WO2015045434A1 - Distortion measurement system for transparent film - Google Patents
Distortion measurement system for transparent film Download PDFInfo
- Publication number
- WO2015045434A1 WO2015045434A1 PCT/JP2014/052431 JP2014052431W WO2015045434A1 WO 2015045434 A1 WO2015045434 A1 WO 2015045434A1 JP 2014052431 W JP2014052431 W JP 2014052431W WO 2015045434 A1 WO2015045434 A1 WO 2015045434A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- transparent film
- light sources
- transmitted
- image sensor
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/89—Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
- G01N21/892—Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
- G01N21/896—Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
Definitions
- the present invention relates to a distortion measurement system for a transparent film, and is particularly suitable for use in a system for measuring the phase difference and optical axis direction of transmitted light caused by distortion of a transparent film.
- a transparent film made of plastic or the like may be distorted (uneven) due to local non-uniformity.
- the transparent film having a large area before cutting is likely to be partially distorted. Therefore, in the process of manufacturing the transparent film, an inspection is performed as to whether or not distortion has occurred. This inspection can be performed by irradiating the transparent film with light and analyzing the transmitted light.
- a phase difference is measured by rotating a polarizing plate installed in front of an inspection device and calculating data received by an image sensor several times (for example, Patent Document 1). reference).
- Patent Document 1 light is emitted from a light source arranged on one side of the film surface of the laminated film, and a transmitted light image of the laminated film is obtained by an imaging unit arranged on the other side of the film surface. And detecting defects present in the laminated film based on the transmitted light image photographed by the imaging unit.
- an inspection polarizing filter is provided on the optical path between the laminated film and the imaging unit, and the inspection polarizing filter is rotated to detect defects.
- a polarization image sensor an image sensor (hereinafter referred to as a polarization image sensor) 102 in which a rotating polarizing plate array having various angles in a fine region is used, the polarizing plate rotates.
- a system that requires no operation and can measure the phase difference of transmitted light caused by a distorted portion of the transparent film 200 at a high speed with one polarization image sensor 102.
- the distortion measurement system shown in FIG. 6 includes a light source 101 that illuminates from one side of the transparent film 200, a polarization image sensor 102 that images transmitted light from the light source 101 from the other side of the transparent film 200, and a polarization image sensor 102. And an analysis device 103 that performs distortion analysis based on the captured image obtained from the above.
- the present invention has been made to solve such a problem, and an object thereof is to provide an inexpensive system capable of measuring the distortion of a transparent film at high speed.
- a plurality of light sources that illuminate from one side of the transparent film are provided, and a plurality of types of polarizing filters having different principal axis directions are alternately arranged with respect to the plurality of light sources.
- the plurality of light sources are blinked by sequentially switching ones having different types of polarizing filters.
- the light transmitted through the polarizing filter and the transparent film is imaged by an image sensor, and the distortion of the transparent film is analyzed based on the transmitted light image obtained thereby.
- FIG. 1 is a diagram illustrating a configuration example of a transparent film distortion measurement system according to the present embodiment.
- a transparent film 200 which is a distortion measurement target, is conveyed at a constant speed from the front of the drawing to the back or vice versa.
- the distortion measurement system for a transparent film includes a plurality of light sources 1 -1 to 1 -n , a plurality of polarizing filters 2 -1 to 2 -n , an image sensor 3, and an analysis.
- a device 4 and a light emission control unit 5 are provided. Note that the analysis device 4 and the light emission control unit 5 are actually configured by a microcomputer including a CPU, a RAM, a ROM, and the like.
- the plurality of light sources 1 -1 to 1 -n illuminate the transparent film 200 from one side of the transparent film 200 that is a distortion measurement target.
- the plurality of light sources 1 -1 to 1 -n are light emitting diodes (LEDs) having directivity.
- LEDs light emitting diodes
- LED is mentioned here as an example, as long as it is a light source which has directivity, you may use other than LED.
- FIG. 3 is a diagram illustrating an example of a cross-sectional structure of one cell 10. Although the plurality of cells 10 are linearly arranged one-dimensionally here, they may be two-dimensionally arranged in a matrix.
- the image sensor 3 is arranged on the other side of the transparent film 200 and images light output from the light sources 1 -1 to 1 -n and transmitted through the polarizing filters 2 -1 to 2 -n and the transparent film 200.
- the image sensor 3 is a general-purpose line sensor.
- a line sensor as the image sensor 3 corresponds to the one-dimensional arrangement of a plurality of cells 10 in a straight line.
- the image sensor 3 is configured by an area sensor.
- the image sensor 3 may be configured by arranging a plurality of line sensors in a direction perpendicular to the line direction.
