WO2015054758A1 - Método de preparo de catalisadores ziegler-natta bissuportados - Google Patents

Método de preparo de catalisadores ziegler-natta bissuportados Download PDF

Info

Publication number
WO2015054758A1
WO2015054758A1 PCT/BR2013/000428 BR2013000428W WO2015054758A1 WO 2015054758 A1 WO2015054758 A1 WO 2015054758A1 BR 2013000428 W BR2013000428 W BR 2013000428W WO 2015054758 A1 WO2015054758 A1 WO 2015054758A1
Authority
WO
WIPO (PCT)
Prior art keywords
ziegler
natta
bisupported
lamellar
alsi
Prior art date
Application number
PCT/BR2013/000428
Other languages
English (en)
French (fr)
Inventor
Marua de Fátima VIEIRA MARQUES
Luciana BORTOLIN RAMIS
Mônica COUTO DE OLIVEIRA
Renata DA SILVA CARDOSO
Original Assignee
Petróleo Brasileiro S.A. - Petrobras
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petróleo Brasileiro S.A. - Petrobras filed Critical Petróleo Brasileiro S.A. - Petrobras
Priority to PCT/BR2013/000428 priority Critical patent/WO2015054758A1/pt
Priority to BR112015002630A priority patent/BR112015002630A2/pt
Priority to ARP140102517A priority patent/AR096838A1/es
Publication of WO2015054758A1 publication Critical patent/WO2015054758A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0202Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene

Definitions

  • the present invention relates to a method of preparing Ziegler-Natta bisupported catalysts. More specifically, the present invention is concerned with the preparation of spherical morphology catalysts supported by a mixture of lamellar MgCl 2 and lamellar aluminosilicates (AlSi), wherein the AlSi mass concentration ranges from 5% to 80% relative to MgCl 2. .
  • AlSi lamellar aluminosilicates
  • Such catalysts when applied to olefin polymerization lead to the obtaining of nanocomposites with exfoliated / intercalated aluminosilicate dispersion, with absence of microparticles, and lamellar aluminosilicate content of up to 60% w / w.
  • the general strategy for improving the compatibility of polyolefins with lamellar aluminosilicates is usually by the addition of a compatibilizing agent containing a functional group. polar to the polymer, the polyolefin being mixed with AlSi and the compatibilizing agent in an extruder.
  • a compatibilizing agent containing a functional group polar to the polymer, the polyolefin being mixed with AlSi and the compatibilizing agent in an extruder.
  • Such a method of preparation results in heterogeneous polyolefin / AISi-lamellar nanocomposites, where intercalation and exfoliation structures coexist in the same system with micrometer particles.
  • Ziegler-Natta (ZN) TiCl 4 catalysts supported on MgCl 2 spherical morphology are the most modern catalytic systems used industrially for the production of polyolefins.
  • Ziegler-Natta catalysts One of the main characteristics of Ziegler-Natta catalysts is the particle morphological control, but there is no reference in the literature to spherical Ziegler-Natta catalysts containing AlSi content above 5% for the production of polypropylene nanocomposites. and concentrates capable of maintaining the spherical morphology of the polymeric product.
  • the literature reports a Ziegler-Natta type catalyst containing AlSi organophilic montmorillonite (OMMT) prepared from MgCl 2 adducts with ethylhexanol / OMMT / TiCI 4 for 5-hexenyl-9-BBN- (9-boracyclononane) propylene copolymerization ).
  • the final product is functionalized with OH groups by reaction with H 2 0 2 / NaOH generating PP-OH / MMT.
  • the nanocomposite thus produced has 1,3% w / w AlSi montmorillonite with exfoliated structure and good thermal stability, but without controlling the catalyst morphology.
  • US 6,613,711 and US 7,432,319 deal with the preparation of Ziegler-Natta catalysts based on magnesium compounds and AlSi as a support.
  • the method of preparation they deal with employs an aliphatic alcohol to solubilize the magnesium compound prior to the addition of AlSi.
  • the prepared catalysts also contain in their formulation an internal electron donor.
  • the method of preparation of these catalysts by solubilization of the adduct does not have the characteristic of good control of the spherical shape of the catalyst.
  • WO 2009/080568 deals with obtaining a spherical adduct comprising MgCl 2 , an alcohol and less than 5% w / w AlSilamellar, preferably up to 1%, for the preparation of Ziegler-Natta catalyst used in the synthesis. of polypropylene.
  • the catalyst containing the AlSi adduct generates a reduced content of broken polymer particles compared to the catalyst obtained with the AlSi adduct. Therefore, AlSi is added only for the purpose of increasing catalyst stability so as not to generate fines in the reactor.
  • the present invention relates to a method of preparing Ziegler-Natta spherical catalysts supported on lamellar MgCl 2 / AISi lamellar as well as the synthesis of nanocomposites and polyolefin / AISi lamellar concentrates employing such catalysts.
  • the ability to maintain spherical particle morphology is extremely advantageous for performing industrial processes.
  • Lamellar aluminosilicates used may be of the type montmorillonite, mica, vermiculite, hydrotalcite, both organophilic and sodium.
  • the catalysts are based on magnesium chloride-supported titanium tetrachloride containing said aluminosilicate prepared from an emulsion-precursor MgCl 2 adduct which gives a spherical alcoholic adduct which generates a support which upon impregnation with TiCl 4 forms the bisupported catalyst object of the present invention.
  • the process for preparing the catalyst of the present invention comprises the following steps:
  • the catalysts obtained according to the present invention are used to synthesize polypropylene / AISi-lamellar nanocomposites under typical polymerization conditions of industrial bulk or gas phase polymerization processes employing a pressure of 2 bar to 40 bar (200 kPa at 4,000 kPa), temperature in the range from 60 ° C to 90 ° C, preferably 70 ° C, and the reaction time from 1 hour to 3 hours, typically 2 hours.
  • the invention also relates to the preparation of polymer / AISi concentrates produced by in situ polymerization for later use in mixtures with commercial polypropylenes of any kind and thus diluted in a single extruder to a nanocomposite where the AlSi content
  • the final grade is typically less than 5% w / w, which results in products with improved properties, such as modulus gains and thermal degradation resistance, useful for industrial use in different applications.
  • the present invention comprises the preparation of Ziegler-Natta bisupported AlSi-lamellar catalysts which lead to the obtainment of spherical morphological polymer nanocomposite particles.
  • Such a method involves the preparation of catalysts by the emulsion technique. Initially, an alcoholic MgCl 2 adduct is mixed with a mineral oil to form an emulsion to which a lamellar aluminosilicate is added, which after being de-alcoholized leads to formation of a catalytic support to which TiCI 4 is incorporated.
  • the Ziegler-Natta catalyst preparation method of the present invention comprises the following steps:
  • Mineral oils which form the emulsion when mixed with the MgCl 2 alcohol adducts, can be selected from those composed of a mixture of paraffinic and naphthenic saturated hydrocarbons.
  • the catalytic support precursor adduct formed by the addition of lamellar aluminosilicates to the emulsion alcoholic MgCl 2 adduct, AlSi-lamellar selected from montmorillonite, mica, vermiculite, hydrotalcite, among others, both organophilic and sodium, are employed. still mixtures of these.
  • the catalyst support precursor adduct is separated from the emulsified medium by the action of a cold precipitating agent, generally an inert hydrocarbon, or mixture of hydrocarbons, such as mixtures of saturated branched aliphatic hydrocarbon isomers, such as an isoparaffin.
