WO2015055713A1 - Arbre d'enroulement - Google Patents

Arbre d'enroulement Download PDF

Info

Publication number
WO2015055713A1
WO2015055713A1 PCT/EP2014/072108 EP2014072108W WO2015055713A1 WO 2015055713 A1 WO2015055713 A1 WO 2015055713A1 EP 2014072108 W EP2014072108 W EP 2014072108W WO 2015055713 A1 WO2015055713 A1 WO 2015055713A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
tensioning shaft
cavities
winding
tensioning
Prior art date
Application number
PCT/EP2014/072108
Other languages
German (de)
English (en)
Inventor
Frank Hoffmann
Original Assignee
Windmöller & Hölscher Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Windmöller & Hölscher Kg filed Critical Windmöller & Hölscher Kg
Priority to CN201480056954.2A priority Critical patent/CN105849021B/zh
Priority to EP14786166.0A priority patent/EP3057897A1/fr
Priority to US15/029,688 priority patent/US20160229662A1/en
Publication of WO2015055713A1 publication Critical patent/WO2015055713A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/18Constructional details
    • B65H75/24Constructional details adjustable in configuration, e.g. expansible
    • B65H75/242Expansible spindles, mandrels or chucks, e.g. for securing or releasing cores, holders or packages
    • B65H75/243Expansible spindles, mandrels or chucks, e.g. for securing or releasing cores, holders or packages actuated by use of a fluid
    • B65H75/2437Expansible spindles, mandrels or chucks, e.g. for securing or releasing cores, holders or packages actuated by use of a fluid comprising a fluid-pressure-actuated elastic member, e.g. a diaphragm or a pneumatic tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2401/00Materials used for the handling apparatus or parts thereof; Properties thereof
    • B65H2401/10Materials
    • B65H2401/11Polymer compositions
    • B65H2401/112Fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2401/00Materials used for the handling apparatus or parts thereof; Properties thereof
    • B65H2401/20Physical properties, e.g. lubricity
    • B65H2401/23Strength of materials, e.g. Young's modulus or tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/40Shafts, cylinders, drums, spindles
    • B65H2404/41Details of cross section profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2515/00Physical entities not provided for in groups B65H2511/00 or B65H2513/00
    • B65H2515/81Rigidity; Stiffness; Elasticity

Definitions

  • the invention relates to a tensioning shaft for winding a material web, in particular of plastic films, in particular of stretch films. Moreover, the invention relates to a method for producing such a tensioning shaft and a winder with such a tensioning shaft.
  • Winding shafts consisting of a clamping shaft and a winding tube for winding and / or unwinding of web-shaped, band-shaped or filamentary materials of various kinds, such as paper, aluminum and plastic films, textiles or non-woven fabrics or the like, are well known and specific to the particular application aligned or turned off on the specific winding technique.
  • winding tube in a corresponding winder is usually done on expanding clamping bars or clamping jaws with a mechanical or pneumatic control, which cause a centric clamping of the winding tube and allow a drive of the winding tube, even with high torques.
  • stretch films - also called load unit securing foil, pallet stretch film, stretch wrap film or stretch wrapping film - have become indispensable in modern logistics when transporting palletized loading units.
  • load unit securing foil In addition to securing the pallets, such films also protect the pallet goods from the effects of weathering and contamination.
  • the stretch film optimally adapts to the pallet and product shape without damaging it.
  • Stretch film are now also various semi or fully automatic stretcher for "Einstretchen" the stacked range available.
  • Stretch films are produced in a wide variety of thicknesses and widths. Typically, for example, film thicknesses between 12-35 ⁇ with a roll width of 200 mm - 1000 mm, preferably 500 mm, which are delivered to 10 - 20 kg rolls.
  • the cores themselves are usually made of a cardboard tube and can be very different depending on the application in width, inner diameter and outer diameter and thus also in terms of their wall thickness.
  • the winder in question has a so-called tensioning shaft with controllable clamping jaws for radial clamping of the respective winding tubes.
  • the tensioning shaft since it is not known in advance with which type of cores the tensioning shaft is loaded, the tensioning shaft must be designed for all possible types of operating cases.
  • the stretch film to be wound up has a high extensibility of up to 400%. This leads to extreme demands on the clamping shaft.
  • a winder is known in which the tensioning shaft is mounted on both sides in a double bearing in order to prevent undesired vibrations of the tensioning shaft and at the same time to permit high rotational accelerations.
  • it is also known to manufacture tensioning shafts completely or partially from fiber composite materials, as described, for example, in WO 2005/124212 A1 or in US Pat. No. 5,746,387.
  • Composite fiber tensioning shafts usually consist of a plastic or crosslinked resin material (reaction resin) containing reinforcing fibers, for example natural fibers, glass fibers (GRP composite) or carbon fibers (CFRP composite material) in the form of finite-length fragments, continuous fibers, mats or fabrics.
  • CFRP shafts CFRP for carbon fiber reinforced plastic or English CFRP for carbon fiber reinforced plastic.
  • CFRP regularly consists of oriented continuous fibers that are embedded in a plastic matrix, usually in several layers. However, the required for the clamping strips recesses undesirably reduce the strength and rigidity of the clamping shaft.
  • the object of the invention is therefore to provide a clamping shaft with the highest possible strength and rigidity.
  • This object is achieved by a tensioning shaft for winding a material web, with a shaft body, which consists to achieve the highest possible bending stiffness for the most part of fiber-reinforced plastic, and with cavities, which are provided along the outer circumference of the shaft body, wherein the cavities in the radial inner direction are limited by a layer of the fiber-reinforced plastic and wherein from the cavities in the radial outer direction clamping strips are expandable.
  • An essential finding of the invention is that the cavities for the clamping strips do not consist of radially continuous recesses, but are limited in the radial inner direction by a layer of fiber-reinforced plastic. In this way, the strength and rigidity of the tensioning shaft can be effectively increased.
  • the fiber-reinforced plastic consists of directional continuous fibers which are connected by means of a cured resin.
  • the oriented continuous fibers consist of carbon fibers.
  • the clamping bars have at their radial end cup-shaped elements which consist of plastic and / or a fiber composite material.
  • a possible method for producing the tensioning shaft according to the invention is a method in which moldings are provided for receiving radially expandable tensioning strips, around which endless fibers are layered, wherein the shaped bodies lie in radial inner direction on at least one layer with directed continuous fibers, in which the shaped bodies are joined together with the continuous fibers by means of a cured resin, and in which after curing of the resin, the radially expandable clamping strips are introduced into the moldings.
  • the moldings may for example consist of aluminum or plastic.
  • the moldings sit as firmly as possible in their fits, the moldings can be glued in addition to the adhesive force on the part of the resin and / or screwed.
  • Another possible method for producing the tensioning shaft according to the invention is a method in which a shaft body to achieve the highest possible flexural rigidity for the most part is made of fiber-reinforced plastic, in which cavities are milled along the circumference of the shaft body, wherein the cavities in the radial inner direction by a Layer of the fiber-reinforced plastic are limited, and are introduced in the radially expandable clamping bars in the cavities.
  • the winder for winding a material web with the tensioning shaft according to the invention is preferably a winder with a bearing arrangement arranged on at least one side of the tensioning shaft, in which the respective end of the tensioning shaft is mounted in two spaced-apart areas.
  • each of the two bearing assemblies supports the associated end of the tensioning shaft in two spaced-apart areas.
  • At least one winding sleeve enclosing the clamping shaft is provided, which can be fixed by means of the expanding clamping strips relative to the clamping shaft.
  • the advantages of the invention are overall a higher strength and rigidity of the tensioning shaft and their storage, which permanently higher production speeds due to a higher critical bending speed are possible.
  • Fig. 1 shows a winding shaft with an unfavorable orientation of the cavities
  • FIG. 2 shows a winding shaft with an alignment of the cavities on obliquely running continuous fibers
  • FIG. 3 shows a winding shaft with an alignment of the cavities on axially extending
  • Fig. 4 the two-sided storage of a clamping shaft with double bearings
  • Fig. 5 is a section through a clamping shaft according to the invention. First, the orientation of the cavities with respect to the filaments will be described.
  • Fig. 1 shows the left half of a winding shaft with a tensioning shaft 101.
  • the winding shaft has axially aligned cavities 102, in the clamping bars can be introduced, which can be pressed pneumatically to the outside and are optionally traced back by spring force.
  • the orientation of a first layer of continuous fibers is indicated by 103 and the orientation of a second layer of continuous fibers within the tensioning shaft is indicated by 104. Since the cavities shorten the filaments 103 and 104, this alignment of the cavities has a negative influence on the strength and rigidity of the tensioning shaft.
  • FIG. 2 shows a winding shaft with a tensioning shaft 201 and with an alignment of the cavities on oblique continuous fibers.
  • the reference numerals 201, 203 and 204 correspond to the reference numerals 101, 103 and 104, so that reference can be made in this regard to the description of FIG. 1.
  • the cavities 202 are now aligned along the directional continuous fibers 204, so that the said negative influence on the strength and rigidity of the tensioning shaft can be reduced.
  • FIG. 3 shows a winding shaft with a specially manufactured tensioning shaft 301, as is known, for example, from WO 2005/124212 A1.
  • the reference numerals 301 and 302 correspond to the reference numerals 101 and 102 of FIG.
  • the tensioning shaft is now made so that the directed endless fibers 303 extend axially to the tensioning shaft 301 and to the axially aligned cavities 302.
  • Fig. 4 shows the two-sided storage of a clamping shaft with double bearings, as this is known from WO 2013/003968 A9.
  • WO 2013/003968 A9 does not disclose the combination of a double bearing with a tensioning shaft made of fiber-reinforced plastic. This combination is also particularly advantageous from the point of view of the invention.
  • the tensioning shaft 401 made of CFRP is therefore firmly clamped in the double bearing 402 on the left side.
  • the bearing assembly 403 is also designed as a double bearing, however, this bearing assembly is detachable via a two-armed scissor unit, so that one or more cores can be pushed from the right onto the clamping shaft or removed from this again after the scissor unit has pivoted the bearing assembly 403.
  • the clamping shaft 501 has five cavities along its circumference, in which pneumatic hoses 502 and movable clamping bars 503 are introduced. In the radial inner direction, the cavities are limited by a layer of fiber-reinforced plastic, so that sets the desired stiffness of the clamping shaft.
  • the clamping bars 503 are also biased with spring elements that bring the clamping bars in the position shown in FIG. 5a, as soon as enough air has escaped from the tubes 502. As far as the clamping bars 503 are not biased, the clamping bars 503 are at escaped air in a position between the respective stops, but without a torque can be transmitted to the outer winding tube.
  • the state according to FIG. 5 b occurs, after which the clamping bars 503 are extended and can exert a radial force on the outer winding tube.
  • the clamping bars 503 can extend continuously in the axial direction over the entire clamping shaft. Alternatively, it is just as possible that the clamping bars of several smaller elements, the number of which is chosen so that enough torque can be transmitted to the outer winding tube.
  • the tensioning shaft 501 itself can be made entirely of fiber-reinforced plastic or consist of a hybrid structure with a fiber-reinforced plastic and a metal.

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Storage Of Web-Like Or Filamentary Materials (AREA)

Abstract

L'invention concerne un arbre tendeur permettant l'enroulement d'une bande de matériau, en particulier de films de matière plastique, et en particulier de films étirables. L'invention vise à fournir un arbre tendeur présentant une résistance et une rigidité aussi élevées que possible. A cet effet, un arbre tendeur est pourvu d'un corps d'arbre, lequel, pour obtenir une rigidité flexionnelle aussi élevée que possible, est constitué en grande partie d'une matière plastique renforcée par des fibres, et de cavités, lesquelles sont disposées le long de la périphérie extérieure du corps de l'arbre, les cavités étant délimitées dans la direction intérieure radiale par une couche de la matière plastique renforcée par des fibres et des barres de tension pouvant être en expansion à partir des cavités dans la direction extérieure radiale.
PCT/EP2014/072108 2013-10-15 2014-10-15 Arbre d'enroulement WO2015055713A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480056954.2A CN105849021B (zh) 2013-10-15 2014-10-15 卷轴
EP14786166.0A EP3057897A1 (fr) 2013-10-15 2014-10-15 Arbre d'enroulement
US15/029,688 US20160229662A1 (en) 2013-10-15 2014-10-15 Winding shaft

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE102013220855.3 2013-10-15
DE102013220855 2013-10-15
DE102013221131 2013-10-17
DE102013221131.7 2013-10-17
DE102013020351.1 2013-12-10
DE102013020351 2013-12-10
DE102014003595.6 2014-03-17
DE102014003595 2014-03-17

Publications (1)

Publication Number Publication Date
WO2015055713A1 true WO2015055713A1 (fr) 2015-04-23

Family

ID=51743426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/072108 WO2015055713A1 (fr) 2013-10-15 2014-10-15 Arbre d'enroulement

Country Status (4)

Country Link
US (1) US20160229662A1 (fr)
EP (1) EP3057897A1 (fr)
CN (1) CN105849021B (fr)
WO (1) WO2015055713A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016198549A1 (fr) * 2015-06-09 2016-12-15 Windmöller & Hölscher Kg Arbre d'enroulement destiné à recevoir au moins un mandrin d'enroulement
WO2018024335A1 (fr) * 2016-08-04 2018-02-08 Colines Air Bubble S.R.L. Bobineuse à broches en mosaïque extensibles
CN111422696A (zh) * 2020-03-30 2020-07-17 重庆金山洋生管道有限公司 纱芯快速更换结构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110902499A (zh) * 2019-11-11 2020-03-24 利辛县力信电力照明科技有限公司 一种线缆收放装置
DE202021106778U1 (de) 2021-12-14 2022-02-28 Karl Mayer Stoll R&D Gmbh Kettenwirkmaschine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1440788A (en) * 1972-09-29 1976-06-23 Freudenberg Carl Roller bodies
US5379964A (en) * 1993-08-10 1995-01-10 Addax, Inc. Composite expandable shaft
US5509618A (en) * 1994-06-14 1996-04-23 Klimex, Inc. Air shaft
US5746387A (en) 1996-02-20 1998-05-05 Pretto; Alessio G. Hybrid composite expandable shaft
US20040035977A1 (en) * 2002-08-26 2004-02-26 Deurse Michael Van Composite expanding shaft with external gripping elements
WO2005124212A1 (fr) 2004-06-04 2005-12-29 Epsilon Composite Sarl Procede de fabrication d'un tube en materiau composite de grande raideur, et tube obtenu
DE202009001846U1 (de) * 2009-02-13 2009-05-20 Theurl Leimholzbau Gmbh Leichtbaukörper aus einem Faserverbundwerkstoff auf Basis von Holzfasermatten, insbesondere für Rotorblätter in Windkraftanlagen
WO2013003968A2 (fr) 2011-07-05 2013-01-10 Swiss Winding Inventing Ag Enrouleur

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2858600Y (zh) * 2006-01-07 2007-01-17 中山市松德包装机械有限公司 一种气胀轴自动充放气装置
CN202924425U (zh) * 2012-11-01 2013-05-08 窦敏江 用于收放卷装置的气胀轴
CN203021077U (zh) * 2012-12-30 2013-06-26 上海善格机电设备有限公司 一种收卷机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1440788A (en) * 1972-09-29 1976-06-23 Freudenberg Carl Roller bodies
US5379964A (en) * 1993-08-10 1995-01-10 Addax, Inc. Composite expandable shaft
US5509618A (en) * 1994-06-14 1996-04-23 Klimex, Inc. Air shaft
US5746387A (en) 1996-02-20 1998-05-05 Pretto; Alessio G. Hybrid composite expandable shaft
US20040035977A1 (en) * 2002-08-26 2004-02-26 Deurse Michael Van Composite expanding shaft with external gripping elements
WO2005124212A1 (fr) 2004-06-04 2005-12-29 Epsilon Composite Sarl Procede de fabrication d'un tube en materiau composite de grande raideur, et tube obtenu
DE202009001846U1 (de) * 2009-02-13 2009-05-20 Theurl Leimholzbau Gmbh Leichtbaukörper aus einem Faserverbundwerkstoff auf Basis von Holzfasermatten, insbesondere für Rotorblätter in Windkraftanlagen
WO2013003968A2 (fr) 2011-07-05 2013-01-10 Swiss Winding Inventing Ag Enrouleur

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016198549A1 (fr) * 2015-06-09 2016-12-15 Windmöller & Hölscher Kg Arbre d'enroulement destiné à recevoir au moins un mandrin d'enroulement
US20180179019A1 (en) * 2015-06-09 2018-06-28 Windmöller & Hölscher Kg Winding Shaft for Receiving at Least One Winding Core
US10513410B2 (en) 2015-06-09 2019-12-24 Windmöller & Hölscher Kg Winding shaft for receiving at least one winding core
WO2018024335A1 (fr) * 2016-08-04 2018-02-08 Colines Air Bubble S.R.L. Bobineuse à broches en mosaïque extensibles
CN111422696A (zh) * 2020-03-30 2020-07-17 重庆金山洋生管道有限公司 纱芯快速更换结构
CN111422696B (zh) * 2020-03-30 2021-12-07 重庆金山洋生管道有限公司 纱芯快速更换结构

Also Published As

Publication number Publication date
CN105849021B (zh) 2018-05-15
US20160229662A1 (en) 2016-08-11
CN105849021A (zh) 2016-08-10
EP3057897A1 (fr) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2015055713A1 (fr) Arbre d'enroulement
EP0113841B1 (fr) Procédé pour fabriquer des objets moulés en matière composite et objets fabriqués selon ce procédé
EP2640567B1 (fr) Procédé et dispositif de fabrication de grandes structures cylindriques
EP2917020B1 (fr) Dispositif et procédé de fabrication de demi-produits pour pales de rotor d'éolienne
EP3496936A1 (fr) Membrure en éléments préfabriqués pourvues de non-tissé et son procédé de production
EP1985434B1 (fr) Roue et procédé de fabrication d'une roue
DE602005006393T2 (de) Wickelkern und zugehöriges verfahren
DE102007019612A1 (de) Speiche, Rad und Verfahren zur Herstellung einer Speiche, insbesondere für Fahrräder
DE102006035939A1 (de) Verfahren zur Herstellung von Faserverbundbauteilen
DE102010005987B4 (de) Verfahren zur Herstellung von Hohlkörpern mit bundförmigen Verstärkungen
DE102011003560B4 (de) Verfahren zum Herstellen eines Faserhalbzeugs für die Herstellung eines faserverstärkten Bauteils einer Windenergieanlage, insbesondere Rotorblattgurt, sowie Faserhalbzeug und Verwendung eines Faserhalbzeugs
WO2009049737A1 (fr) Procédé de production d'une ébauche en un semi-produit textile pour l'obtention d'un profilé de cadre annulaire en un matériau composite fibreux
DE102009036509A1 (de) Metall-Faserverbundwerkstoff-Welle sowie Herstellungsverfahren und Herstellungsanlage für eine Metall-Faserverbundwerkstoff-Welle
AT512563B1 (de) Faserwerkstoffrohling sowie Verfahren zur Herstellung eines Faserwerkstoffverbundbauteils
WO2009112017A2 (fr) Procédé de fabrication d'une pale de rotor pour une installation éolienne et pale de rotor fabriquée selon ce procédé
EP2436512A2 (fr) Procédé de création d'une structure sous vide pour la fabrication d'un composant composite en fibres ainsi que tampon associé
WO2005067364A2 (fr) Cylindre pour recevoir une forme d'impression
DE102014001961A1 (de) Endlos-Hohlprofilteil aus einem Faserverbundkunststoff
DE102009009351B3 (de) Verfahren und Vorrichtung zum Aufwickeln von dünnen Bändern, insbesondere von Bändern mit Ausschnitten und von Reststücken
DE102012104370A1 (de) Verfahren zur Herstellung eines Hohlkörpers aus faserverstärktem Kunststoff
EP3307665B1 (fr) Arbre d'enroulement destiné à recevoir au moins un mandrin d'enroulement
EP1982938B1 (fr) Procédé de stockage de demi-produits plats en forme de bande
DE102013108184B3 (de) Wickelmaschine und Verfahren zum Herstellen von Drahtkernen für Fahrzeugreifen
EP2202084A1 (fr) Presse pour une imprimante, imprimante dotée de cette presse et procédé de fabrication d'une presse
DE102016110848A1 (de) Verfahren und Vorrichtung zum Herstellen eines Vorformlings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14786166

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014786166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014786166

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15029688

Country of ref document: US