- the analysis device 4 measures the distortion of the transparent film 200 by analyzing the phase difference and optical axis direction of the transmitted light caused by the distortion of the transparent film 200 based on the transmitted light image captured by the image sensor 3. As described above, since directional LEDs are used as the light sources 1 -1 to 1 -n in the present embodiment, the portion of the transmitted light image picked up by the image sensor 3 is lit at the maximum luminance value. There will be as many LEDs as there are. Therefore, the analysis device 4 analyzes the phase difference and the optical axis direction using the luminance information that is maximum in the transmitted light image captured by the image sensor 3.
- the analysis of distortion by the analysis device 4 can be performed as follows, for example. That is, when the light sources 1 -1 to 1 -n are sequentially turned on, the analyzer 4 transmits normal light that has passed through the normal portion of the transparent film 200 and abnormal light that has passed through the distorted portion if there is distortion. The presence or absence of distortion is detected by measuring the phase difference. Further, it is possible to detect the position of distortion from the imaging position of abnormal light whose phase difference has been detected, and to detect the direction of distortion from the optical axis direction of polarized light when the phase difference is detected.
- the light emission control unit 5 controls the plurality of light sources 1 ⁇ 1 to 1 ⁇ n so that the light sources 1 ⁇ 1 to 1 ⁇ n that are arranged with different types of polarizing filters 2 ⁇ 1 to 2 ⁇ n are sequentially switched and blinked. Specifically, the light emission control unit 5 sets a plurality of light sources 1 ⁇ 1 to 1 ⁇ n as one group of light sources 1 ⁇ 1 to 1 ⁇ n arranged with the same type of polarizing filter, and the light sources 1 ⁇ 1 to 1 ⁇ n for each group. Switch sequentially to blink.
- the light emission control unit 5 replaces the light sources 1- (j + 1) in which the second type of polarization filters 2- (j + 1) are arranged with each other in the second group. These are turned on simultaneously as Gr2. At this time, light transmitted through the transparent film 200 is imaged by the image sensor 3. The light emission control unit 5 immediately turns off the light source 1- (j + 1) of the second group Gr2 after imaging by the image sensor 3.
- the light emission control unit 5 replaces the light sources 1- (j + 2) in which the third type of polarizing filters 2- (j + 2) are arranged with each other in the third group. These are turned on simultaneously as Gr3. At this time, light transmitted through the transparent film 200 is imaged by the image sensor 3. The light emission control unit 5 immediately turns off the light source 1- (j + 2) of the third group Gr3 after imaging by the image sensor 3.
- the light emission control unit 5 converts the light sources 1- (j + 3) in which the fourth type of polarizing filter 2- (j + 3) is arranged into the fourth group. These are turned on simultaneously as Gr4. At this time, light transmitted through the transparent film 200 is imaged by the image sensor 3. The light emission control unit 5 immediately turns off the light source 1- (j + 3) of the fourth group Gr4 after imaging by the image sensor 3.
- the transmitted light image picked up by the image sensor 3 when the plurality of light sources 1 -j on which the first type polarizing filter 2 -j is arranged is turned on is opposed to the first type polarizing filter 2 -j .
- the luminance value becomes maximum at the pixel located at the position where In this case, the analysis device 4 uses the luminance information of the pixel position where the value is maximized by the light transmitted through the first type of polarizing filter 2 -j , and the phase difference and the optical axis caused by the distortion of the transparent film 200. Analyze direction.
- the transmitted light image captured by the image sensor 3 when the plurality of light sources 1- (j + 2) on which the third type polarization filter 2- (j + 2) is disposed is turned on.
- the luminance value becomes maximum at the pixel located at a position facing the polarizing filter 2- (j + 2) of the type.
- the analysis device 4 uses the luminance information of the pixel position where the value is maximized by the light transmitted through the third type of polarizing filter 2- (j + 2) , and the level generated by the distortion of the transparent film 200. Analyze phase difference and optical axis orientation.
- a plurality of light sources 1 -1 ⁇ 1 -n for illuminating from one side of the transparent film 200, with respect to the plurality of light sources 1 -1 ⁇ 1 -n, respectively Plural types of polarizing filters 2 -1 to 2 -n having different main axis directions are alternately arranged.
- the plurality of light sources 1 -1 to 1 -n are blinked so as to sequentially switch ones having different types of polarizing filters.
- the light transmitted through the polarizing filters 2 -1 to 2- n and the transparent film 200 is imaged by the image sensor 3, and the phase difference and optical axis direction of the transmitted light are analyzed based on the transmitted light image obtained thereby.
- the distortion of the transparent film 200 is measured.
