WO2015056399A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2015056399A1
WO2015056399A1 PCT/JP2014/004663 JP2014004663W WO2015056399A1 WO 2015056399 A1 WO2015056399 A1 WO 2015056399A1 JP 2014004663 W JP2014004663 W JP 2014004663W WO 2015056399 A1 WO2015056399 A1 WO 2015056399A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
filler
protective member
cell module
resin
Prior art date
Application number
PCT/JP2014/004663
Other languages
English (en)
French (fr)
Inventor
祐 石黒
志穂美 中谷
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015542511A priority Critical patent/JPWO2015056399A1/ja
Publication of WO2015056399A1 publication Critical patent/WO2015056399A1/ja
Priority to US15/091,328 priority patent/US20160308081A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module.
  • a solar cell module generally has a structure in which a string of solar cells in which a plurality of solar cells are connected by conductive wires is sandwiched between two protective members, and a filler is filled between the protective members (for example, , See Patent Document 1).
  • a glass substrate is used on the light receiving surface side where sunlight mainly enters
  • a resin sheet is used on the back surface side.
  • Patent Document 1 discloses the use of resins having different compositions for the light-receiving surface-side filler in contact with the glass substrate and the back-surface-side filler in contact with the resin sheet for the purpose of achieving both weather resistance and heat resistance. Yes.
  • the solar cell module includes an output wiring member that is drawn out to the back side of the module and connected to the terminal portion in order to extract power from the solar cell.
  • the solar cell module is manufactured, for example, by laminating a string of solar cells to which an output wiring material is attached using a protective member and a sheet-like filler.
  • a third filler is provided between the solar cell and the output wiring member in addition to the two sheet-like fillers in contact with each protective member.
  • the terminal portion to which the output wiring material is connected is likely to become high temperature during power generation of the solar cell, and the temperature difference between the power generation time and the non-power generation time is larger in the vicinity thereof than in other portions. Such a large temperature change may adversely affect the output characteristics of the solar cell module.
  • the present inventors have used a solar cell module by using a third filler composed of the same material as the filler provided on the light-receiving surface side of the solar cell. It has been found that the output characteristics of can be improved. Thus, the present inventors have achieved the present invention.
  • the solar cell module according to the present invention includes a plurality of solar cells, a first protective member provided on the light receiving surface side of the solar cell, a second protective member provided on the back surface side of the solar cell, and the back surface of the solar cell.
  • An output wiring member that is drawn out to the back surface side of the second protection member through the side, a terminal portion that is provided on the back surface side of the second protection member and to which the output wiring material is connected, and the solar cell and the first protection member
  • the first filler provided between the first filler and a material different from the first filler, the second filler provided between the solar cell and the second protective member, and the same material as the first filler
  • a third filler provided between the solar cell and the output wiring member.
  • a solar cell module with improved output characteristics can be provided.
  • the “light-receiving surface” of the solar cell module and the solar cell means a surface on which sunlight is mainly incident (over 50% to 100%), and the “back surface” is a surface opposite to the light-receiving surface. Means.
  • the terms light receiving surface and back surface are also used for other components such as a protective member.
  • descriptions such as “providing the second member on the first member” do not intend only when the first and second members are provided in direct contact unless specifically limited. That is, this description includes a case where another member exists between the first and second members.
  • the solar cell module 10 is provided with a plurality of solar cells 11, a first protection member 12 provided on the light receiving surface side of the solar cells 11, and a back surface side of the solar cells 11.
  • a second protective member 13 The plurality of solar cells 11 are sandwiched between the first protective member 12 and the second protective member 13 and sealed with a filler 14 filled between the protective members.
  • the layer of the filler 14 is composed of three fillers.
  • adjacent solar cells 11 are connected to each other by a conductive wire 15 to form a plurality of (for example, six) strings.
  • the string is a string in which a plurality of solar cells 11 arranged in a row are connected in series by a conductive wire 15.
  • the solar cell module 10 includes a wiring material to which a conductive wire 15 extending from an end edge of the solar cell 11 disposed at the end of the string (the end of the row of solar cells 11) is connected.
  • the solar cell module 10 includes an output wiring member 16 for taking out electric power from the solar cell 11 as the wiring member.
  • the output wiring member 16 passes through the back surface side of the solar cell 11 and is drawn out to the back surface side of the second protective member 13.
  • the output wiring member 16 may be configured by joining a plurality of members, or may be configured by a single member.
  • As the wiring material in addition to the output wiring material 16, a connection wiring material (not shown) for simply connecting the strings is provided.
  • each output wiring member 16 extends substantially perpendicular to the longitudinal direction of the conducting wire 15 (string), a first portion 16x to which each conducting wire 15 is connected, and a second portion 16y that extends substantially parallel to the longitudinal direction of the conducting wire 15.
  • the second portion 16y of each output wiring member 16 passes just behind the solar cells 11f and 11g located at the ends of the two strings in the center, and the tip side is drawn into a terminal box 17 described later.
  • the solar cell module 10 includes a terminal portion provided on the back side of the second protective member 13.
  • the terminal section preferably includes a terminal block (not shown) to which a power cable connected to the output wiring member 16 and an external device is connected, and a terminal box 17 for storing the terminal block.
  • the terminal box 17 preferably includes a bypass diode that contributes to stabilization of the output.
  • the terminal box 17 is attached at a position overlapping the solar cells 11 f and 11 g in the thickness direction of the solar cell module 10.
  • the terminal box 17 is preferably attached to the position where the output wiring member 16 is pulled out.
  • the solar cell module 10 preferably includes a frame 18 attached to the periphery of the first protective member 12 and the second protective member 13.
  • the frame 18 protects the periphery of the protection member and is used when the module is installed on a roof or the like.
  • the solar cell 11 includes a photoelectric conversion unit that generates carriers by receiving sunlight.
  • a photoelectric conversion unit for example, a light receiving surface electrode is formed on the light receiving surface, and a back electrode is formed on the back surface (both not shown).
  • the back electrode is preferably formed in a larger area than the light receiving surface electrode.
  • the structure of the solar cell 11 is not specifically limited, For example, the structure in which the electrode was formed only on the back surface of the photoelectric conversion part may be sufficient. It can be said that the surface having the larger electrode area or the surface on which the electrode is formed is the “back surface”.
  • the photoelectric conversion unit includes, for example, a semiconductor substrate such as crystalline silicon (c-Si), gallium arsenide (GaAs), indium phosphide (InP), an amorphous semiconductor layer formed on the semiconductor substrate, an amorphous A transparent conductive layer formed on the semiconductor layer.
  • a semiconductor substrate such as crystalline silicon (c-Si), gallium arsenide (GaAs), indium phosphide (InP), an amorphous semiconductor layer formed on the semiconductor substrate, an amorphous A transparent conductive layer formed on the semiconductor layer.
  • a semiconductor substrate such as crystalline silicon (c-Si), gallium arsenide (GaAs), indium phosphide (InP), an amorphous semiconductor layer formed on the semiconductor substrate, an amorphous A transparent conductive layer formed on the semiconductor layer.
  • an i-type amorphous silicon layer, a p-type amorphous silicon layer, and a transparent conductive layer are sequentially formed on
  • the electrode includes, for example, a plurality of finger portions and a plurality of bus bar portions.
  • the finger part is a thin line-shaped electrode formed over a wide range on the transparent conductive layer
  • the bus bar part is an electrode that collects carriers from the finger part.
  • three bus bar portions are provided on each surface of the photoelectric conversion portion, and the conductive wires 15 are attached to the respective bus bar portions.
  • the conducting wire 15 is an elongated member made of a metal such as aluminum, and adjacent solar cells 11 are connected in series to form a string.
  • the conducting wire 15 is bent in the thickness direction of the solar cell module 10 between the adjacent solar cells 11 and attached to the light receiving surface of one solar cell 11 and the back surface of the other solar cell 11 using an adhesive or the like. .
  • a light-transmitting member such as a glass substrate, a resin substrate, or a resin film can be used.
  • a glass substrate from the viewpoints of fire resistance, durability, and the like.
  • the thickness of the glass substrate is not particularly limited, but is preferably about 2 mm to 6 mm.
  • the same transparent member as the first protective member 12 may be used, or an opaque member may be used.
  • a resin film is used as the second protective member 13.
  • the resin film is not particularly limited, but is preferably a polyethylene terephthalate (PET) film. From the viewpoint of reducing moisture permeability, the resin film may be formed with a metal layer such as aluminum or an inorganic compound layer such as silica.
  • the thickness of the resin film is not particularly limited, but is preferably about 100 ⁇ m to 300 ⁇ m.
  • the filler 14 is used for sealing the solar cell 11.
  • the constituent material of the filler 14 contains a resin applicable to the laminating process described later as a main component (exceeding 50% by weight), and preferably contains 80% by weight or more, more preferably 90% by weight or more of the resin.
  • the filler 14 may contain various additives such as an antioxidant and a flame retardant, and the filler 14b described later such as a pigment such as titanium oxide.
  • Resins suitable as the main component of the filler 14 are olefin resins obtained by polymerizing at least one selected from ⁇ -olefins having 2 to 20 carbon atoms (for example, polyethylene, polypropylene, ethylene and other ⁇ -olefins).
  • ester resins eg, polycondensates of polyols and polycarboxylic acids or their anhydrides / lower alkyl esters
  • urethane resins eg, containing polyisocyanates and active hydrogen groups
  • Compounds polyadducts with diols, polyol riols, dicarboxylic acids, polycarboxylic acids, polyamines, polythiols, etc.
  • epoxy resins for example, ring-opening polymers of polyepoxides, polyepoxides and active hydrogen group-containing compounds
  • Polyaddition products etc.
  • ⁇ -olefins and vinyl carboxylates Acrylic acid ester, or a copolymer with other vinyl monomers can be exemplified.
  • olefin resins particularly polymers containing ethylene
  • copolymers of ⁇ -olefin and vinyl carboxylate are particularly preferable.
  • ethylene-vinyl acetate copolymer (EVA) is particularly preferable.
  • the filler 14 includes a first filler 14 a (hereinafter simply referred to as “filler 14 a”) provided between the solar cell 11 and the first protective member 12, the solar cell 11, the second protective member 13, and the like.
  • a second filler 14b (hereinafter simply referred to as “filler 14b”) provided between the solar cell 11 and the output wiring member 16 (hereinafter simply referred to as “filler”).
  • Agent 14c “). That is, the filler 14 a is disposed on the light receiving surface side of the solar cell 11, and the fillers 14 b and 14 c are disposed on the back surface side of the solar cell 11.
  • the thickness of the fillers 14a and 14b is not particularly limited, but is preferably about 100 ⁇ m to 600 ⁇ m.
  • the fillers 14a and 14b are made of different materials from the viewpoint of achieving both temperature cycle resistance and high temperature and high humidity resistance.
  • the fillers 14a and 14b may have the same resin composition as the main component, and the amount of the main component and the kind of the additive may be different from each other.
  • the main components are preferably resins having different compositions.
  • the preferred constituent materials of the fillers 14a and 14b and the combinations thereof differ depending on the structure and application (use environment) of the solar cell module 10, but generally preferably, a resin having a high crosslinking density is used for the filler 14a.
  • a resin having a low crosslinking density is used for the filler 14b.
  • the resin constituting the filler 14a (hereinafter referred to as “resin 14a”) preferably has a higher crosslinking density than the resin constituting the filler 14b (hereinafter referred to as “resin 14b”).
  • the crosslinking density of resin can be evaluated by a gel fraction.
  • the gel fraction is measured by the following method. 1 g of the resin to be measured is prepared and immersed in 100 ml of xylene at 120 ° C. for 24 hours. Thereafter, the residue in xylene is taken out and dried at 80 ° C. for 16 hours, and the mass of the residue after drying is measured. And a gel fraction (%) is computed based on Formula (1).
  • Formula (1): Gel fraction (%) (mass of residue) / (mass of resin before immersion) The gel fraction of the resin tends to be higher as the crosslink density of the resin is higher and lower as the crosslink density is lower.
  • the gel fraction of the resin 14a is preferably about 50% to 90%, more preferably about 55% to 80%.
  • the gel fraction of the resin 14b is lower than that of the resin 14a, and is preferably 40% or less.
  • the resin 14b may be a non-crosslinkable resin (gel fraction is approximately 0%).
  • the crosslinking density of the resin can be adjusted, for example, by changing the type and amount of the crosslinking agent that forms a crosslinked structure.
  • the kind of crosslinking agent can be suitably selected according to the kind of resin.
  • an organic oxide such as benzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane as a crosslinking agent.
  • Filler 14 c is provided to prevent contact between solar cell 11 and output wiring member 16. As described above, since the terminal box 17 is attached to the position where the output wiring member 16 is pulled out, the filler 14 c is located in the vicinity of the terminal box 17. In this embodiment, since the 2nd part 16y of each output wiring material 16 is arrange
  • the filler 14c is made of the same material as the filler 14a.
  • the same material means that not only the main component resin but also the types and contents of additives and the like are the same. That is, the constituent materials of the fillers 14a and 14c have the same material composition and material content ratio, and the physical properties (softening temperature, thermal expansion coefficient, etc.) of the fillers 14a and 14c are the same. means. “Same” includes not only the case where they are completely the same, but also the case where they are recognized as being substantially the same. For example, even if there is a difference in composition or the like that can be caused by a difference in production lots, it is recognized that they are substantially the same.
  • the resin constituting the filler 14c (hereinafter referred to as “resin 14c”) is preferably crosslinkable, has the same crosslink density as the resin 14a, and has a gel fraction that is substantially the same.
  • the crosslink density of the resin 14c is preferably higher than the crosslink density of the resin 14b.
  • the filler 14 has a layered structure of highly crosslinkable resin / (solar cell 11) / highly crosslinkable resin / low crosslinkable or non-crosslinkable resin in order from the light receiving surface side in the portion where the filler 14c is disposed.
  • the resins 14a, 14b, and 14c all are olefin resins or EVA, and when the crosslink density is resin 14a, 14c> 14b, the resins 14a and 14c are crosslinkable EVA.
  • the resin 14b is a non-crosslinkable olefin resin.
  • the filler 14c is disposed in the vicinity of the terminal box 17 as described above.
  • the filler 14c is provided so as to widely cover the back surfaces of the solar cells 11f and 11g beyond the range where the output wiring member 16 is disposed.
  • the filler 14 c is provided so as to overlap the terminal box 17 in the thickness direction of the solar cell module 10 and completely cover the surface of the terminal box 17 facing the light receiving surface.
  • the area of the filler 14c varies depending on the size of the solar cell module 10 and the like, but is, for example, 1/2 or less, preferably 1/5 or less of the area of the fillers 14a and 14b.
  • the thickness of the filler 14c is not particularly limited, but is preferably about 1/4 to 1/2 of the fillers 14a and 14b.
  • the same material is used on the light receiving surface side and the back surface side of the solar cell 11 in a portion where the temperature change during power generation and non-power generation is large, that is, in the vicinity of the terminal box 17 (directly above the terminal box 17).
  • the configured fillers 14a and 14c are used. Thereby, the shear stress which acts on the solar cells 11f and 11g located immediately above the terminal box 17 can be reduced. This is because the physical properties of the fillers 14a and 14c are the same, so that the thermal deformation (thermal expansion / contraction) of the filler is the same between the light receiving surface side and the back surface side of the solar cells 11f and 11g. it is conceivable that. In particular, when the fillers 14a and 14c are made crosslinkable, the creep resistance is improved and the effect is considered to be improved.
  • the solar cell module 10 having the above configuration includes a string of solar cells 11 to which a wiring material such as the output wiring material 16 is connected, a first protective member 12, a second protective member 13, and a sheet-like filler 14a, 14b, 14c (hereinafter referred to as “filler sheets 14a, 14b, 14c”).
  • a filler sheet 14 c is inserted between the solar cell 11 and the output wiring member 16 to prevent these contacts.
  • the output wiring member 16 is pulled out from the slit 19 formed in the filler sheet 14b and the second protective member 13 to the back side.
  • the first protective member 12, the filler sheet 14a, the solar cell 11, the filler sheet 14c, the filler sheet 14b, and the second protective member 13 are sequentially laminated on the heater from the light receiving surface side.
  • the body is heated to about 150 ° C. in a vacuum state.
  • the solar cell module 10 by applying the same material as the filler 14a to the filler 14c, the shear stress acting on the solar cells 11f and 11g is reduced, and the electrode contact resistance is increased. It is possible to suppress a decrease in output due to. For example, the output characteristics of the solar cell module 10 are greatly improved as compared with the case where the same material as the filler 14b is applied to the filler 14c.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池モジュール10は、複数の太陽電池11と、太陽電池11の受光面側に設けられた第1保護部材12と、太陽電池11の裏面側に設けられた第2保護部材13と、太陽電池11の裏面側を通り第2保護部材13の裏面側に引き出された出力配線材16と、第2保護部材13の裏面側に設けられ、出力配線材16が接続された端子部と、太陽電池11と第1保護部材12との間に設けられた第1充填材14aと、第1充填剤14aと異なる材料で構成され、太陽電池11と第2保護部材13との間に設けられた第2充填剤14bと、第1充填剤14aと同じ材料で構成され、太陽電池11と出力配線材16との間に設けられた第3充填剤14cとを備える。

Description

太陽電池モジュール
 本発明は、太陽電池モジュールに関する。
 太陽電池モジュールは、一般的に、複数の太陽電池が導線で接続されてなる太陽電池のストリングを、2つの保護部材で挟持し、各保護部材の間に充填剤を充填した構造を有する(例えば、特許文献1参照)。保護部材としては、例えば、太陽光が主に入射する受光面側にガラス基板が、裏面側に樹脂製シートがそれぞれ用いられる。特許文献1では、耐候性及び耐熱性の両立を目的として、ガラス基板に接する受光面側充填材と、樹脂製シートに接する裏面側充填材とで、組成の異なる樹脂を用いることが開示されている。
 太陽電池モジュールは、太陽電池から電力を取り出すためにモジュールの裏面側に引き出されて端子部に接続される出力配線材を備える。太陽電池モジュールは、例えば、出力配線材が取り付けられた太陽電池のストリングを、保護部材及びシート状充填剤を用いてラミネートすることにより製造される。この場合、各保護部材に接する2つのシート状充填剤の他に、太陽電池と出力配線材との間に第3の充填剤が設けられる。
特開2011-159711号公報
 ところで、出力配線材が接続される端子部は、太陽電池の発電時に高温になり易く、その近傍は他の部分と比べて発電時と非発電時の温度差が大きくなる。かかる大きな温度変化は、太陽電池モジュールの出力特性に悪影響を与える場合がある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、第3の充填材として太陽電池の受光面側に設けられる充填材と同じ材料で構成されるものを用いることにより、太陽電池モジュールの出力特性が改善されることを見出した。こうして、本発明者らは本発明を成し得たのである。
 本発明に係る太陽電池モジュールは、複数の太陽電池と、太陽電池の受光面側に設けられた第1保護部材と、太陽電池の裏面側に設けられた第2保護部材と、太陽電池の裏面側を通り第2保護部材の裏面側に引き出された出力配線材と、第2保護部材の裏面側に設けられ、出力配線材が接続された端子部と、太陽電池と第1保護部材との間に設けられた第1充填材と、第1充填剤と異なる材料で構成され、太陽電池と第2保護部材との間に設けられた第2充填材と、第1充填剤と同じ材料で構成され、太陽電池と出力配線材との間に設けられた第3充填材とを備える。
 本発明によれば、出力特性が改善された太陽電池モジュールを提供することができる。
本発明の実施形態の一例である太陽電池モジュールを受光面側から見た図である。 図1のAA線断面の一部を示す図である。 本発明の実施形態の一例である太陽電池モジュールの製造方法を説明するための図である。
 以下、図面を参照しながら、本発明の実施形態について詳細に説明する。
 実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
 本明細書において、太陽電池モジュール及び太陽電池の「受光面」とは太陽光が主に入射(50%超過~100%)する面を意味し、「裏面」とは受光面と反対側の面を意味する。受光面、裏面の用語は、保護部材等の他の構成要素についても使用する。また、「第1の部材上に第2の部材を設ける」等の記載は、特に限定を付さない限り、第1及び第2の部材が直接接触して設けられる場合のみを意図しない。即ち、この記載は、第1及び第2の部材の間に、その他の部材が存在する場合を含む。
 図1,2に示すように、太陽電池モジュール10は、複数の太陽電池11と、太陽電池11の受光面側に設けられた第1保護部材12と、太陽電池11の裏面側に設けられた第2保護部材13とを備える。複数の太陽電池11は、第1保護部材12及び第2保護部材13により挟持されると共に、各保護部材の間に充填された充填剤14により封止されている。詳しくは後述するように、充填剤14の層は、3つの充填剤から構成されている。
 本実施形態では、隣り合う太陽電池11同士が導線15で接続されて複数(例えば、6つ)のストリングが形成されている。ストリングとは、列状に配置された複数の太陽電池11が導線15によって直列接続されたものである。太陽電池モジュール10は、ストリングの端(太陽電池11の列の端)に配置された太陽電池11の端縁から延出する導線15が接続される配線材を備える。
 太陽電池モジュール10は、上記配線材として、太陽電池11から電力を取り出すための出力配線材16を備える。出力配線材16は、太陽電池11の裏面側を通って、第2保護部材13の裏面側に引き出される。なお、出力配線材16は、複数の部材を接合して構成されていてもよいし、1つの部材で構成されていてもよい。配線材としては、出力配線材16の他に、ストリング同士を単に接続する接続配線材(図示せず)が設けられる。
 本実施形態では、正極端子、負極端子として各々2つずつ、合計4つの出力配線材16が設けられている。各出力配線材16は、導線15(ストリング)の長手方向に略直交して延び、各導線15が接続される第1部分16xと、導線15の長手方向と略平行に延びる第2部分16yとを有する。各出力配線材16の第2部分16yは、中央2列のストリングの端に位置する太陽電池11f,11gのちょうど裏側を通り、その先端側が後述の端子ボックス17に引き込まれている。
 太陽電池モジュール10は、第2保護部材13の裏面側に設けられた端子部を備える。端子部は、出力配線材16及び外部装置につながる電力ケーブルが接続される端子台(図示せず)と、これを格納する端子ボックス17とを備えることが好適である。端子ボックス17は、端子台の他に、出力の安定化に寄与するバイパスダイオードを内蔵することが好ましい。本実施形態では、太陽電池モジュール10の厚み方向に太陽電池11f,11gと重なる位置に端子ボックス17が取り付けられている。端子ボックス17は、出力配線材16が引き出された位置に取り付けられることが好適である。
 太陽電池モジュール10は、第1保護部材12及び第2保護部材13の周縁に取り付けられたフレーム18を備えることが好適である。フレーム18は、保護部材の周縁を保護すると共に、モジュールを屋根等に設置する際に利用される。
 太陽電池11は、太陽光を受光することでキャリアを生成する光電変換部を備える。光電変換部には、例えば、その受光面上に受光面電極が、裏面上に裏面電極がそれぞれ形成される(いずれも図示せず)。裏面電極は、受光面電極よりも大面積に形成されることが好適である。太陽電池11の構造は特に限定されず、例えば光電変換部の裏面上のみに電極が形成された構造であってもよい。なお、電極面積が大きい方の面又は電極が形成される面が「裏面」であるといえる。
 光電変換部は、例えば、結晶系シリコン(c‐Si)、ガリウム砒素(GaAs)、インジウム燐(InP)等の半導体基板と、半導体基板上に形成された非晶質半導体層と、非晶質半導体層上に形成された透明導電層とを有する。具体例としては、n型単結晶シリコン基板の受光面上にi型非晶質シリコン層、p型非晶質シリコン層、及び透明導電層を順に形成し、裏面上にi型非晶質シリコン層、n型非晶質シリコン層、及び透明導電層を順に形成した構造が挙げられる。透明導電層は、酸化インジウム(In23)や酸化亜鉛(ZnO)等の金属酸化物に、錫(Sn)やアンチモン(Sb)等をドープした透明導電性酸化物から構成されることが好ましい。
 電極は、例えば複数のフィンガー部と、複数のバスバー部とからなる。フィンガー部は、透明導電層上の広範囲に形成される細線状の電極であり、バスバー部は、フィンガー部からキャリアを収集する電極である。本実施形態では、光電変換部の各面上に3本のバスバー部が設けられ、導線15は各バスバー部上にそれぞれ取り付けられている。導線15は、アルミニウム等の金属からなる細長い部材であって、隣り合う太陽電池11同士を直列に接続してストリングを形成する。導線15は、隣り合う太陽電池11の間で太陽電池モジュール10の厚み方向に曲がって、一方の太陽電池11の受光面と他方の太陽電池11の裏面とに接着剤等を用いてそれぞれ取り付けられる。
 第1保護部材12には、例えば、ガラス基板や樹脂基板、樹脂フィルム等の透光性を有する部材を用いることができる。これらのうち、耐火性、耐久性等の観点から、ガラス基板を用いることが好ましい。ガラス基板の厚みは特に限定されないが、好ましくは2mm~6mm程度である。
 第2保護部材13には、第1保護部材12と同じ透明な部材を用いてもよいし、不透明な部材を用いてもよい。本実施形態では、第2保護部材13として樹脂フィルムを用いる。樹脂フィルムは特に限定されないが、好ましくはポリエチレンテレフタレート(PET)フィルムである。水分透過性を低くする等の観点から、樹脂フィルムには、アルミニウム等の金属層やシリカ等の無機化合物層が形成されていてもよい。樹脂フィルムの厚みは特に限定されないが、好ましくは100μm~300μm程度である。
 充填剤14は、太陽電池11を封止するために用いられる。充填剤14の構成材料は、後述するラミネート工程に適用可能な樹脂を主成分(50重量%超過)とし、好ましくは当該樹脂を80重量%以上、より好ましくは90重量%以上含む。充填剤14には、樹脂の他に、酸化防止剤や難燃剤、後述の充填剤14bには酸化チタン等の顔料など、各種添加剤が含まれていてもよい。
 充填剤14の主成分として好適な樹脂は、炭素数2~20のαオレフィンから選らばれる少なくとも1種を重合して得られるオレフィン系樹脂(例えば、ポリエチレン、ポリプロピレン、エチレンとその他のαオレフィンとのランダム又はブロック共重合体など)、エステル系樹脂(例えば、ポリオールとポリカルボン酸又はその酸無水物・低級アルキルエステルとの重縮合物など)、ウレタン系樹脂(例えば、ポリイソシアネートと活性水素基含有化合物(ジオール、ポリオールリオール、ジカルボン酸、ポリカルボン酸、ポリアミン、ポリチオール等)との重付加物など)、エポキシ系樹脂(例えば、ポリエポキシドの開環重合物、ポリエポキシドと上記活性水素基含有化合物との重付加物など)、αオレフィンとカルボン酸ビニル、アクリル酸エステル、又はその他ビニルモノマーとの共重合体などが例示できる。
 これらのうち、特に好ましくはオレフィン系樹脂(特に、エチレンを含む重合体)、及びαオレフィンとカルボン酸ビニルとの共重合体である。αオレフィンとカルボン酸ビニルとの共重合体としては、エチレン-酢酸ビニル共重合体(EVA)が特に好ましい。
 充填剤14には、太陽電池11と第1保護部材12との間に設けられた第1充填剤14a(以下、単に「充填剤14a」とする)、太陽電池11と第2保護部材13との間に設けられた第2充填剤14b(以下、単に「充填剤14b」とする)、太陽電池11と出力配線材16との間に設けられた第3充填剤14c(以下、単に「充填剤14c」とする)が含まれる。即ち、充填剤14aは、太陽電池11の受光面側に配置され、充填剤14b,14cは、太陽電池11の裏面側に配置される。充填剤14a,14bの厚みは特に限定されないが、好ましくは100μm~600μm程度である。
 充填剤14a,14bは、温度サイクル耐性や高温高湿耐性の両立等の観点から、互いに異なる材料で構成される。充填剤14a,14bは、例えば、主成分の樹脂組成を同じとし、主成分の量や上記添加剤の種類等を互いに異ならせてもよいが、好ましくは組成が異なる樹脂を主成分とする。充填剤14a,14bの好適な構成材料及びその組み合わせは、太陽電池モジュール10の構造や用途(使用環境)によっても異なるが、一般的に好ましくは、充填材14aに架橋密度の高い樹脂を用い、充填剤14bに架橋密度の低い樹脂を用いる。即ち、充填剤14aを構成する樹脂(以下、「樹脂14a」とする)は、充填剤14bを構成する樹脂(以下、「樹脂14b」とする)よりも架橋密度を高くすることが好ましい。なお、樹脂の架橋密度はゲル分率により評価できる。
 ゲル分率は、下記の方法により測定される。
 測定対象となる樹脂を1g準備し、120℃、100mlのキシレンに24時間浸漬する。その後、キシレン中の残留物を取り出し、80℃で16時間乾燥させ、乾燥後の残留物の質量を測定する。そして、式(1)に基づいてゲル分率(%)を算出する。
   式(1):ゲル分率(%)=(残留物の質量)/(浸漬前の樹脂の質量)
 樹脂のゲル分率は、樹脂の架橋密度が高いほど高くなり、架橋密度が低いほど低くなる傾向にある。
 樹脂14aのゲル分率は、50%~90%程度が好ましく、55%~80%程度がより好ましい。樹脂14bのゲル分率は、樹脂14aよりも低く、好ましくは40%以下である。樹脂14bは、非架橋性の樹脂(ゲル分率が略0%)であってもよい。樹脂の架橋密度は、例えば、架橋構造を形成する架橋剤の種類や添加量を変化させることで調整できる。架橋剤の種類は、樹脂の種類に応じて適宜選択することができる。EVAを用いる場合には、ベンゾイルペルオキシド、ジクミルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン等の有機化酸化物を架橋剤として用いることが好ましい。
 充填剤14cは、太陽電池11と出力配線材16との接触を防止するために設けられる。上記のように、出力配線材16が引き出された位置に端子ボックス17が取り付けられるため、充填剤14cは端子ボックス17の近傍に位置している。本実施形態では、各出力配線材16の第2部分16yが太陽電池11f,11gのちょうど裏側に配置されているため、各第2部分16yと太陽電池11f,11gの裏面との間に充填剤14cが設けられている。
 充填剤14cは、充填剤14aと同じ材料で構成される。ここで、「材料が同じ」とは、主成分の樹脂だけでなく添加剤等の種類や含有量も同じであることを意味する。即ち、充填剤14a,14cの構成材料は、材料の組成及び材料の含有比率が互いに同じであって、充填剤14a,14cの物性(軟化温度や熱膨張係数等)が互いに同じであることを意味する。「同じ」とは、完全に同一である場合だけでなく、実質的に同一と認められる場合を含む。例えば、製造ロットの違いにより生じ得る程度の組成等の相違があっても、それらは実質的に同一であると認められる。
 充填剤14cを構成する樹脂(以下、「樹脂14c」とする)は、架橋性であることが好ましく、樹脂14aと同じ架橋密度を有し、ゲル分率は互いに略同一である。樹脂14cの架橋密度は、樹脂14bの架橋密度よりも高いことが好ましい。充填剤14は、充填剤14cが配置される部分において受光面側から順に、高架橋性樹脂/(太陽電池11)/高架橋性樹脂/低架橋性又は非架橋性樹脂の積層構造を有する。
 樹脂14a,14b,14cの好適な組合せの一例としては、いずれもオレフィン系樹脂又はEVAであって、架橋密度が樹脂14a,14c>14bである場合、樹脂14a,14cが架橋性のEVAであって、樹脂14bが非架橋性のオレフィン系樹脂である場合などが挙げられる。
 充填剤14cは、上記のように、端子ボックス17の近傍に配置される。本実施形態では、出力配線材16が配置される範囲を超え、太陽電池11f,11gの裏面を広く覆って充填剤14cが設けられている。充填剤14cは、太陽電池モジュール10の厚み方向に端子ボックス17と重なり、端子ボックス17の受光面側に向いた面上を完全に覆って設けられている。充填剤14cの面積は、太陽電池モジュール10の寸法等によっても異なるが、例えば充填剤14a,14bの面積の1/2以下、好ましくは1/5以下である。充填剤14cの厚みは特に限定されないが、好ましくは充填剤14a,14bの1/4~1/2程度である。
 太陽電池モジュール10では、発電時と非発電時における温度変化が大きくなる部分、即ち端子ボックス17の近傍(端子ボックス17の直上)において、太陽電池11の受光面側と裏面側とで同じ材料から構成される充填剤14a,14cを用いている。これにより、端子ボックス17の直上に位置する太陽電池11f,11gに作用するせん断応力を低減することができる。これは、充填材剤14a,14cの物性が同じであるから、太陽電池11f,11gの受光面側と裏面側とで充填材の熱変形(熱膨張・収縮)が同程度になるためであると考えられる。特に、充填材剤14a,14cを架橋性にした場合は、耐クリープ性が向上し、その効果が向上すると考えられる。
 上記構成を備えた太陽電池モジュール10は、出力配線材16等の配線材が接続された太陽電池11のストリングを、第1保護部材12、第2保護部材13、及びシート状の充填剤14a,14b,14c(以下、「充填剤シート14a,14b,14c」という)を用いてラミネートすることにより製造される。
 図3に示すように、上記ラミネート工程では、まず太陽電池11と出力配線材16との間に充填剤シート14cを差し込んで、これらの接触を防止する。出力配線材16は、充填剤シート14b及び第2保護部材13に形成されたスリット19から裏側に引き出される。ラミネート装置では、ヒーター上に、第1保護部材12、充填剤シート14a、太陽電池11、充填剤シート14c、充填剤シート14b、及び第2保護部材13を受光面側から順に積層し、当該積層体を真空状態で150℃程度に加熱する。その後、大気圧下でヒーター側に各構成部材を押し付けながら加熱を継続し、充填剤シート14a,14b,14cを構成する樹脂を架橋させる。最後に、端子ボックス17、フレーム18等を取り付けて太陽電池モジュール10が得られる。
 以上のように、太陽電池モジュール10によれば、充填剤14cに充填剤14aと同じ材料を適用することにより、太陽電池11f,11gに作用するせん断応力を低減して、電極接触抵抗の増加等による出力低下を抑制することが可能になる。太陽電池モジュール10は、例えば、充填剤14cに充填剤14bと同じ材料を適用した場合と比べて出力特性が大きく改善される。
 10 太陽電池モジュール、11 太陽電池、12 第1保護部材、13 第2保護部材、14 充填材、14a 第1充填材、14b 第2充填材、14c 第3充填材、15 導線、16 出力配線材、17 端子ボックス、18 フレーム、19 スリット

Claims (3)

  1.  複数の太陽電池と、
     前記太陽電池の受光面側に設けられた第1保護部材と、
     前記太陽電池の裏面側に設けられた第2保護部材と、
     前記太陽電池の裏面側を通り前記第2保護部材の裏面側に引き出された出力配線材と、
     前記第2保護部材の裏面側に設けられ、前記出力配線材が接続された端子部と、
     前記太陽電池と前記第1保護部材との間に設けられた第1充填材と、
     前記第1充填剤と異なる材料で構成され、前記太陽電池と前記第2保護部材との間に設けられた第2充填剤と、
     前記第1充填剤と同じ材料で構成され、前記太陽電池と前記出力配線材との間に設けられた第3充填剤と、
     を備えた太陽電池モジュール。
  2.  請求項1に記載の太陽電池モジュールであって、
     前記第1及び前記第3充填剤を構成する樹脂は、前記第2充填材を構成する樹脂よりも架橋密度が高い、太陽電池モジュール。
  3.  請求項1又は2に記載の太陽電池モジュールであって、
     前記第3充填材は、モジュールの厚み方向に前記端子部と重なって設けられている、太陽電池モジュール。
PCT/JP2014/004663 2013-10-16 2014-09-10 太陽電池モジュール WO2015056399A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015542511A JPWO2015056399A1 (ja) 2013-10-16 2014-09-10 太陽電池モジュール
US15/091,328 US20160308081A1 (en) 2013-10-16 2016-04-05 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013215345 2013-10-16
JP2013-215345 2013-10-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/091,328 Continuation US20160308081A1 (en) 2013-10-16 2016-04-05 Solar cell module

Publications (1)

Publication Number Publication Date
WO2015056399A1 true WO2015056399A1 (ja) 2015-04-23

Family

ID=52827861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004663 WO2015056399A1 (ja) 2013-10-16 2014-09-10 太陽電池モジュール

Country Status (3)

Country Link
US (1) US20160308081A1 (ja)
JP (1) JPWO2015056399A1 (ja)
WO (1) WO2015056399A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155471A1 (ja) * 2017-02-24 2018-08-30 京セラ株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法
JPWO2017098728A1 (ja) * 2015-12-10 2018-09-27 パナソニックIpマネジメント株式会社 太陽電池モジュール
CN109863608A (zh) * 2016-09-29 2019-06-07 松下知识产权经营株式会社 太阳能电池模块及太阳能电池模块的制造方法
WO2019150585A1 (ja) * 2018-02-05 2019-08-08 三菱電機株式会社 太陽電池モジュールの製造方法、太陽電池モジュールの製造装置および太陽電池モジュール

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11411528B2 (en) * 2017-03-31 2022-08-09 Vamsi Krishna GADDAM Eco-friendly energy generating roofs
TW201909435A (zh) * 2017-07-20 2019-03-01 財團法人工業技術研究院 太陽能光電模組
KR20200051112A (ko) * 2018-11-03 2020-05-13 엘지전자 주식회사 태양 전지 패널 및 이의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332284A (ja) * 1999-05-24 2000-11-30 Kyocera Corp 太陽電池モジュール
JP2004356349A (ja) * 2003-05-28 2004-12-16 Kyocera Corp 太陽電池モジュールの製造方法
JP2006210405A (ja) * 2005-01-25 2006-08-10 Dainippon Printing Co Ltd 太陽電池モジュール
JP2012142635A (ja) * 2012-04-27 2012-07-26 Sharp Corp 太陽電池モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332284A (ja) * 1999-05-24 2000-11-30 Kyocera Corp 太陽電池モジュール
JP2004356349A (ja) * 2003-05-28 2004-12-16 Kyocera Corp 太陽電池モジュールの製造方法
JP2006210405A (ja) * 2005-01-25 2006-08-10 Dainippon Printing Co Ltd 太陽電池モジュール
JP2012142635A (ja) * 2012-04-27 2012-07-26 Sharp Corp 太陽電池モジュール

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017098728A1 (ja) * 2015-12-10 2018-09-27 パナソニックIpマネジメント株式会社 太陽電池モジュール
CN109863608A (zh) * 2016-09-29 2019-06-07 松下知识产权经营株式会社 太阳能电池模块及太阳能电池模块的制造方法
WO2018155471A1 (ja) * 2017-02-24 2018-08-30 京セラ株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法
JPWO2018155471A1 (ja) * 2017-02-24 2019-12-12 京セラ株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法
US10964831B2 (en) 2017-02-24 2021-03-30 Kyocera Corporation Solar cell module and method of manufacturing solar cell module
WO2019150585A1 (ja) * 2018-02-05 2019-08-08 三菱電機株式会社 太陽電池モジュールの製造方法、太陽電池モジュールの製造装置および太陽電池モジュール

Also Published As

Publication number Publication date
US20160308081A1 (en) 2016-10-20
JPWO2015056399A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015056399A1 (ja) 太陽電池モジュール
US8952241B2 (en) Solar cell module
EP1921684A1 (en) Solar cell module and process for manufacture thereof
US20090242020A1 (en) Thin-film photovoltaic cell, thin-film photovoltaic module and method of manufacturing thin-film photovoltaic cell
JP2009502044A5 (ja)
US11430903B2 (en) Multi-junction solar cell module and photovoltaic system
JP2009289945A (ja) 太陽電池バックシート及び太陽電池モジュール
US20120037213A1 (en) Backsheet for a photovoltaic module
CN202058770U (zh) 太阳能光电模块
JP6635389B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
US20110155245A1 (en) Solar module having a side insulating member
KR102339975B1 (ko) 정션 박스 및 이를 포함하는 태양 전지 모듈
US20110259415A1 (en) Backsheet for a photovoltaic module
JP7447007B2 (ja) 電圧誘起出力低下耐性が改善された太陽光発電モジュールおよび封止材組成物
JP2016186156A (ja) 太陽電池一体型壁材
JP2016143680A (ja) 太陽電池モジュール
JP2015154049A (ja) 薄膜太陽電池モジュール
JP5496413B2 (ja) 太陽電池装置の製造方法
KR102243640B1 (ko) 태양 전지 모듈
JP2015176917A (ja) 太陽電池モジュール及び車両用部材
US20130056067A1 (en) Photovoltaic Module and Method of Manufacturing the Same
JP2014207441A (ja) 太陽電池モジュール及び車両用部材
KR102543008B1 (ko) 페로브스카이트 태양전지를 포함하는 태양전지 모듈 및 그 제조 방법
CN209766442U (zh) 一种封装结构及太阳能组件
KR102101728B1 (ko) 태양 전지 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853231

Country of ref document: EP

Kind code of ref document: A1