WO2015055118A1 - 一种电极加热极及其加工工艺 - Google Patents

一种电极加热极及其加工工艺 Download PDF

Info

Publication number
WO2015055118A1
WO2015055118A1 PCT/CN2014/088620 CN2014088620W WO2015055118A1 WO 2015055118 A1 WO2015055118 A1 WO 2015055118A1 CN 2014088620 W CN2014088620 W CN 2014088620W WO 2015055118 A1 WO2015055118 A1 WO 2015055118A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
etching
heating
electrode layer
Prior art date
Application number
PCT/CN2014/088620
Other languages
English (en)
French (fr)
Inventor
徐利辉
王杉
邓晓清
李朝阳
Original Assignee
四川飞阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川飞阳科技有限公司 filed Critical 四川飞阳科技有限公司
Publication of WO2015055118A1 publication Critical patent/WO2015055118A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions

Definitions

  • the invention relates to a chip electrode, in particular to an electrode heating electrode and a processing technique thereof.
  • the electrode layer of the chip is usually coated with a film-like electrode layer on the surface of the substrate, and then the excess electrode layer is removed by etching to form an electrode layer of the final desired line.
  • Thin film deposition is a commonly used processing method in chip processing, and various conductive film layers, insulating film layers or semiconductor film layers can be grown on the substrate by a deposition process.
  • the reason why the electrode layer is very thin is because the thickness is thin and can have a very uniform temperature coefficient of resistance, and the dielectric constant is low, so that the signal transmission loss is smaller, and the thin electrode layer has a smaller temperature rise under a large current, which is for heat dissipation. And component life is very beneficial. Then it is necessary to etch the entire electrode layer deposited into the desired wiring.
  • the circuit design of the chip is printed into a film by a lithography machine, and then a photosensitive dry film whose main component is sensitive to a specific spectrum and chemically reacted is coated on the substrate.
  • the dry film is divided into two types, a photopolymerization type and a photodecomposition type, and light.
  • the polymeric dry film hardens under the illumination of a specific spectrum of light, and the water-insoluble material becomes water-insoluble and the photo-decomposable type is just the opposite.
  • the photopolymerizable photosensitive dry film is first covered on the substrate, and a layer of film film is covered thereon to expose it, and the exposed portion is black opaque, and vice versa is transparent (line portion).
  • the light is irradiated onto the photosensitive dry film through the film.
  • the dry film becomes darker and begins to harden, and the electrode layer on the surface of the substrate is tightly wrapped, just like printing the circuit diagram on the substrate.
  • the development step (washing the unhardened dry film with a sodium carbonate solution) exposes the electrode layer that does not require dry film protection, which is called a stripping process.
  • etching is a purely chemical reaction process, which refers to the use of a chemical reaction between a solution and a pre-etched material to remove portions that are not masked by the masking film material for etching purposes.
  • dry etching includes photo-evaporation, vapor phase etching, and plasma. Body corrosion, etc.
  • the dry etching has good anisotropy, high selection ratio, good controllability, flexibility and repeatability, safe operation of fine lines, easy automation, no chemical waste liquid, no pollution introduced during the treatment process, and high cleanliness.
  • the substrate is covered with two layers of film, the electrode layer and the heating electrode layer, and the electrode layer and the heating electrode layer are made of metal of different materials.
  • the conventional method is to deposit a first layer on the substrate. The layer is heated, and then an electrode layer is deposited thereon, and then the electrode layer is etched to form a desired conductive line.
  • the electrode layer is etched, since the etching rate of the metal material is similar, and the electrode layer and the heating electrode layer are adjacent to each other, the heating electrode is also etched, and the thickness of the electrode layer and the heating electrode layer are extremely thin, and the etching precision is controlled. The difficulty is too large. Once the control is not good, the heating pole will be etched, causing damage and seriously affecting the performance of the device.
  • the technical problem to be solved by the present invention and the technical task to be solved are to improve the prior art, and provide an electrode heating electrode and a processing technique thereof, which solves the problem that the electrode layer etching precision control is too difficult in the prior art, and the heating pole is easily caused.
  • the layer is etched, seriously affecting device performance issues.
  • the technical solution of the present invention is:
  • the isolation layer is made of silicon dioxide, and the etching rate of the silicon dioxide is different from the etching rate of the metal.
  • the isolation layer silicon dioxide is not quickly engraved. The etch, thereby isolating the heating electrode layer from the outside, thereby providing a good protection effect and ensuring the integrity of the heating electrode layer.
  • the process for fabricating the electrode of the electrode comprises the following steps: film deposition and etching, characterized in that a layer of a heating electrode is deposited on the substrate, and then etched into a desired line pattern on the heating layer before A layer of silicon dioxide is deposited on the heating layer, and then an isolation layer is etched to remove the isolation layer covering the sides of the heating layer so that the isolation layer covers only the top surface of the heating layer, and is isolated.
  • the silicon dioxide etching gas does not substantially etch the metal material, after the silicon dioxide is etched, the heating electrode remains intact, and on this basis, the electrode layer is further deposited, and the top surface of the isolation layer is removed by etching.
  • the electrode layer forms the desired line.
  • the heating electrode is not damaged due to the protection of the isolation layer silicon dioxide, thereby greatly reducing the difficulty of etching control, reducing the difficulty of controlling the precise etching time, and simplifying the production. And improve the performance of the product heating pole.
  • the etching is performed by dry etching. Dry etching physical etching is very directional, and anisotropic etching can be performed, but selective etching cannot be performed. Chemical etching utilizes chemically active atomic groups in the plasma to chemically react with the material to be etched. To achieve the purpose of etching. Since the core of the etch is still a chemical reaction (only the gas state does not involve the solution), the etching effect is somewhat similar to that of the wet etch, and has good selectivity, but the anisotropy is poor. Dry etching combines the advantages of anisotropy and selectivity to ensure the etching effect.
  • the film deposition uses chemical vapor deposition to ensure film thickness uniformity.
  • Chemical vapor deposition introduces a gaseous reactant containing a constituent film element into a reaction chamber to chemically react on the surface of the wafer to form a desired solid film and deposit it on the surface.
  • the deposition temperature of the chemical vapor deposition method is low, the film composition and thickness are easy to control, the film thickness is proportional to the deposition time, the uniformity and repeatability are good, the step coverage is good, and the operation is convenient.
  • the electrode heating electrode and the processing method thereof of the invention add a silicon dioxide isolation layer between the electrode layer and the heating electrode layer by using the principle that the etching rate of the silicon dioxide is greatly different from the metal etching rate.
  • the etching of the electrode layer plays a good protective role, effectively avoiding the etching of the heating electrode layer, ensuring the integrity of the heating electrode layer, greatly reducing the difficulty of controlling the etching time precision, and effectively reducing the production difficulty.
  • the heating pole performance of the product is improved; the structure of the invention is simple, the manufacturing process technology is mature and easy to operate, the production cost is low, and the mass production is easy.
  • FIG. 1 is a schematic structural view of a deposition isolation layer of the present invention
  • FIG. 2 is a schematic structural view of an etching isolation layer of the present invention.
  • FIG. 3 is a schematic structural view of a deposition electrode layer of the present invention.
  • FIG. 4 is a schematic structural view of an etch electrode layer of the present invention.
  • the electrode heating electrode and the processing technology thereof disclosed in the embodiments of the invention reduce the difficulty of etching the electrode layer, protect the heating electrode layer, and improve the heating performance of the product.
  • an electrode heating electrode comprises a substrate 1, a heating layer 2, an isolating layer 3 and an electrode layer 4.
  • the isolation layer 3 is made of a silicon dioxide material, and the metal heating layer 2
  • the substrate 1 is deposited by deposition, and the insulating layer 3 of silicon dioxide is deposited on the heating layer 2.
  • the thickness of the isolation layer 3 is 2,000 to 30,000 angstroms, and the electrode layer 4 is deposited by deposition. Covering the heating electrode layer 2 and the isolation layer 3, the electrode layer 4 on the upper portion of the isolation layer 3 is removed by etching. When the electrode layer is etched, the heating electrode layer is not damaged by the protection of the isolation layer silicon dioxide.
  • a heating electrode layer 2 is deposited on the substrate 1 by chemical vapor deposition, and the heating electrode layer 2 is etched into a desired wiring pattern by reactive ion etching, as shown in FIG.
  • a silicon dioxide isolation layer 3 is deposited, and as shown in FIG. 2, the isolation layer 3 is etched, and the isolation layer 3 coated on both sides of the heating electrode layer 2 is removed to cover the isolation layer 3 only to the heating electrode.
  • the top surface of layer 2 since the silicon dioxide etching gas does not substantially etch the metal, after etching the silicon dioxide, the metal of the heating electrode remains intact, as shown in FIG. 3, and then on the heating layer 2 and
  • An electrode layer 4 is deposited on the isolation layer 3 such that both sides of the heating electrode layer 2 are connected to the electrode layer to ensure electrical communication and heat conduction. Finally, as shown in FIG. 4, the electrode layer 4 on the top surface of the isolation layer 3 is removed by etching. It forms the required line.

Abstract

一种电极加热极及其加工工艺,包括基材、加热极层、隔离层和电极层,加热极层通过淀积方式覆在基材上,加热极层上还淀积有二氧化硅隔离层,金属电极层通过淀积方式包覆在加热极层和隔离层上,隔离层上部的电极层通过刻蚀去除。本发明利用二氧化硅的刻蚀速率与金属刻蚀速率差异较大的原理在电极层与加热极层之间增加一层二氧化硅隔离层,在进行电极层的刻蚀时起到了良好的保护作用,有效避免加热极层遭到刻蚀,保证了加热极层的完整性,极大的降低了控制刻蚀时间精度的难度,提高了产品的加热极性能。

Description

一种电极加热极及其加工工艺
本申请要求2013年10月18日提交中国专利局、申请号为201310491824.9、发明名称为“一种电极加热极及其加工工艺”的发明专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种芯片电极,尤其涉及一种电极加热极及其加工工艺。
背景技术
目前芯片的电极层通常是在基材表面覆上一层薄膜状的电极层,然后采用刻蚀的方式去除多余的电极层,形成最终所需线路的电极层。
薄膜淀积是芯片加工过程中常用的一种加工方式,通过淀积工艺可以在基材上生长导各种导电薄膜层、绝缘薄膜层或者半导体薄膜层。电极层之所以非常薄是因为厚度薄可以有非常均匀的电阻温度系数,介电常数低,这样能让信号传输损失更小,薄的电极层通过大电流情况下温升较小,这对于散热和元件寿命都是有很大好处的。然后即是需要将淀积成的整块电极层刻蚀成所需的线路。将芯片的线路设计用光刻机印成胶片,然后把一种主要成分对特定光谱敏感而发生化学反应的感光干膜覆盖在基板上,干膜分两种,光聚合型和光分解型,光聚合型干膜在特定光谱的光照射下会硬化,从水溶性物质变成水不溶性而光分解型则正好相反。用光聚合型感光干膜先盖在基板上,上面再盖一层线路胶片让其曝光,曝光的地方呈黑色不透光,反之则是透明的(线路部分)。光线通过胶片照射到感光干膜上,凡是胶片上透明通光的地方干膜颜色变深开始硬化,紧紧包裹住基板表面的电极层,就像把线路图印在基板上一样,接下来经过显影步骤(使用碳酸钠溶液洗去未硬化干膜),让不需要干膜保护的电极层露出来,这称作脱膜工序。
然后则是需要采用刻蚀的方式去除无用的电极层部分,目前常用的刻蚀方式为干法刻蚀和湿法刻蚀。湿法刻蚀是一个纯粹的化学反应过程,是指利用溶液与预刻蚀材料之间的化学反应来去除未被掩蔽膜材料掩蔽的部分而达到刻蚀目的。干法刻蚀种类很多,包括光挥发、气相腐蚀、等离子 体腐蚀等。干法刻蚀的各向异性好,选择比高,可控性、灵活性、重复性好,细线条操作安全,易实现自动化,无化学废液,处理过程未引入污染,洁净度高。
在光分路器器件中,基材上覆有两层薄膜,电极层和加热极层,电极层和加热极层采用不同材质的金属制成,传统的方式为先在基材上淀积一层加热层,再在其上淀积一层电极层,然后再对电极层实施刻蚀形成所需的导电线路。在刻蚀电极层时,由于金属材质的刻蚀速率相近,并且电极层和加热极层相邻,因此加热极也会被刻蚀,电极层和加热极层厚度极薄,控制刻蚀精度的难度过大,一旦控制不好,会造成加热极被刻蚀,造成损伤,严重影响器件性能。
发明内容
本发明所要解决的技术问题和提出的技术任务是对现有技术进行改进,提供一种电极加热极及其加工工艺,解决目前技术中电极层刻蚀精度控制难度过大,极易造成加热极层被刻蚀,严重影响器件性能的问题。
为解决以上技术问题,本发明的技术方案是:
一种电极加热极,包括基材、加热极层、隔离层和电极层,其特征在于,加热极层通过淀积方式覆在基材上,加热极层上还淀积有隔离层,电极层通过淀积方式包覆在加热极层和隔离层上,隔离层上部的电极层通过刻蚀去除。加热极层的上方有隔离层保护,在进行电极层刻蚀时可确保加热极层不受刻蚀,确保其完整性,从而保证了产品加热极的性能,并且电极层以及加热极层的电气性能也不会受到影响,可安全正常的实现电气及加热功能。
进一步的,所述的隔离层采用二氧化硅制成,二氧化硅的刻蚀速率与金属的刻蚀速率差异较大,在进行金属电极层刻蚀时隔离层二氧化硅不会被快速刻蚀,从而将加热极层与外界隔绝,从而起到良好的保护效果,确保加热极层的完整性。
进一步的,所述的隔离层的淀积厚度为2000~30000埃,在确保达到隔离保护加热极层效果上尽量降低隔离层的淀积厚度,减少产品的制作成本。
制作电极加热极的加工工艺,包括如下步骤:薄膜淀积和刻蚀,其特征在于,在基材上淀积一层加热极层,然后在加热极层刻蚀成所需线路图样后再在加热极层淀积一层二氧化硅隔离层,然后进行隔离层刻蚀,去除包覆在加热极层两侧边处的隔离层使隔离层只覆盖于加热极层的顶面,在进行隔离层刻蚀时,由于二氧化硅刻蚀气体基本不刻蚀金属材质,刻蚀二氧化硅后,加热极保持完整,在此基础上再淀积电极层,通过刻蚀去除隔离层顶面的电极层形成所需的线路。在进行电极层刻蚀时,由于隔离层二氧化硅的保护,加热极不会受到损伤,从而极大的降低了刻蚀控制难度,降低了控制精确刻蚀时间的难度,使生产简易化,并且提高产品加热极的性能。
进一步的,所述的刻蚀采用干法刻蚀。干法刻蚀物理性刻蚀方向性很强,可以做到各向异性刻蚀,但不能进行选择性刻蚀;化学性刻蚀利用等离子体中的化学活性原子团与被刻蚀材料发生化学反应,从而实现刻蚀目的。由于刻蚀的核心还是化学反应(只是不涉及溶液的气体状态),因此刻蚀的效果和湿法刻蚀有些相近,具有较好的选择性,但各向异性较差。采用干法刻蚀同时兼有各向异性和选择性好的优点,保证刻蚀的效果。
进一步的,所述的薄膜淀积采用化学气相淀积保证膜厚均匀性。化学气相淀积是把含有构成薄膜元素的气态反应剂引入反应室,在晶圆表面发生化学反应,从而生成所需的固态薄膜并淀积在其表面。化学气相淀积法的淀积温度低,薄膜成分和厚度易控,薄膜厚度与淀积时间成正比,均匀性与重复性好,台阶覆盖性良好,操作方便。
与现有技术相比,本发明优点在于:
本发明所述的电极加热极及其加工工艺利用二氧化硅的刻蚀速率与金属刻蚀速率差异较大的原理在电极层与加热极层之间增加一层二氧化硅隔离层,在进行电极层的刻蚀时起到了良好的保护作用,有效避免加热极层遭到刻蚀,保证了加热极层的完整性,极大的降低了控制刻蚀时间精度的难度,有效降低生产难度,提高了产品的加热极性能;本发明结构简单,制造工艺技术成熟操作简便,制作成本低,易于量产。
附图说明
图1为本发明淀积隔离层的结构示意图;
图2为本发明刻蚀隔离层的结构示意图;
图3为本发明淀积电极层的结构示意图;
图4为本发明刻蚀电极层的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开的一种电极加热极及其加工工艺,以降低电极层刻蚀控制难度,保护加热极层,提高产品加热极性能为目的。
如图1~4所示,一种电极加热极,包括基材1、加热极层2、隔离层3和电极层4,隔离层3选用二氧化硅材质制成,金属材质的加热极层2通过淀积方式覆在基材1上,加热极层2上再淀积上二氧化硅材质的隔离层3,隔离层3的淀积厚度为2000~30000埃,电极层4通过淀积方式包覆在加热极层2和隔离层3上,隔离层3上部的电极层4通过刻蚀去除,在进行电极层刻蚀时,由于隔离层二氧化硅的保护,加热极层不会受到损伤。
在基材1上采用化学气相淀积法淀积一层加热极层2,采用反应离子刻蚀将加热极层2刻蚀成所需线路图样,如图1所示,在加热极层2淀积一层二氧化硅隔离层3,再如图2所示,进行隔离层3的刻蚀,去除包覆在加热极层2两侧边处的隔离层3使隔离层3只覆盖于加热极层2的顶面,由于二氧化硅刻蚀气体基本不刻蚀金属,刻蚀二氧化硅后,加热极的金属保持完整,如图3所示,在此基础上再在加热极层2以及隔离层3上淀积电极层4,使加热极层2的两侧边与电极层相连保证电气联通和热传导,最后如图4所示,通过刻蚀去除隔离层3顶面的电极层4使之形成所需的线路。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

  1. 一种电极加热极,包括基材(1)、加热极层(2)、隔离层(3)和电极层(4),其特征在于,加热极层(2)通过淀积方式覆在基材(1)上,加热极层(2)上还淀积有隔离层(3),电极层(4)通过淀积方式包覆在加热极层(2)和隔离层(3)上,隔离层(3)上部的电极层(4)通过刻蚀去除。
  2. 根据权利要求1所述的电极加热极,其特征在于,所述的隔离层(3)采用二氧化硅制成。
  3. 根据权利要求2所述的电极加热极,其特征在于,所述的隔离层(3)的淀积厚度为2000~30000埃之间。
  4. 制作电极加热极的加工工艺,包括如下步骤:薄膜淀积和刻蚀,其特征在于,在基材(1)上淀积一层加热极层(2),然后在加热极层(2)刻蚀成所需线路图样后再在加热极层(2)淀积一层二氧化硅隔离层(3),然后进行隔离层(3)刻蚀,去除包覆在加热极层(2)两侧边处的隔离层(3)使隔离层(3)只覆盖于加热极层(2)的顶面,在此基础上再淀积电极层(4),通过刻蚀去除隔离层(3)顶面的电极层(4)形成所需的线路。
  5. 根据权利要求4所述的电极加热极加工工艺,其特征在于,所述的刻蚀采用干法刻蚀。
  6. 根据权利要求5所述的电极加热极加工工艺,其特征在于,所述的薄膜淀积采用化学气相淀积保证膜厚均匀性。
PCT/CN2014/088620 2013-10-18 2014-10-15 一种电极加热极及其加工工艺 WO2015055118A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310491824.9 2013-10-18
CN201310491824.9A CN103545353B (zh) 2013-10-18 2013-10-18 一种电极加热极及其加工工艺

Publications (1)

Publication Number Publication Date
WO2015055118A1 true WO2015055118A1 (zh) 2015-04-23

Family

ID=49968633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088620 WO2015055118A1 (zh) 2013-10-18 2014-10-15 一种电极加热极及其加工工艺

Country Status (2)

Country Link
CN (1) CN103545353B (zh)
WO (1) WO2015055118A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545353B (zh) * 2013-10-18 2016-05-11 四川飞阳科技有限公司 一种电极加热极及其加工工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268430A (ja) * 2004-03-17 2005-09-29 Nissan Motor Co Ltd オーミック電極構造体およびその製造方法
CN101471253A (zh) * 2007-12-27 2009-07-01 三菱电机株式会社 半导体装置的制造方法
JP2013045841A (ja) * 2011-08-23 2013-03-04 Toyota Central R&D Labs Inc オーミック電極とその形成方法
CN103545353A (zh) * 2013-10-18 2014-01-29 四川飞阳科技有限公司 一种电极加热极及其加工工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990215B1 (ko) * 2008-07-17 2010-10-29 한국전자통신연구원 상변화 메모리 소자 및 그 제조 방법
CN102053112A (zh) * 2009-10-29 2011-05-11 比亚迪股份有限公司 一种片式氧传感器及其制备方法
CN102095766B (zh) * 2010-12-02 2013-05-22 西安交通大学 微型集成温控式co2气体传感器及制备方法
KR101124341B1 (ko) * 2011-01-07 2012-03-16 주식회사 하이닉스반도체 상변화 메모리 장치 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268430A (ja) * 2004-03-17 2005-09-29 Nissan Motor Co Ltd オーミック電極構造体およびその製造方法
CN101471253A (zh) * 2007-12-27 2009-07-01 三菱电机株式会社 半导体装置的制造方法
JP2013045841A (ja) * 2011-08-23 2013-03-04 Toyota Central R&D Labs Inc オーミック電極とその形成方法
CN103545353A (zh) * 2013-10-18 2014-01-29 四川飞阳科技有限公司 一种电极加热极及其加工工艺

Also Published As

Publication number Publication date
CN103545353B (zh) 2016-05-11
CN103545353A (zh) 2014-01-29

Similar Documents

Publication Publication Date Title
WO2015169081A1 (zh) Ito膜层刻蚀方法和包含使用该方法形成的电极层的阵列基板
CN102478763A (zh) 光刻方法
JPS55138874A (en) Semiconductor device and method of fabricating the same
CN104538348A (zh) 过孔和显示基板的制作方法
CN105006482B (zh) 一种石墨烯场效应晶体管的制备方法
WO2015055118A1 (zh) 一种电极加热极及其加工工艺
JPH11231161A (ja) 単一チャンバ内で平面光導波路を製作する方法
CN102024686B (zh) 半导体制造工艺及用于此半导体制造工艺的设备
CN103832968B (zh) Mems器件的制造方法
WO2019104837A1 (zh) Tft基板制作方法
CN115547927A (zh) 阵列基板的制备方法、阵列基板及显示面板
WO2015000272A1 (zh) 裸眼3d功能面板的信号基板及其制造方法以及显示设备
JPH04348030A (ja) 傾斜エッチング法
JPH03222409A (ja) 半導体装置の製造方法
WO2019119598A1 (zh) 金属光掩膜的制作方法以及金属光掩膜
KR950012542B1 (ko) 감광막의 이중 선택 노광에 의한 콘택홀 형성 방법
JP3623892B2 (ja) フォトレジスト材料の除去プロセスを使用したcmosフォトセンサーの製造方法
JPS61166132A (ja) 薄膜の選択的形成方法
JPS6284520A (ja) 絶縁膜への開孔形成方法
KR20020036534A (ko) 반도체소자의 콘택홀 형성방법
KR100583754B1 (ko) 패턴 형성용 잉크 및 패턴 형성 방법
CN114229838A (zh) 一种石墨烯器件、多层膜及其制作方法和应用
CN109768161A (zh) 一种有机薄膜晶体管有源层图形化的方法
JPH02294017A (ja) リソグラフィ法
CN109273353A (zh) 改善晶圆光刻胶显影后残留缺陷的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854044

Country of ref document: EP

Kind code of ref document: A1