WO2015046355A1 - 摺動部材及び摺動部材の製造方法 - Google Patents

摺動部材及び摺動部材の製造方法 Download PDF

Info

Publication number
WO2015046355A1
WO2015046355A1 PCT/JP2014/075476 JP2014075476W WO2015046355A1 WO 2015046355 A1 WO2015046355 A1 WO 2015046355A1 JP 2014075476 W JP2014075476 W JP 2014075476W WO 2015046355 A1 WO2015046355 A1 WO 2015046355A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
layer
sliding member
support layer
metal material
Prior art date
Application number
PCT/JP2014/075476
Other languages
English (en)
French (fr)
Inventor
増田 聡
隆 赤川
佐藤 直樹
良一 倉田
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Priority to EP14847830.8A priority Critical patent/EP3051158B1/en
Priority to US15/024,595 priority patent/US10443653B2/en
Priority to CN201480052975.7A priority patent/CN105579723B/zh
Publication of WO2015046355A1 publication Critical patent/WO2015046355A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/125Details of bearing layers, i.e. the lining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • F16C23/043Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings
    • F16C23/045Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings for radial load mainly, e.g. radial spherical plain bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/12Alloys based on copper with tin as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/02Mechanical treatment, e.g. finishing
    • F16C2223/08Mechanical treatment, e.g. finishing shot-peening, blasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/42Coating surfaces by spraying the coating material, e.g. plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/60Thickness, e.g. thickness of coatings

Definitions

  • the present invention relates to a sliding member that slidably supports an object to be slid and a manufacturing method of the sliding member.
  • the thermal spraying method involves melting a metal different from the base metal having the desired characteristics with combustion gas, plasma, arc, etc., and ejecting the molten metal from the nozzle together with compressed air to hit the surface of the base metal. It is made to adhere by.
  • the metal is sprayed and adhered to the support layer, so that the sliding surface along the shape of the surface of the support layer can be used regardless of whether the support layer is a flat surface or an arbitrary non-planar surface such as a spherical surface. Can be formed (see, for example, Patent Document 1).
  • the first metal adhered by the thermal spraying method and the base metal that is the base material forcibly remove the dirt adhered to the metal surface in order to obtain a strong joint strength by metal joining.
  • a cleaning process for peeling and removing is performed.
  • the surface of the base metal is soiled with an oxide or oil, even if the first metal is attached to the soiled base metal surface and then heat-treated in an active atmosphere, the soil is And interspersed between the first metal and the solid diffusion between the two metals is hindered, making the metallic connection impossible.
  • An object of the present invention is to provide a sliding member having a bonding strength suitable for an environment in which a high load is applied, and a method for manufacturing the sliding member.
  • the present inventors have roughened one surface of the support layer to which the support layer and the sliding layer are joined, so that the sliding layer can be formed on one surface of the support layer by thermal spraying. It has been found that the bonding strength between the support layer and the sliding layer is improved by the surface anchor effect.
  • the present invention comprises a support layer made of a first metal material and a second metal material having a composition different from that of the first metal material adhered to one surface of the roughened support layer by thermal spraying.
  • the arithmetic average roughness (Ra) is more than 0 ⁇ m and not more than 2.0 ⁇ m and the ten-point average roughness (Rz) is 0 ⁇ m on the surface of the sliding layer subjected to the shot blasting treatment.
  • the sliding member has a concavo-convex shape with a surface hardness (Hv) of 150 to 250 and a sliding surface that slidably supports the object to be slid.
  • the support layer is preferably roughened by a striking treatment in which a powder composed of an acute ridge corner is made to collide with one surface. Moreover, it is preferable that a sliding layer is densified by the impact process which makes spherical powder collide with one surface. Further, it is preferable that the support layer is made of a first metal material made of an iron-based material, and the sliding layer is made of a second metal material made of a copper-based material. Furthermore, the surface roughness Ra of one surface of the roughened support layer is preferably 2 ⁇ m or more. Moreover, it is preferable that the thickness of a sliding layer is more than 0 mm and 1.5 mm or less.
  • the present invention also includes a step of roughening one surface of the support layer made of the first metal material, and a second metal material attached to the one surface of the roughened support layer by thermal spraying.
  • the arithmetic average roughness (Ra) exceeds 0 ⁇ m and is 2 Sliding that has a concavo-convex shape of 10 ⁇ m or less, 10-point average roughness (Rz) exceeding 0 ⁇ m to 7.5 ⁇ m or less, and surface hardness (Hv) of 150 to 250, and slidably supports the object to be slid.
  • a step of forming a surface After forming a sliding layer along one surface of the support layer and subjecting the surface of the sliding layer to shot blasting, the arithmetic average roughness (Ra) exceeds 0 ⁇ m and is 2 Sliding that has a concavo-convex shape of 10 ⁇ m or less, 10-point average roughness (Rz) exceeding 0 ⁇ m to 7.5 ⁇ m or less
  • the shot blasting is performed, so that the sliding layer is densified and a predetermined surface hardness can be obtained.
  • a sliding process between a sliding member and a pair of sliding objects is performed. A pair of the sliding member and the object to be slid after the alignment treatment is used.
  • a metal material is sprayed on one surface of the support layer by the anchor effect of the roughened surface.
  • the bonding strength between the support layer and the sliding layer can be improved by sintering the metal material adhered by spraying.
  • the sliding layer can form not only a flat surface but also a non-planar sliding member.
  • the two-layer structure has a support layer mainly having a function of receiving a load and a sliding layer mainly having a function of improving slidability.
  • a non-planar sliding member can be formed.
  • FIG. 1 is a plan sectional view showing an example of the sliding member of the present embodiment
  • FIGS. 2A, 2B, 2C, 2D, and 2E are examples of the manufacturing method of the sliding member of the present embodiment. It is explanatory drawing shown.
  • the sliding member 1 of the present embodiment includes a supporting layer 2 composed of a first metal material and a sliding layer composed of a second metal material different from the support layer 2 for the purpose of improving slidability and the like.
  • the sliding surface 3a that includes the dynamic layer 3 and is formed on one surface of the sliding layer 3 is configured as a convex spherical surface that is not a flat surface.
  • the support layer 2 is made of iron (Fe) or an iron (Fe) alloy with iron as a main component and an additive as a first metal material.
  • the sliding surface 3 a of the sliding layer 3 is configured as a convex spherical surface in this example, the surface 2 a that is one surface is configured as a convex spherical surface.
  • the surface 2a of the supporting layer 2 is roughened in order to improve the bonding strength between the supporting layer 2 and the sliding layer 3.
  • the sliding member 1 first collides with the surface 2 a of the support layer 2 with metal powder having a predetermined particle size and particle shape.
  • the surface 2a of the support layer 2 is roughened by performing, for example, the first blasting process, which is the hitting process.
  • the sliding layer 3 is made of copper (Cu) or a copper (Cu) alloy to which an additive containing copper as a main component is added as a second metal material having a predetermined composition for the purpose of improving slidability. Composed.
  • As the copper (Cu) alloy a Cu—Sn—Bi alloy, a Cu—Sn alloy, a Cu—Zn alloy, and the like are assumed.
  • the sliding layer 3 is formed by depositing copper or a copper-based alloy by thermal spraying on the surface 2a of the support layer 2 on which the anchor effect is exhibited by roughening, and the copper or copper-based alloy deposited by thermal spraying, and the support layer 2 is sintered.
  • the sliding member 1 has the sliding layer 3 formed on the surface 2a of the support layer 2 with a predetermined thickness along the shape of the surface 2a of the support layer 2, and the surface of the sliding layer 3 is convex.
  • a sliding surface 3a composed of a spherical surface is formed.
  • the sliding layer 3 is densified in order to improve the wear resistance.
  • the sliding member 1 is made of a metal having a predetermined particle size and particle shape different from the surface roughening treatment on the sliding surface 3a of the sliding layer 3 as a densification treatment for densifying the sliding layer 3.
  • the sliding layer 3 is densified by performing, for example, a second blasting process, which is a second hitting process in which the powder collides.
  • the sliding member 1 when the sliding layer is made of iron or an iron-based alloy, seizure may occur when the object to be slid in contact with the sliding member is iron, and the sliding property is poor. Therefore, the sliding member 1 is provided with a sliding layer 3 made of copper or a copper-based alloy on the surface 2a of the support layer 2 made of iron or an iron-based alloy. Can be improved.
  • the sliding layer 3 is constituted by adhering copper or a copper-based alloy to the surface 2a of the supporting layer 2 by thermal spraying and sintering the supporting layer 2 and the sliding layer 3. Thereby, the sliding layer 3 can be formed with a predetermined thickness on the surface 2a of the support layer 2 constituted by a non-planar shape, for example, a convex spherical surface.
  • the bonding strength may be insufficient depending on the state of the surface 2 a of the support layer 2. Therefore, the support layer required as the slide member 1 is formed by spraying copper or a copper-based alloy on the surface 2a of the support layer 2 roughened by the first blasting process to form the slide layer 3. The bonding strength between 2 and the sliding layer 3 can be ensured.
  • the sliding member 1 is improved in the hardness of the sliding layer 3 by densifying the sliding layer 3 by the second blast treatment, and has a desired hardness required in an environment where a high load is applied.
  • the sliding layer 3 can be formed.
  • the sliding member 1 is formed to have a desired thickness by densifying the sliding layer 3 by the second blasting process.
  • the sliding member 1 is improved in the bonding strength by roughening the surface 2a of the support layer 2 by densifying the sliding layer 3 by the second blasting process and improving the hardness. The bonding strength between the support layer 2 and the sliding layer 3 can be further improved.
  • the sliding member 1 is subjected to a sliding process with a pair of sliding objects (not shown).
  • the surface of the sliding layer 3 has an arithmetic average roughness (Ra) of more than 0 ⁇ m to 2.0 ⁇ m or less, a ten-point average roughness (Rz) of more than 0 ⁇ m to 7.5 ⁇ m or less, surface A sliding surface 3a having a concavo-convex shape having a hardness (Hv) of 150 to 250 is formed.
  • the blasting process for densification may be given or it may not be given.
  • a plating step called overlay can be added after the rubbing step.
  • the sliding member 1 and the object to be slid after the rubbing process are paired and used, for example, as a bearing for a cylinder block in a piston pump described later.
  • the friction coefficient between the sliding surface 3a of the sliding layer 3 of the sliding member 1 and the sliding surface of the sliding object (not shown) is lowered, so that it is incorporated as a bearing in the cylinder block in the piston pump.
  • friction when the piston pump is started is reduced.
  • the thickness of the sliding layer 3 is too thick, it is easily cracked, and if it is too thin, it is difficult to crack and the thermal conductivity is improved, so that it exceeds 0 mm to 1.5 mm or less, preferably more than 0 mm to 0.1 mm. It is formed in the following thickness. Since the thickness of the sliding layer 3 is thin, in addition to improving the thermal conductivity, the fatigue strength can be improved in order to approach the strength of the iron (Fe) -based alloy that becomes the support layer 2.
  • the support layer 2 is made of iron or an iron-based alloy, and the surface 2a of the support layer 2 is molded according to the shape of the sliding member 1 as a finished product, as shown in FIG. 2A.
  • the support layer 2 is a disk, and the surface 2a of the support layer 2 is formed into a convex spherical surface having a predetermined radius.
  • the support layer 2 causes a metal powder having a predetermined particle size and particle shape to collide with the surface 2a of the support layer 2 as a surface roughening treatment for roughening the surface 2a.
  • the surface 2a of the support layer 2 is roughened.
  • FIG. 3A and 3B are photographs showing an example of a metal powder used in the blasting process
  • FIG. 3A shows a metal powder called a steel grid
  • FIG. 3B is called a steel shot.
  • Metal powder is shown.
  • the first blasting process supports an iron (Fe) powder (see FIG. 3A) having an acute ridge with a grain size of 425 to 1180 ⁇ m and a hardness of 400 to 500 Hv, called steel grit.
  • it is performed by spraying on the surface 2a of the layer 2 at 0.2 to 0.7 MPa.
  • the surface roughness Ra (arithmetic mean roughness defined in JIS B0601-1994) of the surface 2a of the support layer 2 is set to 2 ⁇ m or more.
  • the anchor effect was not obtained, and as a result after thermal spraying, partial peeling or entire peeling occurred, and the sliding layer 3 was not formed.
  • copper or a copper-based alloy powder is adhered to the roughened surface 2a of the support layer 2 by thermal spraying, and the copper or The copper-based alloy and the support layer 2 are sintered.
  • the copper powder having a particle size of 45 ⁇ m or less is melted and sprayed onto the roughened surface 2 a of the support layer 2.
  • a Cu—Sn—Bi based Cu alloy was used as the copper powder.
  • a metal powder having a predetermined particle size and particle shape is applied to the sliding surface 3a of the sliding layer 3.
  • a second blast process for collision is performed.
  • the second blast treatment is performed by using spherical iron powder (refer to FIG. 3B) having a particle size of 1000 to 1700 ⁇ m and a hardness of 400 to 500 Hv, called steel shot, and the sliding surface of the sliding layer 3. It is performed by spraying on 3a at, for example, 0.2 to 0.7 MPa.
  • FIG. 4A shows a state after the sintering and before the second blasting process
  • FIG. 4B shows the second blasting process. The state after is shown.
  • the voids are reduced after the second blasting process as compared to before the second blasting process.
  • the hardness of the sliding surface 3a of the sliding layer 3 is about Hv30 after sintering and before the second blasting process, but is about Hv160 to 175 after the second blasting process.
  • the sliding surface 3a after the second blast treatment has an arithmetic average roughness (Ra) of more than 0 ⁇ m to 2.5 ⁇ m or less, and a ten-point average roughness (Rz) of more than 0 ⁇ m to 10.0 ⁇ m or less.
  • Ra arithmetic average roughness
  • Rz ten-point average roughness
  • the sliding member 1 has a sliding layer 3 formed on the surface 2 a of the support layer 2 with a predetermined thickness along the shape of the surface 2 a of the support layer 2.
  • a sliding surface 3a having a predetermined hardness and made of a convex spherical surface is formed.
  • the shape of the non-planar sliding surface 3a has been described as an example of the disk-shaped sliding member 1 in which the sliding surface 3a is a convex spherical surface. However, it may be a concave spherical surface or a flat sliding surface. Further, the sliding member 1 is not limited to a circular shape, and the sliding surface may be formed of, for example, a square shape, a convex shape, or a curved surface curved in a concave shape.
  • the 1st blasting process was illustrated as a 1st striking process, this 1st striking process aims at roughening the surface 2a of the support layer 2, and obtaining the anchor effect at the time of thermal spraying. Therefore, the material is not limited to iron powder as long as it has a sharp ridge, and for example, glass beads, cut wires, silica sand, alumina, zirconia, silicon carbide, and the like can be used.
  • the second blast treatment may be performed with copper powder.
  • the copper powder has a particle size of about 350 ⁇ m and a hardness of 80 to 120 Hv, which is relatively soft, so that the surface of the sliding layer 3 can be prevented from being scratched.
  • the process of forming the sliding surface 3a having a predetermined surface roughness on the surface of the sliding layer 3 by the sliding process of the sliding member 1 and the object to be slid performed after the second blasting process is quick. To be done.
  • the surface of the sliding layer 3 has an irregular shape having an arithmetic average roughness (Ra) of more than 0 ⁇ m and not more than 2.0 ⁇ m and a ten-point average roughness (Rz) of more than 0 ⁇ m and not more than 7.5 ⁇ m. Is formed.
  • the sliding surface 3a having an arithmetic average roughness (Ra) of 0.173 ⁇ m and a ten-point average roughness (Rz) of 1.041 ⁇ m was formed.
  • the surface hardness (Hv) of the sliding surface 3a is about 160 to 175, which is compared with that after the second blast treatment before the rubbing treatment. There was no decline in
  • the sliding member 1 of the present embodiment has a two-layer structure having a support layer 2 mainly having a function of receiving a load and a sliding layer 3 having a function of mainly improving the slidability.
  • the surface 3a can be configured in an arbitrary shape such as a spherical surface.
  • FIG. 5 is a schematic side sectional view showing an example of a piston pump to which the sliding member of the present embodiment is applied as an example of a hydraulic device.
  • the cylinder block 20 is supported by the input shaft 21 and attached to the case 30, and the cylinder block 20 is rotated by the driving force transmitted to the input shaft 21.
  • a plurality of cylinders 22 are formed in the cylinder block 20 along the rotation direction, and a piston 40 is attached to each cylinder 22 so as to be able to be put in and out.
  • the piston pump 10 is provided with a spherical bearing 50 that rotatably supports the cylinder block 20.
  • the sliding member 1 of the present embodiment is applied to the spherical bearing 50, and the sliding surface with the cylinder block 20 is formed of a convex spherical surface having a predetermined radius.
  • the cylinder block 20 which is a to-be-slidable object is configured such that the sliding surface with the spherical bearing 50 is a concave spherical surface.
  • the spherical bearing 50 includes a suction port 51 and a discharge port 52 that open along the rotation direction of the cylinder block 20.
  • the spherical port 50 communicates the suction port 31 and the suction port 51 provided in the case 30 with the discharge port 32 of the case 30.
  • the discharge port 52 is communicated with each other and is attached between the cylinder block 20 and the case 30.
  • the spherical bearing 50 rotates with the cylinder block 20 pressed in the axial direction, so that the cylinder block 20 and the spherical bearing 50 slide relative to each other. Further, when a radial force is applied to the cylinder block 20, the spherical bearing 50 maintains a state where the spherical bearing 50 and the sliding surface of the cylinder block 20 are in contact with each other, and the cylinder block 20 is inclined with respect to the axial direction. To do.
  • the piston pump 10 includes a swash plate 60 that moves the piston 40 in and out of the cylinder 22 of the cylinder block 20 as the cylinder block 20 rotates, a yoke 61 that switches the angle of the swash plate 60, and the swash plate 60 and the yoke 61.
  • An operating piston 70 and a return spring 80 are provided.
  • the piston pump 10 As the cylinder block 20 rotates, oil is sucked from the cylinder 22 on the side where the piston 40 protrudes from the cylinder block 20, and oil is discharged from the cylinder 22 on the side where the piston 40 enters.
  • the piston pump 10 is configured to change the stroke of the piston 40 and adjust the oil discharge amount by changing the angles of the swash plate 60 and the yoke 61.
  • the piston pump 10 is provided with a half bearing 90 in the case 30 that supports the swash plate 60 and the yoke 61 in a swingable manner.
  • the half bearing 90 swings in a state in which the shaft portion 62 of the yoke 61 becomes a sliding object and is pressed in the circumferential direction, so that the shaft portion 62 and the half bearing 90 slide relative to each other.
  • the piston pump 10 has a configuration in which the oil suction side and the discharge side are fixed in the configuration in which the cylinder block 20 rotates in one direction, and the oil suction side and the discharge side in the configuration in which the cylinder block 20 rotates in both forward and reverse directions. It is the structure which can be switched.
  • the spherical bearing 50 slides in one direction or both forward and reverse directions along the circumferential direction in a state where a high load is applied when the cylinder block 20 is pressed in the axial direction. Thereby, the cylinder block 20 and the spherical bearing 50 slide in a circular direction in a state where a high load is applied.
  • the cylinder block 20 and the spherical bearing 50 have a self-aligning function because the sliding surface is a spherical surface.
  • the cylinder block 20 is inclined with respect to the axial direction while maintaining the state where the sliding surface is in contact.
  • the oil discharge amount is variable by swinging the swash plate 60 and the yoke 61 in both forward and reverse directions
  • the half bearing 90 has a shaft portion 62 of the yoke 61 that is circular.
  • the shaft portion 62 slides in both forward and reverse directions along the circumferential direction in a state where a high load is applied by being pressed in the circumferential direction.
  • the shaft part 62 and the half bearing 90 slide in a linear direction in a state where a high load is applied.
  • the sliding member 1 of the present embodiment is applied to the spherical bearing 50 in the piston pump 10 of the present embodiment.
  • the shape is not limited, and the present embodiment is also applied to the half bearing 90 and the like. It is possible to apply the sliding member 1 of the form.
  • the sliding member of the present invention is suitable for application to a bearing of a hydraulic device where a high load is applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Reciprocating Pumps (AREA)

Abstract

 高荷重が掛かる環境下に適した接合強度を持ち耐磨耗性に優れた摺動部材を提供する。 摺動部材1は、鉄系の金属材料で構成された支持層2と、支持層2の表面2aに、銅系の金属材料で構成された摺動層3とを備える。支持層2の表面2aと摺動層3は、非平面で構成され、摺動層3の表面に形成される摺動面3aが非平面で構成される。摺動層3は、粗化された支持層2の表面2aに、溶射によって形成される。摺動層3の表面は、ショットブラスト処理が施された後、算術平均粗さ(Ra)が0μmを超えて2.0μm以下、十点平均粗さ(Rz)が0μmを超えて7.5μm以下、表面硬度(Hv)が、150~250の凹凸形状を持ち、被摺動物を摺動可能に支持する摺動面3aが形成される。

Description

摺動部材及び摺動部材の製造方法
 本発明は、被摺動物を摺動可能に支持する摺動部材及び摺動部材の製造方法に関する。
 従来、基材金属上に摺動層を形成した摺動部材が多く使用されてきた。例えば、自動車や建設機械に使用される摺動部材では、機械的強度に強い鋼鈑で高荷重を支え、機械的強度に弱いが潤滑性のある銅系合金からなる摺動層で被摺動物を円滑に摺動させるようになっている。このような摺動部材では、鋼板を支持層として、支持層の表面に摺動層を形成する方法として、溶射法が提案されている。溶射法とは、所望の特性を持つ基材金属とは異種の金属を燃焼ガス、プラズマ、アーク等で溶融させ、溶融した金属を圧縮空気とともにノズルから噴出させて基材金属の表面に当てることにより付着させるものである。
 この溶射法では、金属を溶射して支持層に付着させるため、支持層が平面であっても、球面等の任意の非平面であっても、支持層の表面の形状に沿った摺動面を有した摺動層を形成することができる(例えば、特許文献1参照)。
特許第3425496号公報
 特許文献1に示される溶射法では、溶射法で付着させた第一金属と母材である基材金属が、金属接合によって強い接合強度を得るために、金属表面に付着した汚れを強制的に剥離除去する清浄処理を施すようにしたものである。
 すなわち、基材金属の表面が酸化物や油等で汚れていると、汚れた基材金属表面に第一金属を付着させてから活性雰囲気中で熱処理しても、これらの汚れが基材金属と第一金属間に介在して両金属間の固体拡散を妨げ、金属的接合を不可能にしてしまう。
 そこで、基材金属表面はできるだけ清浄状態にしておかねければならないという着想に基づき、金属表面に付着した汚れを強制的に剥離除去する清浄処理を施すようにしたものである。
 基材金属に施す清浄処理としては、サンドブラストやワイヤーブラシでの研磨等が適しているとしている。しかし、溶射法で接合された支持層と摺動層からなる摺動部材は、より高負荷がかかる油圧ポンプ等に使用する場合、支持層と摺動層の接合強度がさらに要求されるようになってきた。
 本発明は、高荷重が掛かる環境下に適した接合強度を持つ摺動部材、及び摺動部材の製造方法を提供することを目的とする。
 本発明者らは、支持層と摺動層が接合される支持層の一の面を粗化することで、支持層の一の面に、溶射によって摺動層が形成でき、粗化された面のアンカー効果により、支持層と摺動層との接合強度が向上することを見出した。
 本発明は、第1の金属材料で構成された支持層と、粗化された支持層の一の面に、第1の金属材料と異なる組成の第2の金属材料を溶射により付着させて構成された摺動層とを備え、ショットブラスト処理が施された摺動層の表面に、算術平均粗さ(Ra)が0μmを超えて2.0μm以下、十点平均粗さ(Rz)が0μmを超えて7.5μm以下、表面硬度(Hv)が、150~250の凹凸形状を持ち、被摺動物を摺動可能に支持する摺動面が形成された摺動部材である。
 支持層は、一の面に対して鋭角な稜角部からなる粉体を衝突させる打撃処理で粗化されることが好ましい。また、摺動層は、一の面に対して球状の粉体を衝突させる打撃処理で緻密化されることが好ましい。更に、支持層は、第1の金属材料が鉄系の材料で構成され、摺動層は、第2の金属材料が銅系の材料で構成されることが好ましい。更に、粗化された支持層の一の面の表面粗度Raは、2μm以上であることが好ましい。また、摺動層の厚さは、0mmを超えて1.5mm以下であることが好ましい。
 また、本発明は、第1の金属材料で構成された支持層の一の面を粗化する工程と、粗化された支持層の一の面に、第2の金属材料を溶射により付着させて焼結して、支持層の一の面に沿った摺動層を形成するとともに、摺動層の表面にショットブラスト処理を施した後、算術平均粗さ(Ra)が0μmを超えて2.0μm以下、十点平均粗さ(Rz)が0μmを超えて7.5μm以下、表面硬度(Hv)が、150~250の凹凸形状を持ち、被摺動物を摺動可能に支持する摺動面を形成する工程とを含む摺動部材の製造方法である。上述した摺動層を形成する工程で、ショットブラスト処理が施されることで、摺動層が緻密化されて、所定の表面硬度が得らえる。また、ショットブラスト処理の後、所定の表面粗さの凹凸形状を持つ摺動面を形成する工程では、例えば、摺動部材と、対となる被摺動物との摺り合わせ処理が行われ、摺り合わせ処理後の摺動部材と被摺動物とが一対となって使用される。
 本発明では、支持層と摺動層が接合される支持層の一の面を粗化することで、粗化された面のアンカー効果により、支持層の一の面に、金属材料を溶射によって付着させ、溶射によって付着させた金属材料を焼結させることで、支持層と摺動層の接合強度を向上させることができる。これにより、摺動層が平面のみならず、非平面の摺動部材を形成することができる。
 これにより、主に荷重を受ける機能を持たせた支持層と、主に摺動性を向上させる機能を持たせた摺動層とを有した2層構造で、摺動面が平面のみならず、非平面の摺動部材を形成することができる。
本実施の形態の摺動部材の一例を示す平面断面図である。 本実施の形態の摺動部材の製造工程の一例を示す説明図である。 本実施の形態の摺動部材の製造工程の一例を示す説明図である。 本実施の形態の摺動部材の製造工程の一例を示す説明図である。 本実施の形態の摺動部材の製造工程の一例を示す説明図である。 本実施の形態の摺動部材の製造工程の一例を示す説明図である。 ブラスト処理で使用される金属粉体の一例を示す写真である。 ブラスト処理で使用される金属粉体の一例を示す写真である。 本実施の形態の摺動部材の顕微鏡写真である。 本実施の形態の摺動部材の顕微鏡写真である。 本実施の形態の摺動部材が適用されるピストンポンプの一例を示す構成図である。
 以下、図面を参照して、本発明の摺動部材及び摺動部材の製造方法の実施の形態について説明する。
 <本実施の形態の摺動部材の構成例>
 図1は、本実施の形態の摺動部材の一例を示す平面断面図、図2A、図2B、図2C、図2D及び図2Eは、本実施の形態の摺動部材の製造方法の一例を示す説明図である。
 本実施の形態の摺動部材1は、第1の金属材料により構成される支持層2と、摺動性等の向上を目的として、支持層2と異なる第2の金属材料により構成される摺動層3を備え、摺動層3の一の面に形成される摺動面3aが、本例の場合、平面ではない例えば凸状の球面で構成される。
 支持層2は、第1の金属材料として、鉄(Fe)、あるいは鉄を主成分として添加物が加えられた鉄(Fe)系合金により構成される。支持層2は、摺動層3の摺動面3aを本例では凸状の球面で構成するため、一の面である表面2aが凸状の球面で構成される。
 摺動部材1は、支持層2と摺動層3との接合強度を向上させるため、支持層2の表面2aが粗化される。摺動部材1は、支持層2の表面2aを粗化させる表面粗化処理として、支持層2の表面2aに対して、所定の粒度及び粒形を有した金属の粉体を衝突させる第1の打撃処理である例えば第1のブラスト処理を行うことにより、支持層2の表面2aが粗化される。
 摺動層3は、摺動性の向上を目的とした所定の組成の第2の金属材料として、銅(Cu)、あるいは銅を主成分として添加物が加えられた銅(Cu)系合金により構成される。銅(Cu)系合金としては、Cu-Sn-Bi合金、Cu-Sn合金、Cu-Zn合金などが想定される。摺動層3は、粗化によってアンカー効果が発揮された支持層2の表面2aに、銅あるいは銅系の合金を溶射により付着させ、溶射により付着された銅あるいは銅系の合金と、支持層2とを焼結することにより構成される。
 これにより、摺動部材1は、支持層2の表面2aに、支持層2の表面2aの形状に沿って所定の厚さで摺動層3が形成され、摺動層3の表面に、凸状の球面で構成された摺動面3aが形成される。
 また、摺動部材1は、耐摩耗性を向上させるため、摺動層3が緻密化される。摺動部材1は、摺動層3を緻密化させる緻密化処理として、摺動層3の摺動面3aに対して、表面粗化処理とは異なる所定の粒度及び粒形を有した金属の粉体を衝突させる第2の打撃処理である例えば第2のブラスト処理を行うことにより、摺動層3が緻密化される。
 摺動部材では、鉄あるいは鉄系の合金で摺動層を構成した場合、摺動部材と接する被摺動物が鉄である場合等に焼き付きが起こる可能性があり、摺動性が悪い。そこで、摺動部材1では、鉄、あるいは鉄系の合金で構成された支持層2の表面2aに、銅、あるいは銅系の合金で構成された摺動層3を設けることで、摺動性を向上させることができる。
 摺動層3は、支持層2の表面2aに、銅あるいは銅系の合金を溶射により付着させ、支持層2と摺動層3とを焼結することにより構成される。これにより、平面ではない形状、例えば凸状の球面で構成される支持層2の表面2aに、所定の厚さで摺動層3を形成することができる。
 摺動層3を溶射により形成する場合、支持層2の表面2aの状態によっては、接合強度が不足する可能性がある。そこで、第1のブラスト処理で粗化された支持層2の表面2aに、銅あるいは銅系の合金を溶射して摺動層3を形成することで、摺動部材1として要求される支持層2と摺動層3との接合強度を確保することができる。
 更に、摺動部材1は、第2のブラスト処理で摺動層3が緻密化されることで、摺動層3の硬度を向上させ、高荷重が掛かる環境下で要求される所望の硬度を持つ摺動層3を形成することができる。また、摺動部材1は、第2のブラスト処理で摺動層3が緻密化されることで、摺動層3が所望の厚さに形成される。更に、摺動部材1は、第2のブラスト処理で摺動層3が緻密化されて硬度が向上することで、支持層2の表面2aを粗化することによる接合強度の向上に加えて、支持層2と摺動層3との接合強度を更に向上させることができる。
 摺動部材1は、第2のブラスト処理で摺動層3が緻密化された後、対となる図示しない被摺動物との摺り合わせ処理が行われる。摺り合わせ処理の結果、摺動層3の表面に、算術平均粗さ(Ra)が0μmを超えて2.0μm以下、十点平均粗さ(Rz)が0μmを超えて7.5μm以下、表面硬度(Hv)が、150~250の凹凸形状を持つ摺動面3aが形成される。また、被摺動物の被摺動面の処理として、緻密化のためのブラスト処理が施されても良いし、施さなくても良い。更に、摺り合せ工程の後に、オーバーレイと称するメッキ工程を追加することもできる。摺り合わせ処理後の摺動部材1と被摺動物とが一対となって、例えば、後述するピストンポンプ内のシンリンダブロックの軸受として使用される。
 この摺り合わせ処理によって、摺動部材1の摺動層3の摺動面3aと、図示しない被摺動物の被摺動面との摩擦係数が下がるので、ピストンポンプ内のシリンダブロックに軸受として組み込まれた例では、ピストンポンプの起動時の摩擦が軽減される。更に、摺動層3の厚さは、厚すぎると割れやすくなり、薄いと割れにくくなるとともに熱伝導率が良くなるため、0mmを超えて1.5mm以下、好ましくは0mmを超えて0.1mm以下の厚みに形成される。摺動層3の厚さが薄いために、熱伝導率の向上に加えて、支持層2となる鉄(Fe)系合金の強度に近づくために、疲労強度向上を図ることができる。
 <本実施の形態の摺動部材の製造方法例>
 次に、各図を参照して、本実施の形態の摺動部材の製造方法について説明する。
 支持層2は、鉄あるいは鉄系の合金で構成され、図2Aに示すように、支持層2の表面2aが完成品としての摺動部材1の形状に合わせて成型される。支持層2は、本例では円板上で、かつ、支持層2の表面2aが、所定の半径を有した凸状の球面に形成される。
 支持層2は、表面2aを粗化させる表面粗化処理として、図2Bに示すように、支持層2の表面2aに対して、所定の粒度及び粒形を有した金属の粉体を衝突させる第1のブラスト処理を行うことにより、支持層2の表面2aが粗化される。
 図3A及び図3Bは、ブラスト処理で使用される金属粉体の一例を示す写真であり、図3Aは、スチールグリッドと称される金属粉体を示し、図3Bは、スチールショットと称される金属粉体を示す。第1のブラスト処理は、本例では、スチールグリットと称される粒度が425~1180μm、硬度が400~500Hvの鋭角な稜角部を有する鉄(Fe)の粉体(図3A参照)を、支持層2の表面2aに、例えば0.2~0.7MPaで、吹き付けることにより行われる。この第1のブラスト処理によって、支持層2の表面2aの表面粗度Ra(JIS B0601-1994で規定される算術平均粗さ)を2μm以上とする。2μm以下であると、アンカー効果が得られずに、溶射後の結果として、部分剥離となったり、全面剥離したりして、摺動層3が形成されなかった。
 次に、粗化された支持層2の表面2aに、図2Cに示すように、銅あるいは銅系の合金の粉末を溶射により付着させ、支持層2の表面2aに溶射により付着させた銅あるいは銅系の合金と支持層2とを焼結させる。本例では、粒度が45μm以下の銅粉を溶融させて、粗化された支持層2の表面2aに吹き付けることにより行われる。本例の場合、銅粉としてCu-Sn-Bi系のCu合金を用いた。
 次に、摺動層3を緻密化させる緻密化処理として、図2Dに示すように、摺動層3の摺動面3aに対して、所定の粒度及び粒形を有した金属の粉体を衝突させる第2のブラスト処理を行う。第2のブラスト処理は、本例では、スチールショットと称される粒度が1000~1700μm、硬度が400~500Hvの球状の鉄の粉体(図3B参照)を、摺動層3の摺動面3aに、例えば0.2~0.7MPaで、吹き付けることにより行われる。
 第2のブラスト処理では、摺動層3の空隙部を押し潰すような圧力が加えられ、空隙部を減少させて摺動層3が緻密化される。図4A及び図4Bは、本実施の形態の摺動部材の顕微鏡写真であり、図4Aは、焼結後で第2のブラスト処理の前の状態を示し、図4Bは、第2のブラスト処理の後の状態を示す。
 図4A及び図4Bに示すように、第2のブラスト処理の前と比較して、第2のブラスト処理の後の方が空隙部が減少していることがわかる。本例では、摺動層3の摺動面3aの硬度が、焼結後で第2のブラスト処理の前ではHv30程度であったものが、第2のブラスト処理の後ではHv160~175程度に向上した。なお、第2のブラスト処理後の摺動面3aには、算術平均粗さ(Ra)が0μmを超えて2.5μm以下、十点平均粗さ(Rz)が0μmを超えて10.0μm以下の凹凸形状が形成され、本例では、算術平均粗さ(Ra)が0.345μm、十点平均粗さ(Rz)が1.166μmの凹凸形状が形成された。
 これにより、摺動部材1は、図2Eに示すように、支持層2の表面2aに、支持層2の表面2aの形状に沿って所定の厚さで摺動層3が形成され、摺動層3の表面に、所定の硬度を有し、凸状の球面で構成された摺動面3aが形成される。
 なお、本実施の形態の摺動部材1では、平面ではない摺動面3aの形状として、円板状の摺動部材1で摺動面3aが凸状の球面である形状を例に説明したが、凹状の球面でもよいし、平面状の摺動面でも良い。また、摺動部材1は、円形に限るものではなく、例えば四角状で、凸状、あるいは凹状に湾曲した曲面で摺動面が形成されていても良い。
 また、第1の打撃処理として第1のブラスト処理を例示したが、この第1の打撃処理は、支持層2の表面2aを粗化させて、溶射時のアンカー効果を得ることが目的であるため、鋭角な稜角部を有する材料であれば、鉄の粉体には限定されず、例えば、ガラスビーズ、カットワイヤ、けい砂、アルミナ、ジルコニア、炭化ケイ素等を用いることができる。
 また、銅の粉体によって第2のブラスト処理を行っても良い。この銅の粉体によるブラスト処理では、銅の粉体は、粒径が350μm程度で、硬度は80~120Hvと比較的軟らかいために、摺動層3の表面への擦過傷防止が可能となる。これにより、第2のブラスト処理後に行われる摺動部材1と被摺動物との摺り合わせ処理により、摺動層3の表面に所定の表面粗さを持つ摺動面3aを形成する工程が速やかに行われる。
上述した第2のブラスト処理後に、摺動部材1と、対となる図示しない被摺動物との摺り合わせ処理が行われる。摺り合わせの結果、摺動層3の表面に、算術平均粗さ(Ra)が0μmを超えて2.0μm以下、十点平均粗さ(Rz)が0μmを超えて7.5μm以下の凹凸形状を持つ摺動面3aが形成される。本例では、算術平均粗さ(Ra)が0.173μm、十点平均粗さ(Rz)が1.041μmの摺動面3aが形成された。一方、摺り合せ処理を行った後でも、摺動面3aの表面硬度(Hv)は160~175程度であり、摺り合せ処理前の第2のブラスト処理後と比較して、表面硬度(Hv)の低下は見られなかった。
 <本実施の形態の摺動部材の適用例>
 本実施の形態の摺動部材1は、主に荷重を受ける機能を持つ支持層2と、主に摺動性を向上させる機能を持つ摺動層3とを有した2層構造で、摺動面3aを球面等の任意の形状に構成することができる。
 このため、本実施の形態の摺動部材1は、自動調心機能を有した特に油圧ポンプ等の油圧機器に適用して好適である。図5は、油圧機器の一例として、本実施の形態の摺動部材が適用されるピストンポンプの一例を示す構成図で、模式的な側断面図である。
 ピストンポンプ10は、シリンダブロック20が入力軸21に支持されてケース30に取り付けられ、入力軸21に伝達された駆動力でシリンダブロック20が回転する。シリンダブロック20には、回転方向に沿って複数のシリンダ22が形成され、各シリンダ22にピストン40が出し入れ可能に取り付けられる。
 ピストンポンプ10は、シリンダブロック20を回転可能に支持する球面軸受50が設けられる。球面軸受50は、本実施の形態の摺動部材1が適用され、シリンダブロック20との摺動面が、所定の半径を有した凸状の球面で構成される。また、被摺動物であるシリンダブロック20は、球面軸受50との摺動面が、凹状の球面で構成される。
 球面軸受50は、シリンダブロック20の回転方向に沿って開口した吸入ポート51と吐出ポート52を備え、ケース30に設けられた吸入口31と吸入ポート51を連通させ、ケース30の吐出口32と吐出ポート52を連通させて、シリンダブロック20とケース30の間に取り付けられる。
 球面軸受50は、シリンダブロック20が軸方向に押圧された状態で回転することで、シリンダブロック20と球面軸受50が相対的に摺動する。また、球面軸受50は、シリンダブロック20にラジアル方向の力が加わった場合、球面軸受50とシリンダブロック20の摺動面が接した状態を保持して、シリンダブロック20が軸方向に対して傾斜する。
 ピストンポンプ10は、シリンダブロック20の回転に伴って、ピストン40をシリンダブロック20のシリンダ22に対して出し入れさせる斜板60と、斜板60の角度を切り替えるヨーク61と、斜板60及びヨーク61を作動させる操作ピストン70及びリターンバネ80が設けられる。
 ピストンポンプ10は、シリンダブロック20の回転に伴って、シリンダブロック20からピストン40が突出する側のシリンダ22で油が吸入され、ピストン40が突入する側のシリンダ22で油が吐出される。ピストンポンプ10は、斜板60及びヨーク61の角度を変えることで、ピストン40のストロークが変動し、油の吐出量が調整可能に構成される。
 ピストンポンプ10は、斜板60及びヨーク61を揺動可能に支持する半割軸受90がケース30に設けられる。半割軸受90は、ヨーク61の軸部62が被摺動物となって円周方向に押圧された状態で揺動することで、軸部62と半割軸受90が相対的に摺動する。
 ピストンポンプ10は、シリンダブロック20が1方向に回転する構成では、油の吸入側と吐出側が固定された構成で、シリンダブロック20が正逆両方向に回転する構成では、油の吸入側と吐出側が切り替えられる構成である。球面軸受50は、シリンダブロック20が軸方向に押圧されることにより高荷重が掛かる状態で、シリンダブロック20が円周方向に沿った1方向あるいは正逆両方向に摺動する。これにより、シリンダブロック20と球面軸受50は、高荷重が掛かった状態で円方向に摺動する。
 ここで、シリンダブロック20と球面軸受50は、シリンダブロック20にラジアル方向の力が加わった場合に、摺動面が球面であることから自動調心機能が働き、球面軸受50とシリンダブロック20の摺動面が接した状態を保持して、シリンダブロック20が軸方向に対して傾斜する。
 これにより、シリンダブロック20にラジアル方向の力が加わった場合でも、シリンダブロック20に設けられたシリンダ22と、球面軸受50に設けられた吸入ポート51及び吐出ポート52との間に隙間が生じることが抑えられ、油の漏れを抑えることができる。
 また、ピストンポンプ10では、斜板60及びヨーク61が正逆両方向に揺動することで、油の吐出量が可変となる構成であり、半割軸受90は、ヨーク61の軸部62が円周方向に押圧されることにより高荷重が掛かる状態で、軸部62が円周方向に沿った正逆両方向に摺動する。これにより、軸部62と半割軸受90は、高荷重が掛かった状態で直線方向に摺動する。
 なお、本実施の形態のピストンポンプ10では、球面軸受50に本実施の形態の摺動部材1を適用した例で説明したが、形状は限定されず、半割軸受け90等にも本実施の形態の摺動部材1を適用することが可能である。
 本発明の摺動部材は、高荷重が掛かる油圧機器の軸受に適用して好適である。

Claims (7)

  1.  第1の金属材料で構成された支持層と、
     粗化された前記支持層の一の面に、前記第1の金属材料と異なる組成の第2の金属材料を溶射により付着させて構成された摺動層とを備え、
     ショットブラスト処理が施された前記摺動層の表面に、算術平均粗さ(Ra)が0μmを超えて2.0μm以下、十点平均粗さ(Rz)が0μmを超えて7.5μm以下、表面硬度(Hv)が、150~250の凹凸形状を持ち、被摺動物を摺動可能に支持する摺動面が形成された
     ことを特徴とする摺動部材。
  2.  前記支持層は、一の面に対して鋭角な稜角部からなる粉体を衝突させる打撃処理で粗化される
     ことを特徴とする請求項1に記載の摺動部材。
  3.  前記摺動層は、一の面に対して球状の粉体を衝突させる打撃処理で緻密化される
     ことを特徴とする請求項1または2に記載の摺動部材。
  4.  前記支持層が鉄系の材料で構成され、前記摺動層が銅系の材料で構成される
     ことを特徴とする請求項1~請求項3の何れか1項に記載の摺動部材。
  5.  粗化された前記支持層の一の面の表面粗度Raは、2μm以上である
     ことを特徴とする請求項1~請求項4の何れか1項に記載の摺動部材。
  6.  前記摺動層の厚さは、0mmを超えて1.5mm以下である
     ことを特徴とする請求項1~請求項5の何れか1項に記載の摺動部材。
  7.  第1の金属材料で構成された支持層の一の面を粗化する工程と、
     粗化された前記支持層の一の面に、第2の金属材料を溶射により付着させて焼結して、前記支持層の一の面に沿った摺動層を形成するとともに、
     前記摺動層の表面にショットブラスト処理を施した後、算術平均粗さ(Ra)が0μmを超えて2.0μm以下、十点平均粗さ(Rz)が0μmを超えて7.5μm以下、表面硬度(Hv)が、150~250の凹凸形状を持ち、被摺動物を摺動可能に支持する摺動面を形成する工程と
     を含むことを特徴とする摺動部材の製造方法。
PCT/JP2014/075476 2013-09-27 2014-09-25 摺動部材及び摺動部材の製造方法 WO2015046355A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14847830.8A EP3051158B1 (en) 2013-09-27 2014-09-25 Sliding member and method for producing sliding member
US15/024,595 US10443653B2 (en) 2013-09-27 2014-09-25 Sliding member and method for manufacturing sliding member
CN201480052975.7A CN105579723B (zh) 2013-09-27 2014-09-25 滑动构件和滑动构件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013202303A JP5713073B2 (ja) 2013-09-27 2013-09-27 摺動部材及び摺動部材の製造方法
JP2013-202303 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015046355A1 true WO2015046355A1 (ja) 2015-04-02

Family

ID=52743485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075476 WO2015046355A1 (ja) 2013-09-27 2014-09-25 摺動部材及び摺動部材の製造方法

Country Status (5)

Country Link
US (1) US10443653B2 (ja)
EP (1) EP3051158B1 (ja)
JP (1) JP5713073B2 (ja)
CN (1) CN105579723B (ja)
WO (1) WO2015046355A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108291310A (zh) * 2015-11-26 2018-07-17 日本发条株式会社 层叠体以及层叠体的制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6990977B2 (ja) * 2017-03-07 2022-01-12 大同メタル工業株式会社 摺動部材
JP6826466B2 (ja) * 2017-03-07 2021-02-03 大同メタル工業株式会社 摺動部材
DE102017105304B3 (de) * 2017-03-13 2018-04-12 Ks Gleitlager Gmbh Gleitlagerelement, Zwischenprodukt bei der Herstellung eines Gleitlagerelements und Verfahren zu deren Herstellung
EP3831517A4 (en) * 2018-08-02 2021-08-18 Nissan Motor Co., Ltd. SLIDING ELEMENT AND ELEMENT FOR INTERNAL COMBUSTION ENGINE
CN111561517A (zh) * 2020-04-30 2020-08-21 广东省创力智能机械设备有限公司 一种矿山机械支承组件及其制作工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190065A (ja) * 1993-12-27 1995-07-28 Sutaaraito Kogyo Kk 摺動部材
JPH10267033A (ja) * 1997-03-25 1998-10-06 Koyo Seiko Co Ltd 摺動構造
JP2000303161A (ja) * 1998-12-24 2000-10-31 Mazda Motor Corp 摺動部材の表面処理方法及び該方法を用いた摺動部材の表面平滑化方法
JP3425496B2 (ja) 1995-09-12 2003-07-14 千住金属工業株式会社 複層金属材の製造方法
JP2007284706A (ja) * 2006-04-12 2007-11-01 Toyota Industries Corp 摺動材料
JP5304974B1 (ja) * 2012-03-27 2013-10-02 千住金属工業株式会社 摺動部材

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694036A (ja) * 1992-09-11 1994-04-05 Daido Metal Co Ltd 耐フレッチング特性に優れた多層すべり軸受
JP3263799B2 (ja) * 1993-03-26 2002-03-11 フジオーゼックス株式会社 バルブリフタの表面処理方法
JP3212433B2 (ja) * 1993-12-28 2001-09-25 株式会社不二機販 金属成品の摺動部の摩耗防止方法
JPH1060617A (ja) * 1996-08-22 1998-03-03 Suruzaa Meteko Japan Kk 高速フレーム溶射方法
US20030209103A1 (en) * 2002-05-10 2003-11-13 Komatsu Ltd. Cooper-based sintering sliding material and multi-layered sintered sliding member
KR101222882B1 (ko) * 2003-09-03 2013-01-17 가부시키가이샤 고마쓰 세이사쿠쇼 소결 슬라이딩 재료, 슬라이딩 부재, 연결장치 및 슬라이딩부재가 적용되는 장치
AT502630B1 (de) * 2005-10-21 2008-01-15 Miba Sinter Austria Gmbh Bauelement, insbesondere formteil, mit einer beschichtung
JP4650893B2 (ja) * 2006-03-31 2011-03-16 大同メタル工業株式会社 すべり軸受
US8252733B2 (en) 2006-04-12 2012-08-28 Kabushiki Kaisha Toyota Jidoshokki Sliding material and sliding member using the sliding material
JP2008274762A (ja) * 2007-04-25 2008-11-13 Toyota Industries Corp 圧縮機用斜板及びその製造方法
WO2009099226A1 (ja) * 2008-02-06 2009-08-13 Kanagawa Prefecture Dlc被覆摺動部材及びその製造方法
AT509867B1 (de) * 2010-04-15 2011-12-15 Miba Gleitlager Gmbh Mehrschichtgleitlager mit einer antifrettingschicht
DE102010053338A1 (de) * 2010-12-03 2012-06-06 Schaeffler Technologies Gmbh & Co. Kg Anlaufscheibe eines Planetengetriebes
US9303230B2 (en) 2011-09-13 2016-04-05 Taiho Kogyo Co., Ltd. Sliding member and sliding material composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190065A (ja) * 1993-12-27 1995-07-28 Sutaaraito Kogyo Kk 摺動部材
JP3425496B2 (ja) 1995-09-12 2003-07-14 千住金属工業株式会社 複層金属材の製造方法
JPH10267033A (ja) * 1997-03-25 1998-10-06 Koyo Seiko Co Ltd 摺動構造
JP2000303161A (ja) * 1998-12-24 2000-10-31 Mazda Motor Corp 摺動部材の表面処理方法及び該方法を用いた摺動部材の表面平滑化方法
JP2007284706A (ja) * 2006-04-12 2007-11-01 Toyota Industries Corp 摺動材料
JP5304974B1 (ja) * 2012-03-27 2013-10-02 千住金属工業株式会社 摺動部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3051158A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108291310A (zh) * 2015-11-26 2018-07-17 日本发条株式会社 层叠体以及层叠体的制造方法
CN108291310B (zh) * 2015-11-26 2020-06-16 日本发条株式会社 层叠体以及层叠体的制造方法

Also Published As

Publication number Publication date
CN105579723B (zh) 2016-11-16
EP3051158A4 (en) 2017-05-31
CN105579723A (zh) 2016-05-11
US10443653B2 (en) 2019-10-15
JP2015068396A (ja) 2015-04-13
EP3051158B1 (en) 2018-06-27
US20160215819A1 (en) 2016-07-28
JP5713073B2 (ja) 2015-05-07
EP3051158A1 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2015046355A1 (ja) 摺動部材及び摺動部材の製造方法
JP5304974B1 (ja) 摺動部材
JPWO2009099226A1 (ja) Dlc被覆摺動部材及びその製造方法
JP5459356B2 (ja) 半割軸受
CN113811699B (zh) 用于机动车的摩擦制动器的摩擦制动体、摩擦制动器和用于制造摩擦制动体的方法
EP2135969B1 (en) Surface-oxide abrasion-resistant lubricant coating and method for forming the same
JP5713074B2 (ja) 摺動部材
JP2007262560A (ja) 低摩擦特性と耐剥離性を有する硬質膜の被覆方法及び低摩擦特性と耐剥離性を有する硬質膜の被覆部材
JP4984214B2 (ja) シリンダブロック用鉄系溶射薄膜及びシリンダブロック
JP5765490B2 (ja) 摺動部材及び摺動部材の製造方法
WO2014125621A1 (ja) 摺動部材及び摺動部材の製造方法
JP3425496B2 (ja) 複層金属材の製造方法
JP2005320933A (ja) 斜板および斜板の製造方法および斜板式圧縮機
KR20180102738A (ko) 저마찰특성을 갖는 시프트포크 및 시프트포크 패드부의 후처리 공법
JP2016117935A (ja) 摺動部材の表面処理方法及び摺動部材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052975.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847830

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15024595

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014847830

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014847830

Country of ref document: EP