  • a cold precipitating agent generally an inert hydrocarbon, or mixture of hydrocarbons, such as mixtures of saturated branched aliphatic hydrocarbon isomers, such as an isoparaffin.
  • the binary catalytic support (MgCl 2 / AISi-lamellar) used in the catalysts object of the present invention
  • its precursor adduct must be subjected to a desalcoholization step, after separation from the emulsified medium, by the use of a selected desalcoholing agent among silanes, SiCl 4 , TiCl 4 , alkyl aluminum compounds, Grignard reagents, among others.
  • Such catalytic support has incorporated TiCl 4 in mass concentrations ranging from 1% to 15% relative to the total catalyst mass, and an internal donor (D1), chosen from: phthalates, succinates, esters, alkoxysilanes, diesters, diesters, or mixtures of these.
  • D1 an internal donor
  • the molar ratio of D1 to magnesium chloride ranges from 20MgCl 2 : 1 DI to 4MgCl 2 : 1 DI.
  • Another aspect of the invention is the synthesis of polyolefin / AISi-lamellar nanocomposites, in particular polypropylene / AISi-lamellar, from the Ziegler-Natta catalysts prepared in accordance with the present invention to obtain the interleaving / exfoliation of the lamellae. AlSi during polyolefin synthesis, and absence of microparticles in nanocomposites.
  • the synthesis of polyolefin / AISi-lamellar nanocomposites is performed using the catalyst described herein in bulk or gas phase polymerization processes, at temperatures in the range of 60 ° C to 90 ° C, preferably 70 ° C, pressure at 2 ° C. bar and 40 bar (200 kPa - 4,000 kPa) and reaction time typically 2 hours.
  • the active sites generated "in situ" at the time of polymerization in the presence of the cocatalyst initiate polymer growth between the AlSi layers.
  • the success of synthesis of polyolefin nanocomposites by in situ polymerization depends on the efficient insertion of catalytic components in the spaces between the silicate layers so that after polymer synthesis the dispersion of AlSi is homogeneous and with interleaved morphology and / or exfoliated, and absence of microparticles in the final polymer matrix. This can only be achieved efficiently and without the addition of any compatibilizer when the catalytic site is already inserted into the AlSi-lamellar layers.
  • Polyolefinic nanocomposites and AlSi concentrates with masterbatches containing high AlSi-lamellar contents without the presence of AlSi microparticles, as well as polymeric nanocomposites containing low contents can be obtained by the usual polymerization processes using the catalysts produced in the present invention.
  • the polymerization processes may be bulk, slurry as well as gas phase, and utilize a cocatalyst selected from alkylaluminum compounds such as triethylaluminum (TEA), diethylaluminum chloride (DEAC), triisobutylaluminum (TIBA), and optionally an external electron donor (DE), selected from alkylalkyl or silicon arylalkoxy, organic esters.
  • alkylaluminum compounds such as triethylaluminum (TEA), diethylaluminum chloride (DEAC), triisobutylaluminum (TIBA), and optionally an external electron donor (DE), selected from alkylalkyl or silicon arylalkoxy, organic esters.
  • the organophilic lamellar AlSi employed in this example was Claytone HY of Southern Clay Products, Inc., USA. A catalyst without lamellar AlSi was also prepared for comparison.
  • anhydrous MgCl 2 and anhydrous ethanol were used for the preparation of the emulsion and later obtaining the catalytic adduct.
  • the mixture was kept at a temperature in the range of 100 ° C to 120 ° C for 20 minutes.
  • the volume of oil used comprised 80 ml for each 3 g of MgCl 2 , and the volume of alcohol needed to make a molar ratio of 1 MgCl 2 : 3 EtOH was added.
  • the support precursor was prepared by the emulsion method.
  • the initially obtained emulsion magnesium chloride alcoholic adducts were melted at a temperature of 120 ° C, then the oil suspension containing AlSi was added to the adduct at a temperature of 120 ° C as well.
  • the formed adduct was then transferred under nitrogen pressure to an isoparaffin bath at -40 ° C under mechanical agitation in the range of 200 rpm to 400 rpm to give microspheres, which were then washed and then de-alcoholized.
  • the desalcoholing agent selected was TiCl added at 10 ° C for 10 minutes.
  • n-butyl phthalate was added as internal donor (D1), at the MgCl 2 : DI molar ratio of 8: 1 and then, impregnated with excess TiCl 4 , followed by successive washings with hexane and drying under nitrogen flow, thus obtaining the catalysts with spherical morphology.
  • Example 2 Preparation of sodium AlSi-lamellar containing adducts and catalysts in different proportions.
  • MgCl 2 -alcohol adducts and bisupported catalysts with different sodium MgCl 2 / AISi-lamellar mass ratios of 3: 1 were prepared; 2: 1; 1: 1; 1: 2 and 1: 3.
  • the sodium lamellar AlSi employed in this example was Algiers 40, from Bentonit Union Nordeste SA, Brazil.
  • the procedure for preparing adducts and catalysts was the same as described in example 1. CHARACTERIZATION OF PREPARED ADDUTS
  • Catalysts produced with different mass ratios of MgCl 2 / AlSi-commercial organophilic lamellar and MgCl 2 / AlSi-layered sodium were analyzed by X-ray diffraction Comparing the XRD patterns of the AlSi-lamellar and Ziegler-Natta catalysts prepared with For these lamellar AlSi with MgCl 2 / AISi ratios from 1: 3 to 3: 1, it is found that the presence of MgCl 2 in the AlSi lamellar provided greater basal spacing than the original AlSi. In catalysts the value of d 0 oi was 2.8 nm, ie it increased 0.5 nm over the original AlSi (Claytone HY).
  • Relative catalytic activity is the catalyst activity with AlSi divided by the activity of the standard catalyst without AlSi.
  • the morphology of the PP / AISi nanocomposite obtained in in situ polymerization is between exfoliated and intercalated, with the presence of polymer / AISi intercalated stacks of various sizes, even though the AlSi content in the catalyst was increased. Increased polymerization time leads to the formation of smaller tactoids with increased AlSi exfoliation.
  • nanocomposites obtained with the inventive catalysts can be employed in the preparation of lower AlSi-lamellar nanocomposites with all types of polypropylene matrices and their copolymers.
  • catalysts may be employed for the synthesis of high density polyethylene (HDPE) or linear low density polyethylene (LLDPE).
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

A presente invenção trata do preparo de catalisadores do tipo Ziegler-Natta bissuportado com morfologia esférica para a síntese de nanocompósitos de poliolefinas, em particular de polipropileno, com alta rigidez e estabilidade térmica. Mais especificamente, a invenção se refere ao preparo de catalisadores tendo incorporado TiCl4 à um suporte formado por adutos alcoólicos de MgCl2 e um aluminossilicato lamelar na proporção de 5% m/m a 80% m/m, baseados na quantidade de MgCl2.

Description

MÉTODO DE PREPARO DE CATALISADORES ZIEGLER-NATTA
BISSUPORTADOS
CAMPO DA INVENÇÃO
A presente invenção trata de um método de preparo de catalisadores bissuportados do tipo Ziegler-Natta. Mais especificamente, a presente invenção trata do preparo de catalisadores de morfologia esférica tendo como suporte uma mistura de MgCI2 e aluminossilicatos (AlSi) lamelares, em que a concentração mássica de AlSi varia numa faixa entre 5% e 80% em relação ao MgCI2. Tais catalisadores quando aplicados a polimerização de olefinas levam à obtenção de nanocompósitos com dispersão do aluminossilicato do tipo esfoliada/intercalada, com ausência de micro-partículas, e teor de aluminossilicato lamelar de até 60% m/m. FUNDAMENTOS DA INVENÇÃO
É do conhecimento geral que a nanotecnologia apresenta-se como uma área tecnológica em franco progresso, merecendo especial atenção os nanocompósitos poliméricos, devido não só ao valor agregado somado quando de sua aplicação, mas também a diversidade de setores da economia à que se dirige, tal como a indústria automotiva, de embalagens, ou de peças técnicas.
Neste particular, a literatura técnica especializada, reporta diferentes técnicas de obtenção de nanocompósitos poliméricos, tais como o método em solução ou por intercalação do polímero no estado fundido. Todavia, em função da aplicação desses produtos e das características dos materiais empregados, muitas dificuldades ainda precisam ser superadas. Devido à ausência de qualquer interação forte, tem sido um desafio científico dispersar aluminossilicato polar na matriz apolar de polímeros, especialmente de poliolefinas.
A estratégia geral para melhorar a compatibilidade de poliolefinas com aluminossilicatos lamelares (AlSi-lamelares) normalmente é por meio da adição de um agente de compatibilização contendo um grupo funcional polar ao polímero, sendo a mistura da poliolefina com o AlSi e o agente de compatibilização efetuado em uma extrusora. Tal método de preparo, porém, resulta em nanocompósitos de poliolefina/AISi-lamelar de morfologia heterogénea, onde estruturas de intercalação e esfoliação coexistem no mesmo sistema com partículas micrométricas.
Os catalisadores Ziegler-Natta (ZN) de TiCI4 suportados em MgCI2 de morfologia esférica são os mais modernos sistemas catalíticos utilizados industrialmente para a produção de poliolefinas.
Tem-se notado um esforço na preparação de catalisadores do tipo Ziegler-Natta contendo AlSi-lamelares em sua formulação para a síntese de nanocompósitos de poliolefinas, especialmente polipropileno, em escala industrial.
Uma das características principais dos catalisadores Ziegler-Natta é o controle morfológico das partículas, porém não se encontra na literatura, até o presente momento, referência a catalisadores Ziegler-Natta esféricos contendo teor de AlSi acima de 5% para a produção de nanocompósitos de polipropileno e concentrados, capazes de manter a morfologia esférica do produto polimérico.
A literatura reporta um catalisador do tipo Ziegler-Natta contendo AlSi montmorilonita organofílica (OMMT), preparado com base em adutos de MgCI2 com etilhexanol/OMMT/TiCI4 para copolimerização de propileno com 5-hexenil-9-BBN-(9-boraciclononano). O produto final é funcionalizado com grupos OH, através da reação com H202/NaOH gerando PP-OH/MMT. O nanocompósito assim produzido possui 1 ,3% m/m de AlSi montmorilonita apresentando estrutura esfoliada e boa estabilidade térmica, porém sem apresentar o controle da morfologia do catalisador.
Também se encontram relatos a respeito de um catalisador Ziegler- Natta baseado em TiCI4/MgCI2/PMMT, onde a AlSi foi modificada com alquiltrifenilfosfônio (PMMT). Neste caso, o precursor catalítico também foi preparado a partir de adutos de MgCI2/álcool. Os nanocompósitos obtidos apresentaram teor de AlSi de 0,8% m/m a 1 ,7% m/m, porém sem controle morfológico.
Os documentos US 6,613,711 e US 7,432,319 tratam da preparação de catalisadores Ziegler-Natta baseados em compostos de magnésio e AlSi como suporte. O método de preparo de que tratam tais documentos empregam um álcool alifático para solubilizar o composto de magnésio antes da adição do AlSi. Neste caso, os catalisadores preparados também contém em sua formulação um doador interno de elétrons. Contudo, o método de preparo desses catalisadores, por solubilização do aduto, não possui a característica de bom controle da forma esférica do catalisador.
Já o documento WO 2009/080568 trata da obtenção de um aduto esférico que compreende MgCI2, um álcool e menos que 5% m/m de AlSi- lamelar, preferencialmente até 1%, para a preparação de catalisador Ziegler-Natta utilizado na síntese de polipropileno. O catalisador contendo o aduto com AlSi gera um conteúdo reduzido de partículas de polímero quebradas em comparação com o catalisador obtido com aduto sem AlSi. Portanto, o AlSi é adicionado somente com o intuito de aumentar a estabilidade do catalisador de modo a não gerar finos no reator.
De fato, a obtenção de partículas esféricas de catalisadores contendo AlSi-lamelares pelo processo em emulsão não foi ainda reportado, especialmente nos casos em que o teor de AlSi para a produção de nanocompósitos de polipropileno é elevado.
SUMÁRIO DA INVENÇÃO
A presente invenção trata de um método de preparo de catalisadores esféricos tipo Ziegler-Natta bissuportados em MgCI2/AISi lamelares, assim como da síntese de nanocompósitos e concentrados de poliolefinas/AISi-lamelar empregando tais catalisadores. A capacidade de manter a morfologia esférica das partículas é extremamente vantajosa para a realização de processos industriais.
Os aluminossilicatos lamelares utilizados podem ser do tipo montmorilonita, mica, vermiculita, hidrotalcita, tanto organofílicas como sódicas. Os catalisadores são à base de tetracloreto de titânio suportados em cloreto de magnésio contendo o referido aluminossilicato, preparados a partir de um aduto precursor de MgCI2/álcool, obtido por processo de emulsão, que origina um aduto alcoólico esférico, que desalcoolado gera um suporte, que ao ser impregnado com TiCI4 forma o catalisador bissuportado objeto da presente invenção.
O processo para o preparo do catalisador da presente invenção compreende os seguintes passos:
a) Misturar em um primeiro reator um óleo mineral, MgCI2 e um álcool (ROH), de modo a compor uma relação molar que pode variar de 1MgCI2:1 ROH a 1MgCI2:5ROH, preferencialmente de 1MgCI2:2ROH a 1MgCI2:4ROH, e aquecer esta mistura até a temperatura na faixa de 90°C a 150°C, preferencialmente entre 100°C e 120°C; para a fusão do aduto precursor do suporte catalítico.
b) Adicionar ao reator um AlSi-lamelar ao aduto fundido, suspenso em óleo mineral aquecido na temperatura entre 90°C e 150°C, preferencialmente entre 100°C e 120°C; e transferir esta massa reacional para um segundo reator contendo um agente de precipitação a frio, que pode ser um hidrocarboneto ou mistura de hidrocarbonetos de cadeia longa, tal como uma isoparafina, em temperatura de -50°C a +10°C, preferencialmente entre -30°C e 0°C; para formar um precursor do suporte binário do catalisador sob a forma de esferas, em que a concentração mássica de AlSi varia numa faixa entre 5% e 80%, preferencialmente entre 25% e 75% com relação ao MgCI2;
c) Eliminar o álcool do precursor, pela adição de um agente de desalcoolação, obtendo assim um suporte binário;
d) Proceder à impregnação do suporte com TiCI4 de forma a obter e) um catalisador esférico do tipo Ziegler-Natta bissuportado.
Os catalisadores obtidos de acordo com a presente invenção são utilizados para sintetizar nanocompósitos de polipropileno/AISi-lamelar, sob condições de polimerização típicos dos processos de polimerização industriais em massa ou em fase gasosa, empregando pressão de 2 bar a 40 bar (200 kPa a 4.000 kPa), temperatura na faixa de 60°C a 90°C, preferencialmente 70°C, e o tempo reacional de 1 hora a 3 horas, tipicamente de 2 horas.
A invenção também se refere à preparação de concentrados de polímero/AISi produzidos por polimerização "in situ" para serem posteriormente empregados em misturas com polipropilenos comerciais de qualquer tipo e assim diluir, em extrusora simples, obtendo um nanocompósito, em que o teor de AlSi final é tipicamente menor que 5% m/m, o que resulta em produtos com propriedades melhoradas, como ganhos de módulo e de resistência à degradação térmica, úteis para uso industrial em diferentes aplicações.
BREVE DESCRIÇÃO DAS FIGURAS
A FIGURA 1 anexa mostra micrografias feitas por microscopia eletrônica de varredura ("Scanning Electron Microscopy" - SEM) de catalisadores contendo MgCI2:AISi na proporção em massa: (a) C09 = 3:1 ; (b) C16 = 1:3.
DESCRIÇÃO DETALHADA DA INVENÇÃO
De um modo amplo, a presente invenção compreende o preparo de catalisadores bissuportados Ziegler-Natta, contendo AlSi-lamelares que conduzem à obtenção de partículas de nanocompósitos poliméricos com morfologia esférica.
Tal método envolve o preparo de catalisadores pela técnica de emulsão. Inicialmente, um aduto alcoólico de MgCI2 é misturado com um óleo mineral formando uma emulsão à qual é posteriormente adicionado um aluminossilicato lamelar, que após sofrer desalcoolação leva a formação de um suporte catalítico ao qual é incorporado TiCI4.
Assim, compreende o método de preparo de catalisadores Ziegler-Natta da presente invenção as seguintes etapas:
a) Misturar um óleo mineral, quimicamente inerte; MgCI2; e um álcool (ROH), de modo a compor uma relação óleo/MgCI2 na faixa de 20 mL/g a 50 mL/g e relação molar de ROH/MgCI2 na faixa de 1 :1 a 5:1 , a mistura sendo aquecida numa faixa de temperatura de 80°C a 120°C por um período variando de 10 minutos a 48 horas;
b) Adicionar um AlSi-lamelar a mistura obtida em a), de forma a obter um aduto precursor de suporte catalítico, em que a concentração mássica de AlSi varia numa faixa entre 5% e 80%, preferencialmente entre 25% e 75% com relação ao MgCI2;
c) Adicionar ao aduto um agente de precipitação a frio, a temperatura na faixa de -50°C a +10°C, preferencialmente entre -30°C e 0°C, sob atmosfera inerte, de forma a precipitar o aduto; d) Adicionar ao aduto um agente de desalcoolação, obtendo um suporte catalítico binário (MgCI2/AISi-lamelar);
e) Incorporar TiCI4 por impregnação do suporte seco de forma a obter um catalisador do tipo Ziegler-Natta bissuportado, contendo um teor de Ti no catalisador na faixa de 1% m/m a 15% m/m, preferencialmente na faixa de 2 m/m a 10% m/m.
f) Incorporar opcionalmente ao suporte catalítico binário um doador de elétrons interno.
Para o preparo do aduto alcoólico de MgCI2 são utilizados álcoois, contendo de 1 átomo a 6 átomos de carbono, tais como o metanol, etanol, propanol, isopropanol, butanol, hexanol, ou ainda misturas destes. Os álcoois ao terem adicionados um óleo mineral formam uma emulsão.
Os óleos minerais, que formam a emulsão ao serem misturados aos adutos alcoólicos de MgCI2) podem ser selecionados dentre aqueles compostos por uma mistura de hidrocarbonetos saturados parafínicos e naftênicos.
Já para o preparo do aduto precursor de suporte catalítico, formado pela adição de aluminossilicatos lamelares ao aduto alcoólico de MgCI2 em emulsão, são empregados AlSi-lamelares selecionados entre montmorilonita, mica, vermiculita, hidrotalcita, entre outros, tanto organofílicas como sódicas, ou ainda misturas destes.
O aduto precursor do suporte catalítico é separado do meio emulsionado por ação de um agente de precipitação a frio, em geral um hidrocarboneto inerte, ou mistura de hidrocarbonetos, tal como misturas de isômeros de hidrocarbonetos alifáticos ramificados saturados, tal como uma isoparafina.
Para a obtenção do suporte catalítico binário (MgCI2/AISi-lamelar) utilizado nos catalisadores objeto da presente invenção, seu aduto precursor deve ser submetido a uma etapa de desalcoolação, após separado do meio emulsionado, pelo emprego de um agente de desalcoolação, selecionado dentre silanos, SiCI4, TiCI4, compostos alquilalumínio, reagentes de Grignard, entre outros.
Tal suporte catalítico tem incorporado TiCI4 em concentrações mássicas variando entre 1% e 15% em relação a massa total do catalisador, e um doador interno (Dl), escolhido dentre: ftalatos, succinatos, ésteres, alcoxisilanos, diésteres, diéteres, ou ainda misturas destes. A proporção molar de Dl em relação ao cloreto de magnésio varia de 20MgCI2:1 DI a 4MgCI2:1 DI.
Outro aspecto da invenção é a síntese de nanocompósitos de poliolefinas/AISi-lamelares, em particular polipropileno/AISi-lamelares, a partir dos catalisadores Ziegler-Natta preparados de acordo com a presente invenção, de modo a obter a intercalação/esfoliação das lamelas do AlSi durante a síntese das poliolefinas, e ausência de micropartículas nos nanocompósitos. A síntese de nanocompósitos de poliolefinas/AISi-lamelar é realizada empregando o catalisador aqui descrito em processos de polimerização em massa ou em fase gasosa, sob temperatura na faixa de 60°C a 90°C, preferencialmente 70°C, pressão entre a 2 bar e 40 bar (200 kPa - 4.000 kPa) e tempo de reação tipicamente de 2 horas.
Uma vez que ocorre a intercalação do catalisador entre as lamelas do AlSi-lamelar, os sítios ativos gerados "in situ", no momento da polimerização, na presença do cocatalisador, dão início ao crescimento do polímero entre as camadas do AlSi. O sucesso da síntese de nanocompósitos de poliolefinas através da polimerização "in situ" depende da eficiente inserção dos componentes catalíticos nos espaços entre as camadas do silicato para que, após a síntese do polímero, a dispersão do AlSi seja homogénea e com morfologia intercalada e/ou esfoliada, e ausência de micropartículas na matriz polimérica final. Isto só pode ser alcançado de forma eficiente e sem a adição de qualquer compatibilizante quando o sítio catalítico já está inserido nas camadas do AlSi-lamelar.
Nanocompósitos poliolefinícos e concentrados de AlSi com poliolefinas (masterbatchs) contendo elevados teores de AlSi-lamelares, sem a presença de micropartículas de AlSi, assim como nanocompósitos poliméricos contendo baixos teores podem ser obtidos pelos processos usuais de polimerização utilizando os catalisadores produzidos na presente invenção.
Os processos de polimerização podem ser em massa (bulk), lama (slurry), assim como em fase gasosa, e utilizam um cocatalisador, selecionado entre compostos de alquilalumínio, tais como, trietilalumínio (TEA), cloreto de dietilalumínio (DEAC), triisobutilalumínio (TIBA), e opcionalmente um doador de elétrons externo (DE), selecionado entre alquilalcoxi ou arilalcoxi de silício, ésteres orgânicos.
A invenção será ilustrada por meio dos Exemplos apresentados a seguir, entretanto, tais exemplos não devem ser considerados como limitantes da invenção.
Exemplol : Preparação de adutos e catalisadores contendo AlSi-lamelar organofílico em diferentes proporções.
Foram preparados adutos de MgCI2-álcool e catalisadores bissuportados com diferentes razões mássicas MgCI2/AISi-lamelar organofílico: de 3:1 ; 2:1 ; 1 :1 ; 1 :2 e 1 :3. O AlSi lamelar organofílico empregado neste exemplo foi a Claytone HY da Southern Clay Products, Inc., USA. Foi preparado também um catalisador sem AlSi lamelar para efeito de comparação.
A preparação dos catalisadores tem início com a ativação química do cloreto de magnésio para a formação de adutos e então a adição do AlSi inchado em meio apropriado por técnica de emulsão, para em seguida proceder ao "quenching", a desalcoolação e finalmente a impregnação com o composto metálico.
Para o preparo da emulsão e posteriormente obtenção do aduto catalítico utilizou-se um óleo mineral quimicamente inerte, MgCI2 anidro e etanol anidro. A mistura foi mantida em uma temperatura na faixa de 100°C a 120°C por 20 minutos.
O volume de óleo utilizado compreendeu 80 ml_ para cada 3 g de MgCI2, e foi adicionado o volume de álcool necessário para compor uma relação molar de 1 MgCI2:3EtOH.
A partir do aduto de MgCI2 alcoólico, preparou-se o precursor do suporte, pelo método de emulsão.
Os adutos alcoólicos de cloreto de magnésio em emulsão obtidos inicialmente foram fundidos à temperatura de 120°C, então a suspensão de óleo contendo o AlSi foi adicionada ao aduto na temperatura também de 120°C. O aduto formado foi então transferido sob pressão de nitrogénio para um banho de isoparafina a -40°C, sob agitação mecânica na faixa de 200 rpm a 400 rpm, obtendo-se microesferas, que foram em seguida lavadas e então desalcooladas. O agente de desalcoolação selecionado foi o TiCI adicionado a temperatura de 10°C durante 10 minutos. Ao suporte contendo o AlSi-lamelar, foi adicionado ftalato de n-butila como doador interno (Dl), na proporção molar MgCI2:DI de 8:1 e posteriormente, realizada a impregnação com excesso de TiCI4, seguida de sucessivas lavagens com hexano e secagem sob fluxo de nitrogénio, obtendo-se assim os catalisadores com morfologia esférica.
Exemplo 2: Preparação de adutos e catalisadores contendo AlSi-lamelar sódico em diferentes proporções.
Foram preparados adutos de MgCI2-álcool e catalisadores bissuportados com diferentes razões mássicas MgCI2/AISi-lamelar sódico: de 3:1 ; 2:1 ; 1 :1 ; 1 :2 e 1 :3. O AlSi lamelar sódico empregado neste exemplo foi Argel 40, da Bentonit Union Nordeste S.A., Brasil. O procedimento de preparo dos adutos e catalisadores foi o mesmo descrito no exemplo 1. CARACTERIZAÇÃO DOS ADUTOS PREPARADOS
Os adutos e catalisadores preparados, conforme descrito nos Exemplos 1 e 2, foram obtidos com morfologia esférica para os sistemas com AlSi da presente invenção.
As micrografias da Figura 1 que ilustram os catalisadores preparados nesta invenção, contendo AlSi nas proporções em massa de MgCI2:AISi de 3:1 e de 1 :3 são apresentadas. Estas micrografias mostram que foram obtidos catalisadores contendo alto teor de AlSi e com morfologia esférica, tal como o aduto precursor.
CARACTERIZAÇÃO DOS CATALISADORES
Os catalisadores produzidos com diferentes razões em massa de MgCI2/AISi-lamelar organofílico comercial e MgCI2/AISi-lamelar sódico foram analisados por Difratometria de Raios X. Comparando-se os difratogramas dos AlSi-lamelares e dos catalisadores Ziegler-Natta preparados com esses AlSi-lamelares com razões de MgCI2/AISi desde 1 :3 a 3:1 , verifica-se que a presença de MgCI2 no AlSi-lamelar proporcionou maior espaçamento basal em relação ao AlSi original. Nos catalisadores o valor de d0oi foi de 2,8 nm, isto é, aumentou 0,5 nm em relação à AlSi original (Claytone HY). Em todos os difratogramas observa-se o alargamento do pico do AlSi. Isto significa que os componentes catalíticos estão presentes nas galerias do AlSi e que o tamanho do cristalito (tactóides) do AlSi-lamelar diminuiu durante o processo de preparação do catalisador. Na polimerização empregando esses catalisadores, o crescimento do polímero se dá nas galerias do AlSi-lamelar com formação de nanocompósitos intercalados/esfoliados.
Portanto, a introdução de elevados teores de AlSi (até 80% em massa) em relação ao MgCI2 propicia o desenvolvimento de catalisadores Ziegler-Natta com morfologia esférica para a preparação de nanocompósitos por polimerização "in situ". Essa característica morfológica do catalisador é indispensável para a produção de nanocompósitos visando sua aplicação industrial nos processos mais modernos de produção de poliolefinas, em lama, massa e fase gasosa. OBTENÇÃO DOS NANOCOMPÓSITOS POLIPROPILENO/ALSI-lamelares
Para os catalisadores bissuportados, foram realizadas reações para a obtenção de nanocompósitos de polipropileno (PP) e de concentrados (masterbatches) com polipropileno.
Nas reações de polimerização com propileno, foram utilizados: um cocatalisador (TEA) - trietilalumínio, um doador externo (DE) - difenil-dimetóxissilano, sendo a razão molar TEA/DE = 50, um solvente - n-hexano, e, o catalisador sólido, sendo a pressão mantida igual 4 bar (400 kPa), temperatura de 70°C e o tempo reacional de 1 hora.
AVALIAÇÃO DA INFLUÊNCIA DO TEOR DE ALSI SOBRE A ATI VI D ADE CATALÍTICA
Foram empregados catalisadores bissuportados com variadas relações de MgCI2/AISi na polimerização de propileno nas seguintes condições: foi utilizado como solvente o hexano (100 mL), TEA = 1 ,5 mmol/10 mg MgCI2, razão TEA/DE = 50 e pressão = 4 bar. A atividade catalítica relativa é a atividade do catalisador com AlSi dividida pela atividade do catalisador padrão, sem AlSi.
Alguns produtos obtidos que foram avaliados são mostrados na Tabela 1.
Figure imgf000014_0001
ANÁLISE DE MICROSCOPIA ELETRÔNICA DE TRANSMISSÃO DOS NANOCOMPÓSITOS E CONCENTRADOS DE PP/ALSI ORGANOFÍLICA
A morfologia do nanocompósito de PP/AISi obtido na polimerização "in situ" está entre esfoliada e intercalada, com a presença de empilhamentos intercalados de polímero/AISi de diversos tamanhos, mesmo tendo-se aumentado o teor de AlSi no catalisador. O aumento do tempo de polimerização leva à formação de tactóides menores, com o aumento da esfoliação do AlSi.
Após a síntese dos nanocompósitos de polipropileno e dos concentrados alguns polímeros sintetizados com diferentes catalisadores foram processados com o polipropileno comercial, PP-550, em extrusora. Deste modo, o teor de AlSi no concentrado (masterbatches) pode ser diluído para ser aplicado na indústria de transformação.
Torna-se evidente para os especialistas na matéria que os nanocompósitos obtidos com os catalisadores da invenção podem ser empregados na preparação de nanocompósitos com menores teores de AlSi-lamelares com todos os tipos de matrizes de polipropileno e seus copolímeros.
Do mesmo modo, os catalisadores podem ser empregados para a síntese de polietileno de alta densidade (HDPE) ou polietileno linear de baixa densidade (LLDPE).

Claims

REIVINDICAÇÕES
1- MÉTODO DE PREPARO DE CATALISADORES ZIEGLER-NATTA BISSUPORTADOS, caracterizado por compreender as seguintes etapas:
a) Misturar um óleo mineral, quimicamente inerte; MgCI2; e um álcool (ROH), de modo a compor uma relação óleo/MgCI2 na faixa de 20 mL/g a 50 mL/g e relação molar de ROH/MgCI2 na faixa de 0,5:1 a 5:1 , a mistura sendo aquecida numa faixa de temperatura de 80°C - 120°C por um período variando de 10 minutos a 2 horas;
b) Adicionar um aluminossilicato (AlSi) lamelar a mistura obtida em a), de forma a obter um aduto precursor de suporte catalítico, em que a concentração mássica de AlSi-lamelar varia numa faixa entre 5% e 80%, preferencialmente entre 25% e 75% com relação ao MgCI2;
c) Adicionar o aduto a um agente de precipitação a frio, a temperatura de -50°C a +10°C, preferencialmente de -30°C e 0°C, sob atmosfera inerte, de forma a precipitar o aduto; d) Adicionar ao aduto um agente de desalcoolação, obtendo um suporte catalítico binário (MgCI2/AISi-lamelar);
e) Incorporar ao suporte catalítico binário um doador de elétrons interno e TiCI4 por impregnação do suporte seco de forma a obter um catalisador do tipo Ziegler-Natta bissuportado, contendo um teor de Ti no catalisador na faixa de 2% m/m - 20% m/m, preferencialmente na faixa de 3% m/m - 8% m/m.
2- MÉTODO DE PREPARO DE CATALISADORES ZIEGLER-NATTA BISSUPORTADOS, de acordo com a reivindicação 1 , caracterizado por o álcool (ROH) ter de 1 átomo a 6 átomos de carbono.
3- MÉTODO DE PREPARO DE CATALISADORES ZIEGLER-NATTA BISSUPORTADOS, de acordo com as reivindicações 1 e 2, caracterizado por o álcool ser escolhido dentre: metanol, etanol, propanol, isopropanol, butanol, hexanol, ou ainda misturas destes.
4- MÉTODO DE PREPARO DE CATALISADORES ZIEGLER-NATTA BISSUPORTADOS, de acordo com a reivindicação 1 , caracterizado por o óleo mineral ser selecionados dentre aqueles compostos por uma mistura de hidrocarbonetos saturados parafínicos e naftênicos.
5- MÉTODO DE PREPARO DE CATALISADORES ZIEGLER-NATTA BISSUPORTADOS, de acordo com a reivindicação 1 , caracterizado por o AlSi-lamelar ser selecionado dentre: montmorilonita, mica, vermiculita, hidrotalcita, entre outros, tanto organofílicas como sódicas, ou ainda misturas destes.
6- MÉTODO DE PREPARO DE CATALISADORES ZIEGLER-NATTA BISSUPORTADOS, de acordo com a reivindicação 1 , caracterizado por o agente de precipitação a frio ser uma mistura de isômeros de hidrocarbonetos alifáticos ramificados saturados.
7- MÉTODO DE PREPARO DE CATALISADORES ZIEGLER-NATTA BISSUPORTADOS, de acordo com as reivindicações 1 e 6, caracterizado por a mistura de isômeros ser uma uma isoparafina.
8- MÉTODO DE PREPARO DE CATALISADORES ZIEGLER-NATTA BISSUPORTADOS, de acordo com a reivindicação 1 , caracterizado por o agente de desalcoolação ser selecionado dentre: silanos, SiCI , TiCI4, compostos alquilalumínio, reagentes de Grignard, ou ainda misturas destes.
9- MÉTODO DE PREPARO DE CATALISADORES ZIEGLER-NATTA BISSUPORTADOS, de acordo com a reivindicação 1 , caracterizado por á concentração mássica de TiCI4 no catalisador estar preferencialmente na faixa de 3% m/m - 8% m/m.
10- MÉTODO DE PREPARO DE CATALISADORES ZIEGLER-NATTA BISSUPORTADOS, de acordo com a reivindicação 1 , caracterizado por o doador interno (Dl), escolhido dentre: ftalatos, succinatos, ésteres, alcoxisilanos, diésteres, diéteres, ou ainda misturas destes. A proporção molar de Dl em relação ao cloreto de magnésio varia de 20MgCI2:1 DI a 4MgCI2:1 DI.
11- CATALISADOR, obtido de acordo com o método descrito na reivindicação 1 , caracterizado por ser empregado na polimerização de etileno e propileno e nas copolimerizações com alfa-olefinas superiores.
12- SÍNTESE DE NANOCOMPÓSITOS DE POLIOLEFINAS/AISi- lamelares, caracterizada por ser efetuada via processos de polimerização em massa, lama ou em fase gasosa, utilizando um catalisador preparo de acordo com o método descrito na reivindicação 1 , sob temperatura entre 60°C e 90°C, pressão entre 200 kPa e 4.000 kPa e tempo de reação de até 2 horas.
13- SÍNTESE DE CONCENTRADOS DE POLIOLEFINAS/AISi, caracterizada por serem efetuadas por polimerização "in situ" utilizando um catalisador, preparado de acordo com o método descrito na reivindicação 1 e um co-catalisador, selecionado entre compostos de alquilalumínio, tais como, trietilalumínio (TEA), cloreto de dietilalumínio (DEAC), triisobutilalumínio (TIBA), e opcionalmente um doador de elétrons externo, selecionado entre alquilalcoxi ou arilalcoxi de silício, ésteres orgânicos, em uma razão molar de 100 a 20.
14- OBTENÇÃO DE NANOCOMPÓSITOS DE POLIOLEFINAS/AISi- lamelares, caracterizada por ser efetuada via misturas de concentrado de poliolefinas/AISi, sintetizados por polimerização "in situ", com uma poliolefina comercial.
PCT/BR2013/000428 2013-10-17 2013-10-17 Método de preparo de catalisadores ziegler-natta bissuportados WO2015054758A1 (pt)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/BR2013/000428 WO2015054758A1 (pt) 2013-10-17 2013-10-17 Método de preparo de catalisadores ziegler-natta bissuportados
BR112015002630A BR112015002630A2 (pt) 2013-10-17 2013-10-17 método de preparo de catalisadores ziegler-natta bissuportados
ARP140102517A AR096838A1 (es) 2013-10-17 2014-07-07 PROCEDIMIENTO PARA PREPARAR CATALIZADORES BISOPORTADOS ZIEGLER-NATTA, CATALIZADOR OBTENIDO, Y SÍNTESIS DE NANOCOMPUESTOS DE POLIOLEFINAS Al/Si

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/BR2013/000428 WO2015054758A1 (pt) 2013-10-17 2013-10-17 Método de preparo de catalisadores ziegler-natta bissuportados

Publications (1)

Publication Number Publication Date
WO2015054758A1 true WO2015054758A1 (pt) 2015-04-23

Family

ID=52827478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2013/000428 WO2015054758A1 (pt) 2013-10-17 2013-10-17 Método de preparo de catalisadores ziegler-natta bissuportados

Country Status (3)

Country Link
AR (1) AR096838A1 (pt)
BR (1) BR112015002630A2 (pt)
WO (1) WO2015054758A1 (pt)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023439A (ja) * 1983-07-20 1985-02-06 Chisso Corp 塩化ビニル系樹脂組成物
JPS6254713A (ja) * 1985-09-04 1987-03-10 Chisso Corp 変性オレフイン重合体の製造法
US6255247B1 (en) * 1992-12-22 2001-07-03 Fina Technology, Inc. Optimum external co-catalyst electron donor molar ratio in propylene polymerization
US6329315B1 (en) * 1996-06-21 2001-12-11 W. R. Grace & Co.-Conn. Frangible, spray dried agglomerated supports, method of making such supports, and olefin polymerization catalysts supported thereon
KR20030025308A (ko) * 2001-08-23 2003-03-29 한국과학기술연구원 클레이가 분산된 올레핀계 고분자 나노 복합체 제조방법
WO2005040231A1 (en) * 2003-10-23 2005-05-06 Dnf Solution Co.,Ltd. High activity olefin polymerization silica supported catalyst
CN1861645A (zh) * 2005-05-11 2006-11-15 北京燕化高新催化剂有限公司 一种乙烯聚合用球型催化剂及其制备方法
CN101423639A (zh) * 2008-12-09 2009-05-06 中山大学 一种PPR/SiO2纳米复合材料及其制备方法
US20100069586A1 (en) * 2008-06-11 2010-03-18 Klendworth Douglas D High activity ziegler-natta catalysts, process for producing catalysts and use thereof
CN102040693A (zh) * 2009-10-23 2011-05-04 中国石油化工股份有限公司 一种聚丁烯-1的气相聚合方法及其聚合物
US20110130271A1 (en) * 2008-08-06 2011-06-02 Union Carbide Chemicals & Plastics Technology Llc Ziegler-natta catalyst compositions for producing polyethylenes with a high molecular weight tail and methods of making the same
CN102127176A (zh) * 2011-01-28 2011-07-20 中国科学院化学研究所 一种高熔体强度聚丙烯及其制备方法
CN102336852A (zh) * 2010-07-14 2012-02-01 中国石油天然气股份有限公司 齐格勒-纳塔催化剂的制备方法
US20120277090A1 (en) * 2011-04-29 2012-11-01 Basf Corporation Emulsion process for improved large spherical polypropylene catalysts

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023439A (ja) * 1983-07-20 1985-02-06 Chisso Corp 塩化ビニル系樹脂組成物
JPS6254713A (ja) * 1985-09-04 1987-03-10 Chisso Corp 変性オレフイン重合体の製造法
US6255247B1 (en) * 1992-12-22 2001-07-03 Fina Technology, Inc. Optimum external co-catalyst electron donor molar ratio in propylene polymerization
US6329315B1 (en) * 1996-06-21 2001-12-11 W. R. Grace & Co.-Conn. Frangible, spray dried agglomerated supports, method of making such supports, and olefin polymerization catalysts supported thereon
KR20030025308A (ko) * 2001-08-23 2003-03-29 한국과학기술연구원 클레이가 분산된 올레핀계 고분자 나노 복합체 제조방법
WO2005040231A1 (en) * 2003-10-23 2005-05-06 Dnf Solution Co.,Ltd. High activity olefin polymerization silica supported catalyst
CN1861645A (zh) * 2005-05-11 2006-11-15 北京燕化高新催化剂有限公司 一种乙烯聚合用球型催化剂及其制备方法
US20100069586A1 (en) * 2008-06-11 2010-03-18 Klendworth Douglas D High activity ziegler-natta catalysts, process for producing catalysts and use thereof
US20110130271A1 (en) * 2008-08-06 2011-06-02 Union Carbide Chemicals & Plastics Technology Llc Ziegler-natta catalyst compositions for producing polyethylenes with a high molecular weight tail and methods of making the same
CN101423639A (zh) * 2008-12-09 2009-05-06 中山大学 一种PPR/SiO2纳米复合材料及其制备方法
CN102040693A (zh) * 2009-10-23 2011-05-04 中国石油化工股份有限公司 一种聚丁烯-1的气相聚合方法及其聚合物
CN102336852A (zh) * 2010-07-14 2012-02-01 中国石油天然气股份有限公司 齐格勒-纳塔催化剂的制备方法
CN102127176A (zh) * 2011-01-28 2011-07-20 中国科学院化学研究所 一种高熔体强度聚丙烯及其制备方法
US20120277090A1 (en) * 2011-04-29 2012-11-01 Basf Corporation Emulsion process for improved large spherical polypropylene catalysts

Also Published As

Publication number Publication date
AR096838A1 (es) 2016-02-03
BR112015002630A2 (pt) 2018-05-22

Similar Documents

Publication Publication Date Title
Abedi et al. A review of clay-supported Ziegler–Natta catalysts for production of polyolefin/clay nanocomposites through in situ polymerization
US6034025A (en) Catalyst for polymerization and copolymerization of olefins
Nagendra et al. Polypropylene/layered double hydroxide nanocomposites: Influence of LDH intralayer metal constituents on the properties of polypropylene
DE69920291T2 (de) Verbesserter katalysator für olefinhomo- und co-polymerisation
PT93923B (pt) Processo de preparacao de componentes de catalisadores e de preparacao de catalisadores para a polimerizacao de olefinas
US10150850B2 (en) High-density polyethylene-graphene nanocomposites and methods thereof
Hu et al. Polyethylene/graphite oxide nanocomposites obtained by in situ polymerization using modified graphite oxide–supported metallocene catalysts
Asensio et al. In situ polymerization of isotactic polypropylene sepiolite nanocomposites and its copolymers by metallocene catalysis
Núñez et al. The structure of sepiolite as support of metallocene co-catalyst during in situ polymerization of polyolefin (nano) composites
Ramazani SA et al. Synthesis of polypropylene/clay nanocomposites using bisupported Ziegler‐Natta catalyst
Dlamini et al. Ethylene vinyl acetate and polycaprolactone–organoclay nanocomposite: thermal, mechanical and morphological properties
Carrero et al. Development of a new synthetic method based on in situ strategies for polyethylene/clay composites
CN112654648A (zh) 用于生产预聚合固体齐格勒-纳塔催化剂的方法
Choi et al. Preparation of Polyethylene/Montmorillonite Nanocomposites Through in situ Polymerization Using a Montmorillonite‐Supported Nickel Diimine Catalyst
Zhang et al. Facile preparation of functionalized MoS2/polyethylene nanocomposites through in situ polymerization with MoS2 containing Ziegler–Natta catalyst
Moraes et al. Influence of the type of quaternary ammonium salt used in the organic treatment of montmorillonite on the properties of poly (styrene‐co‐butyl acrylate)/layered silicate nanocomposites prepared by in situ miniemulsion polymerization
WO2015054758A1 (pt) Método de preparo de catalisadores ziegler-natta bissuportados
Hakim et al. Polyethylene nanocomposite prepared by a metallocene catalyst supported on MMT using a new pretreatment method
KR100430845B1 (ko) 알파올레핀중합및공중합용촉매
US8329811B2 (en) Process for polymerization in the presence of nanoparticles of a mineral filler for the attainment of polymer nanocomposites, and a polymer nanocomposite
Almeida et al. Synthesis, structure, and thermal properties of new polypropylene nanocomposites prepared by using MgCl2‐mica/TiCl4 based catalyst
Khar’kova et al. Nanocomposites and high-modulus fibers based on ultrahigh-molecular-weight polyethylene and silicates: Synthesis, structure, and properties
Khar’kova et al. Nanocomposites based on layered silicates and ultrahigh-molecular-mass polyethylene prepared via in situ polymerization
CN102775531B (zh) 乙烯均聚合或共聚合反应的主催化剂及含其的催化剂
Belalem et al. Effect of cationic and anionic clays as supports for styrene polymerization initiated by metallocenes/MAO catalytic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 13895584

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015002630

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015002630

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150206