WO2015045845A1 - 圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび圧電アクチュエータの製造方法 - Google Patents

圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび圧電アクチュエータの製造方法 Download PDF

Info

Publication number
WO2015045845A1
WO2015045845A1 PCT/JP2014/073750 JP2014073750W WO2015045845A1 WO 2015045845 A1 WO2015045845 A1 WO 2015045845A1 JP 2014073750 W JP2014073750 W JP 2014073750W WO 2015045845 A1 WO2015045845 A1 WO 2015045845A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
thin film
piezoelectric
piezoelectric thin
piezoelectric actuator
Prior art date
Application number
PCT/JP2014/073750
Other languages
English (en)
French (fr)
Inventor
健児 馬渡
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015539080A priority Critical patent/JP6311718B2/ja
Publication of WO2015045845A1 publication Critical patent/WO2015045845A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/082Shaping or machining of piezoelectric or electrostrictive bodies by etching, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/03Specific materials used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based

Definitions

  • the present invention includes a piezoelectric actuator in which a first electrode, a piezoelectric thin film, and a second electrode are formed in this order on a substrate, a manufacturing method thereof, an ink jet head including the piezoelectric actuator, and an ink jet head. And an inkjet printer.
  • an ink jet printer having an ink jet head having a plurality of channels for discharging liquid ink is known.
  • a two-dimensional image can be output to the recording medium.
  • the ink can be ejected by using an actuator (such as piezoelectric, electrostatic, or thermal deformation) or by generating bubbles in the ink in the tube by heat.
  • the piezoelectric actuator has advantages such as high output, modulation, high responsiveness, and choice of ink, and has been frequently used in recent years.
  • Piezoelectric actuators include those using bulk piezoelectric materials and those using thin film piezoelectric materials (piezoelectric thin films). Since the former has a large output, large droplets can be discharged, but it is large and expensive. On the other hand, since the latter has a small output, the droplet cannot be enlarged, but it is small and low in cost. In order to realize a small, low-cost printer with high resolution (small droplets may be sufficient), it can be said that it is suitable to configure an actuator using a piezoelectric thin film.
  • a crystal having a perovskite structure made of lead (Pb), zirconium (Zr), titanium (Ti), and oxygen (O) called PZT (lead zirconate titanate) is often used.
  • chemical deposition methods such as CVD (Chemical Vapor Deposition)
  • physical methods such as sputtering and ion plating
  • liquid phase growth such as sol-gel methods Is used to form a piezoelectric thin film on the substrate. Since high temperature is required for crystallization of the piezoelectric material, silicon (Si) is often used for the substrate.
  • a piezoelectric actuator can be manufactured by processing the above substrate with high precision using a semiconductor process technology such as photolithography.
  • a semiconductor process technology such as photolithography.
  • single-wafer manufacturing in which a piezoelectric actuator is individually manufactured by forming a piezoelectric thin film or the like on a relatively large Si wafer having a diameter of 6 inches or 8 inches and manufacturing the piezoelectric actuators at a high density in a batch. Compared with the above, the cost can be greatly reduced.
  • a piezoelectric thin film formed on a Si substrate by a film forming method such as a sputtering method becomes a columnar polycrystalline film called a uniaxially oriented film by devising film forming conditions.
  • the uniaxially oriented film refers to a film that is preferentially oriented so that a certain crystal direction is perpendicular to the substrate surface.
  • a film oriented so that the (100) direction of the crystal is perpendicular to the substrate surface is called a (100) oriented film, and oriented so that the (111) direction is perpendicular to the substrate surface.
  • the film is called a (111) orientation film.
  • Such a uniaxially oriented film easily obtains high piezoelectric characteristics because the polarization directions are easily aligned.
  • Patent Document 1 discloses a technique for forming such a uniaxially oriented film.
  • a piezoelectric thin film is formed by a sputtering method under an appropriate film formation condition (sputtering condition), so that the polarization direction of the film is upward (in the direction from the lower electrode to the upper electrode) after the film formation.
  • a uniform uniaxial alignment film that does not require polarization treatment is formed.
  • the polarization direction is upward by sputtering or sol-gel method.
  • the polarization direction tends to be upward.
  • FIG. 9 is a cross-sectional view schematically showing the configuration of the piezoelectric actuator of Patent Document 1.
  • the solid line arrow in a figure shows the polarization direction of a film
  • a piezoelectric thin film 103 made of PZT and an upper electrode 104 made of Pt are formed in this order on a substrate 101 made of silicon.
  • the oxygen defects P generated when the piezoelectric thin film 103 is formed are less affected by the lower electrode 102 than the region on the interface side with the upper electrode 104 in the piezoelectric thin film 103.
  • Many areas are unevenly distributed on the interface side. This is because the vapor pressure of Pb constituting the PZT of the piezoelectric thin film 103 is low, so that Pb evaporates at a high temperature at the time of film formation at the initial stage of film formation of PZT, and Pb (positive ions in the ion state) evaporates.
  • the oxygen defect P can move in the crystal of the piezoelectric thin film 103 with relatively low energy, reacts with moisture in the atmosphere near the crystal surface, and causes dielectric breakdown due to leakage, or is polarized inside the crystal. It is known that the domain is fixed to cause deterioration of piezoelectric characteristics.
  • Patent Document 2 discloses a technique for reversing the polarization direction of a uniaxially oriented piezoelectric thin film, although the purpose is to reduce driving circuit and power supply costs (not to suppress the movement of oxygen defects).
  • the coercive electric field is 0 V or less in the polarization inversion process
  • JP 2007-335489 see paragraphs [0009], [0018], [0023], [0033] to [0035], [0047], etc.
  • JP 2009-218360 A (refer to claim 1, paragraphs [0008], [0012], [0013], [0016], [0049], [0050], [0070] to [0073], FIG. 21, etc.)
  • An object of the present invention is to provide a method of manufacturing a piezoelectric actuator capable of suppressing a decrease in piezoelectric characteristics, the piezoelectric actuator, an ink jet head provided with the piezoelectric actuator, and an ink jet printer provided with the ink jet head.
  • a piezoelectric actuator is a piezoelectric actuator in which a first electrode, a piezoelectric thin film, and a second electrode are stacked in this order on a substrate, and in the piezoelectric thin film, oxygen defects in a crystal are present. More than in the region on the interface side with the first electrode than in the region on the interface side with the second electrode, and the polarization direction of the piezoelectric thin film is changed from the second electrode to the first electrode. The direction is toward the electrode.
  • the piezoelectric actuator manufacturing method includes a first step of forming a first electrode on a substrate and a second step of forming a piezoelectric thin film on the first electrode.
  • a piezoelectric actuator manufacturing method comprising: a step of forming a second electrode on the piezoelectric thin film, wherein the first electrode is formed after the formation of the second electrode.
  • the piezoelectric thin film formed so as to have a polarization direction in the direction toward the second electrode further includes a fourth step of performing a polarization reversal process for reversing the polarization direction.
  • the piezoelectric thin film By applying an electric field larger than the coercive electric field to the second electrode at a temperature equal to or less than 1 ⁇ 2 of the Curie temperature of the thin film, oxygen defects in the crystal in the piezoelectric thin film are removed from the first electrode.
  • the polarization inversion process is performed while confined in the region on the interface side.
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration of an inkjet printer according to an embodiment of the present invention.
  • FIG. FIG. 2 is a plan view showing a schematic configuration of an actuator of an ink jet head provided in the ink jet printer, and a cross-sectional view taken along line A-A ′ in the plan view. It is sectional drawing of the said inkjet head. It is sectional drawing which shows the manufacturing process of the said inkjet head. It is a graph which shows the measurement result of the X-ray diffraction of PZT which comprises the piezoelectric thin film of the said inkjet head. It is sectional drawing which shows the other structure of the said inkjet head. It is sectional drawing which shows the principal part of the said piezoelectric actuator typically.
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration of an inkjet printer 1 according to the present embodiment.
  • the ink jet printer 1 is a so-called line head type ink jet recording apparatus in which an ink jet head 21 is provided in a line shape in the width direction of a recording medium in the ink jet head unit 2.
  • the ink jet printer 1 includes an ink jet head unit 2, a feed roll 3, a take-up roll 4, two back rolls 5 and 5, an intermediate tank 6, a liquid feed pump 7, a storage tank 8, and a fixing tank. And a mechanism 9.
  • the inkjet head unit 2 ejects ink from the inkjet head 21 toward the recording medium P to perform image formation (drawing) based on image data, and is disposed in the vicinity of one back roll 5. Details of the inkjet head 21 will be described later.
  • the feeding roll 3, the take-up roll 4 and the back rolls 5 are members each having a cylindrical shape that can rotate around its axis.
  • the feeding roll 3 is a roll that feeds the long recording medium P wound around the circumferential surface toward the position facing the inkjet head unit 2.
  • the feeding roll 3 is rotated by driving means (not shown) such as a motor, thereby feeding the recording medium P in the X direction in FIG.
  • the take-up roll 4 is taken out from the take-out roll 3 and takes up the recording medium P on which the ink is ejected by the inkjet head unit 2 around the circumferential surface.
  • Each back roll 5 is disposed between the feed roll 3 and the take-up roll 4.
  • One back roll 5 located on the upstream side in the conveyance direction of the recording medium P is opposed to the inkjet head unit 2 while winding the recording medium P fed by the feeding roll 3 around and supporting the recording medium P.
  • Transport toward The other back roll 5 conveys the recording medium P from a position facing the inkjet head unit 2 toward the take-up roll 4 while being wound around and supported by a part of the peripheral surface.
  • the intermediate tank 6 temporarily stores the ink supplied from the storage tank 8.
  • the intermediate tank 6 is connected to a plurality of ink tubes 10, adjusts the back pressure of ink in each inkjet head 21, and supplies ink to each inkjet head 21.
  • the liquid feed pump 7 supplies the ink stored in the storage tank 8 to the intermediate tank 6, and is arranged in the middle of the supply pipe 11.
  • the ink stored in the storage tank 8 is pumped up by the liquid feed pump 7 and supplied to the intermediate tank 6 through the supply pipe 11.
  • the fixing mechanism 9 fixes the ink ejected to the recording medium P by the inkjet head unit 2 on the recording medium P.
  • the fixing mechanism 9 includes a heater for heat-fixing the discharged ink on the recording medium P, a UV lamp for curing the ink by irradiating the discharged ink with UV (ultraviolet light), and the like. Yes.
  • the recording medium P fed from the feeding roll 3 is conveyed to the position facing the inkjet head unit 2 by the back roll 5, and ink is ejected from the inkjet head unit 2 to the recording medium P. Thereafter, the ink ejected onto the recording medium P is fixed by the fixing mechanism 9, and the recording medium P after ink fixing is taken up by the take-up roll 4.
  • the line head type inkjet printer 1 ink is ejected while the recording medium P is conveyed while the inkjet head unit 2 is stationary, and an image is formed on the recording medium P.
  • the ink jet printer 1 may be configured to form an image on a recording medium by a serial head method.
  • the serial head method is a method of forming an image by ejecting ink by moving an inkjet head in a direction orthogonal to the transport direction while transporting a recording medium.
  • FIG. 2 is a plan view showing a schematic configuration of the actuator 21a (piezoelectric actuator) of the inkjet head 21 and a cross-sectional view taken along the line AA ′ in the plan view.
  • FIG. 3 is a cross-sectional view of the inkjet head 21 in which the nozzle substrate 31 is joined to the actuator 21a of FIG.
  • the inkjet head 21 includes a thermal oxide film 23, a lower electrode 24 (first electrode), a piezoelectric thin film 25, and an upper electrode 26 (second electrode) on a substrate 22 having a plurality of pressure chambers 22a (openings). Have in this order.
  • the substrate 22 is composed of a semiconductor substrate made of a single crystal Si (silicon) alone having a thickness of, for example, about 300 to 500 ⁇ m, or an SOI (Silicon On Insulator) substrate.
  • FIG. 2 shows a case where the substrate 22 is configured by an SOI substrate.
  • the SOI substrate is obtained by bonding two Si substrates through an oxide film.
  • the upper wall of the pressure chamber 22a in the substrate 22 constitutes a diaphragm 22b serving as a driven film, which is displaced (vibrated) as the piezoelectric thin film 25 is driven (expanded / contracted), and applies pressure to the ink in the pressure chamber 22a.
  • the thermal oxide film 23 is made of, for example, SiO 2 (silicon oxide) having a thickness of about 0.1 ⁇ m, and is formed for the purpose of protecting and insulating the substrate 22.
  • the lower electrode 24 is a common electrode provided in common to the plurality of pressure chambers 22a, and is configured by laminating a Ti (titanium) layer and a Pt (platinum) layer.
  • the Ti layer is formed in order to improve the adhesion between the thermal oxide film 23 and the Pt layer.
  • the thickness of the Ti layer is, for example, about 0.02 ⁇ m, and the thickness of the Pt layer is, for example, about 0.1 ⁇ m.
  • the piezoelectric thin film 25 is made of, for example, PZT (lead zirconate titanate), and is provided corresponding to each pressure chamber 22a.
  • PZT is a solid solution of PTO (PbTiO 3 ; lead titanate) and PZO (PbZrO 3 ; lead zirconate).
  • the film thickness of the piezoelectric thin film 25 is, for example, 1 to 10 ⁇ m, preferably 3 to 5 ⁇ m.
  • the upper electrode 26 is an individual electrode provided corresponding to each pressure chamber 22a, and is configured by laminating a Ti layer and a Pt layer.
  • the Ti layer is formed in order to improve the adhesion between the piezoelectric thin film 25 and the Pt layer.
  • the thickness of the Ti layer is, for example, about 0.02 ⁇ m, and the thickness of the Pt layer is, for example, about 0.1 to 0.2 ⁇ m.
  • the upper electrode 26 is provided so as to sandwich the piezoelectric thin film 25 with the lower electrode 24.
  • the lower electrode 24, the piezoelectric thin film 25, and the upper electrode 26 constitute a thin film piezoelectric element 27 for discharging ink in the pressure chamber 22a to the outside.
  • the thin film piezoelectric element 27 is driven based on a voltage (drive signal) applied from the drive circuit 28 to the lower electrode 24 and the upper electrode 26.
  • the ink jet head 21 is formed by arranging the thin film piezoelectric element 27 and the pressure chamber 22a vertically and horizontally.
  • a nozzle substrate 31 is bonded to the opposite side of the pressure chamber 22a from the diaphragm 22b.
  • the nozzle substrate 31 is formed with ejection holes (nozzle holes) 31a for ejecting ink stored in the pressure chambers 22a to the outside as ink droplets.
  • Ink supplied from the intermediate tank 6 is stored in the pressure chamber 22a.
  • the piezoelectric thin film 25 when a voltage is applied from the drive circuit 28 to the lower electrode 24 and the upper electrode 26, the piezoelectric thin film 25 is in a direction perpendicular to the thickness direction (substrate) according to the potential difference between the lower electrode 24 and the upper electrode 26. (Direction parallel to the surface of 22). Then, due to the difference in length between the piezoelectric thin film 25 and the diaphragm 22b, a curvature is generated in the diaphragm 22b, and the diaphragm 22b is displaced (curved or vibrated) in the thickness direction.
  • FIG. 4 is a cross-sectional view showing the manufacturing process of the inkjet head 21.
  • the substrate 22 is prepared.
  • crystalline silicon (Si) often used in MEMS (Micro Electro Mechanical Systems) can be used, and here, two Si substrates 22 c and 22 d are joined via an oxide film 22 e.
  • An SOI structure is used.
  • the substrate 22 is put in a heating furnace and held at about 1500 ° C. for a predetermined time, and thermal oxide films 23a and 23b made of SiO 2 are formed on the surfaces of the Si substrates 22c and 22d, respectively.
  • thermal oxide films 23a and 23b made of SiO 2 are formed on the surfaces of the Si substrates 22c and 22d, respectively.
  • each layer of titanium and platinum is sequentially formed by sputtering to form the lower electrode 24.
  • FIG. 5 shows the results of 2 ⁇ / ⁇ measurement of XRD (X-ray diffraction). Note that the intensity (diffraction intensity, reflection intensity) on the vertical axis in FIG. 5 is indicated by the count rate (cps: count per second) of X-rays per second. E + n indicates 1 ⁇ 10 + n . It can be seen from the graph of FIG. 5 that the obtained PZT layer 25a is a (100) -oriented uniaxially oriented film. This layer 25a is formed under film formation conditions (film formation temperature, etc.) such that the polarization direction after film formation is upward (the direction from the film formation side of the lower electrode 24 toward the film formation side of the upper electrode 26).
  • film formation conditions film formation temperature, etc.
  • a photosensitive resin 41 is applied to the substrate 22 by a spin coating method, and unnecessary portions of the photosensitive resin 41 are removed by exposure and etching through a mask, and the shape of the piezoelectric thin film 25 to be formed is transferred. . Thereafter, using the photosensitive resin 41 as a mask, the shape of the layer 25 a is processed using a reactive ion etching method to form the piezoelectric thin film 25.
  • a titanium layer and a platinum layer are sequentially formed by sputtering on the lower electrode 24 so as to cover the piezoelectric thin film 25, thereby forming a layer 26a.
  • a photosensitive resin 42 is applied onto the layer 26a by a spin coating method, and unnecessary portions of the photosensitive resin 42 are removed by exposure and etching through a mask, and the shape of the upper electrode 26 to be formed is transferred. To do. Thereafter, using the photosensitive resin 42 as a mask, the shape of the layer 26a is processed using a reactive ion etching method to form the upper electrode 26.
  • a photosensitive resin 43 is applied to the back surface (thermal oxide film 23b side) of the substrate 22 by a spin coating method, and unnecessary portions of the photosensitive resin 43 are removed by exposure and etching through a mask.
  • the shape of the pressure chamber 22a to be formed is transferred.
  • the substrate 22 is removed using a reactive ion etching method to form a pressure chamber 22a to be an actuator 21a.
  • the substrate 22 of the actuator 21a and the nozzle substrate 31 having the discharge holes 31a are bonded using an adhesive or the like. Thereby, the inkjet head 21 is completed.
  • an intermediate glass having a through hole at a position corresponding to the discharge hole 31a is used, the thermal oxide film 12b is removed, and the substrate 22 and the intermediate glass, and the intermediate glass and the nozzle substrate 31 are anodic bonded, respectively. Also good. In this case, the three parties (substrate 22, intermediate glass, nozzle substrate 31) can be joined without using an adhesive.
  • the piezoelectric actuator 21a has a step of forming the lower electrode 24 as the first electrode on the substrate 22 (first step) and a step of forming the piezoelectric thin film 25 on the lower electrode 24 (first step). It can be said that it is manufactured through the second step) and the step of forming the upper electrode 24 as the second electrode on the piezoelectric thin film 25 (third step).
  • the electrode material constituting the lower electrode 24 is not limited to the above-described Pt, and for example, Au (gold), Ir (iridium), IrO 2 (iridium oxide), RuO 2 (ruthenium oxide). ), LaNiO 3 (lanthanum nickelate), SrRuO 3 (strontium ruthenate) or a metal, or a combination thereof.
  • an orientation control layer 29 (seed layer) made of PLT (lead lanthanum titanate), LaNiO 3 or SrRuO 3 may be provided between the lower electrode 24 and the piezoelectric thin film 25. Good.
  • the material constituting the piezoelectric thin film 25 is not limited to the above-described PZT, and in addition, for example, PZT added with La (lanthanum), Nb (niobium), Sr (strontium), BaTiO 3 (barium titanate), LiTaO 3 (lithium tantalate), Pb (Mg, Nb) O 3, Pb (Ni, Nb) O 3, PbTiO 3 , etc. oxide and combinations thereof are conceivable.
  • the polarization inversion process for the inkjet head (or actuator) manufactured as described above will be described.
  • FIG. 7 is a cross-sectional view schematically showing a schematic configuration of the piezoelectric actuator 21a of the present embodiment. 7 indicates the polarization direction of the piezoelectric thin film 25 after the polarization inversion process.
  • the polarization inversion of the piezoelectric thin film 25 is performed by applying an electric field larger than the coercive electric field to the upper electrode 26 at a temperature equal to or lower than 1 ⁇ 2 of the Curie temperature of the piezoelectric thin film 25.
  • the oxygen defects P in the crystal of the piezoelectric thin film 25 are more unevenly distributed in the region on the interface side with the lower electrode 24 than in the region on the interface side with the upper electrode 26. Since the polarization reversal can be performed as it is, the piezoelectric actuator 21a subjected to such a polarization reversal process can be expressed as follows.
  • the piezoelectric actuator 21a of this embodiment has a configuration in which a lower electrode 24, a piezoelectric thin film 25, and an upper electrode 26 are laminated in this order on a substrate 22.
  • TEM-EDS is a technique for analyzing the composition of the electron beam irradiation region by analyzing the energy of X-rays emitted when the sample is irradiated with an electron beam.
  • the composition of the piezoelectric thin film 25 in the film thickness direction can be analyzed to check the uneven distribution state of the oxygen defects P.
  • the above-mentioned region on each interface side refers to a range (region) within 1% with respect to the length of the piezoelectric thin film 25 in the thickness direction, for example.
  • the polarization inversion process was performed under various conditions (temperature, voltage), and the piezoelectric characteristics and reliability (dielectric breakdown voltage, change over time in displacement) obtained under each process condition were examined.
  • the piezoelectric characteristics, the displacement amount of the actuator was measured by a laser Doppler vibrometer was examined in terms of the piezoelectric constant d 31.
  • the withstand voltage the voltage at the point where the leakage current suddenly increases by an order of magnitude or more in the IV characteristics (current-voltage characteristics) is defined as the withstand voltage of dielectric breakdown.
  • the change over time in the amount of displacement is shown as the rate of decrease in the amount of displacement of the actuator before and after the ink ejection pulse was applied 10 billion times to the head.
  • the actuator was comprehensively evaluated based on the following criteria.
  • the piezoelectric thin film was a PZT film, and its thickness was 5 ⁇ m.
  • Table 1 summarizes the temperature (polarization temperature), electric field (polarization voltage), piezoelectric characteristics, withstand voltage, changes over time in displacement amount, and comprehensive evaluation during polarization reversal processing.
  • the polarization voltage indicates a voltage applied to the upper electrode with reference to the lower electrode.
  • the polarization direction (the polarization direction after the polarization inversion process) indicates downward (direction from the upper electrode to the lower electrode) by “+”, and upward (direction from the lower electrode to the upper electrode) by “ ⁇ ”. Is shown. Also, those with an evaluation of ⁇ or ⁇ are positioned as examples of the present invention, and those with an evaluation of ⁇ are positioned as comparative examples.
  • an aging process for stabilizing the characteristics of the piezoelectric thin film may be performed.
  • Such an aging process may be a process of shorting the lower electrode and the upper electrode and leaving them for a predetermined time, or a process of applying a pulse waveform of the same bias as that of the polarization inversion process to the upper electrode. .
  • By performing the aging process it is possible to relax the stress and distortion caused by the polarization inversion process and stabilize the characteristics of the piezoelectric thin film.
  • FIG. 8 shows the change over time in the amount of displacement during the process of applying the ink ejection pulse to the head 10 billion times with and without the aging process for the piezoelectric actuator subjected to the polarization inversion process.
  • the thick solid line indicates that the lower electrode and the upper electrode are short-circuited without applying an electric field to the piezoelectric actuator of Example 2 subjected to polarization reversal processing, and left for 24 hours at 100 ° C. which is the same as the polarization temperature. Shows the change over time in the displacement after the aging process is performed, and the thick broken line shows the change over time in the displacement when the aging process is not performed on the piezoelectric actuator of the second embodiment (the second embodiment itself). Is shown.
  • the thin solid line is an upper part of the triangular wave (of the same positive polarity unipolar) having the same bias as that of the polarization reversal process, with the polarization temperature maintained at 80 ° C.
  • the change over time after the aging process is performed by applying 100 million pulses to the electrode, and the thin broken line indicates the case where the aging process is not performed on the piezoelectric actuator of the first example (Example 1). It shows the change over time in the amount of displacement.
  • the aging process is performed at a temperature equal to or lower than the polarization temperature, thereby reducing the displacement amount with time without causing a decrease in piezoelectric characteristics or a decrease in withstand voltage. Furthermore, the reliability can be further improved. This is because aging treatment at a temperature lower than the polarization temperature can alleviate stress and strain caused by polarization reversal treatment while suppressing diffusion of oxygen defects in the crystal of the piezoelectric thin film in the aging treatment due to heat. It is done.
  • the upper electrode and the lower electrode are short-circuited and left for a predetermined time, or the pulse waveform having the same bias as that of the polarization inversion process is applied to the upper electrode, thereby improving the reliability by the aging process. Can be definitely obtained.
  • the aging time is 24 hours in the above example, but it was found that the same result as above can be obtained even at 48 hours, 60 hours, etc. longer than this. Therefore, the aging time is not limited to 24 hours.
  • the number of applied pulses when performing the aging process is 100 million in the above example, but it has been found that the same result as above can be obtained even with a number of pulses larger than this. Therefore, the number of applied pulses is not limited to 100 million.
  • the applied pulse when performing the aging process is a triangular wave in the above example, but the waveform is not limited to this, and may be another waveform such as a sine wave, a square wave, or a trapezoidal wave. Further, the pulse interval is not limited to a fixed period (frequency), and pulses may be applied while changing the pulse interval.
  • the piezoelectric actuator, ink-jet head, ink-jet printer, and piezoelectric actuator manufacturing method of the present embodiment described above can be expressed as follows, thereby producing the following effects.
  • the piezoelectric actuator of this embodiment is a piezoelectric actuator in which a first electrode, a piezoelectric thin film, and a second electrode are laminated in this order on a substrate, and oxygen defects in the crystal in the piezoelectric thin film have the second defect. More in the region on the interface side with the first electrode than in the region on the interface side with the electrode, and the polarization direction of the piezoelectric thin film is a direction from the second electrode toward the first electrode It is.
  • the region on each interface side can be considered to be within 1% of the length in the thickness direction of the piezoelectric thin film.
  • the piezoelectric actuator may include an orientation control layer provided between the first electrode and the piezoelectric thin film and made of any one of PLT, LaNiO 3 , and SrRuO 3 .
  • the orientation control layer can improve the crystallinity and orientation of the piezoelectric thin film, thereby further improving the piezoelectric characteristics.
  • the ink jet head according to the present embodiment includes the above piezoelectric actuator and a nozzle substrate having a nozzle hole for ejecting ink accommodated in an opening formed in the substrate of the piezoelectric actuator to the outside. Thereby, a highly reliable and high performance ink jet head can be realized.
  • the ink jet printer of this embodiment includes the above ink jet head, and is configured to eject ink from the ink jet head toward a recording medium. Thereby, a highly reliable and high performance ink jet printer can be realized.
  • the piezoelectric actuator manufacturing method of the present embodiment includes a first step of forming a first electrode on a substrate, a second step of forming a piezoelectric thin film on the first electrode, and the piezoelectric thin film.
  • a method of manufacturing a piezoelectric actuator having a third step of forming a second electrode thereon, the direction from the first electrode toward the second electrode after the formation of the second electrode The piezoelectric thin film formed so as to have a polarization direction in the piezoelectric thin film further includes a fourth step of performing a polarization reversal process for reversing the polarization direction.
  • the piezoelectric thin film has a Curie temperature of 1
  • an electric field larger than the coercive electric field to the second electrode at a temperature of / 2 or less, oxygen defects in the crystal in the piezoelectric thin film are confined in a region on the interface side with the first electrode.
  • the polarization inversion process is performed as it is.
  • the diffusion due to heat of oxygen defects in the crystal of the piezoelectric thin film is suppressed by performing the polarization inversion at a temperature that is 1/2 or less of the Curie temperature of the piezoelectric thin film.
  • a temperature that is 1/2 or less of the Curie temperature of the piezoelectric thin film by applying an electric field larger than the coercive electric field to the second electrode, oxygen defects in the crystal of the piezoelectric thin film are caused to move to the interface with the first electrode rather than the region closer to the interface with the second electrode.
  • the polarization inversion can be performed while being confined in a large amount in the side region. Thereby, dielectric breakdown due to leakage in the region on the interface side with the second electrode and fixation of the polarization domain inside the crystal can be suppressed.
  • the method for manufacturing a piezoelectric actuator further includes a fifth step of performing an aging process for stabilizing the characteristics of the piezoelectric thin film after the polarization reversal process, and the aging process is performed by the polarization in the fourth process. It is desirable to carry out at a temperature equal to or lower than the temperature at the time of inversion processing.
  • the stress and strain caused by the polarization reversal treatment can be relaxed and the characteristics of the piezoelectric thin film can be stabilized.
  • this aging treatment at a temperature equal to or lower than the temperature at the time of polarization reversal treatment, it is possible to reduce stress and strain while suppressing diffusion of oxygen defects in the crystal due to heat.
  • the characteristics of the piezoelectric thin film are further stabilized, and it is possible to further improve the reliability by further suppressing the temporal decrease in the amount of displacement.
  • the aging treatment may be a treatment in which the first electrode and the second electrode are short-circuited and left for a predetermined time.
  • the aging process may be a process of applying a pulse waveform having the same bias as that of the polarization inversion process in the fourth step to the second electrode.
  • the present invention can be used for a piezoelectric actuator applied to, for example, an ink jet head and an ink jet printer, and its manufacture.
  • Inkjet Printer 21 Inkjet Head 21a Actuator (Piezoelectric Actuator) 22 Substrate 22a Pressure chamber (opening) 24 Lower electrode (first electrode) 25 Piezoelectric thin film 26 Upper electrode (second electrode) 29 Orientation control layer 31 Nozzle substrate 31a Discharge hole (nozzle hole)

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

 基板(22)上に、第1の電極としての下部電極(24)、圧電薄膜(25)、第2の電極としての上部電極(26)をこの順で積層して、圧電アクチュエータ(21a)が構成されている。圧電薄膜(25)において、結晶中の酸素欠陥は、上記第2の電極との界面側の領域よりも上記第1の電極との界面側の領域に多く存在している。圧電薄膜(25)の分極方向は、上記第2の電極から上記第1の電極に向かう方向である。

Description

圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび圧電アクチュエータの製造方法
 本発明は、基板上に、第1の電極、圧電薄膜、第2の電極をこの順で成膜した圧電アクチュエータおよびその製造方法と、上記圧電アクチュエータを備えたインクジェットヘッドと、そのインクジェットヘッドを備えたインクジェットプリンタとに関するものである。
 従来から、液体インクを吐出する複数のチャネルを有するインクジェットヘッドを備えたインクジェットプリンタが知られている。用紙や布などの記録メディアに対してインクジェットヘッドを相対的に移動させながら、インクの吐出を制御することにより、記録メディアに対して二次元の画像を出力することができる。インクの吐出は、アクチュエータ(圧電式、静電式、熱変形などによるもの)を利用したり、熱によって管内のインクに気泡を発生させることで行うことができる。中でも、圧電式のアクチュエータは、出力が大きい、変調が可能、応答性が高い、インクを選ばない、などの利点を有しており、近年よく利用されている。
 圧電式のアクチュエータには、バルク状の圧電体を用いたものと、薄膜の圧電体(圧電薄膜)を用いたものとがある。前者は出力が大きいため、大きな液滴を吐出することができるが、大型でコストが高い。これに対して、後者は出力が小さいため、液滴を大きくできないが、小型でコストが低い。高解像度(小液滴で良い)で小型、低コストのプリンタを実現するには、圧電薄膜を用いてアクチュエータを構成することが適していると言える。
 圧電薄膜の材料としては、PZT(チタン酸ジルコン酸鉛)と呼ばれる鉛(Pb)、ジルコニウム(Zr)、チタン(Ti)、酸素(O)からなるペロブスカイト構造の結晶を用いることが多い。圧電薄膜を用いた圧電アクチュエータでは、CVD(Chemical Vapor Deposition)法などの化学的成膜法、スパッタ法やイオンプレーティング法といった物理的な方法、ゾルゲル法などの液相成長、などの成膜プロセスを用いて、基板上に圧電薄膜を形成する。圧電材料の結晶化には高温が必要となるため、基板にはシリコン(Si)が良く用いられる。
 上記の基板を、フォトリソグラフィーなどの半導体プロセス技術を用いて高精度に加工することにより、圧電アクチュエータを作製することができる。特に、直径6インチや直径8インチといった比較的大きなSiウェハ上に圧電薄膜等を成膜して、圧電アクチュエータを高密度で一括して作製することにより、圧電アクチュエータを個別に製造する枚葉製造に比べて、コストを大幅に低減することができる。
 ところで、スパッタ法等の成膜法でSi基板上に形成した圧電薄膜は、成膜条件の工夫により、1軸配向膜と呼ばれる柱状の多結晶の膜となる。ここで、1軸配向膜とは、結晶のある方向が基板面に垂直となるように優先的に配向した膜を言う。例えば、結晶の(100)方向が基板面に垂直となるように配向している膜は、(100)配向膜と呼ばれ、(111)方向が基板面に垂直となるように配向している膜は、(111)配向膜と呼ばれる。このような1軸配向膜は、分極方向が揃いやすいため、高い圧電特性を得ることができる。
 このような1軸配向膜を成膜する技術は、例えば特許文献1に開示されている。特許文献1では、スパッタ法によって圧電薄膜を適切な成膜条件(スパッタ条件)で成膜することにより、成膜後の時点で膜の分極方向が上向き(下部電極から上部電極に向かう方向)に揃った、分極処理が不要な1軸配向膜を成膜するようにしている。なお、一般的に、スパッタ法やゾルゲル法によって、分極方向は上向きになる。特に、圧電特性を向上させるために圧電薄膜に添加物を入れることで、分極方向は上向きとなりやすい。
 図9は、特許文献1の圧電アクチュエータの構成を模式的に示す断面図である。なお、図中の実線の矢印は、膜の分極方向を示す。上記圧電アクチュエータにおいては、シリコンからなる基板101上に、白金(Pt)からなる下部電極102、PZTからなる圧電薄膜103、Ptからなる上部電極104がこの順で成膜されている。このように圧電薄膜103の分極方向が上向きに揃った圧電アクチュエータでは、圧電薄膜103の成膜時に生じる酸素欠陥Pが、圧電薄膜103における上部電極104との界面側の領域よりも下部電極102との界面側の領域に多く偏在する。これは、圧電薄膜103のPZTを構成するPbの蒸気圧が低いため、PZTの成膜初期において、成膜時の高温でPbが蒸発し、そのPb(イオンの状態では正イオン)の蒸発に引きずられてPZTを構成する酸素(イオンの状態では負イオン)が抜けやすくなるためである。また、下部電極102と圧電薄膜103とは異種材料であるために、圧電薄膜103の成膜初期においては、下部電極102上に圧電薄膜103が所望の組成比で成膜されにくいというのも理由として考えられる。
 上記の酸素欠陥Pは、圧電薄膜103の結晶の中を比較的低いエネルギーで移動することができ、結晶表面付近で大気中の水分と反応してリークによる絶縁破壊を引き起こしたり、結晶内部で分極ドメインを固定化して圧電特性の低下を引き起こしたりすることが知られている。
 特許文献1のように、成膜時に分極方向が上向きに揃った圧電薄膜103を含む圧電アクチュエータを使用する際に、下部電極102をコモン電極とする一般的な駆動方法では、上部電極104に負の電界を印加する必要がある。このような電界を印加すると、圧電薄膜103の結晶内で相対的に正の電荷を持つ酸素欠陥Pは、上部電極104に印加される負の電界に引き付けられ、下部電極102との界面側の領域から結晶中を移動して上部電極104側に向かう。酸素欠陥Pが圧電薄膜103と上部電極104との界面付近に到達すると、それまでは正常に駆動していた電界を印加しても、酸素欠陥Pが原因でリークが生じて絶縁破壊を引き起こしてしまい、アクチュエータの信頼性が低下してしまう。
 このような酸素欠陥の移動を抑えるためには、上部電極に正の電界を印加して圧電アクチュエータを駆動する方法が考えられる。そのためには、圧電薄膜の分極方向が下向き(上部電極から下部電極に向かう方向)となるように、分極方向を反転させる分極反転処理を行うことが必要となる。
 この点、特許文献2には、駆動回路や電源コストの低減等が目的ではあるが(酸素欠陥の移動抑制が目的ではないが)、1軸配向の圧電薄膜の分極方向を反転させる技術が開示されている。これによると、分極反転処理には、抗電界が0V以下になるほどの高温で電界を印加することが、大きな変位量を得る点で好ましく、具体的には、キュリー温度が350℃の膜に対して250℃以上の高温で電界を印加することが必要とされている。
特開2007-335489号公報(段落〔0009〕、〔0018〕、〔0023〕、〔0033〕~〔0035〕、〔0047〕等参照) 特開2009-218360号公報(請求項1、段落〔0008〕、〔0012〕、〔0013〕、〔0016〕、〔0049〕、〔0050〕、〔0070〕~〔0073〕、図21等参照)
 ところが、分極反転処理時に、圧電薄膜に対して上記のように高温の状態で電界を印加すると、圧電薄膜における下部電極との界面側の領域に存在していた酸素欠陥が、高温による熱エネルギーによって結晶中に拡散してしまう。その結果、リークによる絶縁破壊が生じやすくなったり、結晶内部で分極ドメインを固定化して圧電特性が低下する。なお、リークによる絶縁破壊は、耐電圧の低下のみならず、変位量の経時的な低下を招き、信頼性の低下につながる。
 本発明は、上記の問題点を解決するためになされたもので、その目的は、分極反転を行う際の条件や膜中の酸素欠陥の分布を適切に設定することにより、信頼性の低下および圧電特性の低下を抑えることができる圧電アクチュエータの製造方法と、その圧電アクチュエータと、その圧電アクチュエータを備えたインクジェットヘッドと、そのインクジェットヘッドを備えたインクジェットプリンタとを提供することにある。
 本発明の一側面に係る圧電アクチュエータは、基板上に、第1の電極、圧電薄膜、第2の電極をこの順で積層した圧電アクチュエータであって、前記圧電薄膜において、結晶中の酸素欠陥が、前記第2の電極との界面側の領域よりも前記第1の電極との界面側の領域に多く存在しており、前記圧電薄膜の分極方向が、前記第2の電極から前記第1の電極に向かう方向である。
 また、本発明の他の側面に係る圧電アクチュエータの製造方法は、基板上に第1の電極を成膜する第1の工程と、前記第1の電極上に圧電薄膜を成膜する第2の工程と、前記圧電薄膜上に第2の電極を成膜する第3の工程とを有する圧電アクチュエータの製造方法であって、前記第2の電極の成膜後、前記第1の電極から前記第2の電極に向かう方向に分極方向を持つように成膜された前記圧電薄膜の前記分極方向を反転させる分極反転処理を行う第4の工程をさらに有し、前記第4の工程では、前記圧電薄膜のキュリー温度の1/2以下の温度で、抗電界よりも大きい電界を前記第2の電極に印加することにより、前記圧電薄膜中の結晶中にある酸素欠陥を前記第1の電極との界面側の領域に閉じ込めたまま分極反転処理を行う。
 上記の圧電アクチュエータの構成および製造方法によれば、信頼性の低下および圧電特性の低下を抑えることができる。
本発明の実施の一形態に係るインクジェットプリンタの概略の構成を示す説明図である。 上記インクジェットプリンタが備えるインクジェットヘッドのアクチュエータの概略の構成を示す平面図、およびその平面図におけるA-A’線矢視断面図である。 上記インクジェットヘッドの断面図である。 上記インクジェットヘッドの製造工程を示す断面図である。 上記インクジェットヘッドの圧電薄膜を構成するPZTのX線回折の測定結果を示すグラフである。 上記インクジェットヘッドの他の構成を示す断面図である。 上記圧電アクチュエータの主要部を模式的に示す断面図である。 分極反転処理した上記圧電アクチュエータに対して、エージング処理を行った場合と行わなかった場合とにおける、変位量の経時変化を示すグラフである。 従来の圧電アクチュエータの構成を模式的に示す断面図である。
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。
 〔インクジェットプリンタの構成〕
 図1は、本実施形態のインクジェットプリンタ1の概略の構成を示す説明図である。インクジェットプリンタ1は、インクジェットヘッド部2において、インクジェットヘッド21が記録媒体の幅方向にライン状に設けられた、いわゆるラインヘッド方式のインクジェット記録装置である。
 インクジェットプリンタ1は、上記のインクジェットヘッド部2と、繰り出しロール3と、巻き取りロール4と、2つのバックロール5・5と、中間タンク6と、送液ポンプ7と、貯留タンク8と、定着機構9とを備えている。
 インクジェットヘッド部2は、インクジェットヘッド21から記録媒体Pに向けてインクを吐出させ、画像データに基づく画像形成(描画)を行うものであり、一方のバックロール5の近傍に配置されている。なお、インクジェットヘッド21の詳細については後述する。
 繰り出しロール3、巻き取りロール4および各バックロール5は、軸回りに回転可能な円柱形状からなる部材である。繰り出しロール3は、周面に幾重にも亘って巻回された長尺状の記録媒体Pを、インクジェットヘッド部2との対向位置に向けて繰り出すロールである。この繰り出しロール3は、モータ等の図示しない駆動手段によって回転することで、記録媒体Pを図1のX方向へ繰り出して搬送する。
 巻き取りロール4は、繰り出しロール3より繰り出されて、インクジェットヘッド部2によってインクが吐出された記録媒体Pを周面に巻き取る。
 各バックロール5は、繰り出しロール3と巻き取りロール4との間に配設されている。記録媒体Pの搬送方向上流側に位置する一方のバックロール5は、繰り出しロール3によって繰り出された記録媒体Pを、周面の一部に巻き付けて支持しながら、インクジェットヘッド部2との対向位置に向けて搬送する。他方のバックロール5は、インクジェットヘッド部2との対向位置から巻き取りロール4に向けて、記録媒体Pを周面の一部に巻き付けて支持しながら搬送する。
 中間タンク6は、貯留タンク8より供給されるインクを一時的に貯留する。また、中間タンク6は、複数のインクチューブ10と接続され、各インクジェットヘッド21におけるインクの背圧を調整して、各インクジェットヘッド21にインクを供給する。
 送液ポンプ7は、貯留タンク8に貯留されたインクを中間タンク6に供給するものであり、供給管11の途中に配設されている。貯留タンク8に貯留されたインクは、送液ポンプ7によって汲み上げられ、供給管11を介して中間タンク6に供給される。
 定着機構9は、インクジェットヘッド部2によって記録媒体Pに吐出されたインクを当該記録媒体Pに定着させる。この定着機構9は、吐出されたインクを記録媒体Pに加熱定着するためのヒータや、吐出されたインクにUV(紫外線)を照射することによりインクを硬化させるためのUVランプ等で構成されている。
 上記の構成において、繰り出しロール3から繰り出される記録媒体Pは、バックロール5により、インクジェットヘッド部2との対向位置に搬送され、インクジェットヘッド部2から記録媒体Pに対してインクが吐出される。その後、記録媒体Pに吐出されたインクは定着機構9によって定着され、インク定着後の記録媒体Pが巻き取りロール4によって巻き取られる。このようにラインヘッド方式のインクジェットプリンタ1では、インクジェットヘッド部2を静止させた状態で、記録媒体Pを搬送しながらインクが吐出され、記録媒体Pに画像が形成される。
 なお、インクジェットプリンタ1は、シリアルヘッド方式で記録媒体に画像を形成する構成であってもよい。シリアルヘッド方式とは、記録媒体を搬送しながら、その搬送方向と直交する方向にインクジェットヘッドを移動させてインクを吐出し、画像を形成する方式である。
 〔インクジェットヘッドの構成〕
 次に、上記したインクジェットヘッド21の構成について説明する。図2は、インクジェットヘッド21のアクチュエータ21a(圧電アクチュエータ)の概略の構成を示す平面図と、その平面図におけるA-A’線矢視断面図とを併せて示したものである。また、図3は、図2のアクチュエータ21aにノズル基板31を接合してなるインクジェットヘッド21の断面図である。
 インクジェットヘッド21は、複数の圧力室22a(開口部)を有する基板22上に、熱酸化膜23、下部電極24(第1の電極)、圧電薄膜25、上部電極26(第2の電極)をこの順で有している。
 基板22は、厚さが例えば300~500μm程度の単結晶Si(シリコン)単体からなる半導体基板またはSOI(Silicon on Insulator)基板で構成されている。なお、図2では、基板22をSOI基板で構成した場合を示している。SOI基板は、酸化膜を介して2枚のSi基板を接合したものである。基板22における圧力室22aの上壁は、従動膜となる振動板22bを構成しており、圧電薄膜25の駆動(伸縮)に伴って変位(振動)し、圧力室22a内のインクに圧力を付与する。
 熱酸化膜23は、例えば厚さが0.1μm程度のSiO2(酸化シリコン)からなり、基板22の保護および絶縁の目的で形成されている。
 下部電極24は、複数の圧力室22aに共通して設けられるコモン電極であり、Ti(チタン)層とPt(白金)層とを積層して構成されている。Ti層は、熱酸化膜23とPt層との密着性を向上させるために形成されている。Ti層の厚さは例えば0.02μm程度であり、Pt層の厚さは例えば0.1μm程度である。
 圧電薄膜25は、例えばPZT(チタン酸ジルコン酸鉛)で構成されており、各圧力室22aに対応して設けられている。PZTは、PTO(PbTiO3;チタン酸鉛)とPZO(PbZrO3;ジルコン酸鉛)との固溶体である。圧電薄膜25の膜厚は、例えば1~10μm、好適には3~5μm等である。
 上部電極26は、各圧力室22aに対応して設けられる個別電極であり、Ti層とPt層とを積層して構成されている。Ti層は、圧電薄膜25とPt層との密着性を向上させるために形成されている。Ti層の厚さは例えば0.02μm程度であり、Pt層の厚さは例えば0.1~0.2μm程度である。上部電極26は、下部電極24との間で圧電薄膜25を挟むように設けられている。
 下部電極24、圧電薄膜25および上部電極26は、圧力室22a内のインクを外部に吐出させるための薄膜圧電素子27を構成している。この薄膜圧電素子27は、駆動回路28から下部電極24および上部電極26に印加される電圧(駆動信号)に基づいて駆動される。インクジェットヘッド21は、薄膜圧電素子27および圧力室22aを縦横に並べることにより形成される。
 圧力室22aの振動板22bとは反対側には、ノズル基板31が接合されている。ノズル基板31には、圧力室22aに収容されるインクをインク滴として外部に吐出するための吐出孔(ノズル孔)31aが形成されている。圧力室22aには、中間タンク6より供給されるインクが収容される。
 上記の構成において、駆動回路28から下部電極24および上部電極26に電圧を印加すると、圧電薄膜25が、下部電極24と上部電極26との電位差に応じて、厚さ方向に垂直な方向(基板22の面に平行な方向)に伸縮する。そして、圧電薄膜25と振動板22bとの長さの違いにより、振動板22bに曲率が生じ、振動板22bが厚さ方向に変位(湾曲、振動)する。
 したがって、圧力室22a内にインクを収容しておけば、上述した振動板22bの振動により、圧力室22a内のインクに圧力波が伝搬され、圧力室22a内のインクが吐出孔31aからインク滴として外部に吐出される。
 〔インクジェットヘッドの製造方法〕
 次に、本実施形態のインクジェットヘッド21の製造方法について以下に説明する。図4は、インクジェットヘッド21の製造工程を示す断面図である。
 まず、基板22を用意する。基板22としては、MEMS(Micro Electro Mechanical Systems)に多く利用されている結晶シリコン(Si)を用いることができ、ここでは、酸化膜22eを介して2枚のSi基板22c・22dが接合されたSOI構造のものを用いている。
 基板22を加熱炉に入れ、1500℃程度に所定時間保持して、Si基板22c・22dの表面にSiO2からなる熱酸化膜23a・23bをそれぞれ形成する。次に、一方の熱酸化膜23a上に、チタンおよび白金の各層をスパッタ法で順に成膜し、下部電極24を形成する。
 続いて、基板22を600℃程度に再加熱し、変位膜となるチタン酸ジルコン酸鉛(PZT)の層25aをスパッタ法で成膜する。ここで、図5は、XRD(X線回折)の2θ/θ測定の結果を示している。なお、図5の縦軸の強度(回折強度、反射強度)は、1秒間あたりのX線の計数率(cps;count per second)で示しており、1.E+nは、1×10+nを示している。得られたPZTの層25aは、図5のグラフより、(100)配向の1軸配向膜となっていることがわかる。この層25aは、成膜後の分極方向が上向き(下部電極24の成膜側から上部電極26の成膜側に向かう方向)となるような成膜条件(成膜温度等)で成膜される。
 次に、基板22に感光性樹脂41をスピンコート法で塗布し、マスクを介して露光、エッチングすることによって感光性樹脂41の不要な部分を除去し、形成する圧電薄膜25の形状を転写する。その後、感光性樹脂41をマスクとして、反応性イオンエッチング法を用いて層25aの形状を加工し、圧電薄膜25とする。
 次に、圧電薄膜25を覆うように下部電極24上に、チタン、白金層をスパッタ法で順に成膜し、層26aを形成する。続いて、層26a上に感光性樹脂42をスピンコート法で塗布し、マスクを介して露光、エッチングすることによって感光性樹脂42の不要な部分を除去し、形成する上部電極26の形状を転写する。その後、感光性樹脂42をマスクとして、反応性イオンエッチング法を用いて層26aの形状を加工し、上部電極26を形成する。
 次に、基板22の裏面(熱酸化膜23b側)に感光性樹脂43をスピンコート法で塗布し、マスクを介して露光、エッチングすることによって、感光性樹脂43の不要な部分を除去し、形成しようとする圧力室22aの形状を転写する。そして、感光性樹脂43をマスクとして、反応性イオンエッチング法を用いて基板22の除去加工を行い、圧力室22aを形成してアクチュエータ21aとする。
 その後、アクチュエータ21aの基板22と、吐出孔31aを有するノズル基板31とを、接着剤等を用いて接合する。これにより、インクジェットヘッド21が完成する。なお、吐出孔31aに対応する位置に貫通孔を有する中間ガラスを用い、熱酸化膜12bを除去して、基板22と中間ガラス、および中間ガラスとノズル基板31とをそれぞれ陽極接合するようにしてもよい。この場合は、接着剤を用いずに3者(基板22、中間ガラス、ノズル基板31)を接合することができる。
 以上のことから、圧電アクチュエータ21aは、基板22上に第1の電極としての下部電極24を成膜する工程(第1の工程)と、下部電極24上に圧電薄膜25を成膜する工程(第2の工程)と、圧電薄膜25上に第2の電極としての上部電極24を成膜する工程(第3の工程)とを経て製造されていると言える。
 なお、下部電極24を構成する電極材料は、上述したPtに限定されるわけではなく、その他にも、例えばAu(金)、Ir(イリジウム)、IrO2(酸化イリジウム)、RuO2(酸化ルテニウム)、LaNiO3(ニッケル酸ランタン)、SrRuO3(ルテニウム酸ストロンチウム)等の金属または金属酸化物、およびこれらの組み合わせが考えられる。
 また、図6に示すように、下部電極24と圧電薄膜25との間に、PLT(チタン酸ランタン鉛)、LaNiO3またはSrRuO3からなる配向制御層29(シード層)を設けるようにしてもよい。
 また、圧電薄膜25を構成する材料は、上述したPZTに限定されるわけではなく、その他にも、例えばPZTにLa(ランタン)や、Nb(ニオブ)、Sr(ストロンチウム)を添加したもの、BaTiO3(チタン酸バリウム)、LiTaO3(タンタル酸リチウム)、Pb(Mg,Nb)O3、Pb(Ni,Nb)O3、PbTiO3等の酸化物やこれらの組み合わせが考えられる。
 〔分極反転処理について〕
 次に、上記のようにして製造されるインクジェットヘッド(またはアクチュエータ)に対する分極反転処理について説明する。本実施形態では、上部電極26の成膜後、上向き(下部電極24から上部電極26に向かう方向)に分極方向を持つように成膜された圧電薄膜25の上記分極方向を反転させる分極反転処理を行う(第4の工程)。つまり、圧電薄膜25の成膜後の時点では上向きとなっている分極方向を、下向き(上部電極26から下部電極24に向かう方向)となるように分極反転させる分極反転処理を行う。
 図7は、本実施形態の圧電アクチュエータ21aの概略の構成を模式的に示す断面図である。なお、図7における実線の矢印は、圧電薄膜25の分極反転処理後の分極方向を示している。本実施形態では、圧電薄膜25の分極反転を、圧電薄膜25のキュリー温度の1/2以下の温度で、抗電界よりも大きい電界を上部電極26に印加することにより行う。
 分極反転処理時の温度を、圧電薄膜25のキュリー温度の1/2以下の温度とすることにより、図7に示すように、圧電薄膜25の膜中で下部電極24側に多く偏在する酸素欠陥Pの、熱による上部電極26側への拡散が抑制される。そして、この状態で、抗電界よりも大きい正の電界を上部電極26に印加することにより、膜中の酸素欠陥Pを下部電極24との界面側の領域に閉じ込めたまま分極反転を行うことができる。これにより、上部電極26との界面側の領域でのリークによる絶縁破壊や、結晶内部での分極ドメインの固定を抑えることができる。その結果、絶縁破壊による耐電圧の低下および変位量の経時的な低下を抑えて、信頼性を向上させることができるとともに、分極ドメインの固定による圧電特性の低下を抑えることができる。
 このように、本実施形態の分極反転処理では、圧電薄膜25の結晶中の酸素欠陥Pを、上部電極26との界面側の領域よりも下部電極24との界面側の領域に多く偏在させたまま、分極反転を行うことができることから、そのような分極反転処理が施された圧電アクチュエータ21aは、以下のように表現することができる。
 すなわち、本実施形態の圧電アクチュエータ21aは、図7に示すように、基板22上に、下部電極24、圧電薄膜25、上部電極26をこの順で積層した構成であって、圧電薄膜25において結晶中の酸素欠陥Pが、上部電極26との界面側の領域よりも下部電極24との界面側の領域に相対的に多く存在しており、圧電薄膜25の分極方向が下向き、つまり、上部電極26から下部電極24に向かう方向である。この構成では、圧電薄膜25の酸素欠陥Pが下部電極24側に多く存在しており(酸素欠陥Pの上部電極26側への拡散が抑えられており)、駆動時においても、上部電極26に正の電界を印加する駆動を行って、膜中の酸素欠陥の下部電極24側から上部電極26側への移動を抑えることができるため、酸素欠陥Pの拡散に起因するリークによる絶縁破壊や分極ドメインの固定を抑えることができる。その結果、耐電圧の低下および変位量の経時的な低下を抑えて信頼性を向上させ、かつ、圧電特性の低下を抑えた圧電アクチュエータ21aを実現することができる。
 上記のように、圧電薄膜25の結晶中の酸素欠陥Pが、上部電極26との界面側の領域よりも下部電極24との界面側の領域に多く存在しているか否かは、例えばTEM-EDSによる圧電薄膜25の断面の解析によって調べることができる。TEMは、透過型電子顕微鏡(Transmission Electron Microscope)のことであり、EDSは、エネルギー分散型X線分光(Energy Dispersive X-ray Spectroscopy)のことである。すなわち、TEM-EDSは、電子線を試料に照射したときに放射されるX線のエネルギーを分析することにより、電子線照射領域の組成を解析する手法である。したがって、この手法を用いることにより、圧電薄膜25の膜厚方向の組成を解析して、酸素欠陥Pの偏在状態を調べることができる。ここで、上記した各界面側の領域とは、例えば圧電薄膜25の厚さ方向の長さに対して1%以内の範囲(領域)をそれぞれ指す。
 次に、分極反転処理を種々の条件(温度、電圧)で行い、各処理条件で得られる圧電特性および信頼性(絶縁破壊の耐電圧、変位量の経時変化)について調べた。
 圧電特性については、アクチュエータの変位量をレーザードップラー振動計により測定し、圧電定数d31に換算して調べた。耐電圧については、I-V特性(電流-電圧特性)において、リーク電流が急激に1桁以上大きくなる点の電圧を絶縁破壊の耐電圧とした。変位量の経時変化については、ヘッドにインク吐出パルスを100億回印加する前後でのアクチュエータの変位量の低下の割合で示した。そして、以下の基準に基づき、アクチュエータを総合的に評価した。なお、圧電薄膜はPZT膜であり、その厚さは5μmとした。
 (評価基準)
 ◎:圧電定数d31の絶対値が160pm/V以上であり、耐電圧が70V以上であり、経時変化が5%以下である。
 ○:圧電定数d31の絶対値が160pm/V以上であり、耐電圧が70V以上であり、経時変化が10%以下である。
 ×:圧電定数d31の絶対値が160pm/V未満であり、耐電圧が70V未満であり、経時変化が10%よりも大きい。
 表1は、分極反転処理時の温度(分極温度)、電界(分極電圧)、圧電特性、耐電圧、変位量の経時変化および総合評価をまとめて示したものである。なお、分極電圧は、下部電極を基準として上部電極に印加する電圧を示す。表1において、分極方向(分極反転処理後の分極方向)は、下向き(上部電極から下部電極に向かう方向)を‘+’で示し、上向き(下部電極から上部電極に向かう方向)を‘-’で示している。また、評価が◎または○のものを本発明の実施例と位置付け、評価が×のものを比較例と位置付けている。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、分極温度が、圧電薄膜のキュリー温度である360℃の1/2以下の180℃以下で、分極電圧が、抗電界(25V)よりも大きい30V以上であるときに、圧電特性、耐電圧、変位量の経時変化の全てについて目標値を達成しており、圧電特性が高く、信頼性の高いアクチュエータが得られていることがわかる。なお、抗電界は、圧電薄膜がPZTの場合、5kV/mmであることから、PZTの厚さ5μmで換算すると、25Vとなる。
 〔エージング処理について〕
 上述の分極反転処理(第4の工程)の後、圧電薄膜の特性を安定させるためのエージング処理(第5の工程)を行ってもよい。このようなエージング処理としては、下部電極および上部電極をショートさせて所定時間放置する処理であってもよいし、分極反転処理と同バイアスのパルス波形を上部電極に印加する処理であってもよい。エージング処理を行うことにより、分極反転処理によって生じる応力や歪みを緩和して、圧電薄膜の特性を安定させることができる。
 図8は、分極反転処理した圧電アクチュエータに対して、エージング処理を行った場合と行わなかった場合とにおいて、ヘッドにインク吐出パルスを100億回印加する過程での変位量の経時変化を示している。図中、太い実線は、分極反転処理した実施例2の圧電アクチュエータに対して、電界を印加しない状態で下部電極および上部電極をショートさせ、分極温度と同じ100℃のままで24時間放置することでエージング処理を行った後の変位量の経時変化を示し、太い破線は、実施例2の圧電アクチュエータに対して上記のエージング処理を行わなかった場合(実施例2そのもの)の変位量の経時変化を示している。また、図中、細い実線は、分極反転処理した実施例1の圧電アクチュエータに対して、分極温度と同じ80℃のままで、分極反転処理と同バイアスの(同じ正極性ユニポーラの)三角波を上部電極に1億パルス印加することでエージング処理を行った後の変位量の経時変化を示し、細い破線は、実施例1の圧電アクチュエータに対して上記のエージング処理を行わなかった場合(実施例1そのもの)の変位量の経時変化を示している。
 図8より、分極反転処理の後にエージング処理を行った場合、変位量の経時変化(変位量の低下の割合)がほぼ3%に抑えられており、エージング処理を行わなかった場合に比べて変位量の経時的な低下がさらに抑えられていることがわかる。なお、エージング処理の際の温度は、上記の例では分極温度と同じ温度としているが、分極温度よりも低い温度でエージング処理を行えば、エージング処理なしの場合よりも変位量の低下が抑えられる(変位量の低下の割合が3%と10%との間に抑えられる)ことがわかった。また、圧電特性および耐電圧については、エージング処理の有無でほとんど変化しないことがわかった。
 以上のように、圧電アクチュエータに対して分極反転処理後、分極温度以下の温度でエージング処理を行うことにより、圧電特性の低下や耐電圧の低下を招くことなく、変位量の経時的な低下をさらに抑えて、信頼性をさらに向上させることができる。これは、分極温度以下の温度でエージング処理を行うことで、エージング処理における圧電薄膜の結晶中の酸素欠陥の熱による拡散を抑制しながら、分極反転処理によって生じる応力や歪みを緩和できるためと考えられる。また、エージング処理として、上部電極および下部電極をショートさせて所定時間放置したり、分極反転処理と同バイアスのパルス波形を上部電極に印加することにより、エージング処理によって信頼性を向上させる上記の効果を確実に得ることができる。
 なお、エージング時間は、上記の例では24時間としているが、これよりも長い48時間、60時間等でも上記と同様の結果が得られることがわかった。したがって、エージング時間は、24時間には限定されない。また、エージング処理を行うときの印加パルス数は、上記の例では1億としているが、これ以上のパルス数でも上記と同様の結果が得られることがわかった。したがって、印加パルス数は、1億には限定されない。
 なお、エージング処理を行うときの印加パルスは、上記の例では三角波としているが、波形はこれに限定されず、正弦波、方形波、台形波などの他の波形であってもよい。また、パルス間隔も一定の周期(周波数)には限定されず、パルス間隔を変化させながらパルスを印加してもよい。
 以上で説明した本実施形態の圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび圧電アクチュエータの製造方法は、以下のように表現することができ、これによって以下の作用効果を奏する。
 本実施形態の圧電アクチュエータは、基板上に、第1の電極、圧電薄膜、第2の電極をこの順で積層した圧電アクチュエータであって、前記圧電薄膜において結晶中の酸素欠陥が、前記第2の電極との界面側の領域よりも前記第1の電極との界面側の領域に多く存在しており、前記圧電薄膜の分極方向が、前記第2の電極から前記第1の電極に向かう方向である。
 この構成では、圧電薄膜の結晶中の酸素欠陥が、第2の電極との界面側よりも第1の電極との界面側に多く存在し、第2の電極との界面側の領域への酸素欠陥の拡散が抑えられている。また、圧電薄膜の分極方向が下向き(第2の電極から第1の電極に向かう方向)であるので、駆動時には、第2の電極に正の電界を印加する駆動を行って、膜中の酸素欠陥の第1の電極から第2の電極側への移動を抑えることができる。これにより、酸素欠陥の拡散に起因するリークによる絶縁破壊や分極ドメインの固定を抑えることができる。その結果、信頼性の低下を抑え、かつ、圧電特性の低下を抑えた圧電アクチュエータを実現することができる。
 上記の圧電アクチュエータにおいて、前記各界面側の領域は、前記圧電薄膜の厚さ方向の長さに対して1%以内の範囲を考えることができる。
 上記の圧電アクチュエータは、前記第1の電極と前記圧電薄膜との間に設けられ、PLT、LaNiO3、SrRuO3のいずれかからなる配向制御層を含んでいてもよい。この場合、配向制御層により、圧電薄膜の結晶性および配向性を向上させて、圧電特性をさらに向上させることが可能となる。
 本実施形態のインクジェットヘッドは、上記の圧電アクチュエータと、前記圧電アクチュエータの前記基板に形成される開口部に収容されるインクを外部に吐出するためのノズル孔を有するノズル基板とを備えている。これにより、信頼性の高い、高性能なインクジェットヘッドを実現することができる。
 本実施形態のインクジェットプリンタは、上記のインクジェットヘッドを備え、前記インクジェットヘッドから記録媒体に向けてインクを吐出させる構成である。これにより、信頼性の高い、高性能なインクジェットプリンタを実現することができる。
 本実施形態の圧電アクチュエータの製造方法は、基板上に第1の電極を成膜する第1の工程と、前記第1の電極上に圧電薄膜を成膜する第2の工程と、前記圧電薄膜上に第2の電極を成膜する第3の工程とを有する圧電アクチュエータの製造方法であって、前記第2の電極の成膜後、前記第1の電極から前記第2の電極に向かう方向に分極方向を持つように成膜された前記圧電薄膜の前記分極方向を反転させる分極反転処理を行う第4の工程をさらに有し、前記第4の工程では、前記圧電薄膜のキュリー温度の1/2以下の温度で、抗電界よりも大きい電界を前記第2の電極に印加することにより、前記圧電薄膜中の結晶中にある酸素欠陥を前記第1の電極との界面側の領域に閉じ込めたまま分極反転処理を行う。
 分極反転を、圧電薄膜のキュリー温度の1/2以下の温度で行うことにより、圧電薄膜の結晶中の酸素欠陥の熱による拡散が抑制される。この状態で、抗電界よりも大きい電界を第2の電極に印加することにより、圧電薄膜の結晶中の酸素欠陥を、第2の電極との界面側の領域よりも第1の電極との界面側の領域に多く閉じ込めたまま分極反転を行うことができる。これにより、第2の電極との界面側の領域でのリークによる絶縁破壊や、結晶内部での分極ドメインの固定を抑えることができる。その結果、絶縁破壊による耐電圧の低下および変位量の経時的な低下を抑えて、信頼性の低下を抑えることができるとともに、分極ドメインの固定による圧電特性の低下を抑えることができる。つまり、分極反転を行っても、信頼性の低下および圧電特性の低下を抑えることができる。
 上記圧電アクチュエータの製造方法は、前記分極反転処理の後に、前記圧電薄膜の特性を安定させるためのエージング処理を行う第5の工程をさらに有し、前記エージング処理を、前記第4の工程における分極反転処理時の温度と同じ温度以下で行うことが望ましい。
 分極反転処理後にエージング処理を行うことにより、分極反転処理によって生じる応力や歪みを緩和して、圧電薄膜の特性を安定させることができる。しかも、このエージング処理を、分極反転処理時の温度と同じ温度以下で行うことにより、結晶中の酸素欠陥の熱による拡散を抑制しながら、応力や歪みを緩和することができる。その結果、圧電薄膜の特性がさらに安定し、変位量の経時的な低下をさらに抑えて信頼性を向上させることができる。
 前記エージング処理は、前記第1の電極および前記第2の電極をショートさせて所定時間放置する処理であってもよい。また、前記エージング処理は、前記第4の工程での分極反転処理と同バイアスのパルス波形を前記第2の電極に印加する処理であってもよい。このようなエージング処理により、変位量の経時的な低下をさらに抑えて信頼性を向上させるという上記の効果を確実に得ることができる。
 本発明は、例えばインクジェットヘッドおよびインクジェットプリンタに適用される圧電アクチュエータおよびその製造に利用可能である。
   1   インクジェットプリンタ
  21   インクジェットヘッド
  21a  アクチュエータ(圧電アクチュエータ)
  22   基板
  22a  圧力室(開口部)
  24   下部電極(第1の電極)
  25   圧電薄膜
  26   上部電極(第2の電極)
  29   配向制御層
  31   ノズル基板
  31a  吐出孔(ノズル孔)

Claims (9)

  1.  基板上に、第1の電極、圧電薄膜、第2の電極をこの順で積層した圧電アクチュエータであって、
     前記圧電薄膜において、結晶中の酸素欠陥が、前記第2の電極との界面側の領域よりも前記第1の電極との界面側の領域に多く存在しており、
     前記圧電薄膜の分極方向が、前記第2の電極から前記第1の電極に向かう方向である圧電アクチュエータ。
  2.  前記各界面側の領域は、前記圧電薄膜の厚さ方向の長さに対して1%以内の範囲である、請求項1に記載の圧電アクチュエータ。
  3.  第1の電極と前記圧電薄膜との間に設けられ、PLT、LaNiO3、SrRuO3のいずれかからなる配向制御層を含む、請求項1または2に記載の圧電アクチュエータ。
  4.  請求項1から3のいずれかに記載の圧電アクチュエータと、
     前記圧電アクチュエータの前記基板に形成される開口部に収容されるインクを外部に吐出するためのノズル孔を有するノズル基板とを備えているインクジェットヘッド。
  5.  請求項4に記載のインクジェットヘッドを備え、前記インクジェットヘッドから記録媒体に向けてインクを吐出させるインクジェットプリンタ。
  6.  基板上に第1の電極を成膜する第1の工程と、
     前記第1の電極上に圧電薄膜を成膜する第2の工程と、
     前記圧電薄膜上に第2の電極を成膜する第3の工程とを有する圧電アクチュエータの製造方法であって、
     前記第2の電極の成膜後、前記第1の電極から前記第2の電極に向かう方向に分極方向を持つように成膜された前記圧電薄膜の前記分極方向を反転させる分極反転処理を行う第4の工程をさらに有し、
     前記第4の工程では、前記圧電薄膜のキュリー温度の1/2以下の温度で、抗電界よりも大きい電界を前記第2の電極に印加することにより、前記圧電薄膜中の結晶中にある酸素欠陥を前記第1の電極との界面側の領域に閉じ込めたまま分極反転処理を行う圧電アクチュエータの製造方法。
  7.  前記分極反転処理の後に、前記圧電薄膜の特性を安定させるためのエージング処理を行う第5の工程をさらに有し、
     前記エージング処理を、前記第4の工程における分極反転処理時の温度と同じ温度以下で行う請求項6に記載の圧電アクチュエータの製造方法。
  8.  前記エージング処理は、前記第1の電極および前記第2の電極をショートさせて所定時間放置する処理である請求項7に記載の圧電アクチュエータの製造方法。
  9.  前記エージング処理は、前記第4の工程での分極反転処理と同バイアスのパルス波形を前記第2の電極に印加する処理である請求項7に記載の圧電アクチュエータの製造方法。
PCT/JP2014/073750 2013-09-24 2014-09-09 圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび圧電アクチュエータの製造方法 WO2015045845A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015539080A JP6311718B2 (ja) 2013-09-24 2014-09-09 圧電アクチュエータの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-197068 2013-09-24
JP2013197068 2013-09-24

Publications (1)

Publication Number Publication Date
WO2015045845A1 true WO2015045845A1 (ja) 2015-04-02

Family

ID=52742992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073750 WO2015045845A1 (ja) 2013-09-24 2014-09-09 圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび圧電アクチュエータの製造方法

Country Status (2)

Country Link
JP (1) JP6311718B2 (ja)
WO (1) WO2015045845A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002648A1 (en) * 2016-06-30 2018-01-04 Xaar Technology Limited Poling of a piezoelectric thin film element in a preferred electric field driving direction
EP4178333A1 (en) 2021-11-09 2023-05-10 FUJIFILM Corporation Piezoelectric laminate, piezoelectric element, and manufacturing method for piezoelectric laminate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159309A (ja) * 2003-11-05 2005-06-16 Seiko Epson Corp 圧電体膜、圧電素子、圧電アクチュエーター、圧電ポンプ、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、薄膜圧電共振子、周波数フィルタ、発振器、電子回路、および電子機器
JP2008159735A (ja) * 2006-12-22 2008-07-10 Seiko Epson Corp アクチュエータ装置及びその製造方法並びにその駆動方法、液体噴射ヘッド
JP2008258197A (ja) * 2007-03-30 2008-10-23 Fujifilm Corp 圧電素子製造方法及び液体吐出ヘッド製造方法
JP2010089470A (ja) * 2008-10-10 2010-04-22 Seiko Epson Corp 液体噴射ヘッド及び液体噴射装置並びにアクチュエータ装置
JP2011049419A (ja) * 2009-08-28 2011-03-10 Panasonic Corp 圧電デバイスの製造方法
JP2011079733A (ja) * 2009-10-06 2011-04-21 Advantest Corp 製造装置および製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5382905B2 (ja) * 2008-03-10 2014-01-08 富士フイルム株式会社 圧電素子の製造方法及び液体吐出ヘッドの製造方法
JP5275698B2 (ja) * 2008-06-17 2013-08-28 富士フイルム株式会社 圧電体膜の分極方法および圧電素子構造体の製造方法
JP5329863B2 (ja) * 2008-07-31 2013-10-30 富士フイルム株式会社 圧電素子及び圧電素子の製造方法、液体吐出装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159309A (ja) * 2003-11-05 2005-06-16 Seiko Epson Corp 圧電体膜、圧電素子、圧電アクチュエーター、圧電ポンプ、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、薄膜圧電共振子、周波数フィルタ、発振器、電子回路、および電子機器
JP2008159735A (ja) * 2006-12-22 2008-07-10 Seiko Epson Corp アクチュエータ装置及びその製造方法並びにその駆動方法、液体噴射ヘッド
JP2008258197A (ja) * 2007-03-30 2008-10-23 Fujifilm Corp 圧電素子製造方法及び液体吐出ヘッド製造方法
JP2010089470A (ja) * 2008-10-10 2010-04-22 Seiko Epson Corp 液体噴射ヘッド及び液体噴射装置並びにアクチュエータ装置
JP2011049419A (ja) * 2009-08-28 2011-03-10 Panasonic Corp 圧電デバイスの製造方法
JP2011079733A (ja) * 2009-10-06 2011-04-21 Advantest Corp 製造装置および製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002648A1 (en) * 2016-06-30 2018-01-04 Xaar Technology Limited Poling of a piezoelectric thin film element in a preferred electric field driving direction
GB2551803B (en) * 2016-06-30 2020-04-01 Xaar Technology Ltd Poling of a piezoelectric thin film element in a preferred electric field driving direction
EP4178333A1 (en) 2021-11-09 2023-05-10 FUJIFILM Corporation Piezoelectric laminate, piezoelectric element, and manufacturing method for piezoelectric laminate

Also Published As

Publication number Publication date
JPWO2015045845A1 (ja) 2017-03-09
JP6311718B2 (ja) 2018-04-18

Similar Documents

Publication Publication Date Title
JP6699662B2 (ja) 圧電薄膜、圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび圧電アクチュエータの製造方法
US10639890B2 (en) Inkjet head and method of manufacturing the same, and inkjet recording apparatus
JP6281629B2 (ja) 圧電薄膜付き基板、圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび強誘電体薄膜の製造方法
JP6194954B2 (ja) インクジェットヘッドおよびインクジェットプリンタ
JP6720973B2 (ja) 圧電素子、インクジェットヘッド、インクジェットプリンタ、および圧電素子の製造方法
JP6314992B2 (ja) 圧電素子、インクジェットヘッド、インクジェットプリンタおよび圧電素子の製造方法
JP6311718B2 (ja) 圧電アクチュエータの製造方法
JP6481686B2 (ja) 強誘電体薄膜、圧電薄膜付き基板、圧電アクチュエータ、インクジェットヘッドおよびインクジェットプリンタ
JP6048306B2 (ja) インクジェットヘッドおよびその駆動方法と、インクジェットプリンタ
JP5194463B2 (ja) 圧電体薄膜素子の製造方法
JP6274308B2 (ja) 圧電素子、圧電素子の製造方法、圧電アクチュエータ、インクジェットヘッドおよびインクジェットプリンタ
WO2017090445A1 (ja) 圧電素子、圧電素子の製造方法、圧電アクチュエータ、インクジェットヘッドおよびインクジェットプリンタ
WO2015182228A1 (ja) 圧電アクチュエータ、圧電アクチュエータの製造方法、インクジェットヘッドおよびインクジェットプリンタ
JP6468881B2 (ja) 圧電薄膜、圧電薄膜の製造方法、圧電薄膜付き基板、圧電アクチュエータ、圧電センサ、インクジェットヘッドおよびインクジェットプリンタ
WO2017169470A1 (ja) インクジェットヘッドおよびインクジェットプリンタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539080

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849618

Country of ref document: EP

Kind code of ref document: A1