WO2015053172A1 - エンジン - Google Patents

エンジン Download PDF

Info

Publication number
WO2015053172A1
WO2015053172A1 PCT/JP2014/076503 JP2014076503W WO2015053172A1 WO 2015053172 A1 WO2015053172 A1 WO 2015053172A1 JP 2014076503 W JP2014076503 W JP 2014076503W WO 2015053172 A1 WO2015053172 A1 WO 2015053172A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
exhaust pressure
egr
pressure ratio
exhaust
Prior art date
Application number
PCT/JP2014/076503
Other languages
English (en)
French (fr)
Inventor
敦仁 岩瀬
裕佑 甘利
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to US15/027,847 priority Critical patent/US9759144B2/en
Priority to EP14852658.5A priority patent/EP3067546A4/en
Priority to KR1020167011768A priority patent/KR101998932B1/ko
Priority to CN201480055808.8A priority patent/CN105612338B/zh
Publication of WO2015053172A1 publication Critical patent/WO2015053172A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • F02D41/0062Estimating, calculating or determining the internal EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • F02D41/145Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/48EGR valve position sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/34Control of exhaust back pressure, e.g. for turbocharged engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine. Specifically, the present invention relates to an engine that recirculates a part of exhaust gas to intake air.
  • an engine provided with an EGR device exhaust gas recirculation system that recirculates a part of exhaust gas to intake air
  • the exhaust gas with low oxygen concentration (EGR gas) is recirculated to the intake air by the EGR device to lower the combustion temperature and suppress the generation of nitrogen oxides.
  • the EGR gas weight (target EGR gas flow rate) to be recirculated to the intake air is the difference between the intake pressure and the exhaust pressure (intake / exhaust differential pressure), and the opening degree of the EGR valve that adjusts the EGR gas weight (EGR valve opening degree). Based on the target flow rate map. For example, as described in Patent Document 1.
  • the EGR gas weight is calculated from a single target flow rate map. That is, the EGR gas weight is uniquely calculated from the intake / exhaust differential pressure and the EGR valve opening. However, the calculated EGR gas weight is more affected by fluctuations in the pressure ratio as the pressure ratio of the intake pressure to the exhaust pressure (intake and exhaust pressure ratio) approaches 1. Further, the operating state of the engine is not uniquely determined from the intake / exhaust differential pressure and the EGR valve opening. That is, the EGR gas weight is calculated as the same EGR gas weight if the intake / exhaust differential pressure and the EGR valve opening are equal even if the engine operating state is different. Therefore, there is a possibility that the calculation error of the EGR gas weight of the engine increases due to the influence of the intake / exhaust pressure ratio and the influence of the operating state error of the engine assumed from the intake / exhaust differential pressure and the EGR valve opening.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide an engine capable of suppressing an EGR gas weight calculation error based on an operating state.
  • an engine having an EGR device that recirculates a part of the exhaust gas as EGR gas to the intake air, and the actual intake / exhaust pressure ratio of the intake pressure to the exhaust pressure from the detected exhaust pressure and the detected intake pressure.
  • the estimated intake / exhaust pressure ratio of the intake pressure to the exhaust pressure is calculated from the engine speed and the fuel injection amount. If the actual intake / exhaust pressure ratio is less than a predetermined value, the EGR gas is calculated based on the actual intake / exhaust pressure ratio. When the weight is calculated and the actual intake / exhaust pressure ratio is equal to or greater than a predetermined value, the EGR gas weight is calculated based on the estimated intake / exhaust pressure ratio.
  • a plurality of effective passage cross-sectional area maps for calculating the effective passage area of the EGR device from the opening degree of the EGR valve that restricts the flow rate of EGR gas and the differential pressure between the exhaust pressure and the intake pressure are provided.
  • the EGR gas weight is calculated from the effective passage sectional area map selected based on the engine speed and the fuel injection amount.
  • the present invention includes a plurality of effective passage cross-sectional area maps for calculating the effective passage area of the EGR device from the opening degree of the EGR valve that limits the weight of the EGR gas and the differential pressure between the exhaust pressure and the intake pressure.
  • the EGR gas weight is calculated from the effective passage cross-sectional area map selected based on the actual intake / exhaust pressure ratio and the exhaust pressure, and estimated when the intake / exhaust pressure ratio is greater than the predetermined value.
  • the EGR gas weight is calculated from the effective passage sectional area map selected based on the intake / exhaust pressure ratio and the exhaust pressure.
  • the EGR gas weight in calculating the EGR gas weight, is stably calculated in an operating state in which the influence of the pressure ratio of the intake pressure to the exhaust pressure becomes large. Thereby, the calculation error of the EGR gas weight can be suppressed based on the operating state.
  • an effective passage sectional area map corresponding to the operating state of the engine is selected from a plurality of effective passage sectional area maps.
  • an effective passage sectional area map corresponding to the operating state of the engine is selected from a plurality of effective passage sectional area maps in consideration of the influence of the pressure ratio of the intake pressure to the exhaust pressure.
  • the engine 1 is a diesel engine 1, and in this embodiment, is an in-line four-cylinder engine 1 having four cylinders 3, 3, 3, and 3.
  • the engine 1 supplies the intake air supplied to the inside of the cylinder 3 via the intake pipe 2 and the fuel supplied to the inside of the cylinder 3 from the fuel injection valves 4, 4, 4, 4.
