WO2015055713A1 - Winding shaft - Google Patents

Winding shaft Download PDF

Info

Publication number
WO2015055713A1
WO2015055713A1 PCT/EP2014/072108 EP2014072108W WO2015055713A1 WO 2015055713 A1 WO2015055713 A1 WO 2015055713A1 EP 2014072108 W EP2014072108 W EP 2014072108W WO 2015055713 A1 WO2015055713 A1 WO 2015055713A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
tensioning shaft
cavities
winding
tensioning
Prior art date
Application number
PCT/EP2014/072108
Other languages
German (de)
French (fr)
Inventor
Frank Hoffmann
Original Assignee
Windmöller & Hölscher Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Windmöller & Hölscher Kg filed Critical Windmöller & Hölscher Kg
Priority to EP14786166.0A priority Critical patent/EP3057897A1/en
Priority to CN201480056954.2A priority patent/CN105849021B/en
Priority to US15/029,688 priority patent/US20160229662A1/en
Publication of WO2015055713A1 publication Critical patent/WO2015055713A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/18Constructional details
    • B65H75/24Constructional details adjustable in configuration, e.g. expansible
    • B65H75/242Expansible spindles, mandrels or chucks, e.g. for securing or releasing cores, holders or packages
    • B65H75/243Expansible spindles, mandrels or chucks, e.g. for securing or releasing cores, holders or packages actuated by use of a fluid
    • B65H75/2437Expansible spindles, mandrels or chucks, e.g. for securing or releasing cores, holders or packages actuated by use of a fluid comprising a fluid-pressure-actuated elastic member, e.g. a diaphragm or a pneumatic tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2401/00Materials used for the handling apparatus or parts thereof; Properties thereof
    • B65H2401/10Materials
    • B65H2401/11Polymer compositions
    • B65H2401/112Fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2401/00Materials used for the handling apparatus or parts thereof; Properties thereof
    • B65H2401/20Physical properties, e.g. lubricity
    • B65H2401/23Strength of materials, e.g. Young's modulus or tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/40Shafts, cylinders, drums, spindles
    • B65H2404/41Details of cross section profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2515/00Physical entities not provided for in groups B65H2511/00 or B65H2513/00
    • B65H2515/81Rigidity; Stiffness; Elasticity

Definitions

  • the invention relates to a tensioning shaft for winding a material web, in particular of plastic films, in particular of stretch films. Moreover, the invention relates to a method for producing such a tensioning shaft and a winder with such a tensioning shaft.
  • Winding shafts consisting of a clamping shaft and a winding tube for winding and / or unwinding of web-shaped, band-shaped or filamentary materials of various kinds, such as paper, aluminum and plastic films, textiles or non-woven fabrics or the like, are well known and specific to the particular application aligned or turned off on the specific winding technique.
  • winding tube in a corresponding winder is usually done on expanding clamping bars or clamping jaws with a mechanical or pneumatic control, which cause a centric clamping of the winding tube and allow a drive of the winding tube, even with high torques.
  • stretch films - also called load unit securing foil, pallet stretch film, stretch wrap film or stretch wrapping film - have become indispensable in modern logistics when transporting palletized loading units.
  • load unit securing foil In addition to securing the pallets, such films also protect the pallet goods from the effects of weathering and contamination.
  • the stretch film optimally adapts to the pallet and product shape without damaging it.
  • Stretch film are now also various semi or fully automatic stretcher for "Einstretchen" the stacked range available.
  • Stretch films are produced in a wide variety of thicknesses and widths. Typically, for example, film thicknesses between 12-35 ⁇ with a roll width of 200 mm - 1000 mm, preferably 500 mm, which are delivered to 10 - 20 kg rolls.
  • the cores themselves are usually made of a cardboard tube and can be very different depending on the application in width, inner diameter and outer diameter and thus also in terms of their wall thickness.
  • the winder in question has a so-called tensioning shaft with controllable clamping jaws for radial clamping of the respective winding tubes.
  • the tensioning shaft since it is not known in advance with which type of cores the tensioning shaft is loaded, the tensioning shaft must be designed for all possible types of operating cases.
  • the stretch film to be wound up has a high extensibility of up to 400%. This leads to extreme demands on the clamping shaft.
  • a winder is known in which the tensioning shaft is mounted on both sides in a double bearing in order to prevent undesired vibrations of the tensioning shaft and at the same time to permit high rotational accelerations.
  • it is also known to manufacture tensioning shafts completely or partially from fiber composite materials, as described, for example, in WO 2005/124212 A1 or in US Pat. No. 5,746,387.
  • Composite fiber tensioning shafts usually consist of a plastic or crosslinked resin material (reaction resin) containing reinforcing fibers, for example natural fibers, glass fibers (GRP composite) or carbon fibers (CFRP composite material) in the form of finite-length fragments, continuous fibers, mats or fabrics.
  • CFRP shafts CFRP for carbon fiber reinforced plastic or English CFRP for carbon fiber reinforced plastic.
  • CFRP regularly consists of oriented continuous fibers that are embedded in a plastic matrix, usually in several layers. However, the required for the clamping strips recesses undesirably reduce the strength and rigidity of the clamping shaft.
  • the object of the invention is therefore to provide a clamping shaft with the highest possible strength and rigidity.
  • This object is achieved by a tensioning shaft for winding a material web, with a shaft body, which consists to achieve the highest possible bending stiffness for the most part of fiber-reinforced plastic, and with cavities, which are provided along the outer circumference of the shaft body, wherein the cavities in the radial inner direction are limited by a layer of the fiber-reinforced plastic and wherein from the cavities in the radial outer direction clamping strips are expandable.
  • An essential finding of the invention is that the cavities for the clamping strips do not consist of radially continuous recesses, but are limited in the radial inner direction by a layer of fiber-reinforced plastic. In this way, the strength and rigidity of the tensioning shaft can be effectively increased.
  • the fiber-reinforced plastic consists of directional continuous fibers which are connected by means of a cured resin.
  • the oriented continuous fibers consist of carbon fibers.
  • the clamping bars have at their radial end cup-shaped elements which consist of plastic and / or a fiber composite material.
  • a possible method for producing the tensioning shaft according to the invention is a method in which moldings are provided for receiving radially expandable tensioning strips, around which endless fibers are layered, wherein the shaped bodies lie in radial inner direction on at least one layer with directed continuous fibers, in which the shaped bodies are joined together with the continuous fibers by means of a cured resin, and in which after curing of the resin, the radially expandable clamping strips are introduced into the moldings.
  • the moldings may for example consist of aluminum or plastic.
  • the moldings sit as firmly as possible in their fits, the moldings can be glued in addition to the adhesive force on the part of the resin and / or screwed.
  • Another possible method for producing the tensioning shaft according to the invention is a method in which a shaft body to achieve the highest possible flexural rigidity for the most part is made of fiber-reinforced plastic, in which cavities are milled along the circumference of the shaft body, wherein the cavities in the radial inner direction by a Layer of the fiber-reinforced plastic are limited, and are introduced in the radially expandable clamping bars in the cavities.
  • the winder for winding a material web with the tensioning shaft according to the invention is preferably a winder with a bearing arrangement arranged on at least one side of the tensioning shaft, in which the respective end of the tensioning shaft is mounted in two spaced-apart areas.
  • each of the two bearing assemblies supports the associated end of the tensioning shaft in two spaced-apart areas.
  • At least one winding sleeve enclosing the clamping shaft is provided, which can be fixed by means of the expanding clamping strips relative to the clamping shaft.
  • the advantages of the invention are overall a higher strength and rigidity of the tensioning shaft and their storage, which permanently higher production speeds due to a higher critical bending speed are possible.
  • Fig. 1 shows a winding shaft with an unfavorable orientation of the cavities
  • FIG. 2 shows a winding shaft with an alignment of the cavities on obliquely running continuous fibers
  • FIG. 3 shows a winding shaft with an alignment of the cavities on axially extending
  • Fig. 4 the two-sided storage of a clamping shaft with double bearings
  • Fig. 5 is a section through a clamping shaft according to the invention. First, the orientation of the cavities with respect to the filaments will be described.
  • Fig. 1 shows the left half of a winding shaft with a tensioning shaft 101.
  • the winding shaft has axially aligned cavities 102, in the clamping bars can be introduced, which can be pressed pneumatically to the outside and are optionally traced back by spring force.
  • the orientation of a first layer of continuous fibers is indicated by 103 and the orientation of a second layer of continuous fibers within the tensioning shaft is indicated by 104. Since the cavities shorten the filaments 103 and 104, this alignment of the cavities has a negative influence on the strength and rigidity of the tensioning shaft.
  • FIG. 2 shows a winding shaft with a tensioning shaft 201 and with an alignment of the cavities on oblique continuous fibers.
  • the reference numerals 201, 203 and 204 correspond to the reference numerals 101, 103 and 104, so that reference can be made in this regard to the description of FIG. 1.
  • the cavities 202 are now aligned along the directional continuous fibers 204, so that the said negative influence on the strength and rigidity of the tensioning shaft can be reduced.
  • FIG. 3 shows a winding shaft with a specially manufactured tensioning shaft 301, as is known, for example, from WO 2005/124212 A1.
  • the reference numerals 301 and 302 correspond to the reference numerals 101 and 102 of FIG.
  • the tensioning shaft is now made so that the directed endless fibers 303 extend axially to the tensioning shaft 301 and to the axially aligned cavities 302.
  • Fig. 4 shows the two-sided storage of a clamping shaft with double bearings, as this is known from WO 2013/003968 A9.
  • WO 2013/003968 A9 does not disclose the combination of a double bearing with a tensioning shaft made of fiber-reinforced plastic. This combination is also particularly advantageous from the point of view of the invention.
  • the tensioning shaft 401 made of CFRP is therefore firmly clamped in the double bearing 402 on the left side.
  • the bearing assembly 403 is also designed as a double bearing, however, this bearing assembly is detachable via a two-armed scissor unit, so that one or more cores can be pushed from the right onto the clamping shaft or removed from this again after the scissor unit has pivoted the bearing assembly 403.
  • the clamping shaft 501 has five cavities along its circumference, in which pneumatic hoses 502 and movable clamping bars 503 are introduced. In the radial inner direction, the cavities are limited by a layer of fiber-reinforced plastic, so that sets the desired stiffness of the clamping shaft.
  • the clamping bars 503 are also biased with spring elements that bring the clamping bars in the position shown in FIG. 5a, as soon as enough air has escaped from the tubes 502. As far as the clamping bars 503 are not biased, the clamping bars 503 are at escaped air in a position between the respective stops, but without a torque can be transmitted to the outer winding tube.
  • the state according to FIG. 5 b occurs, after which the clamping bars 503 are extended and can exert a radial force on the outer winding tube.
  • the clamping bars 503 can extend continuously in the axial direction over the entire clamping shaft. Alternatively, it is just as possible that the clamping bars of several smaller elements, the number of which is chosen so that enough torque can be transmitted to the outer winding tube.
  • the tensioning shaft 501 itself can be made entirely of fiber-reinforced plastic or consist of a hybrid structure with a fiber-reinforced plastic and a metal.

Abstract

The invention relates to a tensioning shaft for winding a material web, in particular of plastic films, namely in particular of stretch films. In order to provide a tensioning shaft having the highest possible strength and rigidity, a tensioning shaft is provided which has a shaft body which in order to achieve the highest possible bending stiffness consists predominantly of fibre-reinforced plastic, and having cavities which are provided along the external circumference of the shaft body, wherein the cavities are delimited in the radial internal direction by a layer of the fibre-reinforced plastic are and wherein tensioning strips are expandable out of the cavities in the radial external direction.

Description

Wickelwelle  winding shaft
Die Erfindung betrifft eine Spannwelle zum Aufwickeln einer Material bahn, insbesondere von Kunststofffolien, und zwar insbesondere von Stretchfolien. Außerdem betrifft die Erfindung ein Verfahren zum Herstellen einer derartigen Spannwelle sowie einen Wickler mit einer derartigen Spannwelle. The invention relates to a tensioning shaft for winding a material web, in particular of plastic films, in particular of stretch films. Moreover, the invention relates to a method for producing such a tensioning shaft and a winder with such a tensioning shaft.
Wickelwellen bestehend aus einer Spannwelle und einer Wickelhülse zum Auf- und/oder Abwickeln von bahnförmigen, bandförmigen oder fadenförmigen Materialien der unterschiedlichsten Art, beispielsweise Papier, Aluminium- und Kunststofffolien, Textilien oder vliesartigen Geweben oder dergleichen, sind hinreichend bekannt und für den jeweiligen Verwendungszweck speziell ausgerichtet bzw. auf die bestimmte Wickeltechnik abgestellt. Winding shafts consisting of a clamping shaft and a winding tube for winding and / or unwinding of web-shaped, band-shaped or filamentary materials of various kinds, such as paper, aluminum and plastic films, textiles or non-woven fabrics or the like, are well known and specific to the particular application aligned or turned off on the specific winding technique.
Die Aufnahme der Wickelhülse in einem entsprechenden Wickler erfolgt gewöhnlich über expandierende Spannleisten bzw. Spannbacken mit einer mechanischen oder pneumatischen Steuerung, die ein zentrisches Spannen der Wickelhülse bewirken und einen Antrieb der Wickelhülse auch mit großen Drehmomenten ermöglichen. The inclusion of the winding tube in a corresponding winder is usually done on expanding clamping bars or clamping jaws with a mechanical or pneumatic control, which cause a centric clamping of the winding tube and allow a drive of the winding tube, even with high torques.
Besondere Anforderungen an die Wickelwelle entstehen wiederum beim Aufwickeln von sogenannten Stretchfolien. Special requirements for the winding shaft in turn arise when winding so-called stretch films.
Stretchfolien - je nach Anwendungsfall auch Ladeeinheiten-Sicherungsfolie, Paletten- Stretchfolie, Wickel-Stretchfolie oder Verpackungs-Stretchfolie genannt - sind aus der modernen Logistik beim Transport palettierter Ladeeinheiten nicht mehr wegzudenken. Neben der Palettensicherung schützen derartige Folien das Palettengut auch vor Witterungseinflüssen und Verschmutzung. Die Stretchfolie passt sich dabei optimal der Paletten- und Produktform an ohne sie zu beschädigen. Für die Applikation der Stretchfolie sind außerdem inzwischen diverse halb- oder vollautomatischer Stretchanlagen zum "Einstretchen" der aufgestapelten Palette verfügbar. Depending on the application, stretch films - also called load unit securing foil, pallet stretch film, stretch wrap film or stretch wrapping film - have become indispensable in modern logistics when transporting palletized loading units. In addition to securing the pallets, such films also protect the pallet goods from the effects of weathering and contamination. The stretch film optimally adapts to the pallet and product shape without damaging it. For the application of Stretch film are now also various semi or fully automatic stretcher for "Einstretchen" the stacked range available.
Stretchfolien werden in den unterschiedlichsten Dicken und Breiten hergestellt. Typisch sind beispielsweise Foliendicken zwischen 12 - 35 μηι bei einer Rollenbreite von 200 mm - 1000 mm, vorzugsweise 500 mm, die auf 10 - 20 kg schweren Rollen ausgeliefert werden. Stretch films are produced in a wide variety of thicknesses and widths. Typically, for example, film thicknesses between 12-35 μηι with a roll width of 200 mm - 1000 mm, preferably 500 mm, which are delivered to 10 - 20 kg rolls.
Mit derzeit ca. 1 ,5 Mio. Jahrestonnen europaweit und ca. 3,0 Mio. Jahrestonnen weltweit kommt dem Markt der Stretchfolien auch in Zukunft ein bedeutender Volumenanteil zu. Die Anforderungen an die Anlagen zur Herstellung von Stretchfolien steigen damit stetig mit Bezug auf Effizienz und Ausstoß. Diesen steigenden Anforderungen muss auch der Wickler nachkommen, der am Ende der Produktionsanlage die fertig produzierte Stretchfolie auf eine Wickelhülse aufwickelt. Hierbei kann eine Wickelhülse über die gesamte Produktionsbreite zum Einsatz kommen. Meistens werden jedoch mehrere Wickelhülsen nebeneinander eingesetzt, wobei die Stretchfolie vor dem Wickeln auf die Wickelhülsen dann durch entsprechende Messer in Produktionsrichtung geteilt wird. So werden beispielsweise bei einer Produktionsbreite von 1500 mm drei Nutzen je 500 mm parallel gefahren und aufgewickelt. With currently approx. 1.5 million tonnes per annum across Europe and approx. 3.0 million tonnes per annum worldwide, the stretch film market will continue to enjoy a significant volume share in the future. The requirements for the production of stretch films are therefore constantly increasing with regard to efficiency and output. The winder, which winds the finished stretch film onto a winding tube at the end of the production line, must also meet these increasing demands. Here, a winding tube over the entire production width can be used. Mostly, however, several cores are used side by side, the stretch film is then divided before winding on the cores then by appropriate knives in the direction of production. For example, with a production width of 1500 mm, three benefits per 500 mm are moved in parallel and wound up.
Die Wickelhülsen selber bestehen in der Regel aus einem Papprohr und können in Abhängigkeit vom Anwendungsfall in Breite, Innendurchmesser und Außendurchmesser und damit auch hinsichtlich ihrer Wandstärke sehr unterschiedlich sein. The cores themselves are usually made of a cardboard tube and can be very different depending on the application in width, inner diameter and outer diameter and thus also in terms of their wall thickness.
Um für alle Anwendungsfälle die produzierte Stretchfolie auf die Wickelhülsen aufwickeln zu können, weist der betreffende Wickler eine sogenannte Spannwelle mit steuerbaren Spannbacken zum radialen Festklemmen der betreffenden Wickelhülsen auf. Da aber im Voraus nicht bekannt ist, mit welcher Art von Wickelhülsen die Spannwelle beladen wird, muss die Spannwelle für alle möglichen Arten von Betriebsfällen ausgelegt sein. Gleichzeitig ist zu beachten, dass die aufzuwickelnde Stretchfolie aufgrund der beschriebenen Eigenschaften eine hohe Dehnbarkeit von bis zu 400 % aufweist. Dies führt zu extremen Anforderungen an die Spannwelle. Aus WO2013/003968 A9 ist ein Wickler bekannt, bei dem die Spannwelle beidseitig in einem Doppellager gelagert ist, um unerwünschte Vibrationen der Spannwelle zu verhindern und gleichzeitig hohe Drehbeschleunigungen zu ermöglichen. Um für die Spannwelle eine hohe Biegesteifigkeit bei gleichzeitig geringem Außendurchmesser zu erzielen, ist es außerdem bekannt, Spannwellen ganz oder teilweise aus Faserverbundwerkstoffen herzustellen, wie dies beispielsweise in der WO 2005/124212 A1 oder in der US 5,746,387 beschrieben ist. Spannwellen aus Faserverbundwerkstoffen bestehen gewöhnlich aus einem Kunststoff- oder vernetztem Harzmaterial (Reaktionsharz), welches Verstärkungsfasern, beispielsweise Naturfasern, Glasfasern (GFK-Verbund) oder Kohlenstofffasern (CFK-Verbundmaterial), in Form von Bruchstücken endlicher Länge, Endlosfasern, Matten oder Geweben enthält. Verbundwerkstoffe mit Bruchfasern werden insbesondere endlos extrudiert oder im Spritzguss verarbeitet. Verbundwerkstoffe mit Endlosfasern werden insbesondere im Wickelverfahren (Filament Winding) oder Strangziehverfahren (Pultrusion) zu Rohren oder Hülsen verarbeitet. Besonders geeignet sind sogenannte CFK-Wellen (CFK für carbonfaserverstärkter Kunststoff oder englisch CFRP für carbon-fiber-reinforced plastic). CFK besteht dabei regelmäßig aus gerichteten Endlosfasern, die - meist in mehreren Lagen - in eine Kunststoff-Matrix eingebettet sind. Die für die Spannleisten erforderlichen Aussparungen verringern allerdings in unerwünschter Weise die Festigkeit und Steifigkeit der Spannwelle. In order to be able to wind the produced stretch film on the winding tubes for all applications, the winder in question has a so-called tensioning shaft with controllable clamping jaws for radial clamping of the respective winding tubes. However, since it is not known in advance with which type of cores the tensioning shaft is loaded, the tensioning shaft must be designed for all possible types of operating cases. At the same time, it should be noted that due to the properties described, the stretch film to be wound up has a high extensibility of up to 400%. This leads to extreme demands on the clamping shaft. From WO2013 / 003968 A9 a winder is known in which the tensioning shaft is mounted on both sides in a double bearing in order to prevent undesired vibrations of the tensioning shaft and at the same time to permit high rotational accelerations. In order to achieve a high flexural rigidity and at the same time a small outside diameter for the tensioning shaft, it is also known to manufacture tensioning shafts completely or partially from fiber composite materials, as described, for example, in WO 2005/124212 A1 or in US Pat. No. 5,746,387. Composite fiber tensioning shafts usually consist of a plastic or crosslinked resin material (reaction resin) containing reinforcing fibers, for example natural fibers, glass fibers (GRP composite) or carbon fibers (CFRP composite material) in the form of finite-length fragments, continuous fibers, mats or fabrics. Composite materials with broken fibers are in particular extruded endlessly or processed by injection molding. Continuous fiber composites are processed into tubes or tubes, in particular by filament winding or pultrusion. Particularly suitable are so-called CFRP shafts (CFRP for carbon fiber reinforced plastic or English CFRP for carbon fiber reinforced plastic). CFRP regularly consists of oriented continuous fibers that are embedded in a plastic matrix, usually in several layers. However, the required for the clamping strips recesses undesirably reduce the strength and rigidity of the clamping shaft.
Aufgabe der Erfindung ist es daher, eine Spannwelle mit einer möglichst hohen Festigkeit und Steifigkeit bereitzustellen. Diese Aufgabe wird durch eine Spannwelle zum Aufwickeln einer Materialbahn gelöst, mit einem Wellenkörper, der zur Erreichung einer möglichst hohen Biegesteifigkeit zum Großteil aus faserverstärktem Kunststoff besteht, und mit Hohlräumen, die entlang des äußeren Umfangs des Wellenkörpers vorgesehen sind, wobei die Hohlräume in radialer Innenrichtung durch eine Schicht des faserverstärkten Kunststoffes begrenzt sind und wobei aus den Hohlräumen in radialer Außenrichtung Spannleisten expandierbar sind. Eine wesentliche Erkenntnis der Erfindung besteht darin, dass die Hohlräume für die Spannleisten nicht aus radial durchgehenden Aussparungen bestehen, sondern in radialer Innenrichtung durch eine Schicht des faserverstärkten Kunststoffes begrenzt sind. Auf diese Weise kann die Festigkeit und Steifigkeit der Spannwelle wirksam erhöht werden. The object of the invention is therefore to provide a clamping shaft with the highest possible strength and rigidity. This object is achieved by a tensioning shaft for winding a material web, with a shaft body, which consists to achieve the highest possible bending stiffness for the most part of fiber-reinforced plastic, and with cavities, which are provided along the outer circumference of the shaft body, wherein the cavities in the radial inner direction are limited by a layer of the fiber-reinforced plastic and wherein from the cavities in the radial outer direction clamping strips are expandable. An essential finding of the invention is that the cavities for the clamping strips do not consist of radially continuous recesses, but are limited in the radial inner direction by a layer of fiber-reinforced plastic. In this way, the strength and rigidity of the tensioning shaft can be effectively increased.
Nach einer bevorzugten Ausführungsform ist vorgesehen, dass der faserverstärkte Kunststoff aus gerichteten Endlosfasern besteht, die mittels eines ausgehärteten Harzes verbunden sind. According to a preferred embodiment it is provided that the fiber-reinforced plastic consists of directional continuous fibers which are connected by means of a cured resin.
Nach einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass die gerichteten Endlosfasern aus Karbonfasern bestehen. According to a further preferred embodiment, it is provided that the oriented continuous fibers consist of carbon fibers.
Nach einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass die Spannleisten an ihrem radialen Ende schalenförmige Elemente aufweisen, die aus Kunststoff und/oder einem Faserverbundwerkstoff bestehen. According to a further preferred embodiment it is provided that the clamping bars have at their radial end cup-shaped elements which consist of plastic and / or a fiber composite material.
Ein mögliches Verfahren zum Herstellen der erfindungsgemäßen Spannwelle ist ein Verfahren, bei dem Formkörper zur Aufnahme von radial expandierbaren Spannleisten vorgesehen sind, um die herum Endlosfasern geschichtet werden, wobei die Formkörper in radialer Innenrichtung auf mindestens einer Schicht mit gerichteten Endlosfasern aufliegen, bei dem die Formkörper zusammen mit den Endlosfasern mittels eines ausgehärteten Harzes verbunden werden, und bei dem nach dem Aushärten des Harzes die radial expandierbaren Spannleisten in die Formkörper eingebracht werden. A possible method for producing the tensioning shaft according to the invention is a method in which moldings are provided for receiving radially expandable tensioning strips, around which endless fibers are layered, wherein the shaped bodies lie in radial inner direction on at least one layer with directed continuous fibers, in which the shaped bodies are joined together with the continuous fibers by means of a cured resin, and in which after curing of the resin, the radially expandable clamping strips are introduced into the moldings.
Die Formkörper können beispielsweise aus Aluminium oder Kunststoff bestehen. Damit die Formkörper in ihren Passungen möglichst fest sitzen, können die Formkörper zusätzlich zur Haftkraft seitens des Harzes eingeklebt und/oder eingeschraubt werden. The moldings may for example consist of aluminum or plastic. Thus, the moldings sit as firmly as possible in their fits, the moldings can be glued in addition to the adhesive force on the part of the resin and / or screwed.
Ein anderes mögliches Verfahren zum Herstellen der erfindungsgemäßen Spannwelle ist ein Verfahren, bei dem ein Wellenkörper zur Erreichung einer möglichst hohen Biegesteifigkeit zum Großteil aus faserverstärktem Kunststoff hergestellt wird, bei dem entlang des Umfangs des Wellenkörpers Hohlräume gefräst werden, wobei die Hohlräume in radialer Innenrichtung durch eine Schicht des faserverstärkten Kunststoffes begrenzt sind, und bei dem radial expandierbare Spannleisten in die Hohlräume eingebracht werden. Bei dem Wickler zum Aufwickeln einer Materialbahn mit der erfindungsgemäßen Spannwelle handelt es sich vorzugsweise um einen Wickler mit einer an mindestens einer Seite der Spannwelle angeordneten Lageranordnung, in der das jeweilige Ende der Spannwelle in zwei voneinander beabstandeten Bereichen gelagert ist. Another possible method for producing the tensioning shaft according to the invention is a method in which a shaft body to achieve the highest possible flexural rigidity for the most part is made of fiber-reinforced plastic, in which cavities are milled along the circumference of the shaft body, wherein the cavities in the radial inner direction by a Layer of the fiber-reinforced plastic are limited, and are introduced in the radially expandable clamping bars in the cavities. The winder for winding a material web with the tensioning shaft according to the invention is preferably a winder with a bearing arrangement arranged on at least one side of the tensioning shaft, in which the respective end of the tensioning shaft is mounted in two spaced-apart areas.
Nach einer bevorzugten Ausführungsform sind an beiden Seiten der Spannwelle angeordnete Lageranordnungen vorgesehen, in denen die Enden der Spannwelle gelagert sind, wobei jede der beiden Lageranordnungen das zugehörige Ende der Spannwelle in zwei voneinander beabstandeten Bereichen lagert. According to a preferred embodiment arranged on both sides of the tensioning shaft bearing assemblies are provided, in which the ends of the tensioning shaft are mounted, wherein each of the two bearing assemblies supports the associated end of the tensioning shaft in two spaced-apart areas.
Nach einer weiteren bevorzugten Ausführungsform ist mindestens eine die Spannwelle umschließende Wickelhülse vorgesehen, die mittels der expandierenden Spannleisten gegenüber der Spannwelle fixierbar ist. According to a further preferred embodiment, at least one winding sleeve enclosing the clamping shaft is provided, which can be fixed by means of the expanding clamping strips relative to the clamping shaft.
Die Vorteile der Erfindung sind insgesamt eine höhere Festigkeit und Steifigkeit der Spannwelle sowie ihrer Lagerung, womit dauerhaft höhere Produktionsgeschwindigkeiten aufgrund einer höheren biegekritischen Drehzahl möglich sind. The advantages of the invention are overall a higher strength and rigidity of the tensioning shaft and their storage, which permanently higher production speeds due to a higher critical bending speed are possible.
Weitere Einzelheiten und Vorteile der Erfindung werden anhand der beigefügten Zeichnungen beschrieben. In diesen zeigen: Further details and advantages of the invention will be described with reference to the accompanying drawings. In these show:
Fig. 1 eine Wickelwelle mit einer ungünstigen Ausrichtung der Hohlräume mit Fig. 1 shows a winding shaft with an unfavorable orientation of the cavities
Bezug auf die Endlosfasern,  Respect to the continuous fibers,
Fig. 2 eine Wickelwelle mit einer Ausrichtung der Hohlräume auf schräg verlaufende Endlosfasern, Fig. 3 eine Wickelwelle mit einer Ausrichtung der Hohlräume auf axial verlaufende 2 shows a winding shaft with an alignment of the cavities on obliquely running continuous fibers, FIG. 3 shows a winding shaft with an alignment of the cavities on axially extending
Endlosfasern,  Continuous fibers,
Fig. 4 die beidseitige Lagerung einer Spannwelle mit Doppellagern, und Fig. 5 einen Schnitt durch eine erfindungsgemäße Spannwelle. Zunächst wird die Ausrichtung der Hohlräume mit Bezug auf die Endlosfasern beschrieben. Fig. 4, the two-sided storage of a clamping shaft with double bearings, and Fig. 5 is a section through a clamping shaft according to the invention. First, the orientation of the cavities with respect to the filaments will be described.
Wird die Spannwelle mit Endlosfasern im Wickelverfahren (Filament Winding) hergestellt, dann ist zu beachten, dass eine parallele Ausrichtung der Endlosfasern zur Achse aufgrund der bei der Herstellung der Wickelhülse vorliegenden maschinenseitigen Begrenzungen nicht möglich ist. Möglich sind vielmehr nur Ausrichtungen bis ca. 7° zur Achsrichtung. Wenn nun - wie in Fig. 1 dargestellt - die Aussparungen der Hohlräume dennoch axial ausgerichtet werden, dann hat dies hinsichtlich der dazu kreuzenden Endlosfasern einen negativen Einfluss auf die Festigkeit und Steifigkeit der Spannwelle. If the tensioning shaft is produced with endless fibers in the winding process (filament winding), then it should be noted that a parallel alignment of the endless fibers to the axis is not possible due to the machine-side limitations present during the production of the winding sleeve. Rather, only alignments up to about 7 ° to the axial direction are possible. If now - as shown in Fig. 1 - the recesses of the cavities are still aligned axially, then this has a negative impact on the strength and rigidity of the clamping shaft with respect to the intersecting endless fibers.
Fig. 1 zeigt die linke Hälfte einer Wickelwelle mit einer Spannwelle 101. Die Wickelwelle weist axial ausgerichtete Hohlräume 102 auf, in die Spannleisten einbringbar sind, die pneumatisch nach außen gepresst werden können und optional über Federkraft wieder zurückführbar sind. Mit 103 ist die Ausrichtung einer ersten Lage von Endlosfasern und mit 104 die Ausrichtung einer zweiten Lage von Endlosfasern innerhalb der Spannwelle angedeutet. Da die Hohlräume die Endlosfasern 103 und 104 verkürzen, hat diese Ausrichtung der Hohlräume einen negativen Einfluss auf die Festigkeit und Steifigkeit der Spannwelle. Fig. 1 shows the left half of a winding shaft with a tensioning shaft 101. The winding shaft has axially aligned cavities 102, in the clamping bars can be introduced, which can be pressed pneumatically to the outside and are optionally traced back by spring force. The orientation of a first layer of continuous fibers is indicated by 103 and the orientation of a second layer of continuous fibers within the tensioning shaft is indicated by 104. Since the cavities shorten the filaments 103 and 104, this alignment of the cavities has a negative influence on the strength and rigidity of the tensioning shaft.
Fig. 2 zeigt eine Wickelwelle mit einer Spannwelle 201 und mit einer Ausrichtung der Hohlräume auf schräg verlaufende Endlosfasern. Die Bezugszeichen 201 , 203 und 204 entsprechen den Bezugszeichen 101 , 103 und 104, sodass diesbezüglich auf die Beschreibung aus Fig. 1 verwiesen werden kann. Die Hohlräume 202 sind allerdings nunmehr entlang der gerichteten Endlosfasern 204 ausgerichtet, sodass der besagte negative Einfluss auf die Festigkeit und Steifigkeit der Spannwelle reduziert werden kann. Fig. 3 zeigt eine Wickelwelle mit einer speziell gefertigten Spannwelle 301 , wie diese beispielsweise aus der WO 2005/124212 A1 bekannt ist. Die Bezugszeichen 301 und 302 entsprechen den Bezugszeichen 101 und 102 aus Fig. 1 , sodass diesbezüglich auf die Beschreibung von Fig. 1 verwiesen werden kann. Die Spannwelle ist nunmehr so gefertigt, dass die gerichteten Endlosfasern 303 axial zur Spannwelle 301 und zu den axial ausgerichteten Hohlräumen 302 verlaufen. Dies ist gemäß der WO 2005/124212 A1 durch die Verwendung von Versteifungsrippen möglich, die im Pultrusionsverfahren hergestellt wurden und die einen besonders hohen Faservolumenanteil erlauben. In entsprechender Weise sind auch die Hohlräume ausgerichtet. Fig. 2 shows a winding shaft with a tensioning shaft 201 and with an alignment of the cavities on oblique continuous fibers. The reference numerals 201, 203 and 204 correspond to the reference numerals 101, 103 and 104, so that reference can be made in this regard to the description of FIG. 1. However, the cavities 202 are now aligned along the directional continuous fibers 204, so that the said negative influence on the strength and rigidity of the tensioning shaft can be reduced. FIG. 3 shows a winding shaft with a specially manufactured tensioning shaft 301, as is known, for example, from WO 2005/124212 A1. The reference numerals 301 and 302 correspond to the reference numerals 101 and 102 of FIG. 1, so that reference can be made in this regard to the description of FIG. 1. The tensioning shaft is now made so that the directed endless fibers 303 extend axially to the tensioning shaft 301 and to the axially aligned cavities 302. This is possible according to WO 2005/124212 A1 through the use of stiffening ribs, which were produced in the pultrusion process and which have a particularly high Allow fiber volume fraction. In a corresponding manner, the cavities are aligned.
Fig. 4 zeigt die beidseitige Lagerung einer Spannwelle mit Doppellagern, wie diese aus WO 2013/003968 A9 bekannt ist. WO 2013/003968 A9 offenbart allerdings nicht die Kombination einer Doppellagerung mit einer Spannwelle aus faserverstärktem Kunststoff. Diese Kombination ist aus der Sicht der Erfindung ebenfalls besonders vorteilhaft. Die demnach aus CFK gefertigte Spannwelle 401 ist auf der linken Seite in das Doppellager 402 fest eingespannt. Die Lageranordnung 403 ist ebenfalls als Doppellager ausgeführt, allerdings ist diese Lageranordnung über eine zweiarmige Schereneinheit lösbar, sodass ein oder mehrere Wickelhülsen von rechts auf die Spannwelle geschoben bzw. von dieser wieder entnommen werden können, nachdem die Schereneinheit die Lageranordnung 403 weggeschwenkt hat. Fig. 5 zeigt einen Schnitt durch eine erfindungsgemäße Spannwelle auf faserverstärktem Kunststoff. Die Spannwelle 501 weist entlang ihres Umfangs fünf Hohlräume auf, in die pneumatische Schläuche 502 sowie bewegliche Spannleisten 503 eingebracht sind. In radialer Innenrichtung sind die Hohlräume durch eine Schicht des faserverstärkten Kunststoffes begrenzt, sodass sich die gewünschte Steifigkeit der Spannwelle einstellt. Optional - aber nicht notwendigerweise - sind die Spannleisten 503 außerdem mit Federelementen vorgespannt, die die Spannleisten in die gemäß Fig. 5a gezeigte Position bringen, sobald genügend Luft aus den Schläuchen 502 entwichen ist. Soweit die Spannleisten 503 nicht vorgespannt sind, befinden sich die Spannleisten 503 bei entwichener Luft in einer Position zwischen den jeweiligen Anschlägen, ohne dass jedoch ein Drehmoment auf die außen liegende Wickelhülse übertragen werden kann. Fig. 4 shows the two-sided storage of a clamping shaft with double bearings, as this is known from WO 2013/003968 A9. However, WO 2013/003968 A9 does not disclose the combination of a double bearing with a tensioning shaft made of fiber-reinforced plastic. This combination is also particularly advantageous from the point of view of the invention. The tensioning shaft 401 made of CFRP is therefore firmly clamped in the double bearing 402 on the left side. The bearing assembly 403 is also designed as a double bearing, however, this bearing assembly is detachable via a two-armed scissor unit, so that one or more cores can be pushed from the right onto the clamping shaft or removed from this again after the scissor unit has pivoted the bearing assembly 403. 5 shows a section through a tensioning shaft according to the invention on fiber-reinforced plastic. The clamping shaft 501 has five cavities along its circumference, in which pneumatic hoses 502 and movable clamping bars 503 are introduced. In the radial inner direction, the cavities are limited by a layer of fiber-reinforced plastic, so that sets the desired stiffness of the clamping shaft. Optionally - but not necessarily - the clamping bars 503 are also biased with spring elements that bring the clamping bars in the position shown in FIG. 5a, as soon as enough air has escaped from the tubes 502. As far as the clamping bars 503 are not biased, the clamping bars 503 are at escaped air in a position between the respective stops, but without a torque can be transmitted to the outer winding tube.
Werden nunmehr ausgehend von dem Zustand gemäß Fig. 5a die Schläuche 502 mit Druckluft gefüllt, stellt sich der Zustand gemäß Fig. 5b ein, wonach die Spannleisten 503 ausgefahren sind und eine radiale Kraft auf die außen liegende Wickelhülse ausüben können. If, starting from the state according to FIG. 5 a, the hoses 502 are filled with compressed air, the state according to FIG. 5 b occurs, after which the clamping bars 503 are extended and can exert a radial force on the outer winding tube.
Die Spannleisten 503 können sich durchgehend in axialer Richtung über die gesamte Spannwelle erstrecken. Alternativ ist es aber genauso möglich, dass die Spannleisten aus mehreren kleineren Elementen, deren Anzahl so gewählt wird, dass genügend Drehmoment auf die außen liegende Wickelhülse übertragen werden kann. Die Spannwelle 501 selber kann ganz aus faserverstärktem Kunststoff hergestellt sein oder aber aus einer Hybrid-Struktur mit einem faserverstärktem Kunststoff und einem Metall bestehen. The clamping bars 503 can extend continuously in the axial direction over the entire clamping shaft. Alternatively, it is just as possible that the clamping bars of several smaller elements, the number of which is chosen so that enough torque can be transmitted to the outer winding tube. The tensioning shaft 501 itself can be made entirely of fiber-reinforced plastic or consist of a hybrid structure with a fiber-reinforced plastic and a metal.
Bezugszeichenliste Spannwelle List of Reference Strips
Hohlraum bzw. Spannleiste Cavity or clamping bar
Ausrichtung einer ersten Lage von Endlosfasern Ausrichtung einer zweiten Lage von Endlosfasern Spannwelle Orientation of a first layer of continuous fibers Orientation of a second layer of continuous fibers
Hohlraum bzw. Spannleiste Cavity or clamping bar
Ausrichtung einer ersten Lage von Endlosfasern Ausrichtung einer zweiten Lage von Endlosfasern Spannwelle Orientation of a first layer of continuous fibers Orientation of a second layer of continuous fibers
Hohlraum bzw. Spannleiste Cavity or clamping bar
Gerichtete Endlosfasern Spannwelle Directed continuous fiber tensioning shaft
Lageranordnung, fest Bearing arrangement, fixed
Lageranordnung, lösbar Spannwelle Bearing arrangement, detachable tensioning shaft
pneumatische Schläuche pneumatic hoses
Spannleiste clamping bar

Claims

Wickelwelle Patentansprüche Winding shaft claims
1 . Spannwelle zum Aufwickeln einer Materialbahn, 1 . Tensioning shaft for winding a material web,
mit einem Wellenkörper, der zur Erreichung einer möglichst hohen Biegestei- figkeit zum Großteil aus faserverstärktem Kunststoff besteht, und mit Hohlräumen, die entlang des äußeren Umfangs des Wellenkörpers vorgesehen sind, wobei die Hohlräume in radialer Innenrichtung durch eine Schicht des faserverstärkten Kunststoffes begrenzt sind und wobei aus den Hohlräumen in radialer Außenrichtung Spannleisten expandierbar sind.  with a shaft body consisting to a maximum of flexural rigidity to a large extent of fiber reinforced plastic, and with cavities provided along the outer circumference of the shaft body, wherein the cavities are limited in the radial inner direction by a layer of fiber reinforced plastic and from the cavities in the radial outer direction clamping strips are expandable.
2. Spannwelle nach Anspruch 1 , wobei der faserverstärkte Kunststoff aus gerichteten Endlosfasern besteht, die mittels eines ausgehärteten Harzes verbunden sind. 2. tensioning shaft according to claim 1, wherein the fiber-reinforced plastic consists of directed continuous fibers which are connected by means of a cured resin.
3. Spannwelle nach einem der Ansprüche 1 - 2, wobei die gerichteten Endlosfasern aus Karbonfasern bestehen. 3. tensioning shaft according to one of claims 1 - 2, wherein the directional continuous fibers consist of carbon fibers.
4. Spannwelle nach einem der Ansprüche 1 - 3, wobei die Spannleisten an ihrem radialen Ende schalenförmige Elemente aufweisen, die aus Kunststoff und/oder einem Faserverbundwerkstoff bestehen. 4. tensioning shaft according to one of claims 1 - 3, wherein the clamping bars have at its radial end cup-shaped elements which consist of plastic and / or a fiber composite material.
5. Verfahren zum Herstellen einer Spannwelle nach Anspruch 1 , bei dem Formkörper zur Aufnahme von radial expandierbaren Spannleisten vorgesehen sind, um die herum Endlosfasern geschichtet werden, wobei die Formkörper in radialer Innenrichtung auf mindestens einer Schicht mit gerichteten Endlosfasern aufliegen, bei dem die Formkörper zusammen mit den Endlosfasern mittels eines ausgehärteten Harzes verbunden werden, und bei dem nach dem Aushärten des Harzes die radial expandierbaren Spannleisten in die Formkörper eingebracht werden. 5. A method for producing a tensioning shaft according to claim 1, wherein the shaped bodies are provided for receiving radially expandable clamping strips around which endless fibers are layered, wherein the shaped bodies lie in the radial inner direction on at least one layer with directed endless fibers, in which the shaped bodies together be connected to the continuous fibers by means of a cured resin, and in which after curing of the resin, the radially expandable clamping bars are introduced into the moldings.
6. Verfahren zum Herstellen einer Spannwelle nach Anspruch 1 , bei dem ein Wellenkörper zur Erreichung einer möglichst hohen Biegesteifig- keit zum Großteil aus faserverstärktem Kunststoff hergestellt wird, bei dem entlang des Umfangs des Wellenkörpers Hohlräume gefräst werden, wobei die Hohlräume in radialer Innenrichtung durch eine Schicht des faserverstärkten Kunststoffes begrenzt sind, und bei dem radial expandierbare Spannleisten in die Hohlräume eingebracht werden. 6. A method for producing a tensioning shaft according to claim 1, wherein a shaft body to achieve the highest possible bending stiffness for the most part is made of fiber-reinforced plastic, in which cavities are milled along the circumference of the shaft body, wherein the cavities in the radial inner direction by a Layer of the fiber-reinforced plastic are limited, and are introduced in the radially expandable clamping bars in the cavities.
7. Wickler zum Aufwickeln einer Materialbahn, mit einer Spannwelle nach Anspruch 1 , mit einer an mindestens einer Seite der Spannwelle angeordneten Lageranordnung, in der das jeweilige Ende der Spannwelle in zwei voneinander beabstandeten Bereichen gelagert ist. Wickler nach Anspruch 7, mit an beiden Seiten der Spannwelle angeordneten Lageranordnungen, in denen die Enden der Spannwelle gelagert sind, wobei jede der beiden Lageranordnungen das zugehörige Ende der Spannwelle in zwei voneinander beabstandeten Bereichen lagert. 7. winder for winding a material web, with a tensioning shaft according to claim 1, with a arranged on at least one side of the tensioning shaft bearing assembly in which the respective end of the tensioning shaft is mounted in two spaced-apart areas. Winder according to claim 7, arranged on both sides of the tensioning shaft bearing assemblies in which the ends of the tensioning shaft are mounted, wherein each of the two bearing assemblies supports the associated end of the tensioning shaft in two spaced-apart areas.
Wickler nach einem der Ansprüche 7 - 8, mit mindestens einer die Spannwelle umschließenden Wickelhülse, die mittels der expandierenden Spannleisten gegenüber der Spannwelle fixierbar ist. Winder according to one of claims 7 - 8, with at least one winding shaft enclosing the winding sleeve, which is fixable by means of the expanding clamping strips relative to the clamping shaft.
PCT/EP2014/072108 2013-10-15 2014-10-15 Winding shaft WO2015055713A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14786166.0A EP3057897A1 (en) 2013-10-15 2014-10-15 Winding shaft
CN201480056954.2A CN105849021B (en) 2013-10-15 2014-10-15 Spool
US15/029,688 US20160229662A1 (en) 2013-10-15 2014-10-15 Winding shaft

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE102013220855.3 2013-10-15
DE102013220855 2013-10-15
DE102013221131 2013-10-17
DE102013221131.7 2013-10-17
DE102013020351.1 2013-12-10
DE102013020351 2013-12-10
DE102014003595 2014-03-17
DE102014003595.6 2014-03-17

Publications (1)

Publication Number Publication Date
WO2015055713A1 true WO2015055713A1 (en) 2015-04-23

Family

ID=51743426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/072108 WO2015055713A1 (en) 2013-10-15 2014-10-15 Winding shaft

Country Status (4)

Country Link
US (1) US20160229662A1 (en)
EP (1) EP3057897A1 (en)
CN (1) CN105849021B (en)
WO (1) WO2015055713A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016198549A1 (en) * 2015-06-09 2016-12-15 Windmöller & Hölscher Kg Winding shaft for receiving at least one winding core
WO2018024335A1 (en) * 2016-08-04 2018-02-08 Colines Air Bubble S.R.L. Winding machine with expandable tiled spindles
CN111422696A (en) * 2020-03-30 2020-07-17 重庆金山洋生管道有限公司 Yarn core quick replacement structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110902499A (en) * 2019-11-11 2020-03-24 利辛县力信电力照明科技有限公司 Cable winding and unwinding device
DE202021106778U1 (en) 2021-12-14 2022-02-28 Karl Mayer Stoll R&D Gmbh warp knitting machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1440788A (en) * 1972-09-29 1976-06-23 Freudenberg Carl Roller bodies
US5379964A (en) * 1993-08-10 1995-01-10 Addax, Inc. Composite expandable shaft
US5509618A (en) * 1994-06-14 1996-04-23 Klimex, Inc. Air shaft
US5746387A (en) 1996-02-20 1998-05-05 Pretto; Alessio G. Hybrid composite expandable shaft
US20040035977A1 (en) * 2002-08-26 2004-02-26 Deurse Michael Van Composite expanding shaft with external gripping elements
WO2005124212A1 (en) 2004-06-04 2005-12-29 Epsilon Composite Sarl Method for producing a highly rigid composite material tube, and tube obtained thereby
DE202009001846U1 (en) * 2009-02-13 2009-05-20 Theurl Leimholzbau Gmbh Lightweight body made of a fiber composite based on wood fiber mats, especially for rotor blades in wind turbines
WO2013003968A2 (en) 2011-07-05 2013-01-10 Swiss Winding Inventing Ag Winder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2858600Y (en) * 2006-01-07 2007-01-17 中山市松德包装机械有限公司 Air expansible shaft automatic charging and discharging device
CN202924425U (en) * 2012-11-01 2013-05-08 窦敏江 Inflatable shaft for winding and unwinding device
CN203021077U (en) * 2012-12-30 2013-06-26 上海善格机电设备有限公司 Winding machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1440788A (en) * 1972-09-29 1976-06-23 Freudenberg Carl Roller bodies
US5379964A (en) * 1993-08-10 1995-01-10 Addax, Inc. Composite expandable shaft
US5509618A (en) * 1994-06-14 1996-04-23 Klimex, Inc. Air shaft
US5746387A (en) 1996-02-20 1998-05-05 Pretto; Alessio G. Hybrid composite expandable shaft
US20040035977A1 (en) * 2002-08-26 2004-02-26 Deurse Michael Van Composite expanding shaft with external gripping elements
WO2005124212A1 (en) 2004-06-04 2005-12-29 Epsilon Composite Sarl Method for producing a highly rigid composite material tube, and tube obtained thereby
DE202009001846U1 (en) * 2009-02-13 2009-05-20 Theurl Leimholzbau Gmbh Lightweight body made of a fiber composite based on wood fiber mats, especially for rotor blades in wind turbines
WO2013003968A2 (en) 2011-07-05 2013-01-10 Swiss Winding Inventing Ag Winder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016198549A1 (en) * 2015-06-09 2016-12-15 Windmöller & Hölscher Kg Winding shaft for receiving at least one winding core
US20180179019A1 (en) * 2015-06-09 2018-06-28 Windmöller & Hölscher Kg Winding Shaft for Receiving at Least One Winding Core
US10513410B2 (en) 2015-06-09 2019-12-24 Windmöller & Hölscher Kg Winding shaft for receiving at least one winding core
WO2018024335A1 (en) * 2016-08-04 2018-02-08 Colines Air Bubble S.R.L. Winding machine with expandable tiled spindles
CN111422696A (en) * 2020-03-30 2020-07-17 重庆金山洋生管道有限公司 Yarn core quick replacement structure
CN111422696B (en) * 2020-03-30 2021-12-07 重庆金山洋生管道有限公司 Yarn core quick replacement structure

Also Published As

Publication number Publication date
EP3057897A1 (en) 2016-08-24
US20160229662A1 (en) 2016-08-11
CN105849021A (en) 2016-08-10
CN105849021B (en) 2018-05-15

Similar Documents

Publication Publication Date Title
EP3057897A1 (en) Winding shaft
EP0113841B1 (en) Process for producing a shaped body from composite material, and shaped body obtained by the process
EP2640567B1 (en) Method and device for producing large cylindrical structures
EP2917020B1 (en) Device and method for producing semifinished products for wind power system rotor blades
EP3496936A1 (en) Spar cap made of prefabricated elements with laid fabric and method for producing same
EP1985434B1 (en) Wheel and method for manufacturing a wheel
DE602005006393T2 (en) WICKELKERN AND ASSOCIATED PROCEDURE
DE102007019612A1 (en) Spoke, wheel and method for producing a spoke, especially for bicycles
DE102006035939A1 (en) Process for the production of fiber composite components
DE102010005987B4 (en) Process for producing hollow bodies with collar-shaped reinforcements
DE102011003560B4 (en) A method for producing a semi-finished fiber product for the production of a fiber-reinforced component of a wind turbine, in particular rotor blade, and semi-finished fiber and use of a semi-finished fiber product
WO2009049737A1 (en) Method for the production of a parison from semifinished textile material for an annular profiled frame section made of fiber composite
DE102009036509A1 (en) Metal-fiber composite-shaft has hollow-cylindrical shaped shaft part made of fiber composite, where shaft part has center longitudinal axis
WO2009112017A2 (en) Method for producing a rotor blade for a wind power plant and a rotor blade produced according to said method
EP2436512A2 (en) Method for producing a vacuum structure for producing a fibre reinforced component and stamp suitable for same
WO2005067364A2 (en) Printing cylinder with a plastic sleeve containing carbon fibers
DE102014001961A1 (en) Endless hollow profile part made of a fiber composite plastic
DE102009009351B3 (en) Method for winding thin belt and/or residual piece of wrapping tape in printing industry, involves adjusting pressurized jaws to internal fit at film tube, and actuating winding motor for winding residual pieces of wrapping tape
DE102012104370A1 (en) Method for manufacturing hollow body made from fiber-reinforced plastic, involves manufacturing multi-layer back gear which consists of pre-impregnated half-finished product, where multi-layer back gear is wound on winding core
EP3307665B1 (en) Winding shaft for receiving at least one winding core
EP1982938B1 (en) Method for storing flat, sheet-like semi-finished products
DE102013108184B3 (en) Winding machine for manufacturing wire core for tire of vehicle, has transportation drive that is provided for driving escapement wheel and is synchronized with winding drive of winding pulley used to roll winding material to wire core
EP2202084A1 (en) Roller for a printer, printer with the roller and method for producing the roller
DE102016110848A1 (en) Method and device for producing a preform
DE202007007835U1 (en) Thin-walled composite sleeve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14786166

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014786166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014786166

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15029688

Country of ref document: US