB and Fink, GR, Proc. Natl. Acad. Sci. USA, 751929 (1978)). Implementation of the present invention The transformation method used in the examples is the electric pulse method (see Japanese Patent Application Laid-Open No. Hei 2-20771).
ホスホェノールピルビン酸シン夕ーゼをコ一ドする活性の増強は、 ホスホエノ 一ルビルビン酸シン夕ーゼをコードする遺伝子を上記宿主の染色体 D N A上に多 コピー存在させることによつても達成できる。 コリネ型細菌に属する微生物の染 色体 D N A上にホスホエノ一ルビルビン酸シン夕ーゼをコードする遺伝子を多コ ピーで導入するには、 染色体 D N A上に多コピー存在する配列を標的に利用して 相同組換えにより行う。 染色体 D N A上に多コピー存在する配列としては、 レべ ヅティブ D N A、 転移因子の端部に存在するインバーティッ ド · リピートが利用 できる。 あるいは、 特開平 2— 1 0 9 9 8 5号公報に開示されているように、 ホ スホェノールピルビン酸シン夕ーゼをコードする遺伝子をトランスポゾンに搭載 してこれを転移させて染色体 D N A上に多コピー導入することも可能である。 い ずれの方法によっても形質転換株内のホスホエノ一ル.ピルビン酸シン夕一ゼをコ 一ドする遺伝子のコビー数が上昇する結果、 ホスホエノ一ルビルビン酸シン夕一 ゼ活性が増強される。  Enhancement of phosphoenol pyruvate synthase-encoding activity can also be achieved by allowing the gene encoding phosphoenolpyruvate synthase to be present in multiple copies on the chromosomal DNA of the host. In order to introduce multiple copies of the gene encoding phosphoenolpyruvate synthase into the chromosomal DNA of microorganisms belonging to coryneform bacteria, multiple copies of the gene on chromosomal DNA can be used as a target. Performed by homologous recombination. As a sequence present in multiple copies on the chromosomal DNA, a relative DNA and an inverted repeat at the end of a transposable element can be used. Alternatively, as disclosed in Japanese Patent Application Laid-Open No. 2-109985, a gene encoding phosphoenol pyruvate synthase is mounted on a transposon, transferred, and placed on chromosomal DNA. It is also possible to introduce multiple copies. Either method results in an increase in the number of coenzymes encoding phosphoenolpyruvate synthase in the transformed strain, resulting in an increase in phosphoenolpyruvate synthase activity.
ホスホエノ一ルビルビン酸シン夕ーゼ活性の増強は、 上記の遺伝子増幅による 以外に、 染色体 D N A上又はプラスミ ド上のホスホェノールピルビン酸シン夕一 ゼをコードする遺伝子のプロモータ一等の発現調節配列を強力なものに置換する ことによつても達成される。 たとえば、 l a cプロモーター、 t r pプロモー夕 ―、 t r cプロモータ一、 t a cプロモーター、 ラムダファージの P Rプロモ一 夕一、 P Lプロモ一夕一等が強力なプロモー夕一として知られている。 これらの プロモーターへの置換により、 ホスホェノールピルビン酸シンターゼをコ一ドす る遺伝子の発現が強化されることによってホスホェノールピルビン酸シン夕ーゼ 活性が増強される。 Enhancement of phosphoenolpyruvate synthase activity can be achieved not only by the gene amplification described above, but also by the expression control sequences such as the promoter of the gene encoding phosphoenolpyruvate synthase on chromosomal DNA or plasmid. It can also be achieved by replacing it with a powerful one. For example, lac promoter, trp promoter evening -, trc promoter one, tac promoter, P R promoter one evening one lambda phage, P L promoter Isseki Chief is known as a powerful promoter evening one. Substitution with these promoters enhances phosphoenol pyruvate synthase activity by enhancing the expression of genes encoding phosphoenol pyruvate synthase.
また、 本発明のコリネ型細菌は、 ホスホェノールピルビン酸シン夕一ゼ活性に 加えて、 他のアミノ酸生合成経路又は解糖系等の酵素遺伝子を導入または増幅す ることによって、 それらの酵素活性が増強されてもよい。 咧えば、 L一リジンの 製造に利用可能な遺伝子の例としては、 Lーリジン及び Lースレオニンによる相 乗的なフィ一ドバック阻害が実質的に解除されたァスパルトキナーゼひサブュニ ッ 卜蛋白質又は /5サブュニッ ト蛋白質をコードする遺伝子 (W094/25605国際公開 パンフレッ ト) 、 コリネホルム細菌由来の野生型ホスホエノールビルビン酸カル ボキシラーゼ遺伝子 (特開昭 60- 87788号公報) 、 コリネホルム細菌由来の野生型 ジヒドロジピコリン酸合成酵素をコードする遺伝子 (特公平 6- 55149号公報) 等 が知られている。 In addition, the coryneform bacterium of the present invention is characterized in that, by introducing or amplifying an enzyme gene of another amino acid biosynthetic pathway or glycolytic pathway in addition to the phosphoenol pyruvate synthase activity, the enzyme activity of the coryneform bacterium is increased. May be enhanced. For example, examples of genes that can be used for the production of L-lysine include aspartokinase subunits in which synergistic feedback inhibition by L-lysine and L-threonine has been substantially eliminated. Gene encoding a cut protein or a / 5-subunit protein (W094 / 25605, International Publication Pamphlet); a wild-type phosphoenolpyruvate carboxylase gene derived from a coryneform bacterium (JP-A-60-87788); a gene derived from a coryneform bacterium And a gene encoding a wild type dihydrodipicolinate synthase (Japanese Patent Publication No. 6-55149).
また、 L一グルタミン酸の製造に利用可能な遺伝子の例としては、 解糖系のホ スフォフルク トキナーゼ (P FK、 特開昭 6 3— 1 0 2 6 9 2号) 、 アナプレロ ティヅク経路のホスホェノールピルビン酸カルボキシラーゼ (P E P C、 特開昭 6 0 - 8 7 7 8 8号、 特開昭 6 2— 5 5 0 8 9号) 、 T C A回路のクェン酸合成 酵素 (C S、 特開昭 6 2— 2 0 1 5 8 5号、 特開昭 6 3— 1 1 9 6 8 8号) 、 ァ .コニット酸ヒドラ夕一ゼ (ACO、 特開昭 6 2— 2 94 0 8 6号) 、 イソクェン 酸デヒドロゲナ一ゼ ( I CDH、 特開昭 6 2— 1 6 6 8 9 0号、 特開昭 6 3— 2 1 4 1 8 9号) 、 アミノ化反応を触媒するグル夕ミン酸デヒドロゲナーゼ (GD H、 特閧昭 6 1— 2 6 8 1 8 5号) 等がある。  Examples of genes that can be used for the production of L-glutamic acid include glycosylated phosphofructokinase (PFK, Japanese Patent Application Laid-Open No. 63-169292), and phosphoenolpyruvine in the anaplerotidic pathway. Acid carboxylase (PEPC, JP-A-60-87788, JP-A-62-55089), citrate synthase of the TCA cycle (CS, JP-A-62-2010) No. 1985, JP-A-63-119968, a. Conidic acid hydra-yuzide (ACO, JP-A No. 62-294,086), isocitrate dehydrogenate (CDH, JP-A-62-166890, JP-A-63-214189), glutamate dehydrogenase (GDH, 6 1—2 6 8 1 8 5).
さらに、 L一グルタミン酸生産能を有するコリネ型細菌に、 界面活性剤等のビ ォチン作用抑制物質に対する温度感受性変異を付与することにより、 過剰量のビ ォチンを含有する培地中にてピオチン作用抑制物質の非存在下で L一グル夕ミン 酸を生産させることができる (W096/06180号参照) 。 このようなコリネ型細菌と しては、 W096/06180号に記載されているブレビパクテリゥム ' ラクトフアーメン タム AJ13029が挙げられる。 AJ13029株は、 1994年 9月 2日付けで通商産業省工業技 術院生命工学工業技術研究所 (郵便番号 305-8566 日本国茨城県つくば市東一丁 目 1番 3号) に、 受託番号 FERM P- 14501として寄託され、 1995年 8月 1日にブダぺ ス卜条約に基づく国際寄託に移管され、 受託番号 FERM BP- 5189が付与されている。 また、 L一リジン及び L一グルタミン酸生産能を有するコリネ型細菌に、 ピオ チン作用抑制物質に対する温度感受性変異を付与することにより、 過剰量のピオ チンを含有する培地中にてピオチン作用抑制物質の非存在下で Lーリジン及び L 一グルタミン酸を同時生産させることができる (W096/06180号参照) 。 このよう な菌株としては、 W096/06180号に記載されているブレビバクテリウム 'ラク トフ アーメンタム AJ12993株が挙げられる。 同株は 1994年 6月 3日付けで通商産業省ェ 業技術院生命工学工業技術研究所 (郵便番号 305-8566 日本国茨城県つくば市東 一丁目 1番 3号) に、 受託番号 FERM P- 14348で寄託され、 1995年 8月 1日にブダぺ ス卜条約に基づく国際寄託に移管され、 受託番号 FERM BP-5188が付与されている。 なお、 本明細書において、 酵素の 「活性が増強されている」 とは、 通常には、 野生株よりも細胞内のその酵素活性が高いことを意味し、 遺伝子組換え技術等に よる改変によりその酵素活性が増強された菌株を得た場合には、 改変前の菌株よ りも細胞内のその酵素活性が高いことを意味する。 Furthermore, by imparting a temperature-sensitive mutation to a biotin action inhibitor such as a surfactant to a coryneform bacterium capable of producing L-glutamic acid, the biotin action inhibitor in a medium containing an excessive amount of biotin can be added. L-glutamic acid can be produced in the absence of E. coli (see W096 / 06180). An example of such a coryneform bacterium is Brevipacterium 'lactofarmentum AJ13029 described in W096 / 06180. The AJ13029 strain was registered on September 2, 1994 with the Institute of Biotechnology and Industrial Technology, Institute of Industrial Science and Technology, Ministry of International Trade and Industry (zip code 305-8566, 1-3 1-3 Higashi, Tsukuba, Ibaraki, Japan) and the accession number FERM. Deposited as P-14501, transferred to an international deposit under the Budapest Treaty on August 1, 1995, and given accession number FERM BP-5189. In addition, by imparting a temperature-sensitive mutation to a biotin-inhibiting substance to a coryneform bacterium capable of producing L-lysine and L-glutamic acid, the biotin-inhibiting substance can be expressed in a medium containing an excessive amount of biotin. L-Lysine and L-glutamic acid can be produced simultaneously in the absence (see W096 / 06180). Examples of such a strain include Brevibacterium 'Lactofamentum AJ12993 strain described in W096 / 06180. The shares were issued by the Ministry of International Trade and Industry on June 3, 1994. Deposited at the National Institute of Advanced Industrial Science and Technology (Postal Code: 305-8566, 1-3 1-3 Higashi, Tsukuba, Ibaraki, Japan) under the accession number FERM P-14348. It has been transferred to an international deposit under the United Nations Convention and has been assigned the accession number FERM BP-5188. As used herein, the phrase “enhanced activity” of an enzyme generally means that the enzyme activity in a cell is higher than that of a wild-type strain, and is modified by genetic recombination technology or the like. When a strain with enhanced enzyme activity is obtained, it means that the enzyme activity in the cell is higher than that of the strain before modification.
く 3〉L—アミノ酸の生産 <3> Production of L-amino acids
ホスホエノ一ルビルビン酸シン夕一ゼ活性が増強され、 かつ L一アミノ酸生産 能を有するコリネ型細菌を好適な培地で培養すれば、 L一アミノ酸が培地に蓄積 する。 例えば、 ホスホエノールビルビン酸シン夕ーゼ活性が増強され、 かつ L— リジン酸生産能を有するコリネ型細菌を好適な培地で培養すれば、 L一リジンが 培地に蓄積する。 また、 ホスホェノールピルビン酸シン夕一ゼ活性が増強され、 かつ L—グル夕ミン酸生産能を有するコリネ型細菌を好適な培地で培養すれば、 L一グル夕ミン酸が培地に蓄積する。  When a coryneform bacterium having enhanced phosphoenorubyruvate synthase activity and capable of producing L-amino acid is cultured in a suitable medium, L-amino acid accumulates in the medium. For example, when a coryneform bacterium having enhanced phosphoenolpyruvate synthase activity and capable of producing L-lysine acid is cultured in a suitable medium, L-lysine is accumulated in the medium. In addition, when a coryneform bacterium having enhanced phosphoenol pyruvate synthase activity and having L-gluminic acid producing ability is cultured in a suitable medium, L-gluminic acid accumulates in the medium.
さらに、 ホスホェノールピルビン酸シンタ一ゼ活性が増強され、 かつ Lーリジ ン及び L一グルタミン酸生産能を有するコリネ型細菌を培地で培養すれば、 L一 リジン及び L一グル夕ミン酸が培地に蓄積する。 L—リジンと L一グル夕ミン酸 を同時に醌酵生産する場合には、 Lーリジン生産菌を L—グル夕ミン酸の生産条 件下で培養してもよいし、 あるいは L—リジン生産能を有するコリネ型細菌と L —グル夕ミン酸生産能を有するコリネ型細菌を混合培養してもよい (特開平 5— 3 7 9 3号公報) 。  Furthermore, when coryneform bacteria having enhanced phosphoenol pyruvate synthase activity and L-lysine and L-glutamic acid producing ability are cultured in the medium, L-lysine and L-glucamic acid accumulate in the medium. I do. When L-lysine and L-glucaminic acid are simultaneously produced by fermentation, the L-lysine-producing bacterium may be cultured under L-glucaminic acid production conditions or L-lysine-producing ability. And a coryneform bacterium having an ability to produce L-glucamic acid may be mixed and cultured (Japanese Patent Application Laid-Open No. 5-37993).
本発明の微生物を用いて L一アミノ酸を製造するのに用いる培地は、 炭素源、 窒素源、 無機イオン及び必要に応じその他の有機微量栄養素を含有する通常の培 地である。 炭素源としては、 グルコース、 ラク ト一ス、 ガラク トース、 フラク ト ース、 シュクロース、 廃糖蜜、 澱粉加水分解物などの炭水化物、 エタノールゃィ ノシトールなどのアルコール類、 酢酸、 フマール酸、 クェン酸、 コハク酸等の有 機酸類を用いることができる。  The medium used to produce L-amino acids using the microorganism of the present invention is a normal medium containing a carbon source, a nitrogen source, inorganic ions and, if necessary, other organic micronutrients. Carbon sources include glucose, lactose, galactose, fructose, sucrose, molasses, carbohydrates such as starch hydrolysates, alcohols such as ethanolinositol, acetic acid, fumaric acid, and citric acid. And organic acids such as succinic acid.
窒素源としては、 硫酸アンモニゥム、 硝酸アンモニゥム、 塩化アンモニゥム、 リン酸アンモニゥム、 酢酸アンモニゥム等の無機アンモニゥム塩、 アンモニア、 ペプトン、 肉エキス、 酵母エキス、 酵母エキス、 コーン 'スティ一プ ' リカ一、 大豆加水分解物などの有機窒素、 アンモニアガス、 アンモニア水等を用いること ができる。 Nitrogen sources include ammonium sulfate, ammonium nitrate, ammonium chloride, Inorganic ammonium salts such as ammonium phosphate and ammonium acetate, ammonia, peptone, meat extract, yeast extract, yeast extract, organic nitrogen such as soybean hydrolysate, soybean hydrolyzate, ammonia gas, ammonia water, etc. Can be used.
