WO2015049921A1 - 信号処理装置、メディア装置、信号処理方法および信号処理プログラム - Google Patents
信号処理装置、メディア装置、信号処理方法および信号処理プログラム Download PDFInfo
- Publication number
- WO2015049921A1 WO2015049921A1 PCT/JP2014/070807 JP2014070807W WO2015049921A1 WO 2015049921 A1 WO2015049921 A1 WO 2015049921A1 JP 2014070807 W JP2014070807 W JP 2014070807W WO 2015049921 A1 WO2015049921 A1 WO 2015049921A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- array processing
- array
- sensors
- correlation
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims description 4
- 230000003044 adaptive effect Effects 0.000 claims description 34
- 230000002596 correlated effect Effects 0.000 claims description 31
- 230000002708 enhancing effect Effects 0.000 claims description 7
- 230000001965 increasing effect Effects 0.000 abstract description 13
- 238000010586 diagram Methods 0.000 description 27
- 238000000034 method Methods 0.000 description 11
- 230000001629 suppression Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000001934 delay Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/038—Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
- G10L21/0388—Details of processing therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/42—Systems for two-way working, e.g. conference systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/005—Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/20—Arrangements for obtaining desired frequency or directional characteristics
- H04R1/32—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
- H04R1/40—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
- H04R1/406—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2410/00—Microphones
- H04R2410/05—Noise reduction with a separate noise microphone
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2430/00—Signal processing covered by H04R, not provided for in its groups
- H04R2430/20—Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
- H04R2430/23—Direction finding using a sum-delay beam-former
Definitions
- the present invention relates to a technique for enhancing or suppressing a signal using directivity formed by a plurality of sensors.
- Non-Patent Documents 1 and 2 describe a pseudo-jamming in which a plurality of sensor signals are processed to generate an enhanced target signal, and the jamming signal is relatively enhanced by suppressing the target signal.
- This technique forms directivity using a phase difference of signals based on differences in spatial positions among a plurality of sensors, and emphasizes or suppresses a specific signal based on the formed directivity.
- Non-Patent Documents 3 and 4 describe a configuration in which the techniques of Non-Patent Documents 1 and 2 are combined in a plurality of frequency bands from a low frequency to a high frequency by using a plurality of arrays having different sensor intervals. is there.
- Non-Patent Documents 1 and 2 described above cannot form sufficient directivity for low-frequency signal components. This is because, when using a sensor common to the medium and high frequencies at a low frequency that has a longer wavelength than the medium and high frequencies, the relatively narrow sensor interval cannot generate a sufficiently large inter-signal phase difference between multiple sensors. It is.
- the techniques described in Non-Patent Documents 3 and 4 have a problem of an increase in cost due to the increased number of sensors and an increase in array size due to a wide sensor interval corresponding to a low frequency range.
- An object of the present invention is to provide a technique for solving the above-described problems.
- a signal processing apparatus provides: A first array processing unit that partially emphasizes a predetermined signal with respect to signals received from a plurality of sensors to generate a first array processing signal; A correlation removal unit that generates a correlation removal signal by erasing a signal component correlated with a signal received from an auxiliary sensor different from the plurality of sensors from the first array processing signal.
- a signal processing method includes: Generating an array processing signal by partially enhancing a predetermined signal with respect to signals received from a plurality of sensors; Removing a signal component correlated with a signal received from an auxiliary sensor different from the plurality of sensors from the array processing signal to generate a correlation removal signal; including.
- a signal processing program provides: Generating an array processing signal by partially enhancing a predetermined signal with respect to signals received from a plurality of sensors; Causing the computer to execute a step of generating a correlation removal signal by erasing a signal component correlated with a signal received from an auxiliary sensor different from the plurality of sensors from the array processing signal.
- a media device provides: A plurality of sensors arranged in front, Auxiliary sensors arranged at different positions of the plurality of sensors and acoustic characteristics; An array processing unit that partially enhances a predetermined signal with respect to signals received from the plurality of sensors and generates an array processing signal; A correlation removal unit that generates a correlation removal signal by erasing a signal component correlated with the signal received from the auxiliary sensor from the array processing signal.
- wideband signals can be enhanced or suppressed using the directivity of the sensor array without increasing the size of the sensor array.
- the “voice signal” is a direct electrical change that occurs in accordance with voice and other sounds, and is used to transmit voice and other sounds, and is not limited to voice.
- the signal processing apparatus 100 is an apparatus that enhances or suppresses a broadband signal using signals from a plurality of sensors 101.
- the signal processing apparatus 100 includes an array processing unit 103 and a correlation removing unit 104.
- the array processing unit 103 partially enhances a predetermined signal with respect to the signals 105 received from the number of sensors 101 to generate the array processing signal 110.
- the correlation removal unit 104 generates a correlation removal signal 112 by erasing a signal component correlated with the signal 121 received from the auxiliary sensor 102 different from the plurality of sensors 101 from the array processing signal 110.
- the signal processing apparatus 100 can effectively enhance or suppress the broadband signal using the signal from the sensor array.
- a signal processing apparatus 200 as a second embodiment of the present invention will be described with reference to FIGS.
- the signal processing device 200 according to the present embodiment can be applied to signal enhancement of various media devices such as a digital camera, a video recorder, a personal computer, a mobile phone, a television, a voice recorder, a game machine, and a vending machine. That is, a target signal such as voice, music, and environmental sound can be emphasized with respect to a signal (noise or interference signal) superimposed thereon.
- the present invention is not limited to this, and can be applied to any signal processing apparatus that requires enhancement of a specific signal included in an input signal.
- the signal processing apparatus 200 is, for example, in a form such as a voice recognition apparatus for controlling a television using a voice command from a position away from the television, and background noise and other factors that interfere with the voice command. Are appropriately suppressed based on their directions.
- a high-frequency component a plurality of sensor signals are processed to form directivity and emphasize speech.
- signals other than speech are suppressed by eliminating components correlated with the auxiliary sensor signal, using the signals from the auxiliary sensor placed at a position where there is little speech input as a reference signal. And emphasize the voice.
- FIG. 2A shows the overall configuration of the signal processing apparatus 200 in the present embodiment.
- the schematic configuration is the same as that shown in FIG. 1, and includes an array processing unit 203 and a correlation removal unit 204.
- the array processing unit 203 performs array processing on the input signals 205 received from each sensor of the sensor array 201 to form directivity, and outputs the first array processing signal 210 with the target signal emphasized.
- the correlation removing unit 204 uses the input signal 211 received from the auxiliary sensor 202 as a reference signal, erases a component correlated with the input signal 211 from the array processing signal 210, and outputs it as a correlation removal signal 212.
- the input signal 211 is correlated with the target signal by arranging the sensor 202 at a position in an acoustic space where the target signal is difficult to be input or by installing an acoustic shield near the target signal that is difficult to input the target signal. Avoid as much of the ingredients as possible.
- the correlation removal signal 212 is supplied to the output terminal 209 as an output signal.
- the array processing unit 203 mainly suppresses high-frequency components other than the target signal based on directivity, and the correlation removal unit 204 mainly suppresses low-frequency components other than the target signal based on correlation removal.
- FIG. 2B is a block diagram illustrating a configuration of the array processing unit 203.
- the array processing unit 203 includes M filters 231 and an adder 233.
- ⁇ is a natural number representing the number of sensors.
- the filter 231 is supplied with the input signal 205 from the sensor array 201.
- the filter 231 filters these input signals 205 and supplies the obtained output signal 232 to the adder 233.
- the adder 233 adds all the signals supplied from the filter 231 and outputs the addition result as an array processing signal 210 in which the target signal is emphasized and other components are suppressed.
- FIG. 2B The configuration shown in FIG. 2B is known as a filter-and-sum beamformer. Further, when the filters 231 are all finite impulse response (FIR) filters, and only one of the tap coefficients of each filter is 1, and all other coefficients are zero, FIG. 2B shows a delay sum beamformer (Delay). -And-Sum Beamformer). More precisely, the non-zero tap coefficient is set so that the wavefront direction of a plane wave coming from a specific direction is rotated (steer).
- Non-Patent Document 5 discloses a filter sum beamformer and a delay sum beamformer.
- the array processing unit 203 is known as a fixed beamformer for constituting a generalized sidelobe canceller (Griffy two-dimension beamformer). The configuration example and operation of the array processing unit 203 are disclosed in detail in Non-Patent Documents 1 and 2.
- FIG. 3 is a block diagram illustrating a first configuration example of the correlation removing unit 204.
- the correlation removing unit 204 includes an adaptive filter 301 and a subtracter 302.
- the adaptive filter 301 receives the input signal 211 in which components other than the target signal are dominant, and supplies the filter processing result to the subtracter 302 as an output 311.
- Another input of the subtracter 302 is supplied with an array processing signal 210 in which the target signal is emphasized and other components are suppressed.
- the subtracter 302 subtracts the output 311 of the adaptive filter 301 from the array processing signal 210 and outputs the difference as a correlation removal signal 212.
- the correlation removal signal 212 is fed back to the adaptive filter 301 as an error.
- the adaptive filter 301 obtains the correlation between the correlation removal signal 212 and the input signal 211, and sequentially updates the filter coefficient according to the magnitude of the correlation.
- Various algorithms such as an LMS algorithm and an NLMS algorithm can be used as the filter coefficient update algorithm. Details of the coefficient update algorithm are disclosed in Non-Patent Document 6 and the like.
- the input signal 211 is divided into a plurality of frequency bands by the filter bank, the filter processing is performed by an independent adaptive filter in each frequency band, the input signal 211 is divided into the plurality of frequency bands by the filter bank, It is also possible to subtract the filter processing result from the input signal 210 band-divided by an independent subtracter in each frequency band, and combine the subtraction result into one band by a filter bank to obtain a correlation removal signal 212. At this time, the output of each subtracter is fed back to each adaptive filter.
- the adaptive filter 301 calculates the correlation between the feedback subtracter output and the band-divided input signal 210, and sequentially updates the adaptive filter coefficient according to the magnitude of the correlation.
- Such a configuration is known as subband filter processing.
- the details of the subband filter processing are disclosed in Non-Patent Document 7.
- the array processing unit 203 uses directivity, and the correlation removal unit 204 suppresses components other than the target signal by removing the correlation based on the reference signal 211.
- the array processing unit 203 operates effectively for high frequency components and the correlation removal unit 204 operates effectively for low frequency components. Since the correlation removing unit 204 eliminates the low-frequency component, it is possible to suppress a signal in a wide frequency band from a low frequency to a high frequency even if the sensor array 201 is small. With the above configuration, the wideband signal can be suppressed and the target signal can be sufficiently enhanced without increasing the array size or the number of sensors.
- a signal processing apparatus as a third embodiment of the present invention will be described with reference to FIG. Compared to the second embodiment, the difference is that a conversion unit 441 is added to the correlation removal unit 204 according to the present embodiment. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals and detailed description thereof is omitted, and only the difference in the configuration of the correlation removal unit 204 will be described here. .
- FIG. 4 is a block diagram showing a configuration of the correlation removing unit 204.
- the correlation removal unit 204 includes a conversion unit 441, an adaptive filter 301, and a subtracter 302.
- the conversion unit 441 receives the input signal 211 in which components other than the target signal are dominant and decomposes it into a plurality of frequency components, thereby generating a frequency domain signal.
- the adaptive filter 301 receives this frequency domain signal, weights and adds signal values corresponding to a plurality of frequency components, and supplies the obtained addition result to the subtracter 302 as an output 311.
- Another input of the subtracter 302 is supplied with an array processing signal 210 in which the target signal is emphasized.
- the subtracter 302 subtracts the output 311 of the adaptive filter 301 from the array processing signal 210 and outputs the difference as the first correlation removal signal 212.
- the correlation removal signal 212 is fed back to the adaptive filter 301 as an error.
- the adaptive filter 301 obtains the correlation between the correlation removal signal 212 and the output signal 442 of the conversion unit 441, and sequentially updates the filter coefficient according to the magnitude of the correlation.
- the correlation removal unit 204 By the operation of the correlation removal unit 204 described above, the component having a correlation with the component other than the target signal included in the correlation removal signal 212 is minimized. As a result, the correlation removal signal 212 is a signal in which the target signal is emphasized and the others are suppressed. Details of the configuration of the conversion unit 441 shown in FIG. 4 are disclosed in Non-Patent Document 8.
- a signal processing apparatus 500 as a fourth embodiment of the present invention will be described with reference to FIG.
- a mixing unit 501 is added to the signal processing device 500, and the mixed signal of the correlation removal signal 212 and the array processing signal 210 is supplied to the output terminal 209 as the output 511.
- the same configurations and operations are denoted by the same reference numerals and detailed description thereof is omitted, and only the operation of the mixing unit 501 will be described here.
- the correlation removal signal 212 that is the output of the correlation removal unit 204 and the array processing signal 210 that is the output of the array processing unit 203 are both supplied to the mixing unit 501.
- the mixing unit 501 generates a mixed signal 511 by mixing the correlation removal signal 212 and the array processing signal 210 and supplies the mixed signal 511 to the output terminal 209.
- FIG. 6 is a block diagram showing the configuration of the mixing unit 501.
- the mixing unit 501 includes a low-pass filter 601, a high-pass filter 602, and an adder 603.
- the low-pass filter 601 receives the correlation removal signal 212, passes only the low-frequency component, and supplies it to the adder 603.
- the high-pass filter 602 receives the array processing signal 210, passes only the high-frequency component, and supplies it to the adder 603.
- the adder 603 mixes the low frequency component of the correlation removal signal 212 and the high frequency component of the array processing signal 210 at a predetermined ratio, and outputs the mixed signal 511.
- the adder 603 can perform simple addition or weighted addition. Weights for the output of the low-pass filter 601 and the output of the high-pass filter 602 can be determined in advance, or can be sequentially determined adaptively using the result of analyzing the frequency spectrum of the signal. For example, when a signal other than the target signal has a spectrum biased toward a low band, a larger weight is applied to the output of the low-pass filter 601. By such weight setting, the effect of the correlation removal unit 204 becomes relatively larger than that of the array processing unit 203, and a larger suppression effect can be expected in the added signal.
- the output of the low-pass filter 601 and the passband of the high-pass filter 602 can also be determined adaptively and sequentially according to the result of analyzing the frequency spectrum of the signal. For example, when a signal other than the target signal has a spectrum that is biased toward a low band, the pass band of the low-pass filter 601 is set wide and the pass band of the high-pass filter 602 is set narrow. By such passband setting, the effect of the correlation removing unit 204 becomes relatively larger than that of the array processing unit 203, and a larger suppression effect can be expected in the added signal.
- the output of the low-pass filter 601 and the passband of the high-pass filter 602 can be set according to the sensor interval. For example, when the sensor interval is narrow, the pass band of the low pass filter 601 is set wide and the pass band of the high pass filter 602 is set narrow. By such passband setting, the effect of the correlation removing unit 204 becomes relatively larger than that of the array processing unit 203, and a larger suppression effect can be expected in the added signal.
- the low-frequency component other than the target signal is greatly suppressed by the correlation removal signal 212, and the high-frequency component is suppressed by the array processing signal. Since the mixed signal 511 obtained by mixing the low-frequency component of the correlation removal signal 212 and the high-frequency component of the array processing signal 210 has the advantages of both, the suppression effect of components other than the target signal is higher than that of any single signal. .
- the mixed signal 511 of the correlation removal signal 212 and the array processing signal 210 is supplied to the output terminal 209 as an output.
- the wideband signal can be suppressed and the target signal can be sufficiently enhanced without increasing the array size or the number of sensors.
- a signal processing apparatus 700 as a fifth embodiment of the present invention will be described with reference to FIG. 7A.
- the signal processing device 700 is different in that an array processing unit 706 and an array processing unit 708 are added. Since other configurations and operations are the same as those in the first embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed descriptions thereof are omitted. Here, only the operations of the array processing unit 706 and the array processing unit 708 are described. Will be explained.
- the array processing unit 706 eliminates the signal component correlated with the correlation removal signal 212 from each of the input signals 205 received from each sensor of the sensor array 201 using the correlation removal signal 212 as a reference signal, and the target signal is suppressed.
- An array processing signal 707 is output. Since the array processing unit 706 deletes the signal component correlated with the correlation removal signal 212 in which the target signal is enhanced, the array processing signal 707 is a signal in which the target signal is suppressed and the others are enhanced.
- the array processing unit 708 uses the array processing signal 707 as a reference signal, deletes a signal component correlated with the array processing signal 707 included in the array processing signal 210, and suppresses components other than the target signal. Output as. That is, the output signal 713 of the array processing unit 708 is a signal in which the target signal is emphasized and other signals are suppressed.
- FIG. 8 is a block diagram showing the configuration of the array processing unit 706.
- the array processing unit 706 includes M adaptive filters 801 and M subtractors 804.
- a correlation removal signal 212 is supplied from the correlation removal unit 204 to the adaptive filter 801.
- the adaptive filter 801 filters these signals and supplies the filter processing result to the subtracter 804.
- An input signal 205 received from each sensor of the sensor array 201 is also supplied to the subtracter 804.
- the subtractor 804 subtracts the output of the adaptive filter 801 from the input signal 205 and outputs the difference as a result as the array processing signal 707.
- the array processing signal 707 is fed back to the adaptive filter 801 as an error.
- the adaptive filter 801 obtains the correlation between the array processing signal 707 and the correlation removal signal 212 and sequentially updates the filter coefficient according to the magnitude of the correlation.
- the component correlated with the target signal included in the input signal 205 is minimized.
- the array processing signal 707 is a signal in which the target signal is suppressed and other signals are emphasized.
- the array processing unit 706 is known as a blocking matrix for constituting a generalized sidelobe canceller (Griffy two-dimension beamformer).
- the configuration example and operation of the array processing unit 706 are disclosed in detail in Non-Patent Documents 1 and 2.
- FIG. 9 is a block diagram illustrating a configuration of the array processing unit 708.
- the array processing unit 708 includes M adaptive filters 901, a delay element 902, and a subtractor 903.
- An array processing signal 707 is supplied to the adaptive filter 901.
- the adaptive filter 901 filters these signals and supplies the filter processing result 911 to the subtracter 903.
- the delay element 902 delays the array processing signal 210 and supplies the delayed array processing signal to the subtracter 903.
- the subtractor 903 subtracts all the output signals 911 of the adaptive filter 901 from the delayed array processing signal, and outputs the obtained result as an array processing signal 713.
- the array processing signal 713 is fed back to all the adaptive filters 901 as an error.
- the adaptive filter 901 obtains the correlation between the array processing signal 713 and the array processing signal 707, and sequentially updates the filter coefficient according to the magnitude of the correlation.
- the array processing unit 708 is known as a multi-input canceller for configuring a generalized sidelobe canceller (Griffy two-dimension beamformer).
- the configuration example and operation of the array processing unit 708 are disclosed in detail in Non-Patent Documents 1 and 2.
- a signal component correlated with the correlation removal signal 212 is deleted using the correlation removal signal 212 as a reference signal, the target signal is suppressed, and the rest is emphasized.
- a signal 707 is generated.
- the array processing unit 203, the array processing unit 706, and the array processing unit 708 are known as a fixed beamformer, a blocking matrix, and a multi-input canceller, respectively. Constructs a lobe canceller (Griffy two-gym beamformer). Configuration examples and operations of the array processing unit 203, the array processing unit 706, and the array processing unit 708 are disclosed in detail in Non-Patent Documents 1 and 2.
- the array processing unit 203 emphasizes the target signal using a signal obtained by each sensor of the sensor array 201. However, components other than the target signal are not sufficiently suppressed in the output signal of the array processing unit 203, particularly in the low frequency range. This is because, as described above, the sensor interval in the sensor array 201 is not sufficiently wide with respect to the wavelength in the low band, and the directivity formed by the array processing unit 203 is particularly insufficient in the low band.
- the array processing unit 706 uses the output of the array processing unit 203 in which the target signal is enhanced (others are suppressed) as a reference signal, and components other than the target signal are enhanced (target signal). A second array processing signal is generated). Since components other than the target signal are not sufficiently suppressed in the output of the array processing unit 203, components other than the target signal are sufficient in the output of the array processing unit 706 that operates using the output signal of the array processing unit 203 as a reference signal. (The target signal is not sufficiently suppressed).
- the array processing unit 708 that deletes the signal component correlated with the output of the array processing unit 706 from the output of the array processing unit 203 cannot sufficiently delete components other than the target signal from the output of the array processing unit 203. Components other than the target signal, particularly low frequency components, remain in the output signal 213.
- the array processing unit 706 suppresses the target signal using the output signal 212 of the correlation removing unit 204 as a reference signal instead of the sensor processing signal 210 of the array processing unit 203.
- the correlation removing unit 204 deletes a signal correlated with the input signal 211 using the input signal 211 as a reference signal, that is, a signal component other than the target signal, and does not perform array processing. Therefore, components other than the target signal included in the correlation removal signal 212 are minimized independently of the relationship between the sensor interval of the array and the frequency of the signal to be processed.
- the array processing unit 706 performs array processing in which the target signal is sufficiently suppressed.
- a signal 707 can be generated.
- the array processing unit 708 that erases signal components correlated with the output of the array processing unit 706 from the output of the array processing unit 203 can sufficiently erase components other than the target signal in the output of the array processing unit 203.
- components other than the target signal, in particular, low frequency components do not remain in the output signal 213.
- FIG. 7B is a diagram illustrating a hardware configuration when the signal processing device 700 according to the present embodiment is realized using software.
- the signal processing device 700 includes a processor 710, a ROM (Read Only Memory) 720, a RAM (Random Access Memory) 740, a storage 750, an input / output interface 760, an operation unit 761, an input unit 762, and an output unit 763.
- the processor 710 is a central processing unit, and controls the entire signal processing apparatus 700 by executing various programs.
- the ROM 720 stores various parameters in addition to the boot program that the processor 710 should execute first.
- the RAM 740 has an area for storing an input signal 205, an auxiliary signal 211, an array processing signal 210, a correlation removal signal 212, an array processing signal 707, an array processing signal 713 (output signal) and the like in addition to a program load area (not shown). Have.
- the storage 750 stores a signal processing program 751.
- the signal processing program 751 includes an array processing module 751a, a correlation removal module 751b, an array processing module 751c, and an array processing module 751d.
- the processor 710 executes each module included in the signal processing program 751, the functions of the array processing unit 203, the correlation removal unit 204, the array processing unit 706, and the array processing unit 708 in FIG. 7A can be realized.
- An array processing signal 713 that is an output related to the signal processing program 751 executed by the processor 710 is output from the output unit 763 via the input / output interface 760.
- FIG. 7C is a flowchart for explaining a flow of processing for emphasizing a target signal such as a voice mixed with noise or an interference signal by the signal processing program 751.
- a target signal such as a voice mixed with noise or an interference signal by the signal processing program 751.
- step S 771 a plurality of input signals 205 from the sensor 201 are supplied to the array processing unit 203.
- step S ⁇ b> 773 the array processing unit 203 executes speech, that is, target signal enhancement processing as the first array processing, and generates an array processing signal 210.
- step S775 the auxiliary signal 211 is input from the sensor 202 and supplied to the correlation removing unit 204.
- the correlation removing unit 204 uses the auxiliary signal 211 as a reference signal, deletes a component correlated with the auxiliary signal 211 included in the array processing signal 210, and generates a correlation removing signal 212.
- step S ⁇ b> 779 as the second array processing, the array processing unit 706 uses the correlation removal signal 212 as a reference signal, erases the speech included in the input signal 205, that is, the target signal component, and generates the array processing signal 707. .
- step S781 the array processing signal 707, which is the enhanced interference signal, is used as a reference signal, the interference signal component included in the array processing signal 210 is deleted, and the speech, that is, the array processing signal 713 in which the target signal is enhanced is generated. .
- step S783 the array processing signal 713 is output as a target signal, that is, a signal in which the voice is emphasized and the others are suppressed.
- FIG. 7C shows a flowchart for explaining the flow of processing when the signal processing apparatus 700 according to the present embodiment is realized by software.
- the second to fourth embodiments and the sixth to eighth embodiments can be similarly realized by appropriately omitting and adding the differences in the respective block diagrams.
- a higher quality output signal can be obtained than the generalized sidelobe canceller. For this reason, it is possible to suppress the broadband signal and sufficiently enhance the target signal without increasing the array size or the number of sensors.
- FIG. 10 is a block diagram showing a configuration of the signal processing apparatus 1000 according to the present embodiment.
- the signal processing apparatus 1000 replaces the array processing signal 210 that is the output of the array processing unit 203 with a correlation removal signal 212 that is the output of the correlation removal unit 204.
- the difference is that the data is supplied to the array processing unit 708. Since other configurations and operations are the same as those of the third embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
- the signal supplied to the array processing unit 708 becomes the correlation removal signal 212 having a higher disturbing signal suppression effect than the array processing signal 210, that is, a higher target signal enhancement effect. Therefore, a signal in which the target signal is further emphasized can be obtained from the output of the array processing unit 708. For this reason, a high-quality output signal can be obtained as compared with the fifth embodiment. That is, the wideband signal can be suppressed and the target signal can be sufficiently enhanced without increasing the array size or the number of sensors.
- FIG. 11 is a block diagram illustrating a configuration of the signal processing device 1100 according to the present embodiment.
- the signal processing apparatus 1100 according to this embodiment is different from the fourth embodiment in that an array processing unit 706 and an array processing unit 708 are added, and other configurations and operations are the same as those of the second embodiment. It is.
- the difference is that a mixing unit 501 is added, and other configurations and operations are the same as those of the second embodiment.
- components other than the array processing unit 706, the array processing unit 708, and the mixing unit 501 are denoted by the same reference numerals, and detailed description thereof is omitted.
- the addition of the array processing unit 706 and the array processing unit 708 can provide a higher quality output than that of the fourth embodiment, and the addition of the mixing unit 501 allows the output of the fifth embodiment. Even high quality output can be obtained. That is, a higher quality output can be obtained than in either the fourth embodiment or the fifth embodiment, so that the wideband signal is suppressed and the target signal is sufficiently emphasized without increasing the array size or the number of sensors. can do.
- FIG. 12 is a block diagram illustrating a functional configuration of the signal processing device 1200 according to the present embodiment.
- the signal processing device 1200 replaces the array processing signal 210 that is the output of the array processing unit 203 with a correlation removal signal 212 that is the output of the correlation removal unit 204.
- the difference is that the data is supplied to the array processing unit 708. Since other configurations and operations are the same as those of the fifth embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
- the signal supplied to the array processing unit 708 becomes the correlation removal signal 212 having a higher disturbing signal suppression effect than the array processing signal 210, that is, a higher target signal enhancement effect. Therefore, a signal in which the target signal is further emphasized can be obtained from the output of the array processing unit 708. For this reason, it is possible to obtain a high-quality output signal as compared with the seventh embodiment. That is, the wideband signal can be suppressed and the target signal can be sufficiently enhanced without increasing the array size or the number of sensors.
- FIG. 13 shows a top view of such an application example as viewed from above.
- the sensor array 201 including four sensors realized by a microphone is arranged on the upper surface of the tablet PC 1301, and the sensor 202 is arranged on the lower surface of the back surface.
- the sensor 202 may be disposed on the upper surface or the side surface of the back surface.
- FIG. 14 shows a top view of such an application example viewed from above.
- the sensor array 201 including four sensors realized by a microphone is arranged on the upper surface of the television receiver 1401 and the sensor 202 is arranged on the lower surface of the rear surface.
- the sensor 202 may be disposed on the upper surface or the side surface of the back surface.
- the voice signal of the user 1402 seated on the sofa is emphasized by processing the acoustic signal acquired by these microphones in any of the first to eighth embodiments, and the voice of the person 1404 in front of the television receiver 1401 is emphasized.
- music signals generated from the left and right speakers 1403 on the side of the television receiver can be suppressed.
- the voice of the user 1402 is obtained as an output, and a comfortable call and a high voice recognition rate can be realized by using this output for a call and voice recognition.
- the user 1402 can change the channel and volume of the television receiver 1401 using voice.
- the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention is also applicable to a case where a signal processing program that realizes the functions of the embodiments is supplied directly or remotely to a system or apparatus. Therefore, in order to realize the functions of the present invention on a computer, a program installed on the computer, a medium storing the program, and a WWW (World Wide Web) server that downloads the program are also included in the scope of the present invention. .
- a part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
- Appendix 1 A first array processing unit that partially emphasizes a predetermined signal with respect to signals received from a plurality of sensors to generate a first array processing signal;
- a correlation removal unit that generates a correlation removal signal by erasing a signal component correlated with a signal received from an auxiliary sensor different from the plurality of sensors from the first array processing signal;
- Signal processing device (Appendix 2) The signal processing apparatus according to claim 1, further comprising a mixing unit that generates a mixed signal by mixing the correlation removal signal and the first array processing signal.
- the mixing unit includes a low-pass filter that passes a low-frequency component of the correlation removal signal; A high pass filter that passes a high pass component of the first array processed signal; The signal processing apparatus according to claim 2, further comprising an adder that adds the output of the low-pass filter and the output of the high-pass filter.
- (Appendix 4) A second array processing unit for generating a second array processing signal by attenuating the predetermined signal based on the signals received from the plurality of sensors and the correlation removal signal; A third array processor for erasing signal components correlated with the second array processed signal from the first array processed signal;
- the signal processing device according to any one of appendices 1 to 3, further comprising: (Appendix 5) A second array processing unit for generating a second array processing signal by attenuating the predetermined signal based on the signals received from the plurality of sensors and the correlation removal signal;
- the correlation removing unit An adaptive filter for processing a signal received from the auxiliary sensor; A subtractor for subtracting the output of the adaptive filter from the first array processing signal to generate a correlation removal signal;
- the signal processing apparatus according to any one of appendices 1 to 5, wherein a coefficient of the adaptive filter is updated using a signal received from the auxiliary sensor and an output of the subtractor.
- (Appendix 7) Generating an array processing signal by partially enhancing a predetermined signal with respect to signals received from a plurality of sensors; Removing a signal component correlated with a signal received from an auxiliary sensor different from the plurality of sensors from the array processing signal to generate a correlation removal signal;
- a signal processing method comprising: (Appendix 8) Generating an array processing signal by partially enhancing a predetermined signal with respect to signals received from a plurality of sensors; Causing the computer to execute a step of generating a correlation removal signal by erasing a signal component correlated with a signal received from an auxiliary sensor different from the plurality of sensors from the array processing signal. program.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- General Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Computational Linguistics (AREA)
- Quality & Reliability (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Circuit For Audible Band Transducer (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
Abstract
Description
複数のセンサから受けた信号に対して部分的に所定の信号を強調して第1のアレイ処理信号を生成する第1のアレイ処理部と、
前記複数のセンサとは別の補助センサから受けた信号と相関のある信号成分を前記第1のアレイ処理信号から消去して相関除去信号を生成する相関除去部と、を備えた。
複数のセンサから受けた信号に対して部分的に所定の信号を強調してアレイ処理信号を生成するステップと、
前記複数のセンサとは別の補助センサから受けた信号と相関のある信号成分を前記アレイ処理信号から消去して相関除去信号を生成するステップと、
を含む。
複数のセンサから受けた信号に対して部分的に所定の信号を強調してアレイ処理信号を生成するステップと、
前記複数のセンサとは別の補助センサから受けた信号と相関のある信号成分を前記アレイ処理信号から消去して相関除去信号を生成するステップと、をコンピュータに実行させる。
前面に配置された複数のセンサと、
前記複数のセンサと音響的特性の異なる位置に配置された補助センサと、
前記複数のセンサから受けた信号に対して部分的に所定の信号を強調してアレイ処理信号を生成するアレイ処理部と、
前記補助センサから受けた信号と相関のある信号成分を前記アレイ処理信号から消去して相関除去信号を生成する相関除去部と、を備えた。
本発明の第1実施形態としての信号処理装置100について、図1を用いて説明する。信号処理装置100は、複数のセンサ101からの信号を用いて広帯域信号を強調または抑圧する装置である。
《全体構成》
本発明の第2実施形態としての信号処理装置200について図2乃至図4を用いて説明する。本実施形態の信号処理装置200は、各種メディア装置、例えばデジタルカメラ、ビデオレコーダ、パソコン、携帯電話、テレビ、ボイスレコーダ、ゲーム機、自動販売機などの信号強調に適用できる。すなわち、音声、音楽、環境音などの目的とする信号を、これらに重畳された信号(ノイズまたは妨害信号)に対して強調することができる。ただし、本発明はこれに限定されるものではなく、入力信号に含まれる特定の信号の強調を要求されるあらゆる信号処理装置に適用可能である。
図2Bは、アレイ処理部203の構成を示すブロック図である。アレイ処理部203は、M個のフィルタ231、および加算器233を含む。ここに、Мはセンサ数を表す自然数である。フィルタ231には、センサアレイ201からの入力信号205、がそれぞれ供給されている。フィルタ231は、これらの入力信号205をフィルタリングして、得られた出力信号232を加算器233に供給する。加算器233は、フィルタ231から供給された信号を全て加算して、加算結果を、目標信号が強調され、それ以外の成分が抑圧されたアレイ処理信号210として出力する。
図3は、相関除去部204の第1の構成例を示すブロック図である。相関除去部204は、適応フィルタ301と減算器302を含む。適応フィルタ301は、目標信号以外の成分が支配的な入力信号211を受けて、フィルタ処理結果を出力311として減算器302に供給する。減算器302の別の入力には、目標信号が強調され、それ以外の成分が抑圧されたアレイ処理信号210が供給されている。減算器302は、アレイ処理信号210から適応フィルタ301の出力311を差し引いて、差分を相関除去信号212として出力する。相関除去信号212は、誤差として適応フィルタ301に帰還される。適応フィルタ301は、相関除去信号212と入力信号211との相関を求め、相関の大きさに応じてフィルタ係数を逐次更新する。フィルタ係数更新アルゴリズムとしては、LMSアルゴリズム、NLMSアルゴリズムなど様々なアルゴリズムを利用することができる。係数更新アルゴリズムの詳細に関しては、非特許文献6などに詳細が開示されている。
本発明の第3実施形態としての信号処理装置について、図4を用いて説明する。上記第2実施形態と比べると、本実施形態にかかる相関除去部204に変換部441が追加されている点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略し、ここでは相関除去部204の構成の違いについてのみ説明する。
本発明の第4実施形態としての信号処理装置500について、図5を用いて説明する。上記第1実施形態と比べると、信号処理装置500には混合部501が追加されており、相関除去信号212とアレイ処理信号210の混合信号が出力端子209に出力511として供給される点で異なる。その他の構成および動作は、第1実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略し、ここでは混合部501の動作だけを説明する。
本発明の第5実施形態としての信号処理装置700について、図7Aを用いて説明する。上記第4実施形態と比べると、信号処理装置700にはアレイ処理部706とアレイ処理部708が追加されている点で異なる。その他の構成および動作は、第1実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略し、ここではアレイ処理部706とアレイ処理部708の動作だけを説明する。
図8は、アレイ処理部706の構成を示すブロック図である。アレイ処理部706は、M個の適応フィルタ801と、M個の減算器804とを含む。適応フィルタ801には、相関除去部204から、相関除去信号212が供給されている。適応フィルタ801は、これらの信号をフィルタ処理して、フィルタ処理結果を減算器804に供給する。減算器804には、また、センサアレイ201の各センサから受けた入力信号205が供給されている。減算器804は、入力信号205から適応フィルタ801の出力を減算して、その結果である差分をアレイ処理信号707として出力する。アレイ処理信号707は、誤差として適応フィルタ801に帰還される。適応フィルタ801は、アレイ処理信号707と相関除去信号212との相関を求め、相関の大きさに応じてフィルタ係数を逐次更新する。
図9は、アレイ処理部708の構成を示すブロック図である。アレイ処理部708は、M個の適応フィルタ901、遅延素子902、および減算器903を含む。適応フィルタ901には、アレイ処理信号707が供給されている。適応フィルタ901は、これらの信号をフィルタ処理して、フィルタ処理結果911を減算器903に供給する。遅延素子902は、アレイ処理信号210を遅延させて、遅延されたアレイ処理信号を減算器903に供給する。減算器903は、遅延されたアレイ処理信号から適応フィルタ901の出力信号911を全て減算し、得られた結果をアレイ処理信号713として出力する。
非特許文献1および2に開示されているように、アレイ処理部203、アレイ処理部706、アレイ処理部708はそれぞれ、固定ビームフォーマ、ブロッキング行列、多入力キャンセラとして知られており、一般化サイドローブキャンセラ(グリフィツージムビームフォーマ)を構成する。アレイ処理部203、アレイ処理部706、アレイ処理部708の構成例と動作は、非特許文献1および2に詳細に開示されている。
次に本発明の第6実施形態に係る信号処理装置について、図10を用いて説明する。図10は、本実施形態に係る信号処理装置1000の構成を示すブロック図である。
次に本発明の第7実施形態に係る信号処理装置について、図11を用いて説明する。図11は、本実施形態に係る信号処理装置1100の構成を示すブロック図である。
次に本発明の第8実施形態に係る信号処理装置について、図12を用いて説明する。図12は、本実施形態に係る信号処理装置1200の機能構成を示すブロック図である。
本発明の適用例として、机上に置いたタブレットPCを利用して、ネットワークを介したビデオチャットや遠隔通信を行うものが考えられる。図13に、そのような適用例を上から見た上面図を示す。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の範疇に含まれる。
上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
複数のセンサから受けた信号に対して部分的に所定の信号を強調して第1のアレイ処理信号を生成する第1のアレイ処理部と、
前記複数のセンサとは別の補助センサから受けた信号と相関のある信号成分を前記第1のアレイ処理信号から消去して相関除去信号を生成する相関除去部と、を備えたことを特徴とする信号処理装置。
(付記2)
前記相関除去信号と前記第1のアレイ処理信号とを混合して混合信号を生成する混合部をさらに備えたことを特徴とする付記1に記載の信号処理装置。
(付記3)
前記混合部は、前記相関除去信号の低域成分を通過させる低域通過フィルタと、
前記第1のアレイ処理信号の高域通過成分を通過させる高域通過フィルタと、
前記低域通過フィルタの出力と前記高域通過フィルタの出力を加算する加算器とを含むことを特徴とする付記2に記載の信号処理装置。
(付記4)
前記複数のセンサから受けた信号と前記相関除去信号に基づいて前記所定の信号を減衰させて第2のアレイ処理信号を生成する第2のアレイ処理部と、
前記第2のアレイ処理信号と相関のある信号成分を前記第1のアレイ処理信号から消去する第3のアレイ処理部と、
をさらに備えたことを特徴とする付記1から3のいずれかに記載の信号処理装置。
(付記5)
前記複数のセンサから受けた信号と前記相関除去信号に基づいて前記所定の信号を減衰させて第2のアレイ処理信号を生成する第2のアレイ処理部と、
前記第2のアレイ処理信号と相関のある信号成分を前記相関除去信号から消去する第3のアレイ処理部と、をさらに備えたことを特徴とする付記1から3のいずれかに記載の信号処理装置。
(付記6)
前記相関除去部は、
前記補助センサから受けた信号を処理する適応フィルタと、
前記第1のアレイ処理信号から前記適応フィルタの出力を差し引いて相関除去信号を生成する減算器とを含み、
前記補助センサから受けた信号と前記減算器の出力とを用いて前記適応フィルタの係数を更新する
ことを特徴とする付記1から5のいずれかに記載の信号処理装置。
(付記7)
複数のセンサから受けた信号に対して部分的に所定の信号を強調してアレイ処理信号を生成するステップと、
前記複数のセンサとは別の補助センサから受けた信号と相関のある信号成分を前記アレイ処理信号から消去して相関除去信号を生成するステップと、
を含むことを特徴とする信号処理方法。
(付記8)
複数のセンサから受けた信号に対して部分的に所定の信号を強調してアレイ処理信号を生成するステップと、
前記複数のセンサとは別の補助センサから受けた信号と相関のある信号成分を前記アレイ処理信号から消去して相関除去信号を生成するステップと、をコンピュータに実行させることを特徴とする信号処理プログラム。
(付記9)
前面に配置された複数のセンサと、
前記複数のセンサと音響的特性の異なる位置に配置された補助センサと、
前記複数のセンサから受けた信号に対して部分的に所定の信号を強調してアレイ処理信号を生成するアレイ処理部と、
前記補助センサから受けた信号と相関のある信号成分を前記アレイ処理信号から消去して相関除去信号を生成する相関除去部と、を備えたことを特徴とするメディア装置。
Claims (9)
- 複数のセンサから受けた信号に対して部分的に所定の信号を強調して第1のアレイ処理信号を生成する第1のアレイ処理部と、
前記複数のセンサとは別の補助センサから受けた信号と相関のある信号成分を前記第1のアレイ処理信号から消去して相関除去信号を生成する相関除去部と、を備えたことを特徴とする信号処理装置。 - 前記相関除去信号と前記第1のアレイ処理信号とを混合して混合信号を生成する混合部をさらに備えたことを特徴とする請求項1に記載の信号処理装置。
- 前記混合部は、前記相関除去信号の低域成分を通過させる低域通過フィルタと、
前記第1のアレイ処理信号の高域通過成分を通過させる高域通過フィルタと、
前記低域通過フィルタの出力と前記高域通過フィルタの出力を加算する加算器とを含むことを特徴とする請求項2に記載の信号処理装置。 - 前記複数のセンサから受けた信号と前記相関除去信号に基づいて前記所定の信号を減衰させて第2のアレイ処理信号を生成する第2のアレイ処理部と、
前記第2のアレイ処理信号と相関のある信号成分を前記第1のアレイ処理信号から消去する第3のアレイ処理部と、
をさらに備えたことを特徴とする請求項1乃至3のいずれか1項に記載の信号処理装置。 - 前記複数のセンサから受けた信号と前記相関除去信号に基づいて前記所定の信号を減衰させて第2のアレイ処理信号を生成する第2のアレイ処理部と、
前記第2のアレイ処理信号と相関のある信号成分を前記相関除去信号から消去する第3のアレイ処理部と、をさらに備えたことを特徴とする請求項1乃至3のいずれか1項に記載の信号処理装置。 - 前記相関除去部は、
前記補助センサから受けた信号を処理する適応フィルタと、
前記第1のアレイ処理信号から前記適応フィルタの出力を差し引いて相関除去信号を生成する減算器とを含み、
前記補助センサから受けた信号と前記減算器の出力とを用いて前記適応フィルタの係数を更新する
ことを特徴とする請求項1乃至5のいずれか1項に記載の信号処理装置。 - 複数のセンサから受けた信号に対して部分的に所定の信号を強調してアレイ処理信号を生成するステップと、
前記複数のセンサとは別の補助センサから受けた信号と相関のある信号成分を前記アレイ処理信号から消去して相関除去信号を生成するステップと、
を含むことを特徴とする信号処理方法。 - 複数のセンサから受けた信号に対して部分的に所定の信号を強調してアレイ処理信号を生成するステップと、
前記複数のセンサとは別の補助センサから受けた信号と相関のある信号成分を前記アレイ処理信号から消去して相関除去信号を生成するステップと、をコンピュータに実行させることを特徴とする信号処理プログラム。 - 前面に配置された複数のセンサと、
前記複数のセンサと音響的特性の異なる位置に配置された補助センサと、
前記複数のセンサから受けた信号に対して部分的に所定の信号を強調してアレイ処理信号を生成するアレイ処理部と、
前記補助センサから受けた信号と相関のある信号成分を前記アレイ処理信号から消去して相関除去信号を生成する相関除去部と、を備えたことを特徴とするメディア装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015540417A JP6593643B2 (ja) | 2013-10-04 | 2014-08-07 | 信号処理装置、メディア装置、信号処理方法および信号処理プログラム |
CN201480054755.8A CN105594226B (zh) | 2013-10-04 | 2014-08-07 | 信号处理装置、信号处理方法和介质处理装置 |
US15/026,679 US9905247B2 (en) | 2013-10-04 | 2014-08-07 | Signal processing apparatus, medium apparatus, signal processing method, and signal processing program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-209731 | 2013-10-04 | ||
JP2013209731 | 2013-10-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015049921A1 true WO2015049921A1 (ja) | 2015-04-09 |
Family
ID=52778518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/070807 WO2015049921A1 (ja) | 2013-10-04 | 2014-08-07 | 信号処理装置、メディア装置、信号処理方法および信号処理プログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US9905247B2 (ja) |
JP (1) | JP6593643B2 (ja) |
CN (1) | CN105594226B (ja) |
WO (1) | WO2015049921A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018229821A1 (ja) * | 2017-06-12 | 2020-04-16 | ヤマハ株式会社 | 信号処理装置、遠隔会議装置、および信号処理方法 |
US10825465B2 (en) | 2016-01-08 | 2020-11-03 | Nec Corporation | Signal processing apparatus, gain adjustment method, and gain adjustment program |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014136629A1 (ja) * | 2013-03-05 | 2014-09-12 | 日本電気株式会社 | 信号処理装置、信号処理方法および信号処理プログラム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1118194A (ja) * | 1997-06-26 | 1999-01-22 | Fujitsu Ltd | マイクロホンアレイ装置 |
JP2003223198A (ja) * | 2001-11-22 | 2003-08-08 | Toshiba Corp | 音響信号処理方法及び音響信号処理装置及び音声認識装置 |
JP2004289762A (ja) * | 2003-01-29 | 2004-10-14 | Toshiba Corp | 音声信号処理方法と装置及びプログラム |
JP2007093630A (ja) * | 2005-09-05 | 2007-04-12 | Advanced Telecommunication Research Institute International | 音声強調装置 |
JP2012517613A (ja) * | 2009-02-09 | 2012-08-02 | ウェーブス・オーディオ・リミテッド | 複数マイクロフォンベースの方向性音フィルタ |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03218199A (ja) * | 1990-01-24 | 1991-09-25 | Matsushita Electric Ind Co Ltd | 適応フィルタ装置 |
JPH05241582A (ja) * | 1992-02-28 | 1993-09-21 | Nec Corp | ノイズキャンセラ |
JP3381731B2 (ja) * | 1992-08-14 | 2003-03-04 | ソニー株式会社 | 雑音低減装置 |
JPH0695840A (ja) * | 1992-09-09 | 1994-04-08 | Nippon Telegr & Teleph Corp <Ntt> | 集音装置 |
JPH11118194A (ja) | 1997-10-13 | 1999-04-30 | Taisei Corp | 躯体蓄熱空調システム及びそれに用いるコンクリート中空スラブの製造方法 |
US7617099B2 (en) * | 2001-02-12 | 2009-11-10 | FortMedia Inc. | Noise suppression by two-channel tandem spectrum modification for speech signal in an automobile |
US7206418B2 (en) * | 2001-02-12 | 2007-04-17 | Fortemedia, Inc. | Noise suppression for a wireless communication device |
CN100535992C (zh) * | 2005-11-14 | 2009-09-02 | 北京大学科技开发部 | 小尺度麦克风阵列语音增强系统和方法 |
EP1830348B1 (en) * | 2006-03-01 | 2016-09-28 | Nuance Communications, Inc. | Hands-free system for speech signal acquisition |
JP4879195B2 (ja) * | 2007-01-17 | 2012-02-22 | ティーオーエー株式会社 | 騒音低減装置 |
CN101510426B (zh) * | 2009-03-23 | 2013-03-27 | 北京中星微电子有限公司 | 一种噪声消除方法及系统 |
WO2012096072A1 (ja) * | 2011-01-13 | 2012-07-19 | 日本電気株式会社 | 音声処理装置及びその制御方法とその制御プログラムを格納した記憶媒体、該音声処理装置を備えた車両、情報処理装置及び情報処理システム |
US20130332156A1 (en) * | 2012-06-11 | 2013-12-12 | Apple Inc. | Sensor Fusion to Improve Speech/Audio Processing in a Mobile Device |
-
2014
- 2014-08-07 CN CN201480054755.8A patent/CN105594226B/zh active Active
- 2014-08-07 WO PCT/JP2014/070807 patent/WO2015049921A1/ja active Application Filing
- 2014-08-07 JP JP2015540417A patent/JP6593643B2/ja active Active
- 2014-08-07 US US15/026,679 patent/US9905247B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1118194A (ja) * | 1997-06-26 | 1999-01-22 | Fujitsu Ltd | マイクロホンアレイ装置 |
JP2003223198A (ja) * | 2001-11-22 | 2003-08-08 | Toshiba Corp | 音響信号処理方法及び音響信号処理装置及び音声認識装置 |
JP2004289762A (ja) * | 2003-01-29 | 2004-10-14 | Toshiba Corp | 音声信号処理方法と装置及びプログラム |
JP2007093630A (ja) * | 2005-09-05 | 2007-04-12 | Advanced Telecommunication Research Institute International | 音声強調装置 |
JP2012517613A (ja) * | 2009-02-09 | 2012-08-02 | ウェーブス・オーディオ・リミテッド | 複数マイクロフォンベースの方向性音フィルタ |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10825465B2 (en) | 2016-01-08 | 2020-11-03 | Nec Corporation | Signal processing apparatus, gain adjustment method, and gain adjustment program |
JPWO2018229821A1 (ja) * | 2017-06-12 | 2020-04-16 | ヤマハ株式会社 | 信号処理装置、遠隔会議装置、および信号処理方法 |
US10978087B2 (en) | 2017-06-12 | 2021-04-13 | Yamaha Corporation | Signal processing device, teleconferencing device, and signal processing method |
JP2021193807A (ja) * | 2017-06-12 | 2021-12-23 | ヤマハ株式会社 | 信号処理装置、遠隔会議装置、および信号処理方法 |
JP7215541B2 (ja) | 2017-06-12 | 2023-01-31 | ヤマハ株式会社 | 信号処理装置、遠隔会議装置、および信号処理方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105594226B (zh) | 2019-05-03 |
JPWO2015049921A1 (ja) | 2017-03-09 |
US20160254008A1 (en) | 2016-09-01 |
CN105594226A (zh) | 2016-05-18 |
JP6593643B2 (ja) | 2019-10-23 |
US9905247B2 (en) | 2018-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5678023B2 (ja) | 高度に相関する混合のための強調ブラインド信号源分離アルゴリズム | |
EP2772070B1 (en) | Processing audio signals | |
US9280965B2 (en) | Method for determining a noise reference signal for noise compensation and/or noise reduction | |
EP2761617B1 (en) | Processing audio signals | |
GB2496660A (en) | Processing received audio signals with a beamformer and an echo canceller | |
US20140355752A1 (en) | Echo cancellation | |
US20070263850A1 (en) | Integration of a microphone array with acoustic echo cancellation and residual echo suppression | |
US10403259B2 (en) | Multi-microphone feedforward active noise cancellation | |
JP2002374589A (ja) | 雑音低減のための方法 | |
US20100217586A1 (en) | Signal processing system, apparatus and method used in the system, and program thereof | |
WO2013166080A1 (en) | A universal reconfigurable echo cancellation system | |
WO2013085605A1 (en) | Near-field null and beamforming | |
US20170171396A1 (en) | Joint acoustic echo control and adaptive array processing | |
CN113473294B (zh) | 系数确定方法及装置 | |
JP6593643B2 (ja) | 信号処理装置、メディア装置、信号処理方法および信号処理プログラム | |
TWI465121B (zh) | 利用全方向麥克風改善通話的系統及方法 | |
Tashev | Recent advances in human-machine interfaces for gaming and entertainment | |
Hu et al. | Inspection of the secondary path modeling in active noise control from the viewpoint of channel identification in stereo acoustic echo cancellation | |
US11523215B2 (en) | Method and system for using single adaptive filter for echo and point noise cancellation | |
CN113473293A (zh) | 系数确定方法及装置 | |
JP2017191987A (ja) | エコー消去装置、その方法、プログラム、及び記録媒体 | |
JPWO2017119284A1 (ja) | 信号処理装置、利得調整方法および利得調整プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14850282 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015540417 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15026679 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14850282 Country of ref document: EP Kind code of ref document: A1 |