WO2015056446A1 - 表示装置およびその駆動方法 - Google Patents

表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2015056446A1
WO2015056446A1 PCT/JP2014/005238 JP2014005238W WO2015056446A1 WO 2015056446 A1 WO2015056446 A1 WO 2015056446A1 JP 2014005238 W JP2014005238 W JP 2014005238W WO 2015056446 A1 WO2015056446 A1 WO 2015056446A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
luminance signal
voltage
light
level
Prior art date
Application number
PCT/JP2014/005238
Other languages
English (en)
French (fr)
Inventor
佑紀 今井
前田 智之
美香 中村
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/909,851 priority Critical patent/US9734758B2/en
Priority to JP2015542522A priority patent/JP6142235B2/ja
Publication of WO2015056446A1 publication Critical patent/WO2015056446A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements

Definitions

  • the present invention relates to an active matrix display device using a current driven light emitting element typified by organic EL (electroluminescence), and a driving method thereof.
  • the luminance of the organic EL element depends on the driving current supplied to the element, and the light emission luminance of the element increases in proportion to the driving current. Therefore, the power consumption of a display composed of organic EL elements is determined by the average display luminance. That is, unlike the liquid crystal display, the power consumption of the organic EL display varies greatly depending on the display image. For example, in an organic EL display, the highest power consumption is required when displaying an all-white image, but when displaying a general natural image, the power consumption is about 20 to 40% of the all-white image. It is enough.
  • Patent Document 1 has room for further reducing the power consumption of the display device.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a display device having a high power consumption reduction effect and a driving method thereof.
  • a display device includes a light-emitting element that emits light according to a supplied current and a driving current that corresponds to a level of a luminance signal.
  • a display unit configured by arranging a plurality of light emitting pixels having a driving transistor to be supplied; a voltage source that generates a driving voltage supplied to the display unit; and the plurality of light emitting pixels and the voltage source connected to the display unit A power line for supplying the driving voltage from the voltage source to each of the light emitting pixels, and video data that is data indicating the light emission luminance of each of the plurality of light emitting pixels.
  • a voltage drop amount estimation unit that estimates a voltage drop amount generated up to each light emitting pixel, and a luminance that the light emitting element emits when the drive transistor operates in both a linear region and a saturation region.
  • a first storage unit storing correction information representing a relationship between the level of the luminance signal and the luminance of the light emitting element and the level of the luminance signal when the driving transistor operates in a saturation region;
  • a second storage unit that stores reference characteristic information representing a relationship between the reference signal and a reference level that is a level of the luminance signal corresponding to the light emission luminance indicated by the video data based on the reference characteristic information,
  • a luminance signal correction unit that generates the luminance signal at a level corrected by performing correction based on the correction information according to the estimated voltage drop amount.
  • the operating characteristic in the saturation region can be obtained by simulation using the luminance signal whose level is corrected.
  • the driving voltage supplied to each light emitting pixel can be reduced to such a level that the driving transistor operates in a linear region, and the light emitting element can emit light accurately with a desired luminance.
  • a display device with a high reduction effect can be obtained.
  • FIG. 1 is a functional block diagram illustrating an example of a configuration of a display device according to an embodiment.
  • FIG. 2 is an example of an equivalent circuit of a power supply line.
  • FIG. 3 is a perspective view schematically showing the configuration of the display unit.
  • FIG. 4 is a circuit diagram illustrating an example of a configuration of a light emitting pixel.
  • FIG. 5 is a diagram for explaining the operating point of the light emitting pixel.
  • FIG. 6 is a diagram illustrating the light emission characteristics of the light emitting pixels.
  • FIG. 7 is a diagram for explaining the concept of luminance signal correction processing.
  • FIG. 8 is a flowchart illustrating an example of the operation of the display device.
  • FIG. 9 is a diagram illustrating an example of the reference characteristic information.
  • FIG. 1 is a functional block diagram illustrating an example of a configuration of a display device according to an embodiment.
  • FIG. 2 is an example of an equivalent circuit of a power supply line.
  • FIG. 3 is
  • FIG. 10 is a diagram illustrating an example of the correction information.
  • FIG. 11 is a diagram illustrating an example of the correction information.
  • FIG. 12 is a diagram for explaining the effect of the luminance signal correction processing.
  • FIG. 13 is an external view illustrating an example of a television receiver to which the display device in the embodiment is applied.
  • Patent Document 2 International Publication No. 2012/001991
  • the display device described in Patent Document 2 estimates the distribution of the voltage drop amount generated in the power supply line for each light emitting pixel from the video data indicating the light emission luminance of each of the plurality of light emitting pixels.
  • the drive voltage supplied to the power supply line is adjusted based on the distribution of the voltage drop amount for each light emitting pixel.
  • the margin added to the drive voltage can be reduced in accordance with the video data that is actually displayed, so that the effect of suppressing the power consumption of the display device to a higher degree can be obtained.
  • a driving transistor that supplies a driving current for an organic EL element is operated in a so-called constant current in a saturation region.
  • the influence of the source-drain voltage of the drive transistor on the drive current is suppressed, so that the drive current is accurately controlled depending only on the gate-source voltage of the drive transistor. That is, the organic EL can emit light with a desired luminance.
  • the driving transistor can operate in the linear region, the driving voltage supplied to the power supply line can be further reduced, which is useful for suppressing the power consumption of the display device.
  • the driving transistor when the driving transistor is operated in a linear region, the influence of the source-drain voltage of the driving transistor on the driving current of the organic EL element becomes obvious. There is a concern that it will not be possible to emit light accurately at a brightness of.
  • a display device includes a light-emitting element that emits light according to a supplied current and a driving current that corresponds to a level of a luminance signal.
  • a display unit configured by arranging a plurality of light emitting pixels having a driving transistor to be supplied to the element; a voltage source that generates a driving voltage supplied to the display unit; the plurality of light emitting pixels and the voltage source And a power line for supplying the driving voltage from the voltage source to each light emitting pixel, and video data that is data indicating the light emission luminance of each of the plurality of light emitting pixels, and the voltage at the power line
  • the drive transistor operates in both the linear region and the saturation region, the light emitting element emits light.
  • a first storage unit that stores correction information representing a relationship between the luminance of the luminance signal and the level of the luminance signal; and the luminance of the light emitting element and the luminance when the driving transistor operates in a saturation region
  • a second storage unit storing reference characteristic information representing a relationship between the signal level and a reference that is a level of the luminance signal corresponding to the light emission luminance indicated by the video data based on the reference characteristic information
  • a luminance signal correction unit that generates the luminance signal at a level corrected by correcting the level based on the correction information according to the estimated voltage drop amount.
  • the driving transistor operates in the linear region, it is possible to obtain the operating characteristic in the saturation region in a simulated manner by the luminance signal whose level is corrected.
  • the driving voltage supplied to each light emitting pixel can be reduced to such a level that the driving transistor operates in a linear region, and the light emitting element can emit light accurately with a desired luminance.
  • a display device with a high reduction effect can be obtained.
  • the first storage unit stores the correction information corresponding to each of a plurality of different voltage drop amounts
  • the luminance signal correction unit is a voltage estimated by the voltage drop amount estimation unit.
  • the luminance signal may be generated by correcting the reference level using correction information corresponding to a drop amount.
  • the first storage unit includes a level of the luminance signal for causing the light emitting element to emit light with a predetermined luminance when the driving transistor operates in both a linear region and a saturation region, and the driving transistor.
  • the correction information the information indicating the correspondence with the level of the luminance signal for causing the light emitting element to emit light at the predetermined luminance when operating in the saturation region, the luminance signal correction unit,
  • the luminance signal may be generated at a level of the luminance signal corresponding to the reference level according to the correction information.
  • the light emitting element can emit light with the same luminance regardless of whether the driving transistor operates in a linear region or a saturation region.
  • a disclosed driving method is a driving method of a display device, and the display device includes a light emitting element that emits light according to a supplied current and a level of a luminance signal.
  • a display unit configured by arranging a plurality of light emitting pixels including a driving transistor that supplies a driving current corresponding to the light emitting element, a voltage source that generates a driving voltage supplied to the display unit, and A power supply line connected to a plurality of light emitting pixels and the voltage source and supplying the driving voltage from the voltage source to the light emitting pixels, a voltage drop amount estimation unit, and the drive transistor both in a linear region and a saturation region
  • a first storage unit storing correction information representing a relationship between the luminance emitted by the light emitting element and the level of the luminance signal, and when the driving transistor operates in a saturation region.
  • a second storage unit storing reference characteristic information representing a relationship between the luminance emitted by the light emitting element and the level of the luminance signal; and a luminance signal correction unit, wherein the driving method includes the voltage
  • the drop amount estimation unit estimates the voltage drop amount generated from the voltage source to each of the light emitting pixels in the power supply line using video data that is data indicating the light emission luminance of each of the plurality of light emitting pixels.
  • the luminance signal correction unit corrects the level of the luminance signal corresponding to the light emission luminance indicated by the video data based on the reference characteristic information based on the correction information based on the estimated voltage drop amount. By doing so, the luminance signal is generated.
  • the driving transistor operates in the linear region, the operating characteristic in the saturation region can be obtained by simulation using the luminance signal whose level is corrected.
  • the driving voltage supplied to each light emitting pixel can be reduced to such a level that the driving transistor operates in a linear region, so that a display device driving method with high power consumption reduction effect can be obtained.
  • FIG. 1 is a block diagram illustrating an example of a functional configuration of a display device according to an embodiment.
  • a display device 100 shown in FIG. 1 is a device that displays an image according to image data that is data indicating the light emission luminance of each of a plurality of light emitting pixels, and includes a display unit 110, power supply lines 112 and 113, and a data line driver. 120, a data line 122, a write scan driver 130, a scan line 123, a controller 140, a voltage drop amount estimation unit 150, a luminance signal correction unit 160, a voltage source 170, and a first storage unit 181. , A second storage unit 182.
  • the display unit 110 includes a plurality of light emitting elements each having a light emitting element that emits light according to a supplied current and a driving transistor that supplies a driving current according to a level of a luminance signal given from the outside to the light emitting element.
  • the pixels 111 are arranged.
  • the plurality of light emitting pixels 111 may be arranged in a matrix.
  • the voltage source 170 generates a driving voltage supplied to the display unit 110.
  • the power lines 112 and 113 are connected to the light emitting pixels 111 and the voltage source 170, and supply the driving voltage from the voltage source 170 to each light emitting pixel 111 of the display unit 110.
  • the data line 122 is provided for each column, and the plurality of light emitting pixels 111 located in the same column are connected to the data line driver 120 via the data line 122 provided in the column.
  • the scanning line 123 is provided for each row, and the plurality of light emitting pixels 111 located in the same row are connected to the writing scanning driver 130 via the scanning line 123 provided in the row.
  • the voltage drop amount estimation unit 150 estimates the voltage drop amount generated from the voltage source 170 to each light emitting pixel 111 in at least one of the power supply lines 112 and 113 using the video data.
  • the first storage unit 181 stores correction information representing a relationship between the level of the luminance signal and the luminance of the light emitting element when the driving transistor operates in a linear region in the light emitting pixel 111.
  • the second storage unit 182 stores reference characteristic information indicating a relationship between the level of the luminance signal and the luminance of the light emitting element when the driving transistor operates in a saturation region in the light emitting pixel 111.
  • the luminance signal correction unit 160 converts a reference level that is a level of the luminance signal corresponding to the light emission luminance indicated by the video data based on the reference characteristic information into the correction information according to the estimated voltage drop amount. Based on the correction, the luminance signal of each column is generated at the corrected level.
  • the data line driver 120 outputs the generated luminance signal to the data line 122 in the corresponding column.
  • the write scanning driver 130 sequentially outputs scanning signals to the scanning lines 123 for each row.
  • the controller 140 instructs the drive timing to each of the data line driver 120 and the write scan driver 130.
  • the light emitting pixel 111 uses the driving voltage supplied from the power supply lines 112 and 113 as a power supply, and the luminance according to the level of the luminance signal supplied from the data line driver 120. Flashes on. As a result, a video is displayed on the display unit 110 according to the video data.
  • FIG. 2 is an example of an equivalent circuit of the power supply line 112.
  • the resistance component of the power supply line 112 between the connection points between the light emitting pixels 111 adjacent in the column direction and the power supply line 112 is represented by Rah, and the connection point between the light emitting pixels 111 adjacent in the row direction and the power supply line 112.
  • the resistance component of the power supply line 112 between them is represented by Rav.
  • a driving voltage is applied from the voltage source 170 to the outer periphery of the power supply line 112.
  • the power line 112 is provided in the display unit 110 in which the light emitting pixels 111 are arranged in a matrix having a size of 1920 columns and 1080 rows, and a driving voltage applied from the voltage source 170 is applied to each light emitting pixel 111. Can be supplied.
  • the column number is represented by h and the row number is represented by v.
  • the driving voltage is a power source for each light emitting pixel 111 to emit light, and may be constituted by, for example, an anode voltage and a cathode voltage lower than the anode voltage.
  • an anode voltage is supplied from the voltage source 170 to each light emitting pixel 111 via the power supply line 112
  • a cathode voltage is supplied to the power supply line 113 represented by an equivalent circuit similar to the power supply line 112 from the voltage source 170. It may be supplied to each light emitting pixel 111 via.
  • the cathode voltage may be a common ground voltage for the display device 100.
  • the power supply lines 112 and 113 may be a wiring network formed by patterning a conductive material or a solid film made of a transparent conductive material.
  • FIG. 3 is a perspective view schematically showing the configuration of the display unit 110.
  • the display unit 110 includes a plurality of light emitting pixels 111 and power supply lines 112 and 113.
  • the voltage at the connection point between the luminescent pixel 111 and the power supply line 112 is represented by va (h, v)
  • the voltage at the connection point between the luminescent pixel 111 and the power supply line 113 is vc.
  • the current flowing through the light emitting pixel 111 is represented by i (h, v).
  • the power supply line 113 is also described by an equivalent circuit using resistance components Rch and Rcv between connection points between the adjacent light emitting pixels 111 and the power supply line 113.
  • Each light emitting pixel 111 emits light with luminance corresponding to the amount of current flowing using the driving voltage supplied from the power supply lines 112 and 113 as a power supply.
  • FIG. 4 is a circuit diagram showing an example of the configuration of the light emitting pixel 111.
  • the light emitting pixel 111 includes a light emitting element 121, a selection transistor 124, a driving transistor 125, and a storage capacitor 126.
  • the light emitting element 121 is an element that emits light in response to a current supplied from the driving transistor 125, and may be composed of, for example, an organic EL element.
  • the selection transistor 124 is turned on in response to the scanning signal supplied from the writing scanning driver 130 via the scanning line 123, thereby receiving the luminance signal supplied from the data line driver 120 via the data line 122.
  • it may be composed of a thin film transistor.
  • the drive transistor 125 is an element that supplies a drive current corresponding to the level of the luminance signal stored in the storage capacitor 126 to the light emitting element 121, and may be formed of, for example, a thin film transistor.
  • the configuration of the light-emitting pixel 111 shown in FIG. 4 is an example, and is not essential.
  • the light-emitting pixel 111 includes a circuit in which a light-emitting element 121 and a driving transistor 125 are connected in series.
  • a driving voltage is supplied from both power supply lines 112 and 113 to both ends of the circuit, and the driving voltage is used as a power source.
  • the selection transistor 124 and the driving transistor 125 may be configured by either a P-type transistor or an N-type transistor depending on the polarities of the scanning signal and the luminance signal, respectively.
  • the light emitting element 121 may be connected in the direction opposite to the direction shown in FIG. 4 according to the drive voltage supplied from the power supply lines 112 and 113.
  • FIG. 5 is a diagram for explaining the operating point of the light emitting pixel 111, and shows the current-voltage characteristics of the light emitting element 121 and the driving transistor 125, respectively. In the following, for simplicity of explanation, it is assumed that the luminance signal and the gate-source voltage of the driving transistor 125 are equal.
  • FIG. 5 shows the relationship between the drain current and the source-drain voltage for each of a plurality of different gate-source voltages as the current-voltage characteristics of the drive transistor 125.
  • the drive transistor 125 can operate in both a linear region where the drain current depends on the source-drain voltage and the source-gate voltage, and a saturation region where the drain current substantially depends only on the source-gate voltage.
  • the plurality of drive voltages are represented in association with voltage drop amounts generated from the voltage source 170 to the light emitting pixels 111 in the power supply lines 112 and 113.
  • the light emitting pixel 111 is an operating point that is an intersection of the characteristic curve of the light emitting element 121 corresponding to the driving voltage applied to the light emitting pixel 111 and the characteristic curve of the driving transistor 125 corresponding to the luminance signal applied to the light emitting pixel 111. Operate. The lower the drive voltage, that is, the greater the amount of voltage drop that occurs in the power supply lines 112 and 113, the easier the operating point of the light emitting pixel 111 enters the linear region of the drive transistor 125.
  • FIG. 6 is a diagram for explaining the light emission characteristics of the light emitting pixel 111, and shows the relationship between the light emission luminance of the light emitting pixel 111 and the luminance signal.
  • FIG. 6 illustrates a case where the operating point of the light emitting pixel 111 is in the linear region of the driving transistor 125 and a case where the operating point of the light emitting pixel 111 is in the saturation region of the driving transistor 125 when a luminance signal equal to the light emitting pixel 111 is applied. These indicate that the emission luminances do not match.
  • a drive voltage in which a voltage drop amount that can occur in the power supply lines 112 and 113 is added in advance is generated in the voltage source 170, and the power supply lines 112 and 113. To supply. This prevents the operating point of the light emitting pixel 111 from entering the linear region of the driving transistor 125.
  • the drive transistor 125 can operate in the linear region, the drive voltage supplied to the power supply lines 112 and 113 can be further reduced, which is useful for suppressing the power consumption of the display device 100.
  • the light emitting pixel 111 emits light with the same light emission luminance in accordance with video data representing the same light emission luminance regardless of whether the operating point of the light emitting pixel 111 is in the linear region or the saturation region of the driving transistor 125.
  • the level of the luminance signal is corrected.
  • FIG. 7 is a diagram for explaining the concept of luminance signal correction processing.
  • the level of the luminance signal for causing the light emitting pixel 111 to emit light with a desired luminance is the reference level (point A) when the driving transistor 125 operates in the saturation region, and the driving transistor 125 is in the linear region. When operating, it is the correction level (point B).
  • the desired luminance is, for example, luminance represented by video data.
  • the light emitting pixel 111 by correcting the level of the luminance signal, it is possible to cause the light emitting pixel 111 to emit light with the same emission luminance regardless of whether the driving transistor 125 operates in the linear region or the saturation region.
  • such correction is performed by changing the level of the luminance signal when the driving transistor 125 operates in the saturation region to the level of the light emitting pixel when the driving transistor 125 operates in the linear region according to the voltage drop amount of the driving voltage.
  • the correction may be performed based on the light emission characteristics.
  • FIG. 8 is a flowchart showing an example of the operation of the display device 100.
  • the flowchart in FIG. 8 may be executed for each picture constituting the video represented by the video data, for example.
  • step S11 the voltage drop amount estimation unit 150 uses the video data to estimate the voltage drop amount in each light emitting pixel 111 of the drive voltage.
  • the voltage drop amount at each light emitting pixel 111 of the drive voltage is, for example, a voltage drop amount generated from the voltage source 170 to each light emitting pixel 111 in the power supply line 112.
  • a method for estimating such a voltage drop amount is known (for example, Patent Document 2).
  • the voltage drop amount estimation unit 150 uses the conversion formula or conversion table representing the relationship between the luminance value of the pixel and the pixel current to calculate each light emission from the luminance value of each pixel of one picture represented by the video data. The amount of current to be passed through the pixel 111 is specified.
  • the voltage drop amount estimation unit 150 calculates the voltage distribution at the connection point between the light emitting pixel 111 and the power supply line 112 from the identified current amount of each light emitting pixel 111 as follows.
  • h is an integer from 1 to 1920
  • v is an integer from 1 to 1080.
  • va (0, v), va (1921, v), va (h, 0), and va (h, 1081) are voltages at the outer periphery of the power supply line 112, and from the voltage source 170 to the outer periphery of the power supply line 112. By approximating the voltage drop amount up to 0 to 0, it is expressed by a constant equal to the drive voltage generated by the voltage source 170.
  • Rah and Rav are resistance components between the connection points between the adjacent light emitting pixels 111 and the power supply line 112, and are constants determined based on the design value or the actual measurement value of the power supply line 112.
  • These constants may be stored in advance in the voltage drop amount estimation unit 150 and referred to when estimating the voltage drop amount, for example.
  • Formula 1 is established for each light emitting pixel 111 and is solved as a simultaneous equation regarding the variable va (h, v), whereby the voltage va (h, v) at the connection point between each light emitting pixel 111 and the power supply line 112 is obtained. Then, the voltage drop amount generated from the voltage source 170 to each light emitting pixel 111 in the power supply line 112 is obtained by the difference between the driving voltage output from the voltage source 170 and va (h, v).
  • the voltage drop amount estimation unit 150 can obtain the voltage drop amount generated from the voltage source 170 to each light emitting pixel 111 in the power supply line 113 in the same way.
  • the voltage drop amount estimation unit 150 estimates the voltage drop amount generated from the voltage source 170 to each light emitting pixel 111 in one or both of the power supply lines 112 and 113.
  • step S12 the luminance signal correction unit 160 specifies the level of the luminance signal associated with the luminance value indicated by the video data by the reference characteristic information stored in the second storage unit 182 for each light emitting pixel 111.
  • the reference characteristic information is information representing the relationship between the light emission luminance of the light emitting element 121 and the level of the luminance signal when the driving transistor 125 operates in the saturation region in the light emitting pixel 111.
  • FIG. 9 is a diagram showing an example of the reference characteristic information.
  • the reference characteristic information includes a relationship between the luminance value of the pixel indicated by the video data and the voltage value of the luminance signal as shown in FIG. 9 as an example. May be a conversion table.
  • the level of the luminance signal may be an actual voltage value or a sign representing the voltage value, and the reference characteristic information may be represented by a conversion formula.
  • the luminance signal correction unit 160 specifies the level of the luminance signal associated with the light emission luminance indicated by the video data for each light emitting pixel.
  • the reference characteristic information includes, for example, causing each light emitting pixel 111 to emit light according to video data indicating a predetermined luminance value while applying a driving voltage that is large enough to cause the driving transistor 125 to operate in a saturation region at all light emission luminances. You may acquire by measuring light emission luminance. The light emission luminance of each light emitting pixel 111 may be measured, for example, by photographing the display unit 110 with a camera.
  • step S13 the luminance signal correction unit 160 corrects the level of the specified luminance signal for each light emitting pixel based on the correction information.
  • the correction information is information representing the relationship between the light emission luminance of the light emitting element 121 and the level of the luminance signal when the driving transistor 125 operates in both the linear region and the saturation region in the light emitting pixel 111.
  • FIG. 10 is a diagram showing an example of the correction information.
  • the correction information operates when the driving transistor 125 operates in the saturation region and in both the linear region and the saturation region.
  • it may be information indicating the relationship between the reference level of the luminance signal and the correction level for the light emitting elements 121 to emit light with the same luminance. Since the relationship between the light emission luminance of the light emitting element 121 and the reference level is associated with the above-described reference characteristic information, the light emitting element when the driving transistor 125 operates in the linear region by such correction information.
  • the relationship between the light emission luminance of 121 and the correction level of the luminance signal is represented.
  • correction information may more directly represent the relationship between the luminance value of the pixel indicated by the video data and the correction level of the luminance signal.
  • the correction information may be provided corresponding to each of a plurality of different voltage drop amounts, as shown in FIG.
  • the correction information may be represented by a conversion table as shown in FIG.
  • the luminance signal correction unit 160 corrects the reference level of the luminance signal corresponding to the luminance value of the pixel indicated by the video data based on the correction information according to the voltage drop amount estimated by the voltage drop amount estimation unit 150.
  • step S14 the luminance signal correction unit 160 generates a luminance signal at the correction level.
  • step S15 each light emitting pixel 111 emits light according to the luminance signal at the correction level.
  • correction of the luminance signal may be performed only when a voltage drop amount that is not substantially zero is estimated, for example, according to the estimated voltage drop amount.
  • the luminance signal may be generated at the reference level without performing such correction of the luminance signal.
  • correction information corresponding to the estimated voltage drop amount may be used from among a plurality of correction information.
  • FIG. 13 is an external view showing an example of a television receiver configured using the display device 100.
  • a television receiver configured using the display device 100.
  • an excellent power consumption reduction effect can be obtained by using the display device 100.
  • the disclosed display device can be widely used for display devices such as a television receiver.
  • Display apparatus 110 Display part 111 Light emitting pixel 112,113 Power supply line 120 Data line driver 121 Light emitting element 122 Data line 123 Scan line 124 Selection transistor 125 Drive transistor 126 Holding capacity 130 Write scan driver 140 Controller 150 Voltage drop amount estimation part 160 Luminance signal correction unit 170 Voltage source 181 First storage unit 182 Second storage unit

Abstract

 複数の発光画素(111)と、電圧源(170)と、電圧源(170)から各発光画素(111)に駆動電圧を供給する電源線(112、113)と、各発光画素(111)の発光輝度を示す映像データを用いて、電圧源(170)から各発光画素(111)までの電圧降下量を推定する電圧降下量推定部(150)と、発光画素(111)内の駆動トランジスタが線形領域と飽和領域との双方で動作する場合の発光特性を表す補正情報を記憶している第1記憶部(181)と、前記駆動トランジスタが飽和領域で動作する場合の発光特性を表す基準特性情報を記憶している第2記憶部(182)と、前記映像データで示される発光輝度に対応する輝度信号の基準レベルを、推定された前記電圧降下量に応じて前記補正情報に基づいて補正することにより前記輝度信号を生成する輝度信号補正部(160)と、を備える。

Description

表示装置およびその駆動方法
 本発明は、有機EL(エレクトロルミネッセンス)に代表される電流駆動型発光素子を用いたアクティブマトリクス型の表示装置、及びその駆動方法に関する。
 一般に、有機EL素子の輝度は、素子に供給される駆動電流に依存し、駆動電流に比例して素子の発光輝度が大きくなる。従って、有機EL素子からなるディスプレイの消費電力は、表示輝度の平均で決まる。即ち、液晶ディスプレイと異なり、有機ELディスプレイの消費電力は、表示画像によって大きく変動する。例えば、有機ELディスプレイにおいては、全白画像を表示した場合に最も大きな消費電力を必要とするが、一般的な自然画を表示する場合は、全白画像の20~40%程度の消費電力で十分とされる。
 しかしながら、電源回路容量やバッテリ容量は、ディスプレイの消費電力が最も大きくなる場合を想定して設計されることから、一般的な自然画に対して3~4倍の消費電力を考慮しなければならず、機器の低消費電力化及び小型化の妨げとなっている。
 そこで従来では、映像データのピーク値を検出し、その検出データに基づいて、有機EL素子を駆動する駆動トランジスタが飽和領域で動作する限りにおいて当該有機EL素子のカソード電圧を調整して、ディスプレイに供給される駆動電圧を減少させることにより、表示輝度をほとんど低下させずに消費電力を抑制する技術が提案されている(例えば、特許文献1参照)。
特開2006-65148号公報
 しかしながら、特許文献1に開示される技術では、表示装置の消費電力をさらに低減できる余地がある。
 本発明は、かかる問題に鑑みてなされたものであって、消費電力の低減効果が高い表示装置及びその駆動方法を提供することを目的とする。
 上記課題を解決するために、本発明の1つの態様に係る表示装置は、各々が、供給される電流に応じて発光する発光素子と、輝度信号のレベルに応じた駆動電流を前記発光素子に供給する駆動トランジスタと、を有する複数の発光画素が配列されて構成される表示部と、前記表示部に供給される駆動電圧を生成する電圧源と、前記複数の発光画素及び前記電圧源に接続され、前記電圧源から前記各発光画素に前記駆動電圧を供給する電源線と、前記複数の発光画素のそれぞれの発光輝度を示すデータである映像データを用いて、前記電源線において前記電圧源から前記各発光画素までに生じる電圧降下量を推定する電圧降下量推定部と、前記駆動トランジスタが線形領域と飽和領域との双方で動作する場合に、前記発光素子が発光する輝度と前記輝度信号のレベルとの間の関係を表す補正情報を記憶している第1記憶部と、前記駆動トランジスタが飽和領域で動作する場合の、前記発光素子が発光する輝度と前記輝度信号のレベルとの間の関係を表す基準特性情報を記憶している第2記憶部と、前記基準特性情報に基づいて前記映像データで示される発光輝度に対応する前記輝度信号のレベルである基準レベルを、推定された前記電圧降下量に応じて前記補正情報に基づいて補正することにより補正されたレベルで前記輝度信号を生成する輝度信号補正部と、を備える。
 開示される表示装置によれば、前記駆動トランジスタが線形領域で動作する場合でも、レベルが補正された輝度信号により模擬的に、飽和領域での動作特性を得ることができる。その結果、各発光画素に供給するための駆動電圧を前記駆動トランジスタが線形領域で動作する大きさまで低減し、かつ発光素子を所望の輝度で正確に発光させることが可能になるので、消費電力の低減効果が高い表示装置が得られる。
図1は、実施の形態における表示装置の構成の一例を示す機能ブロック図である。 図2は、電源線の等価回路の一例である。 図3は、表示部の構成を模式的に示す斜視図である。 図4は、発光画素の構成の一例を示す回路図である。 図5は、発光画素の動作点を説明する図である。 図6は、発光画素の発光特性を説明する図である。 図7は、輝度信号の補正処理の考え方を説明する図である。 図8は、表示装置の動作の一例を示すフローチャートである。 図9は、基準特性情報の一例を示す図である。 図10は、補正情報の一例を示す図である。 図11は、補正情報の一例を示す図である。 図12は、輝度信号の補正処理の効果を説明する図である。 図13は、実施の形態における表示装置を適用したテレビジョン受信機の一例を示す外観図である。
 (本発明の基礎となった知見)
 背景技術の欄において記載した表示装置に関し、特許文献2(国際公開第2012/001991号)は、次の問題を指摘している。
 特許文献1に記載の表示装置では、有機EL素子を駆動する駆動トランジスタを飽和領域で動作させるために、ディスプレイに供給される駆動電圧には、当該駆動電圧を伝達するための電源線にて生じ得る電圧降下量を補うためのマージンが上乗せされている必要がある。そのようなマージンを固定的に確保した場合、つまり電源線で生じ得る最大の電圧降下量に対応するマージンを常に駆動電圧に上乗せした場合、一般的な自然画に対して無駄な電力が消費されるという問題がある。
 この問題に対し、特許文献2に記載の表示装置は、複数の発光画素のそれぞれの発光輝度を示す映像データから電源線で生じる電圧降下量の分布を前記発光画素毎に推定し、推定した前記発光画素毎の電圧降下量の分布に基づいて前記電源線に供給する駆動電圧を調整する。これにより、駆動電圧に上乗せされるマージンが実際に表示される映像データに適応して縮小できるので、表示装置の消費電力をより高度に抑制する効果が得られる。
 特許文献1及び特許文献2に開示されるいずれの技術も、有機EL素子の駆動電流を供給する駆動トランジスタを飽和領域で、いわゆる定電流動作させている。これにより、駆動トランジスタのソースドレイン間電圧の当該駆動電流に与える影響が抑制されるので、駆動トランジスタのゲートソース間電圧のみに依存して当該駆動電流が正確に制御される。つまり、有機ELを所望の輝度で発光させることができる。
 駆動トランジスタが線形領域で動作できれば電源線に供給する駆動電圧をさらに低減できるので、表示装置の消費電力を抑制するために有用と考えられる。しかしながら、特許文献1及び特許文献2の技術では、駆動トランジスタを線形領域で動作させると、駆動トランジスタのソースドレイン間電圧が有機EL素子の駆動電流に与える影響が顕在化するため、発光素子を所望の輝度で正確に発光させることができなくなる懸念がある。
 このような問題を解決するために、開示される1つの態様に係る表示装置は、各々が、供給される電流に応じて発光する発光素子と、輝度信号のレベルに応じた駆動電流を前記発光素子に供給する駆動トランジスタと、を有する複数の発光画素が配列されて構成される表示部と、前記表示部に供給される駆動電圧を生成する電圧源と、前記複数の発光画素及び前記電圧源に接続され、前記電圧源から前記各発光画素に前記駆動電圧を供給する電源線と、前記複数の発光画素のそれぞれの発光輝度を示すデータである映像データを用いて、前記電源線において前記電圧源から前記各発光画素までに生じる電圧降下量を推定する電圧降下量推定部と、前記駆動トランジスタが線形領域と飽和領域との双方で動作する場合に、前記発光素子が発光する輝度と前記輝度信号のレベルとの間の関係を表す補正情報を記憶している第1記憶部と、前記駆動トランジスタが飽和領域で動作する場合の、前記発光素子が発光する輝度と前記輝度信号のレベルとの間の関係を表す基準特性情報を記憶している第2記憶部と、前記基準特性情報に基づいて前記映像データで示される発光輝度に対応する前記輝度信号のレベルである基準レベルを、推定された前記電圧降下量に応じて前記補正情報に基づいて補正することにより補正されたレベルで前記輝度信号を生成する輝度信号補正部と、を備える。
 これにより、前記駆動トランジスタが線形領域で動作する場合でも、レベルが補正された輝度信号により模擬的に、飽和領域での動作特性を得ることができる。その結果、各発光画素に供給するための駆動電圧を前記駆動トランジスタが線形領域で動作する大きさまで低減し、かつ発光素子を所望の輝度で正確に発光させることが可能になるので、消費電力の低減効果が高い表示装置が得られる。
 また、例えば、前記第1記憶部は、異なる複数の電圧降下量のそれぞれに対応して前記補正情報を記憶しており、前記輝度信号補正部は、前記電圧降下量推定部で推定された電圧降下量に対応する補正情報を用いて前記基準レベルを補正することにより、前記輝度信号を生成してもよい。
 これにより、電圧降下量に応じて異なる特性を、高い精度で補正できる。
 また、例えば、前記第1記憶部は、前記駆動トランジスタが線形領域と飽和領域との双方で動作する場合に前記発光素子を所定の輝度で発光させるための前記輝度信号のレベルと、前記駆動トランジスタが飽和領域で動作する場合に前記発光素子を前記所定の輝度で発光させるための前記輝度信号のレベルとの対応を表す情報を、前記補正情報として記憶しており、前記輝度信号補正部は、前記補正情報によって前記基準レベルに対応する前記輝度信号のレベルで、前記輝度信号を生成してもよい。
 これにより、前記駆動トランジスタが線形領域で動作するか飽和領域で動作するかに依らず、前記発光素子を同一の輝度で発光させることができる。
 また、例えば、開示される1つの態様に係る駆動方法は、表示装置の駆動方法であって、前記表示装置は、各々が、供給される電流に応じて発光する発光素子と、輝度信号のレベルに応じた駆動電流を前記発光素子に供給する駆動トランジスタと、を含む複数の発光画素が配列されて構成される表示部と、前記表示部に供給される駆動電圧を生成する電圧源と、前記複数の発光画素及び前記電圧源に接続され、前記電圧源から前記各発光画素に前記駆動電圧を供給する電源線と、電圧降下量推定部と、前記駆動トランジスタが線形領域と飽和領域との双方で動作する場合に、前記発光素子が発光する輝度と前記輝度信号のレベルとの間の関係を表す補正情報を記憶している第1記憶部と、前記駆動トランジスタが飽和領域で動作する場合に、前記発光素子が発光する輝度と前記輝度信号のレベルとの間の関係を表す基準特性情報を記憶している第2記憶部と、輝度信号補正部と、を備え、前記駆動方法は、前記電圧降下量推定部にて、前記複数の発光画素のそれぞれの発光輝度を示すデータである映像データを用いて、前記電源線において前記電圧源から前記各発光画素までに生じる電圧降下量を推定し、前記輝度信号補正部にて、前記基準特性情報に基づいて前記映像データで示される発光輝度に対応する前記輝度信号のレベルを、推定された前記電圧降下量に応じて前記補正情報に基づいて補正することにより、前記輝度信号を生成する。
 これにより、前記駆動トランジスタが線形領域で動作する場合でも、レベルが補正された輝度信号により模擬的に、飽和領域での動作特性が得られる。その結果、各発光画素に供給するための駆動電圧を前記駆動トランジスタが線形領域で動作する大きさまで低減することが可能になるので、消費電力の低減効果が高い表示装置の駆動方法が得られる。
 なお、これらの全般的または具体的な態様は、システム、方法、または集積回路で実現されてもよく、システム、方法、または集積回路の任意な組み合わせで実現されてもよい。
 以下、開示される1つの態様に係る表示装置及びその駆動方法について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態)
 図1は、実施の形態における表示装置の機能的な構成の一例を示すブロック図である。
 図1に示される表示装置100は、複数の発光画素のそれぞれの発光輝度を示すデータである映像データに従って映像を表示する装置であり、表示部110と、電源線112、113と、データ線ドライバ120と、データ線122と、書込走査ドライバ130と、走査線123と、コントローラ140と、電圧降下量推定部150と、輝度信号補正部160と、電圧源170と、第1記憶部181と、第2記憶部182と、を備える。
 表示部110は、各々が、供給される電流に応じて発光する発光素子と、外部から与えられる輝度信号のレベルに応じた駆動電流を前記発光素子に供給する駆動トランジスタと、を有する複数の発光画素111が配列されて構成される。複数の発光画素111は、行列状に配列されてもよい。
 電圧源170は、表示部110に供給される駆動電圧を生成する。
 電源線112、113は、発光画素111及び電圧源170に接続され、電圧源170から表示部110の各発光画素111に前記駆動電圧を供給する。
 データ線122は列ごとに設けられ、同じ列に位置する複数の発光画素111は、当該列に設けられるデータ線122を介してデータ線ドライバ120に接続される。
 走査線123は行ごとに設けられ、同じ行に位置する複数の発光画素111は、当該行に設けられる走査線123を介して書込走査ドライバ130に接続される。
 電圧降下量推定部150は、前記映像データを用いて、電源線112、113の少なくとも一方において電圧源170から各発光画素111までに生じる電圧降下量を推定する。
 第1記憶部181は、発光画素111において前記駆動トランジスタが線形領域で動作する場合の、前記輝度信号のレベルと前記発光素子の輝度との間の関係を表す補正情報を記憶している。
 第2記憶部182は、発光画素111において前記駆動トランジスタが飽和領域で動作する場合の、前記輝度信号のレベルと前記発光素子の輝度との間の関係を表す基準特性情報を記憶している。
 輝度信号補正部160は、前記基準特性情報に基づいて前記映像データで示される発光輝度に対応する前記輝度信号のレベルである基準レベルを、推定された前記電圧降下量に応じて前記補正情報に基づいて補正することにより、補正されたレベルで各列の輝度信号を生成する。
 データ線ドライバ120は、生成された輝度信号を、対応列のデータ線122に出力する。
 書込走査ドライバ130は、行ごとの走査線123に、順次、走査信号を出力する。
 コントローラ140は、データ線ドライバ120及び書込走査ドライバ130のそれぞれに、駆動タイミングを指示する。
 このように構成された表示装置100において、発光画素111は、電源線112、113から供給される駆動電圧を電源として用いて、データ線ドライバ120から供給される前記輝度信号のレベルに応じた輝度で発光する。これにより、表示部110には、映像データに従って映像が表示される。
 図2は、電源線112の等価回路の一例である。
 図2では、列方向に隣接する発光画素111と電源線112との接続点の間の電源線112の抵抗成分をRahで表し、行方向に隣接する発光画素111と電源線112との接続点の間の電源線112の抵抗成分をRavで表している。電源線112の外周部には、電圧源170から駆動電圧が印加される。このような電源線112は、例えば、1920列、1080行の大きさのマトリクス状に発光画素111を配列した表示部110に設けられ、電圧源170から印加される駆動電圧を各発光画素111に供給することができる。以下では、説明の便宜上、列番号をhで表し、行番号をvで表す。
 駆動電圧は、各発光画素111が発光するための電源であり、例えば、陽極電圧と、当該陽極電圧よりも低い陰極電圧とで構成されてもよい。例えば、陽極電圧が、電圧源170から電源線112を介して各発光画素111に供給され、また、陰極電圧が、電圧源170から電源線112と同様の等価回路で表される電源線113を介して各発光画素111に供給されてもよい。陰極電圧は、表示装置100の共通の接地電圧であってもよい。電源線112、113は、具体的に、導電材料をパターニングして形成された配線網であってもよく、透明な導電材料で構成されたベタ膜であってもよい。
 図3は、表示部110の構成を模式的に示す斜視図である。
 図3に示されるように、表示部110は、複数の発光画素111と、電源線112、113と、を有する。h列v行に位置する発光画素111について、発光画素111と電源線112との接続点の電圧をva(h,v)で表し、発光画素111と電源線113との接続点の電圧をvc(h,v)で表し、発光画素111に流れる電流をi(h,v)で表す。電源線113もまた、電源線112と同様に、隣接する発光画素111と電源線113との接続点の間の抵抗成分Rch、Rcvを用いた等価回路によって記述される。
 各発光画素111は、電源線112、113から供給される駆動電圧を電源として用いて、流れる電流量に応じた輝度で発光する。
 図4は、発光画素111の構成の一例を示す回路図である。
 図4に示されるように、発光画素111は、発光素子121と、選択トランジスタ124と、駆動トランジスタ125と、保持容量126と、を有している。
 発光素子121は、駆動トランジスタ125から供給される電流に応じて発光する素子であり、例えば、有機EL素子で構成されてもよい。
 選択トランジスタ124は、書込走査ドライバ130から走査線123を介して供給される走査信号に応じて導通することにより、データ線ドライバ120からデータ線122を介して供給される輝度信号を保持容量126に記憶させる素子であり、例えば、薄膜トランジスタで構成されてもよい。
 駆動トランジスタ125は、保持容量126に記憶されている輝度信号のレベルに応じた駆動電流を発光素子121に供給する素子であり、例えば、薄膜トランジスタで構成されてもよい。
 なお、図4に示される発光画素111の構成は一例であって、必須ではない。発光画素111は、発光素子121と駆動トランジスタ125とが直列に接続されてなる回路を有し、当該回路の両端に電源線112、113から駆動電圧を供給され、当該駆動電圧を電源として用いて発光する限り、任意に変形されてもよい。例えば、選択トランジスタ124及び駆動トランジスタ125は、それぞれ走査信号及び輝度信号の極性に応じてP型トランジスタ及びN型トランジスタの何れで構成されてもよい。また、例えば、発光素子121は、電源線112、113から供給される駆動電圧に応じて図4に示される方向とは逆に接続されてもよい。
 図5は、発光画素111の動作点を説明する図であり、発光素子121と駆動トランジスタ125とのそれぞれの電流電圧特性が示されている。以下では説明の簡明のため、輝度信号と駆動トランジスタ125のゲートソース間電圧とが等しいとする。
 図5には、駆動トランジスタ125の電流電圧特性として、異なる複数のゲートソース間電圧のそれぞれについて、ドレイン電流とソースドレイン間電圧との間の関係が示されている。駆動トランジスタ125は、ドレイン電流がソースドレイン間電圧及びソースゲート間電圧に依存する線形領域、及びドレイン電流が実質的にソースゲート間電圧のみに依存する飽和領域の双方で動作し得る。
 また、発光素子121の電流電圧特性として、発光画素111に印加される異なる複数の駆動電圧のそれぞれについて、アノードカソード間電流と駆動電圧から発光素子121のアノードカソード間電圧を減じた電圧との間の関係が示されている。ここで、複数の駆動電圧は、電源線112、113において電圧源170から発光画素111までに生じる電圧降下量に対応付けて表されている。
 発光画素111は、発光画素111に印加された駆動電圧に対応する発光素子121の特性曲線と発光画素111に印加された輝度信号に対応する駆動トランジスタ125の特性曲線との交点である動作点で動作する。駆動電圧が低いほど、つまり、電源線112、113で生じる電圧降下の量が大きいほど、発光画素111の動作点は、駆動トランジスタ125の線形領域に入りやすくなる。
 図6は、発光画素111の発光特性を説明する図であり、発光画素111の発光輝度と輝度信号との間の関係が示されている。
 図6は、発光画素111に等しい輝度信号を印加したとき、発光画素111の動作点が駆動トランジスタ125の線形領域にある場合と、発光画素111の動作点が駆動トランジスタ125の飽和領域にある場合とで、発光輝度が一致しないことを表している。
 従来の構成では、そのような発光輝度の不統一を回避するために、電源線112、113で生じ得る電圧降下量をあらかじめ上乗せした駆動電圧を電圧源170で生成して、電源線112、113に供給する。それにより、発光画素111の動作点が駆動トランジスタ125の線形領域に入らないようにしている。
 前述したように、駆動トランジスタ125が線形領域で動作できれば、電源線112、113に供給する駆動電圧をさらに低減できるので、表示装置100の消費電力を抑制するために有用である。
 そこで、表示装置100では、発光画素111の動作点が駆動トランジスタ125の線形領域及び飽和領域の何れにある場合でも、同じ発光輝度を表す映像データに応じて同じ発光輝度で発光画素111が発光するように、輝度信号のレベルを補正する。
 図7は、輝度信号の補正処理の考え方を説明する図である。
 図7において、発光画素111を所望の輝度で発光させるための輝度信号のレベルは、駆動トランジスタ125が飽和領域で動作する場合には基準レベル(A点)であり、駆動トランジスタ125が線形領域で動作する場合には補正レベル(B点)である。ここで、所望の輝度とは、例えば映像データによって表される輝度である。
 すなわち、輝度信号のレベルを補正することにより、駆動トランジスタ125が線形領域及び飽和領域の何れで動作する場合でも、同じ発光輝度で発光画素111を発光させることができる。
 このような補正は、具体的に、駆動トランジスタ125が飽和領域で動作する場合の輝度信号のレベルを、駆動電圧の電圧降下量に応じて駆動トランジスタ125が線形領域で動作する場合の発光画素の発光特性に基づいて、補正することにより行ってもよい。
 次に、上述のように構成された表示装置100の動作について説明する。
 図8は、表示装置100の動作の一例を示すフローチャートである。
 図8のフローチャートは、例えば、映像データによって表される映像を構成するピクチャごとに実行されてもよい。
 ステップS11において、電圧降下量推定部150は、映像データを用いて、駆動電圧の各発光画素111での電圧降下量を推定する。ここで、駆動電圧の各発光画素111での電圧降下量とは、例えば、電源線112において電圧源170から各発光画素111までに生じる電圧降下量である。従来、このような電圧降下量を推定するための方法が知られている(例えば、特許文献2)。
 以下では、特許文献2の開示に従って、電源線112と複数の発光画素111との接続点における電圧分布を計算することにより、電源線112における電圧降下量を推定する方法について説明する。
 電圧降下量推定部150は、画素の輝度値と画素電流との間の関係を表す変換式又は変換テーブルを用いて、映像データによって表される1つのピクチャの各画素の輝度値から、各発光画素111に流すべき電流量を特定する。
 そして、電圧降下量推定部150は、特定された各発光画素111の電流量から、発光画素111と電源線112との接続点における電圧の分布を、次のようにして計算する。
 図2及び図3の表記法を用いて、h列v行に位置する発光画素111の画素電流i(h,v)は、式1で表される。
 Rah×{va(h-1,v)-va(h,v)}+
 Rah×{va(h+1,v)-va(h,v)}+
 Rav×{va(h,v-1)-va(h,v)}+
 Rav×{va(h,v+1)-va(h,v)}=i(h,v)
                        ・・・(式1)
 ここで、発光画素111が、例えば、1920列、1080行のマトリクス状に配列されている場合、hは1から1920までの整数であり、vは1から1080までの整数である。
 va(0,v)、va(1921,v)、va(h,0)、及びva(h,1081)は、電源線112の外周部の電圧であり、電圧源170から電源線112の外周部までの電圧降下量を0で近似することにより、電圧源170で生成される駆動電圧と等しい定数で表す。
 Rah、Ravは、隣接する発光画素111と電源線112との接続点の間の抵抗成分であり、電源線112の設計値又は実測値に基づいて定められる定数である。
 これらの定数は、例えば、電圧降下量推定部150にあらかじめ記憶され、電圧降下量を推定する際に参照されてもよい。
 式1を各発光画素111について立てて、変数va(h,v)に関する連立方程式として解くことによって、各発光画素111と電源線112との接続点における電圧va(h,v)が求まる。そして、電圧源170から出力される駆動電圧とva(h,v)との差分により、電源線112において電圧源170から各発光画素111までに生じる電圧降下量が求まる。
 電圧降下量推定部150は、同様の考え方で、電源線113において電圧源170から各発光画素111までに生じる電圧降下量を求めることができる。
 このようにして、電圧降下量推定部150は、電源線112、113の何れか一方又は両方において電圧源170から各発光画素111までに生じる電圧降下量を推定する。
 ステップS12において、輝度信号補正部160は、第2記憶部182に記憶されている基準特性情報によって映像データで示される輝度値に対応付けられる輝度信号のレベルを、各発光画素111について特定する。
 基準特性情報は、発光画素111において駆動トランジスタ125が飽和領域で動作する場合の、発光素子121の発光輝度と輝度信号のレベルとの間の関係を表す情報である。
 図9は、基準特性情報の一例を示す図である。基準特性情報の具体的な表現形式は限定されないが、基準特性情報は、一例として図9に示されるように、映像データによって示される画素の輝度値と、輝度信号の電圧値との間の関係を表す変換テーブルであってもよい。輝度信号のレベルは、実際の電圧値でも、電圧値を表す符号でもよく、また、基準特性情報は、変換式で表されてもよい。
 このような基準特性情報を用いて、輝度信号補正部160は、映像データで示される発光輝度に対応付けられる輝度信号のレベルを、発光画素ごとに特定する。
 なお、基準特性情報は、例えば、全ての発光輝度において駆動トランジスタ125が飽和領域で動作する程度に大きな駆動電圧を印加しながら、既定の輝度値を示す映像データに従って各発光画素111を発光させ、発光輝度を実測することにより取得してもよい。各発光画素111の発光輝度は、例えば、表示部110をカメラで撮影することにより測定されてもよい。
 ステップS13において、輝度信号補正部160は、特定された輝度信号のレベルを補正情報に基づいて、発光画素ごとに補正する。
 補正情報は、発光画素111において駆動トランジスタ125が線形領域と飽和領域との双方で動作する場合の、発光素子121の発光輝度と輝度信号のレベルとの間の関係を表す情報である。
 図10は、補正情報の一例を示す図である。補正情報の具体的な表現形式は限定されないが、補正情報は、一例として図10に示されるように、駆動トランジスタ125が飽和領域で動作する場合と、線形領域と飽和領域との双方で動作する場合とで、発光素子121が互いに等しい輝度で発光するための、輝度信号の基準レベルと補正レベルとの間の関係を示す情報であってもよい。発光素子121の発光輝度と基準レベルとの間の関係は、前述の基準特性情報によって対応付けられているから、このような補正情報によって、駆動トランジスタ125が線形領域で動作する場合の、発光素子121の発光輝度と輝度信号の補正レベルとの間の関係が表される。
 なお、補正情報は、より直接的に、映像データによって示される画素の輝度値と、輝度信号の補正レベルとの間の関係を表してもよい。補正情報は、図10に示されるように、異なる複数の電圧降下量のそれぞれに対応して設けられてもよい。補正情報は、図11に示されるように、変換テーブルで表されてもよい。
 輝度信号補正部160は、映像データによって示される画素の輝度値に対応する輝度信号の基準レベルを、電圧降下量推定部150で推定された電圧降下量に応じて補正情報に基づいて補正する。
 ステップS14において、輝度信号補正部160は、補正レベルで輝度信号を生成する。
 ステップS15において、各発光画素111は、補正レベルの輝度信号に従って発光する。
 その結果、図12に示されるように、駆動トランジスタ125が実際には線形領域で動作している場合であっても、レベルが補正された輝度信号によって模擬的に、飽和領域で動作している場合の発光特性が得られる。
 なお、このような輝度信号の補正は、推定された電圧降下量に応じて、例えば実質的に0でない電圧降下量が推定された場合にのみ、行ってもよい。実質的に0である電圧降下量が推定された場合は、このような輝度信号の補正を行わず、基準レベルで輝度信号を生成してもよい。また、複数の補正情報のなかから、推定された電圧降下量に対応する補正情報を用いて行ってもよい。
 図13は、表示装置100を用いて構成されるテレビジョン受信機の一例を示す外観図である。このようなテレビジョン受信機では、表示装置100を用いることによって、優れた消費電力の低減効果が得られる。
 開示される表示装置は、例えばテレビジョン受信機などの表示装置に広く利用できる。
  100  表示装置
  110  表示部
  111  発光画素
  112、113  電源線
  120  データ線ドライバ
  121  発光素子
  122  データ線
  123  走査線
  124  選択トランジスタ
  125  駆動トランジスタ
  126  保持容量
  130  書込走査ドライバ
  140  コントローラ
  150  電圧降下量推定部
  160  輝度信号補正部
  170  電圧源
  181  第1記憶部
  182  第2記憶部

Claims (4)

  1.  各々が、供給される電流に応じて発光する発光素子と、輝度信号のレベルに応じた駆動電流を前記発光素子に供給する駆動トランジスタと、を有する複数の発光画素が配列されて構成される表示部と、
     前記表示部に供給される駆動電圧を生成する電圧源と、
     前記複数の発光画素及び前記電圧源に接続され、前記電圧源から前記各発光画素に前記駆動電圧を供給する電源線と、
     前記複数の発光画素のそれぞれの発光輝度を示すデータである映像データを用いて、前記電源線において前記電圧源から前記各発光画素までに生じる電圧降下量を推定する電圧降下量推定部と、
     前記駆動トランジスタが線形領域と飽和領域との双方で動作する場合に、前記発光素子が発光する輝度と前記輝度信号のレベルとの間の関係を表す補正情報を記憶している第1記憶部と、
     前記駆動トランジスタが飽和領域で動作する場合の、前記発光素子が発光する輝度と前記輝度信号のレベルとの間の関係を表す基準特性情報を記憶している第2記憶部と、
     前記基準特性情報に基づいて前記映像データで示される発光輝度に対応する前記輝度信号のレベルである基準レベルを、推定された前記電圧降下量に応じて前記補正情報に基づいて補正することにより補正されたレベルで前記輝度信号を生成する輝度信号補正部と、を備える、
     表示装置。
  2.  前記第1記憶部は、異なる複数の電圧降下量のそれぞれに対応して前記補正情報を記憶しており、
     前記輝度信号補正部は、前記電圧降下量推定部で推定された電圧降下量に対応する補正情報を用いて前記基準レベルを補正することにより、前記輝度信号を生成する、
     請求項1に記載の表示装置。
  3.  前記第1記憶部は、前記駆動トランジスタが線形領域と飽和領域との双方で動作する場合に前記発光素子を所定の輝度で発光させるための前記輝度信号のレベルと、前記駆動トランジスタが飽和領域で動作する場合に前記発光素子を前記所定の輝度で発光させるための前記輝度信号のレベルとの対応を表す情報を、前記補正情報として記憶しており、
     前記輝度信号補正部は、前記補正情報によって前記基準レベルに対応する前記輝度信号のレベルで、前記輝度信号を生成する、
     請求項1に記載の表示装置。
  4.  表示装置の駆動方法であって、
     前記表示装置は、
     各々が、供給される電流に応じて発光する発光素子と、輝度信号のレベルに応じた駆動電流を前記発光素子に供給する駆動トランジスタと、を含む複数の発光画素が配列されて構成される表示部と、
     前記表示部に供給される駆動電圧を生成する電圧源と、
     前記複数の発光画素及び前記電圧源に接続され、前記電圧源から前記各発光画素に前記駆動電圧を供給する電源線と、
     電圧降下量推定部と、
     前記駆動トランジスタが線形領域と飽和領域との双方で動作する場合に、前記発光素子が発光する輝度と前記輝度信号のレベルとの間の関係を表す補正情報を記憶している第1記憶部と、
     前記駆動トランジスタが飽和領域で動作する場合に、前記発光素子が発光する輝度と前記輝度信号のレベルとの間の関係を表す基準特性情報を記憶している第2記憶部と、
     輝度信号補正部と、を備え、
     前記駆動方法は、
     前記電圧降下量推定部にて、前記複数の発光画素のそれぞれの発光輝度を示すデータである映像データを用いて、前記電源線において前記電圧源から前記各発光画素までに生じる電圧降下量を推定し、
     前記輝度信号補正部にて、前記基準特性情報に基づいて前記映像データで示される発光輝度に対応する前記輝度信号のレベルを、推定された前記電圧降下量に応じて前記補正情報に基づいて補正することにより、前記輝度信号を生成する、
     表示装置の駆動方法。
PCT/JP2014/005238 2013-10-18 2014-10-15 表示装置およびその駆動方法 WO2015056446A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/909,851 US9734758B2 (en) 2013-10-18 2014-10-15 Display device and method for driving same
JP2015542522A JP6142235B2 (ja) 2013-10-18 2014-10-15 表示装置およびその駆動方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013217716 2013-10-18
JP2013-217716 2013-10-18

Publications (1)

Publication Number Publication Date
WO2015056446A1 true WO2015056446A1 (ja) 2015-04-23

Family

ID=52827903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005238 WO2015056446A1 (ja) 2013-10-18 2014-10-15 表示装置およびその駆動方法

Country Status (3)

Country Link
US (1) US9734758B2 (ja)
JP (1) JP6142235B2 (ja)
WO (1) WO2015056446A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10304379B2 (en) 2014-05-15 2019-05-28 Joled, Inc. Display device and method for driving display device
US10276095B2 (en) 2014-08-21 2019-04-30 Joled Inc. Display device and method of driving display device
CN107808649B (zh) 2017-10-10 2019-07-12 惠科股份有限公司 显示面板的驱动方法及显示装置
WO2022240389A1 (en) * 2021-05-10 2022-11-17 Google Llc Dynamic irc & elvss for display device
CN114758613B (zh) * 2022-05-07 2023-11-21 昆山国显光电有限公司 像素电路及其驱动方法、显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000242208A (ja) * 1999-02-23 2000-09-08 Canon Inc 画像表示装置、電子線発生装置及びマルチ電子ビーム源の駆動装置
JP2006349986A (ja) * 2005-06-16 2006-12-28 Seiko Epson Corp 電気光学装置の駆動方法及び電気光学装置並びに電子機器
JP2008185809A (ja) * 2007-01-30 2008-08-14 Kyocera Corp 画像表示装置およびその駆動方法
JP2008281798A (ja) * 2007-05-11 2008-11-20 Hitachi Ltd 映像表示装置
WO2011086597A1 (ja) * 2010-01-13 2011-07-21 パナソニック株式会社 表示装置及びその駆動方法
WO2012077258A1 (ja) * 2010-12-10 2012-06-14 パナソニック株式会社 表示装置及びその駆動方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1439518A4 (en) 2001-09-26 2007-09-05 Sanyo Electric Co FLAT DISPLAY
JP2003280587A (ja) 2002-01-18 2003-10-02 Semiconductor Energy Lab Co Ltd 表示装置およびそれを使用した表示モジュール、電子機器
US7224333B2 (en) 2002-01-18 2007-05-29 Semiconductor Energy Laboratory Co. Ltd. Display device and driving method thereof
JP3995504B2 (ja) 2002-03-22 2007-10-24 三洋電機株式会社 有機elディスプレイ装置
GB0314895D0 (en) 2003-06-26 2003-07-30 Koninkl Philips Electronics Nv Light emitting display devices
JP4622389B2 (ja) 2004-08-30 2011-02-02 ソニー株式会社 表示装置及びその駆動方法
US7872619B2 (en) 2006-11-01 2011-01-18 Global Oled Technology Llc Electro-luminescent display with power line voltage compensation
US8427405B2 (en) 2007-01-30 2013-04-23 Lg Display Co., Ltd. Image display device and method of driving the same
JP2009031451A (ja) * 2007-07-25 2009-02-12 Eastman Kodak Co 表示装置
JP2009210600A (ja) * 2008-02-29 2009-09-17 Canon Inc 画像表示装置とその補正回路、および、画像表示装置の駆動方法
JP5793141B2 (ja) 2010-07-02 2015-10-14 株式会社Joled 表示装置およびその駆動方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000242208A (ja) * 1999-02-23 2000-09-08 Canon Inc 画像表示装置、電子線発生装置及びマルチ電子ビーム源の駆動装置
JP2006349986A (ja) * 2005-06-16 2006-12-28 Seiko Epson Corp 電気光学装置の駆動方法及び電気光学装置並びに電子機器
JP2008185809A (ja) * 2007-01-30 2008-08-14 Kyocera Corp 画像表示装置およびその駆動方法
JP2008281798A (ja) * 2007-05-11 2008-11-20 Hitachi Ltd 映像表示装置
WO2011086597A1 (ja) * 2010-01-13 2011-07-21 パナソニック株式会社 表示装置及びその駆動方法
WO2012077258A1 (ja) * 2010-12-10 2012-06-14 パナソニック株式会社 表示装置及びその駆動方法

Also Published As

Publication number Publication date
JP6142235B2 (ja) 2017-06-07
US9734758B2 (en) 2017-08-15
JPWO2015056446A1 (ja) 2017-03-09
US20160232842A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
US9478156B2 (en) Organic light emitting display device and driving method thereof
KR101894768B1 (ko) 액티브 매트릭스 디스플레이 장치 및 그 구동 방법
US9847056B2 (en) Picture signal processing circuit, picture signal processing method, and display unit
KR101178910B1 (ko) 유기전계발광 표시장치 및 이의 구동전압 설정방법
US20170186373A1 (en) Display device and method for driving same
KR100804529B1 (ko) 유기 발광 디스플레이 장치 및 그의 구동 방법
US10276095B2 (en) Display device and method of driving display device
JP4844602B2 (ja) 表示装置、表示制御装置、および表示制御方法、並びにプログラム
US20170039946A1 (en) Oled display device and method for corecting image sticking of oled display device
JP6142235B2 (ja) 表示装置およびその駆動方法
US10141020B2 (en) Display device and drive method for same
KR20140133189A (ko) 유기 발광 표시 장치의 화소 및 유기 발광 표시 장치
TW200713156A (en) Display device and method of driving the same
JP2014224904A (ja) 電気光学装置およびその駆動方法
JP6472783B2 (ja) 表示装置、光学補償システムおよび光学補償方法
CN110634442A (zh) Oled显示装置及其驱动方法
US9001099B2 (en) Image display and image display method
KR102182382B1 (ko) 유기발광소자표시장치 및 그 구동방법
JP2009258301A (ja) 表示装置
KR101101554B1 (ko) 액티브 유기 발광 표시장치
JP5814705B2 (ja) 表示装置
WO2020202260A1 (ja) 表示装置およびその駆動方法
KR102366300B1 (ko) 유기발광표시장치 및 그의 불량서브화소를 검출하는 방법
KR20210082847A (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치의 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854445

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14909851

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015542522

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854445

Country of ref document: EP

Kind code of ref document: A1