WO2015045981A1 - バッテリー交換ロボット、バッテリー交換システムおよびバッテリー交換ロボットの制御方法 - Google Patents

バッテリー交換ロボット、バッテリー交換システムおよびバッテリー交換ロボットの制御方法 Download PDF

Info

Publication number
WO2015045981A1
WO2015045981A1 PCT/JP2014/074531 JP2014074531W WO2015045981A1 WO 2015045981 A1 WO2015045981 A1 WO 2015045981A1 JP 2014074531 W JP2014074531 W JP 2014074531W WO 2015045981 A1 WO2015045981 A1 WO 2015045981A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
motor
side connector
housing portion
engaging portion
Prior art date
Application number
PCT/JP2014/074531
Other languages
English (en)
French (fr)
Inventor
康一 戸崎
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013200272A external-priority patent/JP6181494B2/ja
Priority claimed from JP2013200271A external-priority patent/JP6317085B2/ja
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to KR1020167004914A priority Critical patent/KR20160061318A/ko
Priority to CN201480051709.2A priority patent/CN105555623B/zh
Publication of WO2015045981A1 publication Critical patent/WO2015045981A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/06Supplying batteries to, or removing batteries from, vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0438Arrangement under the floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0455Removal or replacement of the energy storages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0455Removal or replacement of the energy storages
    • B60K2001/0461Removal or replacement of the energy storages from the side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0455Removal or replacement of the energy storages
    • B60K2001/0494Removal or replacement of the energy storages with arrangements for sliding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • B60Y2200/143Busses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a battery exchange robot for exchanging a battery mounted on a vehicle, and a battery exchange system having such a battery exchange robot.
  • the present invention also relates to a method for controlling such a battery exchange robot.
  • Patent Documents 1 to 3 Conventionally, a battery exchange system including a battery exchange robot for exchanging a battery mounted on a bus has been proposed by the present applicant (see, for example, Patent Documents 1 to 3).
  • a battery housing portion that houses a battery is attached to the bus.
  • a connector for electrically connecting the battery and the bus is attached to the battery housing portion.
  • a connector connected to the connector of the battery housing portion is attached to the back surface of the battery.
  • the battery replacement robot includes a battery insertion / removal mechanism that pulls out the battery from the battery housing portion and inserts the battery into the battery housing portion.
  • the battery insertion / removal mechanism includes a battery mounting mechanism having a battery mounting portion on which the battery is mounted when the battery is withdrawn and inserted, and moves the battery on the battery mounting portion by engaging with the battery when the battery is withdrawn and inserted.
  • a battery moving mechanism having a battery engaging portion.
  • the battery mounting mechanism includes a mounting unit moving mechanism that moves the battery mounting unit in a direction approaching the bus and a direction away from the bus in addition to the battery mounting unit. Yes.
  • the battery moving mechanism includes an engaging portion moving mechanism that moves the battery engaging portion in a direction approaching the bus and a direction away from the bus.
  • the battery engagement portion includes an engagement claw portion that engages a handle portion attached to the battery, an air cylinder that moves the engagement claw portion up and down, and a base portion to which the air cylinder is attached.
  • a first problem of the present invention is that a mechanical lock mechanism that locks the battery by operating with the insertion force of the battery into the battery housing portion is installed in the battery housing portion, and the battery is inserted into the battery housing portion. Even when the connector on the battery side and the connector on the battery housing part side are connected with an insertion force, the battery exchange robot, battery exchange system and It is to provide a method for controlling a battery exchange robot.
  • a second problem of the present invention is that a mechanical lock mechanism that locks the battery by operating with the insertion force of the battery into the battery housing portion is installed in the battery housing portion, and that the battery is inserted into the battery housing portion. Even when the connector on the battery side and the connector on the battery housing part side are connected with an insertion force, the battery can be locked or the battery can be locked by the lock mechanism while preventing damage to the battery housing part, the battery and the battery replacement robot.
  • An object of the present invention is to provide a battery exchange robot, a battery exchange system, and a battery exchange robot control method capable of connecting a connector on the side and a connector on the housing unit side.
  • a battery exchange robot for exchanging a battery mounted on a vehicle.
  • the battery includes a battery insertion / removal mechanism for pulling out the battery and inserting the battery into the battery housing, and a control unit for controlling the battery insertion / removal mechanism.
  • the battery is a battery for electrically connecting the vehicle and the battery.
  • the battery housing portion includes a lock mechanism that locks the accommodated battery, and a housing portion-side connector that is connected to the battery-side connector. And move the battery by engaging the battery
  • a mechanical lock that includes a battery engaging portion and a motor for driving the battery engaging portion, and the lock mechanism is operated by the insertion force of the battery into the battery housing portion by the battery engaging portion to lock the battery.
  • the battery-side connector and the housing-side connector are connected by the battery insertion force of the battery into the battery housing portion by the battery engaging portion, and the control unit controls the position during the operation of inserting the battery into the battery housing portion.
  • the motor In addition to the position control, when the connecting operation is started in which at least one of the battery locking by the locking mechanism and the connection between the battery side connector and the housing side connector is started during the insertion operation, the motor is controlled by Even if the motor load exceeds the specified reference value, the motor load exceeds the reference value. And controlling the motor by the overload control to stop the elapsed reference time motor in a state where the load of the motor with driving the motor exceeds a reference value to a predetermined reference time in the state has elapsed.
  • a method for controlling a battery exchange robot is a method for pulling out a battery from a battery housing portion that is attached to a vehicle and that houses a battery, and for removing the battery from the battery housing portion.
  • the battery has a battery insertion / removal mechanism for inserting the battery, the battery has a battery side connector for electrically connecting the vehicle and the battery, and the battery accommodating portion has a lock mechanism for locking the accommodated battery, and the battery side connector.
  • a battery insertion / removal mechanism for driving the battery engaging portion, a battery mounting portion for mounting the battery, a battery engaging portion that engages with the battery and moves the battery, and a battery engaging portion.
  • a locking mechanism is provided by the battery engaging portion.
  • the battery side connector and the housing part side connector are inserted into the battery housing part by the battery engaging part.
  • a battery exchanging robot connected to the battery housing portion by controlling the motor by position control at the time of inserting the battery into the battery housing, and at the time of inserting, the battery is locked by the locking mechanism and the battery side connector;
  • the control unit locks the battery by the lock mechanism and the battery-side connector and the housing-side connector when the battery is inserted into the battery housing portion.
  • a connection operation in which at least one of the connection is performed is started, in addition to the position control, even if the motor load exceeds the predetermined reference value, the motor load exceeds the reference value and the predetermined operation is performed.
  • the motor is controlled by overload control that drives the motor until the reference time elapses and stops the motor when the reference time elapses with the motor load exceeding the reference value.
  • the battery exchange robot control method of the present invention at the time of inserting the battery into the battery housing portion, at least one of the locking of the battery by the lock mechanism and the connection between the battery side connector and the housing portion side connector is performed.
  • the connecting operation in addition to the position control, the motor is driven until a predetermined reference time elapses with the motor load exceeding the reference value even if the motor load exceeds the predetermined reference value.
  • the motor is controlled by overload control that stops the motor when the reference time elapses with the motor load exceeding the reference value.
  • the motor in the overload control after the connection operation is started, the motor is turned on when a predetermined reference time elapses with the motor load exceeding a predetermined reference value. Therefore, when the battery is locked by the lock mechanism, the battery is displaced with respect to the lock mechanism and the lock mechanism and the battery interfere with each other. When connected to the motor, or when connecting the battery side connector and the housing side connector, the connectors were displaced and interfered, and the motor was overloaded enough to damage the battery replacement robot, etc. Sometimes it becomes possible to stop the motor.
  • a mechanical locking mechanism that locks the battery by operating with the insertion force of the battery into the battery housing portion is installed in the battery housing portion, and the battery side with the insertion force of the battery into the battery housing portion. Even when the connector and the connector on the battery housing portion side are connected, it is possible to prevent damage to the battery housing portion, the battery, and the battery replacement robot.
  • the motor in overload control, even if the motor load exceeds the reference value, the motor is kept until the reference time elapses with the motor load exceeding the reference value.
  • the battery can be locked by the lock mechanism, and the battery-side connector and the accommodating portion-side connector can be connected. That is, according to the present invention, it is possible to lock the battery by the lock mechanism and to connect the battery side connector and the storage unit side connector while preventing damage to the battery storage unit, the battery, and the battery replacement robot. .
  • the battery is locked by the lock mechanism and the battery side connector based on the rotation amount of the motor. It is possible to detect whether or not the connection between the housing portion connector and the housing portion side connector is securely completed.
  • overload control is performed, for example, in a state where the motor current value exceeds the reference current value even if the motor current value exceeds the reference current value which is a reference value.
  • the motor is driven until the reference time elapses, and the motor is stopped when the reference time elapses with the motor current value exceeding the reference current value.
  • a lock start position where the lock of the battery by the lock mechanism is started, and a connection between the battery side connector and the accommodating portion side connector is started.
  • the connection operation is started.
  • the control unit when the connection operation is started, the control unit starts measuring the driving time of the motor after the connection operation starts, and locks the battery and the battery by the lock mechanism.
  • the drive time of the motor after the start of the connection operation has elapsed for a predetermined time before the battery engagement portion moves to the connection operation completion position where the connection between the side connector and the housing side connector is completed, the battery is pulled out It is preferable to retract the battery engaging portion. If the battery engagement part does not move to the connection operation completion position even though the motor drive time after the start of the connection operation has passed, the interference between the lock mechanism and the battery or the battery side connector Interference with the housing side connector has occurred, and it is assumed that these components are overloaded.
  • the battery replacement robot of the present invention can be used in a battery replacement system including a battery housing portion.
  • a mechanical lock mechanism that locks the battery by operating with the insertion force of the battery into the battery housing portion is installed in the battery housing portion, and the battery side with the insertion force of the battery into the battery housing portion. Even when the connector and the connector on the battery housing portion side are connected, it is possible to prevent damage to the battery housing portion, the battery, and the battery replacement robot. Further, in this battery exchange system, when the battery is locked by the lock mechanism or when the battery side connector and the housing side connector are connected, the battery exchange robot or the like is overloaded for a short time so as not to cause damage.
  • the battery can be locked by the lock mechanism, and the battery-side connector and the accommodating portion-side connector can be connected. Further, in this battery exchange system, it becomes possible to detect whether or not the battery is locked by the lock mechanism and the connection between the battery side connector and the housing portion side connector is reliably completed.
  • a battery exchange robot of the present invention is a battery exchange robot for exchanging a battery mounted on a vehicle.
  • the battery includes a battery insertion / removal mechanism for pulling out the battery and inserting the battery into the battery housing, and a control unit for controlling the battery insertion / removal mechanism.
  • the battery is a battery for electrically connecting the vehicle and the battery.
  • the battery housing portion includes a lock mechanism that locks the accommodated battery, and a housing portion-side connector that is connected to the battery-side connector. And move the battery by engaging the battery
  • a mechanical lock that includes a battery engaging portion and a motor for driving the battery engaging portion, and the lock mechanism is operated by the insertion force of the battery into the battery housing portion by the battery engaging portion to lock the battery.
  • the battery side connector and the housing part side connector are connected by the battery insertion force of the battery into the battery housing part by the battery engaging part, and the control part is locked when the battery is inserted into the battery housing part.
  • the motor is stopped when the load of the motor exceeds a predetermined first reference value.
  • the load of the motor is less than the first reference value.
  • the motor is driven until a predetermined reference time elapses with the motor load exceeding the second reference value even if the small second reference value is exceeded, and the reference time is set while the motor load exceeds the second reference value.
  • the motor is controlled by the second control for stopping the motor when elapses.
  • the battery exchange robot control method of the present invention is attached to a vehicle and withdraws the battery from the battery housing portion in which the battery is housed, and removes the battery from the battery housing portion.
  • the battery has a battery insertion / removal mechanism for inserting the battery, the battery has a battery side connector for electrically connecting the vehicle and the battery, and the battery accommodating portion has a lock mechanism for locking the accommodated battery, and the battery side connector.
  • a battery insertion / removal mechanism for driving the battery engaging portion, a battery mounting portion for mounting the battery, a battery engaging portion that engages with the battery and moves the battery, and a battery engaging portion.
  • a locking mechanism is provided by the battery engaging portion.
  • the battery side connector and the housing part side connector are inserted into the battery housing part by the battery engaging part.
  • the battery exchange robot connected by the control method of the battery exchange robot, at the time of inserting the battery into the battery housing portion, at least one of the battery lock by the lock mechanism and the connection between the battery side connector and the housing portion side connector is Before the start of the connecting operation to be performed, the motor is stopped when the load of the motor exceeds a predetermined first reference value, and when the connecting operation is started, the second reference value whose motor load is smaller than the first reference value. If the motor load exceeds the second reference value even if the Causes the movement, characterized in that the motor is stopped when the reference time has elapsed in a state in which the load on the motor exceeds a second reference value.
  • the control unit locks the battery by the lock mechanism and the battery side connector and the housing side connector when the battery is inserted into the battery housing portion.
  • the motor is controlled by the first control that stops the motor when the load of the motor exceeds a predetermined first reference value, and the connection operation is started. And even if the motor load exceeds a second reference value smaller than the first reference value, the motor is driven until a predetermined reference time elapses while the motor load exceeds the second reference value, and the motor load
  • the motor is controlled by the second control that stops the motor when the reference time elapses in a state that exceeds the second reference value.
  • the battery exchange robot control method of the present invention when the battery is inserted into the battery housing portion, the battery is locked by the lock mechanism and the battery side connector and the housing portion side.
  • the motor is stopped when the motor load exceeds a predetermined first reference value, and when the connection operation is started, the motor load is The motor is driven until a predetermined reference time elapses in a state where the motor load exceeds the second reference value even if the second reference value smaller than one reference value is exceeded, and the motor load decreases to the second reference value.
  • the motor is stopped when the reference time elapses in the exceeded state.
  • the reference time in a state where the motor load exceeds the second reference value smaller than the first reference value before the connection operation is started. Since the motor is stopped after the lapse of time, when the battery is locked by the lock mechanism, the battery is displaced with respect to the lock mechanism, the lock mechanism and the battery interfere with each other, and the battery exchange robot is damaged. When overload is applied to the motor or when connecting the battery side connector and the housing side connector, the connectors are displaced and interfere with each other, causing damage to the battery replacement robot, etc. When is applied to the motor, the motor can be stopped.
  • the motor load exceeds the second reference value. Since the motor is driven until the predetermined reference time has elapsed, the battery replacement robot or the like is not damaged when the battery is locked by the lock mechanism or when the battery side connector and the housing side connector are connected. Even if an overload of a short time is applied to the motor, the battery can be locked by the lock mechanism, and the battery-side connector and the housing-side connector can be connected.
  • a mechanical lock mechanism that locks the battery by operating with the insertion force of the battery into the battery housing portion is installed in the battery housing portion, and the battery Even when the connector on the battery side and the connector on the battery housing part side are connected by the insertion force of the battery into the housing part, the battery is prevented by the lock mechanism while preventing damage to the battery housing part, the battery and the battery replacement robot. Can be locked, and the battery-side connector and the housing-side connector can be connected.
  • the motor does not stop unless the load of the motor exceeds the first reference value larger than the second reference value before the start of the connection operation. It becomes possible to increase the acceleration / deceleration speed. Therefore, it is possible to shorten the battery moving time from the start of the battery insertion operation to the battery housing portion until the connection operation is started.
  • the first control is current control for stopping the motor when the current value of the motor exceeds a first reference current value that is a first reference value.
  • the motor is driven until the reference time elapses with the motor current value exceeding the second reference current value even if the motor current value exceeds the second reference current value which is the second reference value.
  • the current control is such that the motor is stopped when the reference time elapses with the motor current value exceeding the second reference current value.
  • a lock start position where the lock of the battery by the lock mechanism is started, and the connection between the battery side connector and the accommodating portion side connector is started.
  • the connection operation is started.
  • the rotation speed of the motor before the start of the connection operation is higher than the rotation speed of the motor after the start of the connection operation.
  • the control unit when the connection operation is started, the control unit starts measuring the driving time of the motor after the connection operation is started, and locks the battery and the battery by the lock mechanism.
  • the drive time of the motor after the start of the connection operation has elapsed for a predetermined time before the battery engagement portion moves to the connection operation completion position where the connection between the side connector and the housing side connector is completed, the battery is pulled out It is preferable to retract the battery engaging portion. If the battery engagement part does not move to the connection operation completion position even though the motor drive time after the start of the connection operation has passed, the interference between the lock mechanism and the battery or the battery side connector Interference with the housing side connector has occurred, and it is assumed that these components are overloaded.
  • the battery exchange robot of the present invention can be used in a battery exchange system including a battery housing portion.
  • a mechanical lock mechanism that locks the battery by operating with the insertion force of the battery into the battery housing portion is installed in the battery housing portion, and the battery side with the insertion force of the battery into the battery housing portion.
  • the battery can be locked by the locking mechanism while preventing damage to the battery housing portion, the battery and the battery replacement robot, or the battery side connector and the housing portion It is possible to connect to the side connector. Further, in this battery exchange system, it is possible to shorten the movement time of the battery from the start of the operation of inserting the battery into the battery housing portion until the connection operation is started.
  • the battery is operated by the insertion force of the battery into the battery housing portion. Even when a mechanical locking mechanism for locking is installed in the battery housing part and the connector on the battery side and the connector on the battery housing part side are connected by the insertion force of the battery into the battery housing part, the battery housing It is possible to prevent damage to the battery, the battery, and the battery replacement robot.
  • the battery is operated by the insertion force of the battery into the battery housing portion. Even when a mechanical locking mechanism for locking is installed in the battery housing part and the connector on the battery side and the connector on the battery housing part side are connected by the insertion force of the battery into the battery housing part, the battery housing The battery can be locked by the lock mechanism, and the battery-side connector and the housing-side connector can be connected, while preventing damage to the battery unit, the battery, and the battery replacement robot.
  • FIG. 1 is a perspective view of a battery exchange system according to an embodiment of the present invention. It is a perspective view which shows the E section of FIG. 1 from another angle. It is an enlarged view of the F section of FIG. It is the schematic for demonstrating the structure of the battery shown in FIG. 1, and a battery accommodating part. It is a figure which shows the battery insertion / extraction mechanism and lifting mechanism shown in FIG. 2 from the front. It is a figure which shows a battery insertion / extraction mechanism and a raising / lowering mechanism from the HH direction of FIG. It is a figure for demonstrating the battery mounting mechanism shown in FIG. 5 from the front. It is a figure for demonstrating the battery mounting mechanism shown in FIG. 5 from the upper surface.
  • FIG. 5 It is a figure for demonstrating the battery moving mechanism shown in FIG. 5 from a side surface. It is a figure for demonstrating a state when the battery engaging part shown in FIG. 9 moves to the direction away from a bus
  • 3 is a flowchart for explaining a battery replacement operation of the battery replacement robot shown in FIG. 2. It is a figure for demonstrating the extraction operation
  • FIG. 1 is a perspective view of a battery exchange system 1 according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the E portion of FIG. 1 from another angle.
  • each of the three directions orthogonal to each other is defined as an X direction, a Y direction, and a Z direction.
  • the Z direction coincides with the vertical direction (vertical direction).
  • the X direction is the front-rear direction and the Y direction is the left-right direction.
  • the battery exchange system 1 of this embodiment is a system for exchanging the battery 3 mounted on the vehicle 2.
  • the vehicle 2 of this embodiment is an electric bus. Therefore, hereinafter, the vehicle 2 is referred to as “bus 2”.
  • a battery housing portion 4 in which a plurality of batteries 3 are housed is attached to the bus 2.
  • the battery accommodating portion 4 is arranged so as to be exposed to the side surface 2a when a cover member (not shown) attached to one side surface 2a of the bus 2 is removed. Further, the battery accommodating portion 4 is disposed below the seat of the bus 2.
  • the bus 2 is stopped so that the traveling direction thereof substantially coincides with the left-right direction.
  • the battery replacement system 1 includes a battery replacement robot 5 (hereinafter referred to as “robot 5”) for replacing the battery 3 stored in the battery storage unit 4.
  • robot 5 faces the side surface 2a of the bus 2 in the front-rear direction so that the battery 3 housed in the battery housing portion 4 can be replaced.
  • the robot 5 pulls out the battery 3 housed in the battery housing portion 4 and carries it into a buffer station (not shown), and unloads the charged battery 3 housed in the buffer station from the buffer station. Insert into the housing 4.
  • a detection plate 13 for detecting the position of the bus 2 is formed or fixed on the side surface 2a of the bus 2.
  • the detection plate 13 is formed in a flat plate shape and a substantially rectangular shape whose width is substantially constant in the vertical direction.
  • the detection plate 13 is disposed, for example, on the front side of the battery housing portion 4 in the traveling direction of the bus 2.
  • the detection plate 13 is exposed to the side surface 2a when a cover member (not shown) attached to the side surface 2a is removed.
  • FIG. 3 is an enlarged view of a portion F in FIG.
  • FIG. 4 is a schematic diagram for explaining the configuration of the battery 3 and the battery housing 4 shown in FIG.
  • the battery housing part 4 includes a battery cradle 6 on which the battery 3 is mounted and left and right side walls 7, and the battery cradle 6 and the side walls 7 form a housing space for the battery 3.
  • the battery accommodating portion 4 is formed with accommodating spaces for a plurality of batteries 3 so that a plurality of batteries 3 can be accommodated.
  • four batteries 3 can be mounted on the bus 2
  • the battery housing portion 4 includes four battery mounts 6 on which each of the four batteries 3 is mounted.
  • a detection mark 8 for indirectly detecting the position of the battery 3 is formed on the front surface of the battery stand 6.
  • the detection mark 8 is formed on each of both ends in the left-right direction of the battery mount 6.
  • the detection mark 8 is formed in a substantially equilateral triangle shape whose width in the left-right direction is gradually narrowed toward the upper side.
  • the battery accommodating portion 4 includes a lock mechanism 9 that locks the accommodated battery 3 and a connector 10 as an accommodating portion side connector for electrically connecting the bus 2 and the battery 3. And.
  • the lock mechanism 9 includes a lock member 11 and an urging member 12.
  • the connector 10 is disposed on the back side of the battery housing portion 4.
  • the lock member 11 is held on the side wall 7 so as to be movable in the left-right direction, for example.
  • the lock member 11 is urged inward in the left-right direction by an urging member (not shown), and protrudes from the side wall 7 to the inside of the battery housing portion 4.
  • the lock member 11 is formed in, for example, a substantially triangular prism shape, and is configured by an inclined surface 11a that is inclined with respect to a ZX plane configured by the front-rear direction and the vertical direction, and a horizontal direction and a vertical direction. And an end face 11b parallel to the YZ plane.
  • the end surface 11 b constitutes an end surface on the back side of the lock member 11.
  • the inclined surface 11 a is inclined so as to spread outward in the left-right direction as it goes toward the front side of the battery housing portion 4.
  • the lock member 11 may be held on the battery mount 6 so as to be movable in the vertical direction.
  • the inclined surface 11a is inclined so as to spread outward in the vertical direction as it goes toward the front side of the battery housing portion 4.
  • the urging member 12 is, for example, a compression coil spring.
  • the urging member 12 faces the front side of the battery housing portion 4 so that an end surface 15b of an engagement projection 15 described later formed on the battery 3 and an end surface 11b of the lock member 11 are in contact with each other with a predetermined contact pressure.
  • the battery 3 is energized.
  • a handle 14 for pulling out the battery 3 from the battery housing 4 is formed on the front surface of the battery 3.
  • a handle portion 14 is formed on each of the left and right ends of the front surface of the battery 3.
  • the battery 3 includes an engagement protrusion 15 that engages with the lock member 11 and a connector 16 as a battery-side connector connected to the connector 10.
  • the connector 16 is attached to the back end surface (back surface) of the battery 3 housed in the battery housing portion 4.
  • the engaging protrusions 15 are fixed to the left and right side surfaces of the battery 3, for example, and protrude from the left and right side surfaces of the battery 3 to the outside in the left and right direction.
  • the engagement protrusion 15 is formed in, for example, a substantially triangular prism shape, and includes an inclined surface 15a inclined with respect to the ZX plane and an end surface 15b parallel to the YZ plane.
  • the end surface 15 b constitutes an end surface on the near side of the engagement protrusion 15.
  • the inclined surface 15 a is inclined so as to spread outward in the left-right direction as it goes toward the front side of the battery housing portion 4. Further, the inclination angle of the inclined surface 11a with respect to the ZX plane is substantially equal to the inclination angle of the inclined surface 15a with respect to the ZX plane.
  • the lock mechanism 9 is a mechanical lock mechanism that is operated by the insertion force of the battery 3 into the battery housing portion 4 to lock the battery 3.
  • the lock mechanism 9 according to the present embodiment is a mechanical lock that is operated by the insertion force of the battery 3 into the battery housing portion 4 by a battery engaging portion 24 described later constituting the robot 5 to lock the battery 3.
  • the connector 10 and the connector 16 are connected by the insertion force of the battery 3 into the battery housing portion 4.
  • the connector 10 and the connector 16 are connected by the insertion force of the battery 3 into the battery housing part 4 by the battery engaging part 24 described later.
  • the lock member The lock mechanism 9 is configured such that 11 is retracted and the contact state between the end surface 15b and the end surface 11b is released. Therefore, when the battery 3 is further pushed into the back side of the battery housing part 4 from the state in which the battery 3 is locked to the lock mechanism 9, the locked state of the battery 3 by the lock mechanism 9 is released, and the battery housing part 4 The battery 3 can be pulled out.
  • the robot 5 includes a battery insertion / removal mechanism 17 that extracts each of the four batteries 3 from the battery housing portion 4 and inserts each of the four batteries 3 into the battery housing portion 4. , An elevating mechanism 18 for elevating and lowering the battery detaching mechanism 17, a rotating mechanism 19 for rotating the battery detaching mechanism 17 and the elevating mechanism 18 with the vertical direction as an axial direction, a battery detaching mechanism 17, the elevating mechanism 18 and And a horizontal movement mechanism 20 for moving the movement mechanism 19 in the left-right direction.
  • the robot 5 also includes a detection mechanism 21 for detecting the detection mark 8 and the detection plate 13.
  • the battery insertion / removal mechanism 17, the lifting / lowering mechanism 18, the rotation mechanism 19, and the horizontal movement mechanism 20 are connected to a control unit 27 (see FIG. 2) that controls the robot 5, and these configurations are controlled by the control unit 27. Is done.
  • the detection mechanism 21 is also connected to the control unit 27.
  • the battery insertion / removal mechanism 17 includes a battery mounting mechanism 23 having a battery mounting portion 22 on which the battery 3 is mounted when the battery 3 is pulled out and inserted, and a battery mounting mechanism that is engaged with the battery 3 when the battery 3 is pulled out and inserted. And a battery moving mechanism 25 having a battery engaging portion 24 (see FIG. 5) for moving the battery 3 on the portion 22.
  • the battery mounting portion 22 and the battery engaging portion 24 are movable in a direction approaching the bus 2 and a direction away from the bus 2. Further, the battery insertion / removal mechanism 17 is held by the holding member 26.
  • the holding member 26 is formed in a substantially rectangular tube shape that is open at both ends in the moving direction of the battery mounting portion 22 and the battery engaging portion 24.
  • FIG. 5 is a diagram showing the battery insertion / removal mechanism 17 and the lifting mechanism 18 shown in FIG. 2 from the front.
  • FIG. 6 is a diagram showing the battery insertion / removal mechanism 17 and the lifting mechanism 18 from the HH direction of FIG.
  • FIG. 7 is a view for explaining the battery mounting mechanism 23 shown in FIG. 5 from the front.
  • FIG. 8 is a view for explaining the battery mounting mechanism 23 shown in FIG. 5 from above.
  • the battery mounting mechanism 23 includes a mounting unit moving mechanism 30 that moves the battery mounting unit 22 in a direction approaching the bus 2 and a direction away from the bus 2 in addition to the battery mounting unit 22 described above.
  • the battery mounting portion 22 is formed in a flat block shape that is flat in the vertical direction.
  • a plurality of rollers 31 and 32 that are in contact with the lower surface of the battery 3 are rotatably attached to the upper surface of the battery mounting portion 22.
  • the plurality of rollers 31 are arranged at predetermined intervals in the moving direction of the battery mounting portion 22, and the plurality of rollers 32 are also set in the moving direction of the battery mounting portion 22 in the same manner as the rollers 31. Arranged at intervals.
  • the mounting unit moving mechanism 30 includes a motor 33, a screw member 34 such as a ball screw, and a nut member 35 that is screwed into the screw member 34 as a configuration for moving the battery mounting unit 22. Further, the mounting unit moving mechanism 30 is configured to guide the battery mounting unit 22, and is linearly formed, and engages with the guide rail 36 and is relatively movable along the guide rail 36. A guide block 37 is provided.
  • the motor 33 is fixed to the upper surface side of the rear end portion of the battery mounting portion 22.
  • the motor 33 is connected to the control unit 27. Further, the motor 33 includes an encoder (not shown) for detecting the rotation speed and the rotation amount.
  • the screw member 34 is rotatably held on the lower surface side of the battery mounting portion 22.
  • the motor 33 and the screw member 34 are connected via a pulley, a belt, or the like.
  • the nut member 35 is fixed to the holding member 26.
  • the guide rail 36 is fixed to the lower surface side of the battery mounting portion 22, and the guide block 37 is fixed to the holding member 26. Therefore, in this embodiment, when the motor 33 rotates, the battery mounting portion 22 is guided by the guide rail 36 and the guide block 37 and moves linearly with respect to the holding member 26.
  • FIG. 9 is a view for explaining the battery moving mechanism 25 shown in FIG. 5 from the side.
  • FIG. 10 is a view for explaining the state when the battery engaging portion 24 shown in FIG. 9 moves away from the bus 2 from the side.
  • FIG. 11 is a diagram for explaining the battery moving mechanism 25 shown in FIG. 5 from above.
  • the battery moving mechanism 25 includes an engaging portion moving mechanism 39 that moves the battery engaging portion 24 in a direction approaching the bus 2 and a direction away from the bus 2, and a battery engaging portion 24. And a movable holding member 40 that is held movably and held by the holding member 26.
  • the battery engaging portion 24 includes an engaging claw portion 41 that engages with the handle portion 14 of the battery 3, an air cylinder 42 that moves the engaging claw portion 41 up and down, and a base portion 43 to which the air cylinder 42 is attached. Yes.
  • the engaging claw portion 41 is fixed to the movable side of the air cylinder 42, and the fixed side of the air cylinder 42 is fixed to the distal end surface of the base portion 43.
  • the two engaging claws 41 and the two air cylinders 42 of the base 43 are arranged so that the engaging claws 41 are engaged with the two handles 14 formed on the battery 3. It arrange
  • the moving holding member 40 is formed in a long and narrow shape in the moving direction of the battery engaging portion 24. Further, the movement holding member 40 is formed so that the shape when viewed from the moving direction of the battery engaging portion 24 is substantially H-shaped.
  • the engaging portion moving mechanism 39 includes a motor 44, a screw member 45 such as a ball screw, a nut member 46 that is screwed to the screw member 45, and a structure for moving the battery engaging portion 24 and the movement holding member 40. Pulleys 47 and 48 and a belt 49 spanning the pulleys 47 and 48 are provided. Further, the engaging portion moving mechanism 39 is configured to guide the battery engaging portion 24 and the movement holding member 40, and engages with the guide rail 50 formed in a straight line, the guide rail 50, and the guide rail 50. And a guide block 51 that is relatively movable along the guide rail 52. As a configuration for guiding the battery engaging portion 24, the guide rail 52 that is linearly formed, and the guide rail 52 that engages with the guide rail 52 and And a guide block 53 that is relatively movable along.
  • the motor 44 is fixed to the rear end portion of the holding member 26.
  • the motor 44 is connected to the control unit 27. Further, the motor 44 includes an encoder (not shown) for detecting the rotation speed and the rotation amount.
  • the screw member 45 is rotatably held on the upper surface portion of the holding member 26.
  • the motor 44 and the screw member 45 are connected via a pulley, a belt, or the like.
  • the nut member 46 is fixed to the rear end portion of the movement holding member 40.
  • the pulley 47 is rotatably held at the rear end portion of the movement holding member 40, and the pulley 48 is rotatably held at the front end portion of the movement holding member 40.
  • the belt 49 is fixed to the base portion 43 of the battery engaging portion 24 via the belt fixing member 54 and is fixed to the upper surface portion of the holding member 26 via the belt fixing member 55. Specifically, when the movable holding member 40 protrudes from the holding member 26 and the belt fixing member 55 is arranged in the vicinity of the pulley 47, the belt fixing member 54 is arranged in the vicinity of the pulley 48, and the holding member The belt 49 is fixed to the belt 49 so that the belt fixing member 54 is disposed in the vicinity of the pulley 47 when the movement holding member 40 is accommodated in the belt 26 and the belt fixing member 55 is disposed in the vicinity of the pulley 48. It is fixed to the base 43 and the holding member 26 via members 54 and 55.
  • the guide rail 50 is fixed to the upper surface portion of the holding member 26, and the guide block 51 is fixed to the upper surface of the movable holding member 40.
  • the guide rail 52 is fixed to the lower surface of the movement holding member 40, and the guide block 53 is fixed to the upper end side of the base portion 43 of the battery engaging portion 24.
  • the moving holding member 40 when the motor 44 rotates, the moving holding member 40 is guided by the guide rail 50 and the guide block 51 together with the battery engaging portion 24 by the screw member 45 and the nut member 46, and is linear with respect to the holding member 26. Move on.
  • the battery engaging portion 24 is guided by the guide rail 52 and the guide block 53 by the pulleys 47 and 48 and the belt 49, and linearly moves relative to the movement holding member 40.
  • the elevating mechanism 18 is orthogonal to the moving direction of the battery mounting portion 22 and the battery engaging portion 24 (hereinafter, this direction is referred to as “first direction”) and the vertical direction.
  • the first elevating mechanism 59 and the second elevating mechanism 60 are provided on both ends of the direction (hereinafter, this direction is referred to as “second direction”).
  • the first elevating mechanism 59 is connected to one end side of the holding member 26 in the second direction by the first connecting mechanism 61.
  • the second elevating mechanism 60 is connected to the other end side of the holding member 26 in the second direction by the second connecting mechanism 62.
  • the first elevating mechanism 59 and the second elevating mechanism 60 can be individually driven to tilt the holding member 26 with respect to the horizontal direction.
  • the holding member 26 is connected to the first elevating mechanism 59 and the second elevating mechanism 60 so as to be inclined with respect to the horizontal direction.
  • the first elevating mechanism 59 and the second elevating mechanism 60 include an elevating member 63 that is movable in the vertical direction, a columnar member 64 that holds the elevating member 63 so as to be able to elevate, and an elevating drive mechanism 65 that elevates the elevating member 63.
  • the columnar member 64 is formed in a column shape elongated in the vertical direction. As shown in FIG. 5, the upper end of the columnar member 64 constituting the first elevating mechanism 59 and the upper end of the columnar member 64 constituting the second elevating mechanism 60 are connected by a connecting member 66, and two pieces The columnar member 64 and the connecting member 66 constitute a portal frame.
  • the elevating drive mechanism 65 includes a motor 67, a screw member 68 such as a ball screw, and a nut member 69 screwed to the screw member 68 as a configuration for elevating the elevating member 63.
  • the elevating drive mechanism 65 is configured to guide the elevating member 63 and engages with the guide rail 70 formed in a straight line, along the guide rail 70 and along the guide rail 70.
  • the guide block 71 is relatively movable.
  • the motor 67 is fixed to the upper end side of the columnar member 64.
  • the motor 67 is connected to the control unit 27.
  • the screw member 68 is rotatably held by the columnar member 64.
  • the motor 67 and the screw member 68 are connected via a coupling 72.
  • the nut member 69 is fixed to the elevating member 63.
  • the guide rail 70 is fixed to the side surface of the columnar member 64.
  • the guide block 71 is fixed to the elevating member 63. Therefore, in this embodiment, when the motor 67 rotates, the elevating member 63 is guided by the guide rail 70 and the guide block 71 and moves up and down with respect to the columnar member 64.
  • the first connecting mechanism 61 connects the holding member 26 and the lifting member 63 so that the holding member 26 can be rotated relative to the lifting member 63 of the first lifting mechanism 59.
  • the second connecting mechanism 62 is configured so that the holding member 26 and the elevating member 63 are capable of relative rotation of the holding member 26 with respect to the elevating member 63 of the second elevating mechanism 60 and relative movement in the second direction. Are connected.
  • the rotation mechanism 19 includes a battery insertion / removal mechanism 17 and an elevating mechanism 18, and a rotation member 85 that can rotate, and a rotation drive mechanism 86 that rotates the rotation member 85.
  • the horizontal movement mechanism 20 is equipped with a battery insertion / removal mechanism 17, an elevating mechanism 18, and a rotation mechanism 19, and a slide member 87 that is movable in the left-right direction, and a horizontal that moves the slide member 87.
  • a drive mechanism 88 is equipped with a battery insertion / removal mechanism 17, an elevating mechanism 18, and a rotation mechanism 19, and a slide member 87 that is movable in the left-right direction, and a horizontal that moves the slide member 87.
  • Rotating member 85 is formed in a substantially disc shape.
  • the rotating member 85 is disposed on the upper side of the slide member 87. Further, the rotation member 85 is rotatable about the center of curvature thereof. The lower ends of the two columnar members 64 are fixed to the upper surface of the rotating member 85.
  • the rotation drive mechanism 86 includes a motor, a pulley, a belt, and the like as a configuration for rotating the rotation member 85. Further, the rotation drive mechanism 86 is configured to guide the rotation member 85 in the rotation direction, and a guide rail and a plurality of guide blocks that engage with the guide rail and are relatively movable along the guide rail. It has.
  • a belt is stretched over the pulley fixed to the output shaft of the motor and the outer peripheral surface of the rotating member 85, and when the motor rotates, the rotating member 85 is guided by the guide rail and the guide block to slide. It rotates with respect to 87.
  • the slide member 87 is formed in a substantially rectangular plate shape whose longitudinal direction is the left-right direction.
  • the horizontal drive mechanism 88 includes a motor, a pulley, a belt, and the like as a configuration for moving the slide member 87. Further, the horizontal drive mechanism 88 is configured to guide the slide member 87 in the left-right direction, and a plurality of guide rails that are linearly formed and a plurality of guide rails that are engaged with the guide rails and that are relatively movable along the guide rails. And a guide block.
  • One end of the belt is fixed to the left end side of the guide rail, and the other end of the belt is fixed to the right end side of the guide rail. Further, the belt is stretched around a pulley or the like fixed to the output shaft of the motor, and when the motor rotates, the slide member 87 is linearly moved in the left-right direction by being guided by the guide rail and the guide block.
  • the detection mechanism 21 includes a light emitting unit that emits laser light, and a light receiving unit that receives the laser light emitted from the light emitting unit and reflected by a reflector such as the side surface 2a of the bus 2 or the front surface of the battery mount 6. It is a laser sensor. As shown in FIG. 8, the detection mechanism 21 is attached to the upper surface on the front end side of the battery mounting portion 22. In this embodiment, two detection mechanisms 21 are attached to the battery mounting portion 22 so as to correspond to a pair of (two) detection marks 8 formed on each of the four battery mounts 6. .
  • the detection mechanism 21 is turned on when a reflector that reflects the laser light emitted from the light emitting unit is within a predetermined measurement range, and is turned off when the reflector that reflects the laser light is not within the measurement range. become. Further, the distance between the detection mechanism 21 and the reflecting object can be detected by using the detection mechanism 21 in the on state.
  • the position of the bus 2 is detected by the detection mechanism 21 and the detection plate 13. Specifically, the position of the bus 2 is detected by detecting the positions of the upper end and the left and right ends of the detection plate 13 by the detection mechanism 21 and calculating the positions of the detection plate 13. Further, after the position of the bus 2 is detected by the detection mechanism 21, the position of the battery 3 is detected by the detection mechanism 21 and the detection mark 8.
  • the battery mounting portion 22 is moved in the left-right direction so that the laser light from the light-emitting portion of the detection mechanism 21 crosses the detection mark 8 in the left-right direction, and both ends of the detection mark 8 in the left-right direction are moved.
  • the position of the detection mark 8 in the left-right direction is calculated.
  • the width of the portion of the detection mark 8 where the laser beam crosses is calculated. Since the detection mark 8 is formed in a substantially triangular shape whose width in the left-right direction is gradually narrowed toward the upper side, the detection mark 8 can be detected by calculating the width of the portion of the detection mark 8 where the laser beam crosses.
  • the height of the mark 8 can be calculated.
  • the position and height of the detection mark 8 in the left-right direction are calculated, The position and height in the left-right direction of the battery 3 that is positioned and mounted on the battery mount 6 are detected. Further, by calculating the distance between the detection mechanism 21 and the detection mark 8, the position in the front-rear direction of the battery cradle 6 on which the detection mark 8 is formed is calculated, and is positioned and mounted on the battery cradle 6. The position of the battery 3 in the front-rear direction is detected.
  • the inclination of the battery cradle 6 with respect to the left-right direction when viewed from the front-rear direction is determined. By calculating, the inclination of the battery 3 with respect to the left-right direction when viewed from the front-rear direction is detected. Further, when viewed from the up and down direction based on the distance between one detection mark 8 of the pair of detection marks 8 and the detection mechanism 21 and the distance between the other detection mark 8 and the detection mechanism 21. The inclination of the battery pedestal 6 with respect to the left and right direction is calculated, and the inclination of the battery 3 with respect to the left and right direction when viewed from the vertical direction is detected.
  • the position of the battery 3 in the front-rear and left-right directions, the height of the battery 3, the inclination of the battery 3 with respect to the left-right direction when viewed from the front-rear direction, and the inclination of the battery 3 with respect to the left-right direction when viewed from the up-down direction are detected. Then, the position, height, and inclination of the battery insertion / removal mechanism 17 in the left-right direction by the elevating mechanism 18, the rotation mechanism 19, and the horizontal movement mechanism 20 so that the battery 3 can be properly pulled out from the battery housing portion 4. Is adjusted.
  • FIG. 12 is a flowchart for explaining the replacement operation of the battery 3 of the battery replacement robot 5 shown in FIG.
  • FIG. 13 is a diagram for explaining the operation of pulling out the battery 3 from the bus 2 by the battery exchange robot 5 shown in FIG.
  • FIG. 14 is a view for explaining the operation of inserting the battery 3 into the bus 2 by the battery exchange robot 5 shown in FIG.
  • step S1 the position of the bus 2 is detected as described above (step S1). Thereafter, the operation of pulling out the battery 3 to be replaced from the bus 2 out of the four batteries 3 is performed (step S2).
  • step S2 specifically, the position of the battery 3 to be replaced (specifically, the position of the detection mark 8 formed on the battery mount 6 on which the battery 3 to be replaced is mounted) is as described above.
  • Step S21 the battery 3 is then pulled out from the bus 2 by the robot 5 (Step S22), and then the extracted battery 3 is stored in the buffer station (Step S23).
  • steps S1 and S2 first, the battery mounting portion 22 and the battery engaging portion 24 (see FIG. 13A) at the home position move in a direction approaching the bus 2. Specifically, as shown in FIG. 13B, the battery mounting portion 22 moves from the battery mounting base 6 to a position where the battery 3 can be transferred to the battery mounting portion 22, and the handle portion of the battery 3 is moved. 14, the battery engaging portion 24 moves to a position where the engaging claw portion 41 can be engaged. In the present embodiment, the position of the battery 3 is detected before the battery mounting portion 22 and the battery engaging portion 24 at the home position move to the position shown in FIG.
  • step S2 as shown in FIG. 13C, the engaging claw portion 41 descends and engages with the handle portion 14.
  • the battery 3 accommodated in the battery accommodating portion 4 is locked by the lock mechanism 9.
  • the lock state of the battery 3 by the lock mechanism 9 is released, The battery 3 can be pulled out from the battery housing 4. Therefore, when the engaging claw portion 41 is engaged with the handle portion 14, as shown in FIG. 13C, the battery engaging portion 24 slightly pushes the battery 3 into the back side of the battery accommodating portion 4 (that is, The battery 3 is released from the locked state by the lock mechanism 9 by moving slightly toward the bus 2.
  • the battery engaging portion 24 moves away from the bus 2, and the battery 3 starts to be transferred from the battery mount 6 to the battery mounting portion 22.
  • the battery engaging portion 24 moves by a predetermined amount and the battery 3 is completely mounted on the battery mounting portion 22 as shown in FIG. 13E, thereafter, the battery mounting portion 22 and the battery engaging portion 24 are moved.
  • the battery 3 moves away from the bus 2 to complete the extraction of the battery 3 from the bus 2.
  • the robot 5 rotates 180 ° and accommodates the battery 3 in the buffer station.
  • step S3 the battery 3 is inserted into the portion of the bus 2 from which the battery 3 has been pulled out. Specifically, in step S3, the charged battery 3 is removed from the buffer station by the robot 5 (step S31), and then the removed battery 3 is inserted into the bus 2 (step S32).
  • step S3 when the robot 5 takes out the charged battery 3 from the buffer station, the robot 5 rotates 180 ° and is in the same state as when the battery 3 is completely pulled out from the bus 2 as shown in FIG. become. Thereafter, as shown in FIG. 14B, the battery mounting portion 22 and the battery engaging portion 24 move in a direction approaching the bus 2 while being synchronized.
  • the battery mounting portion 22 moves to a position where the battery 3 can be transferred from the battery mounting portion 22 to the battery mount 6, as shown in FIGS. 14C and 14D, the battery engaging portion 24. Moves in a direction approaching the bus 2, and the battery 3 is inserted into the bus 2.
  • the engaging claw portion 41 is raised, and as shown in FIG. 14 (F), the battery mounting portion 22 and the battery engaging portion 24 are After moving away from the bus 2 (specifically, moving to the home position), the insertion of the battery 3 into the bus 2 is completed.
  • steps S2 and S3 are repeated until the replacement of the battery 3 that needs to be replaced in the stopped bus 2 is completed (until "Yes” in step S4). Usually, it repeats until all the batteries 3 of the bus
  • the robot 5 returns to the origin position (step S5), and the replacement operation of the battery 3 by the robot 5 ends.
  • the teaching of the robot 5 is performed in advance using the bus 2 stopped at a predetermined reference position. (Teaching) is performed.
  • the robot 5 operates along the taught position (teaching position) and performs the replacement operation of the battery 3.
  • FIG. 15 is a flowchart for explaining the control during the insertion operation of the battery 3 of the battery exchange robot 5 shown in FIG.
  • FIG. 16 is a flowchart for explaining overload control during the insertion operation of the battery 3 of the battery exchange robot 5 shown in FIG.
  • the inclined surface 15 a of the engaging protrusion 15 and the inclined surface 11 a of the lock member 11 start to contact each other, and the battery 3 is locked by the lock mechanism 9.
  • the connector 10 and the connector 16 start to be engaged, and the connection between the connector 10 and the connector 16 is started.
  • the position of the battery engaging portion 24 is defined as a lock start position.
  • the position of the battery engaging portion 24 when the battery 3 is inserted into the battery housing portion 4 by the battery engaging portion 24 and the connection between the connector 10 and the connector 16 is started is defined as a connector connection start position.
  • the locking mechanism 9 and the connector 10 are configured so that the locking of the battery 3 by the locking mechanism 9 is started before the connection between the connector 10 and the connector 16.
  • the battery engaging portion 24 is moved to the lock start position, the battery engaging operation of the battery 3 by the battery engaging portion 24 is started.
  • the lock mechanism 9 and the connectors 10 and 16 are connected so that the connection between the connector 10 and the connector 16 is started before the lock mechanism 9 locks the battery 3.
  • the lock mechanism 9 and the connectors 10, 16 are started so that the lock of the battery 3 by the lock mechanism 9 and the connection between the connector 10 and the connector 16 are started simultaneously.
  • the battery engaging portion 24 starts the connection operation of the battery 3 when the battery engaging portion 24 moves to the lock start position and the connector connection start position.
  • the battery engaging portion 24 moves to at least one of the lock start position and the connector connection start position during the insertion operation of the battery 3 into the battery housing portion 4, the battery 3 by the battery engaging portion 24 is moved.
  • the connection operation is started, and at the time of the connection operation, at least one of the lock of the battery 3 by the lock mechanism 9 and the connection between the connector 10 and the connector 16 is performed.
  • the connection operation of the battery 3 by the battery engaging portion 24 is completed.
  • connection operation start position for example, the position of the battery engagement portion 24 shown in FIG. This is the operation start position.
  • connection operation completion position for example, the position of the battery engagement portion 24 shown in FIG. This is the connection operation completion position.
  • the lock mechanism 9 and the connectors 10 and 16 are arranged so that the lock mechanism 9 starts to be locked by the lock mechanism 9 before the connection between the connector 10 and the connector 16 when the battery 3 is inserted into the battery housing portion 4.
  • the battery engaging portion 24 When the battery engaging portion 24 is arranged, after the battery engaging portion 24 has moved to the lock start position and further moved a predetermined amount to the back side of the battery housing portion 4, the battery engaging portion 24 starts connecting operation of the battery 3. May be.
  • the lock mechanism 9 and the connectors 10 and 16 are connected so that the connection between the connector 10 and the connector 16 is started before the lock mechanism 9 locks the battery 3.
  • the battery engaging portion 24 When the battery engaging portion 24 is arranged, after the battery engaging portion 24 has moved to the connector connection start position and further moved a predetermined amount to the back side of the battery housing portion 4, the battery engaging portion 24 starts connecting operation of the battery 3 May be. Further, when the battery 3 is inserted into the battery housing portion 4, the lock mechanism 9 and the connectors 10, 16 are started so that the lock of the battery 3 by the lock mechanism 9 and the connection between the connector 10 and the connector 16 are started simultaneously. When the battery engaging portion 24 is disposed, after the battery engaging portion 24 moves to the lock start position and the connector connection starting position and further moves to the back side of the battery housing portion 4, the battery engaging portion 24 moves the battery 3. The connection operation may be started.
  • the motor 44 that drives the battery engaging portion 24 is controlled before and after the connection operation is started.
  • the method is different.
  • the control unit 27 controls the robot 5 by position control for controlling the robot 5 so that the robot 5 operates along the teaching position. That is, before the connection operation starts, the control unit 27 controls the motor 44 by position control for controlling the motor 44 by controlling the rotation amount of the motor 44. In addition, before starting the connection operation, the control unit 27 stops the motor 44 when the load of the motor 44 exceeds a predetermined first reference value. In this embodiment, the current value of the motor 44 is measured as a load of the motor 44, and the control unit 27 turns off the motor 44 when the current value of the motor 44 exceeds a predetermined first reference current value before starting the connection operation. The motor 44 is controlled by current control to be stopped. In practice, the controller 27 stops the motor 44 when the value obtained by multiplying the current value of the motor 44 by a predetermined constant exceeds the value obtained by multiplying the first reference current value by a similar constant.
  • the control unit 27 performs position control for controlling the robot 5 so that the robot 5 operates along the teaching position before the connection operation starts. To control. That is, before the connection operation starts, the control unit 27 controls the motor 44 by position control for controlling the motor 44 by controlling the rotation amount of the motor 44. Further, before the connection operation starts, the control unit 27 controls the motor 44 by the first control that stops the motor 44 when the load of the motor 44 exceeds a predetermined first reference value. In this embodiment, the current value of the motor 44 is measured as a load of the motor 44, and the control unit 27 turns off the motor 44 when the current value of the motor 44 exceeds a predetermined first reference current value before starting the connection operation. The motor 44 is controlled by current control to be stopped. That is, the first control of the present embodiment is current control. In practice, the controller 27 stops the motor 44 when the value obtained by multiplying the current value of the motor 44 by a predetermined constant exceeds the value obtained by multiplying the first reference current value by a similar constant.
  • the control unit 27 controls the motor 44 by position control.
  • the control unit 27 is configured as shown in the flowcharts of FIGS. 15 and 16.
  • the motor 44 is controlled. That is, as shown in FIG. 15, when the battery engaging portion 24 starts to insert the battery 3 into the battery accommodating portion 4, the battery engaging portion 24 moves to the connection operation start position and the connection operation is started. (Step S41), the control unit 27 starts overload control (Step S42).
  • the overload control of the present embodiment is current control as described below.
  • step S43 the control unit 27 starts measuring the drive time of the motor 44 after the connection operation is started. Thereafter, the control unit 27 determines whether or not the battery engagement unit 24 has moved to the connection operation completion position (step S44).
  • step S44 when the battery engaging portion 24 has moved to the connection operation completion position, the control portion 27 raises the engaging claw portion 41 that is engaged with the handle portion 14 of the battery 3.
  • the battery mounting portion 22 and the battery engaging portion 24 are retracted away from the bus 2 (step S45), and the operation of inserting the battery 3 into the battery housing portion 4 by the battery engaging portion 24 is completed.
  • step S44 determines that the drive time of the motor 44 after the start of the connection operation started in step S43 is a predetermined time. It is determined whether or not the reference time has elapsed (step S47). If the drive time of the motor 44 has not passed the reference time in step S47, the process returns to step S44.
  • step S47 when the drive time of the motor 44 has passed the reference time, the control unit 27 raises the engagement claw portion 41 engaged with the handle portion 14 of the battery 3 after raising the engagement claw portion 41. Then, the motor 44 is reversely rotated to retract the battery engaging portion 24 in a direction away from the bus 2 (step S48). That is, if the drive time of the motor 44 has passed the reference time before the battery engaging portion 24 moves to the connection operation completion position, the control portion 27 retracts the battery engaging portion 24 in the direction in which the battery 3 is withdrawn.
  • the battery mounting unit 22 is not retracted in the direction in which the battery 3 is pulled out in step S48, but the battery mounting unit 22 may be retracted in the direction in which the battery 3 is pulled out in step S48.
  • step S49 the control unit 27 ends the overload control (step S49), and the battery 3 is supplied to the battery housing unit 4 by the battery engaging unit 24. Plug-in operation ends abnormally.
  • the overload control ends, the threshold value of the current value of the motor 44 is switched from the second reference current value described below to the first reference current value.
  • step S42 When overload control is started in step S42, as shown in FIG. 16, the control unit 27 calculates the current value of the motor 44 corresponding to the load of the motor 44 (step S51). It is determined whether or not the current value exceeds the second reference current value (step S52). The second reference current value is smaller than the first reference current value.
  • step S42 when overload control is started, the threshold value of the current value of the motor 44 is switched from the first reference current value to the second reference current value.
  • step S51 a value obtained by multiplying the current value of the motor 44 by a predetermined constant is calculated
  • step S52 a value obtained by multiplying the current value of the motor 44 by this constant is the second reference current value. It is determined whether or not a value obtained by multiplying the same constant by.
  • step S52 when the current value of the motor 44 does not exceed the second reference current value, the control unit 27 determines whether or not the battery engagement unit 24 has moved to the connection operation completion position (step S53). ). In step S53, when the battery engaging portion 24 has not moved to the connection operation completion position, the process returns to step S51, and when the battery engagement portion 24 has moved to the connection operation completion position, the control unit 27. Ends the overload control. When ending the overload control, the threshold value of the current value of the motor 44 is switched from the second reference current value to the first reference current value.
  • step S52 when the current value of the motor 44 exceeds the second reference current value in step S52, the control unit 27 sets the duration of the state where the current value of the motor 44 exceeds the second reference current value. Measurement is performed (step S54), and it is determined whether or not the continuation time has passed a predetermined reference time (step S55). In step S55, when the continuation time has passed the reference time, the control unit 27 stops the motor 44 (step S56) and ends the overload control. On the other hand, in step S55, if the duration time has not passed the reference time, the process proceeds to step S53.
  • step S55 proceeds from step S53 to steps S53, S51, and S52. If the current value of the motor 44 does not exceed the second reference current value in step S52, the current value of the motor 44 exceeds the second reference current value. The duration of the active state is reset. On the other hand, the process proceeds from step S55 to steps S53, S51, and S52. If the current value of the motor 44 exceeds the second reference current value in step S52, the current value of the motor 44 exceeds the second reference current value. The duration of the current state is not reset, and the duration of the state in which the current value of the motor 44 exceeds the second reference current value is added in step S54.
  • the rotational speed of the motor 44 before the connection operation is started (that is, the moving speed of the battery engagement portion 24) is the motor after the connection operation is started. It is faster than the rotational speed of 44.
  • the control unit 27 controls the motor 44 by the overload control in addition to the position control when the connection operation is started when the battery 3 is inserted into the battery housing unit 4. ing.
  • the overload control is current control.
  • the motor 44 is stopped when a predetermined reference time elapses with the current value of the motor 44 exceeding the second reference current value. . Therefore, in this embodiment, when the battery 3 is locked by the lock mechanism 9, the battery 3 is displaced with respect to the lock mechanism 9, and the lock mechanism 9 and the battery 3 interfere to cause damage to the robot 5 or the like.
  • the mechanical lock mechanism 9 that locks the battery 3 by operating with the insertion force of the battery 3 into the battery housing portion 4 is installed in the battery housing portion 4, and the battery is connected to the battery housing portion 4. Even when the connector 10 and the connector 16 are connected with the insertion force of 3, it is possible to prevent damage to the battery housing portion 4, the battery 3, and the robot 5.
  • the motor 44 is driven. Therefore, when the battery 3 is locked by the lock mechanism 9 or when the connector 10 and the connector 16 are connected, even if the motor 44 is subjected to a short overload that does not damage the robot 5 or the like, The mechanism 9 can lock the battery 3 and connect the connector 10 and the connector 16. That is, in this embodiment, it is possible to lock the battery 3 by the lock mechanism 9 and to connect the connector 10 and the connector 16 while preventing damage to the battery housing 4, the battery 3, and the robot 5. .
  • the lock of the battery 3 by the lock mechanism 9 and the connection between the connector 10 and the connector 16 are ensured based on the rotation amount of the motor 44. It is possible to detect whether or not it is completed.
  • the control unit 27 3 when the driving time of the motor 44 after the start of the connection operation has passed the reference time before the battery engagement unit 24 moves to the connection operation completion position after the start of the connection operation, the control unit 27 3, the battery engaging portion 24 is retracted in the pulling direction. Therefore, in this embodiment, it is possible to prevent damage to the battery housing part 4, the battery 3, and the robot 5. That is, when the battery engagement portion 24 does not move to the connection operation completion position even though the drive time of the motor 44 after the connection operation starts has passed the reference time, the lock mechanism 9 and the battery 3 Interference or interference between the connector 10 and the connector 16 has occurred, and it is assumed that these components are overloaded. In this embodiment, the battery engaging portion 24 moves to the connection operation completion position.
  • the control unit 27 retracts the battery engaging unit 24 in the direction in which the battery 3 is withdrawn. It is possible to remove the applied overload and prevent damage to the battery housing 4, the battery 3, and the robot 5.
  • the control unit 27 has the first reference current value smaller than the first reference current value before the start of the connection operation.
  • the motor 44 is stopped when a predetermined reference time elapses with the current value of the motor 44 exceeding the two reference current values. Therefore, in this embodiment, when the battery 3 is locked by the lock mechanism 9, the battery 3 is displaced with respect to the lock mechanism 9, and the lock mechanism 9 and the battery 3 interfere to cause damage to the robot 5 or the like. When an excessive load is applied to the motor 44 or when the connector 10 and the connector 16 are connected, the connectors 10 and 16 are displaced to interfere with each other, and the robot 5 is damaged. When the motor 44 is applied to the motor 44, the motor 44 can be stopped.
  • the connection operation when the connection operation is started, even if the current value of the motor 44 exceeds the second reference current value, the reference time elapses with the current value of the motor 44 exceeding the second reference current value. Until then, the motor 44 is driven. Therefore, in this embodiment, when the battery 3 is locked by the lock mechanism 9 or when the connector 10 and the connector 16 are connected, the motor 44 is subjected to a short overload that does not damage the robot 5 or the like. However, the battery 3 can be locked by the lock mechanism 9 and the connector 10 and the connector 16 can be connected.
  • the mechanical lock mechanism 9 that locks the battery 3 by operating with the insertion force of the battery 3 into the battery housing portion 4 is installed in the battery housing portion 4, and the battery is connected to the battery housing portion 4. Even when the connector 10 and the connector 16 are connected with an insertion force of 3, the battery 3 is locked by the lock mechanism 9 while the battery housing 4, the battery 3 and the robot 5 are prevented from being damaged. And the connector 16 can be connected.
  • the motor 44 does not stop unless the current value of the motor 44 exceeds the first reference current value that is larger than the second reference current value before the start of the connection operation. Therefore, in this embodiment, the acceleration / deceleration of the motor 44 before the start of the connection operation can be increased. Therefore, in this embodiment, it is possible to shorten the movement time of the battery 3 from the start of the operation of inserting the battery 3 into the battery housing portion 4 until the connection operation is started. Further, in this embodiment, since the rotation speed of the motor 44 before the start of the connection operation is higher than the rotation speed of the motor 44 after the start of the connection operation, the operation of inserting the battery 3 into the battery housing portion 4 is started. It is possible to further shorten the movement time of the battery 3 until the connection operation is started.
  • the rotation speed of the motor 44 after the start of the connection operation is slower than the rotation speed of the motor 44 before the start of the connection operation. Therefore, in this embodiment, when the battery 3 is locked by the lock mechanism 9, the battery 3 is displaced with respect to the lock mechanism 9, and the lock mechanism 9 and the battery 3 interfere to cause damage to the robot 5 or the like. When an excessive load is applied to the motor 44 or when the connector 10 and the connector 16 are connected, the connector 10 and the connector 16 are displaced to interfere with each other, and the robot 5 and the like are damaged. When a load is applied to the motor 44, the motor 44 can be stopped in a short time. Therefore, it is possible to effectively prevent damage to the battery housing part 4, the battery 3, and the robot 5.
  • the control unit 27 3 when the driving time of the motor 44 after the start of the connection operation has passed the reference time before the battery engagement unit 24 moves to the connection operation completion position after the start of the connection operation, the control unit 27 3, the battery engaging portion 24 is retracted in the pulling direction. Therefore, in this embodiment, it is possible to prevent damage to the battery housing part 4, the battery 3, and the robot 5. That is, when the battery engagement portion 24 does not move to the connection operation completion position even though the drive time of the motor 44 after the connection operation starts has passed the reference time, the lock mechanism 9 and the battery 3 Interference or interference between the connector 10 and the connector 16 has occurred, and it is assumed that these components are overloaded. In this embodiment, the battery engaging portion 24 moves to the connection operation completion position.
  • the control unit 27 retracts the battery engaging unit 24 in the direction in which the battery 3 is withdrawn. It is possible to remove the applied overload and prevent damage to the battery housing 4, the battery 3, and the robot 5.
  • step S47 when the driving time of the motor 44 has passed the reference time in step S47, the control unit 27 reverses the motor 44 and retracts the battery engaging unit 24 in the direction away from the bus 2. I am letting.
  • the control unit 27 may stop the battery engaging unit 24. That is, in step S47, when the driving time of the motor 44 has passed the reference time, the control unit 27 may stop the motor 44.
  • the control unit 27 causes the current value to be the second even if the current value of the motor 44 exceeds the second reference current value in the overload control.
  • the motor 44 is driven until a predetermined reference time elapses when the reference current value is exceeded, and when the reference time elapses when the current value of the motor 44 exceeds the second reference current value, the motor 44 is stopped. ing.
  • the control unit 27 measures a load value other than the current value of the motor 44 as the load of the motor 44, and in the overload control, even if the measured load exceeds a predetermined reference value, The motor 44 may be driven until a predetermined reference time elapses with the load exceeding the reference value, and the motor 44 may be stopped when the reference time elapses with the load exceeding the reference value.
  • the control unit 27 measures the load of the motor 44 using a pressure sensor that measures the contact pressure between the battery 3 and the engaging claw portion 41 during the operation of inserting the battery 3 into the battery housing unit 4.
  • the motor 44 In the load control, even if the detection value of the pressure sensor exceeds a predetermined reference value, the motor 44 is driven until a predetermined reference time elapses in a state where the detection value exceeds the reference value. The motor 44 may be stopped when the reference time elapses in a state exceeding the above.
  • the control unit 27 determines that the current value of the motor 44 does not exceed the second reference current value in overload control.
  • the motor 44 is driven until a predetermined reference time elapses when the second reference current value is exceeded, and when the reference time elapses when the current value of the motor 44 exceeds the second reference current value, the motor 44 is turned off.
  • the control unit 27 measures a load value other than the current value of the motor 44 as a load of the motor 44 in the overload control, and the measured load exceeds a predetermined second reference value.
  • the motor 44 is driven until a predetermined reference time elapses when the load exceeds the second reference value, and the motor 44 is operated when the reference time elapses when the load exceeds the second reference value. It can be stopped .
  • the control unit 27 measures the load of the motor 44 using the above-described pressure sensor, and even if the detected value of the pressure sensor exceeds a predetermined second reference value, the detected value is the second reference value.
  • the motor 44 may be driven until a predetermined reference time elapses in a state where the value is exceeded, and the motor 44 may be stopped when the reference time elapses in a state where the detected value exceeds the second reference value.
  • the controller 27 stops the motor 44 when the current value of the motor 44 exceeds a predetermined first reference current value before the start of the connection operation.
  • the control unit 27 may stop the motor 44 when the load of the motor 44 measured by the pressure sensor described above exceeds a predetermined reference value before starting the connection operation.
  • the control unit 27 stops the motor 44 when the current value of the motor 44 exceeds a predetermined first reference current value before starting the connection operation. .
  • the control unit 27 measures a load value other than the current value of the motor 44 as a load of the motor 44 before the connection operation starts, and the measured load exceeds a predetermined first reference value.
  • the motor 44 may be stopped when
  • the control unit 27 measures the load of the motor 44 using a pressure sensor that measures the contact pressure between the battery 3 and the engaging claw portion 41 during the operation of inserting the battery 3 into the battery housing unit 4, and the connection.
  • the motor 44 may be stopped when the load of the motor 44 measured by the pressure sensor exceeds a predetermined first reference value.
  • the robot 5 is a robot for exchanging the battery 3 mounted on the bus 2, but the robot 5 is for exchanging the battery 3 of a vehicle other than the bus 2 such as a truck or a private car. It may be a robot.
  • Battery replacement system 2 Bus (vehicle) 3 Battery 4 Battery compartment 5 Robot (Battery exchange robot) 9 Locking mechanism 10 Connector (container side connector) 16 connector (battery side connector) 17 Battery insertion / removal mechanism 22 Battery mounting part 24 Battery engagement part 27 Control part 44 Motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 バッテリー収容部へのバッテリーの差込み力で作動してバッテリーをロックするロック機構が設置されていても、その損傷を防止することが可能なバッテリー交換ロボットを提供する。バッテリー交換ロボット5では、バッテリー収容部4へのバッテリー3の差込み動作時において、バッテリー収容部4へのバッテリー3の差込み力で作動してバッテリー3をロックするロック機構によるバッテリー3のロックやバッテリー側コネクタと収容部側コネクタとの接続が行われる接続動作が開始されると、バッテリー3に係合してバッテリー3を移動させるバッテリー係合部の駆動用のモータが位置制御と過負荷制御とによって制御される。過負荷制御では、モータの負荷が所定の基準値を超えてもモータの負荷が基準値を超えた状態で所定時間が経過するまでモータが駆動するとともに、モータの負荷が基準値を超えた状態で所定時間が経過するとモータが停止する。

Description

バッテリー交換ロボット、バッテリー交換システムおよびバッテリー交換ロボットの制御方法
 本発明は、車両に搭載されるバッテリーを交換するためのバッテリー交換ロボット、および、かかるバッテリー交換ロボットを有するバッテリー交換システムに関する。また、本発明は、かかるバッテリー交換ロボットの制御方法に関する。
 従来、バスに搭載されるバッテリーを交換するためのバッテリー交換ロボットを備えるバッテリー交換システムが本出願人によって提案されている(たとえば、特許文献1~3参照)。特許文献1~3に記載のバッテリー交換システムでは、バッテリーが収容されるバッテリー収容部がバスに取り付けられている。バッテリー収容部には、バッテリーとバスとを電気的に接続するためのコネクタが取り付けられている。バッテリーの背面には、バッテリー収容部のコネクタに接続されるコネクタが取り付けられている。
 また、特許文献1~3に記載のバッテリー交換システムでは、バッテリー交換ロボットは、バッテリー収容部からのバッテリーの引抜きおよびバッテリー収容部へのバッテリーの差込みを行うバッテリー抜差機構を備えている。バッテリー抜差機構は、バッテリーの引抜き時および差込み時にバッテリーが搭載されるバッテリー搭載部を有するバッテリー搭載機構と、バッテリーの引抜き時および差込み時にバッテリーに係合してバッテリー搭載部上でバッテリーを移動させるバッテリー係合部を有するバッテリー移動機構とを備えている。
 さらに、特許文献1~3に記載のバッテリー交換システムでは、バッテリー搭載機構は、バッテリー搭載部に加えて、バスに近づく方向およびバスから離れる方向へバッテリー搭載部を移動させる搭載部移動機構を備えている。バッテリー移動機構は、バッテリー係合部に加えて、バスに近づく方向およびバスから離れる方向へバッテリー係合部を移動させる係合部移動機構を備えている。バッテリー係合部は、バッテリーに取り付けられる取手部に係合する係合爪部と、係合爪部を上下動させるエアシリンダと、エアシリンダが取り付けられる基部とを備えている。
 特許文献1~3に記載のバッテリー交換システムでは、バスからバッテリーの引抜きを行う際に、まず、バッテリー搭載部がバスに近づく方向へ移動するとともに、バッテリー係合部がバスに近づく方向へ移動してから、係合爪部が下降してバッテリーの取手部に係合する。その後、バッテリー係合部がバスから離れる方向へ移動する。また、バッテリー係合部が所定量移動して、バッテリーがバッテリー搭載部に搭載されると、バッテリー搭載部とバッテリー係合部とが同期しながら、バスから離れる方向へ移動する。また、バスへのバッテリーの差込みを行う際には、まず、バッテリーが搭載されたバッテリー搭載部とバッテリー係合部とが同期しながら、バスに近づく方向へ移動する。その後、バッテリーの取手部に係合しているバッテリー係合部がバスに近づく方向へ移動して、バスへのバッテリーの差込みを行う。
国際公開第2012/105528号 国際公開第2012/105529号 国際公開第2012/105530号
 特許文献1~3に記載のバッテリー交換システムでは、バッテリー収容部に収容されたバッテリーをバッテリー収容部に確実に固定するために、バッテリーのロック機構をバッテリー収容部に設けることが好ましい。そこで、バッテリー係合部によるバッテリー収容部へのバッテリーの差込み力で作動してバッテリーをロックする機械式のロック機構をバッテリー収容部に設置することが検討されている。また、特許文献1~3に記載のバッテリー交換システムでは、バッテリーに設けられたコネクタとバッテリー収容部に設けられたコネクタとは、バッテリー係合部によるバッテリー収容部へのバッテリーの差込み力で接続される。
 特許文献1~3に記載のバッテリー交換システムにおいて、バッテリー係合部によるバッテリーの差込み力で作動してバッテリーをロックする機械式のロック機構がバッテリー収容部に設置される場合、たとえば、ロック機構によってバッテリーをロックする際に、ロック機構に対してバッテリーが位置ずれを起こしてロック機構とバッテリーとが干渉すると、ロック機構やバッテリー係合部等に過負荷がかかって、バッテリー収容部、バッテリーおよびバッテリー交換ロボットが損傷するおそれがある。また、特許文献1~3に記載のバッテリー交換システムでは、バッテリーに設けられたコネクタとバッテリー収容部に設けられたコネクタとがバッテリー係合部によるバッテリー収容部へのバッテリーの差込み力で接続されるため、コネクタ同士を接続する際に、コネクタ同士が位置ずれを起こして干渉すると、コネクタやバッテリー係合部等に過負荷がかかって、バッテリー収容部、バッテリーおよびバッテリー交換ロボットが損傷するおそれがある。
 そこで、本発明の第1の課題は、バッテリー収容部へのバッテリーの差込み力で作動してバッテリーをロックする機械式のロック機構がバッテリー収容部に設置され、かつ、バッテリー収容部へのバッテリーの差込み力でバッテリー側のコネクタとバッテリー収容部側のコネクタとを接続する場合であっても、バッテリー収容部、バッテリーおよびバッテリー交換ロボットの損傷を防止することが可能なバッテリー交換ロボット、バッテリー交換システムおよびバッテリー交換ロボットの制御方法を提供することにある。
 そこで、本発明の第2の課題は、バッテリー収容部へのバッテリーの差込み力で作動してバッテリーをロックする機械式のロック機構がバッテリー収容部に設置され、かつ、バッテリー収容部へのバッテリーの差込み力でバッテリー側のコネクタとバッテリー収容部側のコネクタとを接続する場合であっても、バッテリー収容部、バッテリーおよびバッテリー交換ロボットの損傷を防止しつつ、ロック機構によってバッテリーをロックしたり、バッテリー側のコネクタと収容部側のコネクタとを接続したりすることが可能なバッテリー交換ロボット、バッテリー交換システムおよびバッテリー交換ロボットの制御方法を提供することにある。
 上記の第1の課題を解決するため、本発明のバッテリー交換ロボットは、車両に搭載されているバッテリーを交換するためのバッテリー交換ロボットにおいて、車両に取り付けられるとともにバッテリーが収容されるバッテリー収容部からのバッテリーの引抜きおよびバッテリー収容部へのバッテリーの差込みを行うバッテリー抜差機構と、バッテリー抜差機構を制御する制御部とを備え、バッテリーは、車両とバッテリーとを電気的に接続するためのバッテリー側コネクタを備え、バッテリー収容部は、収容されたバッテリーをロックするロック機構と、バッテリー側コネクタに接続される収容部側コネクタとを備え、バッテリー抜差機構は、バッテリーが搭載されるバッテリー搭載部と、バッテリーに係合してバッテリーを移動させるバッテリー係合部と、バッテリー係合部を駆動するためのモータとを備え、ロック機構は、バッテリー係合部によるバッテリー収容部へのバッテリーの差込み力で作動してバッテリーをロックする機械式のロック機構であり、バッテリー側コネクタと収容部側コネクタとは、バッテリー係合部によるバッテリー収容部へのバッテリーの差込み力で接続され、制御部は、バッテリー収容部へのバッテリーの差込み動作時に、位置制御によってモータを制御するとともに、差込み動作時において、ロック機構によるバッテリーのロックおよびバッテリー側コネクタと収容部側コネクタとの接続の少なくともいずれか一方が行われる接続動作が開始されると、位置制御に加えて、モータの負荷が所定の基準値を超えてもモータの負荷が基準値を超えた状態で所定の基準時間が経過するまでモータを駆動させるとともにモータの負荷が基準値を超えた状態で基準時間が経過するとモータを停止させる過負荷制御によってモータを制御することを特徴とする。
 また、上記の第1の課題を解決するため、本発明のバッテリー交換ロボットの制御方法は、車両に取り付けられるとともにバッテリーが収容されるバッテリー収容部からのバッテリーの引抜きおよびバッテリー収容部へのバッテリーの差込みを行うバッテリー抜差機構を備え、バッテリーは、車両とバッテリーとを電気的に接続するためのバッテリー側コネクタを備え、バッテリー収容部は、収容されたバッテリーをロックするロック機構と、バッテリー側コネクタに接続される収容部側コネクタとを備え、バッテリー抜差機構は、バッテリーが搭載されるバッテリー搭載部と、バッテリーに係合してバッテリーを移動させるバッテリー係合部と、バッテリー係合部を駆動するためのモータとを備え、ロック機構は、バッテリー係合部によるバッテリー収容部へのバッテリーの差込み力で作動してバッテリーをロックする機械式のロック機構であり、バッテリー側コネクタと収容部側コネクタとは、バッテリー係合部によるバッテリー収容部へのバッテリーの差込み力で接続されるバッテリー交換ロボットの制御方法であって、バッテリー収容部へのバッテリーの差込み動作時に、位置制御によってモータを制御するとともに、差込み動作時において、ロック機構によるバッテリーのロックおよびバッテリー側コネクタと収容部側コネクタとの接続の少なくともいずれか一方が行われる接続動作が開始されると、位置制御に加えて、モータの負荷が所定の基準値を超えてもモータの負荷が基準値を超えた状態で所定の基準時間が経過するまでモータを駆動させるとともにモータの負荷が基準値を超えた状態で基準時間が経過するとモータを停止させる過負荷制御によってモータを制御することを特徴とする。
 上記の第1の課題を解決するため、本発明のバッテリー交換ロボットでは、制御部は、バッテリー収容部へのバッテリーの差込み動作時において、ロック機構によるバッテリーのロックおよびバッテリー側コネクタと収容部側コネクタとの接続の少なくともいずれか一方が行われる接続動作が開始されると、位置制御に加えて、モータの負荷が所定の基準値を超えてもモータの負荷が基準値を超えた状態で所定の基準時間が経過するまでモータを駆動させるとともにモータの負荷が基準値を超えた状態で基準時間が経過するとモータを停止させる過負荷制御によってモータを制御している。また、本発明のバッテリー交換ロボットの制御方法では、バッテリー収容部へのバッテリーの差込み動作時において、ロック機構によるバッテリーのロックおよびバッテリー側コネクタと収容部側コネクタとの接続の少なくともいずれか一方が行われる接続動作が開始されると、位置制御に加えて、モータの負荷が所定の基準値を超えてもモータの負荷が基準値を超えた状態で所定の基準時間が経過するまでモータを駆動させるとともにモータの負荷が基準値を超えた状態で基準時間が経過するとモータを停止させる過負荷制御によってモータを制御している。
 上記の第1の課題を解決するため、本発明では、接続動作が開始された後の過負荷制御において、モータの負荷が所定の基準値を超えた状態で所定の基準時間が経過するとモータを停止させているため、ロック機構によってバッテリーをロックする際に、ロック機構に対してバッテリーが位置ずれを起こしてロック機構とバッテリーとが干渉し、バッテリー交換ロボット等に損傷が生じる程の過負荷がモータにかかったときや、バッテリー側コネクタと収容部側コネクタとを接続する際に、コネクタ同士が位置ずれを起こして干渉し、バッテリー交換ロボット等に損傷が生じる程の過負荷がモータにかかったときに、モータを停止させることが可能になる。したがって、本発明では、バッテリー収容部へのバッテリーの差込み力で作動してバッテリーをロックする機械式のロック機構がバッテリー収容部に設置され、かつ、バッテリー収容部へのバッテリーの差込み力でバッテリー側のコネクタとバッテリー収容部側のコネクタとを接続する場合であっても、バッテリー収容部、バッテリーおよびバッテリー交換ロボットの損傷を防止することが可能になる。
 また、上記の第1の課題を解決するため、本発明では、過負荷制御において、モータの負荷が基準値を超えてもモータの負荷が基準値を超えた状態で基準時間が経過するまでモータを駆動させているため、ロック機構によってバッテリーをロックする際や、バッテリー側コネクタと収容部側コネクタとを接続する際に、バッテリー交換ロボット等に損傷が生じない程度の短時間の過負荷がモータにかかっても、ロック機構によってバッテリーをロックしたり、バッテリー側コネクタと収容部側コネクタとを接続したりすることが可能になる。すなわち、本発明では、バッテリー収容部、バッテリーおよびバッテリー交換ロボットの損傷を防止しつつ、ロック機構によってバッテリーをロックしたり、バッテリー側コネクタと収容部側コネクタとを接続したりすることが可能になる。
 さらに、上記の第1の課題を解決するため、本発明では、接続動作時においても、モータが位置制御されているため、モータの回転量に基づいて、ロック機構によるバッテリーのロックおよびバッテリー側コネクタと収容部側コネクタとの接続が確実に完了しているか否かを検出することが可能になる。
 上記の第1の課題を解決するため、本発明において、過負荷制御は、たとえば、モータの電流値が基準値である基準電流値を超えてもモータの電流値が基準電流値を超えた状態で基準時間が経過するまでモータを駆動させるとともに、モータの電流値が基準電流値を超えた状態で基準時間が経過するとモータを停止させる電流制御である。
 また、上記の第1の課題を解決するため、本発明において、たとえば、ロック機構によるバッテリーのロックが開始されるロック開始位置、および、バッテリー側コネクタと収容部側コネクタとの接続が開始されるコネクタ接続開始位置の少なくともいずれか一方までバッテリー係合部が移動すると、接続動作が開始される。
 上記の第1の課題を解決するため、本発明において、制御部は、接続動作が開始されると、接続動作開始後のモータの駆動時間の計測を開始し、ロック機構によるバッテリーのロックおよびバッテリー側コネクタと収容部側コネクタとの接続が完了する接続動作完了位置にバッテリー係合部が移動するまでの間に、接続動作開始後のモータの駆動時間が所定時間を経過すると、バッテリーの引抜き方向へバッテリー係合部を退避させることが好ましい。接続動作開始後のモータの駆動時間が所定時間を経過しているにもかかわらず、接続動作完了位置までバッテリー係合部が移動しない場合には、ロック機構とバッテリーとの干渉やバッテリー側コネクタと収容部側コネクタとの干渉等が発生しており、これらの構成に過負荷がかかっていることが想定される。そのため、このように構成すると、ロック機構等にかかっている過負荷を取り除いて、バッテリー収容部、バッテリーおよびバッテリー交換ロボットの損傷を防止することが可能になる。なお、接続動作開始後のモータの駆動時間が所定時間を経過したときに、モータを停止させてバッテリー係合部を停止させることも可能であるが、バッテリー係合部が停止しても、ロック機構等にかかっている過負荷を取り除くことができないため、バッテリー収容部、バッテリーおよびバッテリー交換ロボットが損傷するおそれがある。
 上記の第1の課題を解決するため、本発明のバッテリー交換ロボットは、バッテリー収容部を備えるバッテリー交換システムに用いることができる。このバッテリー交換システムでは、バッテリー収容部へのバッテリーの差込み力で作動してバッテリーをロックする機械式のロック機構がバッテリー収容部に設置され、かつ、バッテリー収容部へのバッテリーの差込み力でバッテリー側のコネクタとバッテリー収容部側のコネクタとを接続する場合であっても、バッテリー収容部、バッテリーおよびバッテリー交換ロボットの損傷を防止することが可能になる。また、このバッテリー交換システムでは、ロック機構によってバッテリーをロックする際や、バッテリー側コネクタと収容部側コネクタとを接続する際に、バッテリー交換ロボット等に損傷が生じない程度の短時間の過負荷がモータにかかっても、ロック機構によってバッテリーをロックしたり、バッテリー側コネクタと収容部側コネクタとを接続したりすることが可能になる。さらに、このバッテリー交換システムでは、ロック機構によるバッテリーのロックおよびバッテリー側コネクタと収容部側コネクタとの接続が確実に完了しているか否かを検出することが可能になる。
 上記の第2の課題を解決するため、本発明のバッテリー交換ロボットは、車両に搭載されているバッテリーを交換するためのバッテリー交換ロボットにおいて、車両に取り付けられるとともにバッテリーが収容されるバッテリー収容部からのバッテリーの引抜きおよびバッテリー収容部へのバッテリーの差込みを行うバッテリー抜差機構と、バッテリー抜差機構を制御する制御部とを備え、バッテリーは、車両とバッテリーとを電気的に接続するためのバッテリー側コネクタを備え、バッテリー収容部は、収容されたバッテリーをロックするロック機構と、バッテリー側コネクタに接続される収容部側コネクタとを備え、バッテリー抜差機構は、バッテリーが搭載されるバッテリー搭載部と、バッテリーに係合してバッテリーを移動させるバッテリー係合部と、バッテリー係合部を駆動するためのモータとを備え、ロック機構は、バッテリー係合部によるバッテリー収容部へのバッテリーの差込み力で作動してバッテリーをロックする機械式のロック機構であり、バッテリー側コネクタと収容部側コネクタとは、バッテリー係合部によるバッテリー収容部へのバッテリーの差込み力で接続され、制御部は、バッテリー収容部へのバッテリーの差込み動作時において、ロック機構によるバッテリーのロックおよびバッテリー側コネクタと収容部側コネクタとの接続の少なくともいずれか一方が行われる接続動作の開始前は、モータの負荷が所定の第1基準値を超えるとモータを停止させる第1制御によってモータを制御し、接続動作が開始されると、モータの負荷が第1基準値よりも小さい第2基準値を超えてもモータの負荷が第2基準値を超えた状態で所定の基準時間が経過するまでモータを駆動させるとともにモータの負荷が第2基準値を超えた状態で基準時間が経過するとモータを停止させる第2制御によってモータを制御することを特徴とする。
 また、上記の第2の課題を解決するため、本発明のバッテリー交換ロボットの制御方法は、車両に取り付けられるとともにバッテリーが収容されるバッテリー収容部からのバッテリーの引抜きおよびバッテリー収容部へのバッテリーの差込みを行うバッテリー抜差機構を備え、バッテリーは、車両とバッテリーとを電気的に接続するためのバッテリー側コネクタを備え、バッテリー収容部は、収容されたバッテリーをロックするロック機構と、バッテリー側コネクタに接続される収容部側コネクタとを備え、バッテリー抜差機構は、バッテリーが搭載されるバッテリー搭載部と、バッテリーに係合してバッテリーを移動させるバッテリー係合部と、バッテリー係合部を駆動するためのモータとを備え、ロック機構は、バッテリー係合部によるバッテリー収容部へのバッテリーの差込み力で作動してバッテリーをロックする機械式のロック機構であり、バッテリー側コネクタと収容部側コネクタとは、バッテリー係合部によるバッテリー収容部へのバッテリーの差込み力で接続されるバッテリー交換ロボットの制御方法であって、バッテリー収容部へのバッテリーの差込み動作時において、ロック機構によるバッテリーのロックおよびバッテリー側コネクタと収容部側コネクタとの接続の少なくともいずれか一方が行われる接続動作の開始前は、モータの負荷が所定の第1基準値を超えるとモータを停止させ、接続動作が開始されると、モータの負荷が第1基準値よりも小さい第2基準値を超えてもモータの負荷が第2基準値を超えた状態で所定の基準時間が経過するまでモータを駆動させるとともに、モータの負荷が第2基準値を超えた状態で基準時間が経過するとモータを停止させることを特徴とする。
 上記の第2の課題を解決するため、本発明のバッテリー交換ロボットでは、制御部は、バッテリー収容部へのバッテリーの差込み動作時において、ロック機構によるバッテリーのロックおよびバッテリー側コネクタと収容部側コネクタとの接続の少なくともいずれか一方が行われる接続動作の開始前は、モータの負荷が所定の第1基準値を超えるとモータを停止させる第1制御によってモータを制御し、接続動作が開始されると、モータの負荷が第1基準値よりも小さい第2基準値を超えてもモータの負荷が第2基準値を超えた状態で所定の基準時間が経過するまでモータを駆動させるとともにモータの負荷が第2基準値を超えた状態で基準時間が経過するとモータを停止させる第2制御によってモータを制御している。また、上記の第2の課題を解決するため、本発明のバッテリー交換ロボットの制御方法では、バッテリー収容部へのバッテリーの差込み動作時において、ロック機構によるバッテリーのロックおよびバッテリー側コネクタと収容部側コネクタとの接続の少なくともいずれか一方が行われる接続動作の開始前は、モータの負荷が所定の第1基準値を超えるとモータを停止させ、接続動作が開始されると、モータの負荷が第1基準値よりも小さい第2基準値を超えてもモータの負荷が第2基準値を超えた状態で所定の基準時間が経過するまでモータを駆動させるとともに、モータの負荷が第2基準値を超えた状態で基準時間が経過するとモータを停止させている。
 上記の第2の課題を解決するため、本発明では、接続動作が開始された後、接続動作開始前の第1基準値よりも小さい第2基準値をモータの負荷が超えた状態で基準時間が経過するとモータを停止させているため、ロック機構によってバッテリーをロックする際に、ロック機構に対してバッテリーが位置ずれを起こしてロック機構とバッテリーとが干渉し、バッテリー交換ロボット等に損傷が生じる程の過負荷がモータにかかったときや、バッテリー側コネクタと収容部側コネクタとを接続する際に、コネクタ同士が位置ずれを起こして干渉し、バッテリー交換ロボット等に損傷が生じる程の過負荷がモータにかかったときに、モータを停止させることが可能になる。
 また、上記の第2の課題を解決するため、本発明では、接続動作が開始されると、モータの負荷が第2基準値を超えてもモータの負荷が第2基準値を超えた状態で所定の基準時間が経過するまでモータを駆動させているため、ロック機構によってバッテリーをロックする際や、バッテリー側コネクタと収容部側コネクタとを接続する際に、バッテリー交換ロボット等に損傷が生じない程度の短時間の過負荷がモータにかかっても、ロック機構によってバッテリーをロックしたり、バッテリー側コネクタと収容部側コネクタとを接続したりすることが可能になる。
 したがって、上記の第2の課題を解決するため、本発明では、バッテリー収容部へのバッテリーの差込み力で作動してバッテリーをロックする機械式のロック機構がバッテリー収容部に設置され、かつ、バッテリー収容部へのバッテリーの差込み力でバッテリー側のコネクタとバッテリー収容部側のコネクタとを接続する場合であっても、バッテリー収容部、バッテリーおよびバッテリー交換ロボットの損傷を防止しつつ、ロック機構によってバッテリーをロックしたり、バッテリー側コネクタと収容部側コネクタとを接続したりすることが可能になる。
 また、上記の第2の課題を解決するため、本発明では、接続動作の開始前は、第2基準値よりも大きな第1基準値をモータの負荷が超えなければモータが停止しないため、モータの加減速度を大きくすることが可能になる。したがって、バッテリー収容部へのバッテリーの差込み動作を開始してから接続動作が開始されるまでのバッテリーの移動時間を短くすることが可能になる。
 上記の第2の課題を解決するため、本発明において、たとえば、第1制御は、モータの電流値が第1基準値である第1基準電流値を超えるとモータを停止させる電流制御であり、第2制御は、モータの電流値が第2基準値である第2基準電流値を超えてもモータの電流値が第2基準電流値を超えた状態で基準時間が経過するまでモータを駆動させるとともに、モータの電流値が第2基準電流値を超えた状態で基準時間が経過するとモータを停止させる電流制御である。
 また、上記の第2の課題を解決するため、本発明において、たとえば、ロック機構によるバッテリーのロックが開始されるロック開始位置、および、バッテリー側コネクタと収容部側コネクタとの接続が開始されるコネクタ接続開始位置の少なくともいずれか一方までバッテリー係合部が移動すると、接続動作が開始される。
 上記の第2の課題を解決するため、本発明において、接続動作開始前のモータの回転速度は、接続動作開始後のモータの回転速度よりも速くなっていることが好ましい。このように構成すると、接続動作開始前のバッテリー係合部の移動速度が速くなるため、バッテリー収容部へのバッテリーの差込み動作を開始してから接続動作が開始されるまでのバッテリーの移動時間を短くすることが可能になる。また、このように構成すると、接続動作開始後のモータの回転速度が遅くなるため、ロック機構によってバッテリーをロックする際に、ロック機構に対してバッテリーが位置ずれを起こしてロック機構とバッテリーとが干渉し、バッテリー交換ロボット等に損傷が生じる程の過負荷がモータにかかったときや、バッテリー側コネクタと収容部側コネクタとを接続する際に、コネクタ同士が位置ずれを起こして干渉し、バッテリー交換ロボット等に損傷が生じる程の過負荷がモータにかかったときに、短時間でモータを停止させることが可能になる。したがって、バッテリー収容部、バッテリーおよびバッテリー交換ロボットの損傷を効果的に防止することが可能になる。
 上記の第2の課題を解決するため、本発明において、制御部は、接続動作が開始されると、接続動作開始後のモータの駆動時間の計測を開始し、ロック機構によるバッテリーのロックおよびバッテリー側コネクタと収容部側コネクタとの接続が完了する接続動作完了位置にバッテリー係合部が移動するまでの間に、接続動作開始後のモータの駆動時間が所定時間を経過すると、バッテリーの引抜き方向へバッテリー係合部を退避させることが好ましい。接続動作開始後のモータの駆動時間が所定時間を経過しているにもかかわらず、接続動作完了位置までバッテリー係合部が移動しない場合には、ロック機構とバッテリーとの干渉やバッテリー側コネクタと収容部側コネクタとの干渉等が発生しており、これらの構成に過負荷がかかっていることが想定される。そのため、このように構成すると、ロック機構等にかかっている過負荷を取り除いて、バッテリー収容部、バッテリーおよびバッテリー交換ロボットの損傷を防止することが可能になる。なお、接続動作開始後のモータの駆動時間が所定時間を経過したときに、モータを停止させてバッテリー係合部を停止させることも可能であるが、バッテリー係合部が停止しても、ロック機構等にかかっている過負荷を取り除くことができないため、バッテリー収容部、バッテリーおよびバッテリー交換ロボットが損傷するおそれがある。
 上記の第2の課題を解決するため、本発明のバッテリー交換ロボットは、バッテリー収容部を備えるバッテリー交換システムに用いることができる。このバッテリー交換システムでは、バッテリー収容部へのバッテリーの差込み力で作動してバッテリーをロックする機械式のロック機構がバッテリー収容部に設置され、かつ、バッテリー収容部へのバッテリーの差込み力でバッテリー側のコネクタとバッテリー収容部側のコネクタとを接続する場合であっても、バッテリー収容部、バッテリーおよびバッテリー交換ロボットの損傷を防止しつつ、ロック機構によってバッテリーをロックしたり、バッテリー側コネクタと収容部側コネクタとを接続したりすることが可能になる。また、このバッテリー交換システムでは、バッテリー収容部へのバッテリーの差込み動作を開始してから接続動作が開始されるまでのバッテリーの移動時間を短くすることが可能になる。
 以上のように、上記の第1の課題を解決するため、本発明のバッテリー交換ロボット、バッテリー交換システムおよびバッテリー交換ロボットの制御方法では、バッテリー収容部へのバッテリーの差込み力で作動してバッテリーをロックする機械式のロック機構がバッテリー収容部に設置され、かつ、バッテリー収容部へのバッテリーの差込み力でバッテリー側のコネクタとバッテリー収容部側のコネクタとを接続する場合であっても、バッテリー収容部、バッテリーおよびバッテリー交換ロボットの損傷を防止することが可能になる。
 以上のように、上記の第2の課題を解決するため、本発明のバッテリー交換ロボット、バッテリー交換システムおよびバッテリー交換ロボットの制御方法では、バッテリー収容部へのバッテリーの差込み力で作動してバッテリーをロックする機械式のロック機構がバッテリー収容部に設置され、かつ、バッテリー収容部へのバッテリーの差込み力でバッテリー側のコネクタとバッテリー収容部側のコネクタとを接続する場合であっても、バッテリー収容部、バッテリーおよびバッテリー交換ロボットの損傷を防止しつつ、ロック機構によってバッテリーをロックしたり、バッテリー側のコネクタと収容部側のコネクタとを接続したりすることが可能になる。
本発明の実施の形態にかかるバッテリー交換システムの斜視図である。 図1のE部を別の角度から示す斜視図である。 図2のF部の拡大図である。 図1に示すバッテリーおよびバッテリー収容部の構成を説明するための概略図である。 図2に示すバッテリー抜差機構および昇降機構を正面から示す図である。 図5のH-H方向からバッテリー抜差機構および昇降機構を示す図である。 図5に示すバッテリー搭載機構を正面から説明するための図である。 図5に示すバッテリー搭載機構を上面から説明するための図である。 図5に示すバッテリー移動機構を側面から説明するための図である。 図9に示すバッテリー係合部がバスから離れる方向へ移動したときの状態を側面から説明するための図である。 図5に示すバッテリー移動機構を上面から説明するための図である。 図2に示すバッテリー交換ロボットのバッテリーの交換動作を説明するためのフローチャートである。 図2に示すバッテリー交換ロボットによるバスからのバッテリーの引抜き動作を説明するための図である。 図2に示すバッテリー交換ロボットによるバスへのバッテリーの差込み動作を説明するための図である。 図2に示すバッテリー交換ロボットのバッテリーの差込み動作時の制御を説明するためのフローチャートである。 図2に示すバッテリー交換ロボットのバッテリーの差込み動作時における過負荷制御を説明するためのフローチャートである。
 以下、図面を参照しながら、本発明の実施の形態を説明する。
 なお、以下の説明では、上述した第1の課題を解決するバッテリー交換システムおよびバッテリー交換ロボットと、上述した第2の課題を解決するバッテリー交換システムおよびバッテリー交換ロボットとは共通して説明しており、同じ符号を用いている。
 (バッテリー交換システムの概略構成)
 図1は、本発明の実施の形態にかかるバッテリー交換システム1の斜視図である。図2は、図1のE部を別の角度から示す斜視図である。以下の説明では、互いに直交する3方向のそれぞれをX方向、Y方向およびZ方向とする。本形態では、Z方向が上下方向(鉛直方向)と一致する。また、以下の説明では、X方向を前後方向、Y方向を左右方向とする。
 本形態のバッテリー交換システム1は、車両2に搭載されているバッテリー3を交換するためのシステムである。本形態の車両2は、電気バスである。したがって、以下では、車両2を「バス2」とする。バス2には、複数のバッテリー3が収容されるバッテリー収容部4が取り付けられている。バッテリー収容部4は、バス2の一方の側面2aに取り付けられるカバー部材(図示省略)を取り外すと、側面2aに露出するように配置されている。また、バッテリー収容部4は、バス2の座席の下側に配置されている。バッテリー3の交換時には、バス2は、その進行方向と左右方向とが略一致するように停止している。
 バッテリー交換システム1は、バッテリー収容部4に収容されているバッテリー3を交換するためのバッテリー交換ロボット5(以下、「ロボット5」とする。)を備えている。ロボット5は、バッテリー収容部4に収容されているバッテリー3の交換が可能となるように、前後方向でバス2の側面2aと向き合っている。このロボット5は、バッテリー収容部4に収容されているバッテリー3を引き抜いて、図示を省略するバッファステーションへ搬入するとともに、バッファステーションに収容された充電済みのバッテリー3をバッファステーションから搬出してバッテリー収容部4に差し込む。
 なお、バス2の側面2aには、バス2の位置を検出するための検出用プレート13が形成または固定されている。検出用プレート13は、平板状に形成されるとともに、上下方向でその幅が略一定な略矩形状に形成されている。この検出用プレート13は、たとえば、バス2の進行方向におけるバッテリー収容部4の手前側に配置されている。検出用プレート13は、側面2aに取り付けられるカバー部材(図示省略)を取り外すと、側面2aに露出する。
 (バッテリーおよびバッテリー収容部の構成)
 図3は、図2のF部の拡大図である。図4は、図1に示すバッテリー3およびバッテリー収容部4の構成を説明するための概略図である。
 バッテリー収容部4は、バッテリー3が搭載されるバッテリー置き台6と、左右の側壁7とを備えており、バッテリー置き台6と側壁7とによって、バッテリー3の収容空間が形成されている。バッテリー収容部4には、複数のバッテリー3の収容空間が形成されており、複数のバッテリー3が収容可能となっている。たとえば、バス2には、4個のバッテリー3が搭載可能となっており、バッテリー収容部4は、4個のバッテリー3のそれぞれが搭載される4個のバッテリー置き台6を備えている。
 バッテリー置き台6の前面には、バッテリー3の位置を間接的に検出するための検出用マーク8が形成されている。検出用マーク8は、バッテリー置き台6の左右方向の両端側のそれぞれに形成されている。この検出用マーク8は、上側に向かうにしたがって左右方向の幅が次第に狭くなる略正三角形状に形成されている。
 また、バッテリー収容部4は、図4に示すように、収容されたバッテリー3をロックするロック機構9と、バス2とバッテリー3とを電気的に接続するための収容部側コネクタとしてのコネクタ10とを備えている。ロック機構9は、ロック部材11と、付勢部材12とを備えている。コネクタ10は、バッテリー収容部4の奥側に配置されている。
 ロック部材11は、たとえば、左右方向へ移動可能となるように側壁7に保持されている。このロック部材11は、図示を省略する付勢部材によって左右方向の内側へ付勢されており、側壁7からバッテリー収容部4の内側へ突出している。また、ロック部材11は、たとえば、略三角柱状に形成されており、前後方向と上下方向とから構成されるZX平面に対して傾斜する傾斜面11aと、左右方向と上下方向とから構成されるYZ平面と平行な端面11bとを備えている。端面11bは、ロック部材11の奥側の端面を構成している。傾斜面11aは、バッテリー収容部4の手前側に向かうにしたがって、左右方向の外側へ広がるように傾斜している。なお、ロック部材11は、上下方向へ移動可能となるようにバッテリー置き台6に保持されても良い。この場合には、傾斜面11aは、バッテリー収容部4の手前側に向かうにしたがって、上下方向の外側へ広がるように傾斜している。
 付勢部材12は、たとえば、圧縮コイルバネである。この付勢部材12は、バッテリー3に形成される後述の係合突起15の端面15bとロック部材11の端面11bとが所定の接触圧で接触するように、バッテリー収容部4の手前側に向かってバッテリー3を付勢する機能を果たしている。
 バッテリー3の前面には、バッテリー収容部4からバッテリー3を引き抜くための取手部14が形成されている。本形態では、バッテリー3の前面の、左右方向の両端側のそれぞれに取手部14が形成されている。また、バッテリー3は、図4に示すように、ロック部材11に係合する係合突起15と、コネクタ10に接続されるバッテリー側コネクタとしてのコネクタ16とを備えている。コネクタ16は、バッテリー収容部4に収容されたバッテリー3の奥端面(背面)に取り付けられている。
 係合突起15は、たとえば、バッテリー3の左右の側面に固定されており、バッテリー3の左右の側面から左右方向の外側へ突出している。この係合突起15は、たとえば、略三角柱状に形成されており、ZX平面に対して傾斜する傾斜面15aと、YZ平面と平行な端面15bとを備えている。端面15bは、係合突起15の手前側の端面を構成している。傾斜面15aは、バッテリー収容部4の手前側に向かうにしたがって、左右方向の外側へ広がるように傾斜している。また、ZX平面に対する傾斜面11aの傾斜角度と、ZX平面に対する傾斜面15aの傾斜角度とは略等しくなっている。
 本形態では、バッテリー収容部4にバッテリー3を収容する際に、バッテリー3がバッテリー収容部4に差し込まれていくと、やがて、係合突起15の傾斜面15aとロック部材11の傾斜面11aとが接触する。この状態でさらに、バッテリー3がバッテリー収容部4に差し込まれると、図4(B)に示すように、付勢部材の付勢力に抗して、ロック部材11が左右方向の外側へ移動する。係合突起15がロック部材11を通過するまでバッテリー3がさらに差し込まれると、ロック部材11は、付勢部材の付勢力によって左右方向の内側へ移動する。また、係合突起15がロック部材11を通過するまでバッテリー3がさらに差し込まれると、付勢部材12がバッテリー3の奥端面に接触して、バッテリー収容部4の手前側に向かってバッテリー3を付勢する。
 すると、図4(C)に示すように、バッテリー3に形成される係合突起15の端面15bとロック部材11の端面11bとが所定の接触圧で接触して、バッテリー収容部4に収容されたバッテリー3がロックされる。このように、本形態のロック機構9は、バッテリー収容部4へのバッテリー3の差込み力で作動してバッテリー3をロックする機械式のロック機構である。具体的には、本形態のロック機構9は、ロボット5を構成する後述のバッテリー係合部24によるバッテリー収容部4へのバッテリー3の差込み力で作動してバッテリー3をロックする機械式のロック機構である。また、本形態では、バッテリー収容部4へのバッテリー3の差込み力によって、コネクタ10とコネクタ16とが接続される。具体的には、後述のバッテリー係合部24によるバッテリー収容部4へのバッテリー3の差込み力によって、コネクタ10とコネクタ16とが接続される。
 なお、本形態では、図4(C)に示す状態から(すなわち、ロック機構9にバッテリー3がロックされた状態から)さらにバッテリー3をバッテリー収容部4の奥側へわずかに押し込むと、ロック部材11が退避して、端面15bと端面11bとの接触状態が解除されるように、ロック機構9が構成されている。そのため、ロック機構9にバッテリー3がロックされた状態からさらにバッテリー3をバッテリー収容部4の奥側へわずかに押し込むと、ロック機構9によるバッテリー3のロック状態が解除されて、バッテリー収容部4からのバッテリー3の引抜きが可能になる。
 (バッテリー交換ロボットの概略構成)
 図2に示すように、ロボット5は、バッテリー収容部4からの4個のバッテリー3のそれぞれの引抜きおよびバッテリー収容部4への4個のバッテリー3のそれぞれの差込みを行うバッテリー抜差機構17と、バッテリー抜差機構17を昇降させる昇降機構18と、上下方向を軸方向としてバッテリー抜差機構17および昇降機構18を回動させる回動機構19と、バッテリー抜差機構17、昇降機構18および回動機構19を左右方向へ移動させる水平移動機構20とを備えている。また、ロボット5は、検出用マーク8および検出用プレート13を検出するための検出機構21を備えている。バッテリー抜差機構17、昇降機構18、回動機構19および水平移動機構20は、ロボット5を制御する制御部27(図2参照)に接続されており、これらの構成は、制御部27によって制御される。
また、検出機構21も制御部27に接続されている。
 バッテリー抜差機構17は、バッテリー3の引抜き時および差込み時にバッテリー3が搭載されるバッテリー搭載部22を有するバッテリー搭載機構23と、バッテリー3の引抜き時および差込み時にバッテリー3に係合してバッテリー搭載部22上でバッテリー3を移動させるバッテリー係合部24(図5参照)を有するバッテリー移動機構25とを備えている。バッテリー搭載部22およびバッテリー係合部24は、バス2に近づく方向およびバス2から離れる方向へ移動可能となっている。また、バッテリー抜差機構17は、保持部材26に保持されている。この保持部材26は、バッテリー搭載部22およびバッテリー係合部24の移動方向の両端が開口する略四角筒状に形成されている。
 (バッテリー搭載機構の構成)
 図5は、図2に示すバッテリー抜差機構17および昇降機構18を正面から示す図である。図6は、図5のH-H方向からバッテリー抜差機構17および昇降機構18を示す図である。図7は、図5に示すバッテリー搭載機構23を正面から説明するための図である。図8は、図5に示すバッテリー搭載機構23を上面から説明するための図である。
 バッテリー搭載機構23は、上述のバッテリー搭載部22に加え、バス2に近づく方向およびバス2から離れる方向へバッテリー搭載部22を移動させる搭載部移動機構30を備えている。
 バッテリー搭載部22は、上下方向に扁平した扁平なブロック状に形成されている。バッテリー搭載部22の上面には、バッテリー3の下面に当接する複数のローラ31、32が回転可能に取り付けられている。図8に示すように、複数のローラ31は、バッテリー搭載部22の移動方向に所定の間隔で配置され、複数のローラ32も、ローラ31と同様に、バッテリー搭載部22の移動方向に所定の間隔で配置されている。
 搭載部移動機構30は、バッテリー搭載部22を移動させるための構成として、モータ33と、ボールネジ等のネジ部材34と、ネジ部材34に螺合するナット部材35とを備えている。また、搭載部移動機構30は、バッテリー搭載部22を案内するための構成として、直線状に形成されたガイドレール36と、ガイドレール36に係合するとともにガイドレール36に沿って相対移動可能なガイドブロック37とを備えている。
 モータ33は、バッテリー搭載部22の後端部の上面側に固定されている。このモータ33は、制御部27に接続されている。また、モータ33は、その回転速度および回転量を検出するためのエンコーダ(図示省略)を備えている。ネジ部材34は、バッテリー搭載部22の下面側に回転可能に保持されている。モータ33とネジ部材34とは、プーリやベルト等を介して連結されている。ナット部材35は、保持部材26に固定されている。また、ガイドレール36は、バッテリー搭載部22の下面側に固定され、ガイドブロック37は、保持部材26に固定されている。そのため、本形態では、モータ33が回転すると、バッテリー搭載部22は、ガイドレール36およびガイドブロック37に案内されて、保持部材26に対して直線的に移動する。
 (バッテリー移動機構の構成)
 図9は、図5に示すバッテリー移動機構25を側面から説明するための図である。図10は、図9に示すバッテリー係合部24がバス2から離れる方向へ移動したときの状態を側面から説明するための図である。図11は、図5に示すバッテリー移動機構25を上面から説明するための図である。
 バッテリー移動機構25は、上述のバッテリー係合部24に加え、バス2に近づく方向およびバス2から離れる方向へバッテリー係合部24を移動させる係合部移動機構39と、バッテリー係合部24を移動可能に保持するとともに保持部材26に移動可能に保持される移動保持部材40とを備えている。
 バッテリー係合部24は、バッテリー3の取手部14に係合する係合爪部41と、係合爪部41を上下動させるエアシリンダ42と、エアシリンダ42が取り付けられる基部43とを備えている。係合爪部41は、エアシリンダ42の可動側に固定され、エアシリンダ42の固定側は、基部43の先端面に固定されている。本形態では、バッテリー3に形成される2個の取手部14のそれぞれに係合爪部41が係合するように、2個の係合爪部41および2個のエアシリンダ42が基部43の先端面に所定の間隔をあけた状態で配置されている。
 移動保持部材40は、バッテリー係合部24の移動方向に細長い長尺状に形成されている。また、移動保持部材40は、バッテリー係合部24の移動方向から見たときの形状が略H形状となるように形成されている。
 係合部移動機構39は、バッテリー係合部24および移動保持部材40を移動させるための構成として、モータ44と、ボールネジ等のネジ部材45と、ネジ部材45に螺合するナット部材46と、プーリ47、48と、プーリ47、48に架け渡されるベルト49とを備えている。また、係合部移動機構39は、バッテリー係合部24および移動保持部材40を案内するための構成として、直線状に形成されたガイドレール50と、ガイドレール50に係合するとともにガイドレール50に沿って相対移動可能なガイドブロック51とを備え、バッテリー係合部24を案内するための構成として、直線状に形成されたガイドレール52と、ガイドレール52に係合するとともにガイドレール52に沿って相対移動可能なガイドブロック53とを備えている。
 モータ44は、保持部材26の後端部に固定されている。このモータ44は、制御部27に接続されている。また、モータ44は、その回転速度および回転量を検出するためのエンコーダ(図示省略)を備えている。ネジ部材45は、保持部材26の上面部に回転可能に保持されている。モータ44とネジ部材45とは、プーリやベルト等を介して連結されている。ナット部材46は、移動保持部材40の後端部に固定されている。プーリ47は、移動保持部材40の後端部に回転可能に保持され、プーリ48は、移動保持部材40の前端部に回転可能に保持されている。
 ベルト49は、ベルト固定部材54を介してバッテリー係合部24の基部43に固定されるとともに、ベルト固定部材55を介して保持部材26の上面部に固定されている。具体的には、保持部材26から移動保持部材40が突出して、プーリ47の近傍にベルト固定部材55が配置されるときに、プーリ48の近傍にベルト固定部材54が配置され、かつ、保持部材26の中に移動保持部材40が収まって、プーリ48の近傍にベルト固定部材55が配置されるときに、プーリ47の近傍にベルト固定部材54が配置されるように、ベルト49は、ベルト固定部材54、55を介して基部43および保持部材26に固定されている。
 ガイドレール50は、保持部材26の上面部に固定され、ガイドブロック51は、移動保持部材40の上面に固定されている。ガイドレール52は、移動保持部材40の下面に固定され、ガイドブロック53は、バッテリー係合部24の基部43の上端側に固定されている。
 本形態では、モータ44が回転すると、ネジ部材45とナット部材46とによって、バッテリー係合部24とともに移動保持部材40がガイドレール50およびガイドブロック51に案内されて、保持部材26に対して直線的に移動する。また、モータ44が回転すると、プーリ47、48とベルト49とによって、バッテリー係合部24がガイドレール52およびガイドブロック53に案内されて、移動保持部材40に対して直線的に相対移動する。
 (昇降機構、第1連結機構および第2連結機構の構成)
 昇降機構18は、図2、図5に示すように、バッテリー搭載部22およびバッテリー係合部24の移動方向(以下、この方向を「第1方向」とする。)と上下方向とに直交する方向(以下、この方向を「第2方向」とする。)の両端側のそれぞれに配置される第1昇降機構59および第2昇降機構60を備えている。第1昇降機構59は、第1連結機構61によって、保持部材26の第2方向の一端側に連結されている。第2昇降機構60は、第2連結機構62によって、保持部材26の第2方向の他端側に連結されている。第1昇降機構59および第2昇降機構60は、水平方向に対して保持部材26を傾けるために、個別に駆動可能となっている。また、保持部材26は、水平方向に対して傾斜可能となるように第1昇降機構59および第2昇降機構60に連結されている。
 第1昇降機構59および第2昇降機構60は、上下方向へ移動可能な昇降部材63と、昇降部材63を昇降可能に保持する柱状部材64と、昇降部材63を昇降させる昇降駆動機構65とを備えている。柱状部材64は、上下方向に細長い柱状に形成されている。図5に示すように、第1昇降機構59を構成する柱状部材64の上端と、第2昇降機構60を構成する柱状部材64の上端とは、連結部材66によって連結されており、2個の柱状部材64と連結部材66とによって、門型のフレームが構成されている。
 昇降駆動機構65は、図6に示すように、昇降部材63を昇降させるための構成として、モータ67と、ボールネジ等のネジ部材68と、ネジ部材68に螺合するナット部材69とを備えている。また、昇降駆動機構65は、図5に示すように、昇降部材63を案内するための構成として、直線状に形成されたガイドレール70と、ガイドレール70に係合するとともにガイドレール70に沿って相対移動可能なガイドブロック71とを備えている。
 モータ67は、柱状部材64の上端側に固定されている。このモータ67は、制御部27に接続されている。ネジ部材68は、柱状部材64に回転可能に保持されている。モータ67とネジ部材68とは、カップリング72を介して連結されている。ナット部材69は、昇降部材63に固定されている。ガイドレール70は、柱状部材64の側面に固定されている。ガイドブロック71は、昇降部材63に固定されている。そのため、本形態では、モータ67が回転すると、昇降部材63は、ガイドレール70およびガイドブロック71に案内されて、柱状部材64に対して上下動する。
 第1連結機構61は、第1昇降機構59の昇降部材63に対する保持部材26の相対回動が可能となるように、保持部材26と昇降部材63とを連結している。また、第2連結機構62は、第2昇降機構60の昇降部材63に対する保持部材26の相対回動と第2方向への相対移動とが可能となるように、保持部材26と昇降部材63とを連結している。
 (回動機構および水平移動機構の構成)
 回動機構19は、図2に示すように、バッテリー抜差機構17および昇降機構18が搭載されるとともに回動可能な回動部材85と、回動部材85を回動させる回動駆動機構86とを備えている。水平移動機構20は、図2に示すように、バッテリー抜差機構17、昇降機構18および回動機構19が搭載されるとともに左右方向へ移動可能なスライド部材87と、スライド部材87を移動させる水平駆動機構88とを備えている。
 回動部材85は、略円板状に形成されている。この回動部材85は、スライド部材87の上側に配置されている。また、回動部材85は、その曲率中心を中心にして回動可能となっている。回動部材85の上面には、2本の柱状部材64の下端が固定されている。回動駆動機構86は、回動部材85を回動させるための構成として、モータ、プーリおよびベルト等を備えている。また、回動駆動機構86は、回動部材85を回動方向へ案内するための構成として、ガイドレールと、ガイドレールに係合するとともにガイドレールに沿って相対移動可能な複数のガイドブロックとを備えている。モータの出力軸に固定されるプーリおよび回動部材85の外周面等にはベルトが架け渡されており、モータが回転すると、回動部材85は、ガイドレールおよびガイドブロックに案内されてスライド部材87に対して回動する。
 スライド部材87は、左右方向を長手方向とする略長方形の板状に形成されている。水平駆動機構88は、スライド部材87を移動させるための構成として、モータ、プーリおよびベルト等を備えている。また、水平駆動機構88は、スライド部材87を左右方向へ案内するための構成として、直線状に形成されたガイドレールと、ガイドレールに係合するとともにガイドレールに沿って相対移動可能な複数のガイドブロックとを備えている。ベルトの一端は、ガイドレールの左端側に固定され、ベルトの他端は、ガイドレールの右端側に固定されている。また、ベルトは、モータの出力軸に固定されるプーリ等に架け渡されており、モータが回転すると、ガイドレールおよびガイドブロックに案内されてスライド部材87が左右方向へ直線的に移動する。
 (検出機構の構成、バスの位置検出方法およびバッテリーの位置検出方法)
 検出機構21は、レーザ光を射出する発光部と、この発光部から射出されバス2の側面2aやバッテリー置き台6の前面等の反射物で反射されたレーザ光を受光する受光部とを備えるレーザセンサである。この検出機構21は、図8に示すように、バッテリー搭載部22の前端側の上面に取り付けられている。本形態では、4個のバッテリー置き台6のそれぞれに形成される一対の(2個の)検出用マーク8に対応するように、2個の検出機構21がバッテリー搭載部22に取り付けられている。検出機構21は、発光部から射出されたレーザ光を反射する反射物が所定の測定レンジ内にあるとオンの状態になり、レーザ光を反射する反射物が測定レンジ内にないとオフの状態になる。また、オンの状態の検出機構21を用いて、検出機構21と反射物との距離を検出することが可能となっている。
 バス2からバッテリー3を引き抜くときには、まず、検出機構21と検出用プレート13とによってバス2の位置を検出する。具体的には、検出機構21によって、検出用プレート13の上端および左右の両端の位置を検出して検出用プレート13の位置を算出することで、バス2の位置を検出する。また、検出機構21によるバス2の位置の検出後には、検出機構21と検出用マーク8とによってバッテリー3の位置を検出する。
 具体的には、検出機構21の発光部からのレーザ光が左右方向で検出用マーク8を横切るように、バッテリー搭載部22を左右方向へ移動させて、検出用マーク8の左右方向の両端を検出することで、左右方向における検出用マーク8の位置を算出する。また、検出用マーク8の左右方向の両端を検出することで、検出用マーク8の、レーザ光が横切った部分の幅を算出する。検出用マーク8は、上側に向かうにしたがって左右方向の幅が次第に狭くなる略三角形状に形成されているため、検出用マーク8の、レーザ光が横切った部分の幅を算出することで、検出用マーク8の高さを算出することができる。また、左右方向における検出用マーク8の位置および検出用マーク8の高さを算出することで、検出用マーク8が形成されるバッテリー置き台6の左右方向の位置および高さを算出して、バッテリー置き台6に位置決めされて搭載されるバッテリー3の左右方向の位置および高さを検出する。また、検出機構21と検出用マーク8との距離を算出することで、検出用マーク8が形成されるバッテリー置き台6の前後方向の位置を算出して、バッテリー置き台6に位置決めされて搭載されるバッテリー3の前後方向の位置を検出する。
 また、一対の検出用マーク8のうちの一方の検出用マーク8の高さと他方の検出用マーク8の高さとに基づいて、前後方向から見たときの左右方向に対するバッテリー置き台6の傾きを算出して、前後方向から見たときの左右方向に対するバッテリー3の傾きを検出する。また、一対の検出用マーク8のうちの一方の検出用マーク8と検出機構21との距離と、他方の検出用マーク8と検出機構21との距離とに基づいて、上下方向から見たときの左右方向に対するバッテリー置き台6の傾きを算出して、上下方向から見たときの左右方向に対するバッテリー3の傾きを検出する。
 なお、前後左右方向におけるバッテリー3の位置、バッテリー3の高さ、前後方向から見たときの左右方向に対するバッテリー3の傾き、および、上下方向から見たときの左右方向に対するバッテリー3の傾きが検出されると、バッテリー収容部4からバッテリー3を適切に引き抜くことができるように、昇降機構18、回動機構19および水平移動機構20によってバッテリー抜差機構17の左右方向の位置、高さおよび傾きが調整される。
 (バッテリー交換ロボットによるバッテリー交換動作の概略)
 図12は、図2に示すバッテリー交換ロボット5のバッテリー3の交換動作を説明するためのフローチャートである。図13は、図2に示すバッテリー交換ロボット5によるバス2からのバッテリー3の引抜き動作を説明するための図である。図14は、図2に示すバッテリー交換ロボット5によるバス2へのバッテリー3の差込み動作を説明するための図である。
 バッテリー交換システム1では、バッテリー3が交換されるバス2が所定の停止位置に停止すると、まず、上述のように、バス2の位置が検出される(ステップS1)。その後、4個のバッテリー3のうちの交換されるバッテリー3のバス2からの引抜き動作が行われる(ステップS2)。ステップS2では、具体的には、交換されるバッテリー3の位置(具体的には、交換されるバッテリー3が搭載されるバッテリー置き台6に形成される検出用マーク8の位置)が上述のように検出され(ステップS21)、その後、ロボット5によってバス2からバッテリー3が引き抜かれ(ステップS22)、その後、引き抜かれたバッテリー3がバッファステーションへ収容される(ステップS23)。
 ステップS1、S2においては、まず、ホームポジションにあるバッテリー搭載部22およびバッテリー係合部24(図13(A)参照)が、バス2に近づく方向へ移動する。具体的には、図13(B)に示すように、バッテリー置き台6からバッテリー搭載部22へのバッテリー3の載り移りが可能な位置までバッテリー搭載部22が移動するとともに、バッテリー3の取手部14に係合爪部41が係合可能な位置までバッテリー係合部24が移動する。本形態では、ホームポジションにあるバッテリー搭載部22およびバッテリー係合部24が図13(B)に示す位置まで移動する前に、バッテリー3の位置が検出される。
 また、ステップS2においては、図13(C)に示すように、係合爪部41が下降して取手部14に係合する。上述のように、バッテリー収容部4に収容されたバッテリー3は、ロック機構9によってロックされている。また、上述のように、ロック機構9にバッテリー3がロックされた状態からさらにバッテリー3をバッテリー収容部4の奥側へわずかに押し込むと、ロック機構9によるバッテリー3のロック状態が解除されて、バッテリー収容部4からのバッテリー3の引抜きが可能になる。そのため、係合爪部41が取手部14に係合すると、図13(C)に示すように、バッテリー係合部24がバッテリー3をバッテリー収容部4の奥側へわずかに押し込んで(すなわち、バス2に近づく方向へわずかに移動して)、ロック機構9によるバッテリー3のロック状態を解除する。
 その後、図13(D)に示すように、バッテリー係合部24がバス2から離れる方向へ移動して、バッテリー置き台6からバッテリー搭載部22へバッテリー3が載り移り始める。バッテリー係合部24が所定量移動して、図13(E)に示すように、バッテリー3がバッテリー搭載部22に完全に搭載されると、その後、バッテリー搭載部22およびバッテリー係合部24が同期しながら、図13(F)に示すように、バス2から離れる方向へ移動して、バス2からのバッテリー3の引抜きが完了する。バス2からのバッテリー3の引抜きが完了すると、ロボット5は、180°回動して、バッファステーションにバッテリー3を収容する。
 その後、バス2の、バッテリー3が引き抜かれた部分へのバッテリー3の差込み動作が行われる(ステップS3)。ステップS3では、具体的には、ロボット5によってバッファステーションから充電済みのバッテリー3が取り出され(ステップS31)、その後、取り出されたバッテリー3がバス2に差し込まれる(ステップS32)。
 ステップS3において、ロボット5は、バッファステーションから充電済みのバッテリー3を取り出すと、180°回動して、図14(A)に示すように、バス2からのバッテリー3の引抜き完了時と同じ状態になる。その後、図14(B)に示すように、バッテリー搭載部22およびバッテリー係合部24が同期しながら、バス2に近づく方向へ移動する。バッテリー搭載部22からバッテリー置き台6へのバッテリー3の載り移りが可能な位置までバッテリー搭載部22が移動すると、図14(C)、図14(D)に示すように、バッテリー係合部24がバス2に近づく方向へ移動して、バス2へのバッテリー3の差込みを行う。バス2にバッテリー3が差し込まれると、図14(E)に示すように、係合爪部41が上昇し、図14(F)に示すように、バッテリー搭載部22およびバッテリー係合部24がバス2から離れる方向へ移動して(具体的には、ホームポジションまで移動して)、バス2へのバッテリー3の差込みが完了する。
 ステップS2およびS3での動作は、停止しているバス2において交換が必要なバッテリー3の交換が完了するまで(ステップS4において“Yes”になるまで)繰り返される。通常は、停止しているバス2の全てのバッテリー3が交換されるまで繰り返される。交換が必要なバッテリー3の交換が完了すると、ロボット5が原点位置へ復帰して(ステップS5)、ロボット5によるバッテリー3の交換動作が終了する。
 なお、バッテリー交換システム1においては、ロボット5を適切に動作させてバス2のバッテリー3を適切に交換するため、所定の基準位置に停止しているバス2を用いて、予め、ロボット5の教示(ティーチング)が行われる。ロボット5は、教示された位置(教示位置)に沿って動作して、バッテリー3の交換動作を行う。
 (バッテリー差込み時の制御方法)
 図15は、図2に示すバッテリー交換ロボット5のバッテリー3の差込み動作時の制御を説明するためのフローチャートである。図16は、図2に示すバッテリー交換ロボット5のバッテリー3の差込み動作時における過負荷制御を説明するためのフローチャートである。
 上述のように、バッテリー3がバッテリー収容部4に差し込まれていくと、係合突起15の傾斜面15aとロック部材11の傾斜面11aとが接触し始めて、ロック機構9によるバッテリー3のロックが開始される。また、バッテリー3がバッテリー収容部4に差し込まれていくと、コネクタ10とコネクタ16とが係合し始めて、コネクタ10とコネクタ16との接続が開始される。以下では、バッテリー係合部24によってバッテリー収容部4へバッテリー3を差し込むときであって、ロック機構9によるバッテリー3のロックが開始されるときのバッテリー係合部24の位置をロック開始位置とし、バッテリー係合部24によってバッテリー収容部4へバッテリー3を差し込むときであって、コネクタ10とコネクタ16との接続が開始されるときのバッテリー係合部24の位置をコネクタ接続開始位置とする。
 本形態では、バッテリー収容部4へのバッテリー3の差込み動作時に、コネクタ10とコネクタ16との接続よりも先にロック機構9によるバッテリー3のロックが開始されるようにロック機構9およびコネクタ10、16が配置されている場合、バッテリー係合部24がロック開始位置まで移動すると、バッテリー係合部24によるバッテリー3の接続動作が開始される。また、バッテリー収容部4へのバッテリー3の差込み動作時に、ロック機構9によるバッテリー3のロックよりも先にコネクタ10とコネクタ16との接続が開始されるようにロック機構9およびコネクタ10、16が配置されている場合、バッテリー係合部24がコネクタ接続開始位置まで移動すると、バッテリー係合部24によるバッテリー3の接続動作が開始される。また、バッテリー収容部4へのバッテリー3の差込み動作時に、ロック機構9によるバッテリー3のロックと、コネクタ10とコネクタ16との接続とが同時に開始されるようにロック機構9およびコネクタ10、16が配置されている場合、ロック開始位置およびコネクタ接続開始位置までバッテリー係合部24が移動すると、バッテリー係合部24によるバッテリー3の接続動作が開始される。
 すなわち、本形態では、バッテリー収容部4へのバッテリー3の差込み動作時に、ロック開始位置およびコネクタ接続開始位置の少なくともいずれか一方までバッテリー係合部24が移動すると、バッテリー係合部24によるバッテリー3の接続動作が開始され、接続動作時には、ロック機構9によるバッテリー3のロックおよびコネクタ10とコネクタ16との接続の少なくともいずれか一方が行われる。また、本形態では、ロック機構9によるバッテリー3のロックが完了するとともに、コネクタ10とコネクタ16との接続が完了すると、バッテリー係合部24によるバッテリー3の接続動作が完了する。また、接続動作が完了して、バッテリー搭載部22およびバッテリー係合部24がホームポジションまで移動すると、バッテリー収容部4へのバッテリー3の差込みが完了する。
 バッテリー係合部24によるバッテリー3の接続動作が開始されるときのバッテリー係合部24の位置を接続動作開始位置とすると、たとえば、図14(C)に示すバッテリー係合部24の位置が接続動作開始位置となる。また、バッテリー係合部24によるバッテリー3の接続動作が完了するときのバッテリー係合部24の位置を接続動作完了位置とすると、たとえば、図14(D)に示すバッテリー係合部24の位置が接続動作完了位置となる。本形態では、ロボット5を教示する際に、接続動作開始位置および接続動作完了位置がロボット5に教示されている。
 なお、バッテリー収容部4へのバッテリー3の差込み動作時に、コネクタ10とコネクタ16との接続よりも先にロック機構9によるバッテリー3のロックが開始されるようにロック機構9およびコネクタ10、16が配置されている場合に、バッテリー係合部24がロック開始位置まで移動してからさらにバッテリー収容部4の奥側へ所定量移動した後に、バッテリー係合部24によるバッテリー3の接続動作が開始されても良い。また、バッテリー収容部4へのバッテリー3の差込み動作時に、ロック機構9によるバッテリー3のロックよりも先にコネクタ10とコネクタ16との接続が開始されるようにロック機構9およびコネクタ10、16が配置されている場合に、バッテリー係合部24がコネクタ接続開始位置まで移動してからさらにバッテリー収容部4の奥側へ所定量移動した後に、バッテリー係合部24によるバッテリー3の接続動作が開始されても良い。また、バッテリー収容部4へのバッテリー3の差込み動作時に、ロック機構9によるバッテリー3のロックと、コネクタ10とコネクタ16との接続とが同時に開始されるようにロック機構9およびコネクタ10、16が配置されている場合に、ロック開始位置およびコネクタ接続開始位置までバッテリー係合部24が移動してからさらにバッテリー収容部4の奥側へ所定量移動した後に、バッテリー係合部24によるバッテリー3の接続動作が開始されても良い。
 また、本形態では、バッテリー係合部24によるバッテリー収容部4へのバッテリー3の差込み動作時において、接続動作開始前と接続動作開始後とで、バッテリー係合部24を駆動するモータ44の制御方法が異なる。
 接続動作開始前において、制御部27は、教示位置に沿ってロボット5が動作するようにロボット5を制御する位置制御によってロボット5を制御する。すなわち、接続動作開始前において、制御部27は、モータ44の回転量を制御することでモータ44を制御する位置制御によってモータ44を制御する。また、接続動作開始前において、制御部27は、モータ44の負荷が所定の第1基準値を超えるとモータ44を停止させる。本形態では、モータ44の負荷としてモータ44の電流値を測定しており、制御部27は、接続動作開始前において、モータ44の電流値が所定の第1基準電流値を超えるとモータ44を停止させる電流制御によってモータ44を制御する。なお、実際には、モータ44の電流値に所定の定数をかけた値が、第1基準電流値に同様の定数をかけた値を超えると、制御部27はモータ44を停止させる。
 なお、上述した第2の課題を解決するバッテリー交換ロボット5は、接続動作開始前において、制御部27は、教示位置に沿ってロボット5が動作するようにロボット5を制御する位置制御によってロボット5を制御する。すなわち、接続動作開始前において、制御部27は、モータ44の回転量を制御することでモータ44を制御する位置制御によってモータ44を制御する。また、接続動作開始前において、制御部27は、モータ44の負荷が所定の第1基準値を超えるとモータ44を停止させる第1制御によってモータ44を制御する。本形態では、モータ44の負荷としてモータ44の電流値を測定しており、制御部27は、接続動作開始前において、モータ44の電流値が所定の第1基準電流値を超えるとモータ44を停止させる電流制御によってモータ44を制御する。すなわち、本形態の第1制御は、電流制御である。なお、実際には、モータ44の電流値に所定の定数をかけた値が、第1基準電流値に同様の定数をかけた値を超えると、制御部27はモータ44を停止させる。
 一方、接続動作が開始されても、制御部27は、位置制御によってモータ44を制御するが、接続動作が開始されると、制御部27は、図15および図16のフローチャートに示すように、モータ44を制御する。すなわち、図15に示すように、バッテリー係合部24によるバッテリー収容部4へのバッテリー3の差込み動作が始まり、バッテリー係合部24が接続動作開始位置まで移動して接続動作が開始されると(ステップS41)、制御部27は、過負荷制御を開始する(ステップS42)。なお、上述した第2の課題を解決するバッテリー交換ロボット5において、本形態の過負荷制御は、以下に説明するように電流制御である。
 また、接続動作が開始されると、制御部27は、接続動作開始後のモータ44の駆動時間の計測を開始する(ステップS43)。その後、制御部27は、バッテリー係合部24が接続動作完了位置まで移動したか否かを判断する(ステップS44)。ステップS44において、バッテリー係合部24が接続動作完了位置まで移動している場合には、制御部27は、バッテリー3の取手部14に係合している係合爪部41を上昇させてからバッテリー搭載部22およびバッテリー係合部24をバス2から離れる方向へ退避させて(ステップS45)、バッテリー係合部24によるバッテリー収容部4へのバッテリー3の差込み動作が完了する。
 一方、ステップS44において、バッテリー係合部24が接続動作完了位置まで移動していない場合には、制御部27は、ステップS43で計測を開始した接続動作開始後のモータ44の駆動時間が所定の基準時間を経過しているか否かを判断する(ステップS47)。ステップS47で、モータ44の駆動時間が基準時間を経過していない場合には、ステップS44へ戻る。
 また、ステップS47で、モータ44の駆動時間が基準時間を経過している場合には、制御部27は、バッテリー3の取手部14に係合している係合爪部41を上昇させてから、モータ44を逆転させて、バッテリー係合部24をバス2から離れる方向へ退避させる(ステップS48)。すなわち、接続動作完了位置にバッテリー係合部24が移動するまでの間に、モータ44の駆動時間が基準時間を経過すると、制御部27は、バッテリー3の引抜き方向へバッテリー係合部24を退避させる。なお、本形態では、ステップS48において、バッテリー搭載部22はバッテリー3の引抜き方向へ退避しないが、ステップS48において、バッテリー搭載部22がバッテリー3の引抜き方向へ退避しても良い。
 その後、制御部27は、ステップS42で開始した過負荷制御が終了していない場合には、過負荷制御を終了させて(ステップS49)、バッテリー係合部24によるバッテリー収容部4へのバッテリー3の差込み動作が異常終了する。なお、過負荷制御が終了する際には、モータ44の電流値の閾値が、以下で説明する第2基準電流値から第1基準電流値に切り替わる。
 また、ステップS42で過負荷制御が開始されると、図16に示すように、制御部27は、モータ44の負荷に相当するモータ44の電流値を算出して(ステップS51)、モータ44の電流値が第2基準電流値を超えているか否かを判断する(ステップS52)。第2基準電流値は、第1基準電流値よりも小さな値である。また、ステップS42において、過負荷制御が開始される際に、モータ44の電流値の閾値が第1基準電流値から第2基準電流値に切り替わる。なお、実際には、ステップS51では、モータ44の電流値に所定の定数をかけた値が算出され、ステップS52では、モータ44の電流値にこの定数をかけた値が、第2基準電流値に同様の定数をかけた値を超えているか否かが判断される。
 ステップS52において、モータ44の電流値が第2基準電流値を超えていない場合には、制御部27は、バッテリー係合部24が接続動作完了位置まで移動したか否かを判断する(ステップS53)。ステップS53において、バッテリー係合部24が接続動作完了位置まで移動していない場合には、ステップS51に戻り、バッテリー係合部24が接続動作完了位置まで移動している場合には、制御部27は、過負荷制御を終了する。過負荷制御を終了する際には、モータ44の電流値の閾値が第2基準電流値から第1基準電流値に切り替わる。
 一方、ステップS52において、モータ44の電流値が第2基準電流値を超えている場合には、制御部27は、モータ44の電流値が第2基準電流値を超えている状態の継続時間を計測し(ステップS54)、この継続時間が所定の基準時間を経過しているか否かを判断する(ステップS55)。ステップS55において、この継続時間が基準時間を経過している場合には、制御部27は、モータ44を停止させて(ステップS56)、過負荷制御を終了する。一方、ステップS55において、この継続時間が基準時間を経過していない場合には、ステップS53に進む。
 なお、ステップS55からステップS53、S51、S52へ進み、ステップS52で、モータ44の電流値が第2基準電流値を超えていない場合には、モータ44の電流値が第2基準電流値を超えている状態の継続時間はリセットされる。一方、ステップS55からステップS53、S51、S52へ進み、ステップS52で、モータ44の電流値が第2基準電流値を超えている場合には、モータ44の電流値が第2基準電流値を超えている状態の継続時間はリセットされずに、ステップS54で、モータ44の電流値が第2基準電流値を超えている状態の継続時間が加算される。
 また、本形態では、バッテリー収容部4へのバッテリー3の差込み動作時において、接続動作開始前のモータ44の回転速度(すなわち、バッテリー係合部24の移動速度)は、接続動作開始後のモータ44の回転速度よりも速くなっている。
 (上述した第1の課題を解決する、本形態の主な効果)
 以上説明したように、本形態では、制御部27は、バッテリー収容部4へのバッテリー3の差込み動作時に接続動作が開始されると、位置制御に加えて、過負荷制御によってモータ44を制御している。また、この過負荷制御は、電流制御であり、この過負荷制御では、モータ44の電流値が第2基準電流値を超えた状態で所定の基準時間が経過すると、モータ44を停止させている。そのため、本形態では、ロック機構9によってバッテリー3をロックする際に、ロック機構9に対してバッテリー3が位置ずれを起こしてロック機構9とバッテリー3とが干渉し、ロボット5等に損傷が生じる程の過負荷がモータ44にかかったときや、コネクタ10とコネクタ16とを接続する際に、コネクタ10、16同士が位置ずれを起こして干渉し、ロボット5等に損傷が生じる程の過負荷がモータ44にかかったときに、モータ44を停止させることが可能になる。したがって、本形態では、バッテリー収容部4へのバッテリー3の差込み力で作動してバッテリー3をロックする機械式のロック機構9がバッテリー収容部4に設置され、かつ、バッテリー収容部4へのバッテリー3の差込み力でコネクタ10とコネクタ16とを接続する場合であっても、バッテリー収容部4、バッテリー3およびロボット5の損傷を防止することが可能になる。
 また、本形態の過負荷制御では、モータ44の電流値が第2基準電流値を超えても、モータ44の電流値が第2基準電流値を超えた状態で基準時間が経過するまでは、モータ44を駆動させている。そのため、ロック機構9によってバッテリー3をロックする際や、コネクタ10とコネクタ16とを接続する際に、ロボット5等に損傷が生じない程度の短時間の過負荷がモータ44にかかっても、ロック機構9によってバッテリー3をロックしたり、コネクタ10とコネクタ16とを接続したりすることが可能になる。すなわち、本形態では、バッテリー収容部4、バッテリー3およびロボット5の損傷を防止しつつ、ロック機構9によってバッテリー3をロックしたり、コネクタ10とコネクタ16とを接続したりすることが可能になる。
 また、本形態では、接続動作時においても、モータ44が位置制御されているため、モータ44の回転量に基づいて、ロック機構9によるバッテリー3のロックおよびコネクタ10とコネクタ16との接続が確実に完了しているか否かを検出することが可能になる。
 本形態では、接続動作開始後、接続動作完了位置にバッテリー係合部24が移動するまでの間に、接続動作開始後のモータ44の駆動時間が基準時間を経過すると、制御部27は、バッテリー3の引抜き方向へバッテリー係合部24を退避させている。そのため、本形態では、バッテリー収容部4、バッテリー3およびロボット5の損傷を防止することが可能になる。すなわち、接続動作開始後のモータ44の駆動時間が基準時間を経過しているにもかかわらず、接続動作完了位置までバッテリー係合部24が移動しない場合には、ロック機構9とバッテリー3との干渉やコネクタ10とコネクタ16との干渉等が発生しており、これらの構成に過負荷がかかっていることが想定されるが、本形態では、接続動作完了位置にバッテリー係合部24が移動するまでの間に、接続動作開始後のモータ44の駆動時間が基準時間を経過すると、制御部27が、バッテリー3の引抜き方向へバッテリー係合部24を退避させているため、これらの構成にかかっている過負荷を取り除いて、バッテリー収容部4、バッテリー3およびロボット5の損傷を防止することが可能になる。
 (上述した第2の課題を解決する、本形態の主な効果)
 以上説明したように、本形態では、制御部27は、バッテリー収容部4へのバッテリー3の差込み動作時に接続動作が開始されると、接続動作の開始前の第1基準電流値よりも小さい第2基準電流値をモータ44の電流値が超えた状態で所定の基準時間が経過したときにモータ44を停止させている。そのため、本形態では、ロック機構9によってバッテリー3をロックする際に、ロック機構9に対してバッテリー3が位置ずれを起こしてロック機構9とバッテリー3とが干渉し、ロボット5等に損傷が生じる程の過負荷がモータ44にかかったときや、コネクタ10とコネクタ16とを接続する際に、コネクタ10、16同士が位置ずれを起こして干渉し、ロボット5等に損傷が生じる程の過負荷がモータ44にかかったときに、モータ44を停止させることが可能になる。
 また、本形態では、接続動作が開始されると、モータ44の電流値が第2基準電流値を超えても、モータ44の電流値が第2基準電流値を超えた状態で基準時間が経過するまでは、モータ44を駆動させている。そのため、本形態では、ロック機構9によってバッテリー3をロックする際や、コネクタ10とコネクタ16とを接続する際に、ロボット5等に損傷が生じない程度の短時間の過負荷がモータ44にかかっても、ロック機構9によってバッテリー3をロックしたり、コネクタ10とコネクタ16とを接続したりすることが可能になる。
 したがって、本形態では、バッテリー収容部4へのバッテリー3の差込み力で作動してバッテリー3をロックする機械式のロック機構9がバッテリー収容部4に設置され、かつ、バッテリー収容部4へのバッテリー3の差込み力でコネクタ10とコネクタ16とを接続する場合であっても、バッテリー収容部4、バッテリー3およびロボット5の損傷を防止しつつ、ロック機構9によってバッテリー3をロックしたり、コネクタ10とコネクタ16とを接続したりすることが可能になる。
 本形態では、接続動作の開始前において、モータ44の電流値が、第2基準電流値よりも大きな第1基準電流値を超えなければモータ44が停止しない。そのため、本形態では、接続動作の開始前のモータ44の加減速度を大きくすることが可能になる。したがって、本形態では、バッテリー収容部4へのバッテリー3の差込み動作を開始してから接続動作が開始されるまでのバッテリー3の移動時間を短くすることが可能になる。また、本形態では、接続動作開始前のモータ44の回転速度が接続動作開始後のモータ44の回転速度よりも速くなっているため、バッテリー収容部4へのバッテリー3の差込み動作を開始してから接続動作が開始されるまでのバッテリー3の移動時間をより短くすることが可能になる。
 本形態では、接続動作開始後のモータ44の回転速度が接続動作開始前のモータ44の回転速度よりも遅くなっている。そのため、本形態では、ロック機構9によってバッテリー3をロックする際に、ロック機構9に対してバッテリー3が位置ずれを起こしてロック機構9とバッテリー3とが干渉し、ロボット5等に損傷が生じる程の過負荷がモータ44にかかったときや、コネクタ10とコネクタ16とを接続する際に、コネクタ10とコネクタ16とが位置ずれを起こして干渉し、ロボット5等に損傷が生じる程の過負荷がモータ44にかかったときに、短時間でモータ44を停止させることが可能になる。したがって、バッテリー収容部4、バッテリー3およびロボット5の損傷を効果的に防止することが可能になる。
 本形態では、接続動作開始後、接続動作完了位置にバッテリー係合部24が移動するまでの間に、接続動作開始後のモータ44の駆動時間が基準時間を経過すると、制御部27は、バッテリー3の引抜き方向へバッテリー係合部24を退避させている。そのため、本形態では、バッテリー収容部4、バッテリー3およびロボット5の損傷を防止することが可能になる。すなわち、接続動作開始後のモータ44の駆動時間が基準時間を経過しているにもかかわらず、接続動作完了位置までバッテリー係合部24が移動しない場合には、ロック機構9とバッテリー3との干渉やコネクタ10とコネクタ16との干渉等が発生しており、これらの構成に過負荷がかかっていることが想定されるが、本形態では、接続動作完了位置にバッテリー係合部24が移動するまでの間に、接続動作開始後のモータ44の駆動時間が基準時間を経過すると、制御部27が、バッテリー3の引抜き方向へバッテリー係合部24を退避させているため、これらの構成にかかっている過負荷を取り除いて、バッテリー収容部4、バッテリー3およびロボット5の損傷を防止することが可能になる。
 (他の実施の形態)
 上述した形態は、本発明の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々変形実施が可能である。
 上述した形態では、ステップS47において、モータ44の駆動時間が基準時間を経過している場合に、制御部27は、モータ44を逆転させて、バッテリー係合部24をバス2から離れる方向へ退避させている。この他にもたとえば、ステップS47において、モータ44の駆動時間が基準時間を経過している場合に、制御部27は、バッテリー係合部24を停止させても良い。すなわち、ステップS47において、モータ44の駆動時間が基準時間を経過している場合に、制御部27は、モータ44を停止させても良い。
 上述した第1の課題を解決する場合には、上述した形態では、制御部27は、過負荷制御において、モータ44の電流値が第2基準電流値を超えても、この電流値が第2基準電流値を超えた状態で所定の基準時間が経過するまではモータ44を駆動させるとともに、モータ44の電流値が第2基準電流値を超えた状態で基準時間が経過するとモータ44を停止させている。この他にもたとえば、制御部27は、モータ44の負荷としてモータ44の電流値以外の負荷の値を測定し、過負荷制御において、測定されたこの負荷が所定の基準値を超えてもこの負荷が基準値を超えた状態で所定の基準時間が経過するまでモータ44を駆動させるとともに、この負荷が基準値を超えた状態で基準時間が経過したときにモータ44を停止させても良い。たとえば、制御部27は、バッテリー収容部4へのバッテリー3の差込み動作時のバッテリー3と係合爪部41との接触圧を測定する圧力センサを用いて、モータ44の負荷を測定し、過負荷制御において、圧力センサの検出値が所定の基準値を超えてもこの検出値が基準値を超えた状態で所定の基準時間が経過するまでモータ44を駆動させるとともに、この検出値が基準値を超えた状態で基準時間が経過したときにモータ44を停止させても良い。
 また、上述した第2の課題を解決する場合には、上述した形態では、制御部27は、過負荷制御において、モータ44の電流値が第2基準電流値を超えても、この電流値が第2基準電流値を超えた状態で所定の基準時間が経過するまではモータ44を駆動させるとともに、モータ44の電流値が第2基準電流値を超えた状態で基準時間が経過するとモータ44を停止させているが、制御部27は、過負荷制御において、モータ44の負荷としてモータ44の電流値以外の負荷の値を測定し、測定されたこの負荷が所定の第2基準値を超えてもこの負荷が第2基準値を超えた状態で所定の基準時間が経過するまでモータ44を駆動させるとともに、この負荷が第2基準値を超えた状態で基準時間が経過したときにモータ44を停止させても良い。たとえば、制御部27は、過負荷制御において、上述の圧力センサを用いてモータ44の負荷を測定し、圧力センサの検出値が所定の第2基準値を超えてもこの検出値が第2基準値を超えた状態で所定の基準時間が経過するまでモータ44を駆動させるとともに、この検出値が第2基準値を超えた状態で基準時間が経過したときにモータ44を停止させても良い。
 同様に、上述した第1の課題を解決する場合、上述した形態では、接続動作開始前において、制御部27は、モータ44の電流値が所定の第1基準電流値を超えるとモータ44を停止させているが、制御部27は、接続動作開始前において、上述の圧力センサによって測定されたモータ44の負荷が所定の基準値を超えたときにモータ44を停止させても良い。
 上述した第2の課題を解決する場合、上述した形態では、接続動作開始前において、制御部27は、モータ44の電流値が所定の第1基準電流値を超えるとモータ44を停止させている。この他にもたとえば、制御部27は、接続動作開始前において、モータ44の負荷としてモータ44の電流値以外の負荷の値を測定し、測定されたこの負荷が所定の第1基準値を超えたときにモータ44を停止させても良い。たとえば、制御部27は、バッテリー収容部4へのバッテリー3の差込み動作時のバッテリー3と係合爪部41との接触圧を測定する圧力センサを用いてモータ44の負荷を測定するとともに、接続動作開始前において、この圧力センサによって測定されたモータ44の負荷が所定の第1基準値を超えたときにモータ44を停止させても良い。
 上述した形態では、ロボット5は、バス2に搭載されるバッテリー3を交換するためのロボットであるが、ロボット5は、トラックや自家用車等のバス2以外の車両のバッテリー3を交換するためのロボットであっても良い。
 1 バッテリー交換システム 
 2 バス(車両)
 3 バッテリー
 4 バッテリー収容部
 5 ロボット(バッテリー交換ロボット)
 9 ロック機構
 10 コネクタ(収容部側コネクタ)
 16 コネクタ(バッテリー側コネクタ)
 17 バッテリー抜差機構
 22 バッテリー搭載部
 24 バッテリー係合部
 27 制御部
 44 モータ

Claims (13)

  1.  車両に搭載されているバッテリーを交換するためのバッテリー交換ロボットにおいて、
     前記車両に取り付けられるとともに前記バッテリーが収容されるバッテリー収容部からの前記バッテリーの引抜きおよび前記バッテリー収容部への前記バッテリーの差込みを行うバッテリー抜差機構と、前記バッテリー抜差機構を制御する制御部とを備え、
     前記バッテリーは、前記車両と前記バッテリーとを電気的に接続するためのバッテリー側コネクタを備え、
     前記バッテリー収容部は、収容された前記バッテリーをロックするロック機構と、前記バッテリー側コネクタに接続される収容部側コネクタとを備え、
     前記バッテリー抜差機構は、前記バッテリーが搭載されるバッテリー搭載部と、前記バッテリーに係合して前記バッテリーを移動させるバッテリー係合部と、前記バッテリー係合部を駆動するためのモータとを備え、
     前記ロック機構は、前記バッテリー係合部による前記バッテリー収容部への前記バッテリーの差込み力で作動して前記バッテリーをロックする機械式のロック機構であり、
     前記バッテリー側コネクタと前記収容部側コネクタとは、前記バッテリー係合部による前記バッテリー収容部への前記バッテリーの差込み力で接続され、
     前記制御部は、前記バッテリー収容部への前記バッテリーの差込み動作時に、位置制御によって前記モータを制御するとともに、前記差込み動作時において、前記ロック機構による前記バッテリーのロックおよび前記バッテリー側コネクタと前記収容部側コネクタとの接続の少なくともいずれか一方が行われる接続動作が開始されると、位置制御に加えて、前記モータの負荷が所定の基準値を超えても前記モータの負荷が前記基準値を超えた状態で所定の基準時間が経過するまで前記モータを駆動させるとともに前記モータの負荷が前記基準値を超えた状態で前記基準時間が経過すると前記モータを停止させる過負荷制御によって前記モータを制御することを特徴とするバッテリー交換ロボット。
  2.  前記過負荷制御は、前記モータの電流値が前記基準値である基準電流値を超えても前記モータの電流値が前記基準電流値を超えた状態で前記基準時間が経過するまで前記モータを駆動させるとともに、前記モータの電流値が前記基準電流値を超えた状態で前記基準時間が経過すると前記モータを停止させる電流制御であることを特徴とする請求項1記載のバッテリー交換ロボット。
  3.  前記ロック機構による前記バッテリーのロックが開始されるロック開始位置、および、前記バッテリー側コネクタと前記収容部側コネクタとの接続が開始されるコネクタ接続開始位置の少なくともいずれか一方まで前記バッテリー係合部が移動すると、前記接続動作が開始されることを特徴とする請求項1または2記載のバッテリー交換ロボット。
  4.  前記制御部は、前記接続動作が開始されると、前記接続動作開始後の前記モータの駆動時間の計測を開始し、前記ロック機構による前記バッテリーのロックおよび前記バッテリー側コネクタと前記収容部側コネクタとの接続が完了する接続動作完了位置に前記バッテリー係合部が移動するまでの間に、前記接続動作開始後の前記モータの駆動時間が所定時間を経過すると、前記バッテリーの引抜き方向へ前記バッテリー係合部を退避させることを特徴とする請求項1から3のいずれかに記載のバッテリー交換ロボット。
  5.  請求項1から4のいずれかに記載のバッテリー交換ロボットと、前記バッテリー収容部とを備えることを特徴とするバッテリー交換システム。
  6.  車両に取り付けられるとともにバッテリーが収容されるバッテリー収容部からの前記バッテリーの引抜きおよび前記バッテリー収容部への前記バッテリーの差込みを行うバッテリー抜差機構を備え、前記バッテリーは、前記車両と前記バッテリーとを電気的に接続するためのバッテリー側コネクタを備え、前記バッテリー収容部は、収容された前記バッテリーをロックするロック機構と、前記バッテリー側コネクタに接続される収容部側コネクタとを備え、前記バッテリー抜差機構は、前記バッテリーが搭載されるバッテリー搭載部と、前記バッテリーに係合して前記バッテリーを移動させるバッテリー係合部と、前記バッテリー係合部を駆動するためのモータとを備え、前記ロック機構は、前記バッテリー係合部による前記バッテリー収容部への前記バッテリーの差込み力で作動して前記バッテリーをロックする機械式のロック機構であり、前記バッテリー側コネクタと前記収容部側コネクタとは、前記バッテリー係合部による前記バッテリー収容部への前記バッテリーの差込み力で接続されるバッテリー交換ロボットの制御方法であって、
     前記バッテリー収容部への前記バッテリーの差込み動作時に、位置制御によって前記モータを制御するとともに、前記差込み動作時において、前記ロック機構による前記バッテリーのロックおよび前記バッテリー側コネクタと前記収容部側コネクタとの接続の少なくともいずれか一方が行われる接続動作が開始されると、位置制御に加えて、前記モータの負荷が所定の基準値を超えても前記モータの負荷が前記基準値を超えた状態で所定の基準時間が経過するまで前記モータを駆動させるとともに前記モータの負荷が前記基準値を超えた状態で前記基準時間が経過すると前記モータを停止させる過負荷制御によって前記モータを制御することを特徴とするバッテリー交換ロボットの制御方法。
  7.  車両に搭載されているバッテリーを交換するためのバッテリー交換ロボットにおいて、
     前記車両に取り付けられるとともに前記バッテリーが収容されるバッテリー収容部からの前記バッテリーの引抜きおよび前記バッテリー収容部への前記バッテリーの差込みを行うバッテリー抜差機構と、前記バッテリー抜差機構を制御する制御部とを備え、
     前記バッテリーは、前記車両と前記バッテリーとを電気的に接続するためのバッテリー側コネクタを備え、
     前記バッテリー収容部は、収容された前記バッテリーをロックするロック機構と、前記バッテリー側コネクタに接続される収容部側コネクタとを備え、
     前記バッテリー抜差機構は、前記バッテリーが搭載されるバッテリー搭載部と、前記バッテリーに係合して前記バッテリーを移動させるバッテリー係合部と、前記バッテリー係合部を駆動するためのモータとを備え、
     前記ロック機構は、前記バッテリー係合部による前記バッテリー収容部への前記バッテリーの差込み力で作動して前記バッテリーをロックする機械式のロック機構であり、
     前記バッテリー側コネクタと前記収容部側コネクタとは、前記バッテリー係合部による前記バッテリー収容部への前記バッテリーの差込み力で接続され、
     前記制御部は、前記バッテリー収容部への前記バッテリーの差込み動作時において、前記ロック機構による前記バッテリーのロックおよび前記バッテリー側コネクタと前記収容部側コネクタとの接続の少なくともいずれか一方が行われる接続動作の開始前は、前記モータの負荷が所定の第1基準値を超えると前記モータを停止させる第1制御によって前記モータを制御し、前記接続動作が開始されると、前記モータの負荷が前記第1基準値よりも小さい第2基準値を超えても前記モータの負荷が前記第2基準値を超えた状態で所定の基準時間が経過するまで前記モータを駆動させるとともに前記モータの負荷が前記第2基準値を超えた状態で前記基準時間が経過すると前記モータを停止させる第2制御によって前記モータを制御することを特徴とするバッテリー交換ロボット。
  8.  前記第1制御は、前記モータの電流値が前記第1基準値である第1基準電流値を超えると前記モータを停止させる電流制御であり、
     前記第2制御は、前記モータの電流値が前記第2基準値である第2基準電流値を超えても前記モータの電流値が前記第2基準電流値を超えた状態で前記基準時間が経過するまで前記モータを駆動させるとともに、前記モータの電流値が前記第2基準電流値を超えた状態で前記基準時間が経過すると前記モータを停止させる電流制御であることを特徴とする請求項7記載のバッテリー交換ロボット。
  9.  前記ロック機構による前記バッテリーのロックが開始されるロック開始位置、および、前記バッテリー側コネクタと前記収容部側コネクタとの接続が開始されるコネクタ接続開始位置の少なくともいずれか一方まで前記バッテリー係合部が移動すると、前記接続動作が開始されることを特徴とする請求項7または8記載のバッテリー交換ロボット。
  10.  前記接続動作開始前の前記モータの回転速度は、前記接続動作開始後の前記モータの回転速度よりも速くなっていることを特徴とする請求項7から9のいずれかに記載のバッテリー交換ロボット。
  11.  前記制御部は、前記接続動作が開始されると、前記接続動作開始後の前記モータの駆動時間の計測を開始し、前記ロック機構による前記バッテリーのロックおよび前記バッテリー側コネクタと前記収容部側コネクタとの接続が完了する接続動作完了位置に前記バッテリー係合部が移動するまでの間に、前記接続動作開始後の前記モータの駆動時間が所定時間を経過すると、前記バッテリーの引抜き方向へ前記バッテリー係合部を退避させることを特徴とする請求項7から10のいずれかに記載のバッテリー交換ロボット。
  12.  請求項7から11のいずれかに記載のバッテリー交換ロボットと、前記バッテリー収容部とを備えることを特徴とするバッテリー交換システム。
  13.  車両に取り付けられるとともにバッテリーが収容されるバッテリー収容部からの前記バッテリーの引抜きおよび前記バッテリー収容部への前記バッテリーの差込みを行うバッテリー抜差機構を備え、前記バッテリーは、前記車両と前記バッテリーとを電気的に接続するためのバッテリー側コネクタを備え、前記バッテリー収容部は、収容された前記バッテリーをロックするロック機構と、前記バッテリー側コネクタに接続される収容部側コネクタとを備え、前記バッテリー抜差機構は、前記バッテリーが搭載されるバッテリー搭載部と、前記バッテリーに係合して前記バッテリーを移動させるバッテリー係合部と、前記バッテリー係合部を駆動するためのモータとを備え、前記ロック機構は、前記バッテリー係合部による前記バッテリー収容部への前記バッテリーの差込み力で作動して前記バッテリーをロックする機械式のロック機構であり、前記バッテリー側コネクタと前記収容部側コネクタとは、前記バッテリー係合部による前記バッテリー収容部への前記バッテリーの差込み力で接続されるバッテリー交換ロボットの制御方法であって、
     前記バッテリー収容部への前記バッテリーの差込み動作時において、前記ロック機構による前記バッテリーのロックおよび前記バッテリー側コネクタと前記収容部側コネクタとの接続の少なくともいずれか一方が行われる接続動作の開始前は、前記モータの負荷が所定の第1基準値を超えると前記モータを停止させ、
     前記接続動作が開始されると、前記モータの負荷が前記第1基準値よりも小さい第2基準値を超えても前記モータの負荷が前記第2基準値を超えた状態で所定の基準時間が経過するまで前記モータを駆動させるとともに、前記モータの負荷が前記第2基準値を超えた状態で前記基準時間が経過すると前記モータを停止させることを特徴とするバッテリー交換ロボットの制御方法。
PCT/JP2014/074531 2013-09-26 2014-09-17 バッテリー交換ロボット、バッテリー交換システムおよびバッテリー交換ロボットの制御方法 WO2015045981A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167004914A KR20160061318A (ko) 2013-09-26 2014-09-17 배터리 교환 로봇, 배터리 교환 시스템 및 배터리 교환 로봇의 제어 방법
CN201480051709.2A CN105555623B (zh) 2013-09-26 2014-09-17 电池更换机器人、电池更换系统以及电池更换机器人的控制方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013200272A JP6181494B2 (ja) 2013-09-26 2013-09-26 バッテリー交換ロボット、バッテリー交換システムおよびバッテリー交換ロボットの制御方法
JP2013-200272 2013-09-26
JP2013-200271 2013-09-26
JP2013200271A JP6317085B2 (ja) 2013-09-26 2013-09-26 バッテリー交換ロボット、バッテリー交換システムおよびバッテリー交換ロボットの制御方法

Publications (1)

Publication Number Publication Date
WO2015045981A1 true WO2015045981A1 (ja) 2015-04-02

Family

ID=52743122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074531 WO2015045981A1 (ja) 2013-09-26 2014-09-17 バッテリー交換ロボット、バッテリー交換システムおよびバッテリー交換ロボットの制御方法

Country Status (3)

Country Link
KR (1) KR20160061318A (ja)
CN (2) CN105555623B (ja)
WO (1) WO2015045981A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105253117A (zh) * 2015-09-30 2016-01-20 王建排 电动汽车中置式电池箱快速卸、装方法
US20160221543A1 (en) * 2013-06-25 2016-08-04 Sten Corfitsen Method and device for replacement of a battery in a vehicle
CN109216617A (zh) * 2018-09-28 2019-01-15 绵阳鼎飞益电子科技有限公司 一种用于电力系统二次侧设备电池更换装置
CN110023156A (zh) * 2018-05-28 2019-07-16 深圳蓝胖子机器人有限公司 电控锁扣装置、运输车及其自动换电池系统和方法
IT201800001428A1 (it) * 2018-01-19 2019-07-19 S M R E S P A Metodo, apparato e stazione, di scambio di batterie elettriche per alimentare propulsori di veicoli
WO2019238985A1 (es) 2018-06-14 2019-12-19 Remon Rodriguez Daniel Sistema de almacenamiento de energía para vehículos
WO2020007603A1 (de) * 2018-07-02 2020-01-09 Audi Ag Verfahren zur herstellung einer fahrzeug-traktionsbatterie
CN111873847A (zh) * 2020-07-17 2020-11-03 蓝谷智慧(北京)能源科技有限公司 电池转换组件、更换动力电池的方法以及换电站
CN111890967A (zh) * 2020-07-17 2020-11-06 蓝谷智慧(北京)能源科技有限公司 电池周转装置、换电站以及电池周转方法
US11183726B2 (en) * 2017-12-15 2021-11-23 Tiveni Mergeco, Inc. Clamping bar holder component for a battery module and method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11844313B2 (en) 2017-09-27 2023-12-19 Positec Technology (China) Co., Ltd. Self-moving device and automatic working system thereof
CN109987070B (zh) * 2017-12-29 2022-05-17 上海电巴新能源科技有限公司 电池箱更换托盘机构及包含其的电池转运装置
CN114734867A (zh) * 2018-09-10 2022-07-12 奥动新能源汽车科技有限公司 电池取放方法及系统
CN109367437B (zh) * 2018-10-10 2020-06-05 杭州六创电动汽车科技有限公司 一种电动汽车的电池更换方法
CN111605392B (zh) * 2019-02-25 2024-01-30 浙江吉智新能源汽车科技有限公司 一种电池更换装置及汽车
CN110901601B (zh) * 2019-12-02 2021-05-14 上海大族富创得科技有限公司 一种agv充电站
CN113492713B (zh) * 2020-04-03 2022-03-22 奥动新能源汽车科技有限公司 电池包取放方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194700A (ja) * 2007-02-08 2008-08-28 Shinko Electric Co Ltd 連続鋳造装置、連続鋳造装置における引抜制御装置、および連続鋳造装置における引抜制御方法
JP2010526697A (ja) * 2007-04-19 2010-08-05 ヘルツェル、トーマス 電動車両のアキュムレータを交換するための方法および装置ならびに電動車両
WO2012105529A1 (ja) * 2011-01-31 2012-08-09 日本電産サンキョー株式会社 バッテリー交換ロボット
JP2013035625A (ja) * 2011-08-04 2013-02-21 Hitachi Ltd エレベータドア制御装置およびエレベータドア制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8820444B2 (en) * 2010-04-16 2014-09-02 Tuan Nguyen Electric vehicle having exchangeable battery modules and method of resupply therefor
JP5848267B2 (ja) * 2011-01-31 2016-01-27 日本電産サンキョー株式会社 バッテリー交換ロボット
CN102941842A (zh) * 2012-10-17 2013-02-27 安川首钢机器人有限公司 一种利用机器人的自动更换电池系统及其方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194700A (ja) * 2007-02-08 2008-08-28 Shinko Electric Co Ltd 連続鋳造装置、連続鋳造装置における引抜制御装置、および連続鋳造装置における引抜制御方法
JP2010526697A (ja) * 2007-04-19 2010-08-05 ヘルツェル、トーマス 電動車両のアキュムレータを交換するための方法および装置ならびに電動車両
WO2012105529A1 (ja) * 2011-01-31 2012-08-09 日本電産サンキョー株式会社 バッテリー交換ロボット
JP2013035625A (ja) * 2011-08-04 2013-02-21 Hitachi Ltd エレベータドア制御装置およびエレベータドア制御方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160221543A1 (en) * 2013-06-25 2016-08-04 Sten Corfitsen Method and device for replacement of a battery in a vehicle
US9873409B2 (en) * 2013-06-25 2018-01-23 Sten Corfitsen Method and device for replacement of a battery in a vehicle
CN105253117A (zh) * 2015-09-30 2016-01-20 王建排 电动汽车中置式电池箱快速卸、装方法
CN105253117B (zh) * 2015-09-30 2017-04-12 王建排 电动汽车中置式电池箱快速卸、装方法
US11183726B2 (en) * 2017-12-15 2021-11-23 Tiveni Mergeco, Inc. Clamping bar holder component for a battery module and method thereof
IT201800001428A1 (it) * 2018-01-19 2019-07-19 S M R E S P A Metodo, apparato e stazione, di scambio di batterie elettriche per alimentare propulsori di veicoli
CN110023156A (zh) * 2018-05-28 2019-07-16 深圳蓝胖子机器人有限公司 电控锁扣装置、运输车及其自动换电池系统和方法
WO2019238985A1 (es) 2018-06-14 2019-12-19 Remon Rodriguez Daniel Sistema de almacenamiento de energía para vehículos
US11679659B2 (en) 2018-06-14 2023-06-20 Daniel REMON RODRIGUEZ Energy storage system for vehicles
WO2020007603A1 (de) * 2018-07-02 2020-01-09 Audi Ag Verfahren zur herstellung einer fahrzeug-traktionsbatterie
CN109216617A (zh) * 2018-09-28 2019-01-15 绵阳鼎飞益电子科技有限公司 一种用于电力系统二次侧设备电池更换装置
CN111873847A (zh) * 2020-07-17 2020-11-03 蓝谷智慧(北京)能源科技有限公司 电池转换组件、更换动力电池的方法以及换电站
CN111890967A (zh) * 2020-07-17 2020-11-06 蓝谷智慧(北京)能源科技有限公司 电池周转装置、换电站以及电池周转方法

Also Published As

Publication number Publication date
CN105555623A (zh) 2016-05-04
CN105555623B (zh) 2017-11-07
CN107225955B (zh) 2019-08-23
CN107225955A (zh) 2017-10-03
KR20160061318A (ko) 2016-05-31

Similar Documents

Publication Publication Date Title
WO2015045981A1 (ja) バッテリー交換ロボット、バッテリー交換システムおよびバッテリー交換ロボットの制御方法
JP6181494B2 (ja) バッテリー交換ロボット、バッテリー交換システムおよびバッテリー交換ロボットの制御方法
JP6317085B2 (ja) バッテリー交換ロボット、バッテリー交換システムおよびバッテリー交換ロボットの制御方法
JP5897924B2 (ja) バッテリー交換ロボット
WO2012105530A1 (ja) バッテリー交換ロボットおよびバッテリー交換システム
JP5955784B2 (ja) バッテリー交換ロボット
JP6050984B2 (ja) バッテリー交換ロボットおよびバッテリー交換システム
KR101595684B1 (ko) 배터리 교환 로봇의 티칭 방법 및 배터리 교환 로봇
JP2003118397A (ja) バッテリ装置の取り付け構造
JP6050983B2 (ja) バッテリー交換ロボットおよびバッテリー交換ロボットの制御方法
JP6027808B2 (ja) バッテリー交換システムおよびバッテリー交換システムの制御方法
JP5804975B2 (ja) 二次電池の充放電装置
CN212685307U (zh) 电池包托盘装置及换电设备
JP6050982B2 (ja) バッテリー交換ロボットの教示方法およびバッテリー交換ロボット
JP6295243B2 (ja) 産業用ロボットおよび産業用ロボットの制御方法
CN212685312U (zh) 换电设备
JP5848267B2 (ja) バッテリー交換ロボット
JP2002362162A (ja) バッテリ装置およびバッテリ装置の取り付け構造
CN113895290A (zh) 电池包托盘装置、换电设备和换电控制方法
CN221475238U (zh) 电池座及机器人
CN113895288B (zh) 电池包取出控制方法和电池包安装控制方法
CN116734086B (zh) 一种管道检测机器人的防碰撞装置
JP6148525B2 (ja) 建具閉め装置および建具閉め装置の制御方法
CN115489915A (zh) 一种穿梭车挡停装置及换层提升机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051709.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167004914

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847995

Country of ref document: EP

Kind code of ref document: A1