WO2015050341A1 - 태양전지 및 이의 제조방법 - Google Patents

태양전지 및 이의 제조방법 Download PDF

Info

Publication number
WO2015050341A1
WO2015050341A1 PCT/KR2014/009066 KR2014009066W WO2015050341A1 WO 2015050341 A1 WO2015050341 A1 WO 2015050341A1 KR 2014009066 W KR2014009066 W KR 2014009066W WO 2015050341 A1 WO2015050341 A1 WO 2015050341A1
Authority
WO
WIPO (PCT)
Prior art keywords
light absorbing
layer
absorbing layer
electrode layer
disposed
Prior art date
Application number
PCT/KR2014/009066
Other languages
English (en)
French (fr)
Inventor
이동근
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US15/027,111 priority Critical patent/US10020414B2/en
Priority to CN201480054724.2A priority patent/CN105723522B/zh
Publication of WO2015050341A1 publication Critical patent/WO2015050341A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the embodiment relates to a solar cell and a method of manufacturing the same.
  • the manufacturing method of a solar cell for photovoltaic power generation is as follows. First, a substrate is provided, a back electrode layer is formed on the substrate, and patterned by a laser to form a plurality of back electrodes.
  • a light absorbing layer, a buffer layer, and a high resistance buffer layer are sequentially formed on the back electrodes.
  • copper, indium, gallium and selenium are simultaneously or separately evaporated while forming a light absorbing layer of copper-indium-gallium-selenide (Cu (In, Ga) Se 2 ; CIGS-based).
  • a method of forming a metal precursor film by a selenization process is widely used.
  • a buffer layer containing cadmium sulfide (CdS) is formed on the light absorbing layer by a sputtering process.
  • a groove pattern may be formed in the light absorbing layer, the buffer layer, and the high resistance buffer layer.
  • a transparent conductive material is stacked on the high resistance buffer layer, and the transparent conductive material is filled in the groove pattern. Accordingly, a transparent electrode layer is formed on the high resistance buffer layer, and connection wirings are formed inside the groove pattern, respectively.
  • a groove pattern is formed in the transparent electrode layer, and a plurality of solar cells may be formed.
  • the transparent electrodes and the high resistance buffers correspond to respective cells.
  • the transparent electrodes and the high resistance buffers may be arranged in a stripe form or a matrix form.
  • the transparent electrodes and the back electrodes are misaligned with each other, and the transparent electrodes and the back electrodes are electrically connected to each other by the connection wirings. Accordingly, a plurality of solar cells can be electrically connected in series with each other.
  • a solar cell was manufactured by depositing a light absorbing layer, a buffer layer, and a front electrode layer on the rear electrode layer.
  • the light absorbing layer deposition process proceeds at a high temperature of 500 ° C. or higher, the light absorbing layer deposition process causes warpage of the supporting substrate. Accordingly, the warpage phenomenon of the support substrate also affects the rear electrode layer disposed on the support substrate, and the warpage phenomenon may occur with the patterning formed on the rear electrode layer. This warpage phenomenon increases the dead zone area in which the solar cell does not generate power, and thus reduces the overall solar cell efficiency.
  • Embodiments provide a solar cell having an improved photoelectric conversion efficiency and a method of manufacturing the same.
  • the support substrate A rear electrode layer disposed on the support substrate; A light absorbing layer disposed on the back electrode layer; A buffer layer disposed on the light absorbing layer; And a front electrode layer disposed on the buffer layer, wherein a first through hole penetrating the rear electrode layer and the light absorbing layer is formed on the back electrode layer and the light absorbing layer, and the light absorbing layer is formed on the back electrode layer.
  • a first light absorbing layer disposed; And a second light absorbing layer disposed in contact with an inner surface of the back electrode layer exposed by the first through hole.
  • the solar cell manufacturing method and the solar cell manufactured by the embodiment can improve the efficiency of the solar cell by reducing the dead zone area in the entire region of the solar cell.
  • first through holes are formed to separate the rear electrode layer into a plurality of rear electrodes. Thereafter, a light absorbing layer and a buffer layer were formed on the rear electrodes having the first through hole formed therein.
  • the process of forming the light absorbing layer is a process that proceeds at a temperature of about 500 °C or more, when the light absorbing layer is formed, the first through-holes formed in the rear electrode layer bent by high temperature heat occurs.
  • the solar cell manufacturing method and the solar cell manufactured by the first, the first step of passing through the light absorbing layer and the back electrode layer on the light absorbing layer after the light absorbing layer forming process performed at a high temperature first. Form through grooves.
  • the first through groove may be prevented from being deformed, that is, bent, by the process proceeding after the first through groove forming process, an increase in the dead zone region may be prevented.
  • the solar cell manufacturing method and the solar cell manufactured by the embodiment is formed so that the light absorbing layer is inclined inside the first through grooves, that is, the exposed through the first through grooves
  • the side surface of the rear electrode layer may be formed to surround the light absorbing layer or the second light absorbing layer.
  • the first through grooves may be formed after the light absorbing layer is formed as described above, and the short between the front electrode and the rear electrode, which may occur when the front electrode is disposed in the first through groove, may be prevented.
  • the width of the first through groove can be reduced by forming the first through groove after forming the light absorbing layer, the light absorbing layer or As the second light absorbing layer is formed to surround the inner surface of the rear electrode layer, the front electrode and the rear electrode may be prevented from shorting and shorting.
  • the solar cell manufacturing method and the solar cell manufactured thereby according to the embodiment can reduce the dead zone area, it is possible to improve the efficiency of the overall solar cell.
  • FIG. 1 is a plan view illustrating a solar cell according to an embodiment.
  • FIG. 2 is a cross-sectional view showing a cross section of the solar cell according to the embodiment.
  • 3 to 9 are views for explaining a method of manufacturing a solar cell according to the embodiment.
  • each layer, region, pattern, or structure may be “on” or “under” the substrate, each layer, region, pad, or pattern.
  • Substrate formed in includes all formed directly or through another layer. Criteria for the top / bottom or bottom / bottom of each layer will be described with reference to the drawings.
  • each layer (film), region, pattern, or structure may be modified for clarity and convenience of description, and thus do not necessarily reflect the actual size.
  • FIGS. 1 and 2 are plan views illustrating a solar cell according to an embodiment
  • FIG. 2 is a cross-sectional view illustrating a cross section of the solar cell according to the embodiment.
  • a solar cell includes a support substrate 100, a back electrode layer 200, a light absorbing layer 300, a buffer layer 400, and a front electrode layer 500.
  • the support substrate 100 has a plate shape and supports the rear electrode layer 200, the light absorbing layer 300, the buffer layer 400, and the front electrode layer 500.
  • the support substrate 100 may be an insulator.
  • the support substrate 100 may be a glass substrate, a plastic substrate, or a metal substrate.
  • the support substrate 100 may be a soda lime glass substrate.
  • a ceramic substrate such as alumina, stainless steel, a flexible polymer, or the like may be used as the material of the support substrate 100.
  • the support substrate 100 may be transparent.
  • the support substrate 100 may be rigid or flexible.
  • the back electrode layer 200 is disposed on the support substrate 100.
  • the back electrode layer 200 is a conductive layer.
  • the back electrode layer 200 may be formed of any one of molybdenum (Mo), gold (Au), aluminum (Al), chromium (Cr), tungstem (W), and copper (Cu).
  • Mo molybdenum
  • Au gold
  • Al aluminum
  • Cr chromium
  • W tungstem
  • Cu copper
  • molybdenum has a smaller difference between the support substrate 100 and the coefficient of thermal expansion than other elements, and thus, it is possible to prevent peeling from occurring due to excellent adhesion.
  • the back electrode layer 200 may include two or more layers.
  • each of the layers may be formed of the same metal or different metals.
  • the light absorbing layer 300 is disposed on the back electrode layer 200.
  • the light absorbing layer 300 includes a group I-III-VI compound.
  • the light absorbing layer 300 may be formed of a copper-indium-gallium-selenide-based (Cu (In, Ga) Se 2 ; CIGS-based) crystal structure, copper-indium-selenide-based, or copper-gallium-selenide It may have a system crystal structure.
  • the energy band gap of the light absorbing layer 300 may be about 1 eV to 1.8 eV.
  • First through holes TH1 may be formed on the light absorbing layer 300.
  • the first through holes TH1 may pass through the light absorbing layer 300 and the back electrode layer 200.
  • An upper surface of the support substrate 100 may be exposed by the first through holes TH1.
  • the width of the first through holes TH1 may be about 10 ⁇ m to about 200 ⁇ m. In detail, the width of the first through holes TH1 may be about 10 ⁇ m to 100 ⁇ m.
  • the light absorbing layer 300 may be disposed on an upper surface of the rear electrode layer 200 and inside the first through holes TH1.
  • the light absorbing layer 300 may be formed while surrounding the inner surface of the rear electrode layer exposed by the upper surface of the rear electrode layer 200 and the first through holes TH1.
  • the light absorbing layer 300 may be formed to have an inclination in the first through holes TH1.
  • the light absorbing layer 300 may be formed to have an inclination such that a distance between the light absorbing layers 300 separated by the first through holes TH1 is narrowed as it extends toward the support substrate 100. have. That is, the first through holes TH1 may be formed to narrow in width while extending in the direction of the support substrate 100.
  • the separation distance D1 of the light absorbing layers 300 separated by the first through holes TH1 is the first through holes TH1. It may be smaller than the separation distance (D2) of the back electrode layers 200 separated by.
  • the first through holes TH1 are formed by the first through holes TH1.
  • the separation distance D1 of the light absorbing layers 300 to be separated may be smaller than the separation distance D2 of the rear electrode layers 200 separated by the first through holes TH1.
  • the light absorbing layer 300 may include a first light absorbing layer 310 and a second light absorbing layer 320.
  • the light absorbing layer 300 may include a first light absorbing layer 310 in contact with an upper surface of the back electrode layer 200 and a second light absorbing layer 320 in contact with a side surface of the back electrode layer 200. have. That is, the second light absorbing layer 320 may be disposed in contact with an inner surface of the rear electrode layer 200 exposed by the first through holes TH1.
  • a side surface of the first light absorbing layer 310 is disposed in parallel with a side surface of the rear electrode layer 200, and a side surface of the second light absorbing layer 320 is formed in the first through groove TH.
  • the side surface of the rear electrode layer 200 may be inclined and disposed.
  • the second light absorbing layer 320 may be disposed such that its width becomes wider as it extends in the upper surface direction of the support substrate 100.
  • the first light absorbing layer 310 and the second light absorbing layer 320 may be integrally formed. That is, the first light absorbing layer 310 and the second light absorbing layer 320 may be integrally formed while including the same material.
  • the second light absorption layer 320 formed to surround the inner side surface of the rear electrode layer may have a width of about 1 ⁇ m to about 40 ⁇ m.
  • the width of the second light absorbing layer 320 is less than 1 ⁇ m, electrons moving from the front electrode may pass through the light absorbing layer and contact the rear electrode due to the tunneling effect, and a short may occur, and the second light absorbing layer 320 may occur. If the width of the exceeds 40 ⁇ m, the dead zone area is increased may reduce the efficiency of the solar cell.
  • the rear electrode layer 200 may be divided into a plurality of rear electrodes by the first through holes TH1. That is, a plurality of rear electrodes are defined by the first through holes TH1.
  • the rear electrodes may be spaced apart from each other by the first through holes TH1.
  • the back electrodes are arranged in a stripe shape.
  • the back electrodes may be arranged in a matrix form.
  • the first through holes TH1 may be formed in a lattice form when viewed in a plan view.
  • the buffer layer 400 is disposed on the light absorbing layer 300.
  • the buffer layer 400 is formed on the light absorbing layer 300 in which the first through hole TH1 is formed.
  • the buffer layer 400 may include the upper surface of the light absorbing layer 300, and Of course, it may be formed extending along the side of the light absorbing layer 300 formed on the inner surface of the first through groove (TH1).
  • the buffer layer 400 includes CdS, ZnS, In X S Y and In X Se Y Zn (O, OH).
  • the buffer layer 400 may have a thickness of about 50 nm to about 150 nm, and the energy band gap of the buffer layer 400 may be about 2.2 eV to 2.4 eV.
  • a high resistance buffer layer may be further disposed on the buffer layer 400.
  • the high resistance buffer layer may include zinc oxide (i-ZnO) that is not doped with impurities.
  • the energy bandgap of the high resistance buffer layer may be about 3.1 eV to about 3.3 eV.
  • the high resistance buffer layer is not an essential configuration and may be omitted in some cases.
  • Second through holes TH2 may be formed on the buffer layer 400.
  • the second through holes TH2 are open regions exposing the top surface of the back electrode layer 200.
  • the second through holes TH2 may have a shape extending in one direction when viewed in a plan view.
  • the width of the second through holes TH2 may be about 80 ⁇ m to 200 ⁇ m, but is not limited thereto.
  • the buffer layer 400 may be defined as a plurality of buffer layers by the second through holes TH2. That is, the buffer layer 400 is divided into the buffer layers by the second through holes TH2.
  • the front electrode layer 500 is disposed on the buffer layer 400.
  • the front electrode layer 500 is transparent and a conductive layer.
  • the resistance of the front electrode layer 500 is higher than the resistance of the back electrode layer 500.
  • the front electrode layer 500 includes an oxide.
  • examples of the material used as the front electrode layer 500 include aluminum doped ZnC (AZO), indium zinc oxide (IZO), or indium tin oxide (ITO). Etc. can be mentioned.
  • the front electrode layer 500 may have characteristics of an n-type semiconductor.
  • the front electrode layer 500 may form an n-type semiconductor layer together with the buffer layer 400 to form a p-n junction with the light absorbing layer 300, which is a p-type semiconductor layer.
  • the thickness of the front electrode layer 500 may be about 100 nm to about 1.5 ⁇ m, but is not limited thereto.
  • the front electrode layer 500 is formed while partially or partially filling the interior of the first through holes TH1.
  • the front electrode layer 500 may extend along the light absorbing layer 300 inside the first through hole TH1.
  • the front electrode layer 500 is formed while partially or partially filling the inside of the second through holes TH2. That is, the front electrode layer 500 may be formed on an upper surface of the buffer layer 400 and inside of the second through holes TH2.
  • the front electrode layer formed inside the second through holes TH2 serves as a connection part. That is, front electrodes formed in the second through holes TH2 connect solar cells adjacent to each other.
  • Third through holes TH3 are formed on the front electrode layer 500.
  • the third through holes TH3 may be formed through the front electrode layer 500, the buffer layer 400, and the light absorbing layer 300. That is, the top surface of the rear electrode layer 200 may be exposed by the third through holes TH3.
  • the third through holes TH3 are formed at positions adjacent to the second through holes TH2.
  • the third through holes TH3 are disposed next to the second through holes TH2. That is, when viewed in a plan view, the third through holes TH3 are disposed side by side next to the second through holes TH2.
  • the third through holes TH3 may have a shape extending in the first direction.
  • the front electrode layer 500 is divided into a plurality of front electrodes by the third through holes TH3. That is, the front electrodes are defined by the third through holes TH3.
  • the front electrodes have a shape corresponding to the rear electrodes. That is, the front electrodes are arranged in a stripe shape. Alternatively, the front electrodes may be arranged in a matrix form.
  • a plurality of solar cells C1, C2... are defined by the third through holes TH3.
  • the solar cells C1, C2... are defined by the second through holes TH2 and the third through holes TH3. That is, the photovoltaic device according to the embodiment is divided into the solar cells C1, C2... By the second through holes TH2 and the third through holes TH3.
  • the solar cells C1, C2... are connected to each other in a second direction crossing the first direction. That is, current may flow in the second direction through the solar cells C1, C2...
  • the solar cell panel 10 includes the support substrate 100 and the solar cells C1, C2...
  • the solar cells C1, C2... are disposed on the support substrate 100 and spaced apart from each other.
  • the solar cells C1, C2 ... are connected in series with each other by connection parts.
  • connection parts are disposed inside the second through holes TH2.
  • the connection parts extend downward from the front electrode layer 500 and are connected to the rear electrode layer 200.
  • the connection parts extend from the front electrode of the first cell C1 and are connected to the back electrode of the second cell C2.
  • connection parts connect adjacent solar cells to each other.
  • connection parts connect the front electrode and the rear electrode included in the adjacent solar cells, respectively.
  • connection parts are formed integrally with the front electrode layer 500. That is, the material used as the connection parts is the same as the material used as the front electrode layer 500.
  • the solar cell according to the embodiment may improve the efficiency of the solar cell by reducing the dead zone in the entire region of the solar cell.
  • the dead zone area means a region in which power generation is not generated in the entire region of the solar cell, and the first through third through groove regions and the first through groove of the present invention.
  • the region between the third through holes refers to a dead zone region.
  • first through holes are formed to separate the rear electrode layer into a plurality of rear electrodes. Thereafter, a light absorbing layer and a buffer layer were formed on the rear electrodes having the first through hole formed therein.
  • the process of forming the light absorbing layer is a process that proceeds at a temperature of about 500 °C or more, when the light absorbing layer is formed, the first through-holes formed in the rear electrode layer bent by high temperature heat occurs.
  • the solar cell according to the embodiment first performs a light absorbing layer forming process performed at a high temperature, and then forms first through holes penetrating the light absorbing layer and the back electrode layer on the light absorbing layer.
  • the first through groove may be prevented from being deformed, that is, bent, by the process proceeding after the first through groove forming process, an increase in the dead zone region may be prevented.
  • the width of the first through hole can be controlled, that is, reduced, so that the dead zone area in the entire area of the solar cell can be reduced.
  • the solar cell according to the embodiment is formed so that the light absorbing layer is inclined in the first through grooves, that is, the side surface of the rear electrode layer exposed by the first through grooves to the light absorbing layer or the first 2 can be formed so as to surround the light absorbing layer.
  • the first through grooves may be formed after the light absorbing layer is formed as described above, and the short between the front electrode and the rear electrode, which may occur when the front electrode is disposed in the first through groove, may be prevented.
  • the light absorbing layer or the second light absorbing layer is formed to surround the inner surface of the rear electrode layer to serve as a barrier layer to prevent the movement of electrons, so that the front electrode layer formed after the first through groove is formed. It is possible to prevent the flow of electrons that can move by the tunneling effect along the side of the light absorbing layer.
  • the width of the first through hole may be reduced by forming the first through hole after the light absorbing layer is formed, and the light absorbing layer or the second light absorbing layer is formed on the back electrode layer.
  • the front electrode and the rear electrode may be short-circuited and prevented from being shorted by forming the inner surface of the inner surface.
  • the solar cell according to the embodiment can reduce the dead zone region, thereby improving the efficiency of the overall solar cell.
  • FIGS. 3 to 9 are views for explaining a method of manufacturing a solar cell according to the embodiment.
  • the back electrode layer 200 and the light absorbing layer 300 are formed on the support substrate 100.
  • the back electrode layer 200 is formed on the support substrate 100
  • the light absorbing layer 300 is formed on the back electrode layer 200.
  • the back electrode layer 200 may be formed by physical vapor deposition (PVD) or plating.
  • the light absorbing layer 300 may be formed by a sputtering process or an evaporation method.
  • a sputtering process or an evaporation method For example, copper, indium, gallium, selenide-based (Cu (In, Ga) Se 2 ; CIGS-based) while evaporating copper, indium, gallium, and selenium simultaneously or separately to form the light absorbing layer 300.
  • the method of forming the light absorbing layer 300 and the method of forming the metal precursor film and forming it by the selenization process are widely used.
  • a metal precursor film is formed on the back electrode 200 by a sputtering process using a copper target, an indium target, and a gallium target.
  • the metal precursor film is formed of a copper-indium-gallium-selenide-based (Cu (In, Ga) Se 2 ; CIGS-based) light absorbing layer 300 by a selenization process.
  • the sputtering process and the selenization process using the copper target, the indium target, and the gallium target may be simultaneously performed.
  • the CIS-based or CIG-based light absorbing layer 300 may be formed by using only a copper target and an indium target, or by a sputtering process and a selenization process using a copper target and a gallium target.
  • first through holes TH3 may be formed to have a width of about 10 ⁇ m to about 100 ⁇ m.
  • the first through holes TH1 may be formed by a mechanical device such as a laser device or a tip.
  • the first through holes TH1 may be formed through the light absorbing layer 300 and the back electrode layer 200 at a time through a laser having a predetermined wavelength band.
  • the first through holes TH1 form grooves on the buffer layer 400 and the light absorbing layer 300 by a mechanical device such as a tip, and then laser the upper surface of the rear electrode layer exposed by the grooves.
  • the groove may be formed by the device to finally form the first through holes TH1.
  • the rear electrode layer 200 is divided into a plurality of rear electrodes by the first through holes TH1. That is, a plurality of back electrodes are defined by the first through holes TH1.
  • the light absorbing layer 300 is partially melted to surround the side surface of the back electrode layer 200 exposed by the first through holes TH1 with the light absorbing layer 300. can do.
  • the light absorbing layer 300 may be melted by various methods.
  • the light absorbing layer 300 may melt a side surface of the light absorbing layer 300 exposed by the first through holes TH1 using a source such as heat or light. Accordingly, the side of the light absorbing layer 300 is partially melted and melted to form the melted light absorbing layer 300 to surround the inner surface of the rear electrode layer 200.
  • the light absorbing layer 300 surrounding the inner surface of the back electrode layer 200 may be formed to have a width of about 1 ⁇ m to about 40 ⁇ m.
  • an inner surface of the light absorbing layer 300 may be formed to have an inclination in the first through holes TH1. That is, as the light absorbing layer 300 is formed to have an inclination, the first through hole TH1 may be formed so that its width becomes narrower as it extends toward the support substrate 100.
  • a buffer layer 400 is disposed on the light absorbing layer 300.
  • the buffer layer 400 can be formed using any particular limitation as long as it is used for manufacturing a buffer layer of a solar cell in the art.
  • the buffer layer 400 may be formed by sputtering, evaporation, chemical vapor deposition, organometallic chemical vapor deposition (MOCVD), and close-spaced sublimation (CSS). Spray pyrolysis, chemical spraying, screen printing, non-vacuum liquid film deposition, chemical bath deposition, chemical transport deposition, vapor transport deposition, atomic layer deposition (Atomic layer deposition: ALD) and electrodeposition (electrodeposition) can be formed by any one of the methods selected.
  • the buffer layer 400 may be manufactured by chemical bath deposition (CBD), atomic layer deposition (ALD), or organometallic chemical vapor deposition (MOCVD).
  • portions of the light absorbing layer 300 and the buffer layer 400 are removed to form second through holes TH2.
  • the second through holes TH2 may be formed by a mechanical device such as a tip or a laser device.
  • the light absorbing layer 300 and the buffer layer 400 may be patterned by a tip having a width of about 40 ⁇ m to about 180 ⁇ m.
  • the second through holes TH2 may be formed by a laser having a wavelength of about 200 to 600 nm.
  • the width of the second through holes TH2 may be about 80 ⁇ m to about 200 ⁇ m.
  • the second through holes TH2 are formed to expose a portion of the top surface of the back electrode layer 200.
  • a front electrode layer may be formed on the buffer layer 400.
  • the front electrode layer 800 may be formed by depositing using a ZnO target by RF sputtering, reactive sputtering by using a Zn target, or organometallic chemical vapor deposition.
  • the front electrode layer 500 may be formed while filling the first through holes TH1 and the second through holes TH2.
  • the front electrode layer 500 is patterned to define a plurality of front electrodes, a first cell C1, a second cell C2, and a third cell C3.
  • the width of the third through holes TH3 may be about 80 ⁇ m to about 200 ⁇ m.
  • the solar cell manufacturing method forms a back electrode layer and a light absorbing layer, and then forms a first through hole penetrating the light. Then, the light absorbing layer exposed by the first through holes is melted to form the first electrode.
  • the inner surface of the rear electrode layer exposed by the through holes may be wrapped with the light absorbing layer.
  • a solar cell was manufactured by dividing the rear electrode layer into a plurality of rear electrodes by patterning the rear electrode layer and then depositing a light absorbing layer, a buffer layer, and a front electrode layer on the rear electrode layer.
  • the light absorbing layer deposition process proceeds at a high temperature of 500 ° C. or higher, the warpage phenomenon of the first through hole occurs by the light absorbing layer deposition process. Therefore, the dead zone area is increased due to the bending of the first through hole, which causes the overall efficiency of the solar cell to decrease.
  • the rear electrode layer and the light absorbing layer are formed on the support substrate, and then, through holes are formed therethrough, thereby preventing the bending of the through grooves.
  • the area can be reduced, and the light absorbing layer is partially melted in the through groove to cover the inner surface of the rear electrode layer, thereby preventing short circuit between the front electrode and the rear electrode due to the tunneling effect from the front electrode layer to the light absorbing layer, It can increase the overall efficiency of.

Abstract

실시예에 따른 태양전지는, 지지기판; 상기 지지기판 상에 배치되는 후면 전극층; 상기 후면 전극층 상에 배치되는 광 흡수층; 상기 광 흡수층 상에 배치되는 버퍼층; 및 상기 버퍼층 상에 배치되는 전면 전극층을 포함하고, 상기 후면 전극층 및 상기 광 흡수층 상에는, 상기 후면 전극층 및 상기 광 흡수층을 관통하는 제 1 관통홈이 형성되고, 상기 광 흡수층은, 상기 후면 전극층 상에 배치되는 제 1 광 흡수층; 및 상기 제 1 관통홈에 의해 노출되는 상기 후면 전극층의 내측면과 접촉하며 배치되는 제 2 광 흡수층을 포함한다.

Description

태양전지 및 이의 제조방법
실시예는 태양전지 및 이의 제조방법에 관한 것이다.
태양광 발전을 위한 태양전지의 제조방법은 다음과 같다. 먼저, 기판이 제공되고, 상기 기판 상에 후면전극층이 형성되고, 레이저에 의해서 패터닝되어, 다수 개의 이면전극들이 형성된다.
이후, 상기 이면전극들 상에 광 흡수층, 버퍼층 및 고저항 버퍼층이 차례로 형성된다. 상기 광 흡수층을 형성하기 위해서 구리, 인듐, 갈륨, 셀레늄을 동시 또는 구분하여 증발시키면서 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층을 형성하는 방법과 금속 프리커서 막을 형성시킨 후 셀레니제이션(Selenization) 공정에 의해 형성시키는 방법이 폭넓게 사용되고 있다.
이후, 상기 광 흡수층 상에 황화 카드뮴(CdS)을 포함하는 버퍼층이 스퍼터링 공정에 의해서 형성된다.
이후, 상기 광 흡수층, 상기 버퍼층 및 상기 고저항 버퍼층에 홈 패턴이 형성될 수 있다.
이후, 상기 고저항 버퍼층 상에 투명한 도전물질이 적층되고, 상기 홈패턴에 상기 투명한 도전물질이 채워진다. 이에 따라서, 상기 고저항 버퍼층 상에 투명전극층이 형성되고, 상기 홈 패턴 내측에 접속배선들이 각각 형성된다.
이후, 상기 투명전극층 등에 홈 패턴이 형성되어, 다수 개의 태양전지들이 형성될 수 있다. 상기 투명전극들 및 상기 고저항 버퍼들은 각각의 셀에 대응한다. 상기 투명전극들 및 상기 고저항 버퍼들은 스트라이프 형태 또는 매트릭스 형태로 배치될 수 있다.
상기 투명전극들 및 상기 이면전극들은 서로 미스 얼라인되며, 상기 투명전극들 및 상기 이면전극들은 상기 접속배선들에 의해서 각각 전기적으로 연결된다. 이에 따라서, 다수 개의 태양전지들이 서로 전기적으로 직렬로 연결될 수 있다.
한편, 종래에는, 상기 후면 전극층에 패터닝을 하여 상기 후면 전극층을 다수 개의 후면 전극들로 구분한 후에, 상기 후면 전극층 상에 광 흡수층, 버퍼층 및 전면 전극층 등을 증착하여 태양전지를 제조하였다.
그러나, 상기 광 흡수층 증착 공정은 500℃ 이상의 고온에서 진행되기 때문에, 상기 광 흡수층 증착 공정에 의해, 상기 지지 기판의 휨 현상이 발생하게 된다. 따라서, 상기 지지 기판의 휨 현상은 상기 지지 기판 상에 배치되는 상기 후면 전극층에도 함께 영향을 주며, 상기 후면 전극층에 형성되는 패터닝도 함께 휨 현상이 발생할 수 있다. 이러한, 휨 현상은 태양전지에서 발전이 되지 않는 데드존(dead zone) 영역을 증가시키고, 따라서 전체적인 태양전지의 효율을 감소시키는 원인이 된다.
따라서, 상기 지지 기판의 휨 현상을 방지할 수 있는 태양전지 및 이의 제조 방법의 필요성이 요구된다.
실시예는 향상된 광-전 변환 효율을 가지는 태양전지 및 이의 제조 방법을 제공하고자 한다.
실시예에 따른 태양전지는, 지지기판; 상기 지지기판 상에 배치되는 후면 전극층; 상기 후면 전극층 상에 배치되는 광 흡수층; 상기 광 흡수층 상에 배치되는 버퍼층; 및 상기 버퍼층 상에 배치되는 전면 전극층을 포함하고, 상기 후면 전극층 및 상기 광 흡수층 상에는, 상기 후면 전극층 및 상기 광 흡수층을 관통하는 제 1 관통홈이 형성되고, 상기 광 흡수층은, 상기 후면 전극층 상에 배치되는 제 1 광 흡수층; 및 상기 제 1 관통홈에 의해 노출되는 상기 후면 전극층의 내측면과 접촉하며 배치되는 제 2 광 흡수층을 포함한다.
실시예에 따른 태양전지 제조방법 및 이에 의해 제조되는 태양전지는 태양전지의 전체 영역에서 데드존 영역을 감소시켜 태양전지의 효율을 향상시킬 수 있다.
종래에는 지지기판 상에 후면 전극층을 형성한 후, 상기 후면 전극층을 다수 개의 후면 전극으로 분리하는 제 1 관통홈들을 형성하였다. 이후, 상기 제 1 관통홈이 형성된 후면 전극들 상에 광 흡수층 및 버퍼층을 형성하였다. 그러나, 상기 광 흡수층을 형성하는 공정은 약 500℃ 이상의 온도에서 진행되는 공정으로서, 상기 광 흡수층을 형성할 때, 상기 후면 전극층에 형성되는 제 1 관통홈들이 고온의 열에 의해 휘어지는 현상이 발생하였다.
이에 따라, 종래에는 상기 제 1 관통홈들과 이격하여 평행하게 형성되는 제 2 관통홈들을 형성한 후, 상기 제 1 관통홈들의 휨으로 인해 상기 제 1 관통홈들과 상기 제 2 관통홈들 사이의 이격거리가 증가하게 되어 데드존 영역이 증가하게 됨으로써, 전체적으로 태양전지의 효율이 저하되는 문제점이 있었다.
따라서, 실시예에 따른 태양전지 제조방법 및 이에 의해 제조되는 태양전지는, 고온에서 수행되는 광 흡수층 형성 공정을 먼저 진행한 후, 상기 광 흡수층 상에 상기 광 흡수층과 상기 후면 전극층을 관통하는 제 1 관통홈들을 형성한다.
이에 따라, 상기 제 1 관통홈 형성 공정 이후, 진행되는 공정에 의해서, 상기 제 1 관통홈이 변형 즉, 휘는 현상을 방지할 수 있으므로, 이로 인한 데드존 영역의 증가를 방지할 수 있다.
또한, 실시예에 따른 태양전지 제조방법 및 이에 의해 제조되는 태양전지는, 상기 제 1 관통홈들 내부에서 광 흡수층이 경사를 가지도록 형성한다, 즉, 상기 제 1 관통홈들에 의해 노출되는 상기 후면 전극층의 측면을 광 흡수층 또는 제 2 광 흡수층으로 감싸도록 형성할 수 있다.
이에 따라, 상기와 같이 광 흡수층 형성 후 제 1 관통홈들을 형성하고, 상기 제 1 관통홈 내에 전면 전극이 배치되었을 때 발생할 수 있는 전면 전극과 후면 전극의 쇼트를 방지할 수 있다.
즉, 실시예에 따른 태양전지 제조방법 및 이에 의해 제조되는 태양전지는, 상기 광 흡수층 형성 후에 상기 제 1 관통홈을 형성함에 따라 상기 제 1 관통홈의 폭을 감소할 수 있고, 상기 광 흡수층 또는 제 2 광 흡수층이 상기 후면 전극층의 내측면을 감싸면서 형성함에 따라 상기 전면 전극과 상기 후면 전극이 쇼트되어 단락되는 것을 방지할 수 있다
따라서, 실시예에 따른 태양전지 제조방법 및 이에 의해 제조되는 태양전지는, 데드존 영역을 감소시킬 수 있으므로, 전체적인 태양전지의 효율을 향상시킬 수 있다.
도 1은 실시예에 따른 태양전지를 도시한 평면도이다.
도 2는 실시예에 따른 태양전지의 일 단면을 도시한 단면도이다.
도 3 내지 도 9는 실시예에 따른 태양전지의 제조 방법을 설명하기 위한 도면들이다.
실시예들의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 “상/위(on)”에 또는 “하/아래(under)”에 형성된다는 기재는, 직접(directly) 또는 다른 층을 개재하여 형성되는 것을 모두 포함한다. 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다.
도면에서 각 층(막), 영역, 패턴 또는 구조물들의 두께나 크기는 설명의 명확성 및 편의를 위하여 변형될 수 있으므로, 실제 크기를 전적으로 반영하는 것은 아니다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.
이하, 도 1 및 도 2를 참조하여, 실시예에 따른 태양전지를 상세하게 설명한다. 도 1은 실시예에 따른 태양전지를 도시한 평면도이고, 도 2는 실시예에 따른 태양전지의 일 단면을 도시한 단면도이다.
도 1 및 도 2를 참조하면, 실시예에 따른 태양전지는, 지지기판(100), 후면 전극층(200), 광 흡수층(300), 버퍼층(400) 및 전면 전극층(500)을 포함한다.
상기 지지기판(100)은 플레이트 형상을 가지며, 상기 후면 전극층(200), 상기 광 흡수층(300), 상기 버퍼층(400) 및 상기 전면 전극층(500)을 지지한다.
상기 지지기판(100)은 절연체일 수 있다. 상기 지지기판(100)은 유리 기판, 플라스틱 기판 또는 금속 기판일 수 있다. 자세하게, 상기 지지기판(100)은 소다 라임 글래스(soda lime glass) 기판일 수 있다. 이와는 다르게, 상기 지지기판(100)의 재질로 알루미나와 같은 세라믹 기판, 스테인레스 스틸, 유연성이 있는 고분자 등이 사용될 수 있다. 상기 지지기판(100)은 투명할 수 있다. 상기 지지기판(100)은 리지드(rigid)하거나 또는 플렉서블(flexible)할 수 있다.
상기 후면 전극층(200)은 상기 지지기판(100) 상에 배치된다. 상기 후면 전극층(200)은 도전층이다. 상기 후면 전극층(200)은 몰리브덴(Mo), 금(Au), 알루미늄(Al), 크롬(Cr), 텅스템(W) 및 구리(Cu) 중 어느 하나로 형성될 수 있다. 이 가운데, 특히 몰리브덴은 다른 원소에 비해 상기 지지기판(100)과 열팽창 계수의 차이가 적기 때문에, 접착성이 우수하여 박리 현상이 발생하는 것을 방지할 수 있다.
또한, 상기 후면 전극층(200)은 두 개 이상의 층들을 포함할 수 있다. 이때, 각각의 층들은 같은 금속으로 형성되거나 서로 다른 금속으로 형성될 수 있다.
상기 광 흡수층(300)은 상기 후면 전극층(200) 상에 배치된다.
상기 광 흡수층(300)은 Ⅰ-Ⅲ-Ⅵ족 계 화합물을 포함한다. 예를 들어, 상기 광 흡수층(300)은 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계) 결정 구조, 구리-인듐-셀레나이드계 또는 구리-갈륨-셀레나이드계 결정 구조를 가질 수 있다.
상기 광 흡수층(300)의 에너지 밴드갭(band gap)은 약 1eV 내지 1.8eV일 수 있다.
상기 광 흡수층(300) 상에는 제 1 관통홈(TH1)들이 형성될 수 있다. 자세하게, 상기 제 1 관통홈(TH1)들은 상기 광 흡수층(300) 및 상기 후면 전극층(200)을 관통할 수 있다. 상기 제 1 관통홈(TH1)들에 의해 상기 지지기판(100)의 상면이 노출될 수 있다.
상기 제 1 관통홈(TH1)들의 폭은 약 10㎛ 내지 약 200㎛ 일 수 있다. 자세하게, 상기 제 1 관통홈(TH1)들의 폭은 약 10㎛ 내지 100㎛일 수 있다.
상기 광 흡수층(300)은 상기 후면 전극층(200)의 상면과 상기 제 1 관통홈(TH1)들의 내부에 배치될 수 있다. 자세하게, 상기 광 흡수층(300)은 상기 후면 전극층(200)의 상면과 상기 제 1 관통홈(TH1)들에 의해 노출되는 상기 후면 전극층의 내측면을 감싸면서 형성될 수 있다.
상기 광 흡수층(300)은 상기 제 1 관통홈(TH1)들 내부에서 경사를 가지면서 형성될 수 있다. 자세하게, 상기 광 흡수층(300)은 상기 지지기판(100) 방향으로 연장될수록 상기 제 1 관통홈(TH1)들에 의해 분리되는 광 흡수층(300)들의 이격거리가 좁아지도록 경사를 가지면서 형성될 수 있다. 즉, 상기 제 1 관통홈(TH1)들은 상기 지지기판(100) 방향으로 연장하면서 폭이 좁아지도록 형성될 수 있다.
즉, 상기 제 1 관통홈(TH1)들 내부에서, 상기 후면 전극층(200)과 상기 광 흡수층(300)의 외곽 영역은 서로 다른 영역 상에 형성될 수 있다. 이에 따라, 상기 제 1 관통홈(TH1)들 내부에서, 상기 제 1 관통홈(TH1)들에 의해 분리되는 상기 광 흡수층(300)들의 이격거리(D1)는 상기 제 1 관통홈(TH1)들에 의해 분리되는 상기 후면 전극층(200)들의 이격거리(D2)에 비해 더 작을 수 있다.
즉, 상기 제 1 관통홈(TH1)들 내부에서, 상기 광 흡수층(300)의 일부가 상기 후면 전극층(200)의 내측면을 덮으면서 형성됨에 따라, 상기 제 1 관통홈(TH1)들에 의해 분리되는 상기 광 흡수층(300)들의 이격거리(D1)가 상기 제 1 관통홈(TH1)들에 의해 분리되는 상기 후면 전극층(200)들의 이격거리(D2)에 비해 더 작게 형성될 수 있다.
상기 광 흡수층(300)은 제 1 광흡수층(310) 및 제 2 광 흡수층(320)을 포함할 수 있다. 자세하게, 상기 광 흡수층(300)은 상기 후면 전극층(200)의 상면과 접촉하는 제 1 광 흡수층(310) 및 상기 후면 전극층(200)의 측면과 접촉하는 제 2 광 흡수층(320)을 포함할 수 있다. 즉, 상기 제 2 광 흡수층(320)은 상기 제 1 관통홈(TH1)들에 의해 노출되는 상기 후면 전극층(200)의 내측면과 접촉하며 배치될 수 있다.
자세하게, 상기 제 1 관통홈(TH) 내부에서, 상기 제 1 광 흡수층(310)의 측면은 상기 후면 전극층(200)의 측면과 평행하게 배치되고, 상기 제 2 광 흡수층(320)의 측면은 상기 후면 전극층(200)의 측면에 대해 경사를 가지며 배치될 수 있다. 일례로, 상기 제 2 광 흡수층(320)은 상기 지지기판(100)의 상면 방향으로 연장할수록 그 폭이 넓어지도록 배치될 수 있다.
상기 제 1 광 흡수층(310) 및 상기 제 2 광 흡수층(320)은 일체로 형성될 수 있다. 즉, 상기 제 1 광 흡수층(310)과 상기 제 2 광 흡수층(320)은 동일한 물질을 포함하면서, 일체로 형성될 수 있다.
상기 후면 전극층의 내측면을 감싸면서 형성되는 상기 제 2 광흡수층(320)은 약 1㎛ 내지 약 40㎛의 너비로 형성될 수 있다.
상기 제 2 광 흡수층(320)의 너비가 1㎛ 미만인 경우, 전면 전극에서 이동하는 전자가 터널링 효과로 광 흡수층을 통과하여 후면 전극과 접촉하여 쇼트가 발생할 수 있고, 상기 제 2 광 흡수층(320)의 너비가 40㎛을 초과하는 경우, 데드존 영역이 증가하여 태양전지의 효율이 저하될 수 있다.
상기 제 1 관통홈(TH1)들에 의해서, 상기 후면 전극층(200)은 다수 개의 후면 전극들로 구분될 수 있다. 즉, 상기 제 1 관통홈(TH1)들에 의해서, 다수 개의 후면 전극들이 정의된다.
상기 후면 전극들은 상기 제 1 관통홈(TH1)들에 의해서 서로 이격될 수 있다. 상기 후면 전극들은 스트라이프 형태로 배치된다.
이와는 다르게, 상기 후면 전극들은 매트릭스 형태로 배치될 수 있다. 이때, 상기 제 1 관통홈(TH1)들은 평면에서 보았을 때, 격자 형태로 형성될 수 있다.
상기 버퍼층(400)은 상기 광 흡수층(300) 상에 배치된다. 자세하게, 상기 버퍼층(400)은 상기 제 1 관통홈(TH1)이 형성된 상기 광 흡수층(300) 상에 형성된다.
도 2에서는 상기 버퍼층(400)이 상기 광 흡수층(300)의 상면에만 형성된 것만이 도시되어 있으나, 실시예는 이에 제한되지 않고, 상기 버퍼층(400)은 상기 광 흡수층(300)의 상면과, 상기 제 1 관통홈(TH1)들의 내부면에 형성된 상기 광 흡수층(300)의 측면을 따라 연장되어 형성될 수 있음은 물론이다.
상기 버퍼층(400)은 CdS, ZnS, InXSY 및 InXSeYZn(O, OH) 등을 포함한다. 상기 버퍼층(400)의 두께는 약 50㎚ 내지 약 150㎚ 일 수 있으며, 상기 버퍼층(400)의 에너지 밴드갭은 약 2.2 eV 내지 2.4 eV 일 수 있다.
상기 버퍼층(400) 상에는 고저항 버퍼층이 더 배치될 수 있다. 상기 고저항 버퍼층은 불순물이 도핑되지 않은 징크 옥사이드(i-ZnO)를 포함할 수 있다. 상기 고저항 버퍼층의 에너지 밴드갭은 약 3.1 eV 내지 약 3.3 eV 일 수 있다. 상기 고저항 버퍼층은 필수적인 구성은 아니며 경우에 따라 생략될 수 있다.
상기 버퍼층(400) 상에는 제 2 관통홈(TH2)들이 형성될 수 있다. 상기 제 2 관통홈(TH2)들은 상기 후면 전극층(200)의 상면을 노출하는 오픈 영역이다. 상기 제 2 관통홈들(TH2)은 평면에서 보았을 때, 일 방향으로 연장되는 형상을 가질 수 있다. 상기 제 2 관통홈들(TH2)의 폭은 약 80㎛ 내지 200㎛ 일 수 있으나, 이에 제한되는 것은 아니다.
상기 버퍼층(400)은 상기 제 2 관통홈들(TH2)에 의해서, 다수 개의 버퍼층들로 정의될 수 있다. 즉, 상기 버퍼층(400)은 상기 제 2 관통홈들(TH2)에 의해서, 상기 버퍼층들로 구분된다.
상기 전면 전극층(500)은 상기 버퍼층(400) 상에 배치된다. 상기 전면 전극층(500)은 투명하며 도전층이다. 또한, 상기 전면 전극층(500)의 저항은 상기 후면 전극층(500)의 저항보다 높다.
상기 전면 전극층(500)은 산화물을 포함한다. 일례로, 상기 전면 전극층(500)으로 사용되는 물질의 예로서는 알루미늄이 도핑된 징크 옥사이드(Al doped ZnC;AZO), 인듐 징크 옥사이드(indium zinc oxide;IZO) 또는 인듐 틴 옥사이드(indium tin oxide;ITO) 등을 들 수 있다.
상기 전면 전극층(500)은 n 형 반도체의 특성을 가질 수 있다. 이때, 상기 전면 전극층(500)은 상기 버퍼층(400)과 함께 n 형 반도체층을 형성하여 p 형 반도체층인 상기 광 흡수층(300)과 p-n 접합을 형성할 수 있다. 상기 전면 전극층(500)의 두께는 약 100㎚ 내지 약 1.5㎛ 일 수 있으나 이에 제한되는 것은 아니다.
상기 전면 전극층(500)은 상기 제 1 관통홈(TH1)들의 내부를 전체 또는 부분적으로 메우면서 형성된다. 자세하게, 상기 전면 전극층(500)은 상기 제 1 관통홈(TH1) 내부에서, 상기 광 흡수층(300)을 따라 연장하며 형성될 수 있다.
또한, 상기 전면 전극층(500)은 상기 제 2 관통홈(TH2)들의 내부를 전체 또는 부분적으로 메우면서 형성된다. 즉, 상기 전면 전극층(500)은 상기 버퍼층(400)의 상면 및 상기 제 2 관통홈(TH2)들의 내부에 형성될 수 있다.
상기 제 2 관통홈(TH2)들의 내부에 형성되는 전면 전극층은 접속부 역할을 한다. 즉, 상기 제 2 관통홈(TH2)들의 내부에 형성되는 전면 전극은 서로 인접하는 태양전지들을 연결한다.
상기 전면 전극층(500) 상에는 제 3 관통홈(TH3)들이 형성된다. 상기 제 3 관통홈들(TH3)은 상기 전면 전극층(500), 상기 버퍼층(400) 및 상기 광 흡수층(300)을 관통하며 형성될 수 있다. 즉, 상기 제 3 관통홈(TH3)들에 의해 상기 후면 전극층(200)의 상면이 노출될 수 있다.
상기 제 3 관통홈(TH3)들은 상기 제 2 관통홈(TH2)들에 인접하는 위치에 형성된다. 더 자세하게, 상기 제 3 관통홈(TH3)들은 상기 제 2 관통홈(TH2)들 옆에 배치된다. 즉, 평면에서 보았을 때, 상기 제 3 관통홈(TH3)들은 상기 제 2 관통홈(TH2)들 옆에 나란히 배치된다. 상기 제 3 관통홈(TH3)들은 상기 제 1 방향으로 연장되는 형상을 가질 수 있다.
상기 제 3 관통홈(TH3)들에 의해서, 상기 전면 전극층(500)은 다수 개의 전면 전극들로 구분된다. 즉, 상기 전면 전극들은 상기 제 3 관통홈(TH3)들에 의해서 정의된다.
상기 전면 전극들은 상기 후면 전극들과 대응되는 형상을 가진다. 즉, 상기 전면 전극들은 스트라이프 형태로 배치된다. 이와는 다르게, 상기 전면 전극들은 매트릭스 형태로 배치될 수 있다.
또한, 상기 제 3 관통홈(TH3)들에 의해서, 다수 개의 태양전지들(C1, C2...)이 정의된다. 더 자세하게, 상기 제 2 관통홈(TH2)들 및 상기 제 3 관통홈(TH3)들에 의해서, 상기 태양전지들(C1, C2...)이 정의된다. 즉, 상기 제 2 관통홈(TH2)들 및 상기 제 3 관통홈(TH3)들에 의해서, 실시예에 따른 태양광 발전장치는 상기 태양전지들(C1, C2...)로 구분된다. 또한, 상기 태양전지들(C1, C2...)은 상기 제 1 방향과 교차하는 제 2 방향으로 서로 연결된다. 즉, 상기 태양전지들(C1, C2...)을 통하여 상기 제 2 방향으로 전류가 흐를 수 있다.
즉, 상기 태양전지 패널(10)은 상기 지지기판(100) 및 상기 태양전지들(C1, C2...)을 포함한다. 상기 태양전지들(C1, C2...)은 상기 지지기판(100) 상에 배치되고, 서로 이격된다. 또한, 상기 태양전지들(C1, C2...)은 접속부들에 의해서 서로 직렬로 연결된다.
상기 접속부들은 상기 제 2 관통홈(TH2)들 내측에 배치된다. 상기 접속부들은 상기 전면 전극층(500)으로부터 하방으로 연장되며, 상기 후면 전극층(200)에 접속된다. 예를 들어, 상기 접속부들은 상기 제 1 셀(C1)의 전면전극으로부터 연장되어, 상기 제 2 셀(C2)의 후면전극에 접속된다.
따라서, 상기 접속부들은 서로 인접하는 태양전지들을 연결한다. 더 자세하게, 상기 접속부들은 서로 인접하는 태양전지들에 각각 포함된 전면 전극과 후면 전극을 연결한다.
상기 접속부들은 상기 전면 전극층(500)과 일체로 형성된다. 즉, 상기 접속부들로 사용되는 물질은 상기 전면 전극층(500)으로 사용되는 물질과 동일하다.
실시예에 따른 태양전지는 태양전지의 전체 영역에서 데드존 영역을 감소시켜 태양전지의 효율을 향상시킬 수 있다.
본 발명에서, 데드존 영역(Dead Zone Area)이란, 태양전지의 전체 영역에서 발전이 이루어지지 않는 영역을 의미하는 것으로서, 본 발명의 제 1 관통홈 내지 제 3 관통홈 영역 및 상기 제 1 관통홈 내지 상기 제 3 관통홈들 사이의 영역은 데드존 영역을 의미한다.
종래에는 지지기판 상에 후면 전극층을 형성한 후, 상기 후면 전극층을 다수 개의 후면 전극으로 분리하는 제 1 관통홈들을 형성하였다. 이후, 상기 제 1 관통홈이 형성된 후면 전극들 상에 광 흡수층 및 버퍼층을 형성하였다. 그러나, 상기 광 흡수층을 형성하는 공정은 약 500℃ 이상의 온도에서 진행되는 공정으로서, 상기 광 흡수층을 형성할 때, 상기 후면 전극층에 형성되는 제 1 관통홈들이 고온의 열에 의해 휘어지는 현상이 발생하였다.
이에 따라, 종래에는 상기 제 1 관통홈들과 이격하여 평행하게 형성되는 제 2 관통홈들을 형성한 후, 상기 제 1 관통홈들의 휨으로 인해 상기 제 1 관통홈들과 상기 제 2 관통홈들 사이의 이격거리가 증가하게 되어 데드존 영역이 증가하게 됨으로써, 전체적으로 태양전지의 효율이 저하되는 문제점이 있었다.
따라서, 실시예에 따른 태양전지는, 고온에서 수행되는 광 흡수층 형성 공정을 먼저 진행한 후, 상기 광 흡수층 상에 상기 광 흡수층과 상기 후면 전극층을 관통하는 제 1 관통홈들을 형성한다.
이에 따라, 상기 제 1 관통홈 형성 공정 이후, 진행되는 공정에 의해서, 상기 제 1 관통홈이 변형 즉, 휘는 현상을 방지할 수 있으므로, 이로 인한 데드존 영역의 증가를 방지할 수 있다.
즉, 상기 제 1 관통홈이 휘는 것을 방지할 수 있으므로, 상기 제 1 관통홈의 폭을 제어 즉, 감소시킬 수 있으므로, 태양전지의 전체적인 영역에서 데드존 영역을 감소시킬 수 있다.
또한, 실시예에 따른 태양전지는, 상기 제 1 관통홈들 내부에서 광 흡수층이 경사를 가지도록 형성한다, 즉, 상기 제 1 관통홈들에 의해 노출되는 상기 후면 전극층의 측면을 광 흡수층 또는 제 2 광 흡수층으로 감싸도록 형성할 수 있다.
이에 따라, 상기와 같이 광 흡수층 형성 후 제 1 관통홈들을 형성하고, 상기 제 1 관통홈 내에 전면 전극이 배치되었을 때 발생할 수 있는 전면 전극과 후면 전극의 쇼트를 방지할 수 있다.
즉, 상기 광 흡수층 또는 제 2 광 흡수층이 상기 후면 전극층의 내측면을 감싸면서 형성되어 전자의 이동을 방지하는 배리어층의 역할을 함에 따라, 상기 제 1 관통홈 형성 후, 형성되는 전면 전극층이 상기 광 흡수층의 측면을 따라 터널링 효과에 의해 이동할 수 있는 전자의 흐름을 방지할 수 있다.
이에 따라, 실시예에 따른 태양전지는, 상기 광 흡수층 형성 후에 상기 제 1 관통홈을 형성함에 따라 상기 제 1 관통홈의 폭을 감소할 수 있고, 상기 광 흡수층 또는 제 2 광 흡수층이 상기 후면 전극층의 내측면을 감싸면서 형성함에 따라 상기 전면 전극과 상기 후면 전극이 쇼트되어 단락되는 것을 방지할 수 있다
따라서, 실시예에 따른 태양전지는 데드존 영역을 감소시킬 수 있으므로, 전체적인 태양전지의 효율을 향상시킬 수 있다.
이하, 도 3 내지 도 9를 참조하여, 실시예에 따른 태양전지 제조 방법을 설명한다. 도 3 내지 도 9는 실시예에 따른 태양전지의 제조 방법을 설명하기 위한 도면들이다.
먼저, 도 3을 참조하면, 지지기판(100) 상에 후면 전극층(200) 및 광 흡수층(300)이 형성된다. 자세하게, 상기 지지기판(100) 상에 상기 후면 전극층(200)이 형성되고, 상기 후면 전극층(200) 상에 상기 광 흡수층(300)이 형성된다.
상기 후면 전극층(200)은 PVD(Physical Vapor Deposition) 또는 도금의 방법으로 형성될 수 있다.
또한, 상기 광 흡수층(300)은 스퍼터링 공정 또는 증발법 등에 의해서 형성될 수 있다. 예를 들어, 상기 광 흡수층(300)을 형성하기 위해서 구리, 인듐, 갈륨, 셀레늄을 동시 또는 구분하여 증발시키면서 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층(300)을 형성하는 방법과 금속 프리커서 막을 형성시킨 후 셀레니제이션(Selenization) 공정에 의해 형성시키는 방법이 폭넓게 사용되고 있다.
금속 프리커서 막을 형성시킨 후 셀레니제이션 하는 것을 세분화하면, 구리 타겟, 인듐 타겟, 갈륨 타겟을 사용하는 스퍼터링 공정에 의해서, 상기 후면전극(200) 상에 금속 프리커서 막이 형성된다.
이후, 상기 금속 프리커서 막은 셀레이제이션(selenization) 공정에 의해서, 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층(300)이 형성된다.
이와는 다르게, 상기 구리 타겟, 인듐 타겟, 갈륨 타겟을 사용하는 스퍼터링 공정 및 상기 셀레니제이션 공정은 동시에 진행될 수 있다.
이와는 다르게, 구리 타겟 및 인듐 타겟 만을 사용하거나, 구리 타겟 및 갈륨 타겟을 사용하는 스퍼터링 공정 및 셀레니제이션 공정에 의해서, CIS계 또는 CIG계 광 흡수층(300)이 형성될 수 있다.
이어서, 도 4를 참조하면, 상기 광 흡수층(300) 및 상기 후면 전극층(200)의 일부가 제거되어 제 1 관통홈(TH1)들이 형성된다. 상기 제 1 관통홈(TH3)들은 약 10㎛ 내지 약 100㎛의 폭으로 형성될 수 있다.
상기 제 1 관통홈(TH1)들은 레이저 장치 또는 팁 등의 기계적인 장치 등에 의해서 형성될 수 있다. 일례로, 상기 제 1 관통홈(TH1)들은 일정한 파장대를 가지를 레이저를 통해 한번에 상기 광 흡수층(300) 및 상기 후면 전극층(200)을 관통하여 형성될 수 있다. 또는 상기 제 1 관통홈(TH1)들은 상기 버퍼층(400) 및 상기 광 흡수층(300)을 팁 등의 기계적인 장치 등에 의해 홈을 형성한 후, 상기 홈에 의해 노출되는 상기 후면 전극층의 상면을 레이저 장치에 의해 홈을 형성하여 최종적으로 제 1 관통홈(TH1)들을 형성할 수 있다.
상기 제 1 관통홈(TH1)들에 의해, 상기 후면 전극층(200)은 다수 개의 후면 전극들로 구분된다. 즉, 상기 제 1 관통홈(TH1)들에 의해서, 다수 개의 후면전극들이 정의된다.
이어서, 도 5를 참조하면, 상기 광 흡수층(300)을 일부 용융시켜, 상기 제 1 관통홈(TH1)들에 의해 노출되는 상기 후면 전극층(200)의 측면을 상기 광 흡수층(300)으로 감싸도록 할 수 있다.
상기 광 흡수층(300)은 다양한 방법에 의해 용융시킬 수 있다.
일례로, 상기 광 흡수층(300)은 열 또는 광 등의 소스를 이용하여, 상기 제 1 관통홈(TH1)들에 의해 노출되는 상기 광 흡수층(300)의 측면을 용융시킬 수 있다. 이에 따라, 상기 광 흡수층(300)의 측면이 일부 용융되어 녹아 내림으로써, 상기 용융되는 광 흡수층(300)이 상기 후면 전극층(200)의 내측면을 감싸도록 형성할 수 있다.
상기 후면 전극층(200)의 내측면을 감싸는 상기 광 흡수층(300)은 약 1㎛ 내지 약 40㎛의 너비만큼 형성할 수 있다.
이에 따라, 상기 광 흡수층(300)의 내측면은 상기 제 1 관통홈(TH1)들 내부에서 경사를 가지도록 형성될 수 있다. 즉, 상기 광 흡수층(300)이 경사를 가지면서 형성됨에 따라, 상기 제 1 관통홈(TH1)은 상기 지지기판(100) 방향으로 연장될수록 그 폭이 좁아지도록 형성될 수 있다.
이어서, 도 6을 참조하면, 상기 광 흡수층(300) 상에 버퍼층(400)이 배치된다.
상기 버퍼층(400)은 당업계에서 태양전지의 버퍼층 제조를 위해 사용하는 것이라면 특별히 제한없이 사용하여 형성할 수 있다.
예를 들어, 상기 버퍼층(400)은 스퍼터링법(sputtering), 증발법(evaporation), CVD법(Chemical vapor deposition), 유기금속화학기상증착(MOCVD), 근접승화법(Close-spaced sublimation, CSS), 스프레이 피롤리시스(Spray pyrolysis), 화학 스프레이법(Chemical spraying), 스크린프린팅법(Screeen printing), 비진공 액상성막법, CBD법(Chemicalbath deposition), VTD법(Vapor transport deposition), 원자층 증착 (Atomic layer deposition: ALD), 및 전착법(electrodeposition) 중에서 선택된 어느 하나의 방법으로 형성될 수 있다. 더 자세하게, 상기 버퍼층(400)은 용액성장법(Chemicalbath deposition; CBD), 원자층 증착 (Atomic layer deposition: ALD) 또는, 유기금속화학기상증착(MOCVD)에 의하여 제조될 수 있다.
이어서, 도 7을 참조하면, 상기 광 흡수층(300) 및 상기 버퍼층(400)의 일부가 제거되어 제 2 관통홈(TH2)들이 형성된다.
상기 제 2 관통홈(TH2)들은 팁 등의 기계적인 장치 또는 레이저 장치 등에 의해서 형성될 수 있다.
예를 들어, 약 40㎛ 내지 약 180㎛의 폭을 가지는 팁에 의해서, 상기 광 흡수층(300) 및 상기 버퍼층(400)은 패터닝될 수 있다. 또한, 상기 제 2 관통홈들(TH2)은 약 200 내지 600㎚의 파장을 가지는 레이저에 의해서 형성될 수 있다.
이때, 상기 제 2 관통홈들(TH2)의 폭은 약 80㎛ 내지 약 200㎛ 일 수 있다. 또한, 상기 제 2 관통홈들(TH2)은 상기 후면전극층(200)의 상면의 일부를 노출하도록 형성된다.
이어서, 도 8을 참조하면, 상기 버퍼층(400) 상에 전면 전극층이 형성될 수 있다. 일례로, 상기 전면 전극층(800)은 RF 스퍼터링 방법으로 ZnO 타겟을 사용하여 증착하는 방법과 Zn 타겟을 이용한 반응성 스퍼터링, 또는 유기금속화학증착법 등으로 형성될 수 있다.
상기 전면 전극층(500)은 상기 제 1 관통홈(TH1)들 및 상기 제 2 관통홈(TH2)들 내부를 메우면서 형성될 수 있다.
이어서, 도 9를 참조하면, 상기 광 흡수층(300), 상기 버퍼층(400) 및 상기 전면 전극층(500)의 일부가 제거되어 제 3 관통홈(TH3)들이 형성된다. 이에 따라서, 상기 전면 전극층(500)은 패터닝되어, 다수 개의 전면전극들 및 제 1 셀(C1), 제 2 셀(C2) 및 제 3 셀들(C3)이 정의된다. 상기 제 3 관통홈(TH3)들의 폭은 약 80㎛ 내지 약 200㎛ 일 수 있다.
실시예에 따른 태양전지 제조 방법은 후면 전극층, 광 흡수층을 형성한 후, 이를 관통하는 제 1 관통홈을 형성한다, 이후, 상기 제 1 관통홈들에 의해 노출되는 광 흡수층을 용융하여, 상기 제 1 관통홈들에 의해 노출되는 후면 전극층의 내측면을 광 흡수층으로 감쌀 수 있다.
종래에는, 상기 후면 전극층에 패터닝을 하여 상기 후면 전극층을 다수 개의 후면 전극들로 구분한 후에, 상기 후면 전극층 상에 광 흡수층, 버퍼층 및 전면 전극층 등을 증착하여 태양전지를 제조하였다.
그러나, 상기 광 흡수층 증착 공정은 500℃ 이상의 고온에서 진행되기 때문에, 상기 광 흡수층 증착 공정에 의해, 상기 제 1 관통홈의 휨 현상이 발생하게 된다. 따라서, 상기 제 1 관통홈의 휨에 의해 데드존 영역이 증가되고, 전체적인 태양전지의 효율을 감소시키는 원인이 되었다.
따라서, 실시예에 따른 태양전지 제조 방법에 의해 제조되는 태양전지는, 지지기판 상에 후면 전극층 및 광 흡수층을 형성한 후, 이들을 관통하는 관통홈을 형성함으로써, 관통홈이 휘는 것을 방지하여 데드존 영역을 감소시킬 수 있고, 관통홈 내에서 광 흡수층을 일부 용융시켜 후면 전극층의 내측면을 감쌈으로써, 전면 전극층에서 광 흡수층으로의 터널링 효과에 의한 전면 전극과 후면 전극의 쇼트를 방지함으로써, 태양전지의 전체적인 효율을 상승시킬 수 있다.
상술한 실시예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. 지지기판;
    상기 지지기판 상에 배치되는 후면 전극층;
    상기 후면 전극층 상에 배치되는 광 흡수층;
    상기 광 흡수층 상에 배치되는 버퍼층; 및
    상기 버퍼층 상에 배치되는 전면 전극층을 포함하고,
    상기 후면 전극층 및 상기 광 흡수층 상에는, 상기 후면 전극층 및 상기 광 흡수층을 관통하는 제 1 관통홈이 형성되고,
    상기 광 흡수층은,
    상기 후면 전극층 상에 배치되는 제 1 광 흡수층; 및
    상기 제 1 관통홈에 의해 노출되는 상기 후면 전극층의 내측면과 접촉하며 배치되는 제 2 광 흡수층을 포함하는 태양전지.
  2. 제 1항에 있어서,
    상기 제 1 관통홈 내에서, 상기 광 흡수층의 내측면은 경사를 가지면서 배치되는 태양전지.
  3. 제 2항에 있어서,
    상기 광 흡수층의 내측면은 곡면을 포함하는 태양전지.
  4. 제 2항에 있어서,
    상기 제 1 관통홈은 상기 지지기판 방향으로 연장할수록 폭이 좁아지도록 형성되는 태양전지.
  5. 제 1항에 있어서,
    상기 제 1 광 흡수층의 측면은 상기 후면 전극층의 측면과 평행하게 배치되고,
    상기 제 2 광 흡수층의 측면에 대해 경사를 가지면서 배치되는 태양전지.
  6. 제 5항에 있어서,
    상기 제 2 광 흡수층은 상기 지지기판의 상면 방향으로 연장할수록 폭이 넓어지도록 배치되는 태양전지.
  7. 제 6항에 있어서,
    제 2 광 흡수층의 평균 폭은 약 1㎛ 내지 약 40㎛인 태양전지.
  8. 제 5항에 있어서,
    상기 제 1 광 흡수층과 상기 제 2 광 흡수층은 일체로 형성되는 태양전지.
  9. 제 2항에 있어서,
    상기 전면 전극층은 상기 제 1 관통홈 내부에서, 상기 광 흡수층의 측면을 따라 연장하며 배치되는 태양전지.
  10. 지지기판;
    상기 지지기판 상에 배치되는 후면 전극층;
    상기 후면 전극층 상에 배치되는 광 흡수층;
    상기 광 흡수층 상에 배치되는 버퍼층; 및
    상기 버퍼층 상에 배치되는 전면 전극층을 포함하고,
    상기 후면 전극층 및 상기 광 흡수층은, 상기 후면 전극층 및 상기 광 흡수층을 관통하는 제 1 관통홈이 형성되고,
    상기 제 1 관통홈 내부에서,
    상기 광 흡수층들 사이의 이격 거리는 상기 후면 전극층들 사이의 이격 거리보다 더 작은 태양전지.
  11. 제 10항에 있어서,
    상기 광 흡수층들 사이의 이격거리는 상기 지지기판의 상면에서, 상기 전면 전극층 방향으로 연장할수록 커지는 태양전지.
  12. 제 10항에 있어서,
    상기 제 1 관통홈 내에서, 상기 광 흡수층의 내측면은 경사를 가지면서 배치되는 태양전지.
  13. 제 10항에 있어서,
    상기 제 1 관통홈은 상기 지지기판 방향으로 연장할수록 폭이 좁아지도록 형성되는 태양전지.
  14. 제 10항에 있어서,
    상기 전면 전극층은 상기 제 1 관통홈 내부에서, 상기 광 흡수층의 측면을 따라 연장하며 배치되는 태양전지.
  15. 제 10항에 있어서,
    상기 광 흡수층은 상기 제 1 관통홈 내부에서, 상기 제 1 관통홈에 의해 노출되는 상기 후면 전극층의 내측면과 접촉하며 배치되는 태양전지.
  16. 제 10항에 있어서,
    상기 제 1 관통홈 내부에서 상기 광 흡수층의 평균 폭은 약 1㎛ 내지 약 40㎛인 태양전지.
  17. 지지기판 상에 후면 전극층을 배치하는 단계;
    상기 후면 전극층 상에 광 흡수층을 배치하는 단계;
    상기 광 흡수층 상에 제 1 관통홈을 형성하는 단계;
    상기 광 흡수층 상에 버퍼층을 배치하는 단계; 및
    상기 버퍼층 상에 전면 전극층을 배치하는 단계를 포함하고,
    상기 광 흡수층 상에 제 1 관통홈을 형성하는 단계는,
    상기 광 흡수층 및 상기 후면 전극층을 관통하는 제 1 관통홈을 형성하는 단계; 및
    상기 광 흡수층의 내측면을 용융시켜, 상기 광 흡수층이 상기 제 1 관통홈에 의해 노출되는 후면 전극층을 감싸도록 형성하는 단계를 포함하는 태양전지 제조방법.
  18. 제 17항에 있어서,
    상기 후면 전극층의 내측면을 감싸는 상기 광 흡수층은 약 1㎛ 내지 약 40㎛의 평균 폭 만큼 배치되는 태양전지 제조방법.
  19. 제 17항에 있어서,
    상기 광 흡수층의 내측면은 상기 제 1 관통홈 내부에서 경사를 가지도록 형성되는 태양전지 제조방법.
  20. 제 19항에 있어서,
    상기 제 1 관통홈 상기 지지기판의 상면 방향으로 연장될수록 그 폭이 좁아지는 태양전지 제조방법.
PCT/KR2014/009066 2013-10-02 2014-09-26 태양전지 및 이의 제조방법 WO2015050341A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/027,111 US10020414B2 (en) 2013-10-02 2014-09-26 Solar cell and manufacturing method therefor
CN201480054724.2A CN105723522B (zh) 2013-10-02 2014-09-26 太阳能电池及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130118217A KR20150039535A (ko) 2013-10-02 2013-10-02 태양전지 및 이의 제조방법
KR10-2013-0118217 2013-10-02

Publications (1)

Publication Number Publication Date
WO2015050341A1 true WO2015050341A1 (ko) 2015-04-09

Family

ID=52778894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009066 WO2015050341A1 (ko) 2013-10-02 2014-09-26 태양전지 및 이의 제조방법

Country Status (4)

Country Link
US (1) US10020414B2 (ko)
KR (1) KR20150039535A (ko)
CN (1) CN105723522B (ko)
WO (1) WO2015050341A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180254365A1 (en) * 2015-09-09 2018-09-06 Moohan Co., Ltd. Thin film type solar cell and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3493274A1 (de) * 2017-12-04 2019-06-05 Bengbu Design & Research Institute for Glass Industry Dünnschichtsolarmodul mit verbessertem shunt-widerstand

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100480A (en) * 1990-04-18 1992-03-31 Mitsubishi Denki Kabushiki Kaisha Solar cell and method for manufacturing the same
US5468988A (en) * 1994-03-04 1995-11-21 United Solar Systems Corporation Large area, through-hole, parallel-connected photovoltaic device
US6011215A (en) * 1997-12-18 2000-01-04 United Solar Systems Corporation Point contact photovoltaic module and method for its manufacture
US20020160553A1 (en) * 2001-02-14 2002-10-31 Hideo Yamanaka Method and apparatus for forming a thin semiconductor film, method and apparatus for producing a semiconductor device, and electro-opitcal apparatus
US20130056758A1 (en) * 2010-05-28 2013-03-07 Flisom Ag Method and apparatus for thin film module with dotted interconnects and vias

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4785827B2 (ja) * 2007-12-27 2011-10-05 三洋電機株式会社 太陽電池モジュール及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100480A (en) * 1990-04-18 1992-03-31 Mitsubishi Denki Kabushiki Kaisha Solar cell and method for manufacturing the same
US5468988A (en) * 1994-03-04 1995-11-21 United Solar Systems Corporation Large area, through-hole, parallel-connected photovoltaic device
US6011215A (en) * 1997-12-18 2000-01-04 United Solar Systems Corporation Point contact photovoltaic module and method for its manufacture
US20020160553A1 (en) * 2001-02-14 2002-10-31 Hideo Yamanaka Method and apparatus for forming a thin semiconductor film, method and apparatus for producing a semiconductor device, and electro-opitcal apparatus
US20130056758A1 (en) * 2010-05-28 2013-03-07 Flisom Ag Method and apparatus for thin film module with dotted interconnects and vias

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180254365A1 (en) * 2015-09-09 2018-09-06 Moohan Co., Ltd. Thin film type solar cell and method for manufacturing the same

Also Published As

Publication number Publication date
US10020414B2 (en) 2018-07-10
CN105723522A (zh) 2016-06-29
US20160240717A1 (en) 2016-08-18
KR20150039535A (ko) 2015-04-10
CN105723522B (zh) 2017-09-19

Similar Documents

Publication Publication Date Title
WO2015041470A1 (ko) 태양전지
WO2011119001A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2015041467A1 (ko) 태양전지 및 이의 제조 방법
WO2011040782A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2011053077A2 (ko) 태양전지 및 이의 제조방법
WO2011040781A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2011043610A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2011053025A2 (ko) 태양전지 및 이의 제조방법
WO2011040778A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2012015151A2 (ko) 태양전지 및 이의 제조방법
WO2012033274A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2015046845A1 (ko) 태양전지
WO2011002212A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2012057490A2 (en) Solar cell apparatus and method for manufacturing the same
WO2013147517A1 (en) Solar cell and method of fabricating the same
WO2014204182A1 (ko) 태양전지
WO2012015286A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2012046934A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2012015150A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2015050341A1 (ko) 태양전지 및 이의 제조방법
WO2011083995A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2013058521A1 (en) Solar cell and method of fabricating the same
WO2012102453A1 (en) Solar cell and method for manufacturing the same
WO2012036364A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2011040785A2 (ko) 태양광 발전장치 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15027111

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14850979

Country of ref document: EP

Kind code of ref document: A1