WO2014172829A1 - 一种小盐芥转录因子hdzip-1及其编码基因与应用 - Google Patents

一种小盐芥转录因子hdzip-1及其编码基因与应用 Download PDF

Info

Publication number
WO2014172829A1
WO2014172829A1 PCT/CN2013/074506 CN2013074506W WO2014172829A1 WO 2014172829 A1 WO2014172829 A1 WO 2014172829A1 CN 2013074506 W CN2013074506 W CN 2013074506W WO 2014172829 A1 WO2014172829 A1 WO 2014172829A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
gene
seq
expression vector
plants
Prior art date
Application number
PCT/CN2013/074506
Other languages
English (en)
French (fr)
Inventor
王建胜
崔洪志
何云蔚
田大翠
Original Assignee
创世纪转基因技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 创世纪转基因技术有限公司 filed Critical 创世纪转基因技术有限公司
Priority to PCT/CN2013/074506 priority Critical patent/WO2014172829A1/zh
Priority to CN201380074517.9A priority patent/CN105008387A/zh
Publication of WO2014172829A1 publication Critical patent/WO2014172829A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Definitions

  • the present invention relates to transcription factors and coding genes thereof and applications thereof, and in particular to a transcription factor HDZIP-1 derived from small salt mustard and a gene encoding the same, And its use in the cultivation of transgenic plants with improved salt tolerance and drought tolerance.
  • Drought limits the cultivation of crops by more than 40% of the Earth's land area and poses a serious threat to global agricultural production and food supply. Drought is one of the main environmental constraints on crop yields.
  • the world's saline-alkali soil is large, about 400 million hectares, accounting for one-third of irrigated farmland.
  • salt accumulation continues due to low rainfall and rapid evaporation; salt content in the coastal areas is increased due to seawater intrusion.
  • China's saline-alkali soil is mainly distributed in the northwest, north China, northeast and coastal areas.
  • soil salinization is becoming more and more serious.
  • excess Na + in the soil can have a toxic effect on the normal growth and metabolism of the plant. Therefore, how to increase crop yield under saline environment has become a very important issue in agricultural production in China.
  • the stress resistance of plants is a very complex quantitative trait, and its salt tolerance mechanism involves various levels from plants to organs, tissues, physiology and biochemistry to molecules. When a plant is stressed, it will respond accordingly to reduce or eliminate the damage caused to the plant.
  • This response of plants is a complex process involving multiple genes, multiple signaling pathways, and multiple gene products.
  • genes and their expression products can be divided into three categories: (1) genes involved in signal cascade amplification systems and transcriptional control and their expression products; (2) genes that directly contribute to the protection of biofilms and proteins and their expression products; (3) Genes and proteins associated with the uptake and transport of water and ions.
  • H + -pyrophosphatase H + -PPase
  • ABC H.2003.A rabid op sis AtMYC2 (bHLH) and AtM YB 2 (M YB ) function as transcripmental activato rs in abscisic acid signaling.
  • Arabidopsis Floral Initiator SKB1 Confers High Salt Tolerance by Regulating Transcription and Pre-mRNA Splicing through Altering Histone H4R3 and Small Nuclear Ribonucleoprotein LSM4 Methylation. Plant Cell, 23: 396-41 1).
  • the present inventors cloned a gene encoding a transcription factor of a small salt mustard (herein named HDZIP-1) by using SSH (suppression subtractive hybridization) and RACE (rapid amplification of cDNA ends), and determined the gene. Its DNA sequence. Moreover, it was found that the transgenic plants can significantly improve the salt tolerance and drought tolerance of the transgenic plants after being introduced into the plants by transgenic technology, and these traits can be stably inherited.
  • HDZIP-1 small salt mustard
  • the first aspect of the present invention provides a gene encoding a transcription factor HDZIP-1 of small salt mustard (herein named ThHDZIP-1) having the sequence of SEQ ID NO: 2.
  • a second aspect of the present invention provides a recombinant expression vector comprising the gene of the first aspect of the present invention, which is obtained by inserting the gene into an expression vector, preferably, the expression vector is pCAMBIA2300; And the nucleotide sequence of the gene is operably linked to the expression control sequence of the recombinant expression vector; preferably, the recombinant expression vector is the 35S-ThHDZIP-1-23 vector shown in Figure 2.
  • a third aspect of the invention provides a recombinant cell comprising the gene of the first aspect of the invention or the recombinant expression vector of the second aspect of the invention; preferably, the recombinant cell is a recombinant Agrobacterium cell.
  • a fourth aspect of the present invention provides a method for improving salt tolerance and/or drought tolerance of a plant, comprising: introducing the gene of the first aspect of the invention or the recombinant expression vector of the second aspect of the invention into a plant or plant tissue And expressing the gene; preferably, the plant is Arabidopsis thaliana.
  • a fifth aspect of the present invention provides a method for producing a transgenic plant, comprising: cultivating a plant or plant tissue comprising the gene of the first aspect of the invention or the recombinant expression vector of the second aspect of the invention under conditions effective to produce a plant;
  • the plant is Arabidopsis thaliana.
  • a sixth aspect of the present invention provides the gene of the first aspect of the present invention, the recombination of the second aspect of the present invention
  • the expression vector or the recombinant cell of the third aspect of the invention is for improving salt tolerance, drought tolerance, and use for plant breeding; preferably, the plant is Arabidopsis thaliana.
  • a seventh aspect of the invention provides a protein encoded by the gene of the first aspect of the invention, the amino acid sequence of which is set forth in SEQ ID NO: 1.
  • Figure 1 is a construction flow of a plant expression vector (35S-ThHDZIP-1-23) of 7 TOZH 3 - gene (Fig. la-lb).
  • Figure 2 is a plasmid map of the plant expression vector C35 S-ThHDZIP-l-2300;
  • Figure 3 is a cultured test plant Arabidopsis thaliana.
  • Figure 4 is a salt tolerance test result of T1 plants of transgenic Arabidopsis thaliana.
  • Tld3 showed significant salt tolerance compared with the control, and the results of Tld8, Tldl4, and Tldl7 were similar thereto, and are not shown here.
  • Figure 5 shows the results of molecular level detection of the transcription level of ThHDZIP-1 gene in 1 ⁇ generation transgenic Arabidopsis plants and non-transgenic control plants by reverse transcription PCR.
  • M is DNA Ladder Marker (DL2000)
  • 1-4 is a salt-tolerant control Arabidopsis plant
  • 5-12 is a salt-tolerant T1 transgenic Arabidopsis plant
  • 13 is a plasmid PCR positive control (35S-ThHDZIP-l- 2300 plasmid).
  • FIG. 6 shows the drought tolerance test results of T1 generation plants of ThHDZIP-1 transgenic Arabidopsis thaliana.
  • Tld3 showed significant drought tolerance compared with the control, and the results of Tld8 were similar thereto, and are not shown here.
  • BEST MODE FOR CARRYING OUT THE INVENTION The following examples are provided to facilitate a better understanding of the present invention by those skilled in the art. The examples are for illustrative purposes only and are not intended to limit the scope of the invention.
  • Test materials Thellungiella halophila (purchased from the Yanlan Plant Breeding Center of Ulan Buh and Desert Green Botanical Garden, Bayannaoer City, Inner Mongolia, China) was sown onto sterilized vermiculite at 22 ° C, photoperiod 12 hours light / 12 hours dark (Light intensity 3000-4000 Lx) culture, 1/2MS medium per week (containing 9.39 mM KN0 3 , 0.625 mM KH 2 P0 4 , 10.3 mM NH4NO3 , 0.75 mM MgS0 4 , 1.5 mM CaCl 2 , 50 ⁇ KI, 100 ⁇ H 3 B0 3 , 100 ⁇ MnS0 4 , 30 ⁇ ZnS0 4 , 1 ⁇ Na 2 Mo0 4 , 0.1 ⁇ CoCl 2 , 100 ⁇ Na 2 EDTA, 100 ⁇ FeS0 4 ) once. It was used for experiments when the seedlings reached a diameter of 5-6 cm.
  • the test plants were divided into 2 groups, 4 pots per group and 3 plants per pot.
  • the first group was the control group, which was normally watered with 1/2 MS; the second group was the salt treatment group, and the 1/2 MS solution containing 300 mM NaCl was poured, and the two groups of plants were irradiated at 22 ° C for 12 hours/12 hours.
  • the cells were cultured for 10 days in the dark (light intensity 3000-4000 Lx), and then the two groups of plants were washed in time (the roots were washed with steamed water), rapidly frozen with liquid nitrogen, and stored in a -70 °C refrigerator.
  • RNA was extracted using a plant RNA extraction kit (purchased from Invitrogen).
  • the absorbance of total RNA at 260 nm and 280 nm, OD 26 was determined using a HITACHI UV spectrophotometer U-2001. /OD 28 .
  • the ratio of 1.8-2.0 indicates that the total RNA purity is high.
  • the integrity of total RNA is detected by 1.0% agarose gel electrophoresis.
  • the brightness of the 28S band is about twice that of the 18S band, indicating that the RNA integrity is good.
  • PolyA+ RNA was isolated from total RNA using Qiagen's Oligotex mRNA Purification Kit to isolate mRNA.
  • the method according to Clontech's PCR-select TM cDNA Subtraction Kit kit instructions will be shown suppression subtractive hybridization.
  • the Driver mRNA and Tester mRNA were reverse transcribed, respectively, to obtain double-stranded cDNA, and then subtracted hybridization using 2 Tester cDNA and 2 Driver cDNA as starting materials.
  • the Tester cDNA and Driver cDNA were digested with Rsa I for 1.5 h in a 37 ° C water bath, and then the digested Tester cDNA was divided into two equal portions, and the different linkers were ligated, and the Driver cDNA was not ligated.
  • Two tester cDNAs with different adaptors were mixed with excess Driver cDNA for the first forward subtractive hybridization.
  • the products of the two first forward subtractive hybridizations were mixed, and a second forward subtractive hybridization was performed with the newly denatured Driver cDNA, and the differentially expressed genes were amplified by two PCR amplifications (before PCR, The second forward subtraction hybridization product was end-filled).
  • the second inhibitory PCR amplification product of the second forward subtractive hybridization cDNA fragment was purified using the QIAquick PCR Purification Kit according to the instructions of the pGEM-T Easy kit (purchased from Promega). From Qiagen), the pGEM-T Easy vector was ligated as follows: The following components were sequentially added to a 200 ⁇ PCR tube: The second inhibitory PCR product of the purified positive subtractive hybridization cDNA fragment 3 ⁇ 1 , 2 ⁇ ⁇ 4 Ligase buffer 5 ⁇ l, pGEM-T Easy vector 1 ⁇ 1, ⁇ 4 DNA ligase 1 ⁇ l, and ligated overnight at 4 °C.
  • the cultured colony clones were verified by bacterial PCR amplification using Nested PCR primers Primer 1 and Primer 2R (PCR-select TM cDNA Subtraction Kit from Clontech) to obtain 342 positive clones, and then all positive clones. Send to English Jieji (Shanghai) Trading Co., Ltd. for sequencing.
  • Th-S332 which was one of the effective clones obtained in Example 1, was removed, the sequence was SEQ ID NO: 3, and sequence analysis revealed that the protein encoded by the sequence belonged to a transcription factor.
  • the full-length coding gene corresponding to the sequence of SEQ ID NO: 3 was named ThHDZIP-1, and its corresponding protein was named HDZIP-1.
  • ThHDZIP-1 GSP1 SEQ ID NO: 4:
  • ThHDZIP-1 GSP2 SEQ ID NO: 5:
  • ThHDZIP-1 GSP3 SEQ ID NO: 6:
  • the experimental procedure was performed according to the kit instructions (5 'RACE System for Rapid Amplification of cDNA Ends kit purchased from Invitrogen).
  • the first round of PCR was carried out using SEQ ID NO: 5 and the universal primer AAP (provided with the kit), and the mRNA reverse transcription cDNA (reverse transcription primer SEQ ID NO: 4) extracted from the salt-treated group of small salt mustard was used as a template.
  • Amplification the specific steps are as follows:
  • PCR reaction system 5 ⁇ ⁇ ⁇ Buffer 3 ⁇ 2.5 mM dNTP, 2.0 ⁇ mRNA reverse transcribed cDNA, 1.0 ⁇ Ex Taq (purchased from TAKARA), 10 ⁇ primers SEQ ID NO: 5 and AAP 2.0 1 ⁇ 1, and 35 ⁇ of double distilled water.
  • PCR reaction conditions pre-denaturation at 94 °C for 5 min, 33 cycles (denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s, extension at 72 °C for 1 min), extension at 72 °C for 10 min.
  • the obtained PCR product was diluted 50 times with double distilled water and 2.0 ⁇ L was used as a template, and the second round of PCR amplification was carried out using SEQ ID NO: 6 and primer AUAP.
  • the specific steps are as follows:
  • PCR reaction system 5 ⁇ 10xEx Buffer, 3 ⁇ 2.5 mM dNTP, 2.0 ⁇ diluted first round PCR product, 1.0 l Ex Taq, 10 ⁇ primer SEQ ID NO: 6 and AUAP 2.0 ⁇ l each, and 35 ⁇ ⁇ double distilled water.
  • PCR reaction conditions pre-denaturation at 94 °C for 5 min, 33 cycles (denaturation at 94 °C for 30 s, annealing at 58 °C for 30 s, extension at 72 °C for 2 min), extension at 72 °C for 10 min.
  • a fragment of about 1900 bp in the second PCR product (Gel Extraction Kit from OMEGA) was recovered and ligated into the pGEM-T Easy vector, and then transformed into JM109 (specific method as above).
  • Ten white colonies were randomly picked and inoculated into LB liquid medium containing 50 g/ml ampicillin. After incubation at 37 °C overnight, glycerol was added to a final concentration of glycerol of 20% (volume ratio), and stored at -80 °C until use.
  • the ThHDZIP-I full-length coding gene was cloned by SEQ ID NO: 8 and SEQ ID NO: 9.
  • PCR was performed using TaKaRa's PrimeSTAR HS DNA polymerase and cDNA reverse-transcribed cDNA extracted from the salt-treated group. 50 ⁇ PCR reaction system: 10 ⁇ 5 ⁇ PS Buffer, 3 ⁇ 2.5 mM dNTP, 2.0 ⁇ cDNA, 1.0 ⁇ PrimeSTAR, 10 ⁇ primers SEQ ID NO: 8 and SEQ ID
  • PCR amplification product plus A tail Add 2.5 volumes of absolute ethanol to the PCR product, let stand at -20 ° C for 10 minutes, centrifuge, remove the supernatant, dry, then dissolve with 21 ⁇ double distilled water, then add to it. 2.5 ⁇ 10xEx Buffer, 0.5 ⁇ 5 mM dATP, 1.0 ⁇ Ex Taq. Reaction conditions: The reaction was carried out at 70 ° C for 30 minutes. The obtained 2100 bp DNA fragment was recovered (Omega recovery kit) and ligated into the pGEM T-easy vector (to obtain the ThHDZIP-1-pGEM recombinant vector), and then transformed into JM109 (method as above).
  • the plant binary expression vector pCAMBIA2300 (purchased from Beijing Dingguo Changsheng Biotechnology Co., Ltd.) was selected as a plant expression vector, and the 35S promoter containing the double enhancer of the ⁇ gene was replaced with the Pnos promoter to reduce the expression of prion protein in plants. .
  • the 35S promoter and the Tnos terminator were selected as promoters and terminators of the gene, respectively.
  • the construction process is shown in Figure 1.
  • Pnos was amplified using the plant expression vector pBI121 (purchased from Beijing Huaxia Ocean Technology Co., Ltd.) as a template, and PrimeSTAR HS DNA polymerase of TaKaRa was used.
  • 50 ⁇ PCR reaction system 10 ⁇ 5 ⁇ PS Buffer, 3 ⁇ 2.5 mM dNTP, 1.0 ⁇ ⁇ 121, 1.0 ⁇ PrimeSTAR, 10 ⁇ primers SEQ ID NO: 10 and SEQ ID NO: 11 each 2.0 ⁇ 1, and 31 ⁇ double Steamed water.
  • PCR reaction conditions pre-denaturation at 94 °C for 5 min, 33 cycles (denaturation at 94 °C for 30 s, annealing at 56 °C for 30 s, extension at 72 °C for 30 s), extension at 72 °C for 10 min.
  • the resulting PCR product was digested with EcoRI, Bglll, and ligated into pCAMBIA2300 according to the kit instructions (Promega, T4 ligase kit) to obtain pCAMBIA2300-1.
  • Tnos was amplified using primers SEQ ID NO: 12 and SEQ ID NO: 13 with pBI 121 as a template, using TaKaRa's PrimeSTAR HS DNA polymerase.
  • 50 ⁇ PCR reaction system 10 ⁇ 5 ⁇ PS Buffer, 3 ⁇ 2.5 mM dNTP 1.0 ⁇ pBI121, 1.0 ⁇ PrimeSTAR, 10 ⁇ primers SEQ ID NO: 12 and P SEQ ID NO: 13 each 2.0 ⁇ 1, and 31 ⁇ double Steamed water.
  • PCR reaction conditions pre-denaturation at 94 ° C for 5 min, 33 cycles
  • TCAGAATTCCCAGTGAATTCCCGATCTAGTA The 35S promoter was amplified with pCAMBIA2300 using primers SEQ ID NO: 14 and SEQ ID NO: 15. PrimeSTAR HS DNA polymerase from TaKaRa was used. 50 ⁇ PCR reaction system: 10 ⁇ 5 ⁇ PS Buffer, 3 ⁇ 2.5 mM dNTP, 1.0 ⁇ pCAMBIA2300 1.0 ⁇ PrimeSTAR, 10 ⁇ primers SEQ ID NO: 14 and SEQ ID NO: 15 2.0 ⁇ l, and 31 ⁇ double distilled water .
  • PCR reaction conditions pre-denaturation at 94 °C for 5 min, 33 cycles (denaturation at 94 °C for 30 s, annealing at 58 °C for 30 s, extension at 72 °C for 30 s), extension at 72 °C for 10 min.
  • the resulting PCR product was digested by HindIII, BamHI (connection method as above) to pCAMBIA2300-2 to obtain pC AMBIA2300-3.
  • TGAGGATTCAGAGATAGATTTGTAGAGAGACT Amplifies the full-length sequence of the ThHDZIP-1 encoding gene with primers SEQ ID NO: 16 and SEQ ID NO: 17
  • the plate was the positive ThHDZIP-1 -pGEM plasmid obtained in Example 2, and the PrimeSTAR HS DNA polymerase using TaKaRa was used.
  • 50 ⁇ PCR reaction system 10 ⁇ 5 ⁇ PS Buffer 3 ⁇ 2.5 mM dNTP, 1.0 ⁇ ThHDZIP- l-pGEM 1.0 ⁇ Prime STAR, 10 ⁇ primers SEQ ID NO: 16 and SEQ ID NO: 17 each 2.0 ⁇ 1, and 31 ⁇ ⁇ double distilled water.
  • PCR reaction conditions pre-denaturation at 94 °C for 5 min, 33 cycles (denaturation at 94 °C for 30 s, annealing at 58 °C for 30 s, extension at 72 °C for 2 min), extension at 72 °C for 10 min.
  • the resulting PCR product was ligated by BamHI, Kpnl digestion (ligation as above) to pCAMBIA2300-3, and the plant expression vector 35S-ThHDZIP-1-23 (Fig. 2) was obtained.
  • Agrobacterium LBA4404 was placed on LB solid medium containing 50 g/ml rifampicin and 50 g/ml streptomycin 1-2 days in advance Single-spot inoculation, culture at 28 ° C for 1 to 2 days. Pick a single colony and inoculate it in LB liquid medium containing 50 4 ⁇ /1 ⁇ rifampicin and 50 4 ⁇ /1 ⁇ streptomycin, and incubate overnight (about 12-16 hours) at 28 °C. The OD600 value was 0.4, and a seed bacterial liquid was formed.
  • Transformation of Agrobacterium The competent cells were thawed on ice, and 1 ⁇ M of the 35S-ThHDZIP-1-2-300 plasmid obtained in Example 3 was added to 40 ⁇ l of competent cells, and the mixture was mixed and ice bathed for about 10 min. Transfer the mixture of competent cells and 35S-ThHDZIP-1-2300 plasmid to a ice-cold electric shock cup (purchased from bio-rad) with a pipette, tap to bring the suspension to the bottom of the electric shock cup, be careful not to have bubbles . Place the electric shock cup on the slide of the electric shock chamber, and push the slide to place the electric shock cup to the base electrode of the electric shock chamber.
  • a ice-cold electric shock cup purchased from bio-rad
  • the MicroPulser purchased from bio-rad
  • the MicroPulser is set to "Agr” and the shock is applied once.
  • LB medium pre-warmed at 28 °C.
  • the suspension was transferred to a 1.5 ml centrifuge tube and incubated at 28 ° C for 1 hour at 225 rpm.
  • 100-200 ⁇ L of bacterial solution was applied to the corresponding resistant selection medium plate (LB solid medium containing 50 g/ml rifampicin, 50 g/ml streptomycin, 50 g/ml Kanamycin) Prime), cultured at 28 °C.
  • Positive transformed clones were screened and their bacterial stocks were stored at -70 °C until use.
  • the Agrobacterium liquid of the transformed expression vector obtained in Example 4 was inoculated to an LB medium containing 10-50 ⁇ ⁇ / ⁇ 1 kanamycin (kan), and incubated overnight at 1:50 in the morning.
  • the new LB medium (1L) of antibiotics is cultured for about 8 hours, and the Agrobacterium liquid OD600 should be between 1.0 and 1.2. Centrifuge at 5000 rpm for 5 minutes at room temperature, discard the supernatant, and suspend the Agrobacterium pellet in a volume of osmotic medium (1/2MS, 5% sucrose; adjust to pH 5.7 with KOH; 0.02% Silwet L-77), make OD600 At around 0.8.
  • Example 7 Screening of Arabidopsis Positive Transformants:
  • Seed disinfection first soak for 10 minutes with 70% ethanol, and suspend the seeds from time to time during the above treatment; then wash with sterile water four times, and it is best to suspend the seeds from time to time during this treatment.
  • the treated seeds were uniformly coated on the surface of 1/2-MS solid screening medium containing kan 10-5 ( ⁇ g/ml for 2 days (a maximum of 1500 plants per 150 mm diameter plate), constant temperature 22 ° C, illumination The intensity is 3500-4000k, the photoperiod is 12 hours dark, 12 hours light culture, and cultured for 7-10 days. According to the growth status, it is judged whether it is a transgenic seed.
  • the seeds successfully transferred into the recombinant plasmid can grow normally on the resistant medium.
  • Non-transgenic seeds can not grow normally, only 2 cotyledons can grow, root growth is also severely inhibited, and usually die after 10 days of germination. Transgenic seeds will be positive after 2 weeks of germination on MS+kan plates. Plants were transferred to soil for further culture, transgenic Arabidopsis with SEQ ID NO: 16 and SEQ ID NO: 17 PCR detection, removal of negative plants, collection of positive plant seeds, label: T0dl-T0d23.
  • Example 8 Planting of transgenic Arabidopsis thaliana T1 plants overexpressing ThHDZIP-1
  • T0dl-T0d20 sown 2 pots per transformant, 2 pots of seeds against Arabidopsis thaliana, and 20-30 seeds per pot. After sowing, the film is covered with a film to provide a moist environment for plant growth.
  • Transgenic Arabidopsis thaliana and control Arabidopsis thaliana were treated without treatment, normal watering 1/2MS, transgenic Arabidopsis thaliana, control Arabidopsis thaliana each potted with 1/2MS containing 150 mM NaCl, constant temperature 22 °C, light intensity 3500 -4000k, 12 hour light culture / 12 hour dark culture cycle.
  • Observation results after 10 days Identification of salt tolerance of T1 transgenic plants (plants grown from seeds of TO transgenic plants) showed that four strains of Tld3, Tld8, Tldl4 and Tldl7 showed significant salt tolerance (see figure 4, in Tld3 case, Tld8, Tldl4, Tldl7 results are similar, not shown here).
  • Example 10 Verification of ThHDZIP-1 gene expression at the transcriptional level
  • Example 9 T1 transgenic plants with good salt tolerance in Example 9, 8 were randomly selected (respectively belong to the above four salt-tolerant strains), and the control plants in Example 9 were randomly selected from 4 plants, and the leaves treated with salt for 14 days were 0.05.
  • Total RNA was extracted using a plant RNA extraction kit (Invitrogen). The absorbance values of total RNA at 260 nm and 280 nm were determined by ultraviolet spectrophotometry, and the respective RNA concentrations were calculated. Reverse transcription was carried out according to the method shown by Invitrogen Reverse Transcriptase Superscript III Reverse Transcriptase (1 ⁇ total leg as template, reverse transcription primer SEQ ID NO: 9).
  • ThHDZIP-1 was amplified by SEQ ID NO: 8 and SEQ ID NO: 18 (SEQ ID NO: 18: GAATGCAGAT TATTAGGCAC AGA) and its transcription was examined.
  • the PCR reaction was carried out using the reverse-transcribed cDNA of TaKaRa as a template using PrimeSTAR HS DNA polymerase of TaKaRa. 50 ⁇ l ⁇ Reaction system: 10 ⁇ 5 ⁇ PS Buffer, 3 ⁇ l 2.5 ⁇ dNTP 2.0 ⁇ cDNA 1.0 ⁇ Prime STAR 10 ⁇ primers SEQ ID NO: 8 and SEQ ID NO: 18 Each 2.0 ⁇ and 30 ⁇ double distilled water .
  • M is DNA Ladder Marker (DL2000, purchased from Shenzhen Ruizhen Biotechnology Co., Ltd.), 1-4 is salt-tolerant Arabidopsis plants, 13 is a plasmid PCR positive control (35S-ThHDZIP-l-2300 plasmid), and 5-12 is a salt-tolerant T1 transgenic Arabidopsis plant.
  • DL2000 DNA Ladder Marker
  • 1-4 salt-tolerant Arabidopsis plants
  • 13 is a plasmid PCR positive control (35S-ThHDZIP-l-2300 plasmid)
  • 5-12 is a salt-tolerant T1 transgenic Arabidopsis plant.
  • the size of the band shown is identical to the size of the positive control (approximately 650 bp).
  • the results showed that the transcription of the salt-tolerant T1 transgenic Arabidopsis plants was stronger, and the salt-tolerant control was not transcribed in Arabidopsis plants.
  • Example 11 Drought tolerance experiment of Tld3, Tld8 transgenic Arabidopsis thaliana

Abstract

本发明涉及转录因子及其编码基因与应用,特别是涉及一个来源于小盐芥的转录因子HDZIP-1及其编码基因,以及其在培育耐盐性和耐旱性提高的转基因植物中的应用。

Description

一种小盐芥转录因子 HDZIP-1及其编码基因与应用 技术领域 本发明涉及转录因子及其编码基因与应用, 特别是涉及一个来源于小盐芥的转录因 子 HDZIP-1及其编码基因, 以及其在培育耐盐性和耐旱性提高的转基因植物中的应用。 背景技术 干旱使得超过 40%的地球陆地面积种植农作物受到限制,对全球农业生产和粮食 供应也构成了严重的威胁, 干旱是对农作物产量的主要环境限制条件之一。
世界上盐碱土的面积很大, 约有 4亿公顷, 占灌溉农田的 1/3。 在气候干燥的半干 旱、 干旱地区由于降雨量少、 蒸发剧烈, 盐分不断积累; 海滨地区由于海水倒灌造成 土壤含盐量增加。 我国盐碱土主要分布于西北、 华北、 东北和滨海地区, 随着大棚面 积的逐年增长和栽培年代的推移, 土壤盐渍化日趋严重。 对绝大多数农作物来说, 土 壤中过量的 Na+会对植物体的正常的生长代谢产生毒害作用。 因此如何在盐渍环境下 提高作物产量就成为我国农业生产中十分重要的问题。
采用传统的方法选育耐盐、 抗旱的植物品种固然简便可行, 但进展缓慢, 局限性 大。随着分子生物学技术的发展, 一大批与植物耐盐、抗旱有关的基因相继得到克隆, 植物转基因技术有了重大突破, 这为有效利用旱地及盐碱地提高作物产量, 治理盐渍 化及荒漠化土地提供了新的思路和方法。
植物的抗逆性是一个十分复杂的数量性状,其耐盐机制涉及从植株到器官、组织、 生理生化直至分子的各个水平。 植物在受到胁迫时会产生相应的应答反应, 来降低或 消除给植株带来的危害。 植物的这种应答反应是一个涉及多基因、 多信号途径、 多基 因产物的复杂过程。 这些基因及其表达产物可以分为 3类: (1 ) 参与信号级联放大 系统和转录控制的基因及其表达产物; (2) 直接对保护生物膜和蛋白质起作用的基 因及其表达产物; (3 ) 与水和离子的摄入和转运相关的基因及蛋白质。 各国的科学 家也为此做了大量的工作, 并取得突破性的进展 (Park S. 2005. Up-regulation of a H+-pyrophosphatase(H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc. Natl. Acad. Sci. USA. 102: 18830-18835; ABE H.2003.A rabid op sis AtMYC2 (bHLH) and AtM YB 2 (M YB ) function as transcrip tional activato rs in abscisic acid signaling. Plant Cell, 15: 63-78; Zhang ZL. 2011. Arabidopsis Floral Initiator SKB1 Confers High Salt Tolerance by Regulating Transcription and Pre-mRNA Splicing through Altering Histone H4R3 and Small Nuclear Ribonucleoprotein LSM4 Methylation. Plant Cell, 23 : 396-41 1 ) 。 通过生物技术手段, 对具有胁迫耐受能力的农作物、 旱生植物和 盐生植物的研究都取得了显著的成果, 对胁迫相关基因和信号转导系统也有了更进一 步的了解。 但就目前的研究状况而言, 由于其机制十分复杂, 许多植物对逆境下的生物化学 和生理学上的响应机制仍有待深入研究。在抗逆应答基因的功能及表达调控方面的研 究占多数, 但抗逆相关的信号传递途径之间的联系以及整个信号传递网络系统的机理 还有待进一步研究。虽然许多研究机构通过现代生物技术,获得了各类具有一定耐盐、 抗旱等抗逆能力的转基因植物, 但还未达到产业化的标准。 因此在提高植物抗逆性方 面, 还有许多工作需要做。 发明内容 本发明人利用 SSH (抑制差减杂交) 与 RACE ( cDNA末端快速扩增) 相结合的 方法克隆了小盐芥的一个转录因子(本文命名为 HDZIP-1 ) 的编码基因, 并测定了其 DNA 序列。 并且发现通过转基因技术将其导入植株后, 可明显改善转基因植株的耐 盐性和耐旱性, 而且这些性状可稳定遗传。
本发明第一方面提供小盐芥的一个转录因子 HDZIP-1 的编码基因 (本文命名为 ThHDZIP-1 ) , 其序列为 SEQ ID NO: 2。
本发明第二方面提供一种重组表达载体, 其含有本发明第一方面所述的基因, 其 是通过所述基因插入到一种表达载体而获得的, 优选地, 所述表达载体是 pCAMBIA2300 ; 并且所述基因的核苷酸序列与所述重组表达载体的表达控制序列可 操作地连接; 优选地, 所述重组表达载体为附图 2 所示的 35S-ThHDZIP-l-2300 载 体。
本发明第三方面提供一种重组细胞, 其含有本发明第一方面所述的基因或者本 发明第二方面所述的重组表达载体; 优选地, 所述重组细胞为重组农杆菌细胞。
本发明第四方面提供一种改善植物耐盐性和 /或耐旱性的方法, 包括: 将本发明 第一方面所述基因或者本发明第二方面所述的重组表达载体导入植物或植物组织并 使所述基因表达; 优选地, 所述植物是拟南芥。
本发明第五方面提供一种制备转基因植物的方法, 包括: 在有效产生植物的条 件下培养含有本发明第一方面所述基因或本发明第二方面所述重组表达载体的植物 或植物组织; 优选地, 所述植物是拟南芥。
本发明第六方面提供本发明第一方面所述的基因、 本发明第二方面所述的重组 表达载体或者本发明第三方面所述的重组细胞用于改善植物耐盐性、耐旱性以及用于 植物育种的用途; 优选地, 所述植物是拟南芥。
本发明第七方面提供由本发明第一方面所述基因编码的蛋白质, 其氨基酸序列 如 SEQ ID NO: 1所示。
附图说明 图 1是 7 TOZH3- 基因的植物表达载体(35S-ThHDZIP-l-2300)构建流程(图 la-lb)。 图 2是 基因的植物表达载体 C35 S-ThHDZIP-l-2300;>的质粒图。
图 3是培养的供试植物拟南芥。 图 4是 转基因拟南芥的 T1代植株的耐盐实验结果,与对照相比, Tld3 表现出明显的耐盐性, Tld8、 Tldl4、 Tldl7的结果与其类似, 在此未示出。
图 5为利用反转录 PCR对 1\代转基因拟南芥植株和非转基因对照植株中 ThHDZIP-1 基因的转录水平进行分子水平检测的结果。 M为 DNA Ladder Marker (DL2000) , 1-4 为不耐盐的对照拟南芥植株, 5-12为耐盐 T1 代转基因拟南芥植株, 13 为质粒 PCR 阳性对照 (35S-ThHDZIP-l-2300质粒) 。
图 6是 ThHDZIP-1转基因拟南芥的 T1代植株的耐旱实验结果,与对照相比, Tld3 表现出明显的耐旱性, Tld8的结果与其类似, 在此未示出。 具体实施方式 提供以下实施例, 以方便本领域技术人员更好地理解本发明。 所述实施例仅出 于示例性目的, 并非意在限制本发明的范围。
下面实施例中提到的限制性内切酶均购自 New England Biolabs公司 实施例 1. 盐胁迫下小盐芥 SSH文库构建:
具体方法为:
按照 Clontech公司的 PCR-selectTM cDNA Subtraction Kit 试剂盒说明书所示的方 法通过抑制差减杂交方法构建差减文库。 实验中以生长过程中盐处理的小盐芥组织 中提取的 mRNA作为样本 (tester) , 以未处理的小盐芥组织中提取的 mRNA作为对 照 (driver) 。 具体步骤如下:
( 1 ) 供试材料: 小盐芥 ( Thellungiella halophila, 购自中国内蒙古巴彦淖尔市乌兰布和沙漠绿色 植物园盐生植物繁育中心) 播种到灭菌的蛭石上, 在 22°C、 光周期 12 小时光照 /12 小时黑暗 (光强 3000— 4000 Lx) 条件下培养, 每周浇 1/2MS培养基 (含有 9.39 mM KN03 , 0.625 mM KH2P04, 10.3 mM NH4NO3 , 0.75 mM MgS04, 1.5 mM CaCl2, 50 μΜ KI, 100 μΜ H3B03, 100 μΜ MnS04, 30 μΜ ZnS04, 1 μΜ Na2Mo04, 0.1 μΜ CoCl2, 100 μΜ Na2EDTA, 100 μΜ FeS04) 一次。 当苗株直径达到 5-6cm时用于实 验。
( 2 ) 材料处理:
将供试植株分为 2组, 每组 4盆, 每盆 3株。 第一组为对照组, 正常地用 1/2MS 浇灌;第二组为盐处理组,浇灌含有 300mM NaCl的 1/2MS溶液,将两组植物在 22°C、 光周期 12小时光照 /12小时黑暗(光强 3000— 4000 Lx)条件下培养 10天, 然后及时 收集两组植株 (用蒸熘水洗净根部) , 用液氮迅速冷冻后, 于 -70°C冰箱中保存。
( 3 ) 总 RNA提取:
分别取对照组和盐处理组的小盐芥 3.0 g, 用植物 RNA 提取试剂盒 (购自 Invitrogen)提取总 RNA。 用 HITACHI公司的紫外分光光度计 U-2001测定总 RNA在 260 nm和 280 nm的吸光度值, OD26。/OD28。比值为 1.8-2.0, 表明总 RNA纯度较高, 用 1.0%的琼脂糖凝胶电泳检测总 RNA的完整性, 28S条带的亮度约为 18S条带的 2 倍, 表明 RNA的完整性良好。 使用 Qiagen公司的 Oligotex mRNA纯化试剂盒从总 RNA中纯化 polyA+ RNA分离 mRNA。
( 4 ) 抑制差减杂交:
按 Clontech公司的 PCR-selectTM cDNA Subtraction Kit试剂盒说明书所示的方法进行 抑制差减杂交。 先将 Driver mRNA和 Tester mRNA分别反转录, 得到双链 cDNA, 再以 2 Tester cDNA和 2 Driver cDNA作为起始材料进行差减杂交。 在 37°C水浴下分 别将 Tester cDNA和 Driver cDNA用 Rsa I酶切 1.5 h, 然后将酶切后的 Tester cDNA分 成两等份, 连接上不同的接头, 而 Driver cDNA 不连接头。 两种连有不同接头的 Tester cDNA分别与过量的 Driver cDNA混合, 进行第一次正向差减杂交。 将两种第 一次正向差减杂交的产物混合, 再与新变性的 Driver cDNA进行第二次正向差减杂 交, 通过两次 PCR扩增富集差异表达基因的片段 (PCR进行前, 第二次正向差减杂 交产物进行末端补平) 。
( 5 ) cDNA差减文库的构建与初步筛选、 克隆、 鉴定
依照 pGEM-T Easy 试剂盒 (购自 Promega)的说明, 将所述第二次正向差减杂交 cDNA片段的第二次抑制性 PCR扩增产物(使用 QIAquick PCR Purification Kit纯化, 购自 Qiagen) 与 pGEM-T Easy载体连接, 具体步骤如下: 在 200 μΐ PCR管中依次加 入下列成分: 纯化的正向差减杂交 cDNA片段的第二次抑制性 PCR产物 3 μ1、 2 Χ Τ4 连接酶缓冲液 5 μ1、 pGEM-T Easy载体 1 μ1、 Τ4 DNA连接酶 1 μ1, 于 4°C连接过夜。 然后取 10 μΐ连接反应产物, 加入到 100 μΐ感受态大肠杆菌 JM109(购自 TAKARA) 中, 冰浴 30 min, 42°C热休克 60秒, 冰浴 2 min, 另加 250 μΐ LB液体培养基 (含有 1% 胰蛋白胨(Tryptone,购自 OXOID)、0.5% 酵母提取物(Yeast Extract,购自 OXOID) 和 1% NaCl (购自国药)) 后置于 37°C摇床中, 以 225 rpm振荡培养 30 min, 然后从 中取 200 μΐ菌液接种于含 50 g/ml氨苄青霉素、 40 g/mL X-gaK 24 g/mL IPTG(X-gal ( 5-溴 -4 氯 -3-吲哚 - β -D-半乳糖苷) 和 IPTG (异丙基 - β -D-硫代吡喃半乳糖苷) 购自 TAKARA)的 LB (同上)固体培养平板上, 37°C培育 18小时。 计数培养板中直径 > 1 mm 的清晰白色及蓝色菌落, 随机挑取 450个白色菌落 (编号: Th-S001至 Th-S450)。 将所 挑取的白色菌落接种于 96孔细胞培养板 (CORNING)中的含 50 g/ml氨苄青霉素的 LB 液体培养基, 37°C培养过夜后加甘油至甘油终浓度为 20% (体积比) , 然后于 -80°C 保存备用。 对所培养的菌落克隆以巢式 PCR 引物 Primer 1和 Primer 2R (来自 Clontech 公司的 PCR-selectTM cDNA Subtraction Kit试剂盒)进行菌液 PCR扩增验证, 得到 342 个阳性克隆, 然后将所有阳性克隆送英潍捷基 (上海) 贸易有限公司测序。
( 6) 差异克隆的 cDNA测序分析:
将 DNA测序结果去除载体和不明确序列及冗余的 cDNA后, 共得到 301个有效 表达序列标签 (Expressed sequence tag, EST) (unigene)。 实施例 2 小盐芥转录因子编码基因 ThHDZIP-Ι的克隆
将实施例 1获得的有效克隆子之一 Th-S332的测序结果去掉冗余 DNA后, 序列 为 SEQ ID NO: 3, 序列分析表明该序列编码的蛋白属于转录因子。 本文将 SEQ ID NO : 3 序列对应的全长编码基因命名为 ThHDZIP-1, 其对应的蛋白命名为 HDZIP-1。
SEQ ID NO: 3:
1 ACAGTCCGGT GGATTTAGCA GCACTGAACA TCGCAATGAG CGGTGAAGAT ACTTCCTACA
61 TTCCTCTCTT GTCCTCAGGT TTCACAATCT CACCAGACGG AAGCCGAACC ATTGAGCAAG
121 GAGGAGGAGC CTCGACGAGC TCAGGACGGT CATCATCATC AAGCGGTTTT GGAGGAGGAG 181 GATCGTTGAT AACGGTTGGT TTTCAGATAA TGGTGAGCAA TTTACCGTCG GCTAAACTGA
241 ATATGGAGTC GGTGGAAACG GTTAATAACC TGATTGGAAC CACTGTGCAC CAAATTAAAA
301 CCGCTTTGAA CAACTGTCCT AGTGCTTCAA CTACAGCTTG AAAAGCCATT AAAAGCTCTT
361 CTGCTCTCTT CTGGGTCTCT CTTTCTCTTC AATGATGGAA CAGAGAAGGG AATTAACTCT
421 TCTTTGCCTT CAATGCCAGA GAGATAGAGA GAGAGAGAGA GAGAGACATT AACTCCAATT 481 GTTCTGCTGC TTCTGTTGGT GCTGTTCTTG GACAACCCTC ATTAAAAAAA CCAGCTGGAT
541 TCTTCTCTCT TAAAAAAAAA AAAAAAA
ThHDZIP-1全长编码基因的克隆
根据已经获得的 7¾HZ)ZH ?基因的部分片段(SEQ ID NO: 3 ) , 设计如下三条 特异性引物, 作为 5 ' RACE的 3 ' 端特异性引物。
ThHDZIP-1 GSP1: SEQ ID NO: 4:
AAACCAACCG TTATCAACGA TC
ThHDZIP-1 GSP2: SEQ ID NO: 5:
GAGCTCGTCG AGGCTCCTCC TC
ThHDZIP-1 GSP3: SEQ ID NO: 6:
GAAACCTGAG GACAAGAGAG GAA
实验步骤按试剂盒说明书操作 ( 5 ' RACE System for Rapid Amplification of cDNA Ends试剂盒购自 Invitrogen公司) 。
用 SEQ ID NO: 5与通用引物 AAP (试剂盒自带) , 以盐处理组小盐芥提取的 mRNA反转录的 cDNA (反转录引物 SEQ ID NO: 4 ) 为模板进行第一轮 PCR扩增, 具体步骤如下:
50 μΐ PCR反应体系: 5 μΐ ΙΟ Εχ Buffer 3 μΐ 2.5 mM的 dNTP、 2.0 μΐ mRNA反转 录的 cDNA、 1.0 μΐ Ex Taq (购自 TAKARA) 、 10 μΜ的引物 SEQ ID NO: 5和 AAP 各 2.0 μ1、 以及 35 μΐ的双蒸水。 PCR反应条件: 94°C预变性 5 min, 33个循环(94°C 变性 30 s, 55 °C退火 30 s, 72 °C 延伸 lmin) , 72 °C 延伸 10 min。
所得的 PCR产物用双蒸水稀释 50倍后取 2.0 μΐ作为模板, 用 SEQ ID NO: 6与 引物 AUAP进行第二轮 PCR扩增, 具体步骤如下:
50 μ1 ΡΟ 反应体系: 5 μΐ 10xEx Buffer、 3 μΐ 2.5 mM的 dNTP、 2.0 μΐ稀释的第一 轮 PCR产物、 1.0 l Ex Taq、 10 μΜ的引物 SEQ ID NO: 6和 AUAP各 2.0 μ1、 以及 35 μΐ的双蒸水。 PCR反应条件: 94°C预变性 5 min, 33个循环(94°C变性 30 s, 58 °C 退火 30 s, 72°C延伸 2 min) , 72°C延伸 10 min。 回收第二次 PCR产物中片段约为 1900bp的条带(Gel Extraction Kit购自 OMEGA) , 并将其连接于 pGEM-T Easy载体, 然后转化到 JM109(具体方法同上)。 随机挑取 10个白色菌落接种于含有 50 g/ml氨苄 青霉素的 LB 液体培养基中, 37 °C培养过夜后加甘油至甘油终浓度为 20% (体积 比) , -80°C保存备用。 用 SEQ ID NO: 6与引物 AUAP进行菌液 PCR扩增 (反应体 系及反应条件同上) , 得到 7个阳性克隆, 选取其中 4个克隆送至英潍捷基 (上海) 贸易有限公司测序, 获得该基因的 cDNA的 5'端。 所得的 5'RACE产物克隆测序后, 得其与 SEQ ID NO: 3序列进行拼接。 获得 全长 cDNA序列 SEQ ID NO: 7:
1 AGTGTTTACT GTTTGCTTAT TTGTCTCGAC ATTTAGAAAA AAAAAAAGAT GAGTTTCGTC
61 GTCGGCGTTG GCGGAAGTGG GAGTGGAAGC GGCGGAGACG GTGGTGGTAG CCAACATCAC
121 GACGGCTCTG AAACTGATAG GAAGAAGAAA CGTTACCATC GTCACACCGC TCAACAGATT
181 CAACGCCTCG AATCGAGTTT CAAGGAGTGT CCTCATCCAG ATGATAAACA GAGGAATCAA
241 CTTAGCAGAG AATTGGGTTT GGCTCCAAGA CAGATCAAGT TCTGGTTTCA GAACAGAAGA
301 ACTCAGCTTA AGGCGCAACA TGAGAGAGCA GATAATAATG CACTAAAGGC AGAGAATGAT
361 AAGATTCGAT GCGAAAACAT AGCCATTAGA GAAGCTCTCA AGCATGCTAT ATGTCCTAAC
421 TGTGGAGGTC CTCCTGTTAG TGAAGATCCT TACTTTGATG AGCAGAAGCT TCGGATTGAA
481 AATGCACATC TTAGAGAAGA GCTTGAAAGA ATGTCGACCA TTGCATCAAA GTATATGGGA
541 AGACCAATAT CCTCTCAACT CTCAACGCTA CATCCAATGC ACATCTCGCC GTTGGATTTG
601 TCCATGACTA GCTTAACTGG TTGTGGTCAA GGTCCTTCAC TTGATTTTGA TCTTCTTCCA
661 GGAAGTTCTA TGGCTTCTGT GCCTAATAAT CTGCATTCTC AGCCTAACTT GGCTATATCG
721 GAGATGGATA AGCCTCTTAT GAACGACATT GCTATGACGG CTATGGAAGA GTTGCTTAGG
781 CTTCTTCACT CAAACGAACC TCTGTGGACT AGAGCAGATG GTTGCAGAGA CATTCTCAAT
841 CTTGGAAGCT ATGATAATGT TTTTCCAAGA TCAAGTAACC GAGGGAAGAA CCATAACCGT
901 CGAGTCGAAG CATCTAGGTC ATCTGGTATT GTTTTCATGA ATGCTATGGC ACTTGTCGAC
961 ATGTTCATGG ATTGTGTCAA GTGGGCAGAG CTATTTCCTT CGATCGTTGC AGCGTCTAAA
1021 ACACTTGCAG TGATATCTTC AGGAATGGGA GGAACCCATG AGGGTGCATT GCATTTGTTG
1081 TATGAAGAAA TGGAAGTGCT TTCTCCTTTG GTAGCAACAC GTGAGTTCTG CGAGCTACGC
1141 TATTGTCAGC AGATTGAACA AGGAAGCTGG ATAGTTGTAA ATGTCTCCTA TGATCTTCCT
1201 CAGTCTGTTT CCCACTCTCA GTCCTACAGA TTCCCATCTG GATGCTTGAT TCAGGACATG
1261 CCTAATGGAT ATTCCAAGGT TACGTGGGTT GAACATGTCG AAACTGAAGA AAAAGAACCG
1321 ACTCATGAGC TATACAGAGA GATGATTCAC AAAGGGATTG CTTTTGGAGC TGAACGATGG
1381 GTCACCACTC TCCAGAGAAT GTGTGAAAGA TTTGCGTCCT TATTGGCACC AGCTACATCA
1441 TCCCGTGATC TCGGTGGAGT GATTCCATCT CCGGAAGGGA AGAGAAGCAT GATGAGACTT
1501 GCTCAGAGAA TGGTTAGCAA CTACTGCTTA AGTGTCAGCA GATCTAACAA CACTCGCTCA
1561 ACGGTTGTTG CGGAATTGAA CGAAGTTGGA ATCCGTGTGA CTGCACAAAA GAGCCCTGAA
1621 CCAAACGGCA CTATCCTCTG CGCAGCCACC ACCTTCTGGC TCCCAAGCTC TCCTCAAAAT
1681 GTCTTCAATT TCCTCAAAGA CGAAAGAACC CGTCCTCAGT GGGATGTTCT TTCAAATGGA
1741 AACGCCGTTC AAGAAGTTGC TCACATCGCA AACGGATCAC ATCCCGGATG CTGCGTATCG
1801 GTTCTACGTG CATCGAATGC ATCACAGAGT AACAACATGC TAATTCTACA AGAAAGCTCA
1861 ATAGACTCAT CAGGAGCACT TGTGGTGTAC AGTCCGGTGG ATTTAGCAGC ACTGAACATC
1921 GCAATGAGCG GTGAAGATAC TTCCTACATT CCTCTCTTGT CCTCAGGTTT CACAATCTCA
1981 CCAGACGGAA GCCGAACCAT TGAGCAAGGA GGAGGAGCCT CGACGAGCTC AGGACGGTCA
2041 TCATCATCAA GCGGTTTTGG AGGAGGAGGA TCGTTGATAA CGGTTGGTTT TCAGATAATG
2101 GTGAGCAATT TACCGTCGGC TAAACTGAAT ATGGAGTCGG TGGAAACGGT TAATAACCTG
2161 ATTGGAACCA CTGTGCACCA AATTAAAACC GCTTTGAACA ACTGTCCTAG TGCTTCAACT
2221 ACAGCTTGAA AAGCCATTAA AAGCTCTTCT GCTCTCTTCT GGGTCTCTCT TTCTCTTCAA
2281 TGATGGAACA GAGAAGGGAA TTAACTCTTC TTTGCCTTCA ATGCCAGAGA GATAGAGAGA 2341 GAGAGAGAGA GAGACATTAA CTCCAATTGT TCTGCTGCTT CTGTTGGTGC TGTTCTTGGA 2401 CAACCCTCAT TAAAAAAACC AGCTGGATTC TTCTCTCTTA AAAAAAAAAA AAAAA 根据 SEQ ID NO: 7序列设计一对引物如下:
SEQ ID NO: 8:
ATGAGTTTCG TCGTCGGCGT TG SEQ ID NO: 9:
TCAAGCTGTA GTTGAAGCAC T
通过 SEQ ID NO: 8和 SEQ ID NO: 9来克隆 ThHDZIP-I全长编码基因。 采用 TaKaRa的 PrimeSTAR HS DNA聚合酶, 以盐处理组小盐芥提取的 mRNA反 转录的 cDNA为模板进行 PCR反应。 50 μΐ PCR反应体系: 10 μΐ 5xPS Buffer、 3 μΐ 2.5 mM的 dNTP、 2.0 μΐ cDNA、 1.0 μΐ PrimeSTAR、 10 μΜ的引物 SEQ ID NO: 8和 SEQ ID
NO: 9各 2.0 μ1、 以及 30 μΐ的双蒸水。 PCR反应条件: 94°C预变性 5 min, 33个循环 (94°C 变性 30 s, 58°C退火 30 s, 72 °C 延伸 2min) , 72 °C 延伸 10 min。
PCR扩增产物加 A尾: PCR产物中加入 2.5倍体积的无水乙醇, -20°C放置 10分钟, 离心, 去上清, 晾干, 然后用 21 μΐ双蒸水溶解,然后向其中加入 2.5 μΐ 10xEx Buffer、 0.5 μΐ 5 mM的 dATP、 1.0 μΐ Ex Taq。 反应条件: 70°C反应 30分钟。 将得到的约 2100bp的 DNA 片段回收 (Omega 回收试剂盒) , 并将其连接至 pGEM T-easy 载体上 (得到 ThHDZIP-1-pGEM重组载体) , 然后转化 JM109(方法同上)。 随机挑取 10个白色菌落接 种于含有 50 g/ml氨苄青霉素的 LB 液体培养基中, 37°C培养过夜后加甘油至甘油终浓 度为 20% (体积比), -80°C保存备用。 用 SEQ ID NO: 8与 SEQ ID NO: 9进行菌液 PCR 扩增 (反应体系及反应条件同上) , 得到 8个阳性克隆, 选取其中 3个阳性克隆送至英 潍捷基(上海)贸易有限公司测序, 序列为 SEQ ID NO: 2, 其编码的蛋白质的氨基酸序 列为 SEQ ID NO: 1。
HDZIP-1蛋白的氨基酸序列: SEQ ID NO: 1
1 SFVVGVGGS GSGSGGDGGG
2 1 SQHHDGSETD RKKKRYHRHT
4 1 AQQIQRLESS FKECPHPDDK
61 QRNQLSRELG LAPRQI KFWF
81 QNRRTQLKAQ HERADNNALK
101 AENDKIRCEN IAIREALKHA
12 1 I CPNCGGPPV SEDPYFDEQK
14 1 LRI ENAHLRE ELER STIAS
161 KY GRPI SSQ LSTLHP HI S
181 PLDLS TSLT GCGQGPSLDF 201 DLLPGSS AS VPNNLHSQPN
221 LAISEMDKPL NDIA TA E
241 ELLRLLHSNE PLWTRADGCR
261 DILNLGSYDN VFPRSSNRGK
281 NHNRRVEASR SSGIVF NA
301 ALVDMFMDCV KWAELFPSIV
321 AASKTLAVIS SGMGGTHEGA
341 LHLLYEEMEV LSPLVATREF
361 CELRYCQQIE QGSWIVVNVS
381 YDLPQSVSHS QSYRFPSGCL
401 IQD PNGYSK VTWVEHVETE
421 EKEPTHELYR E IHKGIAFG
441 AERWVTTLQR MCERFASLLA
461 PATSSRDLGG VIPSPEGKRS
481 RLAQR VS NYCLSVSRSN
501 NTRSTVVAEL NEVGIRVTAQ
521 KSPEPNGTIL CAATTFWLPS
541 SPQNVFNFLK DERTRPQWDV
561 LSNGNAVQEV AHIANGSHPG
581 CCVSVLRASN ASQSNNMLIL
601 QESSIDSSGA LVVYSPVDLA
621 ALNIAMSGED TSYIPLLSSG
641 FTISPDGSRT IEQGGGASTS
661 SGRSSSSSGF GGGGSLITVG
681 FQI VSNLPS AKLNMESVET
701 VNNLIGTTVH QIKTALNNCP
721 SASTTA*
ThHDZIP-1基因的核苷酸序列 SEQ ID NO: 2
1 ATGAGTTTCG TCGTCGGCGT TGGCGGAAGT GGGAGTGGAA GCGGCGGAGA CGGTGGTGGT
61 AGCCAACATC ACGACGGCTC TGAAACTGAT AGGAAGAAGA AACGTTACCA TCGTCACACC
121 GCTCAACAGA TTCAACGCCT CGAATCGAGT TTCAAGGAGT GTCCTCATCC AGATGATAAA
181 CAGAGGAATC AACTTAGCAG AGAATTGGGT TTGGCTCCAA GACAGATCAA GTTCTGGTTT
241 CAGAACAGAA GAACTCAGCT TAAGGCGCAA CATGAGAGAG CAGATAATAA TGCACTAAAG
301 GCAGAGAATG ATAAGATTCG ATGCGAAAAC ATAGCCATTA GAGAAGCTCT CAAGCATGCT
361 ATATGTCCTA ACTGTGGAGG TCCTCCTGTT AGTGAAGATC CTTACTTTGA TGAGCAGAAG
421 CTTCGGATTG AAAATGCACA TCTTAGAGAA GAGCTTGAAA GAATGTCGAC CATTGCATCA
481 AAGTATATGG GAAGACCAAT ATCCTCTCAA CTCTCAACGC TACATCCAAT GCACATCTCG
541 CCGTTGGATT TGTCCATGAC TAGCTTAACT GGTTGTGGTC AAGGTCCTTC ACTTGATTTT 601 GATCTTCTTC CAGGAAGTTC TATGGCTTCT GTGCCTAATA ATCTGCATTC TCAGCCTAAC
661 TTGGCTATAT CGGAGATGGA TAAGCCTCTT ATGAACGACA TTGCTATGAC GGCTATGGAA
721 GAGTTGCTTA GGCTTCTTCA CTCAAACGAA CCTCTGTGGA CTAGAGCAGA TGGTTGCAGA
781 GACATTCTCA ATCTTGGAAG CTATGATAAT GTTTTTCCAA GATCAAGTAA CCGAGGGAAG
841 AACCATAACC GTCGAGTCGA AGCATCTAGG TCATCTGGTA TTGTTTTCAT GAATGCTATG
901 GCACTTGTCG ACATGTTCAT GGATTGTGTC AAGTGGGCAG AGCTATTTCC TTCGATCGTT
961 GCAGCGTCTA AAACACTTGC AGTGATATCT TCAGGAATGG GAGGAACCCA TGAGGGTGCA
1021 TTGCATTTGT TGTATGAAGA AATGGAAGTG CTTTCTCCTT TGGTAGCAAC ACGTGAGTTC
1081 TGCGAGCTAC GCTATTGTCA GCAGATTGAA CAAGGAAGCT GGATAGTTGT AAATGTCTCC
1141 TATGATCTTC CTCAGTCTGT TTCCCACTCT CAGTCCTACA GATTCCCATC TGGATGCTTG
1201 ATTCAGGACA TGCCTAATGG ATATTCCAAG GTTACGTGGG TTGAACATGT CGAAACTGAA
1261 GAAAAAGAAC CGACTCATGA GCTATACAGA GAGATGATTC ACAAAGGGAT TGCTTTTGGA
1321 GCTGAACGAT GGGTCACCAC TCTCCAGAGA ATGTGTGAAA GATTTGCGTC CTTATTGGCA
1381 CCAGCTACAT CATCCCGTGA TCTCGGTGGA GTGATTCCAT CTCCGGAAGG GAAGAGAAGC
1441 ATGATGAGAC TTGCTCAGAG AATGGTTAGC AACTACTGCT TAAGTGTCAG CAGATCTAAC
1501 AACACTCGCT CAACGGTTGT TGCGGAATTG AACGAAGTTG GAATCCGTGT GACTGCACAA
1561 AAGAGCCCTG AACCAAACGG CACTATCCTC TGCGCAGCCA CCACCTTCTG GCTCCCAAGC
1621 TCTCCTCAAA ATGTCTTCAA TTTCCTCAAA GACGAAAGAA CCCGTCCTCA GTGGGATGTT
1681 CTTTCAAATG GAAACGCCGT TCAAGAAGTT GCTCACATCG CAAACGGATC ACATCCCGGA
1741 TGCTGCGTAT CGGTTCTACG TGCATCGAAT GCATCACAGA GTAACAACAT GCTAATTCTA
1801 CAAGAAAGCT CAATAGACTC ATCAGGAGCA CTTGTGGTGT ACAGTCCGGT GGATTTAGCA
1861 GCACTGAACA TCGCAATGAG CGGTGAAGAT ACTTCCTACA TTCCTCTCTT GTCCTCAGGT
1921 TTCACAATCT CACCAGACGG AAGCCGAACC ATTGAGCAAG GAGGAGGAGC CTCGACGAGC
1981 TCAGGACGGT CAT CAT CATC AAGCGGTTTT GGAGGAGGAG GATCGTTGAT AACGGTTGGT
2041 TTTCAGATAA TGGTGAGCAA TTTACCGTCG GCTAAACTGA ATATGGAGTC GGTGGAAACG
2101 GTTAATAACC TGATTGGAAC CACTGTGCAC CAAATTAAAA CCGCTTTGAA CAACTGTCCT
2161 AGTGCTTCAA CTACAGCTTG A
实施例 3 ThHDZIP-1基因的植物表达载体构建
选择植物双元表达载体 pCAMBIA2300 (购自北京鼎国昌盛生物技术有限责任公司) 作为植物表达载体, 用 Pnos启动子替换 ΡΤΠ基因含双增强子的 35S启动子, 以降低 ΡΤΠ蛋白在植物中的表达。 选择 35S启动子及 Tnos终止子分别作为 基因的 启动子和终止子, 构建流程如图 1所示。
使用引物 SEQ ID NO: 10和 SEQ ID NO: 11, 以植物表达载体 pBI121 (购自北京华 夏远洋科技有限公司) 为模板扩增 Pnos, 采用 TaKaRa的 PrimeSTAR HS DNA聚合酶。 50 μΐ PCR反应体系: 10 μΐ 5xPS Buffer、 3 μΐ 2.5 mM的 dNTP、 1.0 μΐ ρΒΙ121、 1.0 μΐ PrimeSTAR、 10 μΜ的引物 SEQ ID NO: 10和 SEQ ID NO: 11各 2.0 μ1、 以及 31 μΐ的双 蒸水。 PCR反应条件: 94°C预变性 5 min, 33个循环(94°C 变性 30 s, 56°C退火 30 s, 72 °C 延伸 30 s), 72 °C 延伸 10 min。 通过 EcoRI、 Bglll酶切将所得的 PCR产物按试剂 盒说明 (Promega, T4连接酶试剂盒)连接到 pCAMBIA2300获得 pCAMBIA2300-l。
SEQ ID NO: 10
GCACGAATTC GGCGGGAAAC GACAATCTGA
SEQ ID NO: 11
ATCCAGATCTAGATCCGGTGCAGATTATTTG
用引物 SEQ ID NO: 12和 SEQ ID NO: 13以 pBI 121为模板扩增 Tnos, 采用 TaKaRa 的 PrimeSTAR HS DNA聚合酶。 50 μΐ PCR反应体系: 10 μΐ 5xPS Buffer、 3 μΐ 2.5 mM的 dNTP 1.0 μΐ pBI121、 1.0 μΐ PrimeSTAR、 10 μΜ的引物 SEQ ID NO: 12禾 P SEQ ID NO: 13各 2.0 μ1、 以及 31 μΐ的双蒸水。 PCR反应条件: 94°C预变性 5 min, 33个循环
( 94°C 变性 30 s, 58°C退火 30 s, 72 °C 延伸 30 s) , 72 °C 延伸 10 min。 通过 Kpnl、 EcoRI酶切将所得的 PCR产物连接 (Promega T4 连接酶试剂盒)到 pCAMBIA2300-l获得 pCAMBIA2300-2。
SEQ ID NO: 12:
AAGGGTAACGAATTTCCCCGATCGTTCAAA SEQ ID NO: 13:
TCAGAATTCCCAGTGAATTCCCGATCTAGTA 用引物 SEQ ID NO: 14和 SEQ ID NO: 15以 pCAMBIA2300 为模板扩增 35S启动 子。 采用 TaKaRa的 PrimeSTAR HS DNA聚合酶。 50 μΐ PCR反应体系: 10 μΐ 5xPS Buffer、 3 μΐ 2.5 mM的 dNTP、 1.0 μΐ pCAMBIA2300 1.0 μΐ PrimeSTAR、 10 μΜ的引物 SEQ ID NO: 14和 SEQ ID NO: 15各 2.0 μ1、 以及 31 μΐ双蒸水。 PCR反应条件: 94°C预 变性 5 min, 33个循环 (94°C 变性 30 s, 58°C退火 30 s, 72 °C 延伸 30 s) , 72 °C 延伸 10 min。 通过 HindIII、 BamHI 酶切将所得的 PCR 产物连接 (连接方法同上) 到 pCAMBIA2300-2获得 pC AMBIA2300-3。
SEQ ID NO: 14:
ACTAAGCTTTAGAGCAGCTTGCCAACATGGTG SEQ ID NO: 15:
TGAGGATTCAGAGATAGATTTGTAGAGAGAGACT 用引物 SEQ ID NO: 16和 SEQ ID NO: 17扩增 ThHDZIP-1编码基因的全长序列(模 板是实施例 2所获得阳性 ThHDZIP- 1 -pGEM质粒), 采用 TaKaRa的 PrimeSTAR HS DNA 聚合酶。 50 μΐ PCR 反应体系: 10 μΐ 5xPS Buffer 3 μΐ 2.5 mM 的 dNTP、 1.0 μΐ ThHDZIP- l-pGEM 1.0 μΐ Prime STAR、 10 μΜ的引物 SEQ ID NO: 16和 SEQ ID NO: 17 各 2.0 μ1、 以及 31 μΐ双蒸水。 PCR反应条件: 94°C预变性 5 min, 33个循环(94°C 变性 30 s, 58°C退火 30 s, 72 °C 延伸 2min) , 72 °C 延伸 10 min。 通过 BamHI、 Kpnl酶切将 所得的 PCR产物连接 (连接方法同上) 到 pCAMBIA2300-3, 获得植物表达载体 35S- ThHDZIP-l-2300(图 2)。
SEQ ID NO: 16
ACTGGATTCATGAGTTTCG TCGTCGGCGT TG SEQ ID NO: 17
ACTGGTACC TCAAGCTGTA GTTGAAGCAC T
实施例 4 35S-ThHDZIP-l-2300表达载体转化农杆菌
农杆菌 LB A4404 (购自 Biovector Science Lab, Inc)感受态细胞的制备: 提前 1-2天 将农杆菌 LBA4404在含 50 g/ml利福平和 50 g/ml链霉素的 LB固体培养基上划单斑接 种, 28°C培养 1至 2天。 挑取单菌落接种于 5 1^含50 4§/1^利福平和50 4§/1^链霉素的 LB液体培养基中, 28°C下摇动培养过夜 (约 12-16小时) 至 OD600值为 0.4, 形成种子 菌液。 取 5 ml培养活化后的菌液 (1 :20的比例) 接种于 100 ml含 50 g/ml利福平和 50 g/ml链霉素的 LB液体培养基中, 28°C摇动培养 2-2.5小时至 OD600=0.8。 冰浴菌液 10 min, 每隔 3 min摇匀一次, 令所述细菌均匀进入休眠状态。 于 4°C下 4000 g离心 10 min, 弃上清液; 加入一定量冰预冷的 10%甘油 (体积比) 重悬浮菌体, 4°C下 4000 g离 心 10 min, 收集沉淀; 用冰预冷的 10%甘油 (体积比) 重复洗 3-4次; 然后加入适量冰 预冷的 10%甘油 (体积比) 重新悬浮细菌沉淀, 即制得 LBA4404感受态细胞, 以 40 μΐ/ 管将其分装, 于 -70°C保存备用。
转化农杆菌: 在冰上融化所述的感受态细胞, 向 40 μ1的感受态细胞中加入 1 μΐ实施 例 3 获得的 35S-ThHDZIP-l-2300 质粒, 混匀后冰浴约 10 min。 将感受态细胞和 35S-ThHDZIP-l-2300质粒的混合物用移液枪转移到冰预冷的电击杯(购自 bio-rad) 中, 轻敲使悬浮液到达电击杯底部, 注意不要有气泡。 将所述电击杯放到电击室的滑道上, 推动滑道将电击杯放至电击室基座电极处。 使用 0.1cm 规格的电击杯的时候, MicroPulser (购自 bio-rad)的程序设置为 "Agr", 电击一次。 立即取出电击杯, 加入 28°C 预热的 LB培养基。 快速而轻柔的用移液枪将感受态细胞打匀。 将悬浮液转入 1.5 ml的离 心管, 在 28°C 以 225 rpm摇动培养 1小时。 取 100-200 μΐ的菌液涂布于相应的抗性筛选 培养基平板上 (LB固体培养基, 含 50 g/ml利福平、 50 g/ml链霉素、 50 g/ml卡那霉 素) , 28°C培养。 筛选阳性转化克隆, 并将其菌液于 -70°C保存备用。 实施例 5 转化用拟南芥种植:
选择吸水性好, 土质松软的蛭石配合营养土(1 : 1 )作为拟南芥种植土壤。直径 9cm 的花盆, 每盆播种 20-30颗。 播种以后在花盆上罩上薄膜, 给植株的生长提供一个湿润 的环境。恒温 22°C,光照强度 3500-4000k,光照周期为 12 小时黑暗、 12 小时光照培养, 每 7天浇灌一次 1/2MS, 培养 30天后, 保留 4-5棵植株, 光照周期调整为 8 小时黑暗、 16 小时光照培养,待大部分植株都抽薹之后,在花序基部剪掉整个主苔,去其顶端优势, 约 1周后在腋芽部位长出 4-6个新生侧苔,待侧苔花序形成花蕾并部分开花或形成 1-2个 角果时, 便可用于转化 (图 3 )。 实施例 6 拟南芥花浸转化:
将实施例 4获得的已转化表达载体的农杆菌菌液接种至含有 10-50μ§/ιη1卡那霉素 (kan)的 LB培养基中培养过夜, 第二天早上按 1 :50接种至含有抗生素的新的 LB培养基 中 ( 1L), 培养约 8个小时, 农杆菌液 OD600应当在 1.0到 1.2之间。 室温 5000rpm离心 5分钟, 弃上清, 将农杆菌沉淀悬浮于一定体积的渗透培养基里 (1/2MS, 5%蔗糖; 用 KOH调至 pH5.7; 0.02%Silwet L-77), 使 OD600在 0.8左右。 将实施例 5所述用于转化 的拟南芥的上部缓缓、 螺旋式浸入接种培养基内, 轻轻顺时针晃荡, 约 2分钟, 用透明 塑料罩盖严以保持湿度, 放入温室过夜。 24小时后移去塑料透明罩, 用水浇透。之后 2-3 周, 保证植株水分充足。 当植株停止开花, 第一个果荚成熟变黄时, 用纸袋套住, 当纸 袋内的所有果荚变黄后, 停止浇水, 1-2周干燥后取回实验室, 进行转化子选择, 同时取 未经转化处理的拟南芥果荚作为对照。 实施例 7 拟南芥阳性转化子的筛选:
种子消毒: 先用 70%乙醇浸泡 10分钟, 在上述处理时要不时地使种子悬浮; 然后用 无菌水洗四次,在这步处理时最好也不时地使种子悬浮。处理后的种子均匀涂布在含 kan 10-5(^g/ml 的 1/2MS固体筛选培养基表面上春化 2天(一块 150mm直径的平皿最多播种 1500棵), 恒温 22°C, 光照强度 3500-4000k, 光照周期为 12 小时黑暗、 12 小时光照培 养, 培养 7-10天。 根据生长状况判断是否为转基因种子。 成功转入重组质粒的种子能够 在抗性培养基上正常生长出 4片以上真叶。 非转基因种子不能正常生长, 仅能长出 2片 子叶, 根的生长也受到严重抑制, 一般萌发 10天以后死亡。 转基因种子在 MS+kan平板 上萌发 2周以后,将阳性植株转入土壤继续培养,转基因拟南芥用 SEQ ID NO: 16和 SEQ ID NO: 17做 PCR检测, 去除阴性植株, 收集阳性植株种子, 标号: T0dl-T0d23。 实施例 8 过表达 ThHDZIP-1的转基因拟南芥 T1代植株的种植
选择吸水性好, 土质松软的蛭石配合营养土 (1 : 1 ) 作为拟南芥种植土壤。
T0dl-T0d20每个转化子播种 2盆, 对照拟南芥播种 2盆, 每盆播种 20-30颗种子。 播种 以后在花盆上罩上薄膜, 给植株的生长提供一个湿润的环境。 恒温 22 °C, 光照强度 3500-40001x, 光照周期为 12 小时黑暗、 12 小时光照培养, 每 7天浇灌一次 1/2MS, 培 养 25天后, 转基因拟南芥用 SEQ ID NO: 16和 SEQ ID NO: 17做 PCR检测, 去除阴性 植株, 保留 12-14阳性棵苗, 继续培养 10天后, 选取大小一致的转基因拟南芥、 对照拟 南芥做耐盐实验, 每盆保留大小较一致的 7-9棵苗。 实施例 9 过表达 ThHDZIP-1的转基因拟南芥 T1代植株的耐盐实验
转基因拟南芥、 对照拟南芥各一盆不作处理, 正常浇灌 1/2MS, 转基因拟南芥、 对 照拟南芥各一盆浇灌含有 150mM NaCl的 1/2MS, 恒温 22 °C, 光照强度 3500-4000k , 12小时光培养 /12小时暗培养循环。 10天后观察实验结果: T1代转基因植株 ( TO代转基 因植株的种子长成的植株)的耐盐性鉴定表明, Tld3、 Tld8、 Tldl4、 Tldl7四个株系表 现出明显的耐盐性(见图 4, 以 Tld3例, Tld8、 Tldl4、 Tldl7的结果与其类似, 在此 未示出) 。 实施例 10 在转录水平上验证 ThHDZIP-1基因的表达
实施例 9中耐盐好的 T1代转基因植株中随机选取 8棵 (分别属于上述四个耐盐株系) , 实施例 9中对照植株随机选取 4棵, 各剪取盐处理 14天的叶片 0.05 g, 用植物 RNA提取试剂 盒 (Invitrogen) 提取总 RNA。 紫外分光光度测定总 RNA在 260 nm和 280 nm的吸光度值, 计算各个 RNA浓度。 依照 Invitrogen反转录试剂盒 Superscript III Reverse Transcriptase所示 方法进行反转录(1 §总腿 作为模板, 反转录引物 SEQ ID NO: 9) 。 通过 SEQ ID NO: 8和 SEQ ID NO: 18 ( SEQ ID NO: 18: GAATGCAGAT TATTAGGCAC AGA) 扩增 ThHDZIP-1, 检测其转录情况。 采用 TaKaRa的 PrimeSTAR HS DNA聚合酶, 以上述反转 录的 cDNA为模板进行 PCR反应。 50 μ1 ΡΟ反应体系: 10 μΐ 5xPS Buffer、 3 μ1 2.5 ιηΜ的 dNTP 2.0 μΐ cDNA 1.0 μΐ Prime STAR 10 μΜ的引物 SEQ ID NO: 8禾口 SEQ ID NO: 18 各 2.0 μΐ以及 30 μΐ的双蒸水。 PCR反应条件: 94°C预变性 5 min, 32个循环 (94°C 变性 30 s, 58°C退火 30 s, 72 °C 延伸 lmin) , 72 °C 延伸 10 min。 产物电泳结果如图 5所示: M为 DNA Ladder Marker (DL2000, 购自深圳瑞真生物技术有限公司) , 1-4为不耐盐对照拟 南芥植株, 13为质粒 PCR阳性对照 (35S-ThHDZIP-l-2300质粒) , 5-12为耐盐 T1代转基 因拟南芥植株。 图中所示条带大小与阳性对照的大小一致 (约为 650bp) 。 结果表明, 耐 盐 T1代转基因拟南芥植株中 的转录较强, 不耐盐对照拟南芥植株中没有转录。 实施例 11 Tld3、 Tld8转基因拟南芥的耐旱实验
Tld3、 Tld8转基因拟南芥种植与实施例 8相同, 转基因拟南芥、 对照拟南芥各一盆 不作处理, 正常浇灌 1/2MS, 转基因拟南芥、 对照拟南芥的另一盆, 不浇灌 1/2MS, 恒 温 22°C, 光照强度 3500-4000k , 12小时光培养 /12小时暗培养循环。 10天后观察实验 结果: Tld3表现出明显的耐旱性(见图 6, 以 Tld3例, Tld8的结果与其类似, 在此未 示出) 。

Claims

权 利 要 求 书
1. 小盐芥的一个转录因子, 其氨基酸序列如 SEQ ID NO: 1所示。
2. 编码权利要求 1所述转录因子的基因, 其核苷酸序列如 SEQ ID NO: 2所示。
3. 一种重组表达载体, 其是通过将权利要求 2所述的基因插入到一种表达载体而 获得的, 并且所述基因的核苷酸序列与所述表达载体的表达控制序列可操作地连接, 优选地, 所述表达载体是 pC AMBI A2300。
4. 权利要求 3所述的重组表达载体, 其为附图 2所示的 35S-ThHDZIP-l-2300载体。
5. 一种重组细胞, 其含有权利要求 2所述的基因或者权利要求 3或 4所述的重组表 达载体; 优选地, 所述重组细胞为重组农杆菌细胞。
6. 一种改善植物耐盐性和 /或耐旱性的方法, 包括: 将权利要求 2所述的基因或者权 利要求 3或 4所述的重组表达载体导入植物或植物组织并使所述基因表达; 优选地, 所 述植物是拟南芥。
7. 一种制备转基因植物的方法, 包括: 在有效产生植物的条件下培养含有权利要求 2所述基因或者权利要求 3或 4所述重组表达载体的植物或植物组织。
8. 权利要求 7所述的方法, 其中所述植物是拟南芥。
9. 权利要求 2所述的基因、 权利要求 3或 4所述的重组表达载体或者权利要求 5所 述的重组细胞用于改善植物耐盐性、 耐旱性以及用于植物育种的用途。
10. 权利要求 9所述的用途, 其中所述植物是拟南芥。
PCT/CN2013/074506 2013-04-22 2013-04-22 一种小盐芥转录因子hdzip-1及其编码基因与应用 WO2014172829A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/074506 WO2014172829A1 (zh) 2013-04-22 2013-04-22 一种小盐芥转录因子hdzip-1及其编码基因与应用
CN201380074517.9A CN105008387A (zh) 2013-04-22 2013-04-22 一种小盐芥转录因子hdzip-1及其编码基因与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/074506 WO2014172829A1 (zh) 2013-04-22 2013-04-22 一种小盐芥转录因子hdzip-1及其编码基因与应用

Publications (1)

Publication Number Publication Date
WO2014172829A1 true WO2014172829A1 (zh) 2014-10-30

Family

ID=51790963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074506 WO2014172829A1 (zh) 2013-04-22 2013-04-22 一种小盐芥转录因子hdzip-1及其编码基因与应用

Country Status (2)

Country Link
CN (1) CN105008387A (zh)
WO (1) WO2014172829A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1641028A (zh) * 2004-01-15 2005-07-20 中国科学技术大学 一种拟南芥转录因子及其编码基因与应用
WO2010034066A1 (en) * 2008-09-26 2010-04-01 Australian Centre For Plant Functional Genomics Pty Ltd Modulation of plant cell wall deposition via hdzipi

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511190B2 (en) * 1999-11-17 2009-03-31 Mendel Biotechnology, Inc. Polynucleotides and polypeptides in plants

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1641028A (zh) * 2004-01-15 2005-07-20 中国科学技术大学 一种拟南芥转录因子及其编码基因与应用
WO2010034066A1 (en) * 2008-09-26 2010-04-01 Australian Centre For Plant Functional Genomics Pty Ltd Modulation of plant cell wall deposition via hdzipi

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAO, YJ. ET AL.: "Ectopic Overexpression of AtHDG 11 in Tall Fescue Resulted in Enhanced Tolerance to Drought and Salt Stress.", PLANT CELL REP., vol. 28, 9 January 2009 (2009-01-09), pages 579 - 588 *
YANG, R. ET AL.: "The Reference Genome of the Halophytic Plant Eutrema Salsugineum.", FRONTIERS IN PLANT SCIENCE, vol. 4, no. 46, 21 March 2013 (2013-03-21), pages 1 - 14 *

Also Published As

Publication number Publication date
CN105008387A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2015042742A1 (zh) 一种棉花钙调磷酸酶b类似蛋白cbl-3及其编码基因与应用
WO2014172826A1 (zh) 一种小盐芥液泡膜焦磷酸酶vp1及其编码基因与应用
WO2014205597A1 (zh) 一种棉花高亲和钾离子转运蛋白hkt2及其编码基因与应用
WO2015024143A1 (zh) 一种棉花锌指蛋白zat10-1及其编码基因与应用
WO2015042734A1 (zh) 一种木榄液泡焦磷酸酶vp2及其编码基因与应用
WO2015042740A1 (zh) 一种小盐芥钙调磷酸酶b类似蛋白cbl-4及其编码基因与应用
WO2015024142A1 (zh) 一种棉花锌指蛋白azf2-1及其编码基因与应用
WO2015058323A1 (zh) 一种木榄甜菜碱脱氢酶badh及其编码基因与应用
WO2015058322A1 (zh) 一种木榄钼辅因子硫化酶mcsu及其编码基因与应用
WO2014172829A1 (zh) 一种小盐芥转录因子hdzip-1及其编码基因与应用
CN113832160B (zh) ZmbZIPf3基因及其编码的蛋白和应用
WO2014172825A1 (zh) 一种小盐芥液泡膜钠氢反向转运蛋白nhx2及其编码基因与应用
WO2014205598A1 (zh) 一种小盐芥高亲和钾离子转运蛋白hkt1及其编码基因与应用
WO2015024147A1 (zh) 一种棉花锌指蛋白zpt5-5及其编码基因与应用
WO2015024145A1 (zh) 一种棉花锌指蛋白zpt5-3及其编码基因与应用
WO2014107863A1 (zh) 一种棉花同源异型-亮氨酸拉链蛋白HDbZIP-1及其编码基因与应用
WO2014205595A1 (zh) 一种棉花ATP水解酶ATPase-1及其编码基因与应用
WO2015042738A1 (zh) 一种小盐芥同源异型-亮氨酸拉链蛋白HDbZIP-3及其编码基因与应用
WO2014172824A1 (zh) 一种小盐芥液泡膜钠氢反向转运蛋白nhx1及其编码基因与应用
CN105452277B (zh) 一种小盐芥脱水素蛋白dh4及其编码基因与应用
CN105408350B (zh) 一种白骨壤单加氧酶cmo及其编码基因与应用
WO2014205599A1 (zh) 一种小盐芥液泡膜钠氢反向转运蛋白nhx3及其编码基因与应用
WO2013181832A1 (zh) 棉花avp1蛋白及其编码基因与应用
WO2015024144A1 (zh) 一种棉花锌指蛋白zpt5-1及其编码基因与应用
WO2015024146A1 (zh) 一种棉花锌指蛋白zpt5-4及其编码基因与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882799

Country of ref document: EP

Kind code of ref document: A1