  • the output shaft is rotationally driven by mixing and burning in the interior of 3.
  • the engine 1 discharges exhaust generated by fuel combustion to the outside through an exhaust pipe 5.
  • the engine 1 includes an engine speed detection sensor 6, a fuel injection valve injection amount detection sensor 7, an EGR device 8, and an ECU 15 that is a control device.
  • the engine rotation speed detection sensor 6 detects the rotation speed N which is the engine rotation speed of the engine 1.
  • the engine speed detection sensor 6 includes a sensor and a pulser, and is provided on the output shaft of the engine 1.
  • the engine speed detection sensor 6 is composed of a sensor and a pulsar, but any sensor that can detect the speed N may be used.
  • the injection amount detection sensor 7 detects an injection amount F that is a fuel injection amount from the fuel injection valve 4.
  • the injection amount detection sensor 7 is provided in the middle of a fuel supply pipe (not shown).
  • the injection amount detection sensor 7 is composed of a flow rate sensor.
  • the injection amount detection sensor 7 is constituted by a flow rate sensor.
  • the present invention is not limited to this, and any device that can detect the fuel injection amount F may be used.
  • the EGR device 8 returns a part of the exhaust gas to the intake air.
  • the EGR device 8 includes an EGR pipe 9, an EGR valve 10, an intake pressure detection sensor 11, an exhaust pressure detection sensor 12, an EGR gas temperature detection sensor 13, an opening degree detection sensor 14, and an ECU 15 that is an EGR control unit.
  • the EGR pipe 9 is a pipe for guiding the exhaust to the intake pipe 2.
  • the EGR pipe 9 is provided so as to communicate the intake pipe 2 and the exhaust pipe 5. Thereby, a part of the exhaust gas passing through the exhaust pipe 5 is guided to the intake pipe 2 through the EGR pipe 9. That is, a part of the exhaust gas is configured to be recirculated to the intake air as EGR gas (hereinafter simply referred to as “EGR gas”).
  • EGR gas EGR gas
  • the EGR valve 10 limits the flow rate of the EGR gas that passes through the EGR pipe 9.
  • the EGR valve 10 is composed of a normally closed type electromagnetic flow control valve.
  • the EGR valve 10 is provided in the middle of the EGR pipe 9.
  • the EGR valve 10 can change the opening degree of the EGR valve 10 by acquiring a signal from the ECU 15 described later.
  • the EGR valve 10 is composed of a normally closed electromagnetic flow control valve, but any EGR gas flow rate can be used.
  • the intake pressure detection sensor 11 constituting the differential pressure detecting means detects the intake pressure P1.
  • the intake pressure detection sensor 11 is disposed in the middle of the intake pipe 2 that can detect the intake pressure P1.
  • the exhaust pressure detection sensor 12 constituting the differential pressure detecting means detects the exhaust pressure P2.
  • the exhaust pressure detection sensor 12 is disposed in the middle of the exhaust pipe 5 that can detect the exhaust pressure P2.
  • the EGR gas temperature detection sensor 13 detects the EGR gas temperature Tegr.
  • the EGR gas temperature detection sensor 13 is composed of a thermocouple.
  • the EGR gas temperature detection sensor 13 is disposed in the middle of the EGR pipe 9 where the EGR gas temperature Tegr can be detected.
  • the EGR gas temperature detection sensor 13 is composed of a thermocouple, but any sensor that can detect the EGR gas temperature Tegr may be used.
  • the opening detection sensor 14 detects the EGR valve opening G.
  • the opening degree detection sensor 14 includes a position detection sensor.
  • the opening degree detection sensor 14 is provided in the EGR valve 10.
  • the opening degree detection sensor 14 is composed of a position detection sensor. However, any sensor that can detect the EGR valve opening degree G may be used.
  • the ECU 15 controls the engine 1. Specifically, the engine 1 body and the EGR device 8 are controlled.
  • the ECU 15 stores various programs and data for controlling the engine 1.
  • the ECU 15 may be configured such that a CPU, a ROM, a RAM, an HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like.
  • the ECU 15 is connected to the fuel injection valves 4, 4, 4, 4 and can control the fuel injection valves 4, 4, 4, 4.
  • the ECU 15 is connected to the engine speed detection sensor 6 and can acquire the speed N detected by the engine speed detection sensor 6.
  • ECU15 is connected to the injection quantity detection sensor 7, and can acquire the injection quantity F which the injection quantity detection sensor 7 detects.
  • the ECU 15 is connected to the EGR valve 10 and can control the opening and closing of the EGR valve 10.
  • the ECU 15 is connected to an intake pressure detection sensor 11 and an exhaust pressure detection sensor 12, which are differential pressure detection means, and acquires an intake pressure P1 detected by the intake pressure detection sensor 11 and an exhaust pressure P2 detected by the exhaust pressure detection sensor 12.
  • Calculating an EGR differential pressure ⁇ P which is a differential pressure between the detected exhaust pressure P2 and the detected intake pressure P1, and an actual intake / exhaust pressure ratio ⁇ 1 which is an actual pressure ratio of the detected intake pressure P1 to the detected exhaust pressure P2.
  • the ECU 15 is connected to the EGR gas temperature detection sensor 13 and can acquire the EGR gas temperature Tegr detected by the EGR gas temperature detection sensor 13.
  • the ECU 15 is connected to the opening degree detection sensor 14 and can acquire the EGR valve opening degree G detected by the opening degree detection sensor 14.
  • the ECU 15 stores an estimated intake / exhaust pressure ratio map Mw for calculating an estimated intake / exhaust pressure ratio ⁇ 2 that is a pressure ratio of the intake pressure P1 to the exhaust pressure P2 based on the rotational speed N and the injection amount F. Further, the ECU 15 stores a predetermined value ⁇ 0, which is a threshold value of the intake / exhaust pressure ratio ⁇ , which is excessively affected by fluctuations in the intake / exhaust pressure ratio ⁇ when calculating the EGR gas weight Megr.
  • the ECU 15 includes an effective passage sectional area map M1, M2,... Mn (in this embodiment, for calculating an effective passage sectional area Ared of the EGR device 8 based on the EGR valve opening G and the EGR differential pressure ⁇ P.
  • the effective passage sectional area map M1, M2, M3, M4) is stored. Further, the ECU 15 stores a selection map My for selecting one of the effective passage sectional area maps M1, M2, M3, and M4 based on the rotational speed N and the injection amount F.
  • the ECU 15 can calculate the estimated intake / exhaust pressure ratio ⁇ 2 from the estimated intake / exhaust pressure ratio map Mw based on the acquired rotation speed N and injection amount F. Similarly, the ECU 15 can select one effective passage sectional area map Mx from the selection map My based on the acquired rotation speed N and injection amount F. The effective passage sectional area Ared can be calculated from one effective passage sectional area map Mx selected based on the intake pressure P1, the exhaust pressure P2, the EGR gas temperature Tegr, and the EGR valve opening G.
  • the ECU 15 calculates the EGR differential pressure ⁇ P shown in the following equation 1 based on the acquired intake pressure P1 and exhaust pressure P2, and the intake / exhaust pressure ratio ⁇ (actual intake / exhaust pressure ratio ⁇ 1 or estimated intake / exhaust pressure) shown in the following equation 2.
  • the exhaust gas pressure ratio ⁇ 2) is calculated.
  • the ECU 15 calculates the estimated intake / exhaust pressure ratio ⁇ 2 from the estimated intake / exhaust pressure ratio map Mw based on the acquired rotation speed N and injection amount F.
  • the Ared coefficient As shown in FIG. 2, it is calculated from exhaust pressure P2, EGR gas temperature Tegr, intake / exhaust pressure ratio ⁇ (actual intake / exhaust pressure ratio ⁇ 1 or estimated intake / exhaust pressure ratio ⁇ 2), constant exhaust specific heat ⁇ , and gas constant R.
  • the Ared coefficient decreases as the intake / exhaust pressure ratio ⁇ approaches 1 and becomes 0 when the intake / exhaust pressure ratio ⁇ is 1. At this time, the Ared coefficient decreases rapidly as the intake / exhaust pressure ratio ⁇ approaches 1. That is, the Ared coefficient calculated from the actual intake / exhaust pressure ratio ⁇ 1 greatly fluctuates due to a minute measurement error between the detected intake pressure P1 and the detected exhaust pressure P2.
  • the ECU 15 uses the predetermined value ⁇ 0, which is the intake / exhaust pressure ratio ⁇ at which the Ared coefficient decreases rapidly, as a threshold value, and the actual value when the actual intake / exhaust pressure ratio ⁇ 1 is smaller than the predetermined value ⁇ 0.
  • the intake / exhaust pressure ratio ⁇ 1 is selected.
  • the estimated intake / exhaust pressure ratio ⁇ 2 calculated from the estimated intake / exhaust pressure ratio map Mw is selected to suppress a rapid decrease in the Ared coefficient.
  • the effective passage cross-sectional area Are is different depending on the operating state (the rotational speed N and the injection amount F) of the engine 1 even if the EGR differential pressure ⁇ P and the EGR valve opening G are the same. Therefore, as shown in FIG. 5, the ECU 15 selects the effective passage cross-sectional area map Mx from the selection map My based on the acquired rotation speed N and injection amount F. Further, as shown in FIG. 6, the ECU 15 calculates an effective passage sectional area Ared from the effective passage sectional area map Mx selected based on the calculated EGR differential pressure ⁇ P and the acquired EGR valve opening degree G.
  • the ECU 15 calculates an Ared coefficient from the acquired exhaust pressure P2, EGR gas temperature Tegr, intake / exhaust pressure ratio ⁇ , constant exhaust specific heat ⁇ , and gas constant R (see Expression 3). Finally, the ECU 15 calculates the EGR gas weight Megr shown in the following equation 3 from the calculated Ared coefficient and the effective passage sectional area Ared.
  • step S110 the ECU 15 detects the engine speed N detected by the engine speed detection sensor 6, the injection amount F detected by the injection amount detection sensor 7, and the EGR valve opening detected by the opening detection sensor 14. Degree G, intake pressure P1 detected by the intake pressure detection sensor 11, exhaust pressure P2 detected by the exhaust pressure detection sensor 12, and EGR gas temperature Tegr detected by the EGR gas temperature detection sensor 13 are acquired, and the process proceeds to step S120. Let
  • step S120 the ECU 15 calculates the EGR differential pressure ⁇ P and the actual intake / exhaust pressure ratio ⁇ 1 from the acquired intake pressure P1 and exhaust pressure P2, and shifts the step to step S130.
  • step S130 the ECU 15 calculates the estimated intake / exhaust pressure ratio ⁇ 2 from the estimated intake / exhaust pressure ratio map Mw based on the acquired rotation speed N and injection amount F, and the process proceeds to step S140.
  • step S140 the ECU 15 determines whether or not the actual intake / exhaust pressure ratio ⁇ 1 is smaller than a predetermined value ⁇ 0. As a result, when it is determined that the actual intake / exhaust pressure ratio ⁇ 1 is smaller than the predetermined value ⁇ 0 (less than ⁇ 0), the ECU 15 shifts the step to step S150. On the other hand, when it is determined that the actual intake / exhaust pressure ratio ⁇ 1 is not smaller than the predetermined value ⁇ 0 ( ⁇ 0 or more), the ECU 15 shifts the step to step S250.
  • step S150 the ECU 15 selects the actual intake / exhaust pressure ratio ⁇ 1 from the actual intake / exhaust pressure ratio ⁇ 1 and the estimated intake / exhaust pressure ratio ⁇ 2, and the process proceeds to step S160.
  • step S160 the ECU 15 selects one effective passage cross-sectional area map Mx from the selection map My based on the acquired rotation speed N and injection amount F, and the process proceeds to step S170.
  • step S170 the ECU 15 calculates an effective passage sectional area Ared from the effective passage sectional area map Mx based on the calculated EGR differential pressure ⁇ P and the acquired EGR valve opening G, and the process proceeds to step S180.
  • step S180 the ECU 15 acquires the acquired intake pressure P1, EGR gas temperature Tegr, selected actual intake / exhaust pressure ratio ⁇ 1 or estimated intake / exhaust pressure ratio ⁇ 2, effective passage cross-sectional area Ared, exhaust specific heat ⁇ , which is a constant, and gas constant R.
  • the EGR gas weight Megr is calculated from the ECU 15, and the ECU 15 proceeds to step S110.
  • step S250 the ECU 15 selects the estimated intake / exhaust pressure ratio ⁇ 2 from the actual intake / exhaust pressure ratio ⁇ 1 and the estimated intake / exhaust pressure ratio ⁇ 2, and the process proceeds to step S160.
  • the ECU 15 Based on the injection amount F, an estimated intake / exhaust pressure ratio ⁇ 2 calculated from the estimated intake / exhaust pressure ratio map Mw is selected. Further, the ECU 15 selects an optimum effective passage sectional area map Mx based on the rotational speed N and the injection amount F.
  • the engine 1 stably calculates the EGR gas weight Megr in an operating state where the influence of the pressure ratio of the intake pressure P1 to the exhaust pressure P2 becomes large. Thereby, the calculation error of the EGR gas weight Megr can be suppressed based on the operating state of the engine 1.
  • the engine 1 selects an effective passage sectional area map corresponding to the operating state of the engine 1 from a plurality of effective passage sectional area maps M1, M2,. Thereby, the calculation error of the EGR gas weight Megr can be suppressed based on the operating state of the engine 1. Furthermore, the generation of nitrogen oxides by the EGR device 8 is suppressed.
  • the ECU 15 calculates the effective passage cross-sectional area Ared of the EGR device 8 based on the exhaust pressure P2 and the intake / exhaust pressure ratio ⁇ (actual intake / exhaust pressure ratio ⁇ 1 or estimated intake / exhaust pressure ratio ⁇ 2). It is possible to select one effective passage sectional area map Mx from the effective passage sectional area maps M1, M2,... Mn (effective passage sectional area maps M1, M2, M3, and M4 in this embodiment). is there.
  • the ECU 15 selects an effective passage sectional area map Mx suitable for calculating the effective passage sectional area Ared of the EGR device 8 based on the acquired exhaust pressure P2 and the calculated intake / exhaust pressure ratio ⁇ . To do. Specifically, the ECU 15 selects the effective passage sectional area map M4 when the intake / exhaust pressure ratio ⁇ is larger than the predetermined value X and the exhaust pressure P2 is larger than the predetermined value Y (region D in FIG. 8). Further, when the intake / exhaust pressure ratio ⁇ is larger than the predetermined value X and the exhaust pressure P2 is equal to or smaller than the predetermined value Y (region C in FIG. 8), the ECU 15 selects the effective passage sectional area map M3.
  • the ECU 15 selects the effective passage sectional area map M2. Further, when the intake / exhaust pressure ratio ⁇ is equal to or smaller than the predetermined value X and the exhaust pressure P2 is equal to or smaller than the predetermined value Y (region A in FIG. 8), the ECU 15 selects the effective passage sectional area map M1.
  • step S110 to step S150 the ECU 15 performs the same control as the above-described control.
  • step S300 the ECU 15 starts the effective path end area map selection process A and shifts the step to step 310 (see FIG. 10).
  • step S310 the ECU 15 determines whether the intake / exhaust pressure ratio ⁇ (actual intake / exhaust pressure ratio ⁇ 1 or estimated intake / exhaust pressure ratio ⁇ 2) is greater than a predetermined value X. As a result, when it is determined that the intake / exhaust pressure ratio ⁇ is larger than the predetermined value X, the ECU 15 shifts the step to step S320. On the other hand, when it is determined that the intake / exhaust pressure ratio ⁇ is not greater than the predetermined value X, the ECU 15 shifts the step to step S420.
  • step S320 the ECU 15 determines whether the exhaust pressure P2 is greater than a predetermined value Y. As a result, when it is determined that the exhaust pressure P2 is greater than the predetermined value Y, the ECU 15 shifts the step to step S330. On the other hand, when it is determined that the exhaust pressure P2 is not greater than the predetermined value Y, the ECU 15 shifts the step to step S630.
  • step S330 the ECU 15 selects the effective passage cross-sectional area map M4, ends the effective passage end area map selection processing A, and moves the step to step S170.
  • step S170 to step S180 the ECU 15 performs the same control as that described above.
  • step S420 the ECU 15 determines whether or not the exhaust pressure P2 is greater than a predetermined value Y. As a result, when it is determined that the exhaust pressure P2 is greater than the predetermined value Y, the ECU 15 shifts the step to step S430. On the other hand, when it is determined that the exhaust pressure P2 is not greater than the predetermined value Y, the ECU 15 shifts the step to step S530.
  • step S430 the ECU 15 selects the effective passage sectional area map M2, ends the effective passage end area map selection processing A, and shifts the step to step S170.
  • step S530 the ECU 15 selects the effective passage sectional area map M1, ends the effective passage end area map selection processing A, and shifts the step to step S170.
  • step S630 the ECU 15 selects the effective passage sectional area map M3, ends the effective passage end area map selection processing A, and proceeds to step S170.
  • the engine 1 takes into account the influence of the pressure ratio of the intake pressure P1 to the exhaust pressure P2, and from among the plurality of effective passage sectional area maps M1, M2,.
  • An area map Mx is selected.
  • the present invention can be used for an engine that recirculates a part of exhaust gas to intake air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 運転状態に基づいてEGRガス重量の算出誤差を抑制することができるエンジンの提供を目的とする。排気の一部をEGRガスとして吸気に還流させるEGR装置(8)を備えるエンジン(1)であって、検出した排気圧(P2)と検出した吸気圧(P1)とから排気圧(P2)に対する吸気圧(P1)の実吸排気圧力比(π1)を算出し、エンジン回転数である回転数(N)と燃料噴射量である噴射量(F)とから排気圧(P2)に対する吸気圧(P1)の推定吸排気圧力比(π2)を算出し、実吸排気圧力比(π1)が所定値(π0)未満の場合、実吸排気圧力比(π1)に基づいてEGRガス重量(Megr)が算出され、実吸排気圧力比(π1)が所定値(π0)以上の場合、推定吸排気圧力比(π2)に基づいてEGRガス重量(Megr)が算出される。

Description

エンジン
 本発明はエンジンに関する。詳しくは排気の一部を吸気に還流させるエンジンに関する。
 従来、排気の一部を吸気に還流させるEGR装置(排気再循環システム)を設けたエンジンが知られている。EGR装置によって吸気に酸素濃度の低い排気(EGRガス)を還流させることで燃焼温度を低下させ、窒素酸化物の発生を抑制するものである。吸気に還流させるEGRガス重量(目標EGRガス流量)は、吸気圧力と排気圧力との差圧(吸排気差圧)、およびEGRガス重量を調整するEGR弁の開度(EGR弁開度)に基づいて目標流量マップから算出される。例えば、特許文献1に記載の如くである。
 特許文献1に記載のEGR装置は、単一の目標流量マップからEGRガス重量が算出される。つまり、EGRガス重量は、吸排気差圧とEGR弁開度とから一義的に算出される。しかし、算出されるEGRガス重量は、排気圧力に対する吸気圧力の圧力比率(吸排気圧力比)が1に近づくにつれて圧力比率の変動による影響が大きくなる。また、エンジンの運転状態は、吸排気差圧とEGR弁開度とから一義的に定まらない。つまり、EGRガス重量は、エンジンの運転状態が異なっていても吸排気差圧とEGR弁開度とがそれぞれ等しければ、同一のEGRガス重量が算出される。従って、エンジンは、吸排気圧力比の影響および吸排気差圧とEGR弁開度とから想定されるエンジンの運転状態の誤差の影響によってEGRガス重量の算出誤差が増大する可能性があった。
特開2012-31740号公報
 本発明は以上の如き状況に鑑みてなされたものであり、運転状態に基づいてEGRガス重量の算出誤差を抑制することができるエンジンの提供を目的とする。
 即ち、本発明においては、排気の一部をEGRガスとして吸気に還流させるEGR装置を備えるエンジンであって、検出した排気圧力と検出した吸気圧力とから排気圧力に対する吸気圧力の実吸排気圧力比を算出し、エンジン回転数と燃料噴射量とから排気圧力に対する吸気圧力の推定吸排気圧力比を算出し、実吸排気圧力比が所定値未満の場合、実吸排気圧力比に基づいてEGRガス重量が算出され、実吸排気圧力比が所定値以上の場合、推定吸排気圧力比に基づいてEGRガス重量が算出されるものである。
 本発明においては、EGRガスの流量を制限するEGR弁の開度と、前記排気圧力と前記吸気圧力との差圧と、からEGR装置の有効通路面積を算出する有効通路断面積マップを複数備え、前記エンジン回転数と前記燃料噴射量とに基づいて選択された有効通路断面積マップからEGRガス重量が算出されるものである。
 本発明においては、EGRガス重量を制限するEGR弁の開度と、排気圧力と吸気圧力との差圧と、からEGR装置の有効通路面積を算出する有効通路断面積マップを複数備え、実吸排気圧力比が所定値未満の場合、実吸排気圧力比と排気圧とに基づいて選択された有効通路断面積マップからEGRガス重量が算出され、吸排気圧力比が所定値以上の場合、推定吸排気圧力比と排気圧とに基づいて選択された有効通路断面積マップからEGRガス重量が算出されるものである。
 本発明の効果として、以下に示すような効果を奏する。
 即ち、本発明によれば、EGRガス重量の算出において、排気圧力に対する吸気圧力の圧力比率の影響が大きくなる運転状態において安定的にEGRガス重量が算出される。これにより、運転状態に基づいてEGRガス重量の算出誤差を抑制することができる。
 また、本発明によれば、複数の有効通路断面積マップの中からエンジンの運転状態に対応した有効通路断面積マップが選択される。これにより、運転状態に基づいてEGRガス重量Megrの算出誤差を抑制することができる。
 また、本発明によれば、排気圧力に対する吸気圧力の圧力比率の影響を考慮して複数の有効通路断面積マップの中からエンジンの運転状態に対応した有効通路断面積マップが選択される。これにより、運転状態に基づいてEGRガス重量の算出誤差を抑制することができる。
本発明に係るエンジンの構成を示した概略図。 本発明に係るエンジンの第一実施形態におけるEGR装置の吸排気圧力比と有効通路断面積との関係を表すグラフを示す図。 本発明に係るエンジンの第一実施形態におけるEGR装置の有効通路断面積の閾値を表すグラフを示す図。 本発明に係るエンジンの同一差圧の場合の各所定条件におけるEGR装置の有効通路断面積を表すグラフを示す図。 本発明に係るエンジンの選択マップを示す図。 本発明に係るエンジンの所定条件におけるEGR装置のEGRガス重量を表すグラフを示す図。 本発明に係るエンジンの第一実施形態におけるEGR装置の有効通路断面積を算出する制御態様を表すフローチャートを示す図。 本発明に係るエンジンの第二実施形態におけるEGR装置の有効通路断面積の閾値を表すグラフを示す図。 本発明に係るエンジンの第二実施形態におけるEGR装置のEGRガス重量を算出する制御態様を表すフローチャートを示す図。 本発明に係るエンジンの第二実施形態におけるEGR装置の有効通路断面積マップを選択する処理の制御態様を表すフローチャートを示す図。
 以下に、図1を用いて、本発明の第一実施形態に係るエンジン1について説明する。
 図1に示すように、エンジン1は、ディーゼルエンジン1であり、本実施形態においては、四つの気筒3・3・3・3を有する直列四気筒エンジン1である。
 エンジン1は、吸気管2を介して気筒3の内部に供給される吸気と、燃料噴射弁4・4・4・4から気筒3の内部に供給される燃料とを気筒3・3・3・3の内部において混合して燃焼させることで出力軸を回転駆動させる。エンジン1は、燃料の燃焼により発生する排気を、排気管5を介して外部へ排出する。
 エンジン1は、エンジン回転数検出センサー6、燃料噴射弁の噴射量検出センサー7、EGR装置8、および制御装置であるECU15を具備する。
 エンジン回転数検出センサー6は、エンジン1のエンジン回転数である回転数Nを検出するものである。エンジン回転数検出センサー6は、センサーとパルサーとから構成され、エンジン1の出力軸に設けられる。なお、本実施形態において、エンジン回転数検出センサー6をセンサーとパルサーとから構成しているが、回転数Nを検出することができるものであればよい。
 噴射量検出センサー7は、燃料噴射弁4からの燃料噴射量である噴射量Fを検出するものである。噴射量検出センサー7は、図示しない燃料供給管の途中部に設けられる。噴射量検出センサー7は、流量センサーから構成される。なお、本実施形態において、噴射量検出センサー7を流量センサーで構成しているがこれに限定するものでなく、燃料の噴射量Fを検出できるものであればよい。
 EGR装置8は、排気の一部を吸気に還流するものである。EGR装置8は、EGR管9、EGR弁10、吸気圧検出センサー11、排気圧検出センサー12、EGRガス温度検出センサー13、開度検出センサー14、EGR制御部であるECU15を具備する。
 EGR管9は、排気を吸気管2に案内するための管である。EGR管9は、吸気管2と排気管5とを連通するように設けられる。これにより、排気管5を通過する排気の一部がEGR管9を通じて吸気管2に案内される。すなわち、排気の一部がEGRガスとして吸気に還流可能に構成される(以下、単に「EGRガス」と記す)。
 EGR弁10は、EGR管9を通過するEGRガスの流量を制限するものである。EGR弁10は、ノーマルクローズドタイプの電磁式流量制御弁から構成される。EGR弁10は、EGR管9の途中部に設けられる。EGR弁10は、後述のECU15からの信号を取得してEGR弁10の開度を変更することができる。なお、本実施形態において、EGR弁10をノーマルクローズドタイプの電磁式流量制御弁から構成しているが、EGRガスの流量を制限することができるものであればよい。
 差圧検出手段を構成する吸気圧検出センサー11は、吸気圧P1を検出するものである。吸気圧検出センサー11は、吸気圧P1を検出可能な吸気管2の途中部に配置される。同様に、差圧検出手段を構成する排気圧検出センサー12は、排気圧P2を検出するものである。排気圧検出センサー12は、排気圧P2を検出可能な排気管5の途中部に配置される。
 EGRガス温度検出センサー13は、EGRガス温度Tegrを検出するものである。EGRガス温度検出センサー13は、熱電対から構成される。EGRガス温度検出センサー13は、EGRガス温度Tegrが検出可能なEGR管9の途中部に配置される。なお、本実施形態において、EGRガス温度検出センサー13を熱電対から構成しているが、EGRガス温度Tegrを検出することができるものであればよい。
 開度検出センサー14は、EGR弁開度Gを検出するものである。開度検出センサー14は、位置検出センサーから構成される。開度検出センサー14は、EGR弁10に設けられる。なお、本実施形態において、開度検出センサー14を位置検出センサーから構成しているが、EGR弁開度Gを検出することができるものであればよい。
 ECU15は、エンジン1を制御するものである。具体的には、エンジン1本体やEGR装置8を制御する。ECU15には、エンジン1の制御を行うための種々のプログラムやデータが格納される。ECU15は、CPU、ROM、RAM、HDD等がバスで接続される構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。
 ECU15は、燃料噴射弁4・4・4・4と接続され、燃料噴射弁4・4・4・4を制御することが可能である。
 ECU15は、エンジン回転数検出センサー6に接続され、エンジン回転数検出センサー6が検出する回転数Nを取得することが可能である。
 ECU15は、噴射量検出センサー7に接続され、噴射量検出センサー7が検出する噴射量Fを取得することが可能である。
 ECU15は、EGR弁10と接続され、EGR弁10の開閉を制御することが可能である。
 ECU15は、差圧検出手段である吸気圧検出センサー11および排気圧検出センサー12に接続され、吸気圧検出センサー11が検出する吸気圧P1および排気圧検出センサー12が検出する排気圧P2を取得し、検出した排気圧P2と検出した吸気圧P1との差圧であるEGR差圧ΔP、検出した排気圧P2に対する検出した吸気圧P1の実圧力比率である実吸排気圧力比π1を算出することが可能である。
 ECU15は、EGRガス温度検出センサー13に接続され、EGRガス温度検出センサー13が検出するEGRガス温度Tegrを取得することが可能である。
 ECU15は、開度検出センサー14に接続され、開度検出センサー14が検出するEGR弁開度Gを取得することが可能である。
 ECU15には、回転数Nと噴射量Fとに基づいて排気圧P2に対する吸気圧P1の圧力比率である推定吸排気圧力比π2を算出するための推定吸排気圧力比マップMwが格納される。さらに、ECU15には、EGRガス重量Megr算出の際に、吸排気圧力比πの変動による影響が過大となる吸排気圧力比πの閾値である所定値π0が格納される。
 ECU15には、EGR弁開度GとEGR差圧ΔPとに基づいてEGR装置8の有効通路断面積Aredを算出するための有効通路断面積マップM1・M2・・Mn(本実施形態においては、有効通路断面積マップM1・M2・M3・M4)が格納される。また、ECU15には、回転数Nと噴射量Fとに基づいて有効通路断面積マップM1・M2・M3・M4のうち一の有効通路断面積マップMxを選択するための選択マップMyが格納される。
 ECU15は、取得した回転数Nおよび噴射量Fに基づいて推定吸排気圧力比マップMwから推定吸排気圧力比π2を算出することができる。同様に、ECU15は、取得した回転数Nおよび噴射量Fに基づいて選択マップMyから一の有効通路断面積マップMxを選択することが可能である。吸気圧P1、排気圧P2、EGRガス温度Tegr、EGR弁開度G、に基づいて選択した一の有効通路断面積マップMxから有効通路断面積Aredを算出することが可能である。
 以下では、図2から図7を用いて、本発明の第一実施形態に係るエンジン1のEGR装置8におけるEGRガス重量Megrを算出するための制御態様について説明する。
 ECU15は、取得した吸気圧P1および排気圧P2に基づいて以下の数1に示すEGR差圧ΔPを算出し、以下の数2に示す吸排気圧力比π(実吸排気圧力比π1または推定吸排気圧力比π2)を算出する。同時に、ECU15は、取得した回転数Nおよび噴射量Fに基づいて推定吸排気圧力比マップMwから推定吸排気圧力比π2を算出する。
 図2に示すように、排気圧P2、EGRガス温度Tegr、吸排気圧力比π(実吸排気圧力比π1または推定吸排気圧力比π2)、定数である排気比熱κおよび気体定数Rから算出されるAred係数(数3参照)は、吸排気圧力比πが1に近づくにつれて減少し、吸排気圧力比πが1のとき0になる。この際、Ared係数は、吸排気圧力比πが1に近づくにつれて急激に減少する。つまり、実吸排気圧力比π1から算出されたAred係数は、検出した吸気圧P1と検出した排気圧P2との微小な測定誤差によって大きく変動する。
 従って、図3に示すように、ECU15は、Ared係数が急激に減少する吸排気圧力比πである所定値π0を閾値として、実吸排気圧力比π1が所定値π0よりも小さい場合には実吸排気圧力比π1を選択する。そして、実吸排気圧力比π1が所定値π0以上の場合には推定吸排気圧力比マップMwから算出した推定吸排気圧力比π2を選択してAred係数の急激な減少を抑制する。
 図4に示すように、有効通路断面積Aredは、EGR差圧ΔPおよびEGR弁開度Gが同一であってもエンジン1の運転状態(回転数Nおよび噴射量F)によって異なる。従って、図5に示すように、ECU15は、取得した回転数Nおよび噴射量Fに基づいて選択マップMyから有効通路断面積マップMxを選択する。さらに、図6に示すように、ECU15は、算出したEGR差圧ΔPおよび取得したEGR弁開度Gに基づいて選択した有効通路断面積マップMxから有効通路断面積Aredを算出する。
 そして、ECU15は、取得した排気圧P2、EGRガス温度Tegr、吸排気圧力比π、定数である排気比熱κおよび気体定数RからAred係数を算出する(数3参照)。最後に、ECU15は、算出したAred係数と有効通路断面積Aredとから以下の数3に示すEGRガス重量Megrを算出する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 次に、エンジン1のEGR装置8におけるEGRガス重量Megrを算出する制御態様について具体的に説明する。
 図7に示すように、ステップS110において、ECU15は、エンジン回転数検出センサー6が検出する回転数N、噴射量検出センサー7が検出する噴射量F、開度検出センサー14が検出するEGR弁開度G、吸気圧検出センサー11が検出する吸気圧P1、排気圧検出センサー12が検出する排気圧P2およびEGRガス温度検出センサー13が検出するEGRガス温度Tegrを取得し、ステップをステップS120に移行させる。
 ステップS120において、ECU15は、取得した吸気圧P1および排気圧P2からEGR差圧ΔPと実吸排気圧力比π1とを算出し、ステップをステップS130に移行させる。
 ステップS130において、ECU15は、取得した回転数Nと噴射量Fとに基づいて推定吸排気圧力比マップMwから推定吸排気圧力比π2を算出し、ステップをステップS140に移行させる。
 ステップS140において、ECU15は、実吸排気圧力比π1が所定値π0よりも小さいか否か判定する。
 その結果、実吸排気圧力比π1が所定値π0よりも小さい(π0未満)と判定した場合、ECU15はステップをステップS150に移行させる。
 一方、実吸排気圧力比π1が所定値π0よりも小さくない(π0以上)と判定した場合、ECU15はステップをステップS250に移行させる。
 ステップS150において、ECU15は、実吸排気圧力比π1と推定吸排気圧力比π2とのうち実吸排気圧力比π1を選択し、ステップをステップS160に移行させる。
 ステップS160において、ECU15は、取得した回転数Nおよび噴射量Fに基づいて選択マップMyから一の有効通路断面積マップMxを選択し、ステップをステップS170に移行させる。
 ステップS170において、ECU15は、算出したEGR差圧ΔPおよび取得したEGR弁開度Gに基づいて有効通路断面積マップMxから有効通路断面積Aredを算出し、ステップをステップS180に移行させる。
 ステップS180において、ECU15は、取得した吸気圧P1、EGRガス温度Tegr、選択した実吸排気圧力比π1または推定吸排気圧力比π2、有効通路断面積Ared、定数である排気比熱κおよび気体定数RからEGRガス重量Megrを算出し、ECU15は、ステップをステップS110に移行させる。
 ステップS250において、ECU15は、実吸排気圧力比π1と推定吸排気圧力比π2とのうち推定吸排気圧力比π2を選択し、ステップをステップS160に移行させる。
 このように、ECU15は、EGRガス重量Megrの算出において実吸排気圧力比π1の変動による影響が過大となる場合(実吸排気圧力比π1が所定値π0よりも大きい場合)、回転数Nと噴射量Fとに基づいて推定吸排気圧力比マップMwから算出された推定吸排気圧力比π2を選択する。また、ECU15は、回転数Nと噴射量Fとに基づいて最適な有効通路断面積マップMxを選択する。
 これにより、エンジン1は、EGRガス重量Megrの算出において、排気圧P2に対する吸気圧P1の圧力比率の影響が大きくなる運転状態において安定的にEGRガス重量Megrが算出される。これにより、エンジン1の運転状態に基づいてEGRガス重量Megrの算出誤差を抑制することができる。
 また、エンジン1は、複数の有効通路断面積マップM1・M2・・Mnの中からエンジン1の運転状態に対応した有効通路断面積マップが選択される。これにより、エンジン1の運転状態に基づいてEGRガス重量Megrの算出誤差を抑制することができる。さらに、EGR装置8による窒素酸化物の発生を抑制する。
 次に、図8から図10を用いて、本発明に係るエンジン1の第二実施形態であるエンジン1について説明する。なお、以下の実施形態において、既に説明した実施形態と同様の点に関してはその具体的説明を省略し、相違する部分を中心に説明する。
 図8に示すように、ECU15は、排気圧P2と吸排気圧力比π(実吸排気圧力比π1または推定吸排気圧力比π2)とに基づいてEGR装置8の有効通路断面積Aredを算出するための有効通路断面積マップM1・M2・・Mn(本実施形態においては、有効通路断面積マップM1・M2・M3・M4)のうち一の有効通路断面積マップMxを選択することが可能である。
 以下では、本発明の第二実施形態に係るエンジン1のEGR装置8におけるEGRガス重量Megrを算出するための制御態様について説明する。
 図8に示すように、ECU15は、取得した排気圧P2および算出した吸排気圧力比πに基づいてEGR装置8の有効通路断面積Aredを算出するために適した有効通路断面積マップMxを選択する。具体的には、ECU15は、吸排気圧力比πが所定値Xよりも大きく、排気圧P2が所定値Yよりも大きい場合(図8における領域D)、有効通路断面積マップM4を選択する。また、ECU15は、吸排気圧力比πが所定値Xよりも大きく、排気圧P2が所定値Y以下である場合(図8における領域C)、有効通路断面積マップM3を選択する。また、ECU15は、吸排気圧力比πが所定値X以下であり、排気圧P2が所定値Yよりも大きい場合(図8における領域B)、有効通路断面積マップM2を選択する。また、ECU15は、吸排気圧力比πが所定値X以下であり、排気圧P2が所定値Y以下である場合(図8における領域A)、有効通路断面積マップM1を選択する。
 次に、エンジン1のEGR装置8におけるEGRガス重量Megrを算出するための制御態様について具体的に説明する。
 図9に示すように、ステップS110からステップS150において、ECU15は、上述した制御と同一の制御を行う。
 ステップS300において、ECU15は、有効通路端面積マップ選択処理Aを開始し、ステップをステップ310に移行させる(図10参照)。
 図10に示すように、ステップS310において、ECU15は、吸排気圧力比π(実吸排気圧力比π1または推定吸排気圧力比π2)が所定値Xよりも大きいか否か判定する。
 その結果、吸排気圧力比πが所定値Xよりも大きいと判定した場合、ECU15はステップをステップS320に移行させる。
 一方、吸排気圧力比πが所定値Xよりも大きくないと判定した場合、ECU15はステップをステップS420に移行させる。
 ステップS320において、ECU15は、排気圧P2が所定値Yよりも大きいか否か判定する。
 その結果、排気圧P2が所定値Yよりも大きいと判定した場合、ECU15はステップをステップS330に移行させる。
 一方、排気圧P2が所定値Yよりも大きくないと判定した場合、ECU15はステップをステップS630に移行させる。
 ステップS330において、ECU15は、有効通路断面積マップM4を選択し、有効通路端面積マップ選択処理Aを終了してステップをステップS170に移行させる。
 ステップS170からステップS180において、ECU15は、上述した制御と同一の制御を行う。
 ステップS420において、ECU15は、排気圧P2が所定値Yよりも大きいか否か判定する。
 その結果、排気圧P2が所定値Yよりも大きいと判定した場合、ECU15はステップをステップS430に移行させる。
 一方、排気圧P2が所定値Yよりも大きくないと判定した場合、ECU15はステップをステップS530に移行させる。
 ステップS430において、ECU15は、有効通路断面積マップM2を選択し、有効通路端面積マップ選択処理Aを終了してステップをステップS170に移行させる。
 ステップS530において、ECU15は、有効通路断面積マップM1を選択し、有効通路端面積マップ選択処理Aを終了してステップをステップS170に移行させる。
 ステップS630において、ECU15は、有効通路断面積マップM3を選択し、有効通路端面積マップ選択処理Aを終了してステップをステップS170に移行させる。
 これにより、エンジン1は、排気圧P2に対する吸気圧P1の圧力比率の影響を考慮して複数の有効通路断面積マップM1・M2・・Mnの中からエンジン1の運転状態に対応した有効通路断面積マップMxが選択される。これにより、エンジン1の運転状態に基づいてEGRガス重量Megrの算出誤差を抑制することができる。
 本発明は、排気の一部を吸気に還流させるエンジンに利用できる。
 1    エンジン
 8    EGR装置
 N    回転数
 F    噴射量
 P1   吸気圧P1
 P2   排気圧P2
 π0   所定値π0
 π1   実吸排気圧力比
 π2   推定吸排気圧力比
 Megr EGRガス重量

Claims (3)

  1.  排気の一部をEGRガスとして吸気に還流させるEGR装置を備えるエンジンであって、
     検出した排気圧P2と検出した吸気圧P1とから排気圧に対する吸気圧の実吸排気圧力比を算出し、
     エンジン回転数と燃料噴射量とから排気圧に対する吸気圧の推定吸排気圧力比を算出し、
     実吸排気圧力比が所定値未満の場合、実吸排気圧力比に基づいてEGRガス重量が算出され、実吸排気圧力比が所定値以上の場合、推定吸排気圧力比に基づいてEGRガス重量が算出されるエンジン。
  2.  EGRガスの流量を制限するEGR弁の開度と、前記排気圧と前記吸気圧との差圧と、からEGR装置の有効通路面積を算出する有効通路断面積マップを複数備え、
     前記エンジン回転数と前記燃料噴射量とに基づいて選択された有効通路断面積マップからEGRガス重量が算出される請求項1に記載のエンジン。
  3.  EGRガス重量を制限するEGR弁の開度と、排気圧と吸気圧との差圧と、からEGR装置の有効通路面積を算出する有効通路断面積マップを複数備え、
     実吸排気圧力比が所定値未満の場合、実吸排気圧力比と排気圧とに基づいて選択された有効通路断面積マップからEGRガス重量が算出され、
     吸排気圧力比が所定値以上の場合、推定吸排気圧力比と排気圧とに基づいて選択された有効通路断面積マップからEGRガス重量が算出される請求項1に記載のエンジン。
PCT/JP2014/076503 2013-10-09 2014-10-03 エンジン WO2015053172A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/027,847 US9759144B2 (en) 2013-10-09 2014-10-03 Engine
EP14852658.5A EP3067546A4 (en) 2013-10-09 2014-10-03 Engine
KR1020167011768A KR101998932B1 (ko) 2013-10-09 2014-10-03 엔진
CN201480055808.8A CN105612338B (zh) 2013-10-09 2014-10-03 发动机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013212237A JP6092070B2 (ja) 2013-10-09 2013-10-09 エンジン
JP2013-212237 2013-10-09

Publications (1)

Publication Number Publication Date
WO2015053172A1 true WO2015053172A1 (ja) 2015-04-16

Family

ID=52812988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076503 WO2015053172A1 (ja) 2013-10-09 2014-10-03 エンジン

Country Status (6)

Country Link
US (1) US9759144B2 (ja)
EP (1) EP3067546A4 (ja)
JP (1) JP6092070B2 (ja)
KR (1) KR101998932B1 (ja)
CN (1) CN105612338B (ja)
WO (1) WO2015053172A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6424154B2 (ja) * 2015-12-15 2018-11-14 ヤンマー株式会社 エンジン
CN112682190A (zh) * 2020-12-25 2021-04-20 潍柴动力股份有限公司 Egr阀开度的控制方法、装置及设备
CN113606049B (zh) * 2021-08-25 2024-01-26 东风商用车有限公司 一种egr阀流量计算方法、装置、设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336957A (ja) * 1993-05-31 1994-12-06 Nissan Motor Co Ltd ディーゼルエンジンのegr制御装置
JPH10141150A (ja) * 1996-11-13 1998-05-26 Nissan Motor Co Ltd エンジンの排気還流制御装置の故障診断装置
JP2006329167A (ja) * 2005-05-30 2006-12-07 Toyota Motor Corp 内燃機関の制御装置
JP2011043150A (ja) * 2009-08-24 2011-03-03 Daihatsu Motor Co Ltd 制御装置
JP2012031740A (ja) 2010-07-28 2012-02-16 Yanmar Co Ltd エンジン装置の排気ガス再循環システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164270A (en) * 1999-08-09 2000-12-26 Ford Global Technologies, Inc. Exhaust gas recirculation fault detection system
JP5270008B2 (ja) * 2009-12-18 2013-08-21 本田技研工業株式会社 内燃機関の制御装置
DE102011006756B4 (de) * 2011-04-05 2021-06-10 Robert Bosch Gmbh Antriebssystem für ein Kraftfahrzeug
JP5929015B2 (ja) * 2011-06-06 2016-06-01 日産自動車株式会社 内燃機関の排気還流装置
JP5752517B2 (ja) * 2011-08-03 2015-07-22 トヨタ自動車株式会社 内燃機関の制御装置
KR101338446B1 (ko) * 2011-12-01 2013-12-10 기아자동차주식회사 배기가스 처리방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336957A (ja) * 1993-05-31 1994-12-06 Nissan Motor Co Ltd ディーゼルエンジンのegr制御装置
JPH10141150A (ja) * 1996-11-13 1998-05-26 Nissan Motor Co Ltd エンジンの排気還流制御装置の故障診断装置
JP2006329167A (ja) * 2005-05-30 2006-12-07 Toyota Motor Corp 内燃機関の制御装置
JP2011043150A (ja) * 2009-08-24 2011-03-03 Daihatsu Motor Co Ltd 制御装置
JP2012031740A (ja) 2010-07-28 2012-02-16 Yanmar Co Ltd エンジン装置の排気ガス再循環システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3067546A4 *

Also Published As

Publication number Publication date
KR20160067922A (ko) 2016-06-14
EP3067546A1 (en) 2016-09-14
JP6092070B2 (ja) 2017-03-08
EP3067546A4 (en) 2017-05-24
US9759144B2 (en) 2017-09-12
CN105612338B (zh) 2018-11-30
KR101998932B1 (ko) 2019-07-10
JP2015075043A (ja) 2015-04-20
CN105612338A (zh) 2016-05-25
US20160245201A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
JP6707038B2 (ja) 内燃機関の制御装置
JP5761138B2 (ja) Egr装置およびegr弁の特性検査装置
US10138831B2 (en) Controller and control method for internal combustion engine
US9726091B2 (en) Active control of one or more EGR loops
JP6259246B2 (ja) 内燃機関の制御装置
JP2010053823A (ja) 内燃機関の空気量制御装置
WO2015053172A1 (ja) エンジン
US20030116150A1 (en) Control system for internal combustion engine
US9915213B2 (en) Engine
US10247118B2 (en) Control apparatus for internal combustion engine
JP5381788B2 (ja) 内燃機関の制御装置
JP2008286019A (ja) エンジン
JP2007303380A (ja) 内燃機関の排気制御装置
WO2018142510A1 (ja) 内燃機関の吸気制御方法及び吸気制御装置
JP6075852B2 (ja) エンジン
WO2018147005A1 (ja) 絶対湿度センサ
JP2011069262A (ja) 内燃機関の制御装置
JP2007231829A (ja) 内燃機関の制御装置
JP2014190305A (ja) ディーゼルエンジンの制御装置
JP6170846B2 (ja) Egr装置
JP2012219772A (ja) 内燃機関の回転速度制御装置
JP2014015871A (ja) Egr装置
JP2006299984A (ja) バルブ開口演算装置,バルブ制御装置及びバルブ開口演算方法
JP2020007940A (ja) エンジンの制御装置
JP2008050947A (ja) 内燃機関のスロットルバルブ、及び内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852658

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15027847

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014852658

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167011768

Country of ref document: KR

Kind code of ref document: A