WO2000056858A1 - Process for producing l-lysine - Google Patents

Process for producing l-lysine Download PDF

Info

Publication number
WO2000056858A1
WO2000056858A1 PCT/JP2000/001654 JP0001654W WO0056858A1 WO 2000056858 A1 WO2000056858 A1 WO 2000056858A1 JP 0001654 W JP0001654 W JP 0001654W WO 0056858 A1 WO0056858 A1 WO 0056858A1
Authority
WO
WIPO (PCT)
Prior art keywords
lysine
gene
activity
dna
coryneform bacterium
Prior art date
Application number
PCT/JP2000/001654
Other languages
French (fr)
Japanese (ja)
Inventor
Masakazu Sugimoto
Hisao Ito
Osamu Kurahashi
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to AU31942/00A priority Critical patent/AU3194200A/en
Publication of WO2000056858A1 publication Critical patent/WO2000056858A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine

Definitions

  • the present invention relates to a method for producing L-lysine by a fermentation method.
  • L-Lysine is widely used as a feed additive.
  • L-lysine has been industrially produced by a fermentation method using a coryneform bacterium which is capable of producing L-lysine and which succumbs to the genus Brevipacterium and Corynebacterium.
  • coryneform bacteria strains isolated from the natural world or artificial mutants of the strains are used in order to improve productivity.
  • An object of the present invention is to provide a method for producing L-lysine by a fermentation method which has been further improved than before, and a microorganism used therefor.
  • the present inventors conducted intensive studies in order to solve the above-mentioned problems, and introduced a gene encoding diaminopimelate epimerase (hereinafter, also referred to as “dapF”) into a coryneform bacterium having an ability to produce L-lysine.
  • dapF diaminopimelate epimerase
  • the present invention is as follows.
  • a coryneform bacterium having enhanced diaminopimelate evimelase activity in cells and L-lysine producing ability (1) A coryneform bacterium having enhanced diaminopimelate evimelase activity in cells and L-lysine producing ability.
  • FIG. 1 is a diagram showing the process of gross construction of plasmid P299LYSA, which shows lysA.
  • FIG. 2 is a diagram showing a process of constructing a plasmid pCAB having mutant lysC, dapA, dapB and Brevi._ori.
  • FIG. 3 is a view showing a process of constructing a plasmid pC ABL having mutant lysC, dapA, dapB, lysA and Brevi.-ori. BEST MODE FOR CARRYING OUT THE INVENTION
  • the coryneform bacterium of the present invention is a coryneform bacterium having L-lysine-producing ability and having enhanced diaminobimelinate epimerase activity in cells.
  • the coryneform bacteria referred to in the present invention include a group defined in Bergey's Manual of Determinative Bacteriology, 8th edition, p. 599 (1974).
  • Corynebacterium salmonaminogenes AJ12340 (FERM BP-1539) These can be obtained from, for example, American Type Calcia Collection. That is, a registration number corresponding to each microorganism is assigned, and the microorganism can be ordered by referring to this registration number. The registration number corresponding to each microorganism is listed in the Amerikan 'Type, Culture, and Collection Power Logs. AJ12340 strain has been deposited with the Ministry of International Trade and Industry of the National Institute of Advanced Industrial Science and Technology under the Budapest Treaty.
  • mutants having L-lysine-producing ability derived from these strains can also be used in the present invention.
  • Such artificial mutants include the following. S- (2-aminoethyl) one-cysteine (hereinafter abbreviated as "AEC”) resistant mutant (brevipacterium lactophormentamentum AJ11082 (NRR LB-11470), if it is cold, Japanese Patent Publication No.
  • JP-B-56-1915 JP-B-57-14157, JP-B-57-14158, JP-B-57-30474, JP-B-58-10075, JP-B-59-4993 Bow, JP-B-61-35840, (See Japanese Patent Publication No. 62-24074, Japanese Patent Publication No. 62-36673, Japanese Patent Publication No. 5-11958, Japanese Patent Publication No. 7-112437, and Japanese Patent Publication No. 7-112438), and their growth requires amino acids such as L-homoserine.
  • L-lysine-producing mutants that are resistant to M (decarboxylase) or respiratory system mM '' m Japanese Patent Publication No. 50-53588, Japanese Patent Application No. 50-31093, Japanese Patent Application No. 52-102498, Japanese Patent Application Laid-Open No. 53-9394) No.53-86089, No.55-9783, No.55-9759, No.56-32995, No.56-39778, No.56-39778, No.53-43591-, No.53-1833 , Lysine-producing mutants that require inositol or acetic acid (JP-A-55-9784, JP-A-56-86) No.
  • L-lysine-producing mutants that are sensitive to fluoropyruvate or a temperature of 34 ° C. or higher (JP-A-55-9783 and JP-A-53-86090), exhibit resistance to ethylene glycol, Brevibacterium flexi or Corynebacterium II mutant producing L-lysine (US Patent No. 4411997)
  • L-lysine-producing ability refers to the ability of a coryneform bacterium to accumulate a significant amount of L-lysine in a medium when cultured in the medium, or the L-lysine in the cells. The ability to increase content.
  • a gene fragment encoding diaminopimelate epimerase is ligated to a vector that functions in the bacterium, preferably a multicopy vector, to produce recombinant DNA. It may be transformed into a coryneform bacterium having the ability to produce L-lysine and transformed. As a result of an increase in the copy number of the gene encoding diaminopimelate epimerase in the cells of the transformed strain, diaminopimelate epimerase activity is enhanced.
  • a gene encoding diaminopimelate epimelase a gene of a coryneform bacterium or a gene derived from another organism such as a bacterium belonging to the genus Escherichia can be used.
  • the nucleotide sequence of the gene encoding the diaminopimelate epimerase of Escherichia coli has already been elucidated (Nucleic Acid Research, 16 (21), 10367 (1988)). What primers have been created, for example, an array of arrays? ! No. 1 and 2, PCR method using Escherichia coli color chromosome DNA as type III (PCR: polymerase chain reaction; White, TJ et al; Trends Genet. 5, 185 (1989)) See) to get the dapF ⁇ gene.
  • Genes encoding diaminopimelate epimelase of other microorganisms such as corynebacteria can be obtained in a similar manner.
  • DNA from bacteria that are DNA donors can be obtained from the DNA donor bacteria by the method of H. Saito and K. Miura, Biochem. Biophys. Acta, 72, 619 (1963). Science Experiment Book, edited by the Biotechnology Society of Japan, 97-98] 3, Baifukan, 1992) Can be prepared.
  • the dapF ⁇ gene amplified by the PCR method is connected to vector DNA capable of autonomous replication in the cells of Escherichia coli and / or coryneform bacteria to prepare recombinant DNA, which is then added to Escherichia coli. If introduced into cells, subsequent operations will be difficult.
  • a vector capable of autonomous replication in Escherichia coli cells a plasmid vector is preferable, and a vector capable of autonomous replication in a host cell is preferable.
  • the vector one autonomously replicable in cells of coryneform bacteria (see Japanese Patent Laid HirakiAkira 58-67699) PAM330, P HM1519 (see JP-A-58- 77895) and the like et be.
  • a DNA fragment having the ability to autonomously replicate plasmid in coryneform bacteria is extracted from these vectors, and inserted into the above-mentioned vector for Escherichia coli. It can be used as a so-called shuttle vector that cannot be replicated autonomously by both.
  • Such shuttle vectors include the following.
  • the accession number of the international depositary organization for the microorganisms carrying the respective vectors is shown in parentheses.
  • vectors are obtained from the deposited microorganism as follows.
  • the cells collected during the logarithmic growth phase are washed with lysozyme and SDS; centrifuged at 300,000 X g; polyethylene glycol is added to the supernatant obtained from the lysate; Separate and purify by mouth-mould equilibrium density gradient centrifugation.
  • Recombinant DNA by prescribing diaminobimelinate epimerase gene and vector
  • Transformation of a coryneform bacterium can also be performed by the air pulse method (Sugimoto et al., JP-A-2-207791).
  • Enhancement of diaminobimelinate epimerase activity can also be achieved by allowing the dapF gene to be present in multiple copies on the chromosomal DNA of the above host.
  • homologous recombination is performed using a sequence present on the chromosomal DNA in multiple copies as a target.
  • a sequence present in multiple copies on the chromosome DNA a repetitive DNA and an inverted repeat present at the end of a transposable element can be used.
  • Enhancement of diaminobimelinate epimerase activity is not due to the width of the gene Alternatively, it can be achieved by replacing the expression control sequence such as the promoter of the dapF gene on chromosomal DNA or plasmid with a strong one (see Japanese Patent Application Laid-Open No. 1-215280).
  • a strong one see Japanese Patent Application Laid-Open No. 1-215280.
  • lac promoter one trp promoter Isseki one, trc promoter one evening one, tac promoter, [rho kappa promoter of lambda phage, the P L promoter evening, First known as a powerful promoter Isseki scratch.
  • the substitution of these promoters all at once enhances the expression of the dapF gene, thereby enhancing the activity of diaminopimelate epimelase. Modification of the expression control sequence may be combined with increasing the copy number of the dapF gene.
  • the coryneform bacterium of the present invention may have enhanced activity of other L-lysine biosynthetic pathways or glycolytic enzymes in addition to diaminopimelate epimerase activity.
  • Examples of such an enzyme and a gene encoding the enzyme include an aspartokinase-substituted protein and / or a subunit protein from which synergistic feedback inhibition by L-lysine and L-threonine has been released. (W094 / 2 5605 international publication pamphlet), wild-type phosphoenolpyruvyl carboxylase derived from coryneform bacterium (Japanese Patent Application Laid-Open No.
  • coryneform bacterium there are known a gene encoding a wild type dihydrodipicolinate synthase (Japanese Patent Publication No. 6-55149), a dihydrodipicolinate reductase gene (Japanese Patent Application Laid-Open No. 7-75578), and the like. Enhancement of these enzyme activities can be carried out in the same manner as enhancement of the activity of diaminobimelinate epimelase.
  • the coryneform bacterium which has been strongly enhanced includes a gene encoding aspartokinase, which is free from the L-lysine and L-threonine-induced feedback damage.
  • Mutant lysC dihydrodipicolinate reductase gene (dapB), dihydrodipicolinate synthase gene (dapA), diaminonopimelate decarboxylase gene (lysA), and diaminopimelate dehydrogenase Zes gene (ddh) (W096 / 40934), LysA and DDH (Japanese Patent Publication No.
  • LysC LysA and phosphoenorubyruvate carboxylase gene (ppc) (Kaihei 10-165180), mutant lysC, dapB, dapA, lysA and aspartate aminotransferase gene (aspC) (Japanese Patent Application Laid-Open No. 10-215883). It is shown.
  • Brevipacterium strain AJ12691 a strain in which the plasmid p399AK9B containing the mutant lysC was introduced into the AJ12036 strain (FERM BP-734), which is a wild type strain of Lactofamentum, was traded on April 10, 1992.
  • the transformed AJ13107 strain obtained by introducing the plasmid pCRDAPB containing dapB into the Escherichia coli JM109 strain has been used since May 26, 1995 by the Institute of Life Science and Industrial Technology, the Ministry of International Trade and Industry of the Ministry of International Trade and Industry of the Ministry of International Trade and Industry. (Postal code 305-8566, 1-3-1 Tsukuba, Ibaraki, Japan) with accession number FERM ⁇ -5 ⁇ 4, deposited internationally under the Budapest Treaty.
  • the transformed AJ13106 strain obtained by introducing the plasmid pCRDAPA containing dapA into the Escherichia coli JM109 strain has been used since May 26, 1995 by the Institute of Life Science and Industrial Technology, the Ministry of Economy, Trade and Industry of the Ministry of International Trade and Industry, Japan. It has been deposited internationally under the Budapest Treaty under the postal code 305-8566, under the accession number ⁇ FERM BP-5113 13 in Tsukuba, Ibaraki Prefecture, Japan.
  • lysA is a primer obtained from a chromosomal DNA of a coryneform bacterium, for example, Brevipacterium 'Lactofamentum wild ATCC13869 strain, having an oligonucleotide having the nucleotide sequence of SEQ ID NO: 3 or 4 in the sequence listing.
  • the DNA fragment can be obtained as a DNA fragment containing argS and lysA encoding arginyl-tRNA synthase and a promoter of an operon containing these.
  • L-lysine synthesis enzyme gene and dapF ⁇ gene may be carried on one vector and may be carried on two or more vectors separately.
  • the coryneform bacterium of the present invention diverges from the L-lysine biosynthesis pathway to produce L-lysine.
  • the activity of an enzyme that catalyzes a reaction for producing a compound other than gin may be reduced or lacking.
  • Homoserine dehydrogenase is an enzyme that catalyzes a reaction that produces a compound other than L-lysine by branching off from the L-lysine biosynthetic pathway (see WO95 / 23864).
  • “enhanced activity” of an enzyme generally means that the enzyme activity in a cell is higher than that of a wild-type strain. When a strain whose enzyme activity is enhanced by the modification is obtained, it means that the enzyme activity in the cell is higher than that of the strain before the modification.
  • reduced activity usually means that the enzyme activity in a cell is lower than that of a wild-type strain, and the enzyme activity has been reduced by modification by genetic recombination technology or the like. When a strain is obtained, it means that the enzyme activity in the cell is lower than that of the strain before modification.
  • the medium used for producing L-lysine using the microorganism of the present invention is an ordinary medium containing a carbon source, a nitrogen source, inorganic ions, and if necessary, other organic micronutrients.
  • Carbon sources include carbohydrates such as glucose, lactose, galactose, fructos, sucrose, molasses, starch hydrolysates, alcohols such as ethanol and inositol, acetic acid, fumaric acid, and citric acid.
  • organic acids such as succinic acid.
  • Nitrogen sources include ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium phosphate, ammonium acetate, and other inorganic ammonium salts, ammonia, peptone, meat extract, yeast extract, yeast extract, corn 'stip' liquor, soybean hydrolysis Organic nitrogen, ammonia gas, aqueous ammonia, etc., can be used.
  • potassium phosphate potassium phosphate, magnesium sulfate, iron ions, manganese ions, etc. are added in small amounts. It is preferable to add the required ingredients such as vitamins and / or the extract as necessary as a special ingredient II.
  • Cultivation is performed under aerobic conditions such as shaking culture and aeration and stirring culture under cows for 16 to 72 hours.
  • the culture temperature is controlled at 30 ° C; ⁇ 45, and the pH is controlled at 5 ⁇ 9 during the culture.
  • an inorganic or organic acidic or alkaline substance, ammonia gas or the like can be used.
  • the collection of L-lysine from the fermentation broth can usually be carried out by a combination of an ion exchange resin method, a precipitation method and other known methods.
  • the primers shown in SEQ ID NOs: 1 and 2 were prepared, and the chromosomal DNA of the Escherichia coli JM109 strain was prepared.
  • PCR was performed using the DNA as a type II to obtain a dapF gene fragment.
  • the DNA was synthesized using a DNA synthesizer model 380B manufactured by Applied Biosystems, using the phosphoramidite method (see Tetrahedron Letters (1981), 22, 1859) according to a conventional method.
  • the PCR reaction was carried out using a DNA thermal cycler model PJ2000 manufactured by Takara Shuzo Co., Ltd., using Taq DNA polymerase according to the method specified by the supplier.
  • the DNA fragment was connected to a shuttle vector pVK7 (see JP-A-10-215883).
  • the amplified fragment was ligated with pVK7, which had been digested with BamHI, treated with T4 polymerase and blunt-ended.
  • the DNA connection was performed by ffling a DNA reige kit (Takara Shuzo Co., Ltd.).
  • the constructed plasmid was named pVKdapF.
  • pVKdapF retains the kanamycin resistance gene as a marker.
  • pVK7 was introduced into PHSG299 (Km '; Takeshita, S. et al., Gene, 61. 63-74, (1987)), a vector for Escherichia coli, as follows. It was constructed by linking pAM330, Mentum's cryptoplasmid. PAM330 was prepared from Blepino teratium lactofermentum ATCC13869 strain. Avail (Takara Shuzo Co., Ltd.) And then blunt-ended with T4 DNA polymerase, then cut with Hindlll (Takara Shuzo Co., Ltd.), and connected to PAM330 blunt-ended with T4 DNA polymerase. .
  • pVK6 The two kinds of generated plasmids were named pVK6 and pVK7 according to the insertion direction of pAM330 into pHSG299.
  • pVK7 is capable of autonomous replication in cells of E. coli and Brevipacterium 'Lactofamentum, and has a multiple cloning site derived from pHSG299 and lacZ'.
  • Chromosomal DNA was prepared from Brevibacterium 'lactofermentum wild strain ATCC13869 according to a conventional method. From the chromosomal DNA, a DNA fragment containing argS, lysA and the promoter of the operon containing them was amplified by PCR.
  • DNA primers used for amplification include sequences known from Corynebacterium gullica micam (Molecular Microbiology 4 (11), 1819-1830 (1990), Molecular and General Genetics 212, 112-119 (1988)) to amplify a region of about 3.6 kb encoding arginyl-tRNA synthase and diaminopimelic acid decarboxylase, each having the nucleotide sequence of SEQ ID NO: 3 or 4 in the sequence listing. 23mer synthetic DNA was used. The DNA was synthesized by a phosphoramidite method using a DNA synthesizer model 380B manufactured by Applied Biosystems (see Tetrahedron Letters (1981), 22, 1859) according to a conventional method.
  • PCR reaction was performed using a DNA thermal cycler PJ2000 manufactured by Takara Shuzo Co., Ltd., using Taq DNA polymerase according to the method specified by the supplier.
  • PHSG399 was used as a vector for cloning the amplified 3579 bp gene fragment.
  • pHSG399 was digested with restriction enzyme Smal (Takara Shuzo Co., Ltd.) and ligated with the amplified DNA fragment containing lysA.
  • the plasmid having lysA derived from ATCC13869 thus obtained was named p399LYSA.
  • lysA-containing DNA fragment was extracted by cutting p399LYSA with Kpnl (manufactured by Shushou Co., Ltd.) and BamHI (manufactured by Shuzo Co., Ltd.). This DNA fragment was ligated with a fragment obtained by cutting pHSG299 with Kpnl and BamHI.
  • the resulting plasmid was named p299LYSA.
  • Figure 1 shows the process of construction of p299LYSA.
  • W096 / 40934 International publication pamphlet Brevibacterium 'plasmid containing dapA derived from lactofamentum pCRDAPA is digested with Kpnl and EcoRI, a DNA fragment containing dapA is extracted, and vector plasmid pHSG399 is extracted. Was cut with Kpnl and EcoRI. The obtained plasmid was designated as P399DPS.
  • p399D PS was digested with EcoRI and Sphl and blunt-ended, and then a dapA fragment was extracted.
  • This fragment was ligated with blunt-ended plasmid p399AK9 containing mutant lysC derived from Brevipacterium lactofermen described in W096 / 40934 International Publication, which was cut with Sail and blunt-ended.
  • a plasmid P399CA in which mutant lysC and dapA coexist was constructed.
  • the above plasmid pCRDAPA can be prepared from Escherichia coli AJ13106 (FERM BP-5113) by a conventional method.
  • P399AK9 cuts p399AK9B with BamHI, cuts out a DNA fragment capable of autonomously replicating plasmid in coryneform bacteria (hereinafter referred to as “Brevi.-ori”), and performs self-ligation. In some cases, it can be obtained.
  • P399AK9B can be prepared from Escherichia coli AJ12691 (FERM BP-4999) by a conventional method.
  • the plasmid pCRDAPB having the dapB from Brevipacterium / Lactofamen described in W096 / 40934 International Publications was cut with EcoRI, blunt-ended, and cut with SacI.
  • a 2.0 kb DNA fragment containing dapB was extracted.
  • Plasmid p399CA containing dap A and mutant lysC is cut with Spel, blunt-ended, cut with Sacl, and connected to the extracted dapB fragment to obtain a plasmid containing mutant lysC, dapA and dapB Was.
  • This plasmid was named P399CAB.
  • pCRDAPB can be prepared from Escherichia coli AJ13107 (FERM BP-5114) by a conventional method.
  • Brevi .-ori was introduced into p399CAB.
  • a plasmid pHK4 having Brevi. -ori derived from pHM1519 was cut with a restriction enzyme BamHI (manufactured by Shuzo (ft)), and the cut surface was blunt-ended.
  • BamHI manufactured by Shuzo (ft)
  • the blunt ends were prepared using the DNA Blunting kit (' ⁇ Shinzo Co., Ltd.) according to the designated method.
  • phosphorus? A modified Kpnl linker (Takara Shuzo Co., Ltd.) was connected, and modified from PHK4 so that the DNA fragment of the Brevi. -Ori portion was cut out only by cutting with Kpnl.
  • This plasmid was cut with Kpnl and the resulting Brevi.
  • the -ori DNA fragment was ligated to p399CAB also digested with Kpnl, and a plasmid capable of autonomous growth in coryneform bacteria and having mutant lysC, dapA and dapB was prepared, and named pCAB.
  • Figure 2 shows the process of pCAB construction.
  • Plasmid P299LYSA containing lysA was cut with Kpnl and BamHI, blunt-ended, and then a lysA fragment was extracted. This fragment was ligated with pCAB cut with Hpal (manufactured by Takara Shuzo Co., Ltd.) and blunt-ended.
  • the plasmid was capable of autonomous growth in coryneform bacteria and had mutant lysC, dapA, dapB, and lysA. And was named pCABL.
  • pCABL carries the chloramphenicol resistance gene as a marker.
  • Figure 3 shows the process of pCABL construction. In pCABL, the lysA fragment was inserted into the Hpal site in the DNA fragment containing dapB, but this Hpal site was located upstream from the dapB promoter, and dapB was fragmented. Absent.
  • AJ11082 (NRRL B-11470), which is a lactofarmentum L-lysine producing bacterium, was transformed to obtain AJ11802 / pCAB and AJ11802 / pCABL.
  • the AJ11082 strain has AEC resistance.
  • pVKdapF uses Brevibacterium • Both plasmids are stable in Brevibacterium 'lactofermentum cells because the pAM330-derived origin is used as the origin of replication in lactofermentum cells and the kanamycin resistance gene is used as a marker. Is held.
  • the diaminopimelinate epimeridase activity of AJ11082, AJ11082 / pCABL and AJ11082 / pCABL / pVKdapF was measured. Measurement of diaminopime phosphate epimerase activity White, PJ et al., Biochem. J .. 113, 589 (1969)).
  • the flask culture solution about 10 ml, after removing the 20-second centrifugation CAC0 3 at 1500 rpm, cells were harvested by centrifugation 6 min the supernatant with 3000 rpm.
  • the obtained cells were washed twice with 200 mM potassium phosphate buffer (pH 6.9) (P Buf fer), suspended in KP Buffer 300-1 and sonicated. After the crushed solution was centrifuged at 3000 rpm for 10 minutes, the supernatant was used as a crude enzyme solution, and the diaminobimellinate epimerase activity was measured. Table 1 shows the results. In the table, lysC * represents a mutant lysC gene. In addition, the diaminopime phosphate epimerase activity was shown as a relative value when the activity of AJ11082 was set to 1. Table 1. Strain / plasmid transgenes Merinjech. Melase, 'active
  • AJ11082, AJ11082 / pCAB, AJ11082 / pCABL, AJ11082 / pCAB / pVKdapF and AJ11082 / pCABL / pVKdapF were cultured in an L-lysine production medium, and the L-lysine production ability was evaluated.
  • the composition of the L-lysine production medium is as shown below.
  • Protein hydrolyzate (bean concentrate) 30 ml
  • the ability of coryneform bacteria to produce L-lysine can be improved, and a method for producing L-lysine with high efficiency can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

L-Lysine productivity is enhanced by transferring a gene encoding diaminopimelic acid epimerase into a coryneform bacterium capable of producing L-Lysine so as to strengthen the diaminopimelic acid epimerase activity in the cells.

Description

叨細書  Shiran
L—リジンの製造法 技術分野  L-Lysine production method
本発明は、 発酵法による L一リジンの製造法の製造法に関する。 L—リジンは 飼料添加物等として広く用いられている。 背景技術  The present invention relates to a method for producing L-lysine by a fermentation method. L-Lysine is widely used as a feed additive. Background art
従来、 L—リジンは、 L一リジン生産能を有するブレビパクテリゥム属ゃコリ ネバクテリゥム属に屈するコリネ型細菌を用いて発酵法により工業生産されてい る。 これらのコリネ型細菌としては、 生産性を向上させるために、 自然界から分 離した菌株または該菌株の人工変異株が用いられている。  Heretofore, L-lysine has been industrially produced by a fermentation method using a coryneform bacterium which is capable of producing L-lysine and which succumbs to the genus Brevipacterium and Corynebacterium. As these coryneform bacteria, strains isolated from the natural world or artificial mutants of the strains are used in order to improve productivity.
また、 組換え D N A技術により L—リジンの生合成酵素の活性を増強すること によって、 L—リジンの生産能を増加させる種々の技術が開示されている。 例え ば、 L—リジン生産能を有するコリネ型細菌において、 L—リジン及び Lースレ ォニンによるフィードバック ffi害が解除されたァスパル卜キナーゼをコ一ドする 遺伝子 (変異型 lysC) 、 ジヒ ドロジピコリン酸レダク夕一ゼ遺伝子 (dapB ) 、 ジ ヒ ドロジピコリン酸シンタ一ゼ遺伝子 (dapA) 、 ジアミノビメ リン酸デカルボキ シラーゼ遺伝子 (lysA) 造伝子、 及びジァミノピメ リン酸デヒ ドロゲナ一ゼ遺伝 子 (ddh) (W096/40934) 、 LysA及び DDH (特開平 9一 322774号) 、 LysCヽ LysA及 びホスホエノ一ルビルビン酸カルボキシラーゼ遺伝子 (ppC ) (特開平 10- 165180 号) 、 変異型 lysC、 dapB、 dapA、 lysA及びァスパラギン酸ァミノ トランスフェラ ーゼ遺伝子 (aspC) (特 |¾ 10- 215883号) を導入することにより、 同細菌の L 一リジン生産能が向上することが知られている。 In addition, various techniques for increasing L-lysine producing ability by enhancing the activity of L-lysine biosynthetic enzymes by recombinant DNA technology have been disclosed. For example, in a coryneform bacterium capable of producing L-lysine, a gene (mutant lysC) encoding aspartokinase that has been freed of feedback efficiency by L-lysine and L-threonine; Yuichize gene (dapB), dihydroxypicolinate synthase gene (dapA), diaminobimephosphate decarboxylase gene (lysA) gene, and diaminopimephosphate dehydrogenase gene (ddh) (W096) / 40934), lysA and DDH (JP-A 9, item three hundred twenty-two thousand seven hundred and seventy-four), lysCヽlysA及beauty Hosuhoeno one Rubirubin carboxylase gene (pp C) (JP-A-10- 165180), mutant lysC, dapB, dapA, lysA and Introduction of the aspartate aminotransferase gene (aspC) (Japanese Patent Publication No. 10-215883) may improve the L-lysine production ability of the bacterium. Are known.
また、 ェシエリヒア厲細 {1においては、 daPA、 変 5 型 lys dapB、 ジアミノビ メリン酸デヒ ドロゲナ一ゼ造伝子 (ddh) (乂はテ トラヒ ドロジピコリ ン酸スク シニラーゼ遗伝子 ( dapD) 及びスクシ二ルジアミノピメ リン酸デアシラーゼ遺伝 子 (dapE) ) を顺次 γί強すると L一リジン .; 能が ] ヒすることが知られている (W0 95/16042) 。 ι ')、 W0 95/16042ではテ トラヒ ドロジピコリン酸スクシニラ一 ゼがスクシ二ルジァミノピメリン酸トランスアミナーゼと, 記されている。 しかし、 コリネ型細菌ではジァミノピメリン酸ェピメラーゼをコードする遺伝 子は知られておらず、 同酵素の活性と微生物における L—リジンの生産能との関 係も知られていない。 発明の開示 In the Eshierihia厲細{1, da P A, varying type 5 lys dapB, Jiaminobi Mellin acid de arsenide Dorogena Ichize Zodenko (ddh) (say yes Te Torahi Dorojipikori phosphate disk Shiniraze遗伝Ko (dapD) And succinyldiaminopimelate deacylase gene (dapE)) are known to increase L-lysine activity when secondary γ- enhancement is enhanced (W095 / 16042). ι '), succinyl tetrahidrodipicolinate in W0 95/16042 Ze is described as succinyl diaminopimelate transaminase. However, the gene encoding diaminopimelate epimerase is not known in coryneform bacteria, and the relationship between the activity of the enzyme and the ability of microorganisms to produce L-lysine is not known. Disclosure of the invention
本発明は、 従来よりもさらに改良された発酵法による L—リジンの製造法、 及 びそれに用いる微生物を提供することを課題とする。  An object of the present invention is to provide a method for producing L-lysine by a fermentation method which has been further improved than before, and a microorganism used therefor.
本発明者等は、 上記課題を解决するために鋭意検討を行い、 L一リジン生産能 を有するコリネ型細菌にジアミノピメ リン酸ェピメラーゼをコードする遺伝子 (以下、 「dapF」 ともいう) を導入したところ、 同細菌の L一リジン生産能が向 上することを見い出し、 本発明を完成するに至った。  The present inventors conducted intensive studies in order to solve the above-mentioned problems, and introduced a gene encoding diaminopimelate epimerase (hereinafter, also referred to as “dapF”) into a coryneform bacterium having an ability to produce L-lysine. However, they have found that the L-lysine producing ability of the bacterium is improved, and completed the present invention.
すなわち本発明は、 以下のとおりである。  That is, the present invention is as follows.
( 1 ) 細胞中のジァミノピメリン酸ェビメラ一ゼ活性が増強され、 かつ L—リジ ン生産能を有するコリネ型細菌。  (1) A coryneform bacterium having enhanced diaminopimelate evimelase activity in cells and L-lysine producing ability.
( 2 ) 前記ジアミノピメリン酸ェピメラーゼ活性の増強が、 前記細菌細胞内のジ アミノピメリン酸ェピメラ一ゼをコ一ドする遺伝子のコピ一数を高めることによ るものである ( 1 ) のコリネ型細菌。  (2) The coryneform bacterium according to (1), wherein the enhancement of diaminopimelate epimerase activity is due to an increase in the number of copies of a gene encoding diaminopimelate epimerase in the bacterial cells.
( 3 ) 前記ジァミノピメリン酸ェピメラーゼをコ一ドする遺伝子がコリネ型細菌 由来である ( 2 ) のコリネ型細菌。  (3) The coryneform bacterium according to (2), wherein the gene encoding diaminopimelate epimerase is derived from a coryneform bacterium.
( 4 ) さらに、 ァスノ レ 卜キナーゼ活性、 ジヒ ドロジピコリン酸レダク夕ーゼ活 性、 ジヒドロジピコリン酸シンターゼ活性、 及びジアミノビメリン酸デカルボキ シラーゼ活性の少なくとも一つが増強された ( 1 ) のコリネ型細菌。  (4) The coryneform bacterium according to (1), wherein at least one of the activity of aspartole kinase, dihydropicolinate reductase activity, dihydrodipicolinate synthase activity, and diaminobimelate decarboxylase activity is enhanced.
( 5 ) 前記 ( 1 ) 〜 (4 ) のいずれかに記戯のコリネ型細菌を培地に培養し、 該 培養物巾に L—リジンを生成蓄積せしめ、 該培 ¾物から L一リジンを採取するこ とを特徴とする Lーリジンの製造法。 図面の简 な説叫  (5) The coryneform bacterium described in any of (1) to (4) above is cultured in a medium, L-lysine is produced and accumulated in the width of the culture, and L-lysine is collected from the culture. A method for producing L-lysine. Screaming in the drawing
図 1は、 lysAを冇するプラスミ ド P299LYSAの溝築の過程を示す図。 図 2は、 変異型 lysC、 dapA、 dapB及び Brevi . _oriを有するプラスミ ド pCABの構 築の過程を示す図。 FIG. 1 is a diagram showing the process of gross construction of plasmid P299LYSA, which shows lysA. FIG. 2 is a diagram showing a process of constructing a plasmid pCAB having mutant lysC, dapA, dapB and Brevi._ori.
図 3は、 変異型 lysC、 dapA、 dapB、 lysA及び Brevi . - oriを有するプラスミ ド pC ABLの構築の過程を示す図。 発明を実施するための最良の形態  FIG. 3 is a view showing a process of constructing a plasmid pC ABL having mutant lysC, dapA, dapB, lysA and Brevi.-ori. BEST MODE FOR CARRYING OUT THE INVENTION
< 1 >本発明のコリネ型細菌 <1> Coryneform bacterium of the present invention
本発明のコリネ型細菌は、 L—リジン生産能を有し、 細胞中のジアミノビメリ ン酸ェピメラーゼ活性が増強されたコリネ型細菌である。  The coryneform bacterium of the present invention is a coryneform bacterium having L-lysine-producing ability and having enhanced diaminobimelinate epimerase activity in cells.
本発明でいうコリネ型細菌としては、 バージーズ ·マニュアル ·ォブ ·デ夕ー ミ不ィティフ 'ノ、'クテリォロン一 ( Bergey's Manual of Determinative Bacteriology) 第 8版 599頁 (1974) に定義されている一群の微生物であり、 好気 性, グラム陽性, 非抗酸性で、 胞子形成能を有しない桿菌であり、 従来ブレビバ クテリウム属に分類されていたが現在コリネバクテリゥム属細菌として統合され た細菌を含み (Int. J. Syst . Bacteriol . , 41, 255 ( 1981 ) ) 、 またコリネパク テリゥム属と非常に近縁なブレビバクテリゥム属細菌及びミクロパテリウム属細 菌を含む。 Lーリジンの製造に好適に用いられるコリネ型細菌の菌株としては、 例えば以下に示すものが举げられる。  The coryneform bacteria referred to in the present invention include a group defined in Bergey's Manual of Determinative Bacteriology, 8th edition, p. 599 (1974). A bacterium that is aerobic, Gram-positive, non-acid-fast, and has no sporulating ability. It is a bacterium that was previously classified as Brevibacterium, but is now integrated as Corynebacterium. Includes (Int. J. Syst. Bacteriol., 41, 255 (1981)) and also includes bacteria of the genus Brevibacterium and Micropaterium which are very closely related to the genus Corynebacterium. Examples of the strain of coryneform bacterium suitably used for the production of L-lysine include the following.
コリネバクテリウム ·ァセ卜ァシドフィルム ATCC13870  Corynebacterium acetate acetate film ATCC13870
コリネパクテリゥム ·ァセトグル夕ミクム ATCC15806  Corynepaterum Acetoglu evening Mikum ATCC15806
コリネバクテリウム ·カルナェ ATCC15991  Corynebacterium carnae ATCC15991
コリネバクテリゥム · グルタミクム ATCC13032  Corynebacterium glutamicum ATCC13032
(ブレビバクテリウム ·ディバリカタム) ATCC14020  (Brevibacterium divaricatum) ATCC14020
(ブレビバクテリゥム ·ラク トフアーメンタム) ATCC13869  (Brevibacterium lactofamentum) ATCC13869
(コリネパクテリゥム · リ リゥム) ATCC15990  (Corynepactium realm) ATCC15990
(ブレビバクテリウム · フラバム) ATCC14067  (Brevibacterium flavum) ATCC14067
コリネバクテリウム ·メラセコーラ ATCC17965  Corynebacterium meracecola ATCC17965
ブレビパクテリゥム ·サッカロリティクム ATCC14066  Brevi Pacterium Saccharolyticum ATCC14066
ブレビパクテリゥム ·インマリオフィルム ATCC14068 ブレビパクテリゥム · ロゼゥム ATCC13825 ブレビバクテリゥム ·チォゲ二夕リス ATCC19240 Brevi Pacterium Inmario Film ATCC14068 Brevibacterium rosem ATCC13825 Brevibacterium choge squirrel ATCC19240
ミクロバクテリゥム ' アンモニアフィラム ATCC15354  Microbacterium '' Ammonia Filum ATCC15354
コリネバクテリゥム ·サ一モアミノゲネス AJ12340(FERM BP- 1539) これらを入手するには、 例えばァメリカン · タイプ ·カルチヤ一 ·コレクショ ンより分譲を受けることができる。 すなわち、 各微生物ごとに対応する登録番号 が付与されており、 この登録番号を引用して分譲を受けることができる。 各微生 物に対応する登録番号はァメリカン ' タイプ ·カルチヤ一 ·コレクションの力夕 ログに記載されている。 また、 AJ12340株は、 通商産業省工業技術院生命工学ェ 業技術研究所にブダぺスト条約に基づいて寄託されている。  Corynebacterium salmonaminogenes AJ12340 (FERM BP-1539) These can be obtained from, for example, American Type Calcia Collection. That is, a registration number corresponding to each microorganism is assigned, and the microorganism can be ordered by referring to this registration number. The registration number corresponding to each microorganism is listed in the Amerikan 'Type, Culture, and Collection Power Logs. AJ12340 strain has been deposited with the Ministry of International Trade and Industry of the National Institute of Advanced Industrial Science and Technology under the Budapest Treaty.
また、 上記菌株以外にも、 これらの菌株から誘導された L一リジン生産能を有 する変異株等も、 本発明に利用できる。 この様な人工変異株としては次の様なも のがある。 S— ( 2—アミノエチル) 一システィン (以下、 「AEC」 と略記する) 耐性変異株 (冽えば、 ブレビパクテリゥム · ラクトフアーメンタム AJ11082 (NRR L B- 11470) 、 特公昭 56-1914号、 特公昭 56- 1915号、 特公昭 57- 14157号、 特公昭 5 7 - 14158号、 特公昭 57-30474号、 特公昭 58-10075号、 特公昭 59-4993弓 特公昭 61 -35840号、 特公昭 62- 24074号、 特公昭 62 - 36673号、 特公平 5-11958号、 特公平 7-1 12437号、 特公平 7- 112438号参照) 、 その成長に L—ホモセリン等のアミノ酸を 必要とする変異株 (特公昭 48-28078 、 特公昭 56- 6499号) 、 AECに耐性を示し、 更に L一口イシン、 L—ホモセリン、 L—プロリン、 L—セリン、 L—アルギニ ン、 L—ァラニン、 L—パリン等のアミノ酸を要求する変異株 (米国特許第 3708 395号及び第 3825472号) 、 D L—ひーァミノ一 £一力プロラクタム、 ひーァミノ 一ラウリルラクタム、 ァスパラギン酸一アナログ、 スルファ剤、 キノイ ド、 N— ラウロイルロイシンに耐性を示す L—リジン生産変 5 株、 ォキザ口酢酸脱炭酸酵 In addition to the above strains, mutants having L-lysine-producing ability derived from these strains can also be used in the present invention. Such artificial mutants include the following. S- (2-aminoethyl) one-cysteine (hereinafter abbreviated as "AEC") resistant mutant (brevipacterium lactophormentamentum AJ11082 (NRR LB-11470), if it is cold, Japanese Patent Publication No. 56-1914) , JP-B-56-1915, JP-B-57-14157, JP-B-57-14158, JP-B-57-30474, JP-B-58-10075, JP-B-59-4993 Bow, JP-B-61-35840, (See Japanese Patent Publication No. 62-24074, Japanese Patent Publication No. 62-36673, Japanese Patent Publication No. 5-11958, Japanese Patent Publication No. 7-112437, and Japanese Patent Publication No. 7-112438), and their growth requires amino acids such as L-homoserine. Mutants (JP-B-48-28078, JP-B-56-6499), which are resistant to AEC, and furthermore, L-lipid isin, L-homoserine, L-proline, L-serine, L-arginine, L-alanine, Mutants requiring amino acids such as L-parin (US Patent Nos. 3,708,395 and 3,825,472), DL-Hamino Lactam, hyamino-lauryl lactam, aspartic acid-analogue, sulfa drugs, quinoids, five L-lysine-producing variants resistant to N-lauroylleucine, Oxaguchi acetic acid decarboxylase
M (デカルボキシラーゼ) または呼吸系 mM ' ' mに耐性を示す L一リジン生産 変異株 (特閲昭 50- 53588 、 特問昭 50- 31093 、 特^昭 52-102498 、 特開昭 53 - 9394号、 特^昭 53- 86089 、 特 j昭 55-9783 、 特 昭 55-9759 、 特^昭 56-329 95号、 特閗昭 56- 39778 、 公昭 53- 43591 -、 特公昭 53- 1833 ) 、 イノシトー ルまたは酢酸を要求する L一リジン生産変異株 (特^昭 55- 9784号、 特開昭 56 - 86 92号) 、 フルォロピルビン酸または 34°C以上の温度に対して感受性を示す L—リ ジン生産変異株 (特開昭 55- 9783 、 特開昭 53- 86090号) 、 エチレングリコール に耐性を示し、 L—リジンを生産するブレビバクテリゥム屈またはコリネバクテ リウム厲の変異株 (米国特許第 4411997号) L-lysine-producing mutants that are resistant to M (decarboxylase) or respiratory system mM '' m (Japanese Patent Publication No. 50-53588, Japanese Patent Application No. 50-31093, Japanese Patent Application No. 52-102498, Japanese Patent Application Laid-Open No. 53-9394) No.53-86089, No.55-9783, No.55-9759, No.56-32995, No.56-39778, No.56-39778, No.53-43591-, No.53-1833 , Lysine-producing mutants that require inositol or acetic acid (JP-A-55-9784, JP-A-56-86) No. 92), L-lysine-producing mutants that are sensitive to fluoropyruvate or a temperature of 34 ° C. or higher (JP-A-55-9783 and JP-A-53-86090), exhibit resistance to ethylene glycol, Brevibacterium flexi or Corynebacterium II mutant producing L-lysine (US Patent No. 4411997)
尚、 本明細書において 「L—リジン生産能」 とは、 コリネ型細菌を培地に培養 したときに、 培地中に有意な量の L一リジンを蓄積する能力、 又は菌体中の L— リジン含量を増加させる能力をいう。  As used herein, the term “L-lysine-producing ability” refers to the ability of a coryneform bacterium to accumulate a significant amount of L-lysine in a medium when cultured in the medium, or the L-lysine in the cells. The ability to increase content.
く 2 >ジアミノビメリン酸ェピメラ一ゼ活性の増強 <2> Enhancement of diaminobimelinate epimerase activity
コリネ型細菌細胞中のジアミノピメリン酸ェピメラーゼ活性を増強するには、 ジアミノピメリン酸ェピメラーゼをコードする遺伝子断片を、 該細菌で機能する ベクタ一、 好ましくはマルチコピー型のベクタ一と連結して組み換え D N Aを作 製し、 これを Lーリジン生産能を有するコリネ型細菌に導入して形質転換すれば よい。 形質転換株の細胞内のジアミノピメリン酸ェピメラーゼをコードする遺伝 子のコピー数が上昇する結果、 ジァミノピメリン酸ェピメラーゼ活性が増強され る。  In order to enhance diaminopimelate epimerase activity in coryneform bacterium cells, a gene fragment encoding diaminopimelate epimerase is ligated to a vector that functions in the bacterium, preferably a multicopy vector, to produce recombinant DNA. It may be transformed into a coryneform bacterium having the ability to produce L-lysine and transformed. As a result of an increase in the copy number of the gene encoding diaminopimelate epimerase in the cells of the transformed strain, diaminopimelate epimerase activity is enhanced.
ジァミノピメリン酸ェピメラ一ゼをコ一ドする遺伝子は、 コリネ型細菌の遺伝 子を用いることも、 ェシエリヒア属細菌等の他の生物由来の遺伝子を使用するこ ともできる。  As the gene encoding diaminopimelate epimelase, a gene of a coryneform bacterium or a gene derived from another organism such as a bacterium belonging to the genus Escherichia can be used.
ェシェリヒア ·コリのジアミノピメリン酸ェピメラーゼをコ一ドする遺伝子 (dagF遺伝子) の塩基配列は既に明らかにされている (Nucleic Acid Research, 16 (21), 10367 (1988)) ので、 その塩基配列に基づいて作製したプライマ一、 例 えば配列衷配列?!!号 1及び 2に示すブラィマ一を川いて、 ェシエリヒア 'コリ染 色体 D N Aを钫型とする P C R法 (P C R : polymerase chain reaction; White, T.J. et al; Trends Genet. 5, 185(1989)参照) によって、 dapF遗伝子を取 得することができる。 コリネ 細菌等の他の微生物のジァミノピメリン酸ェピメ ラ一ゼをコ一ドする造伝子も、 同様にして取得され得る。  The nucleotide sequence of the gene encoding the diaminopimelate epimerase of Escherichia coli (dagF gene) has already been elucidated (Nucleic Acid Research, 16 (21), 10367 (1988)). What primers have been created, for example, an array of arrays? !! No. 1 and 2, PCR method using Escherichia coli color chromosome DNA as type III (PCR: polymerase chain reaction; White, TJ et al; Trends Genet. 5, 185 (1989)) See) to get the dapF 遗 gene. Genes encoding diaminopimelate epimelase of other microorganisms such as corynebacteria can be obtained in a similar manner.
染色休 D N Aは、 D N A供与体である細菌から、 ί列えば、 ^藤、 三浦の方法 (H. Saito and K. Miura, B iochem. B i ophys . Acta, 72 , 619 ( 1963 )、 生物ェ 学実験書、 日本生物工学会編、 9 7〜9 8 ]3、 培風館、 1 9 9 2年参照) 等によ り調製することができる。 DNA from bacteria that are DNA donors can be obtained from the DNA donor bacteria by the method of H. Saito and K. Miura, Biochem. Biophys. Acta, 72, 619 (1963). Science Experiment Book, edited by the Biotechnology Society of Japan, 97-98] 3, Baifukan, 1992) Can be prepared.
P C R法により増幅された dapF遗伝子は、 ェシエリヒア ·コリ及び/又はコリ ネ型細菌の細胞内において自律複製可能なべク夕一 D N Aに接続して組換え D N Aを調製し、 これをェシエリヒア ' コリ細胞に導入しておくと、 後の操作がしゃ すくなる。 ェシエリヒア ·コリ細胞内において自律複製可能なベクターとしては、 プラスミ ドベクターが好ましく、 また、 宿主の細胞内で自立複製可能なものが好 ましく、 例えば pUC19、 pUC18、 pBR322、 pHSG299、 pHSG399、 pHSG398、 RSFIOIO 等が挙げられる。  The dapF 遗 gene amplified by the PCR method is connected to vector DNA capable of autonomous replication in the cells of Escherichia coli and / or coryneform bacteria to prepare recombinant DNA, which is then added to Escherichia coli. If introduced into cells, subsequent operations will be difficult. As a vector capable of autonomous replication in Escherichia coli cells, a plasmid vector is preferable, and a vector capable of autonomous replication in a host cell is preferable.For example, pUC19, pUC18, pBR322, pHSG299, pHSG399, pHSG398, RSFIOIO and the like.
コリネ型細菌の細胞内において自律複製可能なベクタ一としては、 PAM330 (特 開昭 58-67699号公報参照) 、 PHM1519 (特開昭 58- 77895号公報参照) 等が挙げら れる。 また、 これらのベクターからコリネ型細菌中でプラスミ ドを自律複製可能 にする能力を持つ D N A断片を取り出し、 前記ェシエリヒア · コリ用のベクタ一 に挿入すると、 ェシ: リヒア ·コリ及びコリネ型細菌の両方で自律複製可能ない わゆるシャトルべクタ一として使用することができる。 The vector one autonomously replicable in cells of coryneform bacteria (see Japanese Patent Laid HirakiAkira 58-67699) PAM330, P HM1519 (see JP-A-58- 77895) and the like et be. In addition, a DNA fragment having the ability to autonomously replicate plasmid in coryneform bacteria is extracted from these vectors, and inserted into the above-mentioned vector for Escherichia coli. It can be used as a so-called shuttle vector that cannot be replicated autonomously by both.
このようなシャトルベクタ一としては、 以下のものが挙げられる。 尚、 それそ れのベクターを保持する微生物の国際寄託機関の受託番号をかっこ内に示した。  Such shuttle vectors include the following. The accession number of the international depositary organization for the microorganisms carrying the respective vectors is shown in parentheses.
PAJ655 Iシエリヒア · ]リ AJ11882( FERM BP- 136 )  PAJ655 I Shierihia] Re AJ11882 (FERM BP-136)
コリネハ、 'クテリゥム 'ク ΊΙ'タミクム SR820 ATCC39135 )  Coryneha, 'Caterum' 'C' 'Tamicum SR820 ATCC39135)
PAJ1844 Iシエリヒア'コリ AJ11883 (FERM BP-137 )  PAJ1844 I Shierihia 'Kori AJ11883 (FERM BP-137)
コリネハ、、クテリウム 'ク、、ル夕ミクム SR8202 ( ATCC39136 )  Coryneha ,, Cterium 'C ,, Luyu Mikum SR8202 (ATCC39136)
PAJ611 Iシ Xリヒア 'コリ AJ 11884( FERM BP- 138 )  PAJ611 I Shih X Richia 'Kori AJ 11884 (FERM BP-138)
PAJ3148 IP n、、クテリゥム'ク、、ルタミクム SR8203 (ATCC39137 )  PAJ3148 IP n ,,
pAJ440 ' チルス · Γフ、、チリス AJ11901 ( FERM BP - 140 )  pAJ440 'Chills, Chillis, AJ11901 (FERM BP-140)
pHC4 ェシエリヒア 'コリ AJ 12617( FE BP- 3532 )  pHC4 Escherichia coli E. coli AJ 12617 (FE BP-3532)
これらのベクタ一は、 寄託微生物から次のようにして得られる。 対数増殖期に 集められた細胞をリゾチーム及び S D Sを川いて;' し、 3 0 0 0 0 X gで遠心 分離して溶解物から得た上澄液にポリエチレングリコールを添加し、 セシウムク 口ライ ドーェチジゥムブ口マイ ド平衡密度勾配遠心分離により分別精製する。 ジァミノビメリン酸ェピメラ一ゼ遺伝子とベクタ一を述結して組み換え D N A を調製するには、 ジアミノピメリン酸ェピメラーゼ遺伝子を含む D N A断片の末 端に合うような制限酵素でベクターを切断する。 連結は、 T 4 D N Aリガ一ゼ等 のリガーゼを用いて行うのが普通である。 These vectors are obtained from the deposited microorganism as follows. The cells collected during the logarithmic growth phase are washed with lysozyme and SDS; centrifuged at 300,000 X g; polyethylene glycol is added to the supernatant obtained from the lysate; Separate and purify by mouth-mould equilibrium density gradient centrifugation. Recombinant DNA by prescribing diaminobimelinate epimerase gene and vector To prepare E. coli, cut the vector with a restriction enzyme that matches the end of the DNA fragment containing the diaminopimelate epimerase gene. Ligation is usually performed using a ligase such as T4 DNA ligase.
上記のように調製した組換え D N Aをコリネ型細菌に導入するには、 これまで に報告されている形質転換法に従って行えばよい。 例えば、 ェシエリヒア 'コリ In order to introduce the recombinant DNA prepared as described above into a coryneform bacterium, it may be carried out according to a transformation method reported so far. For example, Escherichia coli
K - 1 2について報告されているような、 受容菌細胞を塩化カルシウムで処理 して D N Aの透過性を増す方法 (Mandel, M. and Higa, A., J. Mol. Biol., 53, 159 (1970)) があり、 バチルス ·ズブチリスについて報告されているような、 増 殖段階の細胞からコンビテントセルを調製して D N Aを導入する方法 (Duncan, C.H., Wilson, G.A. and Young, F.E., Gene, 1, 153 (1977)) がある。 あるいは、 バチルス 'ズプチリス、 放線菌類及び酵母について知られているような、 D N A 受容菌の細胞を、 組換え D N Aを容易に取り込むプロトプラストまたはスフエロ プラス トの状態にして組換え D N Aを D N A受容菌に導入する方法 (Chang, S. and Choen, S.N" Molec. Gen. Genet., 168, 111 (1979); Bibb, M.J" Ward, J.M. and Hopwood, O.A., Nature, 274, 398 (1978); Hinnen, A., Hicks, J.B. and Fink, G.R., Pro Natl. Acad. Sci. USA, 75 1929 (1978)) も応用できる。 また、 コリネ 型細菌の形質転換は、 気パルス法 (杉本ら、 特開平 2-207791号公報) によって も行うことができる。 Methods for increasing DNA permeability by treating recipient cells with calcium chloride as reported for K-12 (Mandel, M. and Higa, A., J. Mol. Biol., 53, 159). (1970)), and a method for preparing a competent cell from a cell at the growth stage and introducing DNA as described in Bacillus subtilis (Duncan, CH, Wilson, GA and Young, FE, Gene , 1, 153 (1977)). Alternatively, the recombinant DNA is introduced into the DNA recipient by transforming the cells of the DNA recipient into protoplasts or spheroplasts, as is known for Bacillus subtilis, actinomycetes and yeast, to facilitate the uptake of recombinant DNA. (Chang, S. and Choen, SN "Molec. Gen. Genet., 168, 111 (1979); Bibb, MJ" Ward, JM and Hopwood, OA, Nature, 274, 398 (1978); Hinnen, A ., Hicks, JB and Fink, GR, Pro Natl. Acad. Sci. USA, 75 1929 (1978)). Transformation of a coryneform bacterium can also be performed by the air pulse method (Sugimoto et al., JP-A-2-207791).
ジアミノビメリン酸ェピメラーゼ活性の増強は、 dapF遺伝子を上記宿主の染色 体 D N A上に多コピー存在させることによつても達成できる。 コリネ型細菌に属 する微生物の染色休 D N A上に dapF遺伝子を多コピーで導入するには、 染色体 D N A上に多コピー存在する配列を標的に利用して相同組換えにより行う。 染色体 D N A上に多コピー存在する配列としては、 レぺッティブ D N A、 転移因子の端 部に存在するインバーティッ ド · リピートが利用できる。 あるいは、 特開平 2-10 9985号公報に^示されているように、 dapF造伝子をトランスポゾンに搭載してこ れを転移させて染色休 D N A i:に多コピー導入することも" J能である。 いずれの 方法によっても形 H転換株内の dapF追伝子のコピ一数が上 する結果、 ジァミノ ピメリン酸ェピメラーゼ沾性が¾強される。  Enhancement of diaminobimelinate epimerase activity can also be achieved by allowing the dapF gene to be present in multiple copies on the chromosomal DNA of the above host. In order to introduce multiple copies of the dapF gene into the DNA of a microorganism belonging to a coryneform bacterium, homologous recombination is performed using a sequence present on the chromosomal DNA in multiple copies as a target. As a sequence present in multiple copies on the chromosome DNA, a repetitive DNA and an inverted repeat present at the end of a transposable element can be used. Alternatively, as disclosed in Japanese Patent Application Laid-Open No. 2-109985, it is also possible to load the dapF gene into a transposon, transfer it, and introduce multiple copies into DNA i :. Either method increases the number of copies of the dapF promoter in the Form H transformant, resulting in enhanced diaminopimelate epimerase activity.
ジアミノビメリン酸ェピメラ一ゼ活性の増強は、 上^の造伝子增幅による以外 に、 染色体 D N A上又はプラスミ ド上の dapF遺伝子のプロモ一夕一等の発現調節 配列を強力なものに置換することによつても達成される (特開平 1-215280号公報 参照) 。 たとえば、 l a cプロモータ一、 t r pプロモ一夕一、 t r cプロモ一 夕一、 t a cプロモーター、 ラムダファージの Ρ κプロモーター、 P Lプロモー夕 一等が強力なプロモ一夕一として知られている。 これらのプロモ一夕一への置換 により、 dapF遺伝子の発現が強化されることによってジァミノピメリン酸ェピメ ラ一ゼ活性が増強される。 発現調節配列の改変は、 dapF遺伝子のコピー数を高め ることと組み合わせてもよい。 Enhancement of diaminobimelinate epimerase activity is not due to the width of the gene Alternatively, it can be achieved by replacing the expression control sequence such as the promoter of the dapF gene on chromosomal DNA or plasmid with a strong one (see Japanese Patent Application Laid-Open No. 1-215280). For example, lac promoter one, trp promoter Isseki one, trc promoter one evening one, tac promoter, [rho kappa promoter of lambda phage, the P L promoter evening, First known as a powerful promoter Isseki scratch. The substitution of these promoters all at once enhances the expression of the dapF gene, thereby enhancing the activity of diaminopimelate epimelase. Modification of the expression control sequence may be combined with increasing the copy number of the dapF gene.
ジアミノピメリン酸ェピメラーゼ活性の増強の確認は、 菌体抽出物のジアミノ ピメリン酸ェピメラーゼ活性を公知の方法 (例えば White, P.J. et al., Biochem. J., 113, 589 (1969)参照) によって測定することにより行うことができる。  To confirm the enhancement of diaminopimelate epimerase activity, measure the diaminopimelate epimerase activity of the cell extract by a known method (for example, see White, PJ et al., Biochem. J., 113, 589 (1969)). Can be performed.
また、 本発明のコリネ型細菌は、 ジァミノピメリン酸ェピメラーゼ活性に加え て、 他の Lーリジン生合成経路又は解糖系等の酵素の活性が増強されてもよい。 そのような酵素及び同酵素をコ一ドする遺伝子の例としては、 Lーリジン及び L —スレオニンによる相乗的なフィ一ドバック阻害が解除されたァスバルトキナー ゼひサブュニヅ ト蛋白質又は/?サブュニヅ ト蛋白質をコードする遺伝子 (W094/2 5605国際公開パンフレッ ト) 、 コリネ型細菌由来の野生型ホスホエノールビルビ ン酸カルボキシラ一ゼ逍伝子 (特開昭 60- 87788弓公報) 、 コリネ型細菌由来の野 生型ジヒドロジピコリン酸合成酵素をコ一ドする遺伝子 (特公平 6- 55149号公報) 、 ジヒドロジピコリン酸レダク夕ーゼ遺伝子 (特開平 7- 75578号公報) 等が知られ ている。 これらの酵素活性の増強は、 ジアミノビメリン酸ェピメラ一ゼ活性の増 強と同様にして行うことができる。  The coryneform bacterium of the present invention may have enhanced activity of other L-lysine biosynthetic pathways or glycolytic enzymes in addition to diaminopimelate epimerase activity. Examples of such an enzyme and a gene encoding the enzyme include an aspartokinase-substituted protein and / or a subunit protein from which synergistic feedback inhibition by L-lysine and L-threonine has been released. (W094 / 2 5605 international publication pamphlet), wild-type phosphoenolpyruvyl carboxylase derived from coryneform bacterium (Japanese Patent Application Laid-Open No. 60-87788), coryneform bacterium There are known a gene encoding a wild type dihydrodipicolinate synthase (Japanese Patent Publication No. 6-55149), a dihydrodipicolinate reductase gene (Japanese Patent Application Laid-Open No. 7-75578), and the like. Enhancement of these enzyme activities can be carried out in the same manner as enhancement of the activity of diaminobimelinate epimelase.
上記のような Lーリジン生合成系酵素 ¾性が ¾強されたコリネ型細菌としては、 Lーリジン及び L—スレオニンによるフィ一ドバヅク附害が解除されたァスパル トキナ一ゼをコードする造伝子 (変異型 lysC) 、 ジヒドロジピコリン酸レダク夕 一ゼ遗伝子 (dapB) 、 ジヒドロジピコリン酸シン夕一ゼ逍伝子 (dapA) 、 ジアミ ノピメリン酸デカルボキシラーゼ遺伝子 (lysA) 、 及びジァミノピメリン酸デヒ ドロゲナ一ゼ遗伝子 (ddh) (W096/40934) 、 LysA及び DDH (特問平 9— 322774号) 、 LysC, LysA及びホスホエノ一ルビルビン酸カルボキシラーゼ遺伝子 (ppc) (特 開平 10- 165180号) 、 変異型 lysC、 dapB, dapA、 lysA及びァスパラギン酸ァミノ トランスフェラーゼ遗伝子 ( aspC ) (特開平 10- 215883号) を、 それそれ導入ま たは増幅したコリネ型細菌が 1¾示されている。 L-Lysine biosynthetic enzymes As described above, the coryneform bacterium which has been strongly enhanced includes a gene encoding aspartokinase, which is free from the L-lysine and L-threonine-induced feedback damage. Mutant lysC), dihydrodipicolinate reductase gene (dapB), dihydrodipicolinate synthase gene (dapA), diaminonopimelate decarboxylase gene (lysA), and diaminopimelate dehydrogenase Zes gene (ddh) (W096 / 40934), LysA and DDH (Japanese Patent Publication No. 9-322774), LysC, LysA and phosphoenorubyruvate carboxylase gene (ppc) (Kaihei 10-165180), mutant lysC, dapB, dapA, lysA and aspartate aminotransferase gene (aspC) (Japanese Patent Application Laid-Open No. 10-215883). It is shown.
ブレビパクテリゥム .ラク トフアーメンタム野生型株である AJ12036株 (FERM BP- 734) に変異型 lysCを含むプラスミ ド p399AK9Bを導入した株 AJ12691は、 1 9 9 2年 4月 1 0日に通商産業省工業技術院生命工学工業技術研究所 (郵便番号 30 5-8566 曰本国茨城県つくば巿東一丁目 1番 3号) に受託番号 FERM P-12918とし て寄託され、 1 9 9 5年 2月 1 0日にブダぺスト条約に基づく国際寄託に移管さ れ、 FERM BP-4999の受託番号で寄託されている。  Brevipacterium strain AJ12691, a strain in which the plasmid p399AK9B containing the mutant lysC was introduced into the AJ12036 strain (FERM BP-734), which is a wild type strain of Lactofamentum, was traded on April 10, 1992. Deposited with the Research Institute of Biotechnology, Industrial Technology Institute (Ministry of Industry) (zip code: 30-5-8566, 1-3-1, Tsukuba, Higashi, Ibaraki, Japan) under the accession number FERM P-12918. It was transferred to the International Deposit under the Budapest Treaty on October 10 and deposited under the accession number FERM BP-4999.
ェシエリヒア 'コリ JM109株に dapBを含むプラスミ ド pCRDAPBを導入して得られ た形質転換株 AJ 13107株は、 1 9 9 5年 5月 2 6日より通商産業省工業技術院生 命工学工業技術研究所 (郵便番号 305- 8566 日本国茨城県つくば巿柬一丁目 1番 3号) に受託番号 FERM ΒΡ-5Π4の受託番号で、 ブダペスト条約に基づき国際寄託 されている。  The transformed AJ13107 strain obtained by introducing the plasmid pCRDAPB containing dapB into the Escherichia coli JM109 strain has been used since May 26, 1995 by the Institute of Life Science and Industrial Technology, the Ministry of International Trade and Industry of the Ministry of International Trade and Industry of the Ministry of International Trade and Industry. (Postal code 305-8566, 1-3-1 Tsukuba, Ibaraki, Japan) with accession number FERM ΒΡ-5Π4, deposited internationally under the Budapest Treaty.
ェシヱリヒア ·コリ JM109株に dapAを含むプラスミ ド pCRDAPAを導入して得られ た形質転換株 AJ13106株は、 1 9 9 5年 5月 2 6日より通商産業省工業技術院生 命工学工業技術研究所 (郵便番号 305-8566 曰本国茨城県つくば巿柬一丁目 1番 3号) に受託番^ FERM BP- 51 13の受託番^で、 ブダペスト条約に基づき国際寄託 されている。  The transformed AJ13106 strain obtained by introducing the plasmid pCRDAPA containing dapA into the Escherichia coli JM109 strain has been used since May 26, 1995 by the Institute of Life Science and Industrial Technology, the Ministry of Economy, Trade and Industry of the Ministry of International Trade and Industry, Japan. It has been deposited internationally under the Budapest Treaty under the postal code 305-8566, under the accession number ^ FERM BP-5113 13 in Tsukuba, Ibaraki Prefecture, Japan.
変異型 lysC、 daPB、 dapAの各遺伝子は、 上記寄託菌株から常法によって調製す ることができる。 また、 lysAは、 コリネ型細菌、 例えばブレビパクテリゥム 'ラ ク トフアーメンタム野生株 ATCC13869株の染色体 DNAから、 配列表の配列番号 3及 び 4に記載の塩基配列を有するオリゴヌクレオチドをプライマ一とする PCRによ り、 アルギニル— tRNAシンターゼをコードする argS、 lysA及びこれらを含むオペ ロンのプロモータ一を含む D N A断片として、 取得することができる。 Mutant lysC, da P B, each gene dapA can it to prepare by conventional methods from the deposited strains. In addition, lysA is a primer obtained from a chromosomal DNA of a coryneform bacterium, for example, Brevipacterium 'Lactofamentum wild ATCC13869 strain, having an oligonucleotide having the nucleotide sequence of SEQ ID NO: 3 or 4 in the sequence listing. As a result, the DNA fragment can be obtained as a DNA fragment containing argS and lysA encoding arginyl-tRNA synthase and a promoter of an operon containing these.
上記の L—リジン 合成系酵素造伝子及び dapF遗伝子は、 一のベクタ一上に 保持させてもよく、 それそれ別 に 2又はそれ以上のベクターに保持させてもよ い。  The above-mentioned L-lysine synthesis enzyme gene and dapF 遗 gene may be carried on one vector and may be carried on two or more vectors separately.
また、 本発明のコリネ型細菌は、 Lーリジンの生合成経路から分岐して Lーリ ジン以外の化合物を生成する反応を触媒する酵素の活性が低下または欠損してい てもよい。 L—リジンの生合成経路から分岐して Lーリジン以外の化合物を生成 する反応を触媒する酵素としては、 ホモセリンデヒドロゲナ一ゼがある (W0 95/ 23864参照) 。 In addition, the coryneform bacterium of the present invention diverges from the L-lysine biosynthesis pathway to produce L-lysine. The activity of an enzyme that catalyzes a reaction for producing a compound other than gin may be reduced or lacking. Homoserine dehydrogenase is an enzyme that catalyzes a reaction that produces a compound other than L-lysine by branching off from the L-lysine biosynthetic pathway (see WO95 / 23864).
なお、 本明細書において、 酵素の 「活性が増強されている」 とは、 通常には、 野生株よりも細胞内のその酵素活性が高いことを意味し、 遗伝子組換え技術等に よる改変によりその酵素活性が増強された菌株を得た場合には、 改変前の菌株よ りも細胞内のその酵素活性が高いことを意味する。 また、 酵素の 「活性が低下し ている」 とは、 通常には、 野生株よりも細胞内のその酵素活性が低いことを意味 し、 遺伝子組換え技術等による改変によりその酵素活性が低下した菌株を得た場 合には、 改変前の菌株よりも細胞内のその酵素活性が低いことを意味する。  In the present specification, “enhanced activity” of an enzyme generally means that the enzyme activity in a cell is higher than that of a wild-type strain. When a strain whose enzyme activity is enhanced by the modification is obtained, it means that the enzyme activity in the cell is higher than that of the strain before the modification. The term “reduced activity” of an enzyme usually means that the enzyme activity in a cell is lower than that of a wild-type strain, and the enzyme activity has been reduced by modification by genetic recombination technology or the like. When a strain is obtained, it means that the enzyme activity in the cell is lower than that of the strain before modification.
く 3 > L—リジンの生産 3> L-Lysine production
ジアミノピメリン酸ェピメラ一ゼ活性が増強され、 かつ L—リジン酸生産能を 有するコリネ型細菌を好適な培地で培養すれば、 Lーリジンが培地に蓄積する。 本発明の微生物を用いて L一リジンを製造するのに用いる培地は、 炭素源、 窒 素源、 無機イオン及び必要に応じその他の有機微量栄養素を含有する通常の培地 である。 炭素源としては、 グルコース、 ラクト一ス、 ガラク ト一ス、 フラクト一 ス、 シュクロース、 廃糖蜜、 澱粉加水分解物などの炭水化物、 エタノールやイノ シトールなどのアルコール類、 酢酸、 フマール酸、 クェン酸、 コハク酸等の有機 酸類を用いることができる。  When a coryneform bacterium having enhanced diaminopimelate epimelase activity and capable of producing L-lysine acid is cultured in a suitable medium, L-lysine accumulates in the medium. The medium used for producing L-lysine using the microorganism of the present invention is an ordinary medium containing a carbon source, a nitrogen source, inorganic ions, and if necessary, other organic micronutrients. Carbon sources include carbohydrates such as glucose, lactose, galactose, fructos, sucrose, molasses, starch hydrolysates, alcohols such as ethanol and inositol, acetic acid, fumaric acid, and citric acid. And organic acids such as succinic acid.
窒素源としては、 硫酸アンモニゥム、 硝酸アンモニゥム、 塩化アンモニゥム、 リン酸アンモニゥム、 酢酸アンモニゥム等の無機アンモニゥム塩、 アンモニア、 ペプトン、 肉エキス、 酵母エキス、 酵母エキス、 コーン 'スティ一プ ' リカー、 大豆加水分解物などの有機窒素、 アンモニアガス、 アンモニア水等を用いること ができる。  Nitrogen sources include ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium phosphate, ammonium acetate, and other inorganic ammonium salts, ammonia, peptone, meat extract, yeast extract, yeast extract, corn 'stip' liquor, soybean hydrolysis Organic nitrogen, ammonia gas, aqueous ammonia, etc., can be used.
無機イオンとしては、 リン酸カリウム、 硫酸マグネシウム、 鉄イオン、 マンガ ンイオン等が少 添加される。 ィ ί機微 栄 II素としては、 ビタミン などの要 求物 !または^ ¾エキス を必要に応じ適 含冇させることが^ましい。  As inorganic ions, potassium phosphate, magnesium sulfate, iron ions, manganese ions, etc. are added in small amounts. It is preferable to add the required ingredients such as vitamins and / or the extract as necessary as a special ingredient II.
培養は、 振とう培養、 通気搅拌培養等による好気的条 ί牛下で 1 6〜7 2時間実 施するのがよく、 培養温度は 3 0 °C;〜 4 5 に、 培養中 p Hは 5〜9に制御する。 尚、 p H調整には無機あるいは有機の酸性あるいはアルカリ性物質、 更にアンモ ニァガス等を使用することができる。 Cultivation is performed under aerobic conditions such as shaking culture and aeration and stirring culture under cows for 16 to 72 hours. The culture temperature is controlled at 30 ° C; ~ 45, and the pH is controlled at 5 ~ 9 during the culture. For pH adjustment, an inorganic or organic acidic or alkaline substance, ammonia gas or the like can be used.
発酵液からの Lーリジンの採取は、 通常イオン交換樹脂法、 沈澱法その他の公 知の方法を組み合わせることにより実施できる。 実施例  The collection of L-lysine from the fermentation broth can usually be carried out by a combination of an ion exchange resin method, a precipitation method and other known methods. Example
以下、 本発明を実施例によりさらに具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples.
く 1 >コリネ型細菌由来の dapF遺伝子の単離と dapF遺伝子導入用プラスミ ドの作 製 1> Isolation of dapF gene from coryneform bacterium and production of dapF gene transfer plasmid
ェシエリヒア 'コリの既知の dapF遺伝子配列 (Nucleic Acid Research, 16 (21), 10367 (1988)) をもとに配列番号 1及び 2に示すプライマ一を作製し、 ェ シエリヒア ' コリ JM109株の染色体 DNAを銪型として P C Rを行い、 dapF遺伝子断 片を得た。 D N Aの合成は Appl ied B iosystems社製 D N A合成機 model 380Bを 使用し、 ホスホアミダイ ト法を用いて (Tetrahedron Letters(1981), 22, 1859参 照) 常法に従って合成した。 PCR反応は、 宝酒造 (株) 製 D N Aサーマルサイク ラー PJ2000型を用い、 TaqDNAポリメラーゼを用い、 供給者により指定された方 法に従って行なった。  Based on the known dapF gene sequence of Escherichia coli (Nucleic Acid Research, 16 (21), 10367 (1988)), the primers shown in SEQ ID NOs: 1 and 2 were prepared, and the chromosomal DNA of the Escherichia coli JM109 strain was prepared. PCR was performed using the DNA as a type II to obtain a dapF gene fragment. The DNA was synthesized using a DNA synthesizer model 380B manufactured by Applied Biosystems, using the phosphoramidite method (see Tetrahedron Letters (1981), 22, 1859) according to a conventional method. The PCR reaction was carried out using a DNA thermal cycler model PJ2000 manufactured by Takara Shuzo Co., Ltd., using Taq DNA polymerase according to the method specified by the supplier.
増幅された遺伝子断片をコリネ型細菌に導入するために、 同 D N A断片をシャ トルベクター pVK7 (特開平 10- 215883号公報参照) に接続した。 前記増幅断片を、 BamHIで切断し T4ポリメラーゼで処理して平滑末端化した pVK7と接続した。 DNAの 接続は DNAライゲ一シヨンキッ 卜 (宝酒造 (株)製) を fflいて行った。 構築したプ ラスミ ドを pVKdapFと命名した。 pVKdapFは、 マ一カーとしてカナマイシン耐性遺 伝子を保持する。  To introduce the amplified gene fragment into a coryneform bacterium, the DNA fragment was connected to a shuttle vector pVK7 (see JP-A-10-215883). The amplified fragment was ligated with pVK7, which had been digested with BamHI, treated with T4 polymerase and blunt-ended. The DNA connection was performed by ffling a DNA reige kit (Takara Shuzo Co., Ltd.). The constructed plasmid was named pVKdapF. pVKdapF retains the kanamycin resistance gene as a marker.
pVK7は、 以下のようにして、 ェシエリヒア ' コリ用べクタ一である PHSG299 (Km' ; Takeshita, S. et al., Gene, 61. 63-74, (1987)参照) にブレビバクテリゥ ム ·ラクトファ一メンタムのクリプティ ックプラスミ ドである pAM330を結合する ことによって構築した。 PAM330は、 ブレピノ クテリゥム · ラク トファ一メン夕ム ATCC13869株より調製した。 pHSG299を一 ^所切断酵素である Avai l (宝酒造 (株) 製) にて切断し、 T4 DNAポリメラ一ゼにて平滑末端化したのち、 Hindlll (宝酒 造 (株) 製) にて切断し、 T4 DNAポリメラ一ゼにて平滑末端化した PAM330と接続 した。 pHSG299に対する pAM330の挿入方向により、 生成した 2種類のプラスミ ド を pVK6、 pVK7と命名した。 pVK7は、 E. coli及びブレビパクテリゥム 'ラク トフ アーメンタムの細胞中で自律複製可能であり、 かつ、 pHSG299由来のマルチプル クロ一ニングサイ トと lacZ' を保持している。 pVK7 was introduced into PHSG299 (Km '; Takeshita, S. et al., Gene, 61. 63-74, (1987)), a vector for Escherichia coli, as follows. It was constructed by linking pAM330, Mentum's cryptoplasmid. PAM330 was prepared from Blepino teratium lactofermentum ATCC13869 strain. Avail (Takara Shuzo Co., Ltd.) And then blunt-ended with T4 DNA polymerase, then cut with Hindlll (Takara Shuzo Co., Ltd.), and connected to PAM330 blunt-ended with T4 DNA polymerase. . The two kinds of generated plasmids were named pVK6 and pVK7 according to the insertion direction of pAM330 into pHSG299. pVK7 is capable of autonomous replication in cells of E. coli and Brevipacterium 'Lactofamentum, and has a multiple cloning site derived from pHSG299 and lacZ'.
く 2 >dapF搭載プラスミ ドのブレビバクテリウム ·ラクトファ一メン夕ム L—リ ジン生産菌への導入 2> Introduction of plasmid with dapF into Brevibacterium lactofermentum L-lysine-producing bacteria
( 1 ) lysAの取得及びそれを含有するプラスミ ドの作製  (1) Acquisition of lysA and production of plasmid containing it
ブレビバクテリゥム 'ラク トフアーメンタム野生株 ATCC13869株より常法に従 い、 染色体 DNAを調製した。 染色体 DNAより PCRにより、 argS、 lysA及びこれらを 含むオペロンのプロモー夕一を含む DN A断片を増幅した。 増幅に用いた DNAプ ライマ一としては、 コリネバクテリゥム · グル夕ミカムにおいて既知となってい る配列 (Molecular Microbiology 4(11), 1819-1830 (1990)、 Molecular and General Genetics 212, 112-119 (1988)参照) を基にしてアルギニル—tRNAシン ターゼ及びジァミノピメリン酸デカルボキシラーゼをコ一ドする約 3.6kbの領域 を増幅すべく、 配列表の配列番号 3及び 4に記載の塩基配列を有する各々 23mer の合成 DNAを/ Ήいた。 DN Aの合成は Applied Biosystems社製 D N A合成機 m odel 380Bを使用し、 ホスホアミダイ ト法を用いて (Tetrahedron Letters(1981), 22, 1859参照) 常法に従って合成した。 また、 PCR反応は、 宝酒造 (株) 製 DN Aサーマルサイクラ一 PJ2000型を用い、 TaqDNAポリメラ一ゼを用い、 供給者に より指定された方法に従って行なった。 増幅された 3579bpの遗伝子断片のクロ一 ン化用のベクターには PHSG399を用いた。 pHSG399を制限酵素 Smal (宝酒造 (株)製) にて切断し、 増幅された lysAを含む DNA断片と接続した。 この様にして取得し た ATCC13869由来の lysAを有するプラスミ ドを p399LYSAと命名した。  Chromosomal DNA was prepared from Brevibacterium 'lactofermentum wild strain ATCC13869 according to a conventional method. From the chromosomal DNA, a DNA fragment containing argS, lysA and the promoter of the operon containing them was amplified by PCR. DNA primers used for amplification include sequences known from Corynebacterium gullica micam (Molecular Microbiology 4 (11), 1819-1830 (1990), Molecular and General Genetics 212, 112-119 (1988)) to amplify a region of about 3.6 kb encoding arginyl-tRNA synthase and diaminopimelic acid decarboxylase, each having the nucleotide sequence of SEQ ID NO: 3 or 4 in the sequence listing. 23mer synthetic DNA was used. The DNA was synthesized by a phosphoramidite method using a DNA synthesizer model 380B manufactured by Applied Biosystems (see Tetrahedron Letters (1981), 22, 1859) according to a conventional method. In addition, the PCR reaction was performed using a DNA thermal cycler PJ2000 manufactured by Takara Shuzo Co., Ltd., using Taq DNA polymerase according to the method specified by the supplier. PHSG399 was used as a vector for cloning the amplified 3579 bp gene fragment. pHSG399 was digested with restriction enzyme Smal (Takara Shuzo Co., Ltd.) and ligated with the amplified DNA fragment containing lysA. The plasmid having lysA derived from ATCC13869 thus obtained was named p399LYSA.
更に、 p399LYSAを Kpnl (¾洒造(株)製) と BamHI (¾酒造(株)製) で切断する ことにより、 lysAを含む DNA断片を抽出した。 この DNA断片を、 pHSG299を K pnlと BamHIで切断したものと] ill結した。 得られたプラスミ ドを p299LYSAと命名し た。 p299LYSA構築の過程を図 1に示す。 ( 2 ) 変異型 lysC、 dapA及び dapBを併せ持つプラスミ ドの作製 Furthermore, lysA-containing DNA fragment was extracted by cutting p399LYSA with Kpnl (manufactured by Shushou Co., Ltd.) and BamHI (manufactured by Shuzo Co., Ltd.). This DNA fragment was ligated with a fragment obtained by cutting pHSG299 with Kpnl and BamHI. The resulting plasmid was named p299LYSA. Figure 1 shows the process of construction of p299LYSA. (2) Preparation of plasmid having both mutant lysC, dapA and dapB
W096/40934号国際公問パンフレッ 卜に記載のブレビバクテリゥム 'ラクトファ ーメンタム由来の dapAを有するプラスミ ド pCRDAPAを Kpnlおよび EcoRIにて切断し、 dapAを含む D N A断片を抽出し、 ベクタ一プラスミ ド pHSG399を Kpnlおよび EcoRI にて切断したものと接続した。 得られたプラスミ ドを P399DPSと命名した。 p399D PSを EcoRI、 Sphlにて分解し、 平滑末端化した後、 dapAの断片を抽出した。 この 断片を、 W096/40934号国際公開パンフレツ 卜に記載のブレビパクテリゥム ·ラク トファーメン夕ム由来の変異型 lysCを含むプラスミ ド p399AK9を Sai lにて切断し 平滑末端化したものとライゲーシヨンし、 変異型 lysCと dapAが共存したプラスミ ド P399CAを構築した。  W096 / 40934 International publication pamphlet Brevibacterium 'plasmid containing dapA derived from lactofamentum pCRDAPA is digested with Kpnl and EcoRI, a DNA fragment containing dapA is extracted, and vector plasmid pHSG399 is extracted. Was cut with Kpnl and EcoRI. The obtained plasmid was designated as P399DPS. p399D PS was digested with EcoRI and Sphl and blunt-ended, and then a dapA fragment was extracted. This fragment was ligated with blunt-ended plasmid p399AK9 containing mutant lysC derived from Brevipacterium lactofermen described in W096 / 40934 International Publication, which was cut with Sail and blunt-ended. A plasmid P399CA in which mutant lysC and dapA coexist was constructed.
尚、 上記プラスミ ド pCRDAPAは、 ェシェリヒア · コリ AJ13106 (FERM BP- 5113) から常法によって調製することができる。 また、 P399AK9は、 p399AK9Bを BamHIで 切断し、 コリネ型細菌中でプラスミ ドを自律複製可能にする能力をもつ D N A断 片 (以下 「Brevi . - ori」 と記す) を切り出し、 セルフライゲーシヨンすることに より、 得ることができる。 P399AK9Bは、 ェシエリヒア 'コリ AJ12691 (FERM BP-4 999) から常法によって調製することができる。  The above plasmid pCRDAPA can be prepared from Escherichia coli AJ13106 (FERM BP-5113) by a conventional method. P399AK9 cuts p399AK9B with BamHI, cuts out a DNA fragment capable of autonomously replicating plasmid in coryneform bacteria (hereinafter referred to as “Brevi.-ori”), and performs self-ligation. In some cases, it can be obtained. P399AK9B can be prepared from Escherichia coli AJ12691 (FERM BP-4999) by a conventional method.
次に、 W096/40934 国際公開パンフレツ 卜に記載のブレビパクテリゥム ·ラク トフアーメン夕ム ώ来の dapBを有するプラスミ ド pCRDAPBを EcoRIにて切断、 平滑 末端化した後、 Sac lにて切断し、 dapBを含む 2. 0kbの D N A断片を抽出した。 dap A及び変異型 lysCを有するプラスミ ド p399CAを Spelにて切断、 平滑末端化した後、 Saclにて切断し、 抽出した dapB断片と接続し、 変異型 lysC、 dapA及び dapBを含む プラスミ ドを得た。 このプラスミ ドを P399CABと命名した。 pCRDAPBは、 ェシエリ ヒア .コリ AJ13107 ( FERM BP-5114) から常法によって調製することができる。 次に、 p399CABに Brevi . - oriを導入した。 pHM1519由来の Brevi . -oriを有するプ ラスミ ド pHK4を制限酵素 BamHI ( 酒造 (ft ) 製) にて切断し、 切断面を平滑末 端化した。 ' 滑末端化は DNA Blunting kit ( 'ίϊ洒造 (株) 製) を川い、 指定され た方法にて行なった。 平滑末端化後、 リン?!化済み Kpnlリ ンカ一 (宝酒造 (株) 製) を接続し、 PHK4より Brevi . -ori部分の DNA断片を Kpn lのみによる切断によつ て切り出される様改変した。 このプラスミ ドを Kpnlにより切断し、 生じた Brevi . -ori DNA断片を同じく Kpnlにて切断した p399CABに接続し、 コリネ型細菌中で自 律増殖可能でかつ変異型 lysC、 dapAおよび dapBを併せ持つプラスミ ドを作製し、 pCABと命名した。 pCABの構築の過程を図 2に示す。 Next, the plasmid pCRDAPB having the dapB from Brevipacterium / Lactofamen described in W096 / 40934 International Publications was cut with EcoRI, blunt-ended, and cut with SacI. A 2.0 kb DNA fragment containing dapB was extracted. Plasmid p399CA containing dap A and mutant lysC is cut with Spel, blunt-ended, cut with Sacl, and connected to the extracted dapB fragment to obtain a plasmid containing mutant lysC, dapA and dapB Was. This plasmid was named P399CAB. pCRDAPB can be prepared from Escherichia coli AJ13107 (FERM BP-5114) by a conventional method. Next, Brevi .-ori was introduced into p399CAB. A plasmid pHK4 having Brevi. -ori derived from pHM1519 was cut with a restriction enzyme BamHI (manufactured by Shuzo (ft)), and the cut surface was blunt-ended. 'The blunt ends were prepared using the DNA Blunting kit (' ίϊShinzo Co., Ltd.) according to the designated method. After blunting, phosphorus? ! A modified Kpnl linker (Takara Shuzo Co., Ltd.) was connected, and modified from PHK4 so that the DNA fragment of the Brevi. -Ori portion was cut out only by cutting with Kpnl. This plasmid was cut with Kpnl and the resulting Brevi. The -ori DNA fragment was ligated to p399CAB also digested with Kpnl, and a plasmid capable of autonomous growth in coryneform bacteria and having mutant lysC, dapA and dapB was prepared, and named pCAB. Figure 2 shows the process of pCAB construction.
( 3 ) 変異型 lysC、 dapA、 dapB及び lysAを併せ持つプラスミ ドの作製  (3) Preparation of plasmid having both mutant lysC, dapA, dapB and lysA
lysAを有するプラスミ ド P299LYSAを Kpnl及び BamHIにて切断し、 平滑末端化し た後、 lysAの断片を抽出した。 この断片を、 pCABを Hpal (宝酒造 (株) 製) にて 切断し平滑末端化したものとライゲーシヨンし、 コリネ型細菌中で自律増殖可能 でかつ変異型 lysC、dapA、 dapB、 及び lysAを併せ持つプラスミ ドを作製し、 pCABL と命名した。 pCABLは、 マ一カーとしてクロラムフエ二コール耐性遺伝子を保持 する。 pCABL構築の過程を図 3に示す。 尚、 pCABL中で、 lysAの断片は dapBを含む D N A断片内の Hpal部位に挿入されているが、 この Hpal部位は、 dapBのプロモー 夕一よりも上流に位置しており、 dapBは分断されていない。  Plasmid P299LYSA containing lysA was cut with Kpnl and BamHI, blunt-ended, and then a lysA fragment was extracted. This fragment was ligated with pCAB cut with Hpal (manufactured by Takara Shuzo Co., Ltd.) and blunt-ended. The plasmid was capable of autonomous growth in coryneform bacteria and had mutant lysC, dapA, dapB, and lysA. And was named pCABL. pCABL carries the chloramphenicol resistance gene as a marker. Figure 3 shows the process of pCABL construction. In pCABL, the lysA fragment was inserted into the Hpal site in the DNA fragment containing dapB, but this Hpal site was located upstream from the dapB promoter, and dapB was fragmented. Absent.
( 4 ) dapF遺伝子で形質転換されたコリネ型細菌 L—リジン生産菌の作製 上記のようにして作製したプラスミ ド pCAB又は pCABLで、 ブレビパクテリゥム (4) Preparation of coryneform bacterium L-lysine-producing bacterium transformed with dapF gene The plasmid pCAB or pCABL prepared as described above is used for brevipacterium.
-ラクトフアーメンタム L—リジン生産菌である AJ11082 (NRRL B-11470) を形 質転換し、 AJ11802/pCAB及び AJ11802/pCABLを得た。 AJ11082株は、 AEC耐性の性 質を有する。 AJ11082 (NRRL B-11470), which is a lactofarmentum L-lysine producing bacterium, was transformed to obtain AJ11802 / pCAB and AJ11802 / pCABL. The AJ11082 strain has AEC resistance.
次に、 上記形質転換体 AJ11802/pCAB及び AJ11802/pCABLを、 pVKdapFで形質転換 した。 pCAB及び pCABLがブレビバクテリゥム ' ラクトファ一メン夕ム細胞中での 複製起点として PHM1519由来のものを利用し、 マーカー遺伝子としてクロラムフ ェニコール耐性遺伝子を使用しているのに対し、 pVKdapFはブレビバクテリウム •ラクトファーメン夕ム細胞中での複製起点として pAM330由来のものを利用し、 マ一カーとしてカナマイシン耐性遺伝子を用いているため、 両プラスミ ドがブレ ビバクテリゥム 'ラクトファーメン夕ム細胞中で安定に保持される。 この様にし て L一リジン生合成系遗伝子を含むプラスミ ドと dapF遗伝子を含むプラスミ ドが 共存した菌株、 AJ11082/pCAB/pVKdapF及び AJ11082/pCABL/pVKdapFを取得した。 < 3〉各形質転換体のジァミノピメリン酸ェピメラーゼ活性の; I定  Next, the transformants AJ11802 / pCAB and AJ11802 / pCABL were transformed with pVKdapF. While pCAB and pCABL use the PHM1519-derived origin as the replication origin in Brevibacterium 'lactofermentum cells and use the chloramphenicol resistance gene as a marker gene, pVKdapF uses Brevibacterium • Both plasmids are stable in Brevibacterium 'lactofermentum cells because the pAM330-derived origin is used as the origin of replication in lactofermentum cells and the kanamycin resistance gene is used as a marker. Is held. In this way, AJ11082 / pCAB / pVKdapF and AJ11082 / pCABL / pVKdapF in which a plasmid containing the L-lysine biosynthetic gene and a plasmid containing the dapF gene coexisted were obtained. <3> Determination of diaminopimelate epimerase activity of each transformant;
AJ11082, AJ11082/pCABL及び AJ11082/pCABL/pVKdapFのジァミノピメリン酸ェ ピメラ一ゼ活性を測定した。 ジアミノピメ リン酸ェピメラーゼ活性の測定は、 White, P.J. et al., Biochem. J.. 113, 589 (1969)) に従って行った。 フラスコ培 養液約 10mlを、 1500rpmで 20秒遠心して CaC03を除いた後、 上清を 3000rpmで 6分 遠心して集菌した。 粜めた菌体を、 200mMリン酸カリウム緩衝液(pH 6.9)( P Buf fer)で 2回洗浄した後、 KP Buffer 300〃1に懸濁し、 超音波破砕した。 破砕液を 3000rpmで 10分遠心した後、 上清を粗酵素液としてジアミノビメ リン酸ェピメラ ーゼ活性を測定した。 結果を表 1に示す。 表中、 lysC*は変異型 lysC遺伝子を表 す。 また、 ジァミノピメ リン酸ェピメラ一ゼ活性は、 AJ11082の活性を 1とした ときの相対値で示した。 表 1 菌株/プラスミ ド 導入遺伝子 シ、、アミノヒ。メリン酸ェヒ。メラ-セ、'活性 The diaminopimelinate epimeridase activity of AJ11082, AJ11082 / pCABL and AJ11082 / pCABL / pVKdapF was measured. Measurement of diaminopime phosphate epimerase activity White, PJ et al., Biochem. J .. 113, 589 (1969)). The flask culture solution about 10 ml, after removing the 20-second centrifugation CAC0 3 at 1500 rpm, cells were harvested by centrifugation 6 min the supernatant with 3000 rpm. The obtained cells were washed twice with 200 mM potassium phosphate buffer (pH 6.9) (P Buf fer), suspended in KP Buffer 300-1 and sonicated. After the crushed solution was centrifuged at 3000 rpm for 10 minutes, the supernatant was used as a crude enzyme solution, and the diaminobimellinate epimerase activity was measured. Table 1 shows the results. In the table, lysC * represents a mutant lysC gene. In addition, the diaminopime phosphate epimerase activity was shown as a relative value when the activity of AJ11082 was set to 1. Table 1. Strain / plasmid transgenes Merinjech. Melase, 'active
(相対値)  (Relative value)
AJ11082 1.0 AJ11082 1.0
AJ11082/pCAB lysC*,dapA,dapB, lysA 1.2  AJ11082 / pCAB lysC *, dapA, dapB, lysA 1.2
AJ11082/pCABL lysC*,dapA,dapB, lysA 0.9  AJ11082 / pCABL lysC *, dapA, dapB, lysA 0.9
AJ11082/pCAB /pVKdapF lysC*,dapA,dapB, lysA,dapF 12.5  AJ11082 / pCAB / pVKdapF lysC *, dapA, dapB, lysA, dapF 12.5
AJ11082/pCABL/pVKdapF lysC* ,dapA,dapB, lysA,dapF 14.8  AJ11082 / pCABL / pVKdapF lysC *, dapA, dapB, lysA, dapF 14.8
く 4〉Lーリジンの製造 4) Production of L-lysine
AJ11082、 AJ11082/pCAB, AJ11082/pCABL、 AJ11082/pCAB/pVKdapF及び AJ11082/ pCABL/pVKdapFを L一リジン生産培地にて培養し、 その L—リジン生産能を評価 した。 L—リジン生産培地の紐成は以下に示す通りである。  AJ11082, AJ11082 / pCAB, AJ11082 / pCABL, AJ11082 / pCAB / pVKdapF and AJ11082 / pCABL / pVKdapF were cultured in an L-lysine production medium, and the L-lysine production ability was evaluated. The composition of the L-lysine production medium is as shown below.
〔: L一リジン生産培地〕  [: L-lysine production medium]
炭酸カルシウム以外の下記成分 ( 1 L中) を溶解し、 KOHで pH8. 0に調 製し、 1 15 °Cで 1 5分殺菌した後、 別に乾熱殺 ¾した^酸カルシゥムを 50 g 加える。  Dissolve the following components (in 1 L) except calcium carbonate, adjust to pH 8.0 with KOH, sterilize at 115 ° C for 15 minutes, and add 50 g of dry acid-killed ^ acid calcium. .
グルコース 100 g  100 g glucose
(ΝΗ,) .SO. 55 g K H 2 P 0. 1(ΝΗ,) .SO. 55 g KH 2 P 0.1
Figure imgf000018_0001
Figure imgf000018_0001
ピオチン 500 j g  Piotin 500 j g
チアミン 2000 jug
Figure imgf000018_0002
Thiamine 2000 jug
Figure imgf000018_0002
ニコチンアミ ド 5 m  Nicotinamide 5 m
蛋白質加水分解物 (豆濃) 30 ml  Protein hydrolyzate (bean concentrate) 30 ml
炭酸カルシウム 50 g  50 g calcium carbonate
上記組成の培地に各形質転換体及び親株を植菌し、 31.5 Cにて往復振盪培養を 行い、 72時間培養後に培地中の Lーリジン蓄積量を測定した。 結果を表 1に示す。 ジアミノビメリン酸ェピメラ一ゼ活性増幅株においては L—リジンの生産能の向 上が確認された。 表 2 菌株/プラスミ ド 導入遺伝子 L-リシ"ン生産量 (g/L)  Each transformant and the parent strain were inoculated into a medium having the above composition, subjected to reciprocal shaking culture at 31.5 C, and cultured for 72 hours to measure the amount of L-lysine accumulated in the medium. Table 1 shows the results. It was confirmed that L-lysine production ability was improved in the amplified strain of diaminobimelinate epimelase activity. Table 2 Strain / plasmid transgene L-lysine production (g / L)
AJ11082 29.8 AJ11082 29.8
AJ11082/pCAB lysC*,dapA,dapB 44.9  AJ11082 / pCAB lysC *, dapA, dapB 44.9
AJ11082/pCAB/pVKdapF lysC*, dapA,dapB, lysA, dapF 46.4  AJ11082 / pCAB / pVKdapF lysC *, dapA, dapB, lysA, dapF 46.4
AJ11082/pCABL lysC*,dapA,dapB, lysA 46.3  AJ11082 / pCABL lysC *, dapA, dapB, lysA 46.3
AJ11082/pCABL/pVKdapF lysC*,dapA,dapB, lysA,dapF 48.2  AJ11082 / pCABL / pVKdapF lysC *, dapA, dapB, lysA, dapF 48.2
産業上の利用の可能性 Industrial applicability
本発明により、 コリネ型細菌の L—リジンの生産能を向上させることができ、 L一リジンの一^効率のよい製造法が提供される。  According to the present invention, the ability of coryneform bacteria to produce L-lysine can be improved, and a method for producing L-lysine with high efficiency can be provided.

Claims

請求の範囲 The scope of the claims
1 . 細胞中のジアミノピメリン酸ェピメラーゼ活性が増強され、 かつ Lーリ ジン生産能を有するコリネ型細菌。  1. Coryneform bacterium having enhanced diaminopimelate epimerase activity in cells and L-lysine-producing ability.
2 . 前記ジァミノピメリン酸ェピメラーゼ活性の増強が、 前記細菌細胞内の ジァミノピメリン酸ェピメラーゼをコ一ドする遺伝子のコピー数を高めることに よるものである請求項 1記載のコリネ型細菌。  2. The coryneform bacterium according to claim 1, wherein the enhancement of diaminopimelate epimerase activity is caused by increasing the copy number of a gene encoding diaminopimelate epimerase in the bacterial cell.
3 . 前記ジアミノピメリン酸ェビメラ一ゼをコードする遺伝子がコリネ型細 菌由来である請求項 2記載のコリネ型細菌。  3. The coryneform bacterium according to claim 2, wherein the gene encoding diaminopimelate shrimp is derived from a coryneform bacterium.
4 . さらに、 ァスパル卜キナーゼ活性、 ジヒドロジピコリン酸レダク夕ーゼ 活性、 ジヒドロジピコリン酸シンタ一ゼ活性、 及びジアミノビメリン酸デカルボ キシラーゼ活性の少なくとも一つが増強された請求項 1記載のコリネ型細菌。  4. The coryneform bacterium according to claim 1, wherein at least one of aspartase kinase activity, dihydrodipicolinate reductase activity, dihydrodipicolinate synthase activity, and diaminobimelate decarboxylase activity is enhanced.
5 . 請求項 1〜4のいずれか一項に記載のコリネ型細菌を培地に培養し、 該 培養物中に Lーリジンを生成蓄積せしめ、 該培養物から L—リジンを採取するこ とを特徴とする L—リジンの製造法。  5. The coryneform bacterium according to any one of claims 1 to 4 is cultured in a medium, L-lysine is produced and accumulated in the culture, and L-lysine is collected from the culture. A method for producing L-lysine.
PCT/JP2000/001654 1999-03-19 2000-03-17 Process for producing l-lysine WO2000056858A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU31942/00A AU3194200A (en) 1999-03-19 2000-03-17 Process for producing l-lysine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP07637999A JP2003135066A (en) 1999-03-19 1999-03-19 Method for producing l-lysine
JP11/76379 1999-03-19

Publications (1)

Publication Number Publication Date
WO2000056858A1 true WO2000056858A1 (en) 2000-09-28

Family

ID=13603715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001654 WO2000056858A1 (en) 1999-03-19 2000-03-17 Process for producing l-lysine

Country Status (3)

Country Link
JP (1) JP2003135066A (en)
AU (1) AU3194200A (en)
WO (1) WO2000056858A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1085094A2 (en) * 1999-09-11 2001-03-21 Degussa-Hüls Aktiengesellschaft Nucleotide sequences which code for the dapF gene
CN116042416A (en) * 2023-01-09 2023-05-02 天津科技大学 Multi-gene over-expression streptomycete engineering strain for high-yield epsilon-polylysine, method and application

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520219B2 (en) * 2004-05-28 2010-08-04 協和発酵バイオ株式会社 Process for producing 5-aminolevulinic acid
KR20090023513A (en) 2004-10-07 2009-03-04 아지노모토 가부시키가이샤 Process for producing basic substance
JP2009153382A (en) 2006-03-30 2009-07-16 Ajinomoto Co Inc Method for producing carboxylic acid using methanol-assimilating bacterium
JP2010041920A (en) 2006-12-19 2010-02-25 Ajinomoto Co Inc Method for producing l-amino acid
JP2010088301A (en) 2007-02-01 2010-04-22 Ajinomoto Co Inc Method for production of l-amino acid
JP2011067095A (en) 2008-01-10 2011-04-07 Ajinomoto Co Inc Method for producing target substance by fermentation process
EP2248906A4 (en) 2008-01-23 2012-07-11 Ajinomoto Kk Method of producing l-amino acid
JP2010142200A (en) 2008-12-22 2010-07-01 Ajinomoto Co Inc Method for producing l-lysine
JPWO2011013707A1 (en) 2009-07-29 2013-01-10 味の素株式会社 Method for producing L-amino acid
JP2012196144A (en) 2009-08-03 2012-10-18 Ajinomoto Co Inc Method for producing l-lysine using vibrio bacterium
JP2012223091A (en) 2009-08-25 2012-11-15 Ajinomoto Co Inc Method for producing l-amino acid
JP2016192903A (en) 2013-09-17 2016-11-17 味の素株式会社 Method for manufacturing l-amino acid from biomass derived from seaweed
RU2628696C1 (en) 2013-10-02 2017-08-21 Адзиномото Ко., Инк. A method for producing basic amino acid (variants)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0219027A2 (en) * 1985-10-04 1987-04-22 Kyowa Hakko Kogyo Co., Ltd. Process for producing amino acids
JPH06261766A (en) * 1993-03-16 1994-09-20 Mitsubishi Petrochem Co Ltd Genetic dna capable of coding aspartokinase released from feedback inhibition and its utilization
WO1995016042A1 (en) * 1993-12-08 1995-06-15 Ajinomoto Co., Inc. Process for producing l-lysine by fermentation
WO1996040934A1 (en) * 1995-06-07 1996-12-19 Ajinomoto Co., Inc. Process for producing l-lysine
EP0811682A2 (en) * 1996-06-05 1997-12-10 Ajinomoto Co., Inc. Method of producing L-lysine
EP0854189A2 (en) * 1996-12-05 1998-07-22 Ajinomoto Co., Inc. Method for producing L-lysine
EP0857784A2 (en) * 1996-12-05 1998-08-12 Ajinomoto Co., Inc. Method for producing L-lysine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0219027A2 (en) * 1985-10-04 1987-04-22 Kyowa Hakko Kogyo Co., Ltd. Process for producing amino acids
JPH06261766A (en) * 1993-03-16 1994-09-20 Mitsubishi Petrochem Co Ltd Genetic dna capable of coding aspartokinase released from feedback inhibition and its utilization
WO1995016042A1 (en) * 1993-12-08 1995-06-15 Ajinomoto Co., Inc. Process for producing l-lysine by fermentation
WO1996040934A1 (en) * 1995-06-07 1996-12-19 Ajinomoto Co., Inc. Process for producing l-lysine
EP0811682A2 (en) * 1996-06-05 1997-12-10 Ajinomoto Co., Inc. Method of producing L-lysine
EP0854189A2 (en) * 1996-12-05 1998-07-22 Ajinomoto Co., Inc. Method for producing L-lysine
EP0857784A2 (en) * 1996-12-05 1998-08-12 Ajinomoto Co., Inc. Method for producing L-lysine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"AMINO SAN HAKKOU", FIRST PRINTING, XX, XX, 30 May 1986 (1986-05-30), XX, pages 273 - 305, XP002933763 *
RICHAUD C. ET AL.: "nucleotide sequence of the dapF gene and flanking regions from Escherichia coli K12", NUCLEIC ACIDS RES.,, vol. 16, no. 21, November 1988 (1988-11-01), pages 10367, XP002926015 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1085094A2 (en) * 1999-09-11 2001-03-21 Degussa-Hüls Aktiengesellschaft Nucleotide sequences which code for the dapF gene
EP1085094A3 (en) * 1999-09-11 2003-01-15 Degussa AG Nucleotide sequences which code for the dapF gene
US6670156B1 (en) * 1999-09-11 2003-12-30 Degussa Ag Polynucleotide encoding a diaminopimelate epimerase from Corynebacterium glutamicum
CN116042416A (en) * 2023-01-09 2023-05-02 天津科技大学 Multi-gene over-expression streptomycete engineering strain for high-yield epsilon-polylysine, method and application

Also Published As

Publication number Publication date
JP2003135066A (en) 2003-05-13
AU3194200A (en) 2000-10-09

Similar Documents

Publication Publication Date Title
JP4035855B2 (en) Method for producing L-lysine
US7846698B2 (en) Method of producing L-lysine
JP4075087B2 (en) Method for producing L-lysine
JP4168463B2 (en) Method for producing L-lysine
EP0854189A2 (en) Method for producing L-lysine
WO2000056858A1 (en) Process for producing l-lysine
JP2003159092A (en) Method for producing l-amino acid
WO2001048146A1 (en) Process for producing l-amino acid and novel gene
WO2001002545A1 (en) Process for producing l-amino acid
JP3965821B2 (en) Method for producing L-lysine
WO2001002543A1 (en) Process for producing l-amino acid
WO2001002546A1 (en) Process for producing l-amino acid
WO2000077172A1 (en) Process for producing l-lysine
WO2001002544A1 (en) Process for producing l-amino acid
JP2003169674A (en) Method for producing l-lysine
WO2000056859A1 (en) Process for producing l-amino acid
WO2001005960A1 (en) Process for producing l-amino acid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BG BR CA CN CR CU CZ DM DZ EE GD GE HR HU ID IL IN IS JP KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP