WO2015046231A1 - 太陽光発電装置 - Google Patents

太陽光発電装置 Download PDF

Info

Publication number
WO2015046231A1
WO2015046231A1 PCT/JP2014/075250 JP2014075250W WO2015046231A1 WO 2015046231 A1 WO2015046231 A1 WO 2015046231A1 JP 2014075250 W JP2014075250 W JP 2014075250W WO 2015046231 A1 WO2015046231 A1 WO 2015046231A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
solar module
water
solar
pile
Prior art date
Application number
PCT/JP2014/075250
Other languages
English (en)
French (fr)
Inventor
耕祐 伊藤
信博 高橋
Original Assignee
会川鉄工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 会川鉄工株式会社 filed Critical 会川鉄工株式会社
Priority to JP2015539251A priority Critical patent/JPWO2015046231A1/ja
Publication of WO2015046231A1 publication Critical patent/WO2015046231A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • H02S40/12Means for removing snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • H02S40/425Cooling means using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar power generation device, and more particularly, to a solar power generation device equipped with a heat exchange system using underground heat.
  • a solar power generation system has been put to practical use as renewable energy. Converts light energy from the sun into electrical energy.
  • a cell (element) that performs photoelectric conversion is made of, for example, a material such as single crystal silicon, polycrystalline silicon, amorphous silicon, or a conductive polymer.
  • a module or array in which a plurality of cells are connected in series has a surface covered with, for example, resin or glass, the periphery is held by a metal frame, and the cells are protected from moisture, dirt, and the like. Such a module is sometimes called a solar panel.
  • FIG. 1 shows an example of a conventional solar power generation module used in a solar power generation device.
  • the solar module 10 terminals of a plurality of sheet-shaped power generation cells 12 are connected in series by wiring 14, and the surface of the power generation cell 12 is covered with a protective material 16 such as resin or glass.
  • the outer periphery of the solar module 100 is fixed by a fixed frame 18.
  • Patent Document 1 Since the power generation efficiency or output of the solar power generation device depends on the incident angle of sunlight, a device equipped with a device for driving the module to track the sunlight (Patent Document 1) or the installation location can be moved. And what can change the attitude
  • the conventional solar power generation system has the following two problems.
  • the first point is measures against snow in winter in snowy countries. If snow accumulates on the glass or the like on the surface of the solar module, not only during snowfall, but also on a clear day after snowfall, light is blocked by the snow on the glass surface and power generation is reduced.
  • the installation gradient is made steep to prevent snow accretion, but the incident angle to the glass surface of the solar module also becomes steep by making the installation gradient steep. For this reason, the reflection on the glass surface increases and the amount of power generation decreases.
  • the second point is a decrease in power generation efficiency as the temperature rises due to solar radiation.
  • Crystalline silicon solar cells are highly temperature dependent, and the output decreases by 4-5% each time the surface temperature of the solar module increases by 10 ° C. In the summer, the amount of solar radiation increases, but the surface temperature of the solar module may rise to 70 ° C. or higher, resulting in a decrease in power generation efficiency.
  • the present invention solves such a conventional problem, and in order to promote the utilization of solar power generation, an underground heat collection system and an electroless snow melting system using a heat pipe, and an underground using a steel pipe pile.
  • An object is to provide a hybrid energy system composed of a cold and hot water tank and a watering system.
  • a further object of the present invention is to provide a solar power generation apparatus that can be applied to all seasons including winter and summer, and that can effectively circulate groundwater.
  • a photovoltaic power generation apparatus includes a solar module that contains a plurality of cells that convert light energy into electrical energy, a heat pipe that uses underground water in the ground as a heat source, and at least an upper end portion of the solar module.
  • the heat conducting member is formed with a recess capable of accommodating at least a part of the heat pipe.
  • a portion of the heat pipe protruding from the recess of the heat conducting member is covered with a metal covering member.
  • the covering member includes a recess corresponding to the outer shape of the heat pipe, and a flat portion connected to the recess, and the flat portion is in contact with the heat conducting member.
  • the covering member includes fixing means for fixing the heat pipe to the heat conducting member.
  • the heat pipe is thermally coupled to ground water in a pile constructed in the ground.
  • a rainwater reservoir is formed below the pile.
  • the heat pipe forms the heat collecting part and the heat radiating part in a closed system.
  • the solar power generation apparatus further includes a cooling pipe coupled to the heat conducting member, and the cooling pipe cools the solar module using the groundwater.
  • the heat pipe is attached to an upper surface of the heat conducting member, and the cooling pipe is attached to a side surface of the heat conducting member.
  • a concave portion for accommodating the cooling pipe is formed on the side surface.
  • the solar power generation device further includes a direct current pump operable by using electric power generated by the solar power module, and the direct current pump pumps ground water into the cooling pipe.
  • the solar power generation device further includes a temperature detection sensor that detects an ambient temperature of the solar module, and includes a control unit that operates the DC pump when the temperature of the solar module becomes equal to or higher than a threshold value.
  • the solar power generation device further includes an installation member capable of installing one or a plurality of solar modules at a certain inclination angle.
  • the present invention it is possible to prevent snow from accumulating on the surface of the solar panel and to suppress a decrease in the amount of power generation in winter. Furthermore, according to this invention, a solar panel can be cooled and the fall of the power generation efficiency in summer can be prevented. In addition, the groundwater can be efficiently circulated and provided with a function of transmitting surplus power.
  • FIG. 3A is a cross-sectional view of the solar module shown in FIG. 2 taken along line AA
  • FIG. 3B is an enlarged top view
  • FIG. 3C is a diagram showing another example of heat pipe attachment.
  • FIG. 8A is a cross-sectional view of the solar module shown in FIG. 7 taken along line BB
  • FIG. 8B is an enlarged top view
  • FIG. 8C is a perspective view of the heat pipe.
  • It is a block diagram which shows the electric constitution of the solar power generation device which concerns on the 2nd Example of this invention.
  • the photovoltaic power generation apparatus 100 of the present embodiment includes a solar module 10, a pile 110 constructed in the ground, a heat pipe 120 that enables heat exchange using underground heat, and a heat pipe 120 that is solar A thermal conductive member 130 that is attached to the optical module 10 and that is thermally coupled to the solar module 10 is provided.
  • the solar module 10 includes a plurality of cells 12, a wiring 14 that connects the cells 12 in series, a glass or resin protective material 16 that protects the surfaces of the plurality of cells 12, and cells. 12 and a fixing frame 18 for fixing the outer periphery of the protective material 16 and the like, and has a substantially rectangular shape.
  • a configuration is a typical configuration of a solar module, and the solar module is not necessarily limited to such a configuration.
  • the pile 110 is preferably a cylindrical metal steel pipe and is constructed in the ground.
  • the pile 110 for example, a blade pie or a convex pile made by a living environment design room can be used.
  • the depth D of the pile 110 is preferably 5 to 10 m from the ground surface, and at a depth of several meters underground, a constant temperature close to the annual average temperature can be expected.
  • groundwater Q is stored in the buried pile 110. Groundwater is one that has been infiltrated from the ground surface due to rain, etc., one that has been stored naturally, or one that has been supplied from the outside.
  • the temperature of the groundwater Q depends on the depth D of the pile 110, and the temperature of the groundwater rises as the depth D of the pile 110 increases.
  • the heat pipe 120 is a superconducting conductor, and a working fluid is sealed inside the heat pipe 120, and a large amount of heat can be transported with a slight temperature difference due to the latent heat of the working fluid and the movement of steam. is there.
  • one end 120 ⁇ / b> A and the other end 120 ⁇ / b> B of the heat pipe 120 are arranged in the groundwater Q of the pile 110.
  • groundwater is used as the working fluid.
  • one end portion 120A and the other end portion 120B of the heat pipe 120 form a heat collecting portion that is thermally coupled to the groundwater.
  • the heat pipe 120 extending from one end portion 120 ⁇ / b> A extends through substantially the entire upper end portion 10 ⁇ / b> B of the solar module 10 through the side portion 10 ⁇ / b> A of the solar module 10.
  • the heat pipe 120 is further folded back at the edge of the upper end portion 10B, and attached to the other end portion 10B again via the upper end portion 10B and the side portion 10A.
  • positioned at the upper end part 10B of the heat pipe 120 is a heat radiating part, and when the ground water is circulated through the heat radiating part, heat is radiated from the heat pipe 120 to the solar module 10.
  • FIG. 3 is a cross-sectional view of the solar module of FIG. 2 along the line AA.
  • a heat conduction plate 130 made of a metal material having a high thermal conductivity is attached to the side portion 10A and the upper end portion 10B of the fixed frame 18 of the solar module 10.
  • the heat conductive plate 130 is preferably made of, for example, aluminum or copper.
  • the heat conductive plate 130 has a constant thickness, for example, a width equal to the width of the fixed frame 18. However, the width of the heat conductive plate 130 may be larger or smaller than the width of the fixed frame 18.
  • the heat conductive plate 130 extends on the fixed frame 18 along the upper end 10B from the side portion 10A, and the flat bottom surface of the heat conductive plate 130 is in close contact with the flat surface of the metal fixed frame 18. Both are well thermally bonded.
  • the fixing method of the heat conductive plate 130 is arbitrary, but can be fixed to the fixing frame 18 with screws or the like, for example.
  • a mode in which the heat conductive plate 130 is bonded to the fixed frame 18 using an adhesive having high heat conductivity may be used.
  • each recess 132 has a diameter equal to or somewhat larger than the diameter of the heat pipe 120, and approximately half of the heat pipe 120 is accommodated in the recess 132.
  • an adhesive having a high thermal conductivity may be filled between the heat pipe 120 and the recess 132.
  • a fixture 150 for fixing the heat pipe 120 to the heat conduction plate 130 may be used.
  • the fixture 150 is made of a material having high thermal conductivity, and is made of a metal such as aluminum, copper, or iron, for example.
  • the fixture 150 includes two recesses 152 substantially the same as the outer diameter of the heat pipe 120 and a flat portion 154 connected to the recesses 152, and the heat projecting from the heat conducting plate 130 into the two recesses 152.
  • the upper half of the pipe 120 is held and the flat portion 154 is joined to the heat conducting plate 130.
  • the heat pipe 120 is fixed to the heat conduction plate 130 by the fixing bracket 150, and further, the upper half of the heat pipe 120 is covered by the fixing bracket 150, thereby suppressing heat dissipation from the heat pipe 150 to the outside air.
  • the thermal coupling between the heat pipe 120 and the heat conducting plate 130 is improved through the fixing metal 150.
  • the fixing metal 150 has a bent portion 156 in which both ends are bent at substantially right angles.
  • the bent portion 156 covers a part of the side surface of the heat conductive plate 130 to facilitate positioning of the fixing metal 150 and improve the thermal coupling between the heat conductive plate 130 and the heat pipe 120 or the fixing metal 150.
  • the width W of the fixing bracket 150 is larger than the gap S of the fixing bracket 150.
  • FIG. 3C shows another example of attachment.
  • the fixture 150 may be fixed to the heat conducting plate 130 with screws 160.
  • the flat portion 154 of the fixing bracket 150 and the heat conducting plate 130 are fixed by the screw 160.
  • the heat pipe 120 is firmly fixed to the heat conducting plate 130, and the thermal coupling is reliably ensured.
  • the heat conductive board 130 showed the example formed in the side part 10A and the upper end part 10B of a solar cell module, the heat conductive board 130 should just be formed in the upper end part 10B at least. .
  • the heat pipe 120 is laid so as to surround the outer periphery of the solar module 10. That is, it starts from one end 120A in the pile 110, and passes from there to one side 10A, the upper end 10B, the other side 10C, and the lower end 10D of the solar module 10, and at the other end 120B. Terminate.
  • the heat conducting plate 130 is formed with one recess 132 for accommodating one heat pipe 120.
  • the heat conductor 130 may be formed only on the upper end portion 10B of the solar module 10, or is formed on one side portion 10A, the upper end portion 10B, the other side portion 10C, and the lower end portion 10D. There may be.
  • the heat pipe 120 contains the working fluid in a completely closed system.
  • the hydraulic fluid of the heat pipe 120 is not necessarily limited to groundwater, and other media can be used.
  • the fluid is excellent in heat exchange efficiency, but for example, antifreeze or refrigerant gas can also be used.
  • a rainwater reservoir 200 is embedded under the pile 110. It is possible to form a completely closed space by the pile 110 and accommodate the groundwater Q therein, but in order to facilitate the driving of the pile 110, a through hole may be formed at the tip of the pile 110. is there. In this case, since a completely closed space is not formed by the pile 110, the water level of the groundwater Q in the pile 110 may fluctuate, and heat conduction by the heat pipe 120 may not be sufficiently performed.
  • a rainwater reservoir 200 which is a container having a certain depth D1, a certain width W1, and a certain length, is buried below the pile 110, and the groundwater Q1 is stored in the rainwater reservoir 200.
  • the groundwater Q is stably stored in 110.
  • the operation of this embodiment will be described.
  • the temperature of the solar module 10 exposed to the outside air decreases in winter or the like
  • the temperature of the heat pipe 120 installed at the upper end portion 10B of the solar module 10 also decreases.
  • the temperature of the groundwater Q in which the pile 110 is buried is not fluctuated and is stable, and is higher than the temperature of the heat pipe 120 near the solar module. Due to this temperature difference, the groundwater Q, which is the working fluid, is automatically pumped up and reaches the upper end portion 10B of the solar module 10.
  • the pumped hydraulic fluid can supply a heat source to the solar module 10 through the heat conducting plate 130 and can increase the temperature of the solar module 10.
  • the heat-exchanged hydraulic fluid is circulated in the pile 110 again.
  • FIG. 7 shows a schematic configuration of the photovoltaic power generation apparatus 200 according to the second embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the solar power generation device of the second embodiment further includes a function of cooling the solar module.
  • the photovoltaic power generation apparatus 200 includes a cooling pipe 210 for cooling the solar module 10 and a DC pump 220 for pumping up the groundwater Q.
  • One end 210 ⁇ / b> A of the cooling pipe 210 is disposed in the ground water Q of the pile 110, and is attached to the upper end 10 ⁇ / b> B via the DC pump 220 and the side 10 ⁇ / b> A of the solar module 10.
  • the other end 210B of the cooling pipe 210 may be open or closed.
  • the cooling pipe 210 may be made of the same material as the heat pipe 120 or may be made of another metal material.
  • FIG. 8 is a diagram for explaining the mounting of the cooling pipe.
  • an L-shaped heat conduction plate 130A is fixed to at least the upper end portion 10B of the solar module 10, and a heat pipe is formed in the recess formed on the upper surface of the heat conduction plate 130A. 120 is housed.
  • a recess 132A is formed on the side surface 131 (the light receiving surface side of the solar module) of the heat conducting plate 130A, and a part (for example, almost the lower half) of the cooling pipe 210 is accommodated in the recess 132A and fixed thereto. Is done.
  • the cooling pipe 210 can be fixed to the heat transfer plate 130A using a member such as the fixing bracket 150 shown in FIG.
  • the orthogonal L-shaped bottom surface of the heat conduction plate 130A is fixed so as to be in close contact with the orthogonal upper surface and side surfaces of the fixed frame 18, and the side surface 131 of the heat conduction plate 130A is received by the solar module. It is aligned with the length of the side surface of the fixed frame 18 so as not to cover the surface.
  • the part in which the part which attaches the heat pipe 120 and the part which attaches the cooling pipe 210 are integrally formed is used for 130 A of heat conductive plates, it is not restricted to this, Both parts may be separate bodies.
  • the cooling pipe 210 has a through hole 212 that penetrates the side wall, and a plurality of through holes 212 are formed in the axial direction of the cooling pipe 210.
  • the cooling pipe is designed so that the plurality of through holes 212 are positioned at equal intervals in the upper end portion 10 ⁇ / b> B of the solar module 10, and the direction of the through holes 212 is set to the angle ⁇ from the side surface 131.
  • the groundwater Q is pumped up and supplied from the through hole 212 of the cooling pipe 210 toward the light receiving surface of the solar module 10.
  • the through-hole 212 is preferably supplied with groundwater Q in the form of a spray, and a diameter required for this purpose is selected. Furthermore, a nozzle or the like for spraying the groundwater Q into the through hole 212 is attached.
  • the DC pump 220 is operated by the DC voltage generated by the solar module 10 or by the DC voltage from the battery that stores the electric power generated by the solar module 10. As shown in FIG. 7, the DC pump 220 pumps the groundwater Q in the pile 110 from one end 210 ⁇ / b> A of the cooling pipe 210, and supplies this to the cooling pipe 210 located at the upper end 10 ⁇ / b> B of the solar module 10. .
  • the groundwater Q pumped up is sprayed from the through hole 212 and supplied to the entire surface of the protective material 16 of the solar module 10.
  • the groundwater Q has a constant temperature, and can cool this when the temperature of the solar module 10 rises.
  • the sprayed groundwater Q ishes away dust and dirt adhering to the protective material 16 of the solar module 10 (for example, a light receiving surface such as glass or plastic).
  • the groundwater Q used for cooling may be returned to the pile 110 from the ground again.
  • the cooling pipe is integrally attached using the heat conductive plate 130A for fixing the heat pipe 120, the groundwater Q sprayed from the cooling pipe is discharged from the upper end portion 10B of the solar module 10. Can be dropped. Further, by using the heat conductive plate 130A, a dedicated attachment member for the cooling pipe is not required, so that an increase in the number of parts can be suppressed, and cost reduction and space saving can be achieved. Furthermore, since the cooling water used for the cooling pipe 210 is groundwater Q like the working fluid of the heat pipe 120, it is possible to embed the heat pipe and the cooling pipe together in one pile 110, and the installation work And the construction period can be shortened.
  • FIG. 9 is a block diagram illustrating an electrical configuration of the photovoltaic power generation apparatus according to the present embodiment.
  • a temperature sensor 300 that detects the temperature of the solar module 10
  • a timer 310 that measures time
  • a memory 320 that stores programs, data, and the like
  • a controller 330 that controls each unit, and electric power generated by the solar module 10
  • the battery 340 for storing the power
  • the power supply unit 350 for supplying a constant DC voltage to the DC pump 220 using the power from the battery 340 or the solar module 10.
  • the controller 330 can control each unit by executing a program stored in the memory 320. This program can be changed by the user.
  • FIG. 10 is a flowchart showing a first operation example of this embodiment.
  • the temperature sensor 300 detects the ambient temperature of the solar module 10 and is installed, for example, on the fixed frame 18 of the solar module 10.
  • the detection result is provided to the controller 330.
  • the controller 330 determines whether or not the detected temperature of the solar module 10 is equal to or higher than a threshold value (S102).
  • the threshold value can be arbitrarily set, and is stored in the memory 320, for example.
  • the threshold value is a temperature at which the solar module 10 needs to be cooled, in other words, a temperature at which a decrease in conversion efficiency of the solar module cannot be tolerated.
  • the controller 330 determines that the detected temperature is equal to or higher than the threshold value, the controller 330 causes the power supply unit 350 to supply power to the DC pump 220, and the DC pump 220 is activated (S104).
  • the DC pump 220 is operated, as described above, the groundwater Q in the pile 110 is pumped into the cooling pipe 210, and the relatively cool groundwater Q is sprayed from the upper end portion 10B of the solar module 10, and the solar module 10 is cooled.
  • FIG. 11 is a flowchart showing a second operation example of this embodiment.
  • a time schedule for cooling the solar module 10 is stored in the memory 320 in advance.
  • the controller 330 reads the time schedule from the memory 320 (S200), and then the controller 330 determines whether or not the current time matches the time schedule (S202). If the time scale coincides, the controller 330 operates the DC pump 220 via the power supply unit 350 (S204). At the same time, the timer 310 is activated (S206). It is monitored by the timer 310 whether or not a predetermined time has passed (S208), and during that time, the DC pump 220 is operated and the solar module 10 is cooled. When the predetermined time is measured by the timer 310, the controller 330 stops the DC pump 220 (S210).
  • FIG. 12 is a diagram illustrating a configuration example when the photovoltaic power generation apparatus includes a plurality of photovoltaic modules.
  • the photovoltaic power generation apparatus includes four solar modules 10, and two piles 110 are constructed in the ground, and the heat pipe 120 is fixed on the heat conduction plate 130 from the two piles 110. ing.
  • the heat conductive plate 130 is indicated by hatching for easy understanding.
  • the heat conductive plate 130 extends so as to be continuous with the upper end portions 10B of the four solar modules 10, and is thermally coupled to the fixed frames 18 of the four solar modules.
  • the heat pipe 120 extends to the second solar module, and is folded back from there to be returned to the original pile 110.
  • the number of piles to be constructed is arbitrary, and four piles may be constructed for four solar modules, and heat pipes that use the groundwater of each pile as a heat source may be attached to each solar module. .
  • one pile may be constructed for four solar modules, and heat pipes may be arranged from one pile to four solar modules.
  • FIG. 13A is a diagram illustrating a schematic configuration of the photovoltaic power generation apparatus according to the third embodiment.
  • the solar power generation apparatus includes a plurality of solar modules 10 as in the second embodiment, and a cooling pipe 210 is attached to the upper end portion of the solar modules 10.
  • An AC pump (not shown) is connected to the cooling pipe 210, and the AC pump is activated to pump up groundwater, and the groundwater is sprayed from the cooling pipe 210 onto the surface of the solar module 10.
  • a drain groove 400 is attached to the lower end portion of the solar module 10 to receive water or rainwater sprayed from the cooling pipe 210 and guide it to the ground. For example, as shown in FIG.
  • the drain groove 400 is a semicircular toy and is installed along the lower end of the solar module 10.
  • An annular guide pipe 410 is connected to one or both ends of the drain groove 400, and the guide pipe 410 discharges water held in the drain groove 400 to the underground at a desired position.
  • a rainwater reservoir 200 as described in the first embodiment is buried in the ground.
  • the rainwater reservoir 200 is embedded below the pile 110, and more preferably, is embedded with a certain length and a certain width over a region where the solar module 10 is installed. In this way, the water stored in the rainwater reservoir 200 is effectively supplied to the pile 110.
  • a plurality of plants 420 are planted in the vicinity of the guide tube 410 and on the region where the rainwater reservoir 200 is embedded.
  • the plant 420 is grass, tree, etc., and the kind thereof is not limited.
  • the temperature of the water stored in the rainwater reservoir 200 or the groundwater can be further stabilized. .
  • the temperature of the heat-exchanged water is relatively high, and when such water joins the water in the rainwater reservoir 200, the overall temperature Will rise.
  • latent heat of vaporization through the plant 420 is generated, thereby cooling the ground surface and contributing to the cooling of the water in the rainwater reservoir 200.
  • FIG. 14 shows an electrical configuration of the photovoltaic power generator according to the third embodiment.
  • an AC pump 500 is provided instead of the DC pump of the second embodiment.
  • the third embodiment includes a battery 510 that stores electric power generated by the solar module, a battery control unit 520 that monitors charge / discharge of the battery 510 and controls charge / discharge, and the solar module 10.
  • the inverter 530 that converts the direct current generated in step 1 into an alternating current and the power transmission unit 540 that transmits the alternating current to the outside are provided.
  • the battery control unit 520 monitors the charge capacity of the battery 510 when the solar module 10 is generating power, and supplies the power generated by the solar module 10 to the battery 510 if the capacity is below a certain value. On the other hand, if the capacity exceeds a certain value, the generated power is supplied to the inverter 530. Furthermore, when using the power generated by the solar power generation device, the battery control unit 520 controls the supply of the power generated by the solar module 10 and / or the power stored in the battery 510. For example, when sufficient power generation by the solar module 10 cannot be obtained at night or in rainy weather, the power stored in the battery 510 is supplied to the inverter 530, and the power generation by the solar module 10 is performed during the daytime. If the amount is sufficient, the power of the solar module 10 is supplied to the inverter 530. If the amount of power generated by the solar module 10 is insufficient, the power of the battery 510 is supplemented.
  • the inverter 530 converts the supplied DC voltage into an AC voltage having a desired frequency, for example, 50 Hz or 60 Hz.
  • the inverter 530 may include a booster circuit that boosts the voltage generated by the solar module 10.
  • Inverter 530 outputs an alternating current to alternating current pump 500 or power transmission unit 540 in accordance with control C ⁇ b> 1 from controller 330.
  • the power transmission unit 540 transmits the alternating current supplied from the inverter 530 to the outside.
  • the controller 330 activates the AC pump 500 when the temperature sensor 300 detects that the surface temperature of the solar module 10 is equal to or higher than a certain level, and starts the cooling pipe 210 from the upper end of the solar module 10.
  • the solar module is cooled by spraying water.
  • the battery control unit 520 supplies the power of the battery 510 and / or the solar module 10 to the inverter 530, and the AC power converted by the inverter 530 is supplied to the AC pump 500.
  • the controller 330 can use the timer 310 to start the AC pump 500 according to a predetermined schedule.
  • the water discharged from the upper end portion of the solar module 10 passes through the surface of the solar module 10 and is effectively collected in the drain groove 400 installed at the lower end portion, and the collected water is grounded by the guide tube 410. To be discharged. Since the rainwater reservoir 200 is embedded below the pile 110, the water used for cooling is effectively collected by the rainwater reservoir 200. For this reason, it is possible to reuse the used water without waste, which is particularly effective when there is a shortage of groundwater. Thus, the stored water is pumped up again by the pump 500 and used as cooling water. For example, during the summer season in August, the outdoor air temperature during the day becomes 30 ° C.
  • the surface temperature of the solar module 10 rises to a temperature higher than the outdoor air temperature, for example 50 ° C.
  • the surface temperature can be reduced by about 20 degrees, and the power generation efficiency can be increased by about 10%.
  • the ground surface is cooled by the action of the latent heat of vaporization of the plant 420, and therefore the rise in the temperature of underground water in the ground is also suppressed. Therefore, when the circulated groundwater is pumped up again for cooling the solar module, the increase in the temperature of the groundwater is suppressed, so that the solar module can be effectively cooled.
  • the power generated by the solar module 10 is supplied to the inverter 530 under the control of the controller 330, and the power transmission unit Power can be transmitted to the outside via 540.
  • the inverter 530 can also supply AC power to the AC pump 500.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】 本発明は、冬季および夏季を含むオールシーズンに適応可能であり、かつ地下水を効果的に循環可能な太陽光発電装置を提供することを目的とする。 【解決手段】 本発明の太陽光発電装置は、太陽光モジュール10と、地下水を含む水を貯水可能な円筒状の杭110と、太陽光モジュールと熱的に結合された熱伝導部材と、杭110内の水を熱源に利用したヒートパイプ120と、杭110内の水を利用する冷却パイプ210と、太陽光モジュール10の表面を通過する水を保持するドレイン溝400と、ドレイン溝400で保持された水を地中へガイドするガイド管410と、太陽光モジュールによって発電された電力を供給可能なバッテリーと、直流電圧を交流電圧に変換するインバータと、杭110内の水を冷却パイプ210内へ汲み上げるための交流ポンプと、インバータによる変換された交流電圧を送電する送電部とを有する。 

Description

太陽光発電装置
 本発明は、太陽光発電装置に関し、特に、地中熱を利用した熱交換システムを搭載した太陽光発電装置に関する。
 再生可能エネルギーとして、太陽光を利用した発電システムが実用化されている。太陽からの光エネルギーを電気エネルギーに変換する。光電変換を行うセル(素子)は、例えば、単結晶シリコン、多結晶シリコン、アモルファスシリコン、導電性ポリマー等の材料によって行われる。複数のセルを直列に接続したモジュールまたはアレイは、例えば、樹脂またはガラスによって表面が覆われ、周囲が金属枠によって保持され、セルが湿気、汚れ等から保護されている。このようなモジュールは、太陽光パネルと呼ばれることもある。モジュールまたはパネルを複数組み合わせることで、受光面積の大きな大出力の太陽光発電装置を構成することができる。
 図1に、太陽光発電装置で用いられる従来の太陽光発電モジュールの一例を示す。太陽光モジュール10は、複数のシート状の発電セル12の端子間を配線14によって直列接続し、発電セル12の表面を樹脂やガラスなどの保護材16で覆っている。そして、太陽光モジュール100の外周は、固定枠18によって固定されている。
 太陽光発電装置の発電効率または出力は、太陽光の入射角度によって左右されので、太陽光を追尾するようにモジュールを駆動させる装置を備えたもの(特許文献1)、あるいは設置場所の移動が可能であって、太陽の向きに対応して太陽光発電パネルの姿勢を変更することができるもの(特許文献2)が提案されている。また、図1に示すような保護材16の表面が砂で荒らされて、磨りガラス状になると、光透過率が劣化してしまうので、保護材16の代わりに交換可能な透明カバーを用いるモジュールが提案されている(特許文献3)。さらに、太陽光発電パネルが高温になると、発電能力が低下することから、パネル表面に散水して温度上昇を防止することが提案されている(特許文献4)。
特開2013-157595号公報 特開2013-105955号公報 特開2013-122960号公報 特開2010-129677号公報
 従来の太陽光発電システムには、次のような2つの課題がある。第1点は、雪国における冬季の雪対策である。太陽光モジュール表面のガラス等に積雪してしまうと、降雪時だけでなく、降雪後の快晴の日にもガラス表面の冠雪によって遮光され発電量が低下してしまう。また、従来の太陽光モジュールでは、設置勾配を急にすることで、着雪防止を図っていたが、設置勾配が急になることで、太陽光モジュールのガラス面への入射角度も急になるため、ガラス面での反射が大きくなり発電量が低下してしまう。
 第2点は、日射による温度上昇に伴い発電効率の低下である。結晶シリコン系の太陽電池は、温度依存性が高く、太陽光モジュールの表面温度が10℃上昇するごとに出力が4~5%減少する。夏季になると日射量は多くなるが、太陽光モジュールの表面温度は70℃以上にまで上昇することがあるため、発電効率が低下してしまう。
 本発明は、このような従来の課題を解決するものであり、太陽光発電の活用を促進するため地中熱採熱システムとヒートパイプを利用した無電融雪システム、ならびに鋼管杭を利用した地中冷温貯水槽と散水システムで構成されるハイブリッドエネルギーシステムを提供することを目的とする。
 さらに本発明は、冬季および夏季を含むオールシーズンに適応可能であり、かつ地下水を効果的に循環可能な太陽光発電装置を提供することを目的とする。
 本発明に係る太陽光発電装置は、光エネルギーを電気エネルギーに変換するセルを複数収容した太陽光モジュールと、地中内の地下水を熱源に利用したヒートパイプと、前記太陽光モジュールの少なくとも上端部に固定され、前記太陽光モジュールと熱的に結合された熱伝導部材とを有し、前記ヒートパイプは、地下水の熱源に結合された集熱部と熱を放熱する放熱部とを有し、前記ヒートパイプ内の熱媒体が前記集熱部と放熱部との間で循環され、前記放熱部が前記熱伝導部材に熱的に結合される。
 好ましくは熱伝導部材には、前記ヒートパイプの少なくとも一部が収容可能な凹部が形成される。好ましくは前記熱伝導部材の凹部から突出されたヒートパイプの部分が金属製の被覆部材によって被覆される。好ましくは前記被覆部材は、ヒートパイプの外形に応じた窪みと、当該窪みに接続された平坦な部分とを含み、前記平坦な部分が前記熱伝導部材に接触される。好ましくは前記被覆部材は、前記ヒートパイプを前記熱伝導部材に固定する固定手段を含む。好ましくは前記ヒートパイプは、地中に施工された杭内の地下水に熱的に結合される。好ましくは前記杭の下方に雨水溜めが形成される。好ましくは前記ヒートパイプは、閉じた系内に前記集熱部および前記放熱部を形成する。
 好ましくは太陽光発電装置はさらに、前記熱伝導部材に結合された冷却パイプを有し、前記冷却パイプは、前記地下水を利用して太陽光モジュールを冷却する。好ましくは前記熱伝導製部材の上面には前記ヒートパイプが取付けられ、前記熱伝導製部材の側面には前記冷却パイプが取付けられる。好ましくは前記側面には、冷却パイプを収容する凹部が形成される。好ましくは太陽光発電装置はさらに、太陽光モジュールで発電された電力を利用して動作可能な直流ポンプを含み、前記直流ポンプは、前記冷却パイプ内に地下水を汲み上げる。好ましくは太陽光発電装置はさらに、太陽光モジュールの周囲温度を検出する温度検出センサーを含み、太陽光モジュールの温度がしきい値以上になったとき、前記直流ポンプを作動させる制御手段を含む。好ましくは太陽光発電装置はさらに、1つまたは複数の太陽光モジュールを一定の傾斜角で設置可能な設置部材を含む。
 本発明によれば、太陽光パネルの表面に雪が堆積することを防止し、冬場の発電量の低下を抑制することができる。さらに本発明によれば、太陽光パネルを冷却することができ、夏場の発電効率の低下を防止することができる。さらに、地下水の循環利用が効率的であり、かつ余剰電力を送電する機能を備えることができる。
従来の太陽光モジュールの概略断面図である。 本発明の第1の実施例に係る太陽光発電装置の概要を説明する図である。 図3(A)は図2に示す太陽光モジュールのA-A線断面図、図3(B)は上部拡大図、図3(C)は、ヒートパイプ取付けの他の例を示す図である。 本発明の第1の実施例に係る太陽光発電装置の変形例を示す図である。 本発明の第1の実施例に係る太陽光発電装置の変形例を示す図である。 本発明の第1の実施例に係る太陽光発電装置の変形例を示す図である。 本発明の第2の実施例に係る太陽光発電装置の概要を説明する図である。 図8(A)は図7に示す太陽光モジュールのB-B線断面図、図8(B)は上部拡大図、図8(C)はヒートパイプの斜視図である。 本発明の第2の実施例に係る太陽光発電装置の電気的な構成を示すブロック図である。 本発明の第2の実施例に係る太陽光発電装置の第1の動作例を説明するフローチャートである。 本発明の第2の実施例に係る太陽光発電装置の第1の動作例を説明するフローチャートである。 本発明の実施例に係る太陽光発電装置が複数の太陽光モジュールを含むときの例を示す図である。 本発明の第3の実施例に係る太陽光発電装置の構成を示す図である。 本発明の第3の実施例に係る太陽光発電装置の電気的な構成を示すブロック図である。
 次に、本発明の実施の形態について図面を参照して詳細に説明する。なお、図面のスケールは、発明の特徴を分かり易くするために強調しており、必ずしも実際のデバイスのスケールと同一ではないことに留意すべきである。
 本発明の第1の実施例に係る太陽光発電装置の概要を図2を参照して説明する。本実施例の太陽光発電装置100は、太陽光モジュール10と、地中に施工される杭110と、地中熱を利用して熱交換を可能にするヒートパイプ120と、ヒートパイプ120を太陽光モジュール10に取付けるとともに太陽光モジュール10との熱的結合を行う熱導電性部材130とを備えて構成される。
 太陽光モジュール10は、図1に示したように、複数のセル12と、各セル12を直列接続する配線14と、複数のセル12の表面を保護するガラスまたは樹脂の保護材16と、セル12や保護材16の外周を固定する固定枠18等を有し、概ね矩形状を有する。但し、このような構成は、太陽光モジュールの典型的な構成であり、太陽光モジュールは必ずしもこのような構成に限定されない。
 杭110は、好ましくは円筒状の金属鋼管であり、地中内に施工される。杭110は、例えば、有限会社住環境設計室製のブレードパイスまたはコンベックスパイルを用いることができる。杭110の深さDは、好ましくは地表面から5~10mであり、地中数メートルの深さでは、年間平均気温にほぼ近い一定の温度が期待することができる。1つの好ましい態様では、埋設された杭110内には、地下水Qが貯蔵される。地下水は、雨などによって地表面から滲入したもの、あるいは自然に貯蔵されたもの、外部から供給されたものなどである。地下水Qの温度は、杭110の深さDに依存し、杭110の深さDが大きくなるにつれ地下水の温度は上昇する。
 ヒートパイプ120は、超電導伝導体であり、ヒートパイプ120の内部には作動液が封入され、この作動液の潜熱と蒸気の移動により、わずかの温度差で大量の熱を輸送することが可能である。図2に示す例では、ヒートパイプ120の一方の端部120Aと他方の端部120Bとが杭110の地下水Q内に配置される。この場合には、作動液として地下水が用いられる。従って、ヒートパイプ120の一方の端部120A、他方の端部120Bが地下水に熱的に結合された集熱部を形成する。一方の端部120Aから延びたヒートパイプ120は、太陽光モジュール10の側部10Aを介して太陽光モジュール10の上端部10Bのほぼ全域を延在される。ヒートパイプ120はさらに、上端部10Bの縁で折り返され、再び上端部10B、側部10Aを介して他方の端部10Bになるように取付けられる。ヒートパイプ120の上端部10Bに配置された部分は放熱部であり、地下水が放熱部に循環されたとき、ヒートパイプ120から太陽光モジュール10に放熱される。
 図3は、図2の太陽光モジュールのA-A線断面図である。同図に示すように、太陽光モジュール10の固定枠18の側部10Aおよび上端部10Bには、熱伝導率の高い金属製の材料から構成された熱伝導板130が取り付けられる。熱伝導板130は、例えば、アルミニウム、銅などから構成されるのが好ましい。熱伝導板130は一定の厚さを有し、例えば固定枠18の幅と等しい幅を有する。但し、熱伝導板130の幅は、固定枠18の幅よりも大きくても良いし、小さくても良い。熱伝導板130は、側部10Aから上端部10Bに沿うように固定枠18上を延在し、熱伝導板130の平坦な底面が金属製の固定枠18の平坦な表面に緊密に接触し、両者は良好に熱的に結合される。熱伝導板130の固定方法は任意であるが、例えばネジ等によって固定枠18に固定することができる。それ以外にも、熱伝導率の高い接着剤を用いて熱伝導板130を固定枠18に接合する態様を用いても良い。
 好ましい態様では、図3(B)に示すように、熱伝導板130の表面には、ヒートパイプ120を埋設または敷設するための2つの凹部132が平行に形成される。各凹部132は、ヒートパイプ120の径と等しいかそれより幾分大きな径を有し、ヒートパイプ120のほぼ半分が凹部132内に収容される。これにより、ヒートパイプ120と熱伝導板130との接触面積が増加し、ヒートパイプ120が熱伝導板130に効果的に熱結合される。さらに熱結合を増加させるため、ヒートパイプ120と凹部132との間に熱伝導率の高い接着剤を充填するようにしてもよい。
 さらに好ましい態様では、図3(B)に示すように、ヒートパイプ120を熱伝導板130に固定するための固定金具150を用いるようにしてもよい。固定金具150は、熱伝導性の高い材料から構成され、例えば、アルミニウム、銅、鉄のような金属から構成される。固定金具150は、ヒートパイプ120の外径とほぼ同様の2つの窪み152と、窪み152に接続された平坦な部分154を含み、2つの窪み152内に、熱伝導板130から突出されたヒートパイプ120の上半分が保持され、平坦な部分154が熱伝導板130に接合される。こうして、ヒートパイプ120が固定金具150によって熱伝導板130に固定されるが、さらにヒートパイプ120の上半分が固定金具150によって覆われることで、ヒートパイプ150から外気への熱放散が抑制され、同時に固定金具150を介してヒートパイプ120と熱伝導板130との熱的結合が向上される。
 さらに好ましい態様では、固定金具150は、両端をほぼ直角に折り曲げた折り曲げ部156を有する。折り曲げ部156は、熱伝導板130の側面の一部を覆うことで、固定金具150の位置決めを容易にし、かつ熱伝導板130とヒートパイプ120ないし固定金具150の熱結合を向上させる。
 さらに好ましい態様では、固定金具150の幅Wは、固定金具150の間隙Sよりも大きい。ヒートパイプ120の露出される表面積を小さくすることで、ヒートパイプ120と熱伝導体板130との熱的結合がさらに向上される。
 図3(C)は、他の取り付け例を示す図である。同図に示すように、固定金具150は、ネジ160により熱伝導板130に固定されるようにしてもよい。この場合、固定金具150の平坦な部分154と熱伝導板130との間がネジ160によって固定される。これにより、ヒートパイプ120が強固に熱伝導板130に固定され、かつ熱的結合が確実に保証される。また、上記実施例では、熱伝導板130が太陽光モジュールの側部10Aと上端部10Bに形成される例を示したが、熱伝導板130は、少なくとも上端部10Bに形成されていればよい。
 次に、本実施例の他の変形例を図4に示す。ここに例示する太陽光発電装置100Aでは、ヒートパイプ120は、太陽光モジュール10の外周を取り巻くように敷設される。すなわち、杭110内の一方の端部120Aからスタートし、そこから太陽光モジュール10の一方の側部10A、上端部10B、他方の側部10C、下端部10Dを通り、他方の端部120Bで終端する。この場合、熱伝導板130には、1つのヒートパイプ120を収容するための1つの凹部132が形成される。また、熱伝導体130は、太陽光モジュール10の上端部10Bにのみ形成されてもよいし、一方の側部10A、上端部10B、他方の側部10C、下端部10Dに形成されるものであってもよい。
 次に、本実施例の他の変形例を図5に示す。ここに例示する太陽光発電装置100Bでは、ヒートパイプ120の一方の端部120Aと他方の端部120Bとが連結部120Cを介して連結され、連結部120Cが地下水Q内に配置される。すなわち、ヒートパイプ120は、完全な閉じた系内に作動液を収容する。本例の場合、ヒートパイプ120の作動液は、必ずしも地下水に限らず、他の媒体を利用することができる。好ましくは熱交換効率が優れた流体であるが、例えば、不凍液や冷媒用のガスも用いることができる。ヒートパイプ120を完全に閉じた系にすることで、ヒートパイプ120による熱伝導効率がさらに向上され、その結果、太陽光モジュールと地下水との熱交換効率が向上される。
 次に、本実施例の他の変形例を図6に示す。ここに例示する太陽光発電装置100Cでは、杭110の下部に、雨水溜め200を埋設する。杭110によって完全に閉じた空間を形成し、そこに地下水Qを収容することも可能であるが、杭110の打ち込みを容易にするために杭110の先端部に貫通孔が形成されることがある。この場合、杭110によって完全に閉じた空間が形成されないので、杭110内の地下水Qの水位が変動し、ヒートパイプ120による熱伝導を十分に働かすことができないおそれがある。そこで、本例では、杭110の下方に、一定の深さD1、一定の幅W1、一定の長さを有する容器である雨水溜め200を埋設し、雨水溜め200に地下水Q1を貯蔵し、杭110内に地下水Qが安定的に貯蔵されるようにする。
 次に、本実施例の動作について説明する。冬場などにおいて、外気に露出された太陽光モジュール10の温度が低下すると、太陽光モジュール10の上端部10B等に設置されたヒートパイプ120の温度も低下する。他方、杭110が埋設された地下水Qの温度は、あまり変動せず安定しおり、太陽光モジュール近傍のヒートパイプ120の温度よりも高い。この温度差によって、作動液である地下水Qが自動的に汲み上げられ、太陽光モジュール10の上端部10Bへ到達する。汲み上げられた作動液は、熱伝導板130を介して太陽光モジュール10に熱源を供給し、太陽光モジュール10の温度を上昇させることができる。熱交換された作動液は、再び、杭110内に循環される。それ故、太陽光モジュール10の受光面である保護材16の表面に降雪または冠雪があっても、それらの降雪または冠雪を溶かすことで着雪が防止される。その結果、太陽光モジュールへの着雪による発電量の低下を防止することができる。さらに、着雪を防止するために太陽光モジュールの設置を急勾配にする必要がなくなるので、太陽光のガラス表面での反射を小さくすることができ、発電量の低下を抑制することができる。
 次に、本発明の第2の実施例について説明する。図7は、第2の実施例に係る太陽光発電装置200の概略構成を示すものであり、第1の実施例と同一構成については同一参照番号を付し重複した説明を省略する。第2の実施例の太陽光発電装置はさらに、太陽光モジュールを冷却する機能を含むものである。
 第2の実施例に係る太陽光発電装置200は、太陽光モジュール10を冷却するための冷却パイプ210と、地下水Qを汲み上げるための直流ポンプ220とを含んで構成される。冷却パイプ210の一方の端部210Aは、杭110の地下水Qの中に配置され、そこから直流ポンプ220を経由して、太陽光モジュール10の側部10Aを介して上端部10Bに取付けられる。冷却パイプ210の他方の端部210Bは、開放されたものであってもよいし、閉じられていてもよい。冷却パイプ210は、例えば、ヒートパイプ120と同様の材料で構成されてもよいし、他の金属材料から構成されてもよい。
 図8は、冷却パイプの取り付けを説明する図である。第1の実施例のときと同様に、太陽光モジュール10の少なくとも上端部10Bには、L字形状の熱伝導板130Aが固定され、熱伝導板130Aの上面に形成された凹部にはヒートパイプ120が収容されている。また、熱伝導板130Aの側面131(太陽光モジュールの受光面側)に凹部132Aが形成され、当該凹部132A内に冷却パイプ210の一部(例えば、ほぼ下半分)が収容され、そこに固定される。冷却パイプ210は、例えば図3に示した固定金具150のような部材を用いて熱伝道板130Aに固定することができる。好ましい態様では、熱伝導板130Aの直交するL字型の底面は、固定枠18の直交する上面および側面に緊密に接触するように固定され、熱伝導板130Aの側面131が太陽光モジュールの受光面を覆わないように固定枠18の側面の長さに整合される。なお、熱導電板130Aは、ヒートパイプ120を取り付ける部分と、冷却パイプ210を取り付ける部分とが一体に形成されたものを用いるが、これに限らず、両部分は別体であってもよい。
 冷却パイプ210には、図8(C)に示すように、側壁を貫通する貫通孔212が形成され、貫通孔212は、冷却パイプ210の軸方向に複数形成されている。好ましい態様では、太陽光モジュール10の上端部10Bに複数の貫通孔212が等間隔で位置するように冷却パイプが設計され、さらに貫通孔212の向きは、側面131から角度θに設定される。後述するように、直流ポンプ220が作動されたとき、地下水Qが汲み上げられ、冷却パイプ210の貫通孔212から太陽光モジュール10の受光面に向けて供給される。貫通孔212は、地下水Qを噴霧状に供給することが好ましく、そのために必要な径が選択される。さらには、貫通孔212内に、地下水Qを噴霧状にするためのノズル等が取付けられる。
 直流ポンプ220は、太陽光モジュール10で発電された直流電圧によって、あるいは太陽光モジュール10で発電された電力を蓄積したバッテリーからの直流電圧によって動作される。直流ポンプ220は、図7に示すように、杭110内の地下水Qを冷却パイプ210の一方の端部210Aから汲み上げ、これを太陽光モジュール10の上端部10Bに位置する冷却パイプ210へ供給する。汲み上げられた地下水Qは、貫通孔212から噴霧され、太陽光モジュール10の保護材16の表面の全域に供給される。地下水Qは、一定温度を有しており、太陽光モジュール10の温度が上昇したときにこれを冷却することができる。同時に、噴霧された地下水Qは、太陽光モジュール10の保護材16(例えば、ガラスやプラスチック等の受光面)に付着したゴミや塵などを洗い流す。冷却に使用された地下水Qは、再び地中から杭110内に戻されようにしてもよい。こうして、夏場等に太陽光モジュール10の温度が上昇したとき、これを冷却することで、太陽光モジュールの変換効率の低下を防止することができる。
 さらに本実施例では、ヒートパイプ120を固定する熱伝導版板130Aを利用して一体的に冷却パイプを取付ける構造としたため、冷却パイプから噴霧される地下水Qを太陽光モジュール10の上端部10Bから落下させることができる。さらに熱伝導板130Aを利用することで、冷却パイプの専用の取り付け部材が不要となるので、部品点数の増加が抑えられ、コスト低減および省スペース化を図ることができる。さらに、冷却パイプ210に用いる冷却水は、ヒートパイプ120の作動液と同様に地下水Qであるため、1つの杭110内にヒートパイプと冷却パイプとを一緒に埋設することが可能となり、設置工事を容易にし、工期期間を短縮することができる。
 次に、本実施例の他の変形例について説明する。図9は、本実施例の太陽光発電装置の電気的な構成を示すブロック図である。本例では、太陽光モジュール10の温度を検出する温度センサー300、時間を計測するタイマー310、プログラムやデータ等を記憶するメモリ320、各部を制御するコントローラ330、太陽光モジュール10で発電された電力を蓄電するバッテリー340、バッテリー340または太陽光モジュール10からの電力を利用して直流ポンプ220に一定の直流電圧を供給する電力供給部350を含んで構成される。好ましい態様では、コントローラ330は、メモリ320に格納されたプログラムを実行することで、各部を制御することができる。このプログラムは、ユーザーによって変更することが可能である。
 図10は、本実施例の第1の動作例を示すフローチャートである。温度センサー300は、太陽光モジュール10の周辺温度を検出するものであり、例えば太陽光モジュール10の固定枠18などに設置される。温度センサー300によって太陽光モジュール10の周辺温度が検出されると(S100)、その検出結果がコントローラ330へ提供される。コントローラ330は、検出された太陽光モジュール10の温度がしきい値以上であるか否かを判定する(S102)。しきい値は、任意に設定することができ、例えばメモリ320に格納される。しきい値は、太陽光モジュール10の冷却が必要とされる温度、言い換えれば、太陽光モジュールの変換効率の低下を容認することができない温度である。
 コントローラ330は、検出された温度がしきい値以上であると判定したとき、電力供給部350に直流ポンプ220へ電力を供給させ、直流ポンプ220が作動される(S104)。直流ポンプ220が作動されると、上記したように、杭110内の地下水Qが冷却パイプ210内に汲み上げられ、太陽光モジュール10の上端部10Bから比較的冷たい地下水Qが噴霧され、太陽光モジュール10が冷却される。
 図11は、本実施例の第2の動作例を示すフローチャートである。太陽光モジュール10を冷却するための時間スケジュールが予めメモリ320に記憶されている。コントローラ330は、メモリ320から時間スケジュールを読出し(S200)、次に、コントローラ330は、現在時刻が時間スケジュールに一致するか否か判定する(S202)。時間スケールに一致した場合、コントローラ330は、電力供給部350を介して直流ポンプ220を作動させる(S204)。同時に、タイマー310を作動させる(S206)。タイマー310によって一定時間が経過するか否かが監視され(S208)、その間、直流ポンプ220が作動され、太陽光モジュール10が冷却される。タイマー310によって一定時間が計測されると、コントローラ330は、直流ポンプ220を停止させる(S210)。
 図12は、太陽光発電装置が複数の太陽光モジュールを含むときの構成例を示す図である。図の例では、太陽光発電装置は、4つの太陽光モジュール10を含み、さらに地中には2つの杭110が施工され、2つの杭110からヒートパイプ120が熱伝導板130上に固定されている。熱伝導板130は、分かり易くするためにハッチングで表示している。熱伝導板130は、4つの太陽光モジュール10の上端部10Bを連続するように延在され、4つの太陽光モジュールの固定枠18に熱的に結合されている。ヒートパイプ120は、図2、図5に示すように、2つ目の太陽光モジュールまで延在し、そこから折り返されて元の杭110に戻されるように構成される。なお、施工される杭の数は任意であり、4つの太陽光モジュールに対して4つの杭を施工し、各杭の地下水を熱源とするヒートパイプを各太陽光モジュールに取付けるようにしてもよい。あるいは、4つの太陽光モジュールに対して1つの杭を施工し、1つの杭から4つの太陽光モジュールにヒートパイプを配置させるようにしてもよい。
 次に、本発明の第3の実施例について説明する。図13(A)は、第3の実施例に係る太陽光発電装置の概略構成を示す図である。太陽光発電装置は、第2の実施例のときと同様に複数の太陽光モジュール10を含み、かつ太陽光モジュール10の上端部に冷却パイプ210が取付けられる。冷却パイプ210には、ここには図示しない交流ポンプが接続され、交流ポンプを起動させることで、地下水が汲み上げられ、冷却パイプ210から地下水が太陽光モジュール10の表面に散布される。太陽光モジュール10の下端部には、冷却パイプ210から散布された水や雨水などを受け、これを地中に案内するドレイン溝400が取付けられる。ドレイン溝400は、例えば、図13(B)に示すように、半円状のトイであり、太陽光モジュール10の下端に沿うように設置される。また、ドレイン溝400の一方または両端には、環状のガイド管410が接続され、ガイド管410は、ドレイン溝400の保持された水を所望の位置で地下へ排出する。さらに地中には、第1の実施例で説明したような雨水溜め200が埋設される。好ましくは、雨水溜め200は、杭110の下方に埋設され、さらに好ましくは、太陽光モジュール10の設置する領域にわたり一定の長さ、一定の幅で埋設される。こうして、雨水溜め200に貯水された水が効果的に杭110へ供給される。こうして、太陽光モジュール10の表面を洗浄し、冷却し、あるいは融雪した水は、ドレイン溝400内に収集され、その収集された水がガイド管410を介して地中へ放出され、放出された水は、地中を浸透し、大部分の水が雨水溜め200に回収される。
 さらに本実施例では、ガイド管410の近傍であって、かつ雨水溜め200が埋設された領域上に、複数の植物420が植えられる。植物420は、草、木などであり、その種類は問わないが、そのような植物420を植えることで、雨水溜め200内に溜められた水、あるいは地下水の温度をさらに安定化させることができる。特に、夏場では、冷却パイプ210から放出された水などを回収した際に、熱交換された水の温度が比較的高く、そのような水が雨水溜め200の水と合流したときに全体の温度を上昇させてしまう。植物420を設置することで、植物420を介しての気化潜熱が発生し、これにより、地表面を冷却し、かつ雨水溜め200の水の冷却に寄与させることができる。
 図14に、第3の実施例による太陽光発電装置の電気的な構成を示す。図9に示す構成と同一構成については同一参照番号を付し、その説明を省略する。第3の実施例では、第2の実施例の直流ポンプに代えて、交流ポンプ500を有する。さらに第3の実施例は、太陽光モジュールによって発電された電力を蓄電するバッテリー510と、バッテリー510の充放電等を監視し、かつ充放電等を制御するバッテリー制御部520と、太陽光モジュール10で生成された直流電流を交流電流に変換するインバータ530と、交流電流を外部に送電する送電部540とを備えている。
 バッテリー制御部520は、太陽光モジュール10が発電を行っているとき、バッテリー510の充電容量を監視し、容量が一定値以下であれば、太陽光モジュール10で発電された電力をバッテリー510に供給させ、他方、容量が一定値を超えるのであれば、発電された電力をインバータ530へ供給する。さらに、太陽光発電装置で発電された電力を使用するとき、バッテリー制御部520は、太陽光モジュール10により発電された電力および/またはバッテリー510に蓄電された電力の供給を制御する。例えば、夜間、や雨天時のように太陽光モジュール10による発電が十分に得られない場合には、バッテリー510に蓄電された電力をインバータ530へ供給し、昼間のように太陽光モジュール10による発電量が十分であれば、太陽光モジュール10の電力をインバータ530へ供給し、太陽光モジュール10による発電量が不足している場合には、バッテリー510の電力を補充する。
 インバータ530は、供給された直流電圧を、所望の周波数の交流電圧、例えば、50Hzまたは60Hzに変換する。また、インバータ530は、太陽光モジュール10によって発電された電圧を昇圧する昇圧回路を包含するものであってもよい。インバータ530は、コントローラ330からの制御C1に従い、交流電流を交流ポンプ500または送電部540へ出力する。送電部540は、インバータ530から供給された交流電流を外部へ送電する。
 次に、第3の実施例の太陽光発電装置の動作について説明する。好ましい態様では、コントローラ330は、太陽光モジュール10の表面温度が一定以上であることが温度センサー300によって検知されたとき、交流ポンプ500を起動させ、太陽光モジュール10の上端部から冷却パイプ210を介して水を散布させ、太陽光モジュールを冷却する。このとき、バッテリー制御部520は、バッテリー510および/または太陽光モジュール10の電力をインバータ530へ供給し、インバータ530により変換された交流電力が交流ポンプ500へ供給される。あるいは、コントローラ330は、タイマー310を利用し、予め決められたスケジュールに従い交流ポンプ500を起動させることもできる。太陽光モジュール10の上端部から放出された水は、太陽光モジュール10の表面を通り、下端部に設置されたドレイン溝400に効果的に収集され、収集された水がガイド管410により地中に排出される。杭110の下方には、雨水溜め200が埋設されているため、冷却に利用された水が雨水溜め200によって効果的に回収される。このため、利用した水を無駄なく再利用することが可能になり、地下水が不足しているような場合には、特に有効である。こうして、貯水された水は、再度、ポンプ500によって汲み上げられ、冷却水として使用される。例えば、8月の夏場の期間、日中の外気温は30度以上になり、そのとき、太陽光モジュール10の表面温度は、外気温以上の温度、例えば50度以上に上昇する。地下水を利用した冷却を行うことで、表面温度が約20度ぐらい低下させることができ、発電効率を約10%近く上昇させることができる。
 さらに、地表面には植物420が植えられているため、植物420の気化潜熱の働きによって地表面が冷却され、それ故、地中の地下水の温度の上昇も抑制される。従って、循環された地下水が再び太陽光モジュールの冷却のために汲み上げられたとき、その地下水の温度の上昇が抑制されているため、太陽光モジュールを効果的に冷却することができる。
 また、太陽光モジュールによる発電が行われている期間、バッテリー510への充電が十分であるとき、コントローラ330の制御により、太陽光モジュール10で発電された電力は、インバータ530へ供給され、送電部540を介して外部へ送電させることができる。この送電と平行して、インバータ530は、交流ポンプ500へ交流電力を供給させることも可能である。
 以上、本発明の好ましい実施の形態について詳述したが、本発明は、特定の実施例に限定されるものではないし、第1または第2の実施例が単独で実施されるものであってもよいし、第1および第2の実施例が組み合わされて実施されるものであっても良い。本発明は、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10:太陽光モジュール       10A、10C:側部
10B:上端部           16:保護材
18:固定枠            100、200:太陽光発電装置
110:杭             120:ヒートパイプ
130:熱伝導板          132:凹部
150:固定金具          152:窪み
154:平坦な部分         160:ネジ
170:雨水溜め          210:冷却パイプ
220:直流ポンプ         400:ドレイン溝
410:ガイド管          420:植物
500:交流ポンプ         510:バッテリー
520:バッテリー制御部      530:インバータ
 

Claims (4)

  1. 光エネルギーを電気エネルギーに変換するセルを複数収容した太陽光モジュールと、
     地中に施工され、地下水を含む水を貯水可能な円筒状の杭と、
     前記太陽光モジュールの少なくとも上端部に固定され、前記太陽光モジュールと熱的に結合された熱伝導部材と、
     前記杭内の水を熱源に利用したヒートパイプと、
     前記杭内の水を利用する冷却パイプと、
     前記太陽光モジュールの下端部に取付けられ、太陽光モジュールの表面を通過する水を保持するドレイン溝と、
     前記ドレイン溝で保持された水を地中へガイドするガイド管と、
     太陽光モジュールによって発電された電力を供給可能なバッテリーと、
     太陽光モジュールおよびバッテリーの少なくとも1つの直流電圧を交流電圧に変換するインバータと、
     前記インバータにより変換された交流電圧によって動作可能であり、前記杭内の水を前記冷却パイプ内へ汲み上げるための交流ポンプと、
     前記インバータによる変換された交流電圧を送電する送電部と、
     各部を制御する制御部とを有し、
     前記ヒートパイプは、前記杭内の水に熱的に結合された集熱部と熱を放熱する放熱部とを有し、前記ヒートパイプ内の水が前記集熱部と放熱部との間で循環され、前記放熱部が前記熱伝導部材に熱的に結合され、
     前記冷却パイプは、前記杭内に水を汲み上げるための一方の端部と、前記熱伝導部材に固定され汲み上げられた水を前記太陽光モジュールの表面に散布する他方の端部とを有し、
     前記制御部は、予め決められた条件に合致したとき前記交流ポンプを起動させる、太陽光発電装置。
  2. 前記ガイド管に隣接する地表面に植物が植えられる、請求項1に記載の太陽光発電装置。
  3. 前記杭の先端部には貫通孔が形成され、前記杭の先端部の下方に、一定の容積の水を貯水可能な容器が埋設される、請求項1または2に記載の太陽光発電装置。
  4. 前記熱伝導部材は、L字型の金属から構成され、前記熱伝導部材の上面の凹部には前記ヒートパイプの放熱部が収容され、前記熱伝導部材の上面と隣接する側面に前記冷却パイプの他方の端部が取付けられる、請求項1ないし3いずれか1つに記載の太陽光発電装置。
     
PCT/JP2014/075250 2013-09-27 2014-09-24 太陽光発電装置 WO2015046231A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015539251A JPWO2015046231A1 (ja) 2013-09-27 2014-09-24 太陽光発電装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-200715 2013-09-27
JP2013200715A JP2017041461A (ja) 2013-09-27 2013-09-27 太陽光発電装置

Publications (1)

Publication Number Publication Date
WO2015046231A1 true WO2015046231A1 (ja) 2015-04-02

Family

ID=52742382

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/080496 WO2015045190A1 (ja) 2013-09-27 2013-11-12 太陽光発電装置、太陽光発電装置の融雪方法および冷却方法
PCT/JP2014/075250 WO2015046231A1 (ja) 2013-09-27 2014-09-24 太陽光発電装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080496 WO2015045190A1 (ja) 2013-09-27 2013-11-12 太陽光発電装置、太陽光発電装置の融雪方法および冷却方法

Country Status (2)

Country Link
JP (2) JP2017041461A (ja)
WO (2) WO2015045190A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359850A (zh) * 2017-07-14 2017-11-17 江门市卡迪光电科技有限公司 一种照明发电系统
CN110158997A (zh) * 2019-06-15 2019-08-23 沈阳建筑大学 半自能控温式康体住宅房
US11205896B2 (en) 2018-11-21 2021-12-21 Black & Decker Inc. Solar power system
WO2024062158A1 (en) * 2022-09-22 2024-03-28 Ff-Future Oy A solar panel system and a mounting arrangement in a solar panel system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102168899B1 (ko) * 2018-07-24 2020-10-22 포스코에너지 주식회사 전력저장장치의 냉각 시스템
CN113131862B (zh) * 2021-03-10 2022-11-18 嵊州市光宇实业有限公司 一种用于太阳能电池板的光能利用率提升装置
KR102295782B1 (ko) * 2021-03-11 2021-08-31 청정테크주식회사 저수탱크 관리용 전력생산을 위한 태양광 패널의 눈쌓임 방지 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123369A (ja) * 1984-07-11 1986-01-31 Fujitsu Ltd 太陽電池電源装置
JP2011238752A (ja) * 2010-05-10 2011-11-24 Jfe Steel Corp 太陽電池用散水装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3218169B2 (ja) * 1995-09-26 2001-10-15 シャープ株式会社 散水機能付太陽電池モジュール
JPH118401A (ja) * 1997-06-16 1999-01-12 Toyota Motor Corp 太陽電池装置
JP3390656B2 (ja) * 1998-03-19 2003-03-24 ソーラーシステム株式会社 太陽光発電・集熱・融雪方法およびその装置
JP2000356416A (ja) * 1999-06-17 2000-12-26 Kobe Steel Ltd 太陽光電熱併給モジュール
JP3751013B2 (ja) * 2003-07-14 2006-03-01 金谷建設株式会社 太陽光発電装置
JP4863792B2 (ja) * 2006-07-05 2012-01-25 日軽金アクト株式会社 太陽光発電装置
JP4148325B1 (ja) * 2007-10-25 2008-09-10 健児 梅津 太陽光コジェネレイション装置
JP2010123907A (ja) * 2008-11-23 2010-06-03 Hiroya Sekiguchi 太陽電池
JP2011077379A (ja) * 2009-09-30 2011-04-14 Just Thokai:Kk 太陽電池パネル吸放熱システム
JP5625467B2 (ja) * 2010-04-28 2014-11-19 Jfeスチール株式会社 雨水受水兼蒸発パネル体及び該雨水受水兼蒸発パネル体を用いた雨水処理装置
JP2012177541A (ja) * 2012-06-05 2012-09-13 Kenji Umetsu 太陽光コジェネレイションシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123369A (ja) * 1984-07-11 1986-01-31 Fujitsu Ltd 太陽電池電源装置
JP2011238752A (ja) * 2010-05-10 2011-11-24 Jfe Steel Corp 太陽電池用散水装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359850A (zh) * 2017-07-14 2017-11-17 江门市卡迪光电科技有限公司 一种照明发电系统
US11205896B2 (en) 2018-11-21 2021-12-21 Black & Decker Inc. Solar power system
CN110158997A (zh) * 2019-06-15 2019-08-23 沈阳建筑大学 半自能控温式康体住宅房
WO2024062158A1 (en) * 2022-09-22 2024-03-28 Ff-Future Oy A solar panel system and a mounting arrangement in a solar panel system

Also Published As

Publication number Publication date
JP2017041461A (ja) 2017-02-23
WO2015045190A1 (ja) 2015-04-02
JPWO2015046231A1 (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
WO2015046231A1 (ja) 太陽光発電装置
US8455755B2 (en) Concentrated photovoltaic and thermal solar energy collector
US9240510B2 (en) Concentrated photovoltaic and thermal solar energy collector
JP2003199377A (ja) 太陽光発電装置
JP2011140827A (ja) 地中蓄熱住宅
JP3655097B2 (ja) 太陽電池モジュール
JP2010258031A (ja) 発電システム
CN109371779A (zh) 利用太阳能的桥面智能除冰雪系统及方法
AU2010365050B2 (en) Concentrated photovoltaic and thermal solar energy collector
KR101294700B1 (ko) 태양광 어레이 관리 시스템
KR101628668B1 (ko) 태양광패널의 온도관리장치
KR102320839B1 (ko) 신 재생 에너지 기반의 동파 방지 수도관 및 신 재생 에너지의 전력 운용방법
CA3162844A1 (en) Module and system for solar-electric heating of fluids
CA2760038A1 (en) Photovoltaic installation
CN108923725B (zh) 一种基于薄膜太阳能电池的风电机组塔筒供电系统
CN210007672U (zh) 一种光伏路块
WO2009114905A1 (en) Tile unit
JP2010126926A (ja) 散水をもって発電効率を高める太陽光発電システム
US20130105456A1 (en) Optically-based control for defrosting solar panels
KR20110117931A (ko) 염료감응 태양전지를 이용한 노면 결빙 방지장치
CN206782492U (zh) 一种适用于多年冻土区的数采仪供电、保温箱
CN215330193U (zh) 一种基于珀尔帖效应的沙漠存取水生态装置
CN220732725U (zh) 一种多功能屋顶光伏组件降温系统
CN208890745U (zh) 自除雪光伏组件系统
JP2006278739A (ja) 太陽光発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015539251

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14849016

Country of ref document: EP

Kind code of ref document: A1