WO2001002547A1 - Process for producing l-lysine - Google Patents

Process for producing l-lysine Download PDF

Info

Publication number
WO2001002547A1
WO2001002547A1 PCT/JP2000/004347 JP0004347W WO0102547A1 WO 2001002547 A1 WO2001002547 A1 WO 2001002547A1 JP 0004347 W JP0004347 W JP 0004347W WO 0102547 A1 WO0102547 A1 WO 0102547A1
Authority
WO
WIPO (PCT)
Prior art keywords
lysine
producing
gene
isomerase
ribosephosphate
Prior art date
Application number
PCT/JP2000/004347
Other languages
French (fr)
Japanese (ja)
Inventor
Masakazu Sugimoto
Hisao Ito
Osamu Kurahashi
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to AU55712/00A priority Critical patent/AU5571200A/en
Publication of WO2001002547A1 publication Critical patent/WO2001002547A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine

Definitions

  • the present invention relates to a method for producing L-lysine by a fermentation method.
  • L-Lysine is widely used as a feed additive.
  • BACKGROUND ART Conventionally, L-lysine has been industrially produced by a fermentation method using a coryneform bacterium belonging to the genus Brevipacterium and Corynebacterium having the ability to produce L-lysine. For these coryneform bacteria, strains isolated from the natural world or artificial mutants of the strains are used in order to improve productivity.
  • An object of the present invention is to provide a method for producing L-lysine by a fermentation method which has been further improved than before, and a bacterial strain used therefor.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, introduced a gene encoding ribose phosphate isomerase into a coryneform bacterium, and demonstrated the activity of ribose phosphate isomerase. It has been found that the production of L-lysine can be increased by increasing the amount of L-lysine, and the present invention has been completed. That is, the present invention is as follows.
  • Coryneform bacterium having enhanced ribose phosphate isomerase activity in cells and capable of producing lysine.
  • the coryneform bacterium of the present invention is a coryneform bacterium having L-lysine-producing ability and enhanced ribosephosphate isomerase activity in cells.
  • the coryneform bacterium referred to in the present invention is a group of microorganisms defined in Bergey's Manual of Determinative Bacteriology, 8th edition, p. 599 (1974). Yes, aerobic, Gram-positive, non-acid-fast, non-spore-forming bacilli, including bacteria that were previously classified as Brevipacterium but are now integrated as Corynebacterium. (Int. J. Syst. Bacterid., 41, 255 (1981)), and also include bacteria of the genus Brevipacterium and Microbatterium, which are very closely related to the genus Corynepacterium.
  • the strains of coryneform bacteria suitably used for the production of L-lysine include, for example, those shown below.
  • Corynebacterium thermoaminogenes AJ12340 (FERM BP-1539)
  • American Type Culture Collection (American Type Culture Collection ⁇ Address 12301 Park lawn Drive, Rockville, Maryland 20852, United States of America). That is, a registration number corresponding to each microorganism is assigned, and the microorganism can be ordered by referring to this registration number. The registration number corresponding to each microorganism can be found in the American Type Culture Collection catalog. Also,
  • the AJ12340 strain has been deposited with the Ministry of International Trade and Industry at the Institute of Biotechnology and Industrial Technology (ZIP 1-3-1, Tsukuba, Ibaraki, Japan) under the Budapest Treaty.
  • mutants having L-lysine-producing ability derived from these strains can also be used in the present invention.
  • Such artificial mutants include the following. S— (2-aminoethyl) one cysteine (hereinafter abbreviated as “AEC”) resistant mutant (for example, Brevipacterium lactofarmentum AJ11082 (NRR LB-11470), Japanese Patent Publication No. 56-1914, JP-B-56-1915, JP-B-57-14157, JP-B-57-14158, JP-B-57-30474, JP-B-58-10075, JP-B-59-4993, JP-B-61-35840, (See Japanese Patent Publication No.
  • L_lysine-producing ability refers to the ability to accumulate a significant amount of L-lysine in a medium when a coryneform bacterium is cultured in the medium, or the L-lysine in the cells. The ability to increase lysine.
  • a gene fragment encoding ribosephosphate isomerase is ligated to a vector, preferably a multicopy vector, which functions in the bacterium. Then, a recombinant DNA may be prepared and introduced into a coryneform bacterium capable of producing L-lysine for transformation. As a result of an increase in the copy number of the gene encoding ribosephosphate isomerase in the cells of the transformed strain, ribosephosphate isomerase activity is enhanced. Ribose phosphate isomerase is encoded in the rpi gene in Escherichia coli.
  • ribosephosphate isomerase gene either a gene of a coryneform bacterium or a gene derived from another organism such as a bacterium belonging to the genus Escherichia can be used.
  • the nucleotide sequence of the rpi gene of Escherichia coli has already been elucidated (Sorensen, K.I. et al., J. Bacteriol., 178 (4), 1003-1011 (1996), Genbank / EMBL / DDBJ accetion No. X82203), using a primer prepared based on the nucleotide sequence, for example, the primers shown in SEQ ID NOs: 1 and 2 in the Sequence Listing, and using the chromosomal DNA of Escherichia coli as a type II (PCR: polymerase chain reaction) White, TJ et al; see Trends Genet. 5, 185 (1989)) to obtain the rpi gene.
  • Genes encoding ribosephosphate isomerase of other microorganisms such as coryneform bacteria can be obtained in a similar manner.
  • Chromosomal DNA is obtained from bacteria that are DNA donors, for example, by the method of Saito and K. Miura (H. Saito and K. Miura Biochem. Biophys. Acta, 72, 619 (1963)), Biological Engineering Experiment, Japan Society for Biotechnology Pp. 97-98, Baifukan, 1992).
  • the gene encoding ribosephosphate isomerase amplified by the PCR method is connected to a vector DNA capable of autonomous replication in cells of Escherichia coli and / or coryneform bacteria to prepare recombinant DNA, If this is introduced into Escherichia coli cells, subsequent operations will be slow.
  • a plasmid vector As a vector capable of autonomous replication in Escherichia coli cells, a plasmid vector is preferable, and a vector capable of autonomous replication in a host cell is preferable.
  • pUC19, pUC18, pBR322, pHSG299, pHSG399, pHSG398, RSF1010 and the like are preferable. No.
  • Examples of vectors capable of autonomous replication in coryneform bacterium cells include PAM330 (see Japanese Patent Application Laid-Open No. 58-67699), pHM1519 (see Japanese Patent Application Laid-Open No. 58-77895), and the like.
  • a DNA fragment capable of autonomously replicating plasmid in coryneform bacteria is extracted from these vectors and inserted into the Escherichia coli vector, whereby autonomous replication in both Escherichia coli and coryneform bacteria occurs. It can be used as a shuttle vector that is not possible. The following are examples of such shuttle vectors. Microorganisms carrying the respective vectors and the accession numbers of the international depository organizations are shown in parentheses.
  • PAJ611 Escherichia Cori AJ11884 (FERM BP-138)
  • a restriction enzyme that matches the end of the gene encoding ribosephosphate isomerase is used. Cut the vector. Ligation is usually performed using a ligase such as T4DNA ligase.
  • the transformation may be carried out according to the transformation method reported in (1).
  • a method for increasing the permeability of DNA by treating recipient cells with calcium chloride as reported for E. coli K_12 (Mandel, M. and Higa, A., J. Mol. Biol. , 53, 159 (1970)
  • a method for preparing DNA from transgenic cells and introducing DNA as described in Bacillus subtilis (Duncan, CH, Wilson, GA and Young, FE, Gene, 1, 153 (1977)).
  • cells of a DNA-accepting bacterium such as those known for Bacillus subtilis, actinomycetes and yeast, are transformed into protoplasts or spheroplasts that readily incorporate the recombinant DNA, and the recombinant DNA is transferred to the DNA recipient.
  • a DNA-accepting bacterium such as those known for Bacillus subtilis, actinomycetes and yeast
  • the transformation method used in the examples of the present invention is the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791).
  • Enhancement of the activity encoding ribosephosphate isomerase can also be achieved by the presence of multiple copies of the gene encoding reporter phosphate isomerase on the chromosomal DNA of the host.
  • a sequence present in multiple copies on chromosomal DNA is used as a target. Perform by homologous recombination.
  • repetitive DNA and inverted repeats present at the end of a transposable element can be used.
  • a gene encoding ribose phosphate isomerase is mounted on a transposon and transferred, and multiple copies are introduced into chromosomal DNA. Is also possible. Either method increases the copy number of the gene encoding ribosephosphate isomerase in the transformant, resulting in enhanced ribosephosphate isomerase activity.
  • Enhancement of ribosephosphate isomerase activity is not only due to the above gene amplification, but also as ribosephosphate isomerase on chromosome DNA or plasmid. This can also be achieved by replacing the expression control sequence such as the promoter of the gene encoding zeo with a strong one (see Japanese Patent Application Laid-Open No. 1-215280). For example, lac promoter, trp promoter, trc promoter, tac bromo overnight, lambda phage PR promoter, PL promoter, etc. are known as strong promoters. Substitution of these promoters enhances ribose phosphate isomerase activity by enhancing expression of the gene encoding reporter phosphate isomerase.
  • the coryneform bacterium of the present invention can enhance the enzymatic genes of other L-lysine biosynthetic pathways or glycolytic pathways in addition to the ribose phosphate isomerase activity, thereby enhancing their enzymatic activities.
  • Examples of such a gene include a gene coding for Aspartokinase subunit protein or /? Subunit protein in which synergistic feedback inhibition by L-lysine and L-threonine has been substantially eliminated (W094 / 25605 international publication pamphlet), a wild-type phosphoenolpyruvate carboxylase gene derived from a coryneform bacterium (Japanese Patent Application Laid-Open No. 60-87788), a gene encoding a wild-type dihydrodipicolinate synthase derived from a coryneform bacterium (Japanese Patent Publication No. No. 55149).
  • an enzyme that catalyzes a reaction that produces a compound other than L-lysine by branching off from the L-lysine biosynthetic pathway may be reduced or lacking.
  • One such enzyme is homoserine dehydrogenase (see WO 95/23864).
  • the phrase “enhanced activity” of an enzyme generally means that the enzyme activity in a cell is higher than that of a wild-type strain, and is modified by a gene recombination technique or the like. When a strain with enhanced enzyme activity is obtained, it means that the enzyme activity in the cell is higher than that of the strain before modification.
  • reduced activity usually means that the enzyme activity in a cell is lower than that of a wild-type strain, and the enzyme activity has been reduced by modification by genetic recombination technology or the like. When a strain is obtained, it means that the enzyme activity in the cell is lower than that of the strain before modification.
  • the medium used for producing L-lysine using the microorganism of the present invention is an ordinary medium containing a carbon source, a nitrogen source, inorganic ions, and if necessary, other organic micronutrients.
  • Carbon sources include carbohydrates such as glucose, lactose, galactose, fructose, sucrose, molasses, starch hydrolysates, alcohols such as ethanol and inositol, acetic acid, fumaric acid, citric acid, succinic acid, etc.
  • Organic acids can be used.
  • Nitrogen sources include inorganic ammonium salts such as ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium phosphate, ammonium acetate, ammonia, peptone, meat extract, yeast extract, yeast extract, corn 'steep' liquor, soybean hydrolyzate, etc. Organic nitrogen, ammonia gas, aqueous ammonia, etc. can be used.
  • inorganic ammonium salts such as ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium phosphate, ammonium acetate, ammonia, peptone, meat extract, yeast extract, yeast extract, corn 'steep' liquor, soybean hydrolyzate, etc.
  • Organic nitrogen, ammonia gas, aqueous ammonia, etc. can be used.
  • inorganic ions small amounts of potassium phosphate, magnesium sulfate, iron ions, manganese ions and the like are added.
  • organic trace nutrients it is desirable to include a required substance such as vitamin B1 or a yeast extract in an appropriate amount as necessary.
  • the culture is preferably carried out for 16 to 72 hours under aerobic conditions, such as shaking culture and aeration / agitation culture.
  • the culture temperature is 30 to 45, and the pH during culture is 5 to 9. Control It is to be noted that inorganic or organic acidic or alkaline substances, ammonia gas and the like can be used for pH adjustment.
  • the collection of L-lysine from the fermentation broth can usually be carried out by a combination of ion exchange resin method, precipitation method and other known methods. Examples Hereinafter, the present invention will be described more specifically with reference to Examples.
  • the nucleotide sequence of the rpi gene of Escherichia coli has already been elucidated (Sorensen, K. I. et al., J. Bacterid., 178 (4), 1003-1011 (1996), Genbank / EMBL / J accetion No. X82203 ). Based on the reported nucleotide sequence, the primers shown in SEQ ID NOs: 1 and 2 were synthesized, and the pyruvate dehydrogenase gene was amplified by PCR using the chromosomal DNA of Escherichia coli JM109 strain as type III. .
  • SEQ ID NO: 1 corresponds to the sequence from the 1st to 24th base of the base sequence of the rpi gene described in Genbank / EMBL / DDBJ accetion No. X 82203
  • SEQ ID NO: 2 23 1 corresponds to the sequence from the 2nd to the 2289th base.
  • the chromosomal DNA of Escherichia coli JM109 strain was prepared by a conventional method (Biotechnological Experiments, edited by Biotechnology Society of Japan, pp. 97-98, Baifukan, 19992).
  • PCR reaction standard reaction conditions described on page 185 of the front line of the PCR method (edited by Takeo Sekiya et al., Kyoritsu Shuppan, 1989) were used.
  • the resulting PCR product was purified by a conventional method, ligated with a smal-cleaved plasmid pHC4 using a ligation kit (Takara Shuzo), and then combined with Escherichia coli KM JM109 (Takara Shuzo).
  • Lactic acid medium containing 30 g / ml of chloram fenicol (Bacto Tribton 10 g / L, Bactoist Extract 5 g / L, NaCl 5 g / L, Agar 15 g / L, After the culture was completed, the white colonies that appeared were picked up and separated into single colonies to obtain a transformed strain. Plasmid was extracted from the obtained transformant to obtain a plasmid pHC4rpi in which the rpi gene was linked to the vector.
  • Escherichia coli which retains pH C4, was named private number AJ12617, and on April 24, 1999, the Institute of Biotechnology and Industrial Technology, Ministry of International Trade and Industry (ZIP code 305-8566, Ibaraki, Japan) Deposit No. FE RM P—122 1-5 at Higashi 1-3-chome, Tsukuba City, Prefectural Government, and transferred to an international deposit under the Budapest Convention on August 26, 1999, and deposited under accession number FERM BP. — 3532 is granted.
  • AJ11082 / pHC4rpi strain obtained by culturing in a CM2B plate medium containing 5 ⁇ g / ml chloramphenicol was mixed with the following composition containing 5 ⁇ g / m1 chloramphenicol.
  • L-lysine production medium was inoculated and cultured at 31.5 ° C with shaking until the sugar in the medium was consumed.
  • a strain obtained by transforming a plasmid pHC4 capable of autonomously replicating with a previously obtained corynebacterium bacterium by the electric pulse method was cultured in the corynebacterium bacterium AJ11082 strain in the same manner as described above.
  • Lactofermentum AJ11082 was established on January 31, 1981 at the Agricultural Research Culture Collection, Illinois, United States, 6 1 604 Peoria Northuniversity Street 1 815 ( 1815 N. University Street, Peoria, Illinois 61604 USA)) and deposited under accession number NRRL B-11470.
  • Protein hydrolyzate (bean concentrate) 30 ml
  • Ribose phosphate isomerase is an enzyme in the pentose phosphate cycle.
  • L-lysine biosynthesis requires NADPH, and NAD P + is produced with the production of L-lysine. Therefore, it is considered that the pentose phosphate cycle progresses by enhancing the report phosphate isomerase activity, and the LAD-lysine biosynthesis reaction proceeds smoothly by the generated NAD PH. Possibility According to the present invention, the ability of coryneform bacteria to produce L-lysine can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

A process for producing L-lysine by a further improved fermentation method compared with the existing methods which comprises transferring a gene encoding ribose phosphate isomerase into a coryneform bacterium capable of producing L-lysine and thus enhancing the ribose phosphate isomerase activity to thereby elevate the L-lysine productivity; and a strain to be used therein.

Description

明細  Statement
Lーリジンの製造法 技術分野 本発明は、 発酵法による L一リジンの製造法に関する。 L—リジンは飼料添加 物等として広く用いられている。 背景技術 従来、 L—リジンは、 L—リジン生産能を有するブレビパクテリゥム属ゃコリ ネバクテリゥム属に属するコリネ型細菌を用いて発酵法により工業生産されてい る。 これらのコリネ型細菌は、 生産性を向上させるために、 自然界から分離した 菌株または該菌株の人工変異株が用いられている。 TECHNICAL FIELD The present invention relates to a method for producing L-lysine by a fermentation method. L-Lysine is widely used as a feed additive. BACKGROUND ART Conventionally, L-lysine has been industrially produced by a fermentation method using a coryneform bacterium belonging to the genus Brevipacterium and Corynebacterium having the ability to produce L-lysine. For these coryneform bacteria, strains isolated from the natural world or artificial mutants of the strains are used in order to improve productivity.
また、 組換え D N A技術により L—リジンの生合成酵素活性を増強することに よって、 L—アミノ酸の生産能を増加させる種々の技術が開示されている。 例え ば、 L—リジン生産能を有するコリネ型細菌において、 L—リジン及び L—スレ ォニンによるフィ一ドバック阻害が解除されたァスパルトキナ一ゼをコードする 遺伝子 (変異型 lysC) 、 ジヒドロジピコリン酸レダクターゼ遺伝子 (dapB) 、 ジ ヒドロジピコリン酸シン夕ーゼ遺伝子 (dapA) 、 ジアミノピメリン酸デカルボキ シラーゼ遺伝子 (lysA) 、 及びジアミノピメリン酸デヒドロゲナーゼ遺伝子 (dd h) (W096/40934) 、 lysA及び ddh (特開平 9— 322774号) 、 lysC、 lysA及びホスホ エノールビルビン酸カルボキシラーゼ遺伝子 (ppc) (特開平 10-165180号) 、 変 異型 lysC、 dapB、 dapA、 lysA及びァスパラギン酸アミノ トランスフェラーゼ遺伝 子 (aspC) (特開平 10-215883号) を導入することにより、 同細菌の L一リジン生 産能が向上することが知られている。  In addition, various techniques for increasing L-amino acid producing ability by enhancing L-lysine biosynthetic enzyme activity by recombinant DNA technology have been disclosed. For example, in a coryneform bacterium capable of producing L-lysine, a gene (mutant lysC) encoding aspartokinase from which feedback inhibition by L-lysine and L-threonine has been released, a dihydrodipicolinate reductase gene (DapB), dihydrodipicolinate synthase gene (dapA), diaminopimelate decarboxylase gene (lysA), and diaminopimelate dehydrogenase gene (ddh) (W096 / 40934), lysA and ddh (Japanese Patent Laid-Open No. 9-322774). No.), lysC, lysA and phosphoenolpyruvate carboxylase gene (ppc) (JP-A-10-165180), variant lysC, dapB, dapA, lysA and aspartate aminotransferase gene (aspC) (JP-A-10-215883) Is known to improve the production of L-lysine in the bacterium. .
また、 ェシエリヒア属細菌においては、 dapA、 変異型 lys dapB、 ジアミノビ メリン酸デヒドロゲナーゼ遺伝子 (ddh) (又はテトラヒドロジピコリン酸スクシ 二ラ一ゼ遺伝子 (dapD) 及びスクシ二ルジアミノピメリン酸デアシラーゼ遺伝子 ( dapE) ) を順次増幅又は導入すると L—リジン生産能が向上することが知られ ている (W0 95/16042) 。 尚、 W0 95/16042ではテトラヒドロジピコリン酸スクシ 二ラーゼがスクシニルジアミノピメリン酸トランスアミナーゼと誤記されている。 しかし、 リボースフォスフェートィソメラーゼをコ一ドする遺伝子の構造はコ リネ型細菌では報告されておらず、 リボースフォスフェートイソメラ一ゼをコ一 ドする遺伝子をコリネ型細菌の育種に利用することも知られていない。 発明の開示 本発明は、 従来よりもさらに改良された発酵法による L一リジンの製造法、 及 びそれに用いる菌株を提供することを課題とする。 In the bacterium belonging to the genus Escherichia, dapA, mutant lys dapB, diaminobimeric acid dehydrogenase gene (ddh) (or tetrahydrodipicolinate succinylase gene (dapD), and succinyldiaminopimelate deacylase gene It is known that the sequential amplification or introduction of (dapE)) enhances L-lysine production ability (W095 / 16042). In WO95 / 16042, tetrahydrodipicolinate succinylase is erroneously described as succinyldiaminopimelate transaminase. However, the structure of the gene encoding ribosephosphate isomerase has not been reported in coryneform bacteria, and the gene encoding ribosephosphate isomerase can be used for breeding coryneform bacteria. Not even known. DISCLOSURE OF THE INVENTION An object of the present invention is to provide a method for producing L-lysine by a fermentation method which has been further improved than before, and a bacterial strain used therefor.
本発明者等は、 上記課題を解決するために鋭意検討を行った結果、 リボースフ ォスフヱートイソメラ一ゼをコードする遺伝子をコリネ型細菌に導入し、 リボー スフォスフェートィソメラ一ゼ活性を増強することにより、 L—リジンの生産量 を増大させることができることを見出し、 本発明を完成するに至った。 すなわち本発明は、 以下のとおりである。  The present inventors have conducted intensive studies to solve the above problems, and as a result, introduced a gene encoding ribose phosphate isomerase into a coryneform bacterium, and demonstrated the activity of ribose phosphate isomerase. It has been found that the production of L-lysine can be increased by increasing the amount of L-lysine, and the present invention has been completed. That is, the present invention is as follows.
( 1 ) 細胞中のリボースフォスフェートイソメラ一ゼ活性が増強され、 かっ 一 リジン生産能を有するコリネ型細菌。  (1) Coryneform bacterium having enhanced ribose phosphate isomerase activity in cells and capable of producing lysine.
( 2 ) 前記リボースフォスフェートイソメラ一ゼ活性の増強が、 前記細菌細胞内 のリボースフォスフヱートイソメラーゼをコ一ドする遺伝子のコピー数を高める ことによるものである前記 ( 1 ) のコリネ型細菌。  (2) The coryneform according to (1), wherein the enhancement of the ribosephosphate isomerase activity is caused by increasing the copy number of a gene encoding ribosephosphate isomerase in the bacterial cell. Type bacteria.
( 3 ) 前記リボースフォスフエ一トイソメラーゼをコ一ドする遺伝子がェシェリ ヒア属細菌由来である (2 ) のコリネ型細菌。  (3) The coryneform bacterium according to (2), wherein the gene encoding the ribosephosphate isomerase is derived from a bacterium belonging to the genus Escherichia.
( 4 ) 前記 ( 1 ) 〜 ( 3 ) のいずれかのコリネ型細菌を培地に培養し、 該培養物 中に L—リジンを生成蓄積せしめ、 該培養物から L—リジンを採取することを特 徴とする L—リジンの製造法。 発明を実施するための最良の形態 以下、 本発明を詳細に説明する。 (4) A method comprising culturing the coryneform bacterium according to any of (1) to (3) in a medium, producing and accumulating L-lysine in the culture, and collecting L-lysine from the culture. The production method of L-lysine. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
< 1 >本発明のコリネ型細菌 <1> Coryneform bacterium of the present invention
本発明のコリネ型細菌は、 L—リジン生産能を有し、 細胞中のリボースフォス フェートイソメラーゼ活性が増強されたコリネ型細菌である。  The coryneform bacterium of the present invention is a coryneform bacterium having L-lysine-producing ability and enhanced ribosephosphate isomerase activity in cells.
本発明でいうコリネ型細菌は、 バージーズ ·マニュアル ·ォブ ·デ夕一ミネィ ティブ 'ノ クテリオロジー (Bergey' s Manual of Determinative Bacteriology) 第 8版 599頁 (1974) に定義されている一群の微生物であり、 好気性、 グラム陽性、 非抗酸性で、 胞子形成能を有しない桿菌であり、 従来ブレビパクテリゥム属に分 類されていたが現在コリネバクテリゥム属細菌として統合された細菌を含み (In t. J. Syst. Bacterid., 41, 255 (1981)) 、 またコリネパクテリゥム属と非常 に近縁なブレビパクテリゥム属細菌及びミクロバテリゥム属細菌を含む。 Lーリ ジンの製造に好適に用いられるコリネ型細菌の菌株としては、 例えば以下に示す ものが挙げられる。  The coryneform bacterium referred to in the present invention is a group of microorganisms defined in Bergey's Manual of Determinative Bacteriology, 8th edition, p. 599 (1974). Yes, aerobic, Gram-positive, non-acid-fast, non-spore-forming bacilli, including bacteria that were previously classified as Brevipacterium but are now integrated as Corynebacterium. (Int. J. Syst. Bacterid., 41, 255 (1981)), and also include bacteria of the genus Brevipacterium and Microbatterium, which are very closely related to the genus Corynepacterium. The strains of coryneform bacteria suitably used for the production of L-lysine include, for example, those shown below.
コリネバクテリゥム · ァセトァシドフイルム ATCC13870  Corynebacterium acetoacid film ATCC13870
コリネバクテリウム · ァセトグル夕ミクム ATCC15806  Corynebacterium acetoglu mikum ATCC15806
コリネバクテリウム · カルナェ ATCC15991  Corynebacterium carnaet ATCC15991
コリネパクテリゥム · グル夕ミクム ATCC13032  Corynepaterum · Guru Yu Mikum ATCC13032
(ブレビパクテリゥム ·ディバリカタム) ATCC14020  (Brevipactivium dibaricatam) ATCC14020
(ブレビパクテリゥム · ラクトフアーメンタム) ATCC13869  (Brevipactium · Lactofamentum) ATCC13869
(コリネバクテリゥム . リリウム) ATCC15990  (Corynebacterium. Lilium) ATCC15990
(ブレビパクテリゥム · フラバム) ATCC14067  (Brevipactium / Flavum) ATCC14067
コリ不バクテリウム メラセコーラ ATCC17965  Coli non-bacterium Melase cola ATCC17965
ブレビバクテリウム サッカロリティクム ATCC1傷 6  Brevibacterium Saccharolyticum ATCC1 wound 6
ブレビバクテリウム インマリオフィルム ATCC14068  Brevibacterium in Mario film ATCC14068
ブレビバクテリウム ロゼゥム ATCC13825  Brevibacterium roseum ATCC13825
ブレビバクテリゥム チォゲ二夕リス ATCC 19240  Brevibacterium Choge Niyu Squirrel ATCC 19240
ミクロバクテリウム アンモニアフィラム ATCC15354  Microbacterium ammonia Filum ATCC15354
コリネバクテリウム サーモアミノゲネス AJ12340(FERM BP- 1539) これらを入手するには、 例えばァメリカン · タイプ · カルチャー · コレクショ ン (American Type Culture Col lection^ 住所 12301 Park lawn Drive, Rockvi l l e, Maryland 20852, United States of America) より分譲を受けることができ る。 すなわち、 各微生物ごとに対応する登録番号が付与されており、 この登録番 号を引用して分譲を受けることができる。 各微生物に対応する登録番号はァメ リ カン · タイプ · カルチャー · コレクションのカタログに記載されている。 また、Corynebacterium thermoaminogenes AJ12340 (FERM BP-1539) To obtain these, for example, American Type Culture Collection (American Type Culture Collection ^ Address 12301 Park lawn Drive, Rockville, Maryland 20852, United States of America). That is, a registration number corresponding to each microorganism is assigned, and the microorganism can be ordered by referring to this registration number. The registration number corresponding to each microorganism can be found in the American Type Culture Collection catalog. Also,
AJ12340株は、 通商産業省工業技術院生命工学工業技術研究所 (郵便番号 305-856 6 日本国茨城県つくば市東一丁目 1番 3号) にブダペス ト条約に基づいて寄託さ れている。 The AJ12340 strain has been deposited with the Ministry of International Trade and Industry at the Institute of Biotechnology and Industrial Technology (ZIP 1-3-1, Tsukuba, Ibaraki, Japan) under the Budapest Treaty.
また、 上記菌株以外にも、 これらの菌株から誘導された L—リジン生産能を有 する変異株等も、 本発明に利用できる。 この様な人工変異株としては次の様なも のがある。 S— (2—アミノエチル) 一システィン (以下、 「AEC」 と略記する) 耐性変異株 (例えば、 ブレビパクテリゥム · ラクトフアーメンタム AJ11082 (NRR L B- 11470) 、 特公昭 56- 1914号、 特公昭 56- 1915号、 特公昭 57- 14157号、 特公昭 5 7- 14158号、 特公昭 57-30474号、 特公昭 58-10075号、 特公昭 59- 4993号、 特公昭 61 - 35840号、 特公昭 62- 24074号、 特公昭 62- 36673号、 特公平 5- 11958号、 特公平 7-1 12437号、 特公平 7- 112438号参照) 、 その成長に L一ホモセリン等のアミノ酸を必 要とする変異株 (特公昭 48-28078号、 特公昭 56-6499号) 、 AECに耐性を示し、 更 に L—ロイシン、 L—ホモセリン、 L—プロリン、 Lーセリン、 L—アルギニン、 Lーァラニン、 L—パリン等のアミノ酸を要求する変異株 (米国特許第 3708395号 及び第 3825472号) 、 D L—ひ一ァミノ一 ε —力プロラクタム、 ひ一ァミノ一ラウ リルラクタム、 ァスパラギン酸一アナログ、 スルファ剤、 キノイ ド、 Ν—ラウ口 ィルロイシンに耐性を示す L _リジン生産変異株、 ォキザ口酢酸脱炭酸酵素 (デ カルボキシラーゼ) または呼吸系酵素阻害剤の耐性を示す L—リジン生産変異株 (特開昭 50- 53588号、 特開昭 50-31093号、 特開昭 52-102498号、 特開昭 53-9394号、 特開昭 53- 86089号、 特開昭 55-9783号、 特開昭 55- 9759号、 特開昭 56-32995号、 特 開昭 56- 39778号、 特公昭 53- 43591号、 特公昭 53- 1833号) 、 イノシトールまたは酢 酸を要求する L—リジン生産変異株 (特開昭 55- 9784号、 特開昭 56- 8692号) 、 フ ルォロピルビン酸または 34°C以上の温度に対して感受性を示す L—リジン生産変 異株 (特開昭 55- 9783号、 特開昭 53- 86090号) 、 エチレングリコールに耐性を示し、 L _リジンを生産するブレビパクテリゥム属またはコリネパクテリゥム属の生産 変異株 (米国特許第 4411997号) 。 In addition to the above strains, mutants having L-lysine-producing ability derived from these strains can also be used in the present invention. Such artificial mutants include the following. S— (2-aminoethyl) one cysteine (hereinafter abbreviated as “AEC”) resistant mutant (for example, Brevipacterium lactofarmentum AJ11082 (NRR LB-11470), Japanese Patent Publication No. 56-1914, JP-B-56-1915, JP-B-57-14157, JP-B-57-14158, JP-B-57-30474, JP-B-58-10075, JP-B-59-4993, JP-B-61-35840, (See Japanese Patent Publication No. 62-24074, Japanese Patent Publication No. 62-36673, Japanese Patent Publication No. 5-11958, Japanese Patent Publication No. 7-112437, Japanese Patent Publication No. 7-112438), and their growth requires amino acids such as L-homoserine. (JP-B-48-28078, JP-B-56-6499), which are resistant to AEC, and furthermore, L-leucine, L-homoserine, L-proline, L-serine, L-arginine, L-alanine, Mutants that require amino acids such as L-parin (US Pat. Nos. 3,708,395 and 3,825,472), DL-amino-ε L-lysine-producing mutants resistant to caprolactam, hyaminoaminolauryl lactam, aspartic acid monoanalog, sulfa drugs, quinoids, Ν-lau mouth ylleucine, oxaza mouth acetate decarboxylase (decarboxylase) or respiration L-lysine-producing mutants showing resistance to an enzyme inhibitor (Japanese Patent Application Laid-Open Nos. 50-53588, 50-31093, 52-102498, 53-9394, and 53-9394, 53-86089, JP-A-55-9783, JP-A-55-9759, JP-A-56-32995, JP-B-56-39778, JP-B-53-43591, JP-B-53-1833 ), L-lysine-producing mutants that require inositol or acetic acid (JP-A-55-9784, JP-A-56-8692), L-lysine that is sensitive to fluoropyruvic acid or a temperature of 34 ° C or higher. —Lysine-producing variants (JP-A-55-9783, JP-A-53-86090), ethylene glycol Le to show resistance, A mutant strain of Brevipacterium or Corynepacterium that produces L-lysine (US Patent No. 4411997).
なお、 本明細書において 「L _リジン生産能」 とは、 コリネ型細菌を培地に培 養したときに、 培地中に有意な量の L一リジンを蓄積する能力、 又は菌体中の L -リジンを増加させる能力をいう。  As used herein, the term "L_lysine-producing ability" refers to the ability to accumulate a significant amount of L-lysine in a medium when a coryneform bacterium is cultured in the medium, or the L-lysine in the cells. The ability to increase lysine.
< 2 >リボースフォスフヱートィソメラーゼ活性の増強  <2> Enhancement of ribose phosphate isomerase activity
コリネ型細菌細胞中のリボースフォスフェートイソメラ一ゼ活性を増強するに は、 リボースフォスフェートイソメラーゼをコードする遺伝子断片を、 該細菌で 機能するべクタ一、 好ましくはマルチコピー型のベクターと連結して組み換え D N Aを作製し、 これを Lーリジン生産能を有するコリネ型細菌に導入して形質転 換すればよい。 形質転換株の細胞内のリボースフォスフェートイソメラ一ゼをコ 一ドする遺伝子のコピー数が上昇する結果、 リボースフォスフエ一トイソメラー ゼ活性が増強される。 リボースフォスフェートイソメラ一ゼは、 ェシエリヒア - コリでは rpi遺伝子にコ一ドされている。  In order to enhance ribosephosphate isomerase activity in coryneform bacterial cells, a gene fragment encoding ribosephosphate isomerase is ligated to a vector, preferably a multicopy vector, which functions in the bacterium. Then, a recombinant DNA may be prepared and introduced into a coryneform bacterium capable of producing L-lysine for transformation. As a result of an increase in the copy number of the gene encoding ribosephosphate isomerase in the cells of the transformed strain, ribosephosphate isomerase activity is enhanced. Ribose phosphate isomerase is encoded in the rpi gene in Escherichia coli.
リボースフォスフェートイソメラーゼ遺伝子は、 コリネ型細菌の遺伝子を用い ることも、 ェシエリヒア属細菌等の他の生物由来の遺伝子のいずれも使用するこ とができる。  As the ribosephosphate isomerase gene, either a gene of a coryneform bacterium or a gene derived from another organism such as a bacterium belonging to the genus Escherichia can be used.
ェシエリヒア ' コリの rpi遺伝子の塩基配列は既に明らかにされている (Soren sen, K. I . et al . , J . Bacteriol . , 178(4) , 1003-1011 ( 1996 ), Genbank/EMBL /DDBJ accetion No. X82203) ので、 その塩基配列に基づいて作製したプライマー、 例えば配列表配列番号 1及び 2に示すプライマーを用いて、 ェシエリヒア · コリ 染色体 D N Aを铸型とする P C R法 (P C R : polymerase chain reaction; Wh ite, T.J. et al ; Trends Genet. 5, 185( 1989)参照) によって、 rpi遺伝子を取得 することができる。 コリネ型細菌等の他の微生物のリボースフォスフェートイソ メラーゼをコードする遺伝子も、 同様にして取得され得る。  The nucleotide sequence of the rpi gene of Escherichia coli has already been elucidated (Sorensen, K.I. et al., J. Bacteriol., 178 (4), 1003-1011 (1996), Genbank / EMBL / DDBJ accetion No. X82203), using a primer prepared based on the nucleotide sequence, for example, the primers shown in SEQ ID NOs: 1 and 2 in the Sequence Listing, and using the chromosomal DNA of Escherichia coli as a type II (PCR: polymerase chain reaction) White, TJ et al; see Trends Genet. 5, 185 (1989)) to obtain the rpi gene. Genes encoding ribosephosphate isomerase of other microorganisms such as coryneform bacteria can be obtained in a similar manner.
染色体 D N Aは、 D N A供与体である細菌から、 例えば、 斎藤、 三浦の方法 (H. Saito and K. Miura Biochem. Biophys . Acta, 72, 619 ( 1963 )、 生物工学 実験書、 日本生物工学会編、 9 7〜 9 8頁、 培風館、 1 9 9 2年参照) 等により 調製することができる。 P C R法により増幅されたリボースフォスフヱートイソメラーゼをコードする 遺伝子は、 ェシエリヒア ·コリ及び/又はコリネ型細菌の細胞内において自律複 製可能なベクター D N Aに接続して組換え D N Aを調製し、 これをェシエリヒア • コリ細胞に導入しておくと、 後の操作がしゃすくなる。 ェシエリヒア · コリ細 胞内において自律複製可能なベクターとしては、 プラスミ ドベクターが好ましく、 宿主の細胞内で自立複製可能なものが好ましく、 例えば pUC19、 pUC18、 pBR322、 pHSG299、 pHSG399、 pHSG398、 RSF1010等が挙げられる。 Chromosomal DNA is obtained from bacteria that are DNA donors, for example, by the method of Saito and K. Miura (H. Saito and K. Miura Biochem. Biophys. Acta, 72, 619 (1963)), Biological Engineering Experiment, Japan Society for Biotechnology Pp. 97-98, Baifukan, 1992). The gene encoding ribosephosphate isomerase amplified by the PCR method is connected to a vector DNA capable of autonomous replication in cells of Escherichia coli and / or coryneform bacteria to prepare recombinant DNA, If this is introduced into Escherichia coli cells, subsequent operations will be slow. As a vector capable of autonomous replication in Escherichia coli cells, a plasmid vector is preferable, and a vector capable of autonomous replication in a host cell is preferable.For example, pUC19, pUC18, pBR322, pHSG299, pHSG399, pHSG398, RSF1010 and the like are preferable. No.
コリネ型細菌の細胞内において自律複製可能なベクターとしては、 PAM330 (特 開昭 58- 67699号公報参照) 、 pHM1519 (特開昭 58-77895号公報参照) 等が挙げられ る。 また、 これらのベクターからコリネ型細菌中でプラスミ ドを自律複製可能に する能力を持つ D N A断片を取り出し、 前記ェシエリヒア · コリ用のベクターに 挿入すると、 ェシエリヒア · コリ及びコリネ型細菌の両方で自律複製可能ないわ ゆるシャ トルベクターとして使用することができる。 このようなシャ トルべクタ 一としては、 以下のものが挙げられる。 尚、 それそれのベクターを保持する微生 物及び国際寄託機関の受託番号をかっこ内に示した。  Examples of vectors capable of autonomous replication in coryneform bacterium cells include PAM330 (see Japanese Patent Application Laid-Open No. 58-67699), pHM1519 (see Japanese Patent Application Laid-Open No. 58-77895), and the like. In addition, a DNA fragment capable of autonomously replicating plasmid in coryneform bacteria is extracted from these vectors and inserted into the Escherichia coli vector, whereby autonomous replication in both Escherichia coli and coryneform bacteria occurs. It can be used as a shuttle vector that is not possible. The following are examples of such shuttle vectors. Microorganisms carrying the respective vectors and the accession numbers of the international depository organizations are shown in parentheses.
PAJ655 ェシエリヒア 'コリ AJ11882 ( FERM BP- 136 )  PAJ655 Escherichia 'Kori AJ11882 (FERM BP-136)
コリネハ、、クテリゥム'ク、、ルタミクム SR8201 (ATCC39135 )  Coryneha ,, Kteridum ,, Rutamicum SR8201 (ATCC39135)
PAJ1844 ; [シエリヒア 'コリ AJ11883 ( FERM BP- 137 )  PAJ1844; [Seriheria coli] AJ11883 (FERM BP-137)
コリネハ、、クテリゥム'ク、、ルタミクム SR8202( ATCC39136 )  Coryneha ,, Kteridum, Rutamikumu SR8202 (ATCC39136)
PAJ611 ェシエリヒア'コリ AJ11884( FERM BP - 138 )  PAJ611 Escherichia Cori AJ11884 (FERM BP-138)
PAJ3148 コリネハ、、クテリゥム'ク、、ルタミクム SR8203(ATCC39137)  PAJ3148 Coryneha, Cterizum, Rutamicum SR8203 (ATCC39137)
PAJ440 ;r、f ' r7 WAJ11901 ( FERM BP- 140 )  PAJ440; r, f 'r7 WAJ11901 (FERM BP-140)
pHC4 Iシエリヒア 'コリ AJ12617( FERM BP- 3532 )  pHC4 I colihori 'coli AJ12617 (FERM BP-3532)
リボースフォスフェートイソメラーゼをコードする遺伝子とコリネ型細菌で機 能するべクタ一を連結して組み換え D N Aを調製するには、 リボースフォスフエ ートイソメラ一ゼをコードする遺伝子の末端に合うような制限酵素でベクターを 切断する。 連結は、 T 4 D N Aリガーゼ等のリガーゼを用いて行うのが普通であ る。  To prepare recombinant DNA by ligating the gene encoding ribosephosphate isomerase and the vector that functions in coryneform bacterium, a restriction enzyme that matches the end of the gene encoding ribosephosphate isomerase is used. Cut the vector. Ligation is usually performed using a ligase such as T4DNA ligase.
上記のように調製した組み換え D N Aをコリネ型細菌に導入するには、 これま でに報告されている形質転換法に従って行えばよい。 例えば、 ェシヱリヒア 'コ リ K_ 12について報告されているような、 受容菌細胞を塩化カルシウムで処 理して DNAの透過性を増す方法 (Mandel,M.and Higa,A.,J. Mol. Biol., 53, 159 (1970)) があり、 バチルス ·ズブチリスについて報告されているような、 増 殖段階の細胞からコンビテントセルを調製して DNAを導入する方法 ( Duncan, C.H. , Wilson, G. A. and Young, F.E., Gene, 1, 153 (1977)) がある。 あるいは、 バ チルス 'ズブチリス、 放線菌類及び酵母について知られているような、 DNA受 容菌の細胞を、 組換え D NAを容易に取り込むプロトプラストまたはスフエロプ ラストの状態にして組換え D N Aを D N A受容菌に導入する方法 ( Chang, S. and Choen,S.N.,Molec. Gen. Genet., 168, 111 (1979) Bibb,M. J. ,Ward, J.M.and H opwood,0. A., Nature, 274, 398 ( 1978) ;Hinnen, A. , Hicks, J.B.and Fink,G.R.,Pr oc. Natl. Acad. Sci. USA, 75 1929 (1978)) も応用できる。 本発明の実施例で 用いた形質転換の方法は、 電気パルス法 (特開平 2— 20779 1号公報参照) である。 To introduce the recombinant DNA prepared as described above into coryneform bacteria, The transformation may be carried out according to the transformation method reported in (1). For example, a method for increasing the permeability of DNA by treating recipient cells with calcium chloride, as reported for E. coli K_12 (Mandel, M. and Higa, A., J. Mol. Biol. , 53, 159 (1970)), and a method for preparing DNA from transgenic cells and introducing DNA as described in Bacillus subtilis (Duncan, CH, Wilson, GA and Young, FE, Gene, 1, 153 (1977)). Alternatively, cells of a DNA-accepting bacterium, such as those known for Bacillus subtilis, actinomycetes and yeast, are transformed into protoplasts or spheroplasts that readily incorporate the recombinant DNA, and the recombinant DNA is transferred to the DNA recipient. (Chang, S. and Choen, SN, Molec. Gen. Genet., 168, 111 (1979) Bibb, MJ, Ward, JMand Hopwood, 0.A., Nature, 274, 398 (1978) Hinnen, A., Hicks, JBand Fink, GR, Proc. Natl. Acad. Sci. USA, 75 1929 (1978)). The transformation method used in the examples of the present invention is the electric pulse method (see Japanese Patent Application Laid-Open No. 2-207791).
リボ一スフォスフェートイソメラーゼをコードする活性の増強は、 リポースフ ォスフヱートイソメラーゼをコ一ドする遺伝子を上記宿主の染色体 D N A上に多 コピー存在させることによつても達成できる。 コリネ型細菌に属する微生物の染 色体 D N A上にリボースフォスフヱートイソメラーゼをコ一ドする遺伝子を多コ ピーで導入するには、 染色体 D N A上に多コピー存在する配列を標的に利用して 相同組換えにより行う。 染色体 D NA上に多コピー存在する配列としては、 レぺ ヅティブ DNA、 転移因子の端部に存在するインバーティヅド . リピートが利用 できる。 あるいは、 特開平 2— 1 09985号公報に開示されているように、 リ ボースフォスフヱートイソメラーゼをコードする遺伝子をトランスポゾンに搭載 してこれを転移させて染色体 D N A上に多コピー導入することも可能である。 い ずれの方法によつても形質転換株内のリボースフォスフェートイソメラーゼをコ 一ドする遺伝子のコピー数が上昇する結果、 リボースフォスフヱートイソメラー ゼ活性が増強される。  Enhancement of the activity encoding ribosephosphate isomerase can also be achieved by the presence of multiple copies of the gene encoding reporter phosphate isomerase on the chromosomal DNA of the host. In order to introduce multiple copies of a gene encoding ribosephosphate isomerase into the chromosomal DNA of a microorganism belonging to the coryneform bacterium, a sequence present in multiple copies on chromosomal DNA is used as a target. Perform by homologous recombination. As a sequence present in multiple copies on chromosomal DNA, repetitive DNA and inverted repeats present at the end of a transposable element can be used. Alternatively, as disclosed in Japanese Patent Application Laid-Open No. 2-1099985, a gene encoding ribose phosphate isomerase is mounted on a transposon and transferred, and multiple copies are introduced into chromosomal DNA. Is also possible. Either method increases the copy number of the gene encoding ribosephosphate isomerase in the transformant, resulting in enhanced ribosephosphate isomerase activity.
リボースフォスフヱートイソメラーゼ活性の増強は、 上記の遺伝子増幅による 以外に、 染色体 DN A上又はプラスミ ド上のリボースフォスフエ一トイソメラー ゼをコ一ドする遺伝子のプロモータ一等の発現調節配列を強力なものに置換する ことによつても達成される (特開平 1— 2 1 5 2 8 0号公報参照) 。 たとえば、 l a cプロモー夕一、 t r pプロモーター、 t r cプロモーター、 t a cブロモ 一夕一、 ラムダファージの P Rプロモーター、 P Lプロモータ一等が強力なプロ モーターとして知られている。 これらのプロモーターへの置換により、 リポース フォスフェートイソメラ一ゼをコードする遺伝子の発現が強化されることによつ てリボースフォスフエ一トイソメラーゼ活性が増強される。 Enhancement of ribosephosphate isomerase activity is not only due to the above gene amplification, but also as ribosephosphate isomerase on chromosome DNA or plasmid. This can also be achieved by replacing the expression control sequence such as the promoter of the gene encoding zeo with a strong one (see Japanese Patent Application Laid-Open No. 1-215280). For example, lac promoter, trp promoter, trc promoter, tac bromo overnight, lambda phage PR promoter, PL promoter, etc. are known as strong promoters. Substitution of these promoters enhances ribose phosphate isomerase activity by enhancing expression of the gene encoding reporter phosphate isomerase.
また、 本発明のコリネ型細菌は、 リボースフォスフェートイソメラーゼ活性に 加えて、 他の Lーリジン生合成経路又は解糖系等の酵素遺伝子を強化することに よって、 それらの酵素活性が増強されてもよい。 そのような遺伝子の例としては、 Lーリジン及び Lースレオニンによる相乗的なフィ一ドバック阻害が実質的に解 除されたァスバルトキナーゼひサブュニット蛋白質又は/?サブュニッ 卜蛋白質を コードする遺伝子 (W094/25605国際公開パンフレッ ト) 、 コリネホルム細菌由来 の野生型ホスホェノールピルビン酸カルボキシラーゼ遺伝子 (特開昭 60- 87788号 公報) 、 コリネホルム細菌由来の野生型ジヒドロジピコリン酸合成酵素をコード する遺伝子 (特公平 6-55149号公報) 等が知られている。  Further, the coryneform bacterium of the present invention can enhance the enzymatic genes of other L-lysine biosynthetic pathways or glycolytic pathways in addition to the ribose phosphate isomerase activity, thereby enhancing their enzymatic activities. Good. Examples of such a gene include a gene coding for Aspartokinase subunit protein or /? Subunit protein in which synergistic feedback inhibition by L-lysine and L-threonine has been substantially eliminated (W094 / 25605 international publication pamphlet), a wild-type phosphoenolpyruvate carboxylase gene derived from a coryneform bacterium (Japanese Patent Application Laid-Open No. 60-87788), a gene encoding a wild-type dihydrodipicolinate synthase derived from a coryneform bacterium (Japanese Patent Publication No. No. 55149).
また、 L—リジン生合成経路から分岐して Lーリジン以外の化合物を生成する 反応を触媒する酵素の活性が低下または欠損していてもよい。 そのような酵素と して、 ホモセリンデヒドロゲナ一ゼがある (W0 95/23864参照) 。  In addition, the activity of an enzyme that catalyzes a reaction that produces a compound other than L-lysine by branching off from the L-lysine biosynthetic pathway may be reduced or lacking. One such enzyme is homoserine dehydrogenase (see WO 95/23864).
なお、 本明細書において、 酵素の 「活性が増強されている」 とは、 通常には、 野生株よりも細胞内のその酵素活性が高いことを意味し、 遺伝子組換え技術等に よる改変によりその酵素活性が増強された菌株を得た場合には、 改変前の菌株よ りも細胞内のその酵素活性が高いことを意味する。 また、 酵素の 「活性が低下し ている」 とは、 通常には、 野生株よりも細胞内のその酵素活性が低いことを意味 し、 遺伝子組換え技術等による改変によりその酵素活性が低下した菌株を得た場 合には、 改変前の菌株よりも細胞内のその酵素活性が低いことを意味する。  As used herein, the phrase “enhanced activity” of an enzyme generally means that the enzyme activity in a cell is higher than that of a wild-type strain, and is modified by a gene recombination technique or the like. When a strain with enhanced enzyme activity is obtained, it means that the enzyme activity in the cell is higher than that of the strain before modification. The term “reduced activity” of an enzyme usually means that the enzyme activity in a cell is lower than that of a wild-type strain, and the enzyme activity has been reduced by modification by genetic recombination technology or the like. When a strain is obtained, it means that the enzyme activity in the cell is lower than that of the strain before modification.
く 3 > L—リジンの生産 3> L-Lysine production
リボースフォスフヱートイソメラ一ゼ活性が増強され、 かつ、 L—リジン生産 能を有するコリネ型細菌を好適な培地で培養すれば、 L—リジンが培地に蓄積す る。 If coryneform bacteria having enhanced ribose phosphate isomerase activity and L-lysine producing ability are cultured in a suitable medium, L-lysine accumulates in the medium. You.
本発明の微生物を用いて L—リジンを製造するのに用いる培地は、 炭素源、 窒 素源、 無機イオン及び必要に応じその他の有機微量栄養素を含有する通常の培地 である。 炭素源としては、 グルコース、 ラクトース、 ガラクトース、 フラクト一 ス、 シュクロース、 廃糖蜜、 澱粉加水分解物などの炭水化物、 エタノールやイノ シトールなどのアルコール類、 酢酸、 フマール酸、 クェン酸、 コハク酸等の有機 酸類を用いることができる。  The medium used for producing L-lysine using the microorganism of the present invention is an ordinary medium containing a carbon source, a nitrogen source, inorganic ions, and if necessary, other organic micronutrients. Carbon sources include carbohydrates such as glucose, lactose, galactose, fructose, sucrose, molasses, starch hydrolysates, alcohols such as ethanol and inositol, acetic acid, fumaric acid, citric acid, succinic acid, etc. Organic acids can be used.
窒素源としては、 硫酸アンモニゥム、 硝酸アンモニゥム、 塩化アンモニゥム、 リン酸アンモニゥム、 酢酸アンモニゥム等の無機アンモニゥム塩、 アンモニア、 ペプトン、 肉エキス、 酵母エキス、 酵母エキス、 コーン 'スティープ ' リカー、 大豆加水分解物などの有機窒素、 アンモニアガス、 アンモニア水等を用いること ができる。  Nitrogen sources include inorganic ammonium salts such as ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium phosphate, ammonium acetate, ammonia, peptone, meat extract, yeast extract, yeast extract, corn 'steep' liquor, soybean hydrolyzate, etc. Organic nitrogen, ammonia gas, aqueous ammonia, etc. can be used.
無機イオンとしては、 リン酸カリウム、 硫酸マグネシウム、 鉄イオン、 マンガ ンイオン等が少量添加される。 有機微量栄養素としては、 ビタミン B 1などの要 求物質または酵母エキス等を必要に応じ適量含有させることが望ましい。  As inorganic ions, small amounts of potassium phosphate, magnesium sulfate, iron ions, manganese ions and the like are added. As organic trace nutrients, it is desirable to include a required substance such as vitamin B1 or a yeast extract in an appropriate amount as necessary.
培養は、 振とう培養、 通気撹拌培養等による好気的条件下で 1 6〜7 2時間実 施するのがよく、 培養温度は3 0 〜4 5 に、 培養中 p Hは 5〜9に制御する 尚、 p H調整には無機あるいは有機の酸性あるいはアルカリ性物質、 更にアンモ ニァガス等を使用することができる。  The culture is preferably carried out for 16 to 72 hours under aerobic conditions, such as shaking culture and aeration / agitation culture.The culture temperature is 30 to 45, and the pH during culture is 5 to 9. Control It is to be noted that inorganic or organic acidic or alkaline substances, ammonia gas and the like can be used for pH adjustment.
発酵液からの L—リジンの採取は、 通常イオン交換樹脂法、 沈澱法その他の公 知の方法を組み合わせることにより実施できる。 実施例 以下、 本発明を実施例によりさらに具体的に説明する。  The collection of L-lysine from the fermentation broth can usually be carried out by a combination of ion exchange resin method, precipitation method and other known methods. Examples Hereinafter, the present invention will be described more specifically with reference to Examples.
< 1 >ェシエリヒア ' コリ JM109株の rpi遺伝子のクローニング <1> Cloning of rpi gene of Escherichia coli JM109
ェシヱリヒア · コリの rpi遺伝子の塩基配列は既に明らかにされている (Soren sen, K. I . et al ., J . Bacterid . , 178(4), 1003-1011 ( 1996 ), Genbank/EMBL /議 J accetion No. X82203 ) 。 報告されている塩基配列に基づいて配列表配列番号 1及び 2に示すプライマ —を合成し、 ェシヱリヒア ' コリ JM109株の染色体 D N Aを铸型にして P C R法に よりピルビン酸デヒドロゲナ一ゼ遺伝子を増幅した。 The nucleotide sequence of the rpi gene of Escherichia coli has already been elucidated (Sorensen, K. I. et al., J. Bacterid., 178 (4), 1003-1011 (1996), Genbank / EMBL / J accetion No. X82203 ). Based on the reported nucleotide sequence, the primers shown in SEQ ID NOs: 1 and 2 were synthesized, and the pyruvate dehydrogenase gene was amplified by PCR using the chromosomal DNA of Escherichia coli JM109 strain as type III. .
合成したプライマーの内、 配列番号 1は、 Genbank/EMBL/DDBJ accetion No. X 82203に記載されている rpi遺伝子の塩基配列の 1番目から 24番目の塩基に至る 配列に相当し、 配列番号 2は、 23 1 2番目から 2289番目の塩基に至る配列 に相当する。  Among the synthesized primers, SEQ ID NO: 1 corresponds to the sequence from the 1st to 24th base of the base sequence of the rpi gene described in Genbank / EMBL / DDBJ accetion No. X 82203, and SEQ ID NO: 2 23 1 corresponds to the sequence from the 2nd to the 2289th base.
ェシヱリヒア · コリ JM109株の染色体 DNAの調製は常法によった (生物工学実 験書、 日本生物工学会編、 97〜98頁、 培風館、 1 992年) 。 また、 P CR 反応は、 P CR法最前線 (関谷剛男ほか編、 共立出版社、 1 989年) 185頁 に記載されている標準反応条件を用いた。  The chromosomal DNA of Escherichia coli JM109 strain was prepared by a conventional method (Biotechnological Experiments, edited by Biotechnology Society of Japan, pp. 97-98, Baifukan, 19992). For the PCR reaction, standard reaction conditions described on page 185 of the front line of the PCR method (edited by Takeo Sekiya et al., Kyoritsu Shuppan, 1989) were used.
生成した P CR産物を常法により精製後、 Smalで切断したブラスミ ド pHC 4 と、 ライゲーシヨンキッ ト (宝酒造社製) を用いて連結した後、 ェシエリヒア ' コリ JM109のコンビテントセル (宝酒造社製) を用いて形質転換を行い、 クロラム フエ二コール 30〃g/mlを含む L培地 (バクト トリブトン 10g/L、 バクトイ一ス ト エキストラクト 5g/L、 NaCl 5g/L、 寒天 15g/L、 pH7.2) に塗布し、 ー晚培養後、 出現した白色のコロニーを釣り上げ、 単コロニー分離し、 形質転換株を得た。 取 得した形質転換体よりプラスミ ドを抽出し、 ベクターに rpi遺伝子が結合したブ ラスミ ド pHC 4 rp iを得た。  The resulting PCR product was purified by a conventional method, ligated with a smal-cleaved plasmid pHC4 using a ligation kit (Takara Shuzo), and then combined with Escherichia coli KM JM109 (Takara Shuzo). Lactic acid medium containing 30 g / ml of chloram fenicol (Bacto Tribton 10 g / L, Bactoist Extract 5 g / L, NaCl 5 g / L, Agar 15 g / L, After the culture was completed, the white colonies that appeared were picked up and separated into single colonies to obtain a transformed strain. Plasmid was extracted from the obtained transformant to obtain a plasmid pHC4rpi in which the rpi gene was linked to the vector.
pH C 4を保持するェシエリヒア · コリは、 プライベートナンバー AJ12617と命 名され、 1 99 1年 4月 24日に、 通商産業省工業技術院生命工学工業技術研究 所 (郵便番号 305- 8566 日本国茨城県つくば市東一丁目 1番 3号) に受託番号 FE RM P— 1 22 1 5として寄託され、 1 99 1年 8月 26日に、 ブタペスト条 約に基く国際寄託に移管され、 受託番号 FERM BP— 3532が付与されて いる。  Escherichia coli, which retains pH C4, was named private number AJ12617, and on April 24, 1999, the Institute of Biotechnology and Industrial Technology, Ministry of International Trade and Industry (ZIP code 305-8566, Ibaraki, Japan) Deposit No. FE RM P—122 1-5 at Higashi 1-3-chome, Tsukuba City, Prefectural Government, and transferred to an international deposit under the Budapest Convention on August 26, 1999, and deposited under accession number FERM BP. — 3532 is granted.
次に、 クローニングされた DNA断片がリボースフォスフェートィソメラーゼ 活性を有するタンパク質をコードしていることを確認するため、 JM 1 09株及 び、 pHC 4 rp iを保持する JM 1 09株のリボースフォスフェートイソメラ ーセ活十王を Rack, E. et al. , Methods of Enzymatic Analysis (Bergmeyer, H.  Next, in order to confirm that the cloned DNA fragment encodes a protein having ribose phosphate isomerase activity, the ribose phosphate of the JM109 strain and the JM109 strain carrying pHC4rpi were The fate isomerase activity Juo was transferred to Rack, E. et al., Methods of Enzymatic Analysis (Bergmeyer, H.
正された用紙 (規則 91) G. ed.) pp.186-187, Academic Press ( 1965)に記載の方法により測定した。 その 結果、 p H C 4 r p iを保持する JM 1 09株は、 p H C 4 r p iを保持しない JM 1 09株の約 1 8倍のリボースフォスフエ一トイソメラーゼ活性を示すこと から、 rpi遺伝子が発現していることを確認した。 Corrected form (Rule 91) G. ed.) Pp. 186-187, Academic Press (1965). As a result, the JM109 strain carrying pHC4 rpi showed about 18 times the ribose phosphate isomerase activity of the JM109 strain not carrying pHC4 rpi, indicating that the rpi gene was expressed. Confirmed that.
< 3 >コリネ型細菌の L—リジン生産株への pHC4rpiの導入と L -リジン生産 ブレビパクテリゥム . ラクトファーメンタム AJ11082を電気パルス法 (特開平 2 -207791号公報参照) によりプラスミ ド PHC4rpiで形質転換し、 得られた形質転換 株を得た。 得られた形質転換株 AJ11082/pHC4rpiを用いて L—リジン生産のための 培養を以下のように行った。 5〃g/mlのクロラムフエ二コールを含む CM 2 Bブレ —ト培地にて培養して得た A J 11082/pHC4rp i株の菌体を、 5〃 g/m 1のクロラムフエ 二コールを含む下記組成の L—リジン生産培地に接種し、 31.5°Cにて培地中の糖 が消費されるまで振とう培養した。 コントロールとしてコリネパクテリゥム属細 菌 AJ11082株に、 既に取得されているコリネバクテリゥム属細菌で自律複製可能な プラスミ ド pHC4を電気パルス法により形質転換した菌株を上記と同様にして培養 した。 <3> Coryneform bacterium of L- lysine introduction pHC4rpi on production lines and L -. Lysine-producing Brevibacterium Park Teri © beam plasmid P HC4rpi by lactofermentum AJ11082 an electric pulse method (see Japanese Patent Laid-Open No. 2 -207791) And the obtained transformant was obtained. Using the obtained transformant AJ11082 / pHC4rpi, culture for producing L-lysine was performed as follows. AJ11082 / pHC4rpi strain obtained by culturing in a CM2B plate medium containing 5〃g / ml chloramphenicol was mixed with the following composition containing 5〃g / m1 chloramphenicol. L-lysine production medium was inoculated and cultured at 31.5 ° C with shaking until the sugar in the medium was consumed. As a control, a strain obtained by transforming a plasmid pHC4 capable of autonomously replicating with a previously obtained corynebacterium bacterium by the electric pulse method was cultured in the corynebacterium bacterium AJ11082 strain in the same manner as described above.
ブレビパクテリゥム . ラクトファーメンタム AJ11082は、 1981年 1月 31日に農学 研究菌培養収集所 (Agricultural Research Culture Collection, アメリカ合衆 国 イリノイ州 6 1 604ピオリア ノースュニバーシティ通り 1 81 5(1815 N. University Street, Peoria, Illinois 61604 U.S.A.)) に国際寄託され、 受 託番号 NRRL B- 11470が付与されている。  Brevipacterium. Lactofermentum AJ11082 was established on January 31, 1981 at the Agricultural Research Culture Collection, Illinois, United States, 6 1 604 Peoria Northuniversity Street 1 815 ( 1815 N. University Street, Peoria, Illinois 61604 USA)) and deposited under accession number NRRL B-11470.
〔Lーリジン生産培地〕  (L-lysine production medium)
炭酸カルシウム以外の下記成分 ( 1 L中) を溶解し、 K0Hで PH8.0に調製し、 11 5°Cで 15分殺菌した後、 別に乾熱殺菌した炭酸カルシウムを 50 g加える。  Dissolve the following components (in 1 L) other than calcium carbonate, adjust to pH 8.0 with K0H, sterilize at 115 ° C for 15 minutes, and add 50 g of dry-heat sterilized calcium carbonate.
グルコース 100 g  100 g glucose
(NH4) 2S 04 55 S (NH 4 ) 2 S 0 4 55 S
KH2P 04 1 g KH 2 P 0 4 1 g
Mg S 04 · 7 Η20 1 g Mg S 0 4 · 7 Η 2 0 1 g
ピオチン 500 S  Piotin 500 S
チアミン 2000 g
Figure imgf000013_0001
Thiamine 2000 g
Figure imgf000013_0001
ニコチンアミ ド 5 mg  Nicotinamide 5 mg
蛋白質加水分解物 (豆濃) 30 ml  Protein hydrolyzate (bean concentrate) 30 ml
炭酸カルシウム 50 g  50 g calcium carbonate
培養終了後、 培養液中の Lーリジン蓄積量を旭化成工業社製バイオテックアナ ライザ一AS— 2 1 0により測定した。 このときの結果を表 1に示した。 表 1 翻 株 Lーリジン生成量(g/L)  After completion of the culture, the amount of L-lysine accumulated in the culture solution was measured using a Biotech Analyzer-AS-210 manufactured by Asahi Kasei Corporation. Table 1 shows the results. Table 1 L-lysine production (g / L)
AJ11082/pHC4 29. 2 AJ11082 / pHC4 29.2
AJ11082/pHC4rpi 34. 4  AJ11082 / pHC4rpi 34.4
表 1の結果から、 リボースフォスフヱートィソメラーゼ活性を増強することに より、 L—リジン生産能が向上したことがわかる。 The results in Table 1 show that L-lysine-producing ability was improved by enhancing ribose phosphate isomerase activity.
リボースフォスフエ一トイソメラ一ゼはペントースリン酸サイクルの酵素であ る。 一方、 L—リジンの生合成には NADPHが必要であり、 L—リジンの生成 に伴って NAD P +が生成する。 したがって、 リポースフォスフェートイソメラ ーゼ活性を増強することによって、 ペントースリン酸サイクルが進行し、 生成す る NAD PHによって L—リジン生合成反応が円滑に進行するものと考えられる c 産業上の利用可能性 本発明により、 コリネ型細菌の L—リジンの生産能を向上させることができる  Ribose phosphate isomerase is an enzyme in the pentose phosphate cycle. On the other hand, L-lysine biosynthesis requires NADPH, and NAD P + is produced with the production of L-lysine. Therefore, it is considered that the pentose phosphate cycle progresses by enhancing the report phosphate isomerase activity, and the LAD-lysine biosynthesis reaction proceeds smoothly by the generated NAD PH. Possibility According to the present invention, the ability of coryneform bacteria to produce L-lysine can be improved.

Claims

請求の範囲 The scope of the claims
1 . 細胞中のリボースフォスフェートイソメラーゼ活性が増強され、 かっ 一 リジン生産能を有するコリネ型細菌。 1. Coryneform bacterium having enhanced ribose phosphate isomerase activity in cells and capable of producing lysine.
2 . 前記リボースフォスフェートイソメラーゼ活性の増強が、 前記細菌細胞内 のリボースフォスフヱートィソメラーゼをコ一ドする遺伝子のコピー数を高める ことによるものである請求項 1記載のコリネ型細菌。 2. The coryneform bacterium according to claim 1, wherein the enhancement of ribosephosphate isomerase activity is caused by increasing the copy number of a gene encoding ribosephosphate isomerase in the bacterial cell.
3 . 前記リボースフォスフエ一トイソメラーゼをコ一ドする遺伝子がェシエリ ヒア属細菌由来である請求項 2記載のコリネ型細菌。 3. The coryneform bacterium according to claim 2, wherein the gene encoding the ribose phosphate isomerase is derived from a bacterium belonging to the genus Escherichia.
4 . 請求項 1〜3のいずれか一項に記載のコリネ型細菌を培地に培養し、 該培 養物中に L—リジンを生成蓄積せしめ、 該培養物から L—リジンを採取すること を特徴とする Lーリジンの製造法。 4. A method comprising culturing the coryneform bacterium according to any one of claims 1 to 3 in a medium, producing and accumulating L-lysine in the culture, and collecting L-lysine from the culture. Characteristic method for producing L-lysine.
PCT/JP2000/004347 1999-07-02 2000-06-30 Process for producing l-lysine WO2001002547A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU55712/00A AU5571200A (en) 1999-07-02 2000-06-30 Process for producing l-lysine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/189514 1999-07-02
JP18951499A JP2003169674A (en) 1999-07-02 1999-07-02 Method for producing l-lysine

Publications (1)

Publication Number Publication Date
WO2001002547A1 true WO2001002547A1 (en) 2001-01-11

Family

ID=16242561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004347 WO2001002547A1 (en) 1999-07-02 2000-06-30 Process for producing l-lysine

Country Status (3)

Country Link
JP (1) JP2003169674A (en)
AU (1) AU5571200A (en)
WO (1) WO2001002547A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2348107A2 (en) 2003-02-18 2011-07-27 Metabolic Explorer Method for preparing evolved micro-organisms, enabling the creation or modification of metabolic pathways

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996040934A1 (en) * 1995-06-07 1996-12-19 Ajinomoto Co., Inc. Process for producing l-lysine
EP0854189A2 (en) * 1996-12-05 1998-07-22 Ajinomoto Co., Inc. Method for producing L-lysine
EP0857784A2 (en) * 1996-12-05 1998-08-12 Ajinomoto Co., Inc. Method for producing L-lysine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996040934A1 (en) * 1995-06-07 1996-12-19 Ajinomoto Co., Inc. Process for producing l-lysine
EP0854189A2 (en) * 1996-12-05 1998-07-22 Ajinomoto Co., Inc. Method for producing L-lysine
EP0857784A2 (en) * 1996-12-05 1998-08-12 Ajinomoto Co., Inc. Method for producing L-lysine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM I. SORENSEN ET AL.: "Ribose catabolism of Escherichia coli: Characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression", JOURNAL OF BACTERIOLOGY,, vol. 178, no. 4, 1996, pages 1003 - 1011, XP002927745 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2348107A2 (en) 2003-02-18 2011-07-27 Metabolic Explorer Method for preparing evolved micro-organisms, enabling the creation or modification of metabolic pathways

Also Published As

Publication number Publication date
AU5571200A (en) 2001-01-22
JP2003169674A (en) 2003-06-17

Similar Documents

Publication Publication Date Title
JP3106501B2 (en) Method for producing L-lysine
JP4035855B2 (en) Method for producing L-lysine
US8628941B2 (en) L-amino acid-producing bacterium and a method for producing L-amino acid
EP0854189A2 (en) Method for producing L-lysine
EP1010755A1 (en) Method for producing L-Glutamic acid by fermentation
HU224409B1 (en) Method for producing l-lysine
US20070172932A1 (en) L-Glutamic Acid-Producing Microorganism and a Method for Producing L-Glutamic Acid
EP1241246B1 (en) Process for producing l-amino acid
WO2001002542A1 (en) Process for producing l-amino acid
WO2001002545A1 (en) Process for producing l-amino acid
WO2000056858A1 (en) Process for producing l-lysine
EP1158043B1 (en) Process for producing l-lysine
WO2001002543A1 (en) Process for producing l-amino acid
WO2001002546A1 (en) Process for producing l-amino acid
EP0999267A1 (en) Method for producing L-arginine
AU5106800A (en) Process for producing l-lysine
WO2001002544A1 (en) Process for producing l-amino acid
WO2001002547A1 (en) Process for producing l-lysine
JP2000232890A (en) Production of l-glutamic acid through fermentation process
WO2000056859A1 (en) Process for producing l-amino acid
WO2001005960A1 (en) Process for producing l-amino acid
WO2001005979A1 (en) Process for producing target substance by fermentation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP