WO2015058323A1 - 一种木榄甜菜碱脱氢酶badh及其编码基因与应用 - Google Patents

一种木榄甜菜碱脱氢酶badh及其编码基因与应用 Download PDF

Info

Publication number
WO2015058323A1
WO2015058323A1 PCT/CN2013/001293 CN2013001293W WO2015058323A1 WO 2015058323 A1 WO2015058323 A1 WO 2015058323A1 CN 2013001293 W CN2013001293 W CN 2013001293W WO 2015058323 A1 WO2015058323 A1 WO 2015058323A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
seq
gene
expression vector
pcr
Prior art date
Application number
PCT/CN2013/001293
Other languages
English (en)
French (fr)
Inventor
王建胜
梁丽
梁远金
刘捷
Original Assignee
创世纪转基因技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 创世纪转基因技术有限公司 filed Critical 创世纪转基因技术有限公司
Priority to PCT/CN2013/001293 priority Critical patent/WO2015058323A1/zh
Priority to CN201380074325.8A priority patent/CN105121458B/zh
Publication of WO2015058323A1 publication Critical patent/WO2015058323A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Definitions

  • the present invention relates to plant proteins and coding genes thereof and applications thereof, and more particularly to a molybdenum coenzyme factor BADH derived from Mulan and a gene encoding the same, and a transgenic plant thereof for improving salt tolerance and drought tolerance Application in .
  • BACKGROUND OF THE INVENTION Drought limits the cultivation of crops by more than 40% of the Earth's land area and poses a serious threat to global agricultural production and food supply. Drought is one of the main environmental constraints on crop yields.
  • the world's saline-alkali soil is large, about 400 million hectares, accounting for one-third of irrigated farmland.
  • salt accumulation continues due to low rainfall and rapid evaporation; salt content in the coastal areas is increased due to seawater intrusion.
  • China's saline-alkali soil is mainly distributed in the northwest, north China, northeast and coastal areas.
  • soil salinization is becoming more and more serious.
  • excess Na + in the soil can have a toxic effect on the normal growth and metabolism of the plant. Therefore, how to increase crop yield under saline environment has become a very important issue in agricultural production in China.
  • the stress resistance of plants is a very complex quantitative trait, and its salt tolerance mechanism involves various levels from plants to organs, tissues, physiology and biochemistry to molecules. When a plant is stressed, it will respond accordingly to reduce or eliminate the damage caused to the plant.
  • This response of plants is a complex process involving multiple genes, multiple signaling pathways, and multiple gene products.
  • genes and their expression products can be divided into three categories: (1) genes involved in signal cascade amplification systems and transcriptional control and their expression products; (2) genes that directly contribute to the protection of biofilms and proteins and their expression products; (3) Genes and proteins associated with the uptake and transport of water and ions.
  • H + -pyrophosphatase H + -PPase
  • H + -PPase H + -pyrophosphatase
  • Arabidopsis Floral Initiator SKB 1 Confers High Salt Tolerance by Regulating Transcription and Pre-mRNA Splicing through Altering Histone H4R3 and Small Nuclear Ribonucleoprotein LSM4 Methylation. Plant Cell, 23: 396-41 1 ).
  • biotechnology the research on stress-tolerant crops, xerophytes and halophytes has achieved remarkable results, and the stress-related genes and signal transduction systems have been further understood.
  • the present inventors cloned a gene encoding a sylvestre betaine dehydrogenase (abbreviated herein as BADH) by using SSH (suppression subtractive hybridization) and RACE (rapid amplification of cDNA ends), and determined the gene. Its DNA sequence. Furthermore, it was found that the transgenic plants were introduced into the plants and expressed, and the salt tolerance and drought tolerance of the transgenic plants were significantly improved, and these traits were stably inherited.
  • BADH sylvestre betaine dehydrogenase
  • the first aspect of the present invention provides a gene encoding a cedar betaine dehydrogenase BADH (designated herein as
  • BgBADH the sequence of which is SEQ ID NO: 2.
  • a second aspect of the present invention provides a recombinant expression vector comprising the gene of the first aspect of the present invention, which is obtained by inserting the gene into an expression vector, and the nucleotide sequence of the gene
  • the expression control sequence of the recombinant expression vector is operably linked; preferably, the expression vector is pCAMBIA2300 ; preferably, the recombinant expression vector is the 358-3 ⁇ 4 ⁇ ) 2300 vector shown in Figure 2.
  • a third aspect of the invention provides a recombinant cell comprising the gene of the first aspect of the invention or the recombinant expression vector of the second aspect of the invention; preferably, the recombinant cell is a recombinant Agrobacterium cell.
  • a fourth aspect of the present invention provides a method for improving salt tolerance and/or drought tolerance of a plant, comprising: introducing the gene of the first aspect of the invention or the recombinant expression vector of the second aspect of the invention into a plant or plant tissue and The gene is expressed; preferably, the plant is Arabidopsis thaliana.
  • a fifth aspect of the invention provides a method for producing a transgenic plant, comprising: cultivating a plant or plant tissue comprising the gene of the first aspect of the invention or the recombinant expression vector of the second aspect of the invention under conditions effective to produce a plant
  • the plant is Arabidopsis thaliana.
  • the sixth aspect of the present invention provides the gene according to the first aspect of the present invention, the recombinant expression vector of the second aspect of the present invention or the recombinant cell of the third aspect of the present invention for improving salt tolerance and/or drought tolerance of the plant And for use in plant breeding; preferably, the plant is Arabidopsis thaliana.
  • the seventh aspect of the invention provides the protein encoded by the gene of the first aspect of the invention, the amino acid sequence of which is set forth in SEQ ID NO: 1.
  • BRIEF DESCRIPTION OF THE DRAWINGS Figure l3 ⁇ 4 SgA4DH gene plant expression vector 35S-BgBADH-2W0 construction process (Fig. la-lb).
  • Figure 23B is a plasmid map of the plant expression vector (5S-BgBADH-2K) of the SgA4DH gene.
  • Fig. 3 shows the results of salt tolerance test of T1 Arabidopsis thaliana plants transgenic with Sg DH gene, Tlk5 showed significant salt tolerance, and the results of Tlk7 and Tlkl6 were similar thereto, which are not shown here.
  • FIG. 4 shows the results of molecular level detection of the transcription level of the BgBADH gene in T1 transgenic Arabidopsis plants and non-transgenic control plants by reverse transcription PCR.
  • M is DNA Ladder Marker (DL2000)
  • 1-8 is a salt-tolerant T1 transgenic Arabidopsis plant (three strains belonging to Tlk5, Tlk7, and Tlkl6, respectively)
  • 9-12 are non-transgenic control Arabidopsis plants.
  • Fig. 5 shows the results of drought tolerance test of T1 generation Arabidopsis thaliana plants transgenic with Sg DH gene, Tlk5 showed significant drought tolerance, and the results of Tlk7 and Tlkl6 were similar thereto, which are not shown here.
  • Mulan was collected from Futian National Nature Reserve, Shenzhen, Guangdong province ( ⁇ 22 ° 53 ', E114 ° 01 ').
  • the P. guiem gymnoirhi hypocotyls with no pests, well-developed and mature levels were collected, and hypocotyls of similar size, length and weight were selected for the experiment.
  • plastic buckets (bottle diameter 18 cm, height 15 cm)
  • the bottom of each bucket is padded with plastic trays
  • the fine sand is river sand
  • the average particle size is about 1 mm
  • tap water is washed
  • each small barrel is planted with hypocotyls. 4.
  • the OD 260 / OD 280 ratio was 1.8-2.0, indicating that the total RNA purity was higher; 1.0% agarose was used to coagulate.
  • Gel electrophoresis detected the integrity of total RNA.
  • the method according to Clontech's PCR-select TM cDNA Subtraction Kit kit instructions will be shown suppression subtractive hybridization.
  • Driver mRNA and Tester mRNA were reverse transcribed separately (reverse transcription primers were provided as primers) to obtain double-stranded cDNA, and 2 ⁇ g of Tester cDNA and 2 ⁇ g of Driver cDNA were used.
  • Subtractive hybridization is performed for the starting material.
  • the Tester cDNA and Driver cDNA were digested with Rsa I for 1.5 hours in a 37 ° C water bath, and then the digested Tester cDNA was divided into two equal portions, and the different linkers were ligated, and the Driver cDNA was not ligated.
  • Two tester cDNAs with different adaptors were mixed with excess Driver cDNA for the first forward subtractive hybridization.
  • the products of the two first forward subtractive hybridizations were mixed, and a second forward subtractive hybridization was performed with the newly denatured Driver cDNA, and the differentially expressed genes were amplified by two inhibitory PCR amplifications (PCR). Before, the second forward subtractive hybridization product is end-filled).
  • the second inhibitory PCR amplification product of the second forward subtractive hybridization cDNA fragment (purified using QIAquick PCR Purification Kit, purchased from Qiagen) according to the instructions of the pGEM-T Easy kit (purchased from Promega)
  • the specific steps are linked to the pGEM-T Easy vector as follows: The following components are sequentially added to the 200 l PCR tube: Purified combined positive subtractive hybridization cDNA fragment second inhibitory PCR product 3 ⁇ 1 , 2 X T4 DNA ligase buffer 5 ⁇ l, pGEM-T Easy vector 1 ⁇ l, ⁇ 4 DNA ligase 1 ⁇ l, ligated overnight at 4 °C.
  • the nested PCR primers Primer 1 and Primer 2R (PCR-select TM cDNA Subtraction Kit from Clontech) were used to perform PCR amplification verification on the cultured cells, and 215 positive clones were obtained, and then all positive clones were sent.
  • Yingjie Jieji (Shanghai) Trading Co., Ltd. was sequenced.
  • sequence was SEQ ID No: 3.
  • Sequence analysis indicated that the protein encoded by the sequence belonged to betaine dehydrogenase.
  • SgSADH full-length coding gene corresponding to the sequence of SEQ ID No: 3
  • BADH BADH
  • the first round of PCR amplification was carried out using SEQ ID NO: 4 and the universal primer AUAP (provided with the kit), and the cDNA obtained by reverse transcription of the mRNA extracted by the salt treatment group was used as a template. Specific steps are as follows:
  • PCR reaction system 5 ⁇ 1 ⁇ ⁇ ⁇ Buffer 3 ⁇ 1 2.5 mM dNTP, 2.0 ⁇ 1 cDNA, 1.0 ⁇ 1 Ex Taq (purchased from TAKARA), 10 ⁇ M primer SEQ ID NO: 4 and AUAP each 2.0 ⁇ ⁇ and 35 ⁇ ⁇ double distilled water.
  • PCR reaction conditions pre-denaturation at 94 ° C for 5 minutes, 33 cycles (94 ° C for 30 seconds, 60 ° C for 30 seconds, 72 ° C for 1 minute), 72 ° C for 10 minutes.
  • the obtained PCR product was diluted 50-fold with double distilled water, and 2.0 ⁇ L was used as a template, and the second round of PCR amplification was carried out by using SEQ ID NO: 5 and the universal primer AUAP.
  • the specific steps are as follows:
  • PCR reaction system 5 ⁇ 1 lO X Ex Buffer 3 ⁇ 1 2.5 mM dNTP, 2.0 ⁇ l diluted first round PCR product, 1.0 ⁇ 1 Ex Taq 10 ⁇ M primer SEQ ID NO: 5 and P AUAP Each of 2.0 ⁇ 1 and 35 ⁇ l of double distilled water.
  • PCR reaction conditions pre-denaturation at 94 ° C for 5 minutes, 33 cycles (94 ° C denaturation 30 seconds, annealing at 60 ° C for 30 seconds, 72 ° C for 1 minute), 72 ° C extension for 10 minutes.
  • the CAATCCTCTT CCAGAGGATC TGAT test procedure was performed according to the kit instructions (5 'RACE System for Rapid Amplification of cDNA Ends kit purchased from Invitrogen).
  • the cDNA obtained by reverse transcription of the mRNA extracted from the salt-treated group (reverse transcription primer SEQ ID NO: 6, dCTP plus tail) was used as a template.
  • the first round of PCR amplification the specific steps are as follows:
  • PCR reaction system 5 ⁇ 1 ⁇ ⁇ ⁇ Buffer 3 ⁇ 1 2.5 mM dNTP, 2.0 ⁇ 1 cDNA, 1.0 ⁇ 1 Ex Taq (purchased from TAKARA), 10 ⁇ M primer SEQ ID NO: 7 and P AAP each with 2.0 ⁇ l and 35 ⁇ l of double distilled water.
  • PCR reaction conditions pre-denaturation at 94 ° C for 5 minutes, 33 cycles (denaturation at 94 ° C for 30 seconds, annealing at 60 ° C for 30 seconds, extension at 72 ° C for 2 minutes), extension at 72 ° C for 10 minutes.
  • the obtained PCR product was diluted 50 times with double distilled water, and 2.0 ⁇ ⁇ was used as a template, and the second round of PCR amplification was carried out using SEQ ID NO: 8 and the primer AUAP.
  • the specific steps are as follows:
  • PCR reaction system 5 ⁇ 1 lO X Ex Buffer 3 ⁇ 1 2.5 mM dNTP, 2.0 ⁇ l diluted first round PCR product, 1.0 ⁇ 1 Ex Taq 10 ⁇ M primer SEQ ID NO: 8 and P AUAP Each 2.0 1 1 and 35 ⁇ l of double distilled water.
  • PCR reaction conditions pre-denaturation at 94 ° C for 5 minutes, 33 cycles (denaturation at 94 ° C for 30 seconds, annealing at 60 ° C for 30 seconds, extension at 72 ° C for 2 minutes), extension at 72 ° C for 10 minutes.
  • a band of about 1000 bp in the second round of PCR product (Gel Extraction Kit from OMEGA) was recovered and ligated into pGEM-T Easy vector, and then transformed into E. coli JM109 competent cells (the method is the same as above)
  • the transformed bacterial solution was applied to LB solid medium containing 50 ⁇ l of ampicillin and 40 ⁇ g of mL X-gaK 24 g/mL IPTG for screening. 10 white colonies were randomly picked and inoculated into LB liquid medium containing 50 g/ml ampicillin, and cultured overnight at 37 ° C, glycerol was added to a final concentration of glycerol of 20% (volume ratio), and stored at -80 ° C. .
  • the SgSADH full-length coding gene was cloned by SEQ ID NO: 10 and SEQ ID NO: 11.
  • the PCR reaction was carried out using TAKARA's PrimeSTAR HS DNA polymerase and the reverse-transcribed cDNA extracted from the roots of the salt-treated group.
  • 50 ⁇ 1 ⁇ Reaction system 10 ⁇ 1 5 X PS Buffer, 3 ⁇ 1 2.5 mM dNTP, 2.0 ⁇ 1 cDNA, 1.0 ⁇ 1 PrimeSTAR HS DNA polymerase, 10 ⁇ M primers SEQ ID NO: 10 and SEQ ID NO: 11 each of 2.0 ⁇ 1 and 30 ⁇ l of double distilled water.
  • PCR reaction conditions Pre-denaturation at 94 ° C for 5 minutes, 33 cycles (denaturation at 94 ° C for 30 seconds, annealing at 58 ° C for 30 seconds, extension at 72 ° C for 2 minutes), extension at 72 ° C for 10 minutes.
  • PCR amplification product plus A tail 2.5 times the volume of absolute ethanol was added to the PCR product, placed at -20 ° C for 10 minutes, centrifuged, the supernatant was removed, air-dried, and then the resulting precipitate was dissolved in 21 ⁇ M of double distilled water. Then, 2.5 ⁇ l lO X Ex Buffer 0.5 ⁇ l 5 mM dATP, 1.0 l Ex Taq was added thereto. Reaction conditions: The reaction was carried out at 70 ° C for 30 minutes.
  • the obtained 1500 bp DNA fragment was recovered (Omega recovery kit), and ligated into the pGEM T-easy vector to obtain a BgBADH-pGEM plasmid, and then the ligated product was transformed into E. coli JM109 competent cells (method as above)
  • the transformed bacterial solution was applied to LB solid medium containing 50 g/mL ampicillin and 40 g/mL X-gaK 24 g/mL IPTG for screening. 10 white colonies were randomly picked and inoculated in LB liquid medium containing 50 g/ml ampicillin. After incubation at 37 ° C overnight, glycerol was added to a final concentration of glycerol of 20% (volume ratio), and stored at -80 ° C. .
  • the bacterial liquid PCR amplification assay was carried out with SEQ ID NO: 10 and SEQ ID NO: 11 (the reaction system and the reaction conditions were the same as above), and 9 positive clones were obtained, and 3 of them were selected.
  • the positive clones were sent to Ingeki (Shanghai) Trading Co., Ltd. for sequencing, and the resulting sequence was SEQ ID NO: 2, and the amino acid sequence of the encoded protein was SEQ ID NO: 1.
  • the plant binary expression vector pCAMBIA2300 (purchased from Beijing Dingguo Changsheng Biotechnology Co., Ltd.) was selected as a plant expression vector, and the 35S promoter containing the double enhancer of the ⁇ gene was replaced with the Pnos promoter to reduce the expression of prion protein in plants. .
  • the 35S promoter and the Tnos terminator were selected as promoters and terminators of the SgA4£)H gene, respectively.
  • the construction flow chart is shown in Figure 1.
  • Pnos was amplified using the plant expression vector pBI121 plasmid (purchased from Beijing Huaxia Ocean Technology Co., Ltd.) using primers SEQ ID NO: 12 and SEQ ID NO: 13, using TAKARA's PrimeSTAR HS DNA polymerase.
  • 50 l PCR reaction system 10 l 5 X PS Buffer, 3 ⁇ 1 2.5 mM dNTP, 1.0 ⁇ 1 ⁇ 121 plasmid, 1.0 ⁇ 1 PrimeSTAR HS DNA polymerase, 10 ⁇ M primers SEQ ID NO: 12 and SEQ ID NO : 13 each of 2.0 ⁇ ⁇ and 31 ⁇ ⁇ of double distilled water.
  • PCR reaction conditions pre-denaturation at 94 ° C for 5 minutes, 33 cycles (denaturation at 94 ° C for 30 seconds, annealing at 56 ° C for 30 seconds, extension at 72 ° C for 30 seconds), extension at 72 ° C for 10 minutes.
  • the resulting PCR product was digested with EcoRI, Bglll, and ligated into pCAMBIA2300 according to the kit instructions (Promega, T4 ligase kit) to obtain pCAMBIA2300-1.
  • kit instructions Promega, T4 ligase kit
  • Tnos was amplified using the primers SEQ ID NO: 14 and SEQ ID NO: 15 with the pBI121 plasmid as a template, using TIAK's PrimeSTAR HS DNA polymerase.
  • PCR reaction conditions pre-denaturation at 94 ° C for 5 minutes, 33 cycles (denaturation at 94 ° C for 30 seconds, annealing at 58 ° C for 30 seconds, extension at 72 ° C for 30 seconds), extension at 72 ° C for 10 minutes.
  • the obtained PCR product was ligated by Kpnl and EcoRI (Promega T4 ligase kit) to pCAMBIA2300-1 to obtain pCAMBIA2300-2.
  • TCAGAATTCCCAGTGAATTCCCGATCTAGTA The 35S promoter was amplified using the primers SEQ ID NO: 16 and SEQ ID NO: 17 using the pCAMBIA2300 plasmid as a template.
  • TAKARA's PrimeSTAR HS DNA polymerase was used. 50 yl PCR reaction system: 10 ⁇ 1 5 X PS Buffer 3 ⁇ 1 2.5 mM dNTP, 1.0 ⁇ l pCAMBIA2300 plasmid, 1.0 ⁇ l PrimeSTAR HS DNA polymerase, 10 ⁇ M primer SEQ ID NO: 16 and P SEQ ID NO: 17 each of 2.0 ⁇ ⁇ and 31 ⁇ ⁇ double distilled water.
  • PCR reaction conditions pre-denaturation at 94 ° C for 5 minutes, 33 cycles (94 ° C for 30 seconds, 58 ° C for 30 seconds, 72 ° C for 30 seconds), 72 ° C for 10 minutes.
  • the resulting PCR product was ligated by HindIII and Sail (connection method as above) to pCAMBIA2300-2 to obtain pCAMBIA2300-3.
  • TGAGTCGACAGAGATAGATTTGTAGAGAGACT Amplifies the full-length sequence of the SgSADH-encoding gene with primers SEQ ID NO: 18 and SEQ ID NO: 19 (template is the positive BgBAi-pGEM plasmid obtained in Example 2), using PrimeSTAR of TAKARA HS DNA polymerase. 50 ⁇ 1 PCR reaction system: 10 ⁇ ⁇ 5 X PS Buffer 3 ⁇ 1 2.5 mM dNTP 1.0 ⁇ l SgSADH-pGEM plasmid, 1.0 ⁇ l PrimeSTAR HS DNA polymerase, 10 ⁇ M primers SEQ ID NO: 18 and SEQ ID NO: 19 each of 2.0 ⁇ ⁇ and 31 ⁇ ⁇ double distilled water.
  • PCR reaction conditions pre-denaturation at 94 ° C for 5 minutes, 33 cycles (denaturation at 94 ° C for 30 seconds, annealing at 58 ° C for 30 seconds, extension at 72 ° C for 2 minutes), extension at 72 ° C for 10 minutes.
  • the resulting PCR product was ligated by Sall, BamHI digestion (ligation as above) to pCAMBIA2300-3, and the plant expression vector 35 S-BgBADH-2300 was obtained after verification (Fig. 2).
  • Agrobacterium tumefaciens GV3101 purchased from Shanghai Maiqi Biotechnology Co., Ltd.
  • Preparation of competent cells Agrobacterium GV3101 was engraved on solid medium containing 50 ⁇ ⁇ / ⁇ 1 rifampicin and 50 ⁇ ⁇ / ⁇ 1 gentamicin LB Spot vaccination, culture at 28 °C for 1 to 2 days. Pick a single colony and inoculate 5 ml of LB liquid medium containing 50 ⁇ ⁇ / ⁇ 1 rifampicin and 50 ⁇ ⁇ / ⁇ 1 gentamicin, and incubate overnight (about 12-16 hours) to OD 6 at 28 °C. . .
  • a value of 0.4 forms a seed broth.
  • the ice bath solution was shaken for 10 minutes every 3 minutes to allow the bacteria to enter the dormant state uniformly.
  • Transformation of Agrobacterium The GV3101 competent cells were thawed on ice, and 1 ⁇ of the plasmid 358- ⁇ 4 ⁇ ) -2300 obtained in Example 3 was added to 40 ⁇ of the competent cells, and the ice bath was mixed for about 10 minute. Transfer the mixture of competent cells after ice bath and 35 SB g BADH-23QQ plasmid with a micropipette to an ice-cold 0.1 cm size electric shock cup (purchased from Bio-Rad), tap to bring the suspension to reach The bottom of the electric shock cup (be careful not to have air bubbles). Place the electric shock cup on the slide of the electric shock chamber, and push the slide to place the electric shock cup to the base electrode of the electric shock chamber.
  • an electric shock cup purchased from Bio-Rad
  • the rock with good water absorption and soft soil was mixed with nutrient soil (1:1) as the soil for Arabidopsis thaliana planting.
  • nutrient soil (1:1) as the soil for Arabidopsis thaliana planting.
  • Using a 9 cm diameter pot seeded 20-30 Arabidopsis seeds per pot (Columbia type, from the Arabidopsis Bioresources Center, Ohio State University). After sowing, the film is covered with a film to provide a moist environment for plant growth.
  • the GV3101 Agrobacterium liquid of the transformed 35S-B g BADH-2W0 expression vector obtained in Example 4 was inoculated to an LB liquid medium containing 50 ⁇ ⁇ / ⁇ 1 kanamycin (kan) overnight, the next morning. It was inoculated at 1:50 into a new LB medium (1 L) containing 50 ⁇ ⁇ / ⁇ 1 kanamycin and cultured for about 8 hours to Agrobacterium OD 6 . . Between 1.0 and 1.2.
  • Seed disinfection Soak for 10 minutes with 70% ethanol, and occasionally suspend the seeds; then wash with sterile water four times, and occasionally suspend the seeds. Then, the treated seeds were uniformly coated on the surface of 1/2MS solid screening medium containing 50 ⁇ ⁇ / ⁇ 1 kanamycin (a maximum of 1500 seeds were seeded in a 150 mm diameter plate), and vernalized at 4 °C. After 2 days, it was cultured for 7-10 days at a constant temperature of 22 ° C, an illumination intensity of 3500-4000 k, and a photoperiod of 12 hours of darkness/12 hours of light. After germination of the transgenic seeds on the screening medium for 2 weeks, the plants capable of germination and normal growth were transferred to soil for further cultivation.
  • the transgenic Arabidopsis thaliana and the control Arabidopsis thaliana each of the plants in Example 8 were left untreated, and 1/2 MS liquid medium was normally poured, and one pot of each plant was irrigated with 1/2 MS liquid medium containing 150 mM NaCl.
  • the temperature was 22 ° C
  • the light intensity was 3500-4000 k
  • the 12-hour light culture/12-hour dark culture cycle and the experimental results were observed after 14 days.
  • the salt tolerance of T1 transgenic plants (plants grown from seeds of T0 transgenic plants) showed that the T1 transgenic plants Tlk5, Tlk7 and Tlkl6 showed significant salt tolerance (see Figure 3, with Tlk5). For example, the results of Tlk7 and Tlkl6 are similar, not shown here).
  • Example 10 Verification of the expression of the SgSADH gene at the transcriptional level
  • Example 9 Eight T1 transgenic plants with good salt tolerance in Example 9 were randomly selected (three salt-tolerant strains belonging to the above Tlk5, Tlk7 and Tlkl6, respectively), and the control plants in Example 9 were randomly selected from 4 plants, each of which was cut. Salt (150 mM NaCl) was treated with 0.05 g of leaves for 14 days, and total RNA was extracted using a plant RNA extraction kit (Invitrogen). The absorbance values of total RNA obtained at 260 nm and 280 nm were determined by ultraviolet spectrophotometry, and the respective RNA concentrations were calculated.
  • Reverse transcription was carried out according to the method shown by Invitrogen reverse transcription assay Ll box Superscript III Reverse Transcriptase, and 1 total RNA was used as a template for reverse transcription.
  • the BgBADH fragment was amplified using primers SEQ ID NO: 10 and SEQ ID NO: 20 (SEQ ID NO: 20: CCATGGATGT ACTTACATCA GT), and its transcription was examined.
  • the AtACT2 fragment was amplified using primers SEQ ID NO: 21 (SEQ ID NO: 21: 5-GCCATCCAAGCTGTTCTCTC-3) and SEQ ID NO: 22 (SEQ ID NO: 22: TTCTCGATGGAAGAGCTGGT) (Arabidopsis housekeeping gene: http: ⁇ www.ncbi.nlm.nih.gov/ nuccore/ AK317453.1), as a control.
  • PCR reaction was carried out using the Ex DNA polymerase of TAKARA and using the cDNA obtained by the above reverse transcription as a template.
  • 50 ⁇ l ⁇ Reaction system 5 ⁇ ⁇ Buffer, 3 ⁇ 2.5 mM dNTP, 2.0 ⁇ cDNA, 0.3 ⁇ Ex DNA polymerase, 10 ⁇ primer SEQ ID NO: 10 and P SEQ ID NO: 20 each 2.0 ⁇ l, and 35.7 ⁇ of double distilled water.
  • PCR reaction conditions pre-denaturation at 94 ° C for 5 minutes, 30 cycles (denaturation at 94 ° C for 30 seconds, annealing at 58 ° C for 30 seconds, extension at 72 ° C for 1 minute), extension at 72 ° C for 10 minutes.
  • M is the DNA Ladder Marker (DL2000, purchased from Shenzhen Ruizhen Biotechnology Co., Ltd.)
  • 1-8 is the salt-tolerant T1 transgenic Arabidopsis plants (Tlk5, Tlk7, Tlkl6, respectively) Three strains), 9-12 are non-transgenic control Arabidopsis plants.
  • Sg ⁇ DH was significantly transcribed in the salt-tolerant T1 transgenic Arabidopsis plants, and there was no BgBADH transcription in the non-transgenic control Arabidopsis plants.
  • Example 11 Drought tolerance experiment of Tlk5, Tlk7, Tlkl6 transgenic Arabidopsis thaliana
  • Tlk5, Tlk7, Tlkl6 transgenic Arabidopsis thaliana were planted in the same manner as in Example 8.
  • Transgenic Arabidopsis thaliana and control Arabidopsis thaliana were treated separately, normal watering 1/2MS, transgenic Arabidopsis thaliana, another pot of Arabidopsis thaliana , do not water 1/2MS, constant temperature 22 ° C, light intensity 3500-4000 k, 12 hours light culture / 12 hours dark culture cycle.
  • the results of the experiment were observed after 10 days: Tlk5 showed significant drought tolerance (see Figure 6, with Tlk5, Tlk7, Tlkl6 with similar results, not shown here).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

一种来源于木榄的甜菜碱脱氢酶BADH及其编码基因,以及该编码基因在培育耐盐、耐旱提高的转基因植物中的应用。

Description

一种木榄甜菜碱脱氢酶 BADH及其编码基因与应用
技术领域 本发明涉及植物蛋白及其编码基因与应用, 特别是涉及一种来源于木榄的钼辅酶 因子硫化酶 BADH及其编码基因, 以及其在培育耐盐性及耐旱性提高的转基因植物中 的应用。 背景技术 干旱使得超过 40%的地球陆地面积种植农作物受到限制,对全球农业生产和粮食 供应也构成了严重的威胁, 干旱是对农作物产量的主要环境限制条件之一。
世界上盐碱土的面积很大, 约有 4亿公顷, 占灌溉农田的 1/3。 在气候干燥的半干 旱、 干旱地区由于降雨量少、 蒸发剧烈, 盐分不断积累; 海滨地区由于海水倒灌造成 土壤含盐量增加。 我国盐碱土主要分布于西北、 华北、 东北和滨海地区, 随着大棚面 积的逐年增长和栽培年代的推移, 土壤盐渍化日趋严重。 对绝大多数农作物来说, 土 壤中过量的 Na+会对植物体的正常的生长代谢产生毒害作用。 因此如何在盐渍环境下 提高作物产量就成为我国农业生产中十分重要的问题。
采用传统的方法选育耐盐、 抗旱的植物品种固然简便可行, 但进展缓慢, 局限性 大。随着分子生物学技术的发展, 一大批与植物耐盐、抗旱有关的基因相继得到克隆, 植物转基因技术有了重大突破, 这为有效利用旱地及盐碱地提高作物产量, 治理盐渍 化及荒漠化土地提供了新的思路和方法。
植物的抗逆性是一个十分复杂的数量性状,其耐盐机制涉及从植株到器官、组织、 生理生化直至分子的各个水平。 植物在受到胁迫时会产生相应的应答反应, 来降低或 消除给植株带来的危害。 植物的这种应答反应是一个涉及多基因、 多信号途径、 多基 因产物的复杂过程。 这些基因及其表达产物可以分为 3类: (1 ) 参与信号级联放大 系统和转录控制的基因及其表达产物; (2) 直接对保护生物膜和蛋白质起作用的基 因及其表达产物; (3 ) 与水和离子的摄入和转运相关的基因及蛋白质。 各国的科学 家也为此做了大量的工作, 并取得突破性的进展 (Park S. 2005. Up-regulation of a H+-pyrophosphatase(H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc. Natl. Acad. Sci. USA. 102: 18830-18835; ABE H.2003.A rabid op sis AtMYC2 (bHLH) and AtM YB 2 (M YB ) function as transcrip tional activato rs in abscisic acid signaling. Plant Cell, 15 : 63-78; Zhang ZL. 201 1. Arabidopsis Floral Initiator SKB 1 Confers High Salt Tolerance by Regulating Transcription and Pre-mRNA Splicing through Altering Histone H4R3 and Small Nuclear Ribonucleoprotein LSM4 Methylation. Plant Cell, 23 : 396-41 1 ) 。 通过生物技术手段, 对具有胁迫耐受能力的农作物、 旱生植物和 盐生植物的研究都取得了显著的成果, 对胁迫相关基因和信号转导系统也有了更进一 步的了解。
但就目前的研究状况而言, 由于其机制十分复杂, 许多植物对逆境下的生物化学 和生理学上的响应机制仍有待深入研究。在抗逆应答基因的功能及表达调控方面的研 究占多数, 但抗逆相关的信号传递途径之间的联系以及整个信号传递网络系统的机理 还有待进一步研究。虽然许多研究机构通过现代生物技术,获得了各类具有一定耐盐、 抗旱等抗逆能力的转基因植物, 但还未达到产业化的标准。 因此在提高植物抗逆性方 面, 还有许多工作需要做。
发明内容 本发明人利用 SSH (抑制差减杂交) 与 RACE ( cDNA末端快速扩增) 相结合的 方法克隆了一种木榄甜菜碱脱氢酶 (本文命名为 BADH) 的编码基因, 并测定了其 DNA 序列。 并且发现通过转基因技术将其导入植株并使其表达后, 可显著改善转基 因植株的耐盐性及耐旱性, 而且这些性状可稳定遗传。
本发明第一方面提供一种木榄甜菜碱脱氢酶 BADH 的编码基因 (本文命名为
BgBADH) , 其序列为 SEQ ID N0: 2。
本发明第二方面提供一种重组表达载体, 其含有本发明第一方面所述的基因, 其是通过将所述基因插入到一种表达载体而获得的, 并且所述基因的核苷酸序列与 所述重组表达载体的表达控制序列可操作地连接; 优选地, 所述表达载体是 pCAMBIA2300; 优选地, 所述重组表达载体为图 2所示的 358-3^Α4Ζ) 2300载体。
本发明第三方面提供一种重组细胞, 其含有本发明第一方面所述的基因或者本 发明第二方面所述的重组表达载体; 优选地, 所述重组细胞为重组农杆菌细胞。
本发明第四方面提供一种改善植物耐盐性和 /或耐旱性的方法, 包括: 将本发明 第一方面所述基因或者本发明第二方面所述的重组表达载体导入植物或植物组织并 使所述基因表达; 优选地, 所述植物是拟南芥。
本发明第五方面提供一种制备转基因植物的方法, 包括: 在有效产生植物的条 件下培养含有本发明第一方面所述基因或者本发明第二方面所述的重组表达载体的 植物或植物组织; 优选地, 所述植物是拟南芥。
本发明第六方面提供本发明第一方面所述的基因、 本发明第二方面所述的重组 表达载体或者本发明第三方面所述的重组细胞用于改善植物耐盐性和 /或耐旱性以及 用于植物育种的用途; 优选地, 所述植物是拟南芥。
本发明第七方面提供由本发明第一方面所述的基因编码的蛋白质, 其氨基酸序 列如 SEQ ID NO: 1所示。 附图说明 图 l¾SgA4DH基因的植物表达载体 35S-BgBADH-2W0 构建流程 (图 la-lb) 。 图 2¾SgA4DH基因的植物表达载体 ( 5S-BgBADH-2K) 的质粒图。
图 3是转 Sg DH基因的 T1代拟南芥植株的耐盐实验结果, Tlk5表现出显著的 耐盐性, Tlk7、 Tlkl6的结果与其类似, 在此未示出。
图 4为利用反转录 PCR对 T1代转基因拟南芥植株和非转基因对照植株中 BgBADH 基因的转录水平进行分子水平检测的结果。 M为 DNA Ladder Marker ( DL2000 ) , 1-8 为耐盐 T1代转基因拟南芥植株 (分别属于 Tlk5、 Tlk7、 Tlkl6三个株系), 9-12为 非转基因对照拟南芥植株。
图 5是转 Sg DH基因的 T1代拟南芥植株的耐旱实验结果, Tlk5表现出显著的 耐旱性, Tlk7、 Tlkl6的结果与其类似, 在此未示出。
具体实施方式 提供以下实施例, 以方便本领域技术人员更好地理解本发明。 所述实施例仅出 于示例性目的, 并非意在限制本发明的范围。
以下实施例中提到的未注明来源的限制性内切酶均购自 New England Biolabs公司。 在本发明中, 如果没有注明并且在上下文中没有歧义, 比例和百分比是基于重量计 算的。 实施例 1. 盐胁迫下木榄 SSH文库构建:
具体方法为:
按照 Clontech公司的 PCR-selectTM cDNA Subtraction Kit试剂盒说明书所示的方法 通过抑制差减杂交方法构建 SSH文库(抑制差减文库) 。 在实验过程中以盐处理的木 榄根中提取的 mRNA作为样本(Tester) , 以未处理的木榄根中提取的 mRNA作为对 照 (Driver) 。 具体步骤如下:
( 1 ) 供试材料:
木榄采自广东省深圳市福田国家级自然保护区 (Ν22 ° 53 ' , E114 ° 01 ' )。 采集无 虫害、 发育良好、成熟程度接近的木榄 B guiem gymnoirhi 胚轴, 选取大小、 长度、 重量接近的胚轴用于实验。 在塑料桶 (盆口径 18 cm, 高 15 cm) 中沙培, 每个桶底部垫 塑料托盘, 细沙为河沙, 平均粒径约为 l mm, 自来水洗净, 每个小桶种植胚轴 4个。 在 28 °C, 自然光照 12小时每天的条件下萌发生长苗木培养期间, 每天浇适量的自来水补充 水分, 并且每一周浇一次 Hoagland 营养液(D. R. Hoagland and D. I. Arnon. The water-culture method of growing plants without soi l. Cal if. Agr. Expt. Sta. Circ. 347. 1950)。
( 2 ) 材料处理:
选择生长发育外观一致 (幼苗高度一致、 每株幼苗长至 6片叶子) 的木榄幼苗, 分成两组, 一组浇 2 L 500 mM NaCl, 一组浇 2 L蒸熘水, 处理时间为 6小时。 收集 处理组和对照组的根。 用液氮迅速冷冻后, 于 -70 °C冰箱中保存。
( 3 ) 总 RNA提取:
分别取对照组和盐处理组的木榄根各 3.0 g, 用植物 RNA 提取试剂盒 (购自 Invitrogen)提取总 RNA。 用 HITACHI公司的紫外分光光度计 U-2001测定所得总 RNA 在 260 nm和 280 nm的吸光度值, OD260/OD280比值为 1.8-2.0, 表明总 RNA纯度较高; 用 1.0%的琼脂糖凝胶电泳检测总 RNA的完整性, 28S条带的亮度约为 18S条带的 2 倍, 表明 RNA的完整性良好。 使用 Qiagen公司的 Oligotex mRNA纯化试剂盒(从总 RNA中纯化 polyA+ RNA) 分离 mRNA。
( 4 ) 抑制差减杂交:
按 Clontech公司的 PCR-selectTM cDNA Subtraction Kit试剂盒说明书所示的方法进 行抑制差减杂交。 先将 Driver mRNA和 Tester mRNA分别反转录(反转录引物为试剂 盒所提供引物) , 得到双链 cDNA, 再以 2 μ g Tester cDNA和 2 μ g Driver cDNA作 为起始材料进行差减杂交。 在 37°C水浴下分别将 Tester cDNA和 Driver cDNA用 Rsa I 酶切 1.5 小时, 然后将酶切后的 Tester cDNA分成两等份, 连接上不同的接头, 而 Driver cDNA 不连接头。 两种连有不同接头的 Tester cDNA 分别与过量的 Driver cDNA混合, 进行第一次正向差减杂交。 将两种第一次正向差减杂交的产物混合, 再 与新变性的 Driver cDNA进行第二次正向差减杂交, 通过两次抑制性 PCR扩增富集 差异表达基因的片段 (PCR进行前, 将第二次正向差减杂交产物进行末端补平) 。
( 5 ) 差减文库的构建与初步筛选、 克隆、 鉴定
依照 pGEM-T Easy试剂盒(购自 Promega) 的说明书, 将所述第二次正向差减杂 交 cDNA片段的第二次抑制性 PCR扩增产物 (使用 QIAquick PCR Purification Kit纯 化, 购自 Qiagen)与 pGEM-T Easy载体连接, 其具体步骤如下: 在 200 l PCR管中 依次加入下列成分: 纯化的合并后的正向差减杂交 cDNA 片段的第二次抑制性 PCR 产物 3 μ 1、 2 X T4 DNA连接酶缓冲液 5 μ 1、 pGEM-T Easy载体 1 μ 1、 Τ4 DNA连接 酶 1 μ 1, 于 4°C连接过夜。 然后取 10 μ ΐ连接反应产物, 加入到 100 μ ΐ大肠杆菌 JM109感受态细胞(购自 TAKARA)中, 冰浴 30分钟、 热休克 60秒、 冰浴 2分钟, 然后加入 250 μ 1 LB液体培养基(含有 1%胰蛋白胨(Tryptone, 购自 OXOID)、 0.5% 酵母提取物 (Yeast Extract, 购自 OXOID) 禾 P 1% NaCl (购自国药)) 后置于 37°C摇 床中, 以 225 rpm振荡培养 30分钟, 然后从中取 200 μ 1菌液接种于含 50 μ g/ml氨 苄青霉素、 40 g/mL X-gal ( 5-溴 -4氯 -3-吲哚 - β -D-半乳糖苷)、 24 g/mL IPTG (异丙基 - β -D-硫代吡喃半乳糖苷) 的 LB (同上) 固体 (1.5%琼脂, 下同)培养板上 (X-gal 和 IPTG均购自 TAKARA) , 37°C培育 18小时。 计数培养板中直径 > 1 mm的清晰白 色及蓝色菌落, 随机挑取 300个白色菌落 (编号: Bg-SR-001至 Bg-SR-300) 。 将所 挑取白色菌落分别接种于 96孔细胞培养板 (CORNING) 中的含 50 μ g/ml氨苄青霉 素的 LB液体培养基 (同上) 中, 37°C培养过夜后加甘油至甘油终浓度为 20% (体积 比), 然后于 - 80°C保存备用。 使用巢式 PCR引物 Primer 1和 Primer 2R (来自 Clontech 公司的 PCR-selectTM cDNA Subtraction Kit试剂盒) 对所培养的菌液分别进行 PCR扩 增验证, 得到 215个阳性克隆, 然后将所有阳性克隆送英潍捷基(上海) 贸易有限公 司测序。
( 6) 差异克隆的 cDNA测序分析:
将 DNA测序结果去除载体和不明确序列及冗余的 cDNA后, 共得到 198个有效 表达序列标签 (Expressed Sequence Tag, EST) (Unigene) 。 实施例 2 木榄甜菜碱脱氢酶编码基因 Sg DH的克隆
将所述鉴定的木榄 SSH文库中编号为 Bg-SR-179的克隆子去掉冗余 DNA后, 序列 为 SEQ ID No: 3, 序列分析表明该序列编码的蛋白属于甜菜碱脱氢酶。 本文将 SEQ ID No: 3序列对应的全长编码基因命名为 SgSADH, 其对应的蛋白命名为 BADH。
SEQ ID No: 3:
1 ACATAGGCTT GTGGAATGGT GCAAAAATGT TAAAATATCA GATCCTCTGG AAGAGGATTG
61 CAAGCTTGGC CCAGTTGTTG GTAAAGCACA GTATGATAAA ATAATGAAAT TCATCTCGAA
121 TGCAAAGAGT GAAGGTGCAA CTATTTTGTA TGGTGGGTCT CGTCCACAGC ATTTAGATAA 181 GGGATTCTAT ATCGAACCAA CCGTTGTTAC TGATGTAAGT
BgBADH全长编码基因的克隆
根据已经获得的 SEQ ID No: 3序列, 设计如下两条特异性引物, 作为 3 ' RACE 的 5 ' 端特异性引物。 BgBADH G Vl : SEQ ID No: 4:
CAAGCTTGGC CCAGTTGTTG GT
BgBADH SEQ ID No: 5:
TGCAAAGAGT GAAGGTGCAA CTA 实验步骤按试剂盒说明书操作 ( 3 ' RACE System for Rapid Amplification of cDNA Ends试剂盒购自 Invitrogen公司) 。
用 SEQ ID NO: 4与通用引物 AUAP (试剂盒自带) , 以盐处理组提取的 mRNA 反转录得到的 cDNA为模板进行第一轮 PCR扩增。 具体步骤如下:
50 μ 1 PCR反应体系: 5 μ 1 ΙΟ Χ Εχ Buffer 3 μ 1 2.5 mM 的 dNTP、 2.0 μ 1 cDNA、 1.0 μ 1 Ex Taq (购自 TAKARA) 、 10 μ M的引物 SEQ ID NO: 4禾口 AUAP各 2.0 μ ΐ以及 35 μ ΐ 双蒸水。 PCR反应条件: 94°C预变性 5分钟, 33个循环(94°C变 性 30秒, 60°C退火 30秒, 72°C延伸 1分钟) , 72°C延伸 10分钟。
将所得的 PCR产物用双蒸水稀释 50倍后取 2.0 μ ΐ作为模板, 用 SEQ ID NO: 5 与通用引物 AUAP进行第二轮 PCR扩增, 具体步骤如下:
50 y l PCR反应体系: 5 μ 1 lO X Ex Buffer 3 μ 1 2.5 mM的 dNTP、 2.0 μ 1稀释 的第一轮 PCR产物、 1.0 μ 1 Ex Taq 10 μ M的引物 SEQ ID NO: 5禾 P AUAP各 2.0 μ 1以及 35 μ 1的双蒸水。 PCR反应条件: 94°C预变性 5分钟, 33个循环(94°C变性 30秒, 60°C退火 30秒, 72°C延伸 1分钟) , 72°C延伸 10分钟。
回收第二轮 PCR 产物中片段约为 600 bp 的条带 (Gel Extraction Kit 购自
OMEGA), 并将其连接于 pGEM-T Easy载体, 然后转化到大肠杆菌 JM109感受态细 胞中 (具体方法同上), 并将转化后的菌液涂布于含 50 ^lmL氨苄青霉素、 40 ^glmL X-gaK 24 g/mL IPTG的 LB固体培养基上进行筛选。 随机挑取 10个白色菌落分别接种 于含有 50 g/ml氨苄青霉素的 LB液体培养基中, 37°C培养过夜后加甘油至甘油终 浓度为 20% (体积比) , -80°C保存备用。 用 SEQ ID NO: 5与通用引物 AUAP进行 菌液 PCR扩增验证, 得 7个阳性克隆, 将 3个阳性克隆送至英潍捷基 (上海) 贸易 有限公司测序, 获得该基因的 cDNA的 3 ' 端。
根据已经获得的 Sg DH基因片段, 设计如下三条特异性引物, 作为 5 ' RACE 的 3 ' 端特异性引物。
BgBADH GSP3: SEQ ID No: 6:
GGTTGGTTCG ATATAGAATC CC
BgBADH GSF4-. SEQ ID No: 7:
CATACTGTGC TTTACCAACA AC
BgBADH GSF5 -. SEQ ID No: 8:
CAATCCTCTT CCAGAGGATC TGAT 实验步骤按试剂盒说明书操作 ( 5 ' RACE System for Rapid Amplification of cDNA Ends试剂盒购自 Invitrogen公司) 。
用 SEQ ID NO: 7与通用引物 AAP (试剂盒自带), 以盐处理组木榄提取的 mRNA 反转录得到的 cDNA (反转录引物 SEQ ID NO: 6, dCTP加尾) 为模板进行第一轮 PCR扩增, 具体步骤如下:
50 μ 1 PCR反应体系: 5 μ 1 ΙΟ Χ Εχ Buffer 3 μ 1 2.5 mM 的 dNTP、 2.0 μ 1 cDNA、 1.0 μ 1 Ex Taq (购自 TAKARA) 、 10 μ M的引物 SEQ ID NO: 7禾 P AAP各 2.0 μ 1以及 35 μ 1的双蒸水。 PCR反应条件: 94°C预变性 5分钟, 33个循环 (94°C 变性 30秒, 60°C退火 30秒, 72°C延伸 2分钟) , 72°C延伸 10分钟。
将所得的 PCR产物用双蒸水稀释 50倍后取 2.0 μ ΐ作为模板, 用 SEQ ID NO: 8 与引物 AUAP进行第二轮 PCR扩增, 具体步骤如下:
50 l PCR反应体系: 5 μ 1 lO X Ex Buffer 3 μ 1 2.5 mM的 dNTP、 2.0 μ 1稀释 的第一轮 PCR产物、 1.0 μ 1 Ex Taq 10 μ M的引物 SEQ ID NO: 8禾 P AUAP各 2.0 μ 1以及 35 μ 1的双蒸水。 PCR反应条件: 94°C预变性 5分钟, 33个循环 (94°C变性 30秒, 60°C退火 30秒, 72°C延伸 2分钟) , 72°C延伸 10分钟。
回收第二轮 PCR 产物中片段约为 1000 bp 的条带 (Gel Extraction Kit 购自 OMEGA) , 并将其连接于 pGEM-T Easy载体, 然后转化到大肠杆菌 JM109感受态细 胞中 (具体方法同上), 并将转化后的菌液涂布于含 50 ^lmL氨苄青霉素、 40 ^glmL X-gaK 24 g/mL IPTG的 LB固体培养基上进行筛选。 随机挑取 10个白色菌落分别接种 于含有 50 g/ml氨苄青霉素的 LB液体培养基中, 37°C培养过夜后加甘油至甘油终 浓度为 20% (体积比) , -80°C保存备用。 用 SEQ ID NO: 8与引物 AUAP进行菌液 PCR扩增验证(反应体系及反应条件同上), 得到 9个阳性克隆, 选取其中 3个克隆 送至英潍捷基 (上海) 贸易有限公司测序, 获得该基因的 cDNA 的 5 ' 端。 所得的 5 'RACE产物克隆测序后, 将其与上述 3'RACE产物测序结果以及 SEQ ID No: 3序列进 行拼接, 获得 BgBADH全长 cDNA序列 SEQ ID No : 9。
SEQ ID No: 9:
1 ATCTATCTCT ATCAACCGAT CAGAGGGCGC GAGAAAGATT GATTATCGAA GCGAGTGAAA
61 AATGACGGTC CACATCCCAA ATCGGCTGCT TTTCATCGAC GGAGAGTGGA GAGAGCCTGT
121 CCTCAAGAAA CGCATCCCCG TCATCAACCC TGCTACCGAA GCGATTGTCG GTGATATTCC
181 TGCAGCTAGT GCACAAGATG TGGACATTGC AGTGGAAGCA GCCCGGAAAG CATTTGATAG
241 GAACAGAGGC AAAGATTGGG CCTTTGCTTC TGGCGCGTTC CGTGCCAAGT ATTTGCGCGC
301 TATTGCTGCT AAGGTAACGG AGAAAAAACT TGAACTGGCA AAACTTGAAG TTATTGACTG
361 TGGAAAACCA TGGATTGAAG CAGTGGCAGA CATTGAAGAT GTTGCTGTAT GTTTTGATTT
421 TTATGCTGAC CTTGCTGAAG GTTTAGATGC AAAACAGAAG GCTCCTATTT CTCATCCCTA
481 TCCAGCATTT AAGATCCATG TTCTAAAAGA ACCTATTGGG GTTGTTGGAT TGATTACCCC
541 ATGGAACTAC CCACTATTGA TGGCCACATG GAAAATTGCT CCGGCTCTGG CTGCAGGTTG
601 CACTGCCATA TTAAAGCCAT CTGAACTGGC ATCTGTAACC TGTTTGGAGC TGGCTGAAGT
661 GTGTAGGGAG GTTGGACTTC CCCCTGGTGT GCTCAATATC TTAACTGGAT TGGGCCCTGA
721 AGCTGGTGCT CCTTTAGTGT CTCATCCCAA TGTTGACAAG ATAGCATTTA CTGGAAGCAC
781 AGCCACGGGA AGTAGGATAA TGGCAGCTGC AGCTCAATTA ATCAAGCCAG TTTCTATGGA
841 GCTTGGTGGG AAAAGCCCAC TTCTTGTGTT TGATGACGTT GACATTGATA AGGCTATTGA
901 ATGGGCCATG TTTGGTTGCT TCTGGACAAA TGGCCAGATA TGCAGTGCAA CATCCCGCCT
961 TCTTCTGCAT GAAAGCATTG CAACGCAATT TGTACATAGG CTTGTGGAAT GGTGCAAAAA
1021 TGTTAAAATA TCAGATCCTC TGGAAGAGGA TTGCAAGCTT GGCCCAGTTG TTGGTAAAGC
1081 ACAGTATGAT AAAATAATGA AATTCATCTC GAATGCAAAG AGTGAAGGTG CAACTATTTT
1141 GTATGGTGGG TCTCGTCCAC AGCATTTAGA TAAGGGATTC TATATCGAAC CAACCGTTGT
1201 TACTGATGTA AGTACATCCA TGGAGATCTG GCGAGATGAA GTTTTCGGAC CTGTCCTGTG 1261 CGTCAAAACA TTTAGTACTG AAGAAGAAGC CATTGACCTG GCAAATGACA CCCAGTATGG 1321 TTTAGGCGCT GCTGTGATAT CAAATGATCT GGAAAGGTGC GAGCGTATAA CCCAGGCTTT 1381 CAGGGCAGGT ATTGTATGGA TCAATTGTTC ACAGCCATGC TTCTGTCATG CACCATGGGG 1441 AGGCGTCAAA CGCAGTGGTT TTGGGCGTGA ACTGGGAGAA TGGGGACTCG AAAATTACAT 1501 CAGTGTGAAG CAGGTCACTC AGTATATCTC GGACGAACGA TGGAATTGGT ACCAATCTCC 1561 ATCAAAGCTG TAAGGGGTTT TTCTGAGAAT GAAAAAGAGA AATTCAGTGT CTGCCAACTC 1621 GATGGGAATA AAGTGGCACC ATGCGATACT GAACTTAACT GTTTGGAAGA TTATTCGTAT 1681 TTTACAAGTT ACGGGTGACT TCGACTCGAA TGTTGGTTTT CATGTTTTCA TCTTTTGCAA 1741 AAAAAAAAAA AAAA 根据 SEQ ID NO: 9序列设计一对引物如下:
SEQ ID No: 10:
ATGACGGTCC ACATCCCAAA TCG SEQ ID No: 11:
TTACAGCTTT GATGGAGATT GGTAC
通过 SEQ ID NO: 10和 SEQ ID NO: 11来克隆 SgSADH全长编码基因。
采用 TAKARA的 PrimeSTAR HS DNA聚合酶, 以盐处理组木榄根提取的 mRNA 反转录的 cDNA为模板进行 PCR反应。 50 μ 1 ΡΟ 反应体系: 10 μ 1 5 X PS Buffer、 3 μ 1 2.5 mM的 dNTP、 2.0 μ 1 cDNA、 1.0 μ 1 PrimeSTAR HS DNA聚合酶、 10 μ M的 引物 SEQ ID NO: 10和 SEQ ID NO: 11各 2.0 μ 1以及 30 μ 1的双蒸水。 PCR反应条 件: 94°C预变性 5分钟, 33个循环 (94°C变性 30秒, 58 °C退火 30秒, 72°C延伸 2 分钟) , 72°C延伸 10分钟。
PCR扩增产物加 A尾: PCR产物中加入 2.5倍体积的无水乙醇, -20°C放置 10分 钟, 离心, 去上清, 晾干, 然后用 21 μ ΐ双蒸水溶解所得沉淀。 然后向其中加入 2.5 μ 1 lO X Ex Buffer 0.5 μ 1 5 mM的 dATP、 1.0 l Ex Taq。 反应条件: 70°C反应 30分 钟。 将得到的约 1500 bp的 DNA片段回收(Omega回收试剂盒), 并将其连接至 pGEM T-easy载体上得到 BgBADH-pGEM质粒, 然后将连接产物转化到大肠杆菌 JM109感受 态细胞中 (方法同上), 并将转化后的菌液涂布于含 50 g/mL氨苄青霉素、 40 g/mL X-gaK 24 g/mL IPTG的 LB固体培养基上进行筛选。 随机挑取 10个白色菌落分别接种 于含有 50 g/ml氨苄青霉素的 LB 液体培养基中, 37°C培养过夜后加甘油至甘油终 浓度为 20% (体积比), -80°C保存备用。 用 SEQ ID NO: 10与 SEQ ID NO: 11进行 菌液 PCR 扩增验证 (反应体系及反应条件同上) , 得到 9个阳性克隆, 选取其中 3 个阳性克隆送至英潍捷基 (上海) 贸易有限公司测序, 所得序列为 SEQ ID NO: 2, 其编码的蛋白质的氨基酸序列为 SEQ ID NO: 1。
BADH蛋白的氨基酸序列: SEQ ID NO: 1
1 MTVHIPNRLL FIDGEWREPV
21 LKKRIPVINP ATEAIVGDIP
41 AASAQDVDIA VEAARKAFDR
61 NRGKDWAFAS GAFRAKYLRA
81 IAAKVTEKKL ELAKLEVIDC
101 GKPWIEAVAD IEDVAVCFDF
121 YADLAEGLDA KQKAPISHPY
141 PAFKIHVLKE PIGVVGLITP
161 WNYPLLMATW KIAPALAAGC
181 TAILKPSELA SVTCLELAEV
201 CREVGLPPGV LNILTGLGPE
221 AGAPLVSHPN VDKIAFTGST
241 ATGSRIMAAA AQLIKPVSME
261 LGGKSPLLVF DDVDIDKAIE
281 WAMFGCFWTN GQICSATSRL
301 LLHESIATQF VHRLVEWCKN
321 VKISDPLEED CKLGPVVGKA
341 QYDKIMKFIS NAKSEGATIL
361 YGGSRPQHLD KGFYIEPTVV
381 TDVSTSMEIW RDEVFGPVLC
401 VKTFSTEEEA IDLANDTQYG
421 LGAAVISNDL ERCERITQAF
441 RAGIVWINCS QPCFCHAPWG
461 GVKRSGFGRE LGEWGLENYI
481 SVKQVTQYIS DERWNWYQSP
501 SKL*
Sg DH基因的核苷酸序列 SEQ ID NO: 2
1 ATGACGGTCC ACATCCCAAA TCGGCTGCTT TTCATCGACG GAGAGTGGAG AGAGCCTGTC
61 CTCAAGAAAC GCATCCCCGT CATCAACCCT GCTACCGAAG CGATTGTCGG TGATATTCCT
121 GCAGCTAGTG CACAAGATGT GGACATTGCA GTGGAAGCAG CCCGGAAAGC ATTTGATAGG
181 AACAGAGGCA AAGATTGGGC CTTTGCTTCT GGCGCGTTCC GTGCCAAGTA TTTGCGCGCT
241 ATTGCTGCTA AGGTAACGGA GAAAAAACTT GAACTGGCAA AACTTGAAGT TATTGACTGT
301 GGAAAACCAT GGATTGAAGC AGTGGCAGAC ATTGAAGATG TTGCTGTATG TTTTGATTTT 361 TATGCTGACC TTGCTGAAGG TTTAGATGCA AAACAGAAGG CTCCTATTTC TCATCCCTAT
421 CCAGCATTTA AGATCCATGT TCTAAAAGAA CCTATTGGGG TTGTTGGATT GATTACCCCA
481 TGGAACTACC CACTATTGAT GGCCACATGG AAAATTGCTC CGGCTCTGGC TGCAGGTTGC
541 ACTGCCATAT TAAAGCCATC TGAACTGGCA TCTGTAACCT GTTTGGAGCT GGCTGAAGTG
601 TGTAGGGAGG TTGGACTTCC CCCTGGTGTG CTCAATATCT TAACTGGATT GGGCCCTGAA
661 GCTGGTGCTC CTTTAGTGTC TCATCCCAAT GTTGACAAGA TAGCATTTAC TGGAAGCACA
721 GCCACGGGAA GTAGGATAAT GGCAGCTGCA GCTCAATTAA TCAAGCCAGT TTCTATGGAG
781 CTTGGTGGGA AAAGCCCACT TCTTGTGTTT GATGACGTTG ACATTGATAA GGCTATTGAA
841 TGGGCCATGT TTGGTTGCTT CTGGACAAAT GGCCAGATAT GCAGTGCAAC ATCCCGCCTT
901 CTTCTGCATG AAAGCATTGC AACGCAATTT GTACATAGGC TTGTGGAATG GTGCAAAAAT
961 GTTAAAATAT CAGATCCTCT GGAAGAGGAT TGCAAGCTTG GCCCAGTTGT TGGTAAAGCA
1021 CAGTATGATA AAATAATGAA ATTCATCTCG AATGCAAAGA GTGAAGGTGC AACTATTTTG
1081 TATGGTGGGT CTCGTCCACA GCATTTAGAT AAGGGATTCT ATATCGAACC AACCGTTGTT
1141 ACTGATGTAA GTACATCCAT GGAGATCTGG CGAGATGAAG TTTTCGGACC TGTCCTGTGC
1201 GTCAAAACAT TTAGTACTGA AGAAGAAGCC ATTGACCTGG CAAATGACAC CCAGTATGGT
1261 TTAGGCGCTG CTGTGATATC AAATGATCTG GAAAGGTGCG AGCGTATAAC CCAGGCTTTC
1321 AGGGCAGGTA TTGTATGGAT CAATTGTTCA CAGCCATGCT TCTGTCATGC ACCATGGGGA
1381 GGCGTCAAAC GCAGTGGTTT TGGGCGTGAA CTGGGAGAAT GGGGACTCGA AAATTACATC
1441 AGTGTGAAGC AGGTCACTCA GTATATCTCG GACGAACGAT GGAATTGGTA CCAATCTCCA
1501 TCAAAGCTGT AA 实施例 3 SgSADH基因植物表达载体构建
选择植物双元表达载体 pCAMBIA2300 (购自北京鼎国昌盛生物技术有限责任公 司) 作为植物表达载体, 用 Pnos启动子替换 ΝΡΤΠ基因含双增强子的 35S启动子, 以降低 ΝΡΤΠ 蛋白在植物中的表达。 选择 35S 启动子及 Tnos 终止子分别作为 SgA4£)H基因的启动子和终止子, 构建流程图如图 1所示。
使用引物 SEQ ID NO: 12和 SEQ ID NO: 13, 以植物表达载体 pBI121质粒(购 自北京华夏远洋科技有限公司) 为模板扩增 Pnos, 采用 TAKARA的 PrimeSTAR HS DNA聚合酶。 50 l PCR反应体系: 10 l 5 X PS Buffer、 3 μ 1 2.5 mM的 dNTP、 1.0 μ 1 ρΒΙ121质粒、 1.0 μ 1 PrimeSTAR HS DNA聚合酶、 10 μ M的引物 SEQ ID NO: 12和 SEQ ID NO: 13各 2.0 μ ΐ以及 31 μ ΐ的双蒸水。 PCR反应条件: 94°C预变性 5 分钟, 33个循环 (94°C变性 30秒, 56°C退火 30秒, 72°C延伸 30秒) , 72 °C延伸 10 分钟。 通过 EcoRI、 Bglll酶切将所得的 PCR产物按试剂盒说明 (Promega, T4 连接 酶试剂盒) 连接到 pCAMBIA2300获得 pCAMBIA2300-l。 SEQ ID NO: 12
GCACGAATTC ggcgggaaac gacaatctga
SEQ ID NO: 13
ATCCAGATCTAGATCCGGTGCAGATTATTTG
用引物 SEQ ID NO: 14和 SEQ ID NO: 15以 pBI121质粒为模板扩增 Tnos, 采 用 TAKARA的 PrimeSTAR HS DNA聚合酶。 50 μ 1 PCR反应体系: 10 μ 1 5 X PS Buffer 3 μ 1 2.5 mM的 dNTP、 1.0 μ 1 ρΒΙ121质粒、 1.0 μ 1 PrimeSTAR HS DNA聚合 酶、 10 μ M的引物 SEQ ID NO: 14禾 P SEQ ID NO: 15各 2.0 μ 1以及 31 μ 1的双蒸 水。 PCR反应条件: 94°C预变性 5分钟, 33个循环 (94°C变性 30秒, 58 °C退火 30 秒, 72°C延伸 30秒) , 72°C延伸 10分钟。 通过 Kpnl、 EcoRI酶切将所得的 PCR产 物连接 (Promega T4 连接酶试剂盒) 到 pCAMBIA2300-l获得 pCAMBIA2300-2。
SEQ ID NO: 14:
AAGGGTACCGAATTTCCCCGATCGTTCAAA SEQ ID NO: 15:
TCAGAATTCCCAGTGAATTCCCGATCTAGTA 用引物 SEQ ID NO: 16和 SEQ ID NO: 17以 pCAMBIA2300质粒为模板扩增 35S 启动子。 采用 TAKARA的 PrimeSTAR HS DNA聚合酶。 50 y l PCR反应体系: 10 μ 1 5 X PS Buffer 3 μ 1 2.5 mM 的 dNTP、 1.0 μ 1 pCAMBIA2300 质粒、 1.0 μ 1 PrimeSTAR HS DNA聚合酶、 10 μ M的引物 SEQ ID NO: 16禾 P SEQ ID NO: 17各 2.0 μ ΐ以及 31 μ ΐ双蒸水。 PCR反应条件: 94°C预变性 5分钟, 33个循环 (94°C变 性 30秒, 58 °C退火 30秒, 72°C延伸 30秒) , 72°C延伸 10分钟。 通过 HindIII、 Sail 酶切将所得的 PCR 产物连接 (连接方法同上) 到 pCAMBIA2300-2 获得 pCAMBIA2300-3。
SEQ ID NO: 16:
ACTAAGCTTTAGAGCAGCTTGCCAACATGGTG SEQ ID NO: 17:
TGAGTCGACAGAGATAGATTTGTAGAGAGAGACT 用引物 SEQ ID NO: 18和 SEQ ID NO: 19扩增 SgSADH编码基因的全长序列 (模板是实施例 2所获得阳性 BgBAi -pGEM质粒) , 采用 TAKARA的 PrimeSTAR HS DNA 聚合酶。 50 μ 1 PCR 反应体系: 10 μ ΐ 5 X PS Buffer 3 μ 1 2.5 mM 的 dNTP 1.0 μ l SgSADH-pGEM质粒、 1.0 μ 1 PrimeSTAR HS DNA聚合酶、 10 μ M的 引物 SEQ ID NO: 18和 SEQ ID NO: 19各 2.0 μ ΐ以及 31 μ ΐ双蒸水。 PCR反应条 件: 94°C预变性 5分钟, 33个循环 (94°C变性 30秒, 58 °C退火 30秒, 72°C延伸 2 分钟) , 72°C延伸 10分钟。 通过 Sall、 BamHI酶切将所得的 PCR产物连接 (连接方 法同上)到 pCAMBIA2300-3, 经验证后获得植物表达载体 35 S-BgBADH-2300(图 2)。
SEQ ID NO: 18
ACTGTCGAC ATGACGGTCC ACATCCCAAA TCG SEQ ID NO: 19
TCTGGATCC TTACAGCTTT GATGGAGATT GGTAC 实施例 4 35 S-BgBADH-2300表达载体转化农杆菌
农杆菌 GV3101 (购自上海迈其生物科技有限公司) 感受态细胞的制备: 将农杆 菌 GV3101在含 50 μ§/ιη1利福平和 50 μ§/ιη1庆大霉素 LB固体培养基上划单斑接种, 28 °C培养 1至 2天。 挑取单菌落接种于 5 ml含 50 μ§/ιη1利福平和 50 μ§/ιη1庆大霉素 的 LB液体培养基中, 28 °C下摇动培养过夜 (约 12-16小时) 至 OD6。。值为 0.4, 形成 种子菌液。 取 5 ml培养活化后的菌液 (1 :20的比例) 接种于 100 ml含 50 μ§/ιη1利福 平和 50 μ§/ιη1庆大霉素的 LB液体培养基中, 28 °C摇动培养 2-2.5小时至 OD6。。=0.8。 冰浴菌液 10分钟, 每隔 3分钟摇匀一次, 使所述细菌均匀进入休眠状态。 于 4°C下 4000 g离心 10分钟, 弃上清液; 加入 1 ml冰预冷的 10% (体积比)甘油重悬浮菌体, 4°C下 4000 g离心 10分钟, 收集沉淀; 用冰预冷的 10% (体积比)甘油重复洗 3-4次; 然后加入适量冰预冷的 10% (体积比) 甘油重新悬浮细菌沉淀, 即制得 GV3101感受 态细胞, 以 40 μΐ/管将其分装, 于 -70°C保存备用。
转化农杆菌: 在冰上融化所述的 GV3101感受态细胞, 向 40 μΐ的所述感受态细 胞中加入 1 μΐ实施例 3获得的质粒 358- ^Α4Ζ) -2300, 混匀后冰浴约 10分钟。 将冰 浴后的感受态细胞和 35 S-BgBADH-23QQ 质粒的混合物用微量移液器转移到冰预冷的 0.1cm规格的电击杯(购自 Bio-Rad)中, 轻敲使悬浮液到达电击杯底部(注意不要有 气泡)。 将所述电击杯放到电击室的滑道上, 推动滑道将电击杯放至电击室基座电极 处。 将 MicroPulser (购自 Bio-Rad) 的程序设置为 "Agr", 电击一次。 立即取出电击 杯, 加入 28 °C预热的 200 μΐ LB培养基。 快速而轻柔的用微量移液器将感受态细胞打 匀。 将悬浮液转入 1.5 ml的离心管, 在 28°C下 225 rpm摇动培养 1小时。 取 100-200 μΐ的菌液涂布于相应的抗性筛选培养基平板上(LB固体培养基, 含 50 g/ml利福平、 50 μ§/ιη1庆大霉素、 50 μ§/ιη1卡那霉素) , 28°C培养。 筛选阳性转化克隆, 并将其菌 液于 -70°C保存备用。 实施例 5 受体材料拟南芥培养
选择吸水性好, 土质松软的蛭石配合营养土 (1:1) 作为拟南芥种植土壤。 使用 直径 9 cm的花盆, 每盆播种 20-30颗拟南芥种子(哥伦比亚型, 来自美国俄亥俄州立 大学的拟南芥生物资源中心) 。 播种以后在花盆上罩上薄膜, 给植株的生长提供一个 湿润的环境。 恒温 22V, 光照强度 3500-4000 lx, 光照周期为 12小时黑暗 /12小时光 照培养, 每 7天浇灌一次 1/2MS液体培养基(9.39 mM KNO3, 0.625 mM KH2PO4, 10.3 mM NH4NO3, 0.75 mM MgSO4, 1.5 mM CaCl2, 50 μ M KI, 100 μ M H3BO3, 100μ MMnSO4- 30u MZnSO4- 1 μ MNa2MoO4- 0.1 μ M CoCl2, 100 μ M Na2EDTA, 100u MFeSO4) 。 培养 30天后, 每盆保留 4-5棵植株, 光照周期调整 为 8小时黑暗 /16小时光照培养, 待大部分植株都抽苔之后, 在花序基部剪掉整个主 苔, 去其顶端优势, 约 1周后在腋芽部位长出 4-6个新生侧苔, 待侧苔花序形成花蕾 并部分开花或形成 1-2个角果时, 便可用于转化。 实施例 6 拟南芥花浸转化
将实施例 4获得的已转化 35S-BgBADH-2W0表达载体的 GV3101农杆菌菌液接种 至含有 50μ§/ιη1卡那霉素 (kan) 的 LB液体培养基中培养过夜, 第二天早上按 1:50 接种至含有 50μ§/ιη1卡那霉素的新的 LB培养基 (1L) 中, 培养约 8个小时, 至农杆 菌液 OD6。。在 1.0到 1.2之间。 室温 5000 rpm离心 5分钟, 弃上清, 将农杆菌沉淀悬 浮于浸染培养基 (1/2MS液体培养基, 并含有 5% 蔗糖; 用 KOH调至 pH5.7; 0.02% Silwet L-77)中, 使 OD6。。在 0.8左右。将实施例 5制备的用于转化的拟南芥的上部缓 缓、 螺旋式浸入所述含农杆菌的浸染培养基内, 轻轻顺时针晃动, 约 2分钟, 用透明 塑料罩盖严以保持湿度, 放入温室过夜。 24小时后移去塑料透明罩, 用水浇透。 之后 2-3周, 保证植株水分充足。 当植株停止开花, 第一个果荚成熟变黄时, 用纸袋套住, 当纸袋内的所有果荚变黄后, 停止浇水, 1-2周干燥后收取种子, 进行转化子筛选, 同时取未经转化处理的拟南芥果荚作为对照。 实施例 7 拟南芥转基因阳性转化子的筛选
种子消毒: 先用 70%乙醇浸泡 10 分钟, 并不时地使种子悬浮; 然后用无菌水洗四 次, 并不时地使种子悬浮。 然后, 将处理后的种子均匀涂布在含 50 μ§/ιη1卡那霉素的 1/2MS固体筛选培养基表面上(一块 150 mm直径的平皿最多播种 1500粒种子), 4°C春 化 2天, 然后在恒温 22°C、光照强度 3500-4000 k、光照周期为 12小时黑暗 /12小时光照 条件下培养 7-10天。 转基因种子在所述筛选培养基上萌发 2周以后, 将能够萌发并正常 生长的植株转入土壤继续培养。剪取所述能够在筛选培养基上正常生长的每株植物的 1-2 个叶片,提取其 DNA作为模板,用 SEQ ID NO: 18和 SEQ ID NO: 19作为引物进行 PCR 检测(反应体系及条件同上), 去除 PCR阴性植株, 收集 PCR阳性植株的种子分别编号 ( T0kl-T0k20) 并保存。 实施例 8 过表达 BgBADH的转基因拟南芥 T1代植株的种植
选择吸水性好, 土质松软的蛭石配合营养土 (1 : 1 ) 作为拟南芥种植土壤。 将编号 T0kl-T0k20的每种转化子及非转基因对照拟南芥种子各播种 2盆 (每盆播种 20-30颗种 子) 。 播种以后在花盆上罩上薄膜, 给植株的生长提供一个湿润的环境。 恒温 22°C, 光 照强度 3500-4000 lx, 光照周期为 12小时黑暗 /12小时光照培养, 每 7天浇灌一次 1/2MS 液体培养基。 培养 25天后, 每株剪取 1-2个叶片并提取其 DNA作为模板, 用 SEQ ID NO: 18和 SEQ ID NO: 19作为引物进行 PCR检测(反应体系及条件同上)。去除 PCR 阴性植株, 每盆保留 7-8棵 PCR阳性苗, 继续培养 10天后, 每盆保留大小较一致的 5-7棵转基因拟南芥或非转基因对照拟南芥苗进行耐盐实验。 实施例 9 过表达 BgBADH的转基因拟南芥 T1代植株的耐盐实验
将实施例 8 中转基因拟南芥、 对照拟南芥各保留一盆植株不作处理, 正常浇灌 1/2MS液体培养基, 同时各取一盆植株浇灌含有 150 mM NaCl的 1/2MS液体培养基, 恒温 22°C、 光照强度 3500-4000 k、 12小时光培养 /12小时暗培养循环, 14天后观察 实验结果。 T1代转基因植株 (T0代转基因植株的种子长成的植株) 的耐盐性鉴定表 明, T1代转基因植株 Tlk5、 Tlk7、 Tlkl6三个株系表现出显著的耐盐性 (见图 3, 以 Tlk5例, Tlk7、 Tlkl6的结果与类似, 在此未示出) 。 实施例 10 在转录水平上验证 SgSADH基因的表达
将实施例 9中耐盐性好的 T1代转基因植株中随机选取 8棵(分别属于上述 Tlk5、 Tlk7和 Tlkl6三个耐盐株系) , 实施例 9中对照植株随机选取 4棵, 各剪取盐 (150 mM NaCl) 处理 14天的叶片 0.05 g, 用植物 RNA提取试剂盒 (Invitrogen) 提取总 RNA。 紫外分光光度测定所得总 RNA在 260 nm和 280 nm的吸光度值, 计算各个 RNA浓度。 依照 Invitrogen反转录试齐 Ll盒 Superscript III Reverse Transcriptase所示方 法进行反转录,取 1 总 RNA作为模板反转录。 使用引物 SEQ ID NO: 10和 SEQ ID NO: 20 ( SEQ ID NO: 20: CCATGGATGT ACTTACATCA GT )扩增 BgBADH片段, 检测其转录情况。 使用引物 SEQ ID NO: 21 ( SEQ ID NO: 21 : 5- GCCATCCAAGCTGTTCTCTC -3 ) 禾口 SEQ ID NO: 22 ( SEQ ID NO: 22: TTCTCGATGGAAGAGCTGGT ) 扩增 AtACT2 片 段(拟南芥看家基 因 : http:〃 www. ncbi. nlm.nih.gov/ nuccore/ AK317453.1), 作为对照。
采用 TAKARA的 Ex DNA聚合酶, 以上述反转录所得的 cDNA为模板进行 PCR 反应。 50 μ1 ΡΟ 反应体系: 5 μΐ ΙΟχΕχ Buffer, 3 μΐ 2.5 mM的 dNTP, 2.0 μΐ cDNA, 0.3 μΐ Ex DNA聚合酶、 10 μΜ的引物 SEQ ID NO: 10禾 P SEQ ID NO: 20各 2.0 μ1, 以及 35.7 μΐ的双蒸水。 PCR反应条件: 94°C预变性 5分钟, 30个循环(94°C变性 30 秒, 58 °C退火 30秒, 72°C延伸 1分钟) , 72°C延伸 10分钟。
PCR产物电泳结果如图 4所示: M为 DNA Ladder Marker ( DL2000, 购自深圳瑞 真生物技术有限公司), 1-8为耐盐 T1代转基因拟南芥植株(分别属于 Tlk5、 Tlk7、 Tlkl6三个株系), 9-12为非转基因的对照拟南芥植株。 结果表明, 耐盐 T1代转基因 拟南芥植株中 Sg^DH均有显著转录, 非转基因对照拟南芥植株中没有 BgBADH的 转录。 实施例 11 Tlk5、 Tlk7、 Tlkl6转基因拟南芥的耐旱实验
Tlk5、 Tlk7、 Tlkl6转基因拟南芥种植与实施例 8相同, 转基因拟南芥、 对照拟南 芥各一盆不作处理, 正常浇灌 1/2MS , 转基因拟南芥、 对照拟南芥的另一盆, 不浇灌 1/2MS, 恒温 22°C, 光照强度 3500-4000 k , 12小时光培养 /12小时暗培养循环。 10天 后观察实验结果: Tlk5表现出明显的耐旱性(见图 6, 以 Tlk5例, Tlk7、 Tlkl6的结 果与其类似, 在此未示出) 。

Claims

权 利 要 求 书
1. 一种编码木榄甜菜碱脱氢酶 BADH的基因编码的蛋白,其序列为 SEQ ID NO : l o
2. 编码权利要求 1所述的蛋白的基因, 其序列为 SEQ ID NO : 2。
3. 一种重组表达载体,其是通过将权利要求 2所述的基因插入到一种表达载体而 获得的, 并且所述基因的核苷酸序列与所述表达载体的表达控制序列可操作地连接, 优选地, 所述表达载体是 pCAMBIA2300。
4. 权利要求 3所述的重组表达载体, 其为图 2所示的 35 S-BgBADH-23QQ载体。
5. 一种重组细胞,其含有权利要求 2所述的基因或者权利要求 3或 4所述的重组 表达载体; 优选地, 所述重组细胞为重组农杆菌细胞。
6. 一种改善植物耐盐性和 /或耐旱性的方法, 包括: 将权利要求 2所述的基因或 者权利要求 3或 4所述的重组表达载体导入植物或植物组织并使所述基因表达; 优选 地, 所述植物是拟南芥。
7. 一种制备转基因植物的方法,包括: 在有效产生植物的条件下培养含有权利要 求 2所述的基因或者权利要求 3或 4所述的重组表达载体的植物或植物组织。
8. 权利要求 7所述的方法, 其中所述植物是拟南芥。
9. 权利要求 2所述的基因、权利要求 3或 4所述的重组表达载体或者权利要求 5 所述的重组细胞用于改善植物耐盐性和 /或耐旱性以及用于植物育种的用途。
10. 权利要求 9所述的用途, 其中所述植物是拟南芥。
PCT/CN2013/001293 2013-10-25 2013-10-25 一种木榄甜菜碱脱氢酶badh及其编码基因与应用 WO2015058323A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/001293 WO2015058323A1 (zh) 2013-10-25 2013-10-25 一种木榄甜菜碱脱氢酶badh及其编码基因与应用
CN201380074325.8A CN105121458B (zh) 2013-10-25 2013-10-25 一种木榄甜菜碱脱氢酶badh及其编码基因与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/001293 WO2015058323A1 (zh) 2013-10-25 2013-10-25 一种木榄甜菜碱脱氢酶badh及其编码基因与应用

Publications (1)

Publication Number Publication Date
WO2015058323A1 true WO2015058323A1 (zh) 2015-04-30

Family

ID=52992104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001293 WO2015058323A1 (zh) 2013-10-25 2013-10-25 一种木榄甜菜碱脱氢酶badh及其编码基因与应用

Country Status (2)

Country Link
CN (1) CN105121458B (zh)
WO (1) WO2015058323A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111454972A (zh) * 2020-04-17 2020-07-28 华中农业大学 枳抗寒基因PtrBADH及其在植物抗寒遗传改良中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483735A (zh) * 2003-08-12 2004-03-24 刘凤华 红树甜菜碱醛脱氢酶基因以及提高植物耐盐性的方法
CN101880678A (zh) * 2009-05-08 2010-11-10 创世纪转基因技术有限公司 一种红树甜菜碱醛脱氢酶基因及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483735A (zh) * 2003-08-12 2004-03-24 刘凤华 红树甜菜碱醛脱氢酶基因以及提高植物耐盐性的方法
CN101880678A (zh) * 2009-05-08 2010-11-10 创世纪转基因技术有限公司 一种红树甜菜碱醛脱氢酶基因及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU, ZHENLIN ET AL.: "Studies on betaine aldehyde dehydrogenase (BADH) gene in plants", JOURNAL OF NORTHWEST A&F UNIVERSITY ( NATURAL SCIENCE EDITION, vol. 32, no. 3, 31 March 2004 (2004-03-31), pages 104 - 111 *
TAKASHI, H. ET AL.: "Molecular Cloning and Functional Characterization of Two Kinds of Betaine-aldehyde Dehydrogenase in Betaine-accumulating Mangrove Avicennia Marina (Forsk.) Vierh.", PLANT MOLECULAR BIOLOGY, vol. 45, 31 December 2001 (2001-12-31), pages 353 - 363 *
ZHANG, F.L. ET AL.: "A Novel Betaine Aldehyde Dehydrogenase Gene from Jatropha Curcas, Encoding an Enzyme Implicated in Adaptation to Environmental Stress", PLANT SCIENCE, vol. 174, 17 February 2008 (2008-02-17), pages 510 - 518 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111454972A (zh) * 2020-04-17 2020-07-28 华中农业大学 枳抗寒基因PtrBADH及其在植物抗寒遗传改良中的应用
CN111454972B (zh) * 2020-04-17 2021-07-13 华中农业大学 枳抗寒基因PtrBADH及其在植物抗寒遗传改良中的应用

Also Published As

Publication number Publication date
CN105121458A (zh) 2015-12-02
CN105121458B (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
CN113929758B (zh) 钾离子转运体蛋白HbRSAR1及其在调控植物对钾转运中的应用
WO2015042742A1 (zh) 一种棉花钙调磷酸酶b类似蛋白cbl-3及其编码基因与应用
WO2014205597A1 (zh) 一种棉花高亲和钾离子转运蛋白hkt2及其编码基因与应用
WO2015042734A1 (zh) 一种木榄液泡焦磷酸酶vp2及其编码基因与应用
WO2015058323A1 (zh) 一种木榄甜菜碱脱氢酶badh及其编码基因与应用
WO2014172826A1 (zh) 一种小盐芥液泡膜焦磷酸酶vp1及其编码基因与应用
WO2015058322A1 (zh) 一种木榄钼辅因子硫化酶mcsu及其编码基因与应用
WO2015024143A1 (zh) 一种棉花锌指蛋白zat10-1及其编码基因与应用
WO2015042740A1 (zh) 一种小盐芥钙调磷酸酶b类似蛋白cbl-4及其编码基因与应用
WO2015024142A1 (zh) 一种棉花锌指蛋白azf2-1及其编码基因与应用
WO2014172847A1 (zh) 一个盐芥myb类转录因子myb1-2及其编码基因与应用
WO2014205598A1 (zh) 一种小盐芥高亲和钾离子转运蛋白hkt1及其编码基因与应用
WO2015024145A1 (zh) 一种棉花锌指蛋白zpt5-3及其编码基因与应用
WO2014172825A1 (zh) 一种小盐芥液泡膜钠氢反向转运蛋白nhx2及其编码基因与应用
WO2015024147A1 (zh) 一种棉花锌指蛋白zpt5-5及其编码基因与应用
WO2014205595A1 (zh) 一种棉花ATP水解酶ATPase-1及其编码基因与应用
WO2014107863A1 (zh) 一种棉花同源异型-亮氨酸拉链蛋白HDbZIP-1及其编码基因与应用
WO2015042749A1 (zh) 一种小盐芥脱水素蛋白dh5及其编码基因与应用
WO2015042738A1 (zh) 一种小盐芥同源异型-亮氨酸拉链蛋白HDbZIP-3及其编码基因与应用
WO2015058321A1 (zh) 一种白骨壤单加氧酶cmo及其编码基因与应用
WO2014172829A1 (zh) 一种小盐芥转录因子hdzip-1及其编码基因与应用
WO2015042732A1 (zh) 一种秋茄钠氢转运蛋白nha2及其编码基因与应用
WO2015042731A1 (zh) 一种秋茄钠氢转运蛋白nha1及其编码基因与应用
WO2015042733A1 (zh) 一种木榄蛋白激酶cipk1及其编码基因与应用
WO2014172824A1 (zh) 一种小盐芥液泡膜钠氢反向转运蛋白nhx1及其编码基因与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896033

Country of ref document: EP

Kind code of ref document: A1