無機イオンとしては、 リン酸カリウム、 硫酸マグネシウム、 鉄イオン、 マンガ ンイオン等が少量添加される。 有機微量栄養素としては、 ビタミン などの要 求物質または酵母エキス等を必要に応じ適量含有させることが望ましい。  As inorganic ions, small amounts of potassium phosphate, magnesium sulfate, iron ions, manganese ions and the like are added. As organic trace nutrients, it is desirable to include a required substance such as a vitamin or a yeast extract in an appropriate amount as necessary.
培養は、 振とう培養、 通気撹拌培養等による好気的条件下で 1 6〜7 2時間実 施するのがよく、 培養温度は 3 0 〜 4 5てに、 培養中 p Hは 5〜9に制御する。 尚、 p H調整には無機あるいは有機の酸性あるいはアルカリ性物質、 更にアンモ ニァガス等を使用することができる。  The cultivation is preferably carried out for 16 to 72 hours under aerobic conditions such as shaking cultivation and aeration / agitation cultivation. To control. For pH adjustment, an inorganic or organic acidic or alkaline substance, ammonia gas or the like can be used.
発酵液からの L—アミノ酸の採取は、 通常の L一アミノ酸の製造法と同様にし て行うことができる。 例えば、 L—リジンは、 通常イオン交換樹脂法、 沈澱法そ の他の公知の方法を組み合わせることにより実施できる。 また、 L—グルタミン 酸を採取する方法も常法によって行えばよく、 例えばイオン交換樹脂法、 晶析法 等によることができる。 具体的には、 L一グルタミン酸を陰イオン交換樹脂によ り吸着、 分離させるか、 または中和晶析させればよい。 L—リジン及び L—グル 夕ミン酸の両方を製造する場合、 これらを混合物として用いる場合には、 これら のアミノ酸を相互に分離することは不要である。 実施例  The L-amino acid can be collected from the fermentation liquor in the same manner as in the usual method for producing an L-amino acid. For example, L-lysine can be usually carried out by a combination of an ion exchange resin method, a precipitation method and other known methods. The method for collecting L-glutamic acid may be a conventional method, for example, an ion exchange resin method, a crystallization method, or the like. Specifically, L-glutamic acid may be adsorbed and separated by an anion exchange resin, or may be neutralized and crystallized. When both L-lysine and L-glutamic acid are produced, when these are used as a mixture, it is not necessary to separate these amino acids from each other. Example
以下、 本発明を実施例によりさらに具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples.
く 1〉ェシエリヒア 'コリ JM109株の pps遺伝子のクロ一ニング <1> Cloning of the pps gene of Escherichia coli JM109
ェシヱリヒア ·コリの pps遺伝子の塩基配列は既に明らかにされている (Mol . Gen. Genet. , 231 ( 2 ) , 332-336( 1992 ) , Genbank/EMBL/DDBJ accession No. M691 16 ) 。 報告されている塩基配列に基づいて配列表配列番号 1及び 2に示すプライ マ一を合成し、 ェシヱリヒア ' コリ JM109株の染色体 D N Aを銪型にして P C R 法によりホスホエノールビルビン酸シン夕一ゼ遺伝子を増幅した。  The nucleotide sequence of the pps gene of Escherichia coli has already been elucidated (Mol. Gen. Genet., 231 (2), 332-336 (1992), Genbank / EMBL / DDBJ accession No. M69116). Based on the reported nucleotide sequence, the primers shown in SEQ ID NOs: 1 and 2 in the Sequence Listing were synthesized, and the chromosomal DNA of Escherichia coli 'JM109 strain was type III, and the phosphoenolpyruvate synthase gene was subjected to PCR by PCR. Was amplified.
合成したブライマーの内、 配列番号 1は、 Genbank/EMBL/DDBJ accession No . M69116に記載されている PPS遺伝子の塩基配列の 1番目から 2 3番目の塩基に至 る配列に相当し、 配列番号 2は、 36 6 2番目から 3640番目の塩基に至る配 列に相当する。 Among the synthesized primers, SEQ ID NO: 1 is Genbank / EMBL / DDBJ accession No. It corresponds to the sequence from the first to the 23rd base of the base sequence of the PPS gene described in M69116, and SEQ ID NO: 2 corresponds to the sequence from the 366 to the 3640th base.
ェシエリヒア · コリ JM109株の染色体 DN Aの調製は常法によった (生物工学 実験書、 日本生物工学会編、 97~98頁、 培風館、 1 9 92年) 。 また、 P C R反応は、 P CR法最前線 (関谷剛男ほか編、 共立出版社、 1 989年) 185 頁に記載されている標準反応条件を用いた。  The chromosome DNA of Escherichia coli JM109 strain was prepared by a conventional method (Bioengineering Experiments, edited by Biotechnology Society of Japan, pp. 97-98, Baifukan, 1992). For the PCR reaction, standard reaction conditions described on page 185 of the PCR method front line (Takeo Sekiya et al., Edited by Kyoritsu Shuppan, 1989) were used.
生成した P CR産物を常法により精製後、 Smalで切断したプラスミ ド pHC 4 と、 ライゲ一シヨンキット (宝酒造社製) を用いて連結した後、 ェシエリヒア ' コリ JM109のコンビテントセル (宝酒造社製) を用いて形質転換を行い、 クロラ ムフヱニコ一ル 30 zg/mlを含む L培地 (バク 卜 トリプトン 10g/L、 パクトイ一 ストエキストラクト 5g/L NaCl 5g/L、 寒天 15g/L、 pH7.2) に塗布し、 一晩培養 後、 出現した白色のコロニーを釣り上げ、 単コロニー分離し、 形質転換株を得た。 取得した形質転換体よりプラスミ ドを抽出し、 ベクターに pps遺伝子が結合した プラスミ ド pHC4 pp sを得た。  The purified PCR product is purified by a conventional method, and then ligated with Smal-cleaved plasmid pHC4 using the Reigession Kit (Takara Shuzo). Then, the Escherichia coli KM JM109 Combinent Cell (Takara Shuzo) ) And transformed into L medium containing 30 zg / ml of chloramphenicol (Bacto Tryptone 10 g / L, Pactoist Extract 5 g / L NaCl 5 g / L, Agar 15 g / L, pH 7.2) ), And after overnight culture, appeared white colonies were picked up and separated into single colonies to obtain transformed strains. Plasmid was extracted from the obtained transformant to obtain a plasmid pHC4 pps in which the pps gene was bound to the vector.
p H C 4を保持するェシヱリヒア ' コリは、 プライべ一卜ナンバー AJ12617と 命名され、 1991年 4月 24日に、 通商産業省工業技術院生命工学工業技術研究所 (郵便番号 305- 8566日本国茨城県つくば巿東一丁目 1番 3号) に受託番号 FERM P -12215として寄託され、 1991年 8月 26日に、 ブタペスト条約に基く国際寄託に移 管され、 受託番号 FERM BP- 3532が付与されている。  Escherichia coli harboring pHC4 was named private number AJ12617, and on April 24, 1991, the Institute of Biotechnology and Industrial Technology, Institute of Industrial Science and Technology, Ministry of International Trade and Industry (zip code 305-8566, Ibaraki, Japan) Deposit No. FERM P-12215 at Tsukuba Higashi 1-chome 1-3), transferred to an international deposit based on the Budapest Treaty on August 26, 1991, and given a deposit number FERM BP-35332. ing.
次に、 クローニングされた DN A断片がホスホエノールビルビン酸シンターゼ 活性を有するタンパク質をコ一ドしていることを確認するため、 JM 1 09株及 び、 pH C 4 p p sを保持する J M 1 09株のホスホエノ一ルビルビン酸シン夕 ーゼ活性を Methods in Enzymol., 13, 309 ( 1969)に記載の方法により測定した。 その結果、 pHC4 pp sを保持する JM 10 9株は、 p HC 4 pp sを保持し ない JM 1 09株の約 1 5倍のホスホエノ一ルビルビン酸シン夕ーゼ活性を示す ことから、 pps遺伝子が発現していることを確認した。  Next, to confirm that the cloned DNA fragment encodes a protein having phosphoenolpyruvate synthase activity, the JM109 strain and the JM109 strain retaining pH pps 4 pps were used. Was measured by the method described in Methods in Enzymol., 13, 309 (1969). As a result, the JM109 strain having pHC of 4 pps showed about 15 times the phosphoenolylrubic acid synthase activity of the JM109 strain not having pHC of 4 pps. Was confirmed to be expressed.
< 2 >コリネ型細菌の L一グル夕ミン酸生産株への pH C 4 p p sの導入と L— グル夕ミン酸生産 ブレビパクテリゥム ·ラクトフアーメンタム AJ13029を電気パルス法 (特開平 2 -207791号公報参照) によりプラスミ ド p H C 4 p p sで形質転換し、 得られた 形質転換株を得た。 得られた形質転換株 AJ13029/pHC4ppsを用いて L—グル夕ミ ン酸生産のための培養を以下のように行った。 5 g/mlのクロラムフエ二コール を含む C M 2 Bプレート培地にて培養して得た AJ13029/pHC4pps株の菌体を、 5 g/mlのクロラムフヱニコ一ルを含む下記組成を有する L—グル夕ミン酸生産培地 に接種し、 31 .5°Cにて振とう培養し、 培地中の糖が消費されるまで振とう培養し た。 得られた培養物を、 同じ組成の培地に 5 %量接種し、 37°Cにて培地中の糖が 消費されるまで振とう培養した。 コントロールとしてコリネパクテリゥム属細菌 AJ13029株を、 既に取得されているコリネバクテリゥム属細菌で自律複製可能な プラスミ ド p H C 4で電気パルス法により形質転換した菌株を上記と同様にして 培養した。 <2> Introduction of pH C 4 pps into L-glucamic acid-producing strain of coryneform bacterium and L-glucamic acid production Brevipacterium lactofermentum AJ13029 was transformed with plasmid pHC 4 pps by the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791) to obtain the resulting transformant. Using the obtained transformant AJ13029 / pHC4pps, cultivation for producing L-glucaminic acid was performed as follows. Cells of the AJ13029 / pHC4pps strain obtained by culturing in a CM2B plate medium containing 5 g / ml chloramphenicol were mixed with L-gluminamine having the following composition containing 5 g / ml chloramphenicol. An acid production medium was inoculated, shake-cultured at 31.5 ° C, and shake-cultured until the sugar in the medium was consumed. The obtained culture was inoculated into a medium having the same composition in an amount of 5%, and cultured at 37 ° C with shaking until the sugar in the medium was consumed. As a control, a corynebacterium bacterium AJ13029 strain was cultured in the same manner as described above, and a strain transformed with an already obtained corynebacterium bacterium autonomously replicating plasmid pHC4 by the electric pulse method was cultured as described above. .
〔L一グルタミン酸生産培地〕  (L-glutamic acid production medium)
下記成分 ( 1 L中) を溶解し、 K0Hで ρΗ8 · 0に調製し、 115°Cで 15分殺菌する。 グルコース 150 g  Dissolve the following ingredients (in 1 L), adjust to ρΗ80 with K0H, and sterilize at 115 ° C for 15 minutes. Glucose 150 g
Figure imgf000015_0001
Figure imgf000015_0001
大豆蛋白加水分解液 50 ml  Soy protein hydrolyzate 50 ml
ピオチン 2 mg  Piotin 2 mg
サイアミン塩酸塩 3 mg  Thiamine hydrochloride 3 mg
培養終了後、 培養液中の L—グル夕ミン酸蓄積量を旭化成工業社製バイオテツ クアナライザー A S— 2 1 0により測定した。 このときの結果を表 1に示す。 菌 株 L一グル夕ミン酸生成量 (g/L) After completion of the culture, the accumulated amount of L-glucamic acid in the culture solution was measured with a biotech analyzer AS-210 manufactured by Asahi Kasei Corporation. Table 1 shows the results. Bacterial L-glutamic acid production (g / L)
AJ13029/pHC4 2 0. 1 AJ13029 / pHC4 2 0.1
AJ13029/pHC4pps 2 3. 5  AJ13029 / pHC4pps 23.5
く 3 >コリネ型細菌の Lーリジン生産株への pHC4ppsの導入と L一リジン生産 ブレビバクテリゥム 'ラク トフアーメンタム AJ11082(NRRL B- を電気パ ルス法 (特開平 2-207791号公報参照) によりプラスミ ド pHC4ppsで形質転換し、 形質転換株を得た。 得られた形質転換株 AJ11082/pHC4ppsを用いて L—リジン生 産のための培養を以下のように行った。 5〃g/mlのクロラムフエ二コールを含む CM 2 Bブレート培地にて培養して得た AJ11082/pHC4pps株の菌体を、 5 g/mlの クロラムフ: ϋニコ一ルを含む下記組成の Lーリジン生産培地に接種し、 31.5°Cに て培地中の糖が消費されるまで振とう培養した。 コントロールとしてコリネパク テリゥム属細菌 AJ11082株を、 既に取得されているコリネバクテリゥム属細菌で 自律複製可能なプラスミ ド pHC4で電気パルス法により形質転換した菌株を上記と 同様にして培養した。 3> Introduction of 4pps of pHC into L-lysine-producing strain of coryneform bacterium and L-lysine production Brevibacterium 'Lactofamentum AJ11082 (Electrical pulse method using NRRL B- (see JP-A-2-207791)) The resulting transformant AJ11082 / pHC4pps was used to culture L-lysine as follows: 5 μg / ml The AJ11082 / pHC4pps strain obtained by culturing in a CM2B plate medium containing chloramphenicol was inoculated into an L-lysine production medium having the following composition containing 5 g / ml chloramphenic acid: And cultured with shaking until the sugar in the medium was consumed at 31.5 ° C. As a control, Corynebacterium sp.AJ11082 was used as a control with a plasmid pHC4 that can replicate autonomously with already obtained Corynebacterium sp. Transformation by electric pulse method The transformed strain was cultured as described above.
〔L一リジン生産培地〕  (L-lysine production medium)
炭酸カルシウム以外の下記成分 ( 1 L中) を溶解し、 K0Hで PH8.0に調製し、 11 5°Cで 15分殺菌した後、 別に乾熱殺菌した炭酸カルシウムを 50 g加える。  Dissolve the following components (in 1 L) other than calcium carbonate, adjust to pH 8.0 with K0H, sterilize at 115 ° C for 15 minutes, and add 50 g of dry-heat sterilized calcium carbonate.
グルコース 100 g
Figure imgf000016_0001
100 g glucose
Figure imgf000016_0001
MgS〇4 · 7 H20 1 MgS〇4 7 H 2 0 1
ピオチン 500 PLも  Piotin 500 PL too
チアミン 2000 z  Thiamine 2000 z
F e S〇4 · 7 H20 0.01 g F e S_rei_4 · 7 H 2 0 0.01 g
MnS 04 · 7 H20 0.01 g ニコチンアミ ド 5 mg MnS 04 · 7 H 2 0 0.01 g Nicotinamide 5 mg
蛋白質加水分解物 (豆濃) 30 ml  Protein hydrolyzate (bean concentrate) 30 ml
炭酸カルシウム 50 g  50 g calcium carbonate
培養終了後、 培養液中の Lーリジン蓄積量を旭化成工業社製バイオテックアナ ライザ一 A S— 2 1 0により測定した。 このときの結果を表 2に示す。 表 2  After the completion of the culture, the amount of L-lysine accumulated in the culture solution was measured with a Biotech Analyzer AS 210 manufactured by Asahi Kasei Corporation. Table 2 shows the results. Table 2
-リジン生成量 (g/L ) -Lysine production (g / L)
AJ11082/pHC4 3 0 . 2 AJ11082 / pHC4 30.2
AJ11082/pHC4pps 3 3 . 5  AJ11082 / pHC4pps 33.5
く 4 >コリネ型細菌の L一リジン及び L—グル夕ミン酸生産株への pHC4ppsの導 入と Lーリジン及び L一グル夕ミン酸同時生産 Introduction of 4pps of pHC into L-lysine and L-glucamic acid producing strains of coryneform bacteria and simultaneous production of L-lysine and L-glucamic acid
ブレビバクテリゥム 'ラクトファーメンタム AJ12993を電気パルス法 (特開平 2 -207791号公報参照) によりプラスミ ド pHC4ppsで形質転換し、 得られた形質転換 株を得た。 得られた形質転換株 AJ12993/pHC4ppsを用いて L一リジン及び L—グ ル夕ミン酸生産のための培養を以下のように行った。 5〃g/mlのクロラムフエ二 コールを含む C M 2 Bプレート培地にて培養して得た AJ12993/pHC4pps株の菌体 を、 S g/mlのクロラムフエニコ一ルを含む前記 L—リジン生産培地に接種して 3 1.5°Cにて培養した。 培養を開始してから 1 2時間後に培養温度を 3 4 °Cにシフ トし、 培地中の糖が消費されるまで振とう培養した。 コントロールとしてコリネ パクテリゥム属細菌 AJ12993株を、 既に取得されているコリネバクテリゥム属細 菌で自律複製可能なプラスミ ド PHC4で電気パルス法により形質転換した菌株を上 記と同様にして培養した。  Brevibacterium lactofermentum AJ12993 was transformed with plasmid pHC4pps by the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791) to obtain the resulting transformant. Using the obtained transformant AJ12993 / pHC4pps, culture for producing L-lysine and L-glucamic acid was performed as follows. The AJ12993 / pHC4pps strain obtained by culturing on a CM2B plate medium containing 5 g / ml chloramphenicol was inoculated into the L-lysine production medium containing Sg / ml chloramphenicol. And cultured at 31.5 ° C. After 12 hours from the start of the culture, the culture temperature was shifted to 34 ° C, and the culture was performed with shaking until the sugar in the medium was consumed. As a control, a strain of Corynebacterium sp. AJ12993 was transformed by an electropulse method with a plasmid PHC4 capable of autonomous replication with a previously obtained Corynebacterium sp., And cultured in the same manner as described above.
培養終了後、 培養液中の L—リジン及び L一グル夕ミン酸蓄積量を旭化成工業 社製バイオテックアナライザ一 A S— 2 1 0により測定した。 このときの結果を 表 3に示す。 表 3 After completion of the culture, the accumulated amounts of L-lysine and L-glucamic acid in the culture solution were measured using a Biotech Analyzer AS-210 manufactured by Asahi Kasei Corporation. Table 3 shows the results. Table 3
¾i 株 L一リジン生成 l(g/L) Lーグルタミン酸生成量 (g/L) ¾i strain L-lysine production l (g / L) L-glutamic acid production (g / L)
AJ12993/pHC4 1 0. 2 1 9. 9 AJ12993 / pHC4 1 0.2 19.9
AJ12993/pHC4pps 1 2. 5 22. 3  AJ12993 / pHC4pps 1 2.5 22.3
産業上の利用の可能性 Industrial applicability
本発明により、 コリネ型細菌の L—リジン又は L一グル夕ミン酸等の L一アミ ノ酸の生産能を向上させることができる。 また、 L—リジン又は L—グルタミン 酸等の L一アミノ酸の効率のよい製造方法が提供される。  According to the present invention, the ability of coryneform bacteria to produce L-amino acid such as L-lysine or L-glutamic acid can be improved. Also, an efficient method for producing an L-amino acid such as L-lysine or L-glutamic acid is provided.

Claims

請求の範囲 The scope of the claims
1 . 細胞中のホスホエノ一ルビルビン酸シンターゼ活性が増強され、 かっ 一アミノ酸生産能を有するコリネ型細菌。  1. Coryneform bacterium having enhanced phosphoenorubyruvate synthase activity in cells and capable of producing amino acids.
2 . 前記 L—アミノ酸が、 L一リジン、 L—グルタミン酸、 Lースレオニン、 L—イソロイシンおよび L—セリンから選ばれる請求項 1記載のコリネ型細菌。  2. The coryneform bacterium according to claim 1, wherein the L-amino acid is selected from L-lysine, L-glutamic acid, L-threonine, L-isoleucine and L-serine.
3 . 前記ホスホエノールビルビン酸シンターゼ活性の増強が、 前記細菌細胞 内のホスホエノ一ルビルビン酸シン夕一ゼをコ一ドする遺伝子のコビー数を高め ることによるものである請求項 1記載のコリネ型細菌。  3. The coryneform according to claim 1, wherein the enhancement of phosphoenolpyruvate synthase activity is due to an increase in the number of coby genes encoding a phosphoenolpyruvate synthase in the bacterial cell. Bacteria.
4 . 前記ホスホエノールビルビン酸シンターゼをコ一ドする遺伝子がェシェ リヒア属細菌由来である請求項 3記載のコリネ型細菌。  4. The coryneform bacterium according to claim 3, wherein the gene encoding phosphoenolpyruvate synthase is derived from a bacterium belonging to the genus Escherichia.
.  .
5 . 請求項 1〜4のいずれか一項に記載のコリネ型細菌を培地に培養し、 該 培養物中に L—アミノ酸を生成蓄積せしめ、 該培養物から L—アミノ酸を採取す ることを特徴とする L—アミノ酸の製造法。 5. culturing the coryneform bacterium according to any one of claims 1 to 4 in a medium, producing and accumulating L-amino acids in the culture, and collecting the L-amino acid from the culture. Characteristic method for producing L-amino acids.
6 . 前記 L—アミノ酸が、 L—リジン、 L—グルタミン酸、 L—スレオニン、 L一イソロイシンおよび Lーセリンから選ばれる請求項 5記載の方法。  6. The method according to claim 5, wherein said L-amino acid is selected from L-lysine, L-glutamic acid, L-threonine, L-isoleucine and L-serine.
PCT/JP2000/001655 1999-03-19 2000-03-17 Process for producing l-amino acid WO2000056859A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU31943/00A AU3194300A (en) 1999-03-19 2000-03-17 Process for producing l-amino acid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/76380 1999-03-19
JP7638099 1999-03-19
JP22492999 1999-08-09
JP11/224929 1999-08-09

Publications (1)

Publication Number Publication Date
WO2000056859A1 true WO2000056859A1 (en) 2000-09-28

Family

ID=26417523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001655 WO2000056859A1 (en) 1999-03-19 2000-03-17 Process for producing l-amino acid

Country Status (2)

Country Link
AU (1) AU3194300A (en)
WO (1) WO2000056859A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119688A (en) * 1986-11-07 1988-05-24 Kyowa Hakko Kogyo Co Ltd Production of l-glutamic acid and l-proline
JPS63214189A (en) * 1987-03-04 1988-09-06 Asahi Chem Ind Co Ltd Novel glutamic acid-producing coryneform bacteria and production of l-glutamic acid using said bacteria
EP0841395A1 (en) * 1995-06-07 1998-05-13 Ajinomoto Co., Inc. Process for producing l-lysine
EP0857784A2 (en) * 1996-12-05 1998-08-12 Ajinomoto Co., Inc. Method for producing L-lysine
EP0877090A1 (en) * 1995-08-30 1998-11-11 Ajinomoto Co., Inc. Process for producing l-amino acids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119688A (en) * 1986-11-07 1988-05-24 Kyowa Hakko Kogyo Co Ltd Production of l-glutamic acid and l-proline
JPS63214189A (en) * 1987-03-04 1988-09-06 Asahi Chem Ind Co Ltd Novel glutamic acid-producing coryneform bacteria and production of l-glutamic acid using said bacteria
EP0841395A1 (en) * 1995-06-07 1998-05-13 Ajinomoto Co., Inc. Process for producing l-lysine
EP0877090A1 (en) * 1995-08-30 1998-11-11 Ajinomoto Co., Inc. Process for producing l-amino acids
EP0857784A2 (en) * 1996-12-05 1998-08-12 Ajinomoto Co., Inc. Method for producing L-lysine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIERSBACH, M. ET. AL.: "Cloning and nucleotide sequence of the Escherichia coli K-12 ppsA gene, encoding PEP synthase.", MOLECULAR & GENERAL GENETICS, vol. 231, no. 2, January 1992 (1992-01-01), pages 332 - 336, XP002928861 *

Also Published As

Publication number Publication date
AU3194300A (en) 2000-10-09

Similar Documents

Publication Publication Date Title
US7846698B2 (en) Method of producing L-lysine
JP4035855B2 (en) Method for producing L-lysine
JP4075087B2 (en) Method for producing L-lysine
US8628941B2 (en) L-amino acid-producing bacterium and a method for producing L-amino acid
EP1010755B1 (en) Method for producing L-Glutamic acid by fermentation
EP0854189A2 (en) Method for producing L-lysine
JP4306169B2 (en) L-amino acid production method and novel gene
WO2001002542A1 (en) Process for producing l-amino acid
WO2001002545A1 (en) Process for producing l-amino acid
WO2000056858A1 (en) Process for producing l-lysine
JP3965821B2 (en) Method for producing L-lysine
WO2001002543A1 (en) Process for producing l-amino acid
WO2001002546A1 (en) Process for producing l-amino acid
EP1195431A1 (en) Process for producing l-lysine
WO2001002544A1 (en) Process for producing l-amino acid
WO2000056859A1 (en) Process for producing l-amino acid
JP2003169674A (en) Method for producing l-lysine
WO2001005960A1 (en) Process for producing l-amino acid
JP2000232890A (en) Production of l-glutamic acid through fermentation process
WO2001005979A1 (en) Process for producing target substance by fermentation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BG BR CA CN CR CU CZ DM DZ EE GD GE HR HU ID IL IN IS JP KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP