WO2015055187A1 - Lagerelement für ein wälz- oder gleitlager - Google Patents

Lagerelement für ein wälz- oder gleitlager Download PDF

Info

Publication number
WO2015055187A1
WO2015055187A1 PCT/DE2014/200408 DE2014200408W WO2015055187A1 WO 2015055187 A1 WO2015055187 A1 WO 2015055187A1 DE 2014200408 W DE2014200408 W DE 2014200408W WO 2015055187 A1 WO2015055187 A1 WO 2015055187A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing element
bearing
hard material
composite material
rolling
Prior art date
Application number
PCT/DE2014/200408
Other languages
English (en)
French (fr)
Inventor
Markus Dinkel
Claus Müller
Irina SUSKE
Christian SCHULTE-NÖLLE
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2015055187A1 publication Critical patent/WO2015055187A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/38Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/62Low carbon steel, i.e. carbon content below 0.4 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/70Ferrous alloys, e.g. steel alloys with chromium as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2210/00Fluids
    • F16C2210/10Fluids water based
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/10Hardening, e.g. carburizing, carbo-nitriding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/40Application independent of particular apparatuses related to environment, i.e. operating conditions
    • F16C2300/42Application independent of particular apparatuses related to environment, i.e. operating conditions corrosive, i.e. with aggressive media or harsh conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials

Definitions

  • the invention relates to a bearing element for a rolling or sliding bearing, which bearing element at least partially from a powder metallurgical composite material containing a steel-based metallic phase and a hard material phase, is formed or at least partially comprises such a composite material.
  • Bearing elements for rolling or sliding bearings are well known and are usually formed from mechanically as well as corrosive particularly durable materials.
  • these include powder metallurgical composite materials which comprise a metallic phase and a hard material phase.
  • mechanically as well as highly corrosive materials which the use of corresponding bearing elements in non-conventionally lubricated operating situations, especially in corrosive acting (thin) liquid, especially aqueous media in which corresponding bearing elements permanently outsourced and of which the bearing elements be flushed through, allow.
  • the invention has for its object to provide a, especially against mechanical and also corrosive stresses, highly durable bearing element.
  • the object is achieved by a bearing element of the type mentioned, which is characterized in that the steel 0.2 - 0.6 wt .-% carbon, 0.1 - 0.3 wt .-% nitrogen, 0.5 - 2 wt .-% molybdenum, 13 to 15 wt .-% chromium.
  • a bearing element which is formed at least in sections from a steel-based metallic phase and a powder metallurgical composite material containing a hard material phase, respectively, or at least partially comprises such a powder metallurgical composite material.
  • the special feature of the bearing element according to the invention consists in the (chemical) composition of the metallic phase, d. H. the steel on which the metallic phase is based.
  • This steel comprises as essential alloying elements carbon with a content of 0.2-0.6 wt.%, Nitrogen with a content of 0.1-0.3 wt.%, Molybdenum with a content of 0.5-2 Wt .-% and chromium in a proportion of 13 - 15 wt .-%.
  • the abovementioned alloying elements are in each case elementary, ie in pure form, in the abovementioned proportions.
  • the abovementioned proportions by weight therefore do not relate to the carbon or nitrogen contained in carbon or nitrogen compounds or to the molybdenum or chromium contained in molybdenum or chromium compounds, but to the elementary, ie pure form, in the metallic phase present carbon or nitrogen or the elemental, ie in pure form, present in the metallic phase molybdenum or chromium.
  • the steel forming the metallic phase contains, as usual, iron, impurities and, if appropriate, further alloying elements, so that a total composition of 100% by weight results.
  • the effective amount of the steel forming the metallic phase is typically greater than 30.
  • the sum of the effect is determined according to the following PREN formula, which gives a measure of the corrosion resistance of the steel to pitting or crevice corrosion: 1 x percentage of chromium in% by weight +3 , 3 x content of molybdenum in wt .-% + 16 x content of nitrogen in wt .-%.
  • the steel forming the metallic phase is thus, in particular, a high-alloyed steel, in particular a high-alloyed tool steel.
  • the weight proportions, d. H. the concentrations of the alloying elements require a mechanically highly stressable and a highly corrosion resistant material.
  • the mechanical properties are determined in particular by the alloying elements carbon, molybdenum and nitrogen, and the high corrosion resistance of the powder metallurgical composite material results from the comparatively high proportion of chromium.
  • the powder metallurgical composite material is characterized in particular by high strength, toughness, hardness, rollover and wear resistance and high corrosion resistance.
  • the particular chemical as well as proportionate composition of the metallic phase forming steel is thus the basis for the special property profile of the powder metallurgical composite material, which is the bearing element formed from this, in particular without conventional lubrication of the bearing element or a receiving this bearing components, predestined for use in mechanically as well as corrosively demanding applications.
  • Corresponding applications can z. B. in corrosive environments, ie, for example, in aqueous, especially corrosive chlorine-containing environments such.
  • the bearing element according to the invention or the composite material forming this is by powder metallurgy process, d. H. based on a powdery starting material or a powdery starting material mixture.
  • powder metallurgical methods is particularly advantageous because it allows the formation of microstructures with (nearly) isotropic properties.
  • the use of powder metallurgical methods allows near-net-shape production or primary shaping of the bearing element, which largely reduces the need for mechanical post-processing steps and is therefore efficient in terms of production technology and thus also economically.
  • a powder metallurgical process for producing the bearing element is, for example, hot isostatic pressing, HIP for short; Consequently, a powder metallurgical production engineering principle from the field of primary forming, according to which a powdered starting material or a powdered starting material mixture is compacted or pressed and sintered under the influence of pressure and temperature.
  • a further advantage of the spray-compacting process is the possible realization of a "tailor-made" material composition of the composite material which can accordingly be produced with spatially or spatially distributed substance or concentration gradients. This makes it possible, for example, to provide a composite material with an outer, ie surface or ., close to the surface layer, highly alloyed and inner, ie surface or edge layer remote, low-alloy steel composition.
  • the volume fraction of the hard material phase in the composite material is in particular in a range between 8 and 30% by volume, preferably in a range between 15 and 25% by volume. It must be ensured that the volume fraction of the hard material phase does not fall below 8% by volume in order to ensure a high hardness of the composite material and, consequently, of the bearing element. Of course, the volume fraction of the hard material phase in exceptional cases, of course, below 8 vol .-% or above 30 vol .-%.
  • the shape, size and distribution of the hard material particles or hard material grains forming the hard material phase in the metallic phase serving as the matrix are decisive for the property profile of the composite material.
  • the hard materials or hard grains are preferably round or roundish shape.
  • the size Combined hard materials or hard material grains is in particular in a range between 1 and 100 ⁇ , preferably in a range between 3 and 10 ⁇ . In particular, attention should be paid to the most coherent possible distribution of the hard material particles or hard material grains forming the hard material phase in the metallic phase serving as the matrix.
  • a characteristic for the shape, size and distribution of the hard material particles forming the hard material phase or hard material grains represents the surface quality of the bearing element in a finished state.
  • Roughness measurements showed that roughness values Ra in the range of 0.15-0.2 ⁇ m can be achieved for bearing elements according to the invention with outside diameters above 500 mm, which points to a particularly coherent microstructure, ie. H. a particularly coherent distribution of the hard material particles or hard material grains in the metallic phase can conclude.
  • the steel forming the metallic phase of the powder metallurgical composite material additionally contains 0.1-2% by weight of manganese, 0.1-1% by weight of silicon and a nickel content of less than 1% by weight.
  • the alloying of manganese, silicon and nickel requires a further improvement of the mechanical properties, in particular the yield strength and tensile strength, as well as the wear resistance of the composite material.
  • the weight proportions of the additional alloying elements manganese, silicon and nickel can also be above or below the aforementioned value ranges.
  • the hard material phase associated with the powder metallurgical composite material can be formed from at least one of the following hard material compounds or comprise at least one of the following hard material compounds: borides, carbides, in particular vanadium carbide and / or niobium carbide, nitrides, in particular special vanadium nitride and / or niobium nitride, silicides.
  • borides carbides, in particular vanadium carbide and / or niobium carbide
  • nitrides in particular special vanadium nitride and / or niobium nitride, silicides.
  • mixtures (chemically) of different hard material compounds are conceivable.
  • a preferred embodiment of the bearing element according to the invention provides that the powder metallurgical composite material a total of 1 - 1, 5 wt .-% carbon, 0.1 - 2 wt .-% nitrogen, 0.5 - 4 wt .-% molybdenum and 14 - 15 Contains 75 wt .-% chromium, wherein the carbon-nitrogen ratio is 0.5 - 4, and the hard material phase contains less than 4 wt .-% vanadium and / or less than 3 wt .-% nickel.
  • the hardness of the bearing element lies at least in the region of its surface or edge layer or in near-surface edge layer regions, in particular in a range of 55 to 70 HRC (hardness Rockwell), preferably above 59 HRC.
  • the surface or boundary layer of the bearing element can have a certain structural area, which differs in its properties, in particular the hardness, from further internal structural areas and can therefore be delimited from further inward areas. Typical surface or edge layer areas are z.
  • the bearing element can also have a consistent overall hardness. In exceptional cases, the hardness of the bearing element may of course be below 55 HRC or above 70 HRC.
  • the bearing element can at least partially with a protective layer, such as. B. a protective coating based on a polymer to be coated against corrosive media.
  • the bearing element may comprise at least one metallic protective body forming a sacrificial anode, or may be connected to an electrically conductive one. Both variants provide protection against corrosive stresses of the bearing element, wherein the coating of the bearing element with a corresponding protective layer, a passive corrosion protection and by the protective anode forming a sacrificial anode active corrosion protection is realized.
  • the bearing element is usually electrically conductive with the Schutzkör-, which consists of a compared to the bearing element forming composite material more noble metal such.
  • the protective body forming the sacrificial anode can be embedded at least in sections in a receiving body formed from an electrically conductive material, in particular a metal. In this case, the receiving body is suitably connected to the bearing element.
  • a further advantageous embodiment of the bearing element according to the invention provides that the bearing element is at least partially provided with an electrically insulating coating.
  • the electrically insulating coating can, for. B. of a ceramic material or a plastic material may be formed and allows an electrical insulation of the bearing element against electrically conductive third objects.
  • it may be, for. B. to a bearing ring, d. H. an outer or an inner ring, a sliding or rolling act.
  • the bearing element may also be a sliding or rolling element.
  • the invention further relates to a sliding or rolling bearing which comprises at least one bearing element according to the invention as described above.
  • the bearing element (s) may, in particular, be bearing rings and / or sliding or rolling bodies.
  • the Sliding or rolling bearing according to the invention apply all versions with respect to the bearing element according to the invention analog.
  • Figure 1 is a schematic diagram of a rolling bearing, comprising a bearing element according to an embodiment of the invention, and a diagram for illustrating the corrosion resistance of bearing elements according to two embodiments of the invention.
  • Figure 1 shows a schematic diagram of a bearing element 1 according to an embodiment of the invention.
  • the bearing element 1 is part of a rolling bearing 2.
  • the bearing element 1 is the outer ring 3 of the rolling bearing 2.
  • the inner ring 4 of the rolling bearing 2 could equally be formed as a corresponding bearing element 1 according to an embodiment of the invention.
  • the bearing element 1 is made of a powder metallurgical, d. H. powder metallurgically produced, composite material formed.
  • the powder metallurgical composite material comprises a metallic phase formed on a steel and a hard material phase formed from a hard material.
  • the hard material phase is formed from a boride, carbide, nitride or silicide compound or a mixture of at least two of the stated hard material compounds.
  • the hard material phase is a niobium carbide or a vanadium carbide compound or a niobium nitride or a vanadium nitride compound.
  • the volume fraction of the hard material phase in the composite material is above 5% by volume, in particular in a range between 10 and 30% by volume.
  • the hard material phase is present in the metallic phase serving as matrix in the form of finely distributed round or spherical grains.
  • the size of coherent hard grains is in particular in a range between 3 and 10 ⁇ .
  • the structural properties of the composite material are largely isotropic.
  • the microstructural fineness is very high (ASTM KG> 7 - 8).
  • the steel forming the metallic phase of the composite material contains 0.2-0.6% by weight of carbon, 0.1-0.3% by weight of nitrogen, 0.5-2% by weight of molybdenum and 13-15% by weight .-% chromium.
  • the steel additionally contains manganese, silicon and nickel as well as iron and common impurities.
  • a preferred variant of the steel forming the metallic phase of the composite material contains the alloying elements shown in the following table:
  • the total composition of the composite material forming the bearing element 1 preferably contains a total of 1-1.5% by weight of carbon, 0.1-2% by weight of nitrogen, 0.5-4% by weight of molybdenum and 14-15.75% by weight % Chromium, wherein the carbon-nitrogen ratio is 0, 5-4, and the hard material phase contains less than 4 wt% vanadium and / or less than 3 wt% nickel.
  • the roughness value Ra of the bearing element 1 is in a range between 0.15 and 0.2 ⁇ , which requires a high surface quality of the bearing element 1.
  • the hardness of the bearing element 1 is above 58 HRC, in particular above 61 HRC. In particular, corresponding hardness values for the surface layers or raceway surfaces of the bearing element 1 are given.
  • the composite material forming the bearing element 1 is characterized by high strength, toughness, hardness, rollover and wear resistance and high corrosion resistance.
  • the yield strength of the composite material is typically above 1500 MPa, the maximum tensile stress typically above 1800 MPa.
  • the outer ring 3 and the inner ring 4 of the rolling bearing 2 are each coated or coated with a protective layer 7 against corrosive media.
  • the protective layer 7 represents a passive corrosion protection and is formed, for example, from a lacquer based on a plastic material.
  • a disc 8 is further mounted, in which electrodes for sacrificial anodes forming metallic see protective body 9 are embedded.
  • the sacrificial anodes forming metallic protective body 9 are z.
  • aluminum or zinc generally of a less noble metal than the composite material, formed and attached to the outer ring 3 and the inner ring 4 of the rolling bearing 2.
  • the protective bodies 9 represent Depending on whether the disc 8 made of an electrically conductive, ie, for example, of a metallic material, or electrically insulating, ie, for example, consists of a plastic material, formed material may the elec- roden be electrically conductive or electrically insulated.
  • the rolling bearing 2 is on the outer peripheral side, d. H. in particular in the region of the outer circumference of the outer ring 3, and on the inner peripheral side, d. H. In particular, in the region of the inner circumference of the inner ring 4, also provided with an electrically insulating coating 10.
  • the electrically insulating coating 10 is made of an electrically insulating material, such. As a ceramic material, and is used for electrical insulation of the bearing rings.
  • FIG. 2 shows a diagram for illustrating the corrosion resistance of two bearing elements 1 according to the invention of different chemical composition.
  • the corrosion resistance of the composite material forming the bearing elements 1 according to the invention can be demonstrated with reference to FIG. 2 in comparison to a corrosion resistance improved from a conventional rolling bearing steel.
  • the electric current (y-axis) is plotted against the electrical potential (x-axis). Shown are experimental results from investigations of the pitting corrosion potential or the repassivation potential (Ag / AgCl, 3.5% NaCl, 20 ° C.).
  • the curves 1 1 represent the measurement results for a bearing element 1 according to the invention of a first chemical composition
  • the curves 12 represent the measurement results for a bearing element 1 according to the invention of a second chemical composition
  • the curves 13 represent the measurement results for a non-inventive bearing element from a conventional rolling bearing - stolen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Lagerelement (1) für ein Gleit- oder Wälzlager (2), welches Lagerelement (1) zumindest abschnittsweise aus einem pulvermetallurgischen Verbundmaterial, enthaltend eine auf einem Stahl basierende metallische Phase und eine Hartstoffphase, gebildet ist oder zumindest abschnittsweise ein solches Verbundmaterial umfasst, wobei der Stahl 0,2 – 0,6 Gew.-% Kohlenstoff, 0,1 – 0,3 Gew.-% Stickstoff, 0,5 – 2 Gew.-% Molybdän und 13 – 15 Gew.-% Chrom enthält.

Description

Bezeichnung der Erfindung
Lagerelement für ein Wälz- oder Gleitlager Beschreibung
Gebiet der Erfindung
Die Erfindung betrifft ein Lagerelement für ein Wälz- oder Gleitlager, welches Lagerelement zumindest abschnittsweise aus einem pulvermetallurgischen Verbundmaterial, enthaltend eine auf einem Stahl basierende metallische Phase und eine Hartstoffphase, gebildet ist oder zumindest abschnittsweise ein solches Verbundmaterial umfasst.
Hintergrund der Erfindung
Lagerelemente für Wälz- oder Gleitlager, insbesondere in Form von Lagerringen, sind weithin bekannt und werden in der Regel aus mechanisch wie auch korrosiv besonders beanspruchbaren Materialien gebildet. Hierzu zählen neben klassischen Wälzlagerstählen pulvermetallurgische Verbundmaterialien, welche eine metallische Phase und eine Hartstoffphase umfassen. Indes besteht weiterhin ein Entwicklungsbedarf an mechanisch wie auch korrosiv hoch beanspruchbaren Materialien, welche den Einsatz entsprechender Lagerelemente in nicht konventionell geschmierten Betriebssituationen, vornehmlich in korrosiv wirkenden (dünn)flüssigen, insbesondere wässrigen, Medien, in welchen entsprechende Lagerelemente dauerhaft ausgelagert und von welchen die Lagerelemente durchspült werden, ermöglichen. Derartige, insbesondere aufgrund einer nicht wirkungsvoll realisierbaren Schmierung der Lagerelemente, mechanisch wie auch korrosiv beanspruchende Betriebssituationen sind insbesondere bei Anwendungen in Wasserbauwerken, wie z. B. Mee- reskraftwerken, Schleusentoren, oder in Salz- oder Süßwasserturbinen, oder in Bohrkopf-, Kompressor- oder Pumpenlagern gegeben. In diesen Anwendungen besteht zudem die Gefahr der Aushöhlung (Kavitation) entsprechender Lagerelemente.
Zusammenfassung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, ein, insbesondere gegenüber mechanischen wie auch korrosiven Beanspruchungen, hoch beanspruchbares Lagerelement anzugeben.
Die Aufgabe wird erfindungsgemäß durch ein Lagerelement der eingangs genannten Art gelöst, welches sich dadurch auszeichnet, dass der Stahl 0,2 - 0,6 Gew.-% Kohlenstoff, 0,1 - 0,3 Gew.-% Stickstoff, 0,5 - 2 Gew.-% Molybdän, 13 - 15 Gew.-% Chrom enthält.
Erfindungsgemäß wird ein Lagerelement vorgeschlagen, welches zumindest abschnittsweise aus einem eine auf einem Stahl basierende metallische Phase und eine Hartstoffphase enthaltenden pulvermetallurgischen Verbundmaterial gebildet ist respektive hergestellt ist oder zumindest abschnittsweise ein solches pulvermetallurgisches Verbundmaterial umfasst. Das Besondere an dem erfindungsgemäßen Lagerelement besteht in der (chemischen) Zusammensetzung der metallischen Phase, d. h. des Stahls auf dem die metallische Phase basiert. Dieser Stahl umfasst als wesentliche Legierungselemente Kohlenstoff mit einem Anteil von 0,2 - 0,6 Gew.-%, Stickstoff mit einem Anteil von 0,1 - 0,3 Gew.-%, Molybdän mit einem Anteil von 0,5 - 2 Gew.-% und Chrom mit einem Anteil von 13 - 15 Gew.-%.
Die genannten Legierungselemente liegen in den genannten Anteilen jeweils elementar, d. h. in Reinform vor. Die genannten Gewichtsanteile beziehen sich also nicht auf den in Kohlenstoff- bzw. Stickstoffverbindungen enthaltenen Kohlenstoff bzw. Stickstoff respektive das in Molybdän- oder Chromverbindungen enthaltene Molybdän oder Chrom, sondern auf den elementar, d. h. in Rein- form, in der metallischen Phase vorliegenden Kohlenstoff bzw. Stickstoff respektive das elementar, d. h. in Reinform, in der metallischen Phase vorliegende Molybdän bzw. Chrom. Der die metallische Phase bildende Stahl enthält selbstverständlich, wie üblich, Eisen, Verunreinigungen sowie, gegebenenfalls weitere Legierungselemente, so dass sich insgesamt eine Zusammensetzung von 100 Gew.-% ergibt.
Die Wirksumme des die metallische Phase bildenden Stahls ist typischerweise größer als 30. Die Wirksumme wird gemäß nachfolgender PREN-Formel bestimmt, welche ein Maß für die Korrosionsbeständigkeit des Stahls gegenüber Lochfraß oder Spaltkorrosion angibt: 1 x Anteil an Chrom in Gew.-% + 3,3 x Anteil an Molybdän in Gew.-% + 16 x Anteil an Stickstoff in Gew.-%. Bei dem die metallische Phase bildenden Stahl handelt es sich sonach insbesondere um einen hochlegierten Stahl, insbesondere einen hochlegierten Werkzeugstahl. Die gewichtsmäßigen Anteile, d. h. die Konzentrationen, der Legierungselemente bedingen ein mechanisch hoch beanspruchbares sowie ein hoch korrosionsbeständiges Material. Die mechanischen Eigenschaften werden dabei insbesondere durch die Legierungselemente Kohlenstoff, Molybdän und Stickstoff bestimmt, die hohe Korrosionsbeständigkeit des pulvermetallurgischen Verbundmaterials ergibt sich durch den vergleichsweise hohen Anteil an Chrom. Konkret zeichnet sich das pulvermetallurgische Verbundmaterial insbesondere durch eine hohe Festigkeit, Zähigkeit, Härte, Überroll- und Verschleißfestigkeit und eine hohe Korrosionsbeständigkeit aus.
Die besondere chemische wie auch anteilsmäßige Zusammensetzung des die metallische Phase bildenden Stahls ist somit Grundlage für das besondere Eigenschaftsprofil des pulvermetallurgischen Verbundmaterials, welches das aus diesem gebildete Lagerelement, insbesondere auch ohne konventionelle Schmierung des Lagerelements respektive eines dieses aufnehmenden Lager- bauteils, für die Verwendung in mechanisch wie auch korrosiv hoch beanspruchenden Einsatzgebieten prädestiniert. Entsprechende Einsatzgebiete können z. B. in korrosiv wirkenden Umgebungen, d. h. z. B. in wässrigen, insbesondere korrosiv wirkenden chlorhaltigen, Umgebungen, wie z. B. im Bereich von Mee- reskraftwerken, allgemein Wasserbauwerken, oder sonstigen Meeresanwendungen, wie z. B. Schiffen, liegen.
Das das erfindungsgemäße Lagerelement respektive das dieses bildende Verbundmaterial ist durch pulvermetallurgische Verfahren, d. h. basierend auf ei- nem pulverförmigen Ausgangsmaterial bzw. einer pulverförmigen Ausgangsmaterialmischung, hergestellt. Der Einsatz pulvermetallurgischer Verfahren ist insbesondere deshalb vorteilhaft, als dieser die Ausbildung von Gefügestrukturen mit (nahezu) isotropen Eigenschaften ermöglicht. Gleichermaßen erlaubt der Einsatz pulvermetallurgischer Verfahren eine endkonturnahe Fertigung bzw. Urformung des Lagerelements, was den Bedarf mechanischer Nachbearbeitungsschritte weitgehend reduziert und deshalb in fertigungstechnischer und somit auch wirtschaftlicher Hinsicht effizient ist.
Bei einem pulvermetallurgischen Verfahren zur Herstellung des Lagerelements handelt es sich beispielsweise um heißisostatisches Pressen, kurz HIP; mithin ein pulvermetallurgisches fertigungstechnisches Prinzip aus dem Bereich des Urformens, gemäß welchem ein pulverförmiges Ausgangsmaterial respektive eine pulverförmige Ausgangsmaterialmischung unter Einfluss von Druck und Temperatur verdichtet bzw. verpresst und versintert wird.
Ein anderes denkbares pulvermetallurgisches Verfahren zur Herstellung eines erfindungsgemäßen Lagerelements respektive des dieses bildenden Verbundmaterials ist das Sprühkompaktierverfahren, bei welchem es sich ebenso um ein pulvermetallurgisches fertigungstechnisches Prinzip aus dem Bereich des Urformens handelt, gemäß welchem ein pulverförmiges Ausgangsmaterial respektive eine pulverförmige Ausgangsmaterialmischung auf ein Trägermaterial gesprüht und durch einen schichtweisen Auftrag auf dem Trägermaterial ein Bauteil „aufgebaut" wird. Ein Vorteil des Sprühkompaktierverfahrens gegen- über dem heißisostatischen Pressen besteht darin, dass hier nicht zwingend eine Verdichtung der pulverförmigen Ausgangsmaterialien notwendig ist. Ein weiterer Vorteil des Sprühkompaktierverfahrens ist die mögliche Realisierung einer„maßgeschneiderten" Materialzusammensetzung des Verbundmaterials, welches sonach mit örtlich bzw. räumlich verteilten Stoff- bzw. Konzentrationsgradienten hergestellt werden kann. Derart ist es beispielsweise möglich, ein Verbundmaterial mit einer äußeren, d. h. Oberflächen- bzw. randschichtnahen, hoch legierten und inneren, d. h. Oberflächen- bzw. randschichtfernen, niedrig legierten Stahlzusammensetzung auszubilden.
Im Rahmen der pulvermetallurgischen Herstellung des Verbundmaterials ist es denkbar, das die metallische Phase bildende pulverförmige Material bzw. Materialgemisch mit einem die Hartstoffphase bildenden pulverförmigen Material bzw. Materialgemisch im Rahmen eines pulvermetallurgischen Verfahrens zu verbinden. Alternativ dazu ist es denkbar, zunächst die metallische Phase über ein pulvermetallurgisches Verfahren herzustellen und die Hartstoffphase in der metallischen Phase durch eine anschließende Bildung von Ausscheidungen, etwa im Zuge der Urformung des Verbundmaterials oder einer Wärmebehandlung, auszubilden.
Der Volumenanteil der Hartstoffphase in dem Verbundmaterial liegt insbesondere in einem Bereich zwischen 8 und 30 Vol.-%, bevorzugt in einem Bereich zwischen 15 und 25 Vol.-%. Es ist darauf zu achten, dass der Volumenanteil der Hartstoffphase 8 Vol.-% nicht unterschreitet, um eine hohe Härte des Ver- bundmaterials und sonach des Lagerelements zu gewährleisten. Gleichwohl kann der Volumenanteil der Hartstoffphase in Ausnahmefällen selbstverständlich auch unterhalb 8 Vol.-% oder oberhalb 30 Vol.-% liegen.
Für das Eigenschaftsprofil des Verbundmaterials ist neben des volumenmäßi- gen Anteils der Hartstoffphase insbesondere auch die Form, Größe und Verteilung der die Hartstoffphase bildenden Hartstoffpartikel bzw. Hartstoffkörner in der als Matrix dienenden metallischen Phase entscheidend. Die Hartstoffe bzw. Hartstoffkörner sind bevorzugt runder oder rundlicher Gestalt. Die Größe zu- sammenhängender Hartstoffe bzw. Hartstoffkorner liegt insbesondere in einem Bereich zwischen 1 und 100 μιτι, vorzugsweise in einem Bereich zwischen 3 und 10 μιτι. Insbesondere ist auf eine möglichst kohärente Verteilung der die Hartstoffphase bildenden Hartstoffpartikel bzw. Hartstoffkorner in der als Matrix dienenden metallischen Phase zu achten.
Ein Charakteristikum für die Form, Größe und Verteilung der die Hartstoffphase bildenden Hartstoffpartikel bzw. Hartstoffkorner stellt die Oberflächengüte des Lagerelements in einem fertig bearbeiteten Zustand dar. Hier ist es anzustre- ben, dass Rauhigkeitswerte Ra bei Lagerelementen mit einem Außendurchmesser oberhalb 500 mm nach der Finishbearbeitung unterhalb 0,5 μιτι und bei Lagerelementen mit einem Außendurchmesser unterhalb 500 mm unterhalb 0,3 μιτι liegen. Untersuchungen der Rauhigkeit ergaben, dass für erfindungsgemäße Lagerelemente mit Außendurchmessern oberhalb 500 mm Rauhigkeitswerte Ra im Bereich von 0,15 - 0,2 μιτι realisierbar sind, was auf eine besonders kohärente Gefügestruktur, d. h. eine besonders kohärente Verteilung der Hartstoffpartikel bzw. Hartstoffkorner in der metallischen Phase schließen lässt.
In zweckmäßiger Weiterbildung der Erfindung enthält der die metallische Pha- se des pulvermetallurgischen Verbundmaterials bildende Stahl zusätzlich 0,1 - 2 Gew.-% Mangan, 0,1 - 1 Gew.-% Silizium und einen Nickelanteil kleiner 1 Gew.-%. Die Zulegierung von Mangen, Silizium und Nickel bedingt eine weitere Verbesserung der mechanischen Eigenschaften, wie insbesondere der Streckgrenze und Zugfestigkeit, sowie der Verschleißfestigkeit des Verbundmaterials. In Ausnahmefällen können die Gewichtsanteile der zusätzlichen Legierungselemente Mangan, Silizium und Nickel auch oberhalb bzw. unterhalb der vorstehend genannten Wertebereiche liegen.
Die dem pulvermetallurgischen Verbundmaterial zugehörige Hartstoffphase kann aus wenigstens einer der folgenden Hartstoffverbindungen gebildet sein oder wenigstens eine der folgenden Hartstoffverbindungen umfassen: Boride, Carbide, insbesondere Vanadiumcarbid und/oder Niobcarbid, Nitride, insbe- sondere Vanadiumnitrid und/oder Niobnitrid, Silizide. Selbstverständlich sind Mischungen (chemisch) unterschiedlicher Hartstoffverbindungen denkbar.
Ein bevorzugtes Ausführungsbeispiel des erfindungsgemäßen Lagerelements sieht vor, dass das pulvermetallurgische Verbundmaterial insgesamt 1 - 1 ,5 Gew.-% Kohlenstoff, 0,1 - 2 Gew.-% Stickstoff, 0,5 - 4 Gew.-% Molybdän und 14 - 15,75 Gew.-% Chrom enthält, wobei das Kohlenstoff-Stickstoff-Verhältnis 0,5 - 4 beträgt, und die Hartstoffphase weniger als 4 Gew.-% Vanadium und/oder weniger als 3 Gew.-% Nickel enthält. Ein Teil des Kohlenstoffs, Stick- Stoffs, Molybdäns und Chroms liegt elementar vor, ein anderer Teil des Kohlenstoffs, Stickstoffs, Molybdäns und Chroms liegt in Kohlenstoff-, Stickstoff-, Molybdän- oder Chromverbindungen vor. Untersuchungen zeigten, dass durch diese Zusammensetzung ein pulvermetallurgisches Verbundmaterial mit sowohl im Hinblick auf die mechanischen Eigenschaften, d. h. insbesondere Fes- tigkeit, Zähigkeit, Härte, Überroll- und Verschleißfestigkeit, als auch im Hinblick auf die Korrosionsbeständigkeit besonders vorteilhaften Eigenschaften realisiert ist.
Die Härte des Lagerelements liegt zumindest im Bereich seiner Oberfläche bzw. Randschicht bzw. in oberflächennahen Randschichtbereichen insbesondere in einem Bereich von 55 bis 70 HRC (Härte Rockwell), bevorzugt oberhalb 59 HRC. Die Oberfläche bzw. Randschicht des Lagerelements kann einen bestimmten Gefügebereich aufweisen, welcher sich von weiter innen liegenden Gefügebereichen in seinen Eigenschaften, wie insbesondere der Härte, unter- scheidet und sonach von weiter innen liegenden Bereichen abgrenzbar ist. Typische Oberflächen- bzw. Randschichtbereiche sind z. B. lagerelementseitig vorgesehene Laufbahnflächen für Gleit- oder Wälzkörper. Selbstverständlich kann das Lagerelement auch insgesamt eine konsistente Härte aufweisen. In Ausnahmefällen kann die Härte des Lagerelements selbstverständlich auch unterhalb 55 HRC bzw. oberhalb 70 HRC liegen.
Um die Korrosionsbeständigkeit des Lagerelements weiter zu erhöhen, kann das Lagerelement zumindest abschnittsweise mit einer Schutzschicht, wie z. B. einem Schutzlack auf Basis eines Polymers, gegenüber korrosiven Medien überzogen sein. Alternativ oder ergänzend kann das Lagerelement wenigstens einen eine Opferanode bildenden metallischen Schutzkörper umfassen oder mit einem solchen elektrisch leitend verbunden sein. Beide Varianten stellen einen Schutz gegenüber korrosiven Beanspruchungen des Lagerelements dar, wobei durch die Beschichtung des Lagerelements mit einer entsprechenden Schutzschicht ein passiver Korrosionsschutz und durch den eine Opferanode bildenden Schutzkörper ein aktiver Korrosionsschutz realisiert ist. In letzterem Fall wird das Lagerelement üblicherweise elektrisch leitend mit dem Schutzkör- per, welcher aus einem im Vergleich zu dem das Lagerelement bildenden Verbundmaterial unedleren Metall, wie z. B. einem Metall auf Basis von Aluminium, Magnesium oder Zink, gebildet ist, verbunden. Der die Opferanode bildende Schutzkörper kann zumindest abschnittsweise in einem aus einem elektrisch leitfähigen Material, insbesondere einem Metall, gebildeten Aufnahmekörper eingebettet sein. In diesem Fall ist der Aufnahmekörper zweckmäßig mit dem Lagerelement verbunden.
Eine weitere vorteilhafte Ausführungsform des erfindungsgemäßen Lagerelements sieht vor, dass das Lagerelement zumindest abschnittsweise mit einer elektrisch isolierenden Beschichtung versehen ist. Die elektrisch isolierende Beschichtung kann z. B. aus einem keramischen Material oder einem Kunst- stoffmaterial gebildet sein und ermöglicht eine elektrische Isolierung des Lagerelements gegenüber elektrisch leitfähigen Drittgegenständen. Bei dem erfindungsgemäßen Lagerelement kann es sich z. B. um einen Lagerring, d. h. einen Außen- oder einen Innenring, eines Gleit- oder Wälzlagers handeln. Das Lagerelement kann auch ein Gleit- oder Wälzkörper sein.
Die Erfindung betrifft ferner ein Gleit- oder Wälzlager, welches wenigstens ein wie vorstehend beschriebenes, erfindungsgemäßes Lagerelement umfasst. Bei dem oder den Lagerelement(en) kann es sich, wie erwähnt, sonach insbesondere um Lagerringe und/oder Gleit- oder Wälzkörper handeln. Bezüglich des erfindungsgemäßen Gleit- oder Wälzlagers gelten sämtliche Ausführungen bezüglich des erfindungsgemäßen Lagerelements analog.
Kurze Beschreibung der Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im Folgenden näher beschrieben. Es zeigt:
Figur 1 eine Prinzipdarstellung eines Wälzlagers, umfassend ein Lager- element gemäß einem Ausführungsbeispiel der Erfindung, und ein Diagramm zur Veranschaulichung der Korrosionsbeständigkeit von Lagerelementen gemäß zwei Ausführungsbeispielen der Erfindung.
Ausführliche Beschreibung der Zeichnung
Figur 1 zeigt eine Prinzipdarstellung eines Lagerelements 1 gemäß einem Ausführungsbeispiel der Erfindung. Das Lagerelement 1 ist Teil eines Wälzlagers 2. Bei dem Lagerelement 1 handelt es sich um den Außenring 3 des Wälzlagers 2. Der Innenring 4 des Wälzlagers 2 könnte gleichermaßen als entsprechendes Lagerelement 1 gemäß einem Ausführungsbeispiel der Erfindung ausgebildet sein. Gleiches gilt für die zwischen dem Außenring 3 und dem Innenring 4 wälzenden Wälzkörper 5, welche in einem Käfig 6 gelagert sind.
Das Lagerelement 1 ist aus einem pulvermetallurgischen, d. h. pulvermetallurgisch hergestellten, Verbundmaterial gebildet. Das pulvermetallurgische Verbundmaterial umfasst eine auf einem Stahl gebildete metallische Phase und eine aus einem Hartstoff gebildete Hartstoffphase.
Die Hartstoffphase ist aus einer Borid-, Carbid-, Nitrid- oder Silizidverbindung oder einer Mischung wenigstens zweier der genannten Hartstoffverbindungen gebildet. Insbesondere handelt es sich bei der Hartstoffphase um eine Niob- carbid- oder eine Vanadiumcarbidverbindung bzw. eine Niobnitrid- oder eine Vanadiumnitridverbindung. Der Volumenanteil der Hartstoffphase in dem Verbundmaterial liegt oberhalb von 5 Vol.-%, insbesondere in einem Bereich zwischen 10 und 30 Vol.-%. Die Hartstoffphase liegt in der als Matrix dienenden metallischen Phase in Form fein verteilter runder bzw. kugeliger Körner vor. Die Größe zusammen hängender Hartstoffkörner liegt insbesondere in einem Bereich zwischen 3 und 10 μιτι.
Die Gefügeeigenschaften des Verbundmaterials sind weitgehend isotrop. Die Gefügefeinheit ist sehr hoch (ASTM KG > 7 - 8). Untersuchungen des Mikro- feinheitsgrads (K-Wert) ergaben K4 = 0 und K1 < 4.
Der die metallische Phase des Verbundmaterials bildende Stahl enthält 0,2 - 0,6 Gew.-% Kohlenstoff, 0,1 - 0,3 Gew.-% Stickstoff, 0,5 - 2 Gew.-% Molybdän und 13 - 15 Gew.-% Chrom. Daneben enthält der Stahl zusätzlich Mangan, Silizium und Nickel sowie Eisen und übliche Verunreinigungen.
Eine bevorzugte Variante des die metallische Phase des Verbundmaterials bildenden Stahls enthält die in folgender Tabelle dargestellten Legierungsele- mente:
Figure imgf000012_0001
Die Gesamtzusammensetzung des das Lagerelement 1 bildenden Verbundmaterials enthält vorzugsweise insgesamt 1 - 1 ,5 Gew.-% Kohlenstoff, 0,1 - 2 Gew.-% Stickstoff, 0,5 - 4 Gew.-% Molybdän und 14 - 15,75 Gew.-% Chrom umfasst, wobei das Kohlenstoff-Stickstoff-Verhältnis 0, 5 - 4 beträgt, und die Hartstoffphase weniger als 4 Gew.-% Vanadium und/oder weniger als 3 Gew.- % Nickel enthält. Der Rauhigkeitswert Ra des Lagerelements 1 liegt in einem Bereich zwischen 0,15 und 0,2 μιτι, was eine hohe Oberflächengüte des Lagerelements 1 bedingt. Die Härte des Lagerelements 1 liegt oberhalb 58 HRC, insbesondere oberhalb 61 HRC. Insbesondere sind entsprechende Härtewerte für die Randschichten bzw. Laufbahnoberflächen des Lagerelements 1 gegeben. Versuche zeigten, dass die hohe Härte des Lagerelements 1 die Bildung von Kavitationen, bei Anwendungen, in welchen das Lagerelement 1 teilweise oder vollständig mit einem wässrigen Medium gefüllt betrieben wird, deutlich reduziert. Die Versuche zeigten, dass die Kavitationsabtragsrate eines aus dem erfindungsgemäßen Verbundmaterial gebildeten Lagerelements 1 ca. 30% unterhalb der Kavitationsabtragsrate von Lagerelementen aus herkömmlichen Wälzlagerstählen liegt.
Das das Lagerelement 1 bildende Verbundmaterial zeichnet sich durch eine hohe Festigkeit, Zähigkeit, Härte, Überroll- und Verschleißfestigkeit und eine hohe Korrosionsbeständigkeit aus. Die Streckgrenze des Verbundmaterials liegt typischerweise oberhalb 1500 MPa, die maximale Zugspannung liegt typi- scherweise oberhalb 1800 MPa.
Der Außenring 3 und der Innenring 4 des Wälzlagers 2 sind jeweils mit einer Schutzschicht 7 gegenüber korrosiven Medien beschichtet bzw. überzogen. Die Schutzschicht 7 stellt einen passiven Korrosionsschutz dar und ist bei- spielsweise aus einem auf einem Kunststoffmaterial basierenden Lack gebildet.
An dem Außenring 3 bzw. dem Innenring 4 des Wälzlagers 2 ist ferner eine Scheibe 8 angebracht, in welcher Elektroden für Opferanoden bildende metalli- sehe Schutzkörper 9 eingebettet sind. Die Opferanoden bildenden metallischen Schutzkörper 9 sind z. B. aus Aluminium oder Zink, allgemein aus einem unedleren Metall als das Verbundmaterial, gebildet und an dem Außenring 3 bzw. dem Innenring 4 des Wälzlagers 2 angebracht. Die Schutzkörper 9 stellen so- nach einen aktiven Korrosionsschutz des Lagerelements 1 bzw. des Wälzlagers 2 dar. Je nachdem, ob die Scheibe 8 aus einem elektrisch leitfähigen, d. h. z. B. aus einem metallischen Material, oder elektrisch isolierenden, d. h. z. B. aus einem Kunststoffmaterial, gebildeten Material besteht, können die Elekt- roden elektrisch leitend oder elektrisch isoliert angebracht sein.
Das Wälzlager 2 ist außenumfangsseitig, d. h. insbesondere im Bereich des Außenumfangs des Außenrings 3, sowie innenumfangsseitig, d. h. insbesondere im Bereich des Innenumfangs des Innenrings 4, zudem mit einer elektrisch isolierenden Beschichtung 10 versehen. Die elektrisch isolierende Beschich- tung 10 ist aus einem elektrisch isolierenden Material, wie z. B. einem keramischen Material, gebildet und dient zur elektrischen Isolation der Lagerringe.
Figur 2 zeigt ein Diagramm zur Veranschaulichung der Korrosionsbeständigkeit zweier erfindungsgemäßer Lagerelemente 1 unterschiedlicher chemischer Zusammensetzung. Anhand von Figur 2 lässt sich die im Vergleich zu einem aus einem herkömmlichen Wälzlagerstahl verbesserte Korrosionsbeständigkeit des die erfindungsgemäßen Lagerelemente 1 bildenden Verbundmaterials darlegen.
In dem in Figur 2 gezeigten Diagramm ist der elektrische Strom (y-Achse) gegen das elektrische Potential (x-Achse) aufgetragen. Gezeigt sind Versuchsergebnisse aus Untersuchungen des Lochkorrosionspotentials bzw. des Repas- sivierungspotentials (Ag/AgCI, 3, 5% NaCI, 20°C). Die Kurven 1 1 repräsentie- ren die Messergebnisse für ein erfindungsgemäßes Lagerelement 1 einer ersten chemischen Zusammensetzung, die Kurven 12 repräsentieren die Messergebnisse für ein erfindungsgemäßes Lagerelement 1 einer zweiten chemischen Zusammensetzung, die Kurven 13 repräsentieren die Messergebnisse für ein nicht erfindungsgemäßes Lagerelement aus einem herkömmlichen Wälzlager- stahl.
Ersichtlich beginnt die durch den Anstieg der Kurven 1 1 , 12, 13 indizierte Materialauflösung bei den erfindungsgemäßen Lagerelementen 1 deutlich später als bei dem nicht erfindungsgemäßen Lagerelement. Das Repassivierungspotenti- al, d. h. das Potential, bei welchem die Kurven nach dem Anstieg wieder auf die x-Achse treffen, liegt bei den erfindungsgemäßen Lagerelementen 1 im Vergleich zu dem nicht erfindungsgemäßen Lagerelement deutlich höher. Die Untersuchungen belegen die gute Korrosionsbeständigkeit der erfindungsgemäßen Lagerelemente 1 .
Bezugszahlenliste
1 Lagerelement
2 Wälzlager
3 Außenring
4 Innenring
5 Wälzkörper
6 Käfig
7 Schutzschicht
8 Scheibe
9 Schutzkörper
10 elektrisch isolierende Beschichtung
1 1 Kurve
12 Kurve
13 Kurve

Claims

Patentansprüche
Lagerelement (1 ) für ein Gleit- oder Wälzlager (2), welches Lagerele- ment (1 ) zumindest abschnittsweise ein pulvermetallurgisches Verbundmaterial, enthaltend eine auf einem Stahl basierende metallische Phase und eine Hartstoffphase, umfasst, dadurch gekennzeichnet, dass der Stahl 0,2 - 0,6 Gew.-% Kohlenstoff, 0,1 - 0,3 Gew.-% Stickstoff, 0,5 - 2 Gew.-% Molybdän und 13 - 15 Gew.-% Chrom enthält.
Lagerelement nach Anspruch 1 , dadurch gekennzeichnet, dass der Stahl zusätzlich 0,1 - 2 Gew.-% Mangan, 0,1 - 1 Gew.-% Silizium und einen Nickelanteil kleiner 1 Gew.-% enthält.
Lagerelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Hartstoffphase wenigstens eine der folgenden Hartstoffverbindungen umfasst: Boride, Carbide, insbesondere Va- nadiumcarbid und/oder Niobcarbid, Nitride, insbesondere Vanadiumnitrid und/oder Niobnitrid, Silizide.
Lagerelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Verbundmaterial insgesamt 1 - 1 ,5 Gew.-% Kohlenstoff, 0,1 - 2 Gew.-% Stickstoff, 0,5 - 4 Gew.-% Molybdän und 14 - 15,75 Gew.-% Chrom umfasst, wobei das Kohlenstoff-Stickstoff- Verhältnis 0, 5 - 4 beträgt, und die Hartstoffphase weniger als 4 Gew.-% Vanadium und/oder weniger als 3 Gew.-% Nickel enthält.
Lagerelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Hartstoffphase in dem Verbundmaterial einen Anteil in einem Bereich zwischen 8 und 30 Vol.-%, insbesondere 15 - 25 Vol.-%, aufweist.
Lagerelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Härte zumindest im Bereich der Oberfläche in einem Bereich von 55 bis 70 HRC, insbesondere oberhalb 59 HRC, liegt.
Lagerelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es zumindest abschnittsweise mit einer Schutzschicht (7) gegenüber korrosiven Medien überzogen ist und/oder dass es wenigstens einen eine Opferanode bildenden metallischen Schutzkörper (9) umfasst.
Lagerelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es ein Lagerring (3, 4) oder ein Gleit- oder Wälzkörper (5) ist.
Lager, insbesondere Gleit- oder Wälzlager (2), umfassend wenigstens ein Lagerelement (1 ) nach einem der vorangehenden Ansprüche.
PCT/DE2014/200408 2013-10-15 2014-08-20 Lagerelement für ein wälz- oder gleitlager WO2015055187A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013220840.5 2013-10-15
DE102013220840.5A DE102013220840B4 (de) 2013-10-15 2013-10-15 Lagerelement für ein Wälz- oder Gleitlager

Publications (1)

Publication Number Publication Date
WO2015055187A1 true WO2015055187A1 (de) 2015-04-23

Family

ID=51539103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/200408 WO2015055187A1 (de) 2013-10-15 2014-08-20 Lagerelement für ein wälz- oder gleitlager

Country Status (2)

Country Link
DE (1) DE102013220840B4 (de)
WO (1) WO2015055187A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200011374A1 (en) * 2018-01-23 2020-01-09 Us Synthetic Corporation Corrosion resistant bearing elements, bearing assemblies, bearing apparatuses, and motor assemblies using the same
CN112524151A (zh) * 2019-09-18 2021-03-19 斯凯孚公司 用于制冷剂压缩机的滚动轴承,特别是混合滚动轴承
US11400564B1 (en) 2015-04-21 2022-08-02 Us Synthetic Corporation Methods of forming a liquid metal embrittlement resistant superabrasive compact, and superabrasive compacts and apparatuses using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3243586A1 (de) * 2016-05-10 2017-11-15 SL Gleitlagertechnik GmbH Sintereisenlager
DE102018213672A1 (de) * 2018-08-14 2020-02-20 Thyssenkrupp Ag Anschlusskonstruktion für eine Wälzlageranordnung
JP2021076227A (ja) * 2019-11-13 2021-05-20 株式会社不二越 電食防止軸受

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4212966A1 (de) * 1992-04-18 1993-10-21 Ver Schmiedewerke Gmbh Martensitischer Chrom-Stahl
JPH1161351A (ja) * 1997-08-25 1999-03-05 Daido Steel Co Ltd 加工性および耐食性に優れた高硬度マルテンサイト系ステンレス鋼
JP2000226641A (ja) * 1999-02-05 2000-08-15 Nsk Ltd 転動装置
JP2002047541A (ja) * 2000-07-31 2002-02-15 Sanyo Special Steel Co Ltd 冷間加工性に優れた高耐食ステンレス鋼およびそれを用いた直線案内装置
DE102004043134A1 (de) * 2004-09-07 2006-03-09 Hans Prof. Dr.-Ing. Berns Höchstfester nichtrostender austenitischer Stahl
DE102008024055A1 (de) * 2008-05-16 2009-11-19 Schaeffler Kg Lagerring und Lager mit funktionsbezogenem Werkstoffverbund
US20120177527A1 (en) * 2009-07-21 2012-07-12 Aktiebolaget Skf Bearing steels

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701321B (zh) * 2003-07-31 2014-03-19 株式会社小松制作所 烧结滑动部件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4212966A1 (de) * 1992-04-18 1993-10-21 Ver Schmiedewerke Gmbh Martensitischer Chrom-Stahl
JPH1161351A (ja) * 1997-08-25 1999-03-05 Daido Steel Co Ltd 加工性および耐食性に優れた高硬度マルテンサイト系ステンレス鋼
JP2000226641A (ja) * 1999-02-05 2000-08-15 Nsk Ltd 転動装置
JP2002047541A (ja) * 2000-07-31 2002-02-15 Sanyo Special Steel Co Ltd 冷間加工性に優れた高耐食ステンレス鋼およびそれを用いた直線案内装置
DE102004043134A1 (de) * 2004-09-07 2006-03-09 Hans Prof. Dr.-Ing. Berns Höchstfester nichtrostender austenitischer Stahl
DE102008024055A1 (de) * 2008-05-16 2009-11-19 Schaeffler Kg Lagerring und Lager mit funktionsbezogenem Werkstoffverbund
US20120177527A1 (en) * 2009-07-21 2012-07-12 Aktiebolaget Skf Bearing steels

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11400564B1 (en) 2015-04-21 2022-08-02 Us Synthetic Corporation Methods of forming a liquid metal embrittlement resistant superabrasive compact, and superabrasive compacts and apparatuses using the same
US20200011374A1 (en) * 2018-01-23 2020-01-09 Us Synthetic Corporation Corrosion resistant bearing elements, bearing assemblies, bearing apparatuses, and motor assemblies using the same
US10920822B2 (en) * 2018-01-23 2021-02-16 Us Synthetic Corporation Corrosion resistant bearing elements, bearing assemblies, bearing apparatuses, and motor assemblies using the same
US11686347B2 (en) 2018-01-23 2023-06-27 Us Synthetic Corporation Corrosion resistant bearing elements, bearing assemblies, bearing apparatuses, and motor assemblies using the same
CN112524151A (zh) * 2019-09-18 2021-03-19 斯凯孚公司 用于制冷剂压缩机的滚动轴承,特别是混合滚动轴承

Also Published As

Publication number Publication date
DE102013220840B4 (de) 2017-08-03
DE102013220840A1 (de) 2015-04-16

Similar Documents

Publication Publication Date Title
DE102013220840B4 (de) Lagerelement für ein Wälz- oder Gleitlager
EP3228724B1 (de) Werkzeugstahl, insbesondere warmarbeitsstahl, und stahlgegenstand
EP2902526B1 (de) Mehrschichtgleitlager
DE102012018964B4 (de) Auf Eisen-Basis gesinterter Gleitkörper und Verfahren zu seiner Herstellung
DE2846122C2 (de) Sinterlegierung für die Herstellung von Gleitelementen für Motoren
DE102014004450B4 (de) Eisenbasierte Sinterlegierung für ein Gleitelement und Herstellungsverfahren hierfür
DE2356616A1 (de) Abriebbestaendiges lagermaterial und verfahren zu seiner herstellung
WO2015049309A1 (de) Gesinterte spritzpulver auf basis von molybdänkarbid
EP3409801B1 (de) Pulvermetallurgisch hergestellter, hartstoffpartikel enthaltender verbundwerkstoff, verwendung eines verbundwerkstoffs und verfahren zur herstellung eines bauteils aus einem verbundwerkstoff
EP3004413B1 (de) Mine für kugelschreiber und verwendung
EP2580362B1 (de) Verfahren zur herstellung eines bleifreien gleitlagers
AT511432A4 (de) Verfahren zur herstellung eines gleitlagerelementes
DE60027355T2 (de) Selbstschmierendes Kolbenringmaterial für Verbrennungsmotoren und Kolbenring
AT518875B1 (de) Mehrschichtgleitlagerelement
DE112018001615T5 (de) Aus gesinterter Eisenlegierung gefertigter Ventilsitz mit hervorragender Wärmeleitfähigkeit zur Verwendung in Verbrennungsmotoren
AT517721B1 (de) Verfahren zur Herstellung eines Gleitlagerelementes
DE102011007362A1 (de) Verfahren zur Herstellung eines bleifreien Gleitlagermaterials
EP2052096B1 (de) Stahlkolbenring
DE102013201720B4 (de) Metallischer Gleitlagerverbundwerkstoff mit einer metallischen Stützschicht
DE102014205164B4 (de) Lagerelement für ein Wälzlager
DE112018002199T5 (de) Metallbasiertes Kompositmaterial
WO2018095610A1 (de) Pulvermetallurgisch hergestellter stahlwerkstoff, verfahren zur herstellung eines bauteils aus einem solchen stahlwerkstoff und aus dem stahlwerkstoff hergestelltes bauteil
EP3825119A1 (de) Mehrschichtgleitlagerelement
DE102018214344A1 (de) Verfahren zum Herstellen eines pulvermetallurgischen Erzeugnisses
EP2737097B1 (de) Stahl, bauteil und verfahren zum herstellen von stahl

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765856

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14765856

Country of ref document: EP

Kind code of ref document: A1