- the polarization angle transmitted through the transparent filter 200 can be changed by sequentially switching the light sources 1 -1 to 1 -n to be turned on.
- the polarization angle can be switched at a higher speed than in the above, and the phase difference and optical axis direction of the transmitted light generated by the distorted portion of the transparent film 200 can be measured at a high speed by one image sensor 3.
- a general-purpose sensor can be used as the image sensor 3, it is not necessary to use an expensive polarization image sensor, and an increase in system cost can be suppressed.
- the analyzing apparatus 4 detects the maximum luminance information in the transmitted light image captured by the image sensor 3 and analyzes the phase difference and the optical axis direction.
- the invention is not limited to this.
- it is specified in advance at which pixel position the luminance value is maximized when which light source 1 -1 to 1 -n is turned on, and the phase difference and the luminance information obtained at the specified pixel are used.
- the optical axis direction may be analyzed.
- non-directional light sources may be used.
- the polarizing filters 2 -1 to 2 -n only need to have one of different types, and the number of light sources 1 -1 to 1 -n is the same as the number of polarizing filters 2 -1 to 2 -n. That's fine.
- the analysis device 4 does not analyze using only the luminance information that is the maximum, but analyzes the phase difference and the optical axis direction using the luminance information of all the pixel positions.
- Such a configuration has the advantage that the number of light sources 1 -1 to 1 -n and polarization filters 2 -1 to 2 -n to be used can be reduced. Further, when any light source 1 -1 to 1 -n emits light (that is, when light passes through any polarizing filter 2 -1 to 2 -n ), the transparent film 200 is spread over the entire area of the image sensor 3. This also has the merit that the distortion can be measured.
- the phase difference between normal light and extraordinary light may be measured within such limitation. In this way, since the phase difference can be measured by comparing the lights transmitted through the same type of polarizing filter, the measurement accuracy of the phase difference can be increased.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Polarising Elements (AREA)
Abstract
A distortion measurement system provided with a plurality of light sources (1-1-1-n), a plurality of types of polarizing filters (2-1-2-n) alternatingly positioned in relation to the plurality of light sources (1-1-1-n), an image sensor (3) for capturing light which has passed through the polarizing filters (2-1-2-n) and a transparent film (200), an analysis device (4) for analyzing the distortion of the transparent film (200) on the basis of the transmitted optical image captured by the image sensor (3), and a light-emission control unit (5) for causing the plurality of light sources (1-1-1-n) to blink by sequentially switching between light sources on which the plurality of different types of polarizing filters are arranged, wherein sequentially switching between blinking light sources (1-1-1-n) makes it possible to quickly switch the angle of polarization in comparison to when rotating a polarizing plate, and to quickly measure the optical axis direction and the phase difference of transmitted light produced by a distortion section by using one general-purpose image sensor (3).
Description
本発明は、透明フィルムの歪み測定システムに関し、特に、透明フィルムの歪みによって生じる透過光の位相差および光軸方位を測定するシステムに用いて好適なものである。
The present invention relates to a distortion measurement system for a transparent film, and is particularly suitable for use in a system for measuring the phase difference and optical axis direction of transmitted light caused by distortion of a transparent film.
一般に、プラスティック等を材料とする透明フィルムには、場所的な不均一性によって歪み(ムラ)を生じることがある。特に、裁断する前の大面積を有する透明フィルムには、部分的な歪みが生じやすい。そのため、透明フィルムの製造過程において、歪みが生じていないかどうかの検査が行われる。この検査は、透明フィルムに光を照射し、その透過光を解析することによって行うことが可能である。
Generally, a transparent film made of plastic or the like may be distorted (uneven) due to local non-uniformity. In particular, the transparent film having a large area before cutting is likely to be partially distorted. Therefore, in the process of manufacturing the transparent film, an inspection is performed as to whether or not distortion has occurred. This inspection can be performed by irradiating the transparent film with light and analyzing the transmitted light.
すなわち、透明フィルムに歪みが生じると、その歪み部分に屈折率ムラができる。そのため、歪み部分に光を通してみると、正常部分に対して光が遅れたり進んだりして出てくる。よって、通常部分を透過した通常光と、歪み部分を透過した異常光とをイメージセンサで受光し、その時間差(位相差)を測定することで、歪みの有無を検査することが可能である。また、透明フィルムに通す光として複数角度の偏光を用いることで、位相差を生じさせる偏光の光軸方位、つまり歪みの方向を検出することが可能である。
That is, when the transparent film is distorted, refractive index unevenness is generated in the distorted portion. For this reason, when light is passed through the distorted portion, the light comes out behind or behind the normal portion. Therefore, the presence or absence of distortion can be inspected by receiving normal light transmitted through the normal part and abnormal light transmitted through the distorted part with an image sensor and measuring the time difference (phase difference). Further, by using polarized light of a plurality of angles as light passing through the transparent film, it is possible to detect the optical axis direction of polarized light that causes a phase difference, that is, the direction of distortion.
従来の歪み測定システムでは、検査器の前に設置してある偏光板を回転させ、イメージセンサで数回受光したデータを合わせて計算することによって位相差を測定していた(例えば、特許文献1参照)。この特許文献1に記載のシステムでは、積層フィルムのフィルム面の一方の側に配置された光源により光を照射し、フィルム面の他方の側に配置された撮像部により、積層フィルムの透過光像を撮影し、撮像部により撮影された透過光像に基づいて、積層フィルムに存在する欠陥の検出を行う。また、積層フィルムと撮像部との間の光路上に検査用偏光フィルタを設け、この検査用偏光フィルタを回転させて欠陥の検出を行っている。
In a conventional strain measurement system, a phase difference is measured by rotating a polarizing plate installed in front of an inspection device and calculating data received by an image sensor several times (for example, Patent Document 1). reference). In the system described in Patent Document 1, light is emitted from a light source arranged on one side of the film surface of the laminated film, and a transmitted light image of the laminated film is obtained by an imaging unit arranged on the other side of the film surface. And detecting defects present in the laminated film based on the transmitted light image photographed by the imaging unit. In addition, an inspection polarizing filter is provided on the optical path between the laminated film and the imaging unit, and the inspection polarizing filter is rotated to detect defects.
しかしながら、この種のシステムでは、偏光板(検査用偏光フィルタ)を回転させる必要があるため、歪みの測定を高速に行うことができない。そのため、偏光板が回転している間に測定対象の透明フィルムが動いている場合は測定ができない。これにより、前工程から搬送されてきた測定対象の透明フィルムを一々停止させて測定を行う必要があり、検査時間が長くなってしまうという問題があった。
However, in this type of system, since it is necessary to rotate the polarizing plate (inspection polarizing filter), the strain cannot be measured at high speed. Therefore, measurement cannot be performed when the transparent film to be measured is moving while the polarizing plate is rotating. Thereby, it is necessary to stop and measure the transparent film to be measured that has been conveyed from the previous process, and there is a problem that the inspection time becomes long.
これに対し、主軸方向が異なる偏光板を3種類備え、それぞれの偏光板を透過した3種類の偏光を3台のイメージセンサで受光するようにしたシステムも提供されている。この種のシステムによれば、測定対象の透明フィルムが動いている場合も歪みの測定を行うことが可能となる。しかしながら、装置の大型化およびコスト増を招くという問題があった。
On the other hand, a system is also provided in which three types of polarizing plates with different principal axis directions are provided, and three types of polarized light transmitted through the respective polarizing plates are received by three image sensors. According to this type of system, it is possible to measure distortion even when the transparent film to be measured is moving. However, there is a problem that the apparatus is increased in size and cost.
これらの問題に対して、図6に示すように、微細な領域に色々な角度を持つ回転偏光板アレイを組み込んだイメージセンサ(以下、偏光イメージセンサという)102を用いることにより、偏光板の回転動作が要らず、透明フィルム200の歪み部分によって生じる透過光の位相差を1台の偏光イメージセンサ102で高速に測定することを可能にしたシステムが提供されている。
To solve these problems, as shown in FIG. 6, by using an image sensor (hereinafter referred to as a polarization image sensor) 102 in which a rotating polarizing plate array having various angles in a fine region is used, the polarizing plate rotates. There is provided a system that requires no operation and can measure the phase difference of transmitted light caused by a distorted portion of the transparent film 200 at a high speed with one polarization image sensor 102.
図6に示す歪み測定システムは、透明フィルム200の一方の側から照明する光源101と、透明フィルム200の他方の側から光源101からの透過光を撮像する偏光イメージセンサ102と、偏光イメージセンサ102から得られる撮像画像に基づいて歪みの解析を行う解析装置103とを備えて構成されている。
The distortion measurement system shown in FIG. 6 includes a light source 101 that illuminates from one side of the transparent film 200, a polarization image sensor 102 that images transmitted light from the light source 101 from the other side of the transparent film 200, and a polarization image sensor 102. And an analysis device 103 that performs distortion analysis based on the captured image obtained from the above.
しかしながら、図6に示す歪み測定システムでは、画素上の微細な領域に色々な角度を持つ回転偏光板アレイを組み込んだ極めて特殊な偏光イメージセンサ102を用いる必要があり、これがシステムのコスト増を招いているという問題があった。
However, in the distortion measurement system shown in FIG. 6, it is necessary to use a very specific polarization image sensor 102 in which a rotating polarizing plate array having various angles is incorporated in a minute area on a pixel, which increases the cost of the system. There was a problem of being.
本発明は、このような問題を解決するために成されたものであり、透明フィルムの歪みを高速に測定することが可能で安価なシステムを提供することを目的とする。
The present invention has been made to solve such a problem, and an object thereof is to provide an inexpensive system capable of measuring the distortion of a transparent film at high speed.
上記した課題を解決するために、本発明では、透明フィルムの一方の側から照明する光源を複数設け、当該複数の光源に対して、それぞれ主軸方向が異なる複数種類の偏光フィルタを交互に配置する。複数の光源は、異なる種類の偏光フィルタが配置されたものを順次切り替えるようにして点滅させる。そして、このとき偏光フィルタおよび透明フィルムを透過した光をイメージセンサで撮像し、それによって得られた透過光像に基づいて、透明フィルムの歪みを解析するようにしている。
In order to solve the above-described problems, in the present invention, a plurality of light sources that illuminate from one side of the transparent film are provided, and a plurality of types of polarizing filters having different principal axis directions are alternately arranged with respect to the plurality of light sources. . The plurality of light sources are blinked by sequentially switching ones having different types of polarizing filters. At this time, the light transmitted through the polarizing filter and the transparent film is imaged by an image sensor, and the distortion of the transparent film is analyzed based on the transmitted light image obtained thereby.
上記のように構成した本発明によれば、点灯させる光源を順次切り替えることにより、透明フィルタを透過させる偏光の角度を変えることができるので、偏光板を回転させる場合に比べて高速に偏光の角度を切り替えることができ、透明フィルムの歪み部分によって生じる透過光の位相差および光軸方位を1つのイメージセンサで高速に測定することができる。また、イメージセンサとしては汎用のセンサを用いることができるので、高価な偏光イメージセンサを用いる必要がなく、システムのコスト増を抑えることができる。
According to the present invention configured as described above, since the angle of the polarized light transmitted through the transparent filter can be changed by sequentially switching the light source to be lit, the angle of the polarized light is faster than when the polarizing plate is rotated. The phase difference of transmitted light and the optical axis direction generated by the distorted portion of the transparent film can be measured at high speed with one image sensor. Further, since a general-purpose sensor can be used as the image sensor, it is not necessary to use an expensive polarization image sensor, and an increase in system cost can be suppressed.
以下、本発明の一実施形態を図面に基づいて説明する。図1は、本実施形態による透明フィルムの歪み測定システムの構成例を示す図である。図1において、歪みの測定対象である透明フィルム200は、図面の手前から奥の方向またはその逆の方向に一定速度で搬送されているものとする。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a configuration example of a transparent film distortion measurement system according to the present embodiment. In FIG. 1, it is assumed that a transparent film 200, which is a distortion measurement target, is conveyed at a constant speed from the front of the drawing to the back or vice versa.
図1に示すように、本実施形態による透明フィルムの歪み測定システムは、複数の光源1-1~1-nと、複数の偏光フィルタ2-1~2-nと、イメージセンサ3と、解析装置4と、発光制御部5とを備えて構成されている。なお、解析装置4および発光制御部5は、実際にはCPU、RAM、ROMなどを備えたマイクロコンピュータにより構成されている。
As shown in FIG. 1, the distortion measurement system for a transparent film according to the present embodiment includes a plurality of light sources 1 -1 to 1 -n , a plurality of polarizing filters 2 -1 to 2 -n , an image sensor 3, and an analysis. A device 4 and a light emission control unit 5 are provided. Note that the analysis device 4 and the light emission control unit 5 are actually configured by a microcomputer including a CPU, a RAM, a ROM, and the like.
複数の光源1-1~1-nは、歪みの測定対象である透明フィルム200の一方の側から透明フィルム200を照明する。本実施形態において、複数の光源1-1~1-nは、指向性を有する発光ダイオード(LED)である。なお、ここではLEDを例に挙げているが、指向性を有する光源であれば、LED以外を用いてもよい。
The plurality of light sources 1 -1 to 1 -n illuminate the transparent film 200 from one side of the transparent film 200 that is a distortion measurement target. In the present embodiment, the plurality of light sources 1 -1 to 1 -n are light emitting diodes (LEDs) having directivity. In addition, although LED is mentioned here as an example, as long as it is a light source which has directivity, you may use other than LED.
偏光フィルタ2-1~2-nは、主軸方向(偏光の角度)の異なるものが複数種類用いられ、複数の光源1-1~1-nに対して交互に配置される。図2は、複数種類の偏光フィルタ2-1~2-nの一例を示す図である。図2の例では、4種類の偏光フィルタ2-1~2-nが複数の光源1-1~1-nに対して交互に配置された状態を示している。本実施形態では、同種類の偏光フィルタどうしをまとめて1つのグループとする。偏光フィルタ2-1~2-nは4種類あるので、グループは4つ存在する(Gr1~Gr4)。
A plurality of types of polarizing filters 2 -1 to 2 -n having different principal axis directions (polarization angles) are used, and are alternately arranged with respect to the plurality of light sources 1 -1 to 1 -n . FIG. 2 is a diagram illustrating an example of a plurality of types of polarizing filters 2 -1 to 2 -n . In the example of FIG. 2, four types of polarizing filters 2 −1 to 2 −n are alternately arranged with respect to a plurality of light sources 1 −1 to 1 −n . In the present embodiment, the same type of polarizing filters are grouped into one group. Since there are four types of polarizing filters 2 -1 to 2 -n , there are four groups (Gr1 to Gr4).
また、本実施形態では、図3に示すように、1つの光源1-i(i=1~n)と1つの偏光フィルタ2-i とで1つのセル10を構成し、複数のセル10を直線状に配列している。図3は、1つのセル10の断面構造例を示す図である。なお、ここでは複数のセル10を直線状に1次元配列しているが、マトリクス状に2次元配列するようにしてもよい。
In the present embodiment, as shown in FIG. 3, one light source 1 -i (i = 1 to n) and one polarization filter 2 -i constitute one cell 10, and a plurality of cells 10 are arranged. They are arranged in a straight line. FIG. 3 is a diagram illustrating an example of a cross-sectional structure of one cell 10. Although the plurality of cells 10 are linearly arranged one-dimensionally here, they may be two-dimensionally arranged in a matrix.
イメージセンサ3は、透明フィルム200の他方の側に配置され、光源1-1~1-nから出力され偏光フィルタ2-1~2-nおよび透明フィルム200を透過した光を撮像する。本実施形態において、イメージセンサ3は汎用のラインセンサで構成する。
The image sensor 3 is arranged on the other side of the transparent film 200 and images light output from the light sources 1 -1 to 1 -n and transmitted through the polarizing filters 2 -1 to 2 -n and the transparent film 200. In the present embodiment, the image sensor 3 is a general-purpose line sensor.
イメージセンサ3としてラインセンサを用いるのは、複数のセル10を直線状に1次元配列したことに対応するものである。複数のセル10をマトリクス状に2次元配列した場合には、イメージセンサ3をエリアセンサにより構成する。あるいは、複数のラインセンサをラインの方向に対して垂直な方向に並べて配置することによってイメージセンサ3を構成するようにしてもよい。
The use of a line sensor as the image sensor 3 corresponds to the one-dimensional arrangement of a plurality of cells 10 in a straight line. When the plurality of cells 10 are two-dimensionally arranged in a matrix, the image sensor 3 is configured by an area sensor. Alternatively, the image sensor 3 may be configured by arranging a plurality of line sensors in a direction perpendicular to the line direction.
解析装置4は、イメージセンサ3により撮像された透過光像に基づいて、透明フィルム200の歪みによって生じる透過光の位相差および光軸方位を解析することにより、透明フィルム200の歪みを測定する。上述したように、本実施形態では光源1-1~1-nとして指向性のLEDを用いているので、イメージセンサ3により撮像される透過光像は、輝度値が極大となる箇所が点灯中のLEDの数だけ存在することになる。そこで、解析装置4は、イメージセンサ3により撮像された透過光像の中で極大となる輝度情報を用いて、位相差および光軸方位を解析する。
The analysis device 4 measures the distortion of the transparent film 200 by analyzing the phase difference and optical axis direction of the transmitted light caused by the distortion of the transparent film 200 based on the transmitted light image captured by the image sensor 3. As described above, since directional LEDs are used as the light sources 1 -1 to 1 -n in the present embodiment, the portion of the transmitted light image picked up by the image sensor 3 is lit at the maximum luminance value. There will be as many LEDs as there are. Therefore, the analysis device 4 analyzes the phase difference and the optical axis direction using the luminance information that is maximum in the transmitted light image captured by the image sensor 3.
この解析装置4による歪みの解析は、例えば以下のようにして行うことが可能である。すなわち、解析装置4は、光源1-1~1-nを順次点灯させたときに、透明フィルム200の通常部分を透過した通常光と、歪みがある場合にはその歪み部分を透過した異常光との位相差を測定することにより、歪みの有無を検出する。また、位相差を検出した異常光の結像位置から歪みの位置を検出し、位相差を検出したときの偏光の光軸方位から歪みの方向を検出することが可能である。
The analysis of distortion by the analysis device 4 can be performed as follows, for example. That is, when the light sources 1 -1 to 1 -n are sequentially turned on, the analyzer 4 transmits normal light that has passed through the normal portion of the transparent film 200 and abnormal light that has passed through the distorted portion if there is distortion. The presence or absence of distortion is detected by measuring the phase difference. Further, it is possible to detect the position of distortion from the imaging position of abnormal light whose phase difference has been detected, and to detect the direction of distortion from the optical axis direction of polarized light when the phase difference is detected.
発光制御部5は、複数の光源1-1~1-nを、異なる種類の偏光フィルタ2-1~2-nが配置されたものを順次切り替えて点滅させるように制御する。具体的には、発光制御部5は、複数の光源1-1~1-nを、同種類の偏光フィルタが配置されたものどうしを1グループとして、グループ毎に光源1-1~1-nを順次切り替えて点滅させる。
The light emission control unit 5 controls the plurality of light sources 1 −1 to 1 −n so that the light sources 1 −1 to 1 −n that are arranged with different types of polarizing filters 2 −1 to 2 −n are sequentially switched and blinked. Specifically, the light emission control unit 5 sets a plurality of light sources 1 −1 to 1 −n as one group of light sources 1 −1 to 1 −n arranged with the same type of polarizing filter, and the light sources 1 −1 to 1 −n for each group. Switch sequentially to blink.
図4は、発光制御部5による制御状態を示す図である。すなわち、発光制御部5は、まず図4(a)に示すように、第1の種類の偏光フィルタ2-j(j=1+4k、k=0,1,2,3・・・)が配置された光源1-jどうしを第1グループGr1として、これらを一斉に点灯させる。このとき透明フィルム200を透過してくる光をイメージセンサ3で撮像する。発光制御部5は、イメージセンサ3による撮像後、第1グループGr1の光源1-jを直ちに消灯する。
FIG. 4 is a diagram illustrating a control state by the light emission control unit 5. That is, in the light emission control unit 5, first, as shown in FIG. 4A, the first type of polarizing filter 2- j (j = 1 + 4k, k = 0, 1, 2, 3,...) Is arranged. The light sources 1- j are set as the first group Gr1 and are turned on all at once. At this time, light transmitted through the transparent film 200 is imaged by the image sensor 3. The light emission control unit 5 immediately turns off the light source 1 -j of the first group Gr1 after imaging by the image sensor 3.
次に、発光制御部5は、図4(b)に示すように、第2の種類の偏光フィルタ2-(j+1)が配置された光源1-(j+1)どうしを第2グループGr2として、これらを一斉に点灯させる。このとき透明フィルム200を透過してくる光をイメージセンサ3で撮像する。発光制御部5は、イメージセンサ3による撮像後、第2グループGr2の光源1-(j+1)を直ちに消灯する。
Next, as shown in FIG. 4B, the light emission control unit 5 replaces the light sources 1- (j + 1) in which the second type of polarization filters 2- (j + 1) are arranged with each other in the second group. These are turned on simultaneously as Gr2. At this time, light transmitted through the transparent film 200 is imaged by the image sensor 3. The light emission control unit 5 immediately turns off the light source 1- (j + 1) of the second group Gr2 after imaging by the image sensor 3.
次に、発光制御部5は、図4(c)に示すように、第3の種類の偏光フィルタ2-(j+2)が配置された光源1-(j+2)どうしを第3グループGr3として、これらを一斉に点灯させる。このとき透明フィルム200を透過してくる光をイメージセンサ3で撮像する。発光制御部5は、イメージセンサ3による撮像後、第3グループGr3の光源1-(j+2)を直ちに消灯する。
Next, as shown in FIG. 4C, the light emission control unit 5 replaces the light sources 1- (j + 2) in which the third type of polarizing filters 2- (j + 2) are arranged with each other in the third group. These are turned on simultaneously as Gr3. At this time, light transmitted through the transparent film 200 is imaged by the image sensor 3. The light emission control unit 5 immediately turns off the light source 1- (j + 2) of the third group Gr3 after imaging by the image sensor 3.
次に、発光制御部5は、図4(d)に示すように、第4の種類の偏光フィルタ2-(j+3)が配置された光源1-(j+3)どうしを第4グループGr4として、これらを一斉に点灯させる。このとき透明フィルム200を透過してくる光をイメージセンサ3で撮像する。発光制御部5は、イメージセンサ3による撮像後、第4グループGr4の光源1-(j+3)を直ちに消灯する。
Next, as shown in FIG. 4 (d), the light emission control unit 5 converts the light sources 1- (j + 3) in which the fourth type of polarizing filter 2- (j + 3) is arranged into the fourth group. These are turned on simultaneously as Gr4. At this time, light transmitted through the transparent film 200 is imaged by the image sensor 3. The light emission control unit 5 immediately turns off the light source 1- (j + 3) of the fourth group Gr4 after imaging by the image sensor 3.
第1の種類の偏光フィルタ2-jが配置された複数の光源1-jを点灯させたときにイメージセンサ3により撮像される透過光像は、第1の種類の偏光フィルタ2-jに対向する位置にある画素にて輝度値が極大となる。この場合に解析装置4は、この第1の種類の偏光フィルタ2-jを透過した光によって値が極大となる画素位置の輝度情報を用いて、透明フィルム200の歪みによって生じる位相差および光軸方位を解析する。
The transmitted light image picked up by the image sensor 3 when the plurality of light sources 1 -j on which the first type polarizing filter 2 -j is arranged is turned on is opposed to the first type polarizing filter 2 -j . The luminance value becomes maximum at the pixel located at the position where In this case, the analysis device 4 uses the luminance information of the pixel position where the value is maximized by the light transmitted through the first type of polarizing filter 2 -j , and the phase difference and the optical axis caused by the distortion of the transparent film 200. Analyze direction.
同様に、第2の種類の偏光フィルタ2-(j+1)が配置された複数の光源1-(j+1)を点灯させたときにイメージセンサ3により撮像される透過光像は、第2の種類の偏光フィルタ2-(j+1)に対向する位置にある画素にて輝度値が極大となる。この場合に解析装置4は、この第2の種類の偏光フィルタ2-(j+1)を透過した光によって値が極大となる画素位置の輝度情報を用いて、透明フィルム200の歪みによって生じる位相差および光軸方位を解析する。
Similarly, the transmitted light image captured by the image sensor 3 when the plurality of light sources 1- (j + 1) on which the second type of polarizing filter 2- (j + 1) is arranged is turned on. The luminance value becomes maximum at the pixel located at the position facing the two types of polarizing filters 2- (j + 1) . In this case, the analysis device 4 uses the luminance information of the pixel position where the value is maximized by the light transmitted through the second type of polarizing filter 2- (j + 1) , and the level generated by the distortion of the transparent film 200. Analyze phase difference and optical axis orientation.
また、第3の種類の偏光フィルタ2-(j+2)が配置された複数の光源1-(j+2)を点灯させたときにイメージセンサ3により撮像される透過光像は、第3の種類の偏光フィルタ2-(j+2)に対向する位置にある画素にて輝度値が極大となる。この場合に解析装置4は、この第3の種類の偏光フィルタ2-(j+2)を透過した光によって値が極大となる画素位置の輝度情報を用いて、透明フィルム200の歪みによって生じる位相差および光軸方位を解析する。
The transmitted light image captured by the image sensor 3 when the plurality of light sources 1- (j + 2) on which the third type polarization filter 2- (j + 2) is disposed is turned on. The luminance value becomes maximum at the pixel located at a position facing the polarizing filter 2- (j + 2) of the type. In this case, the analysis device 4 uses the luminance information of the pixel position where the value is maximized by the light transmitted through the third type of polarizing filter 2- (j + 2) , and the level generated by the distortion of the transparent film 200. Analyze phase difference and optical axis orientation.
さらに、第4の種類の偏光フィルタ2-(j+3)が配置された複数の光源1-(j+3)を点灯させたときにイメージセンサ3により撮像される透過光像は、第4の種類の偏光フィルタ2-(j+3)に対向する位置にある画素にて輝度値が極大となる。この場合に解析装置4は、この第4の種類の偏光フィルタ2-(j+3)を透過した光によって値が極大となる画素位置の輝度情報を用いて、透明フィルム200の歪みによって生じる位相差および光軸方位を解析する。
Furthermore, the transmitted light image captured by the image sensor 3 when the plurality of light sources 1- (j + 3) in which the fourth type of polarizing filter 2- (j + 3) is arranged is turned on. The luminance value becomes maximum at the pixel located at the position facing the polarizing filter 2- (j + 3) . In this case, the analysis device 4 uses the luminance information at the pixel position where the value is maximized by the light transmitted through the fourth type of polarizing filter 2- (j + 3) , and the level caused by the distortion of the transparent film 200. Analyze phase difference and optical axis orientation.
以上詳しく説明したように、本実施形態では、透明フィルム200の一方の側から照明する光源1-1~1-nを複数設け、当該複数の光源1-1~1-nに対して、それぞれ主軸方向が異なる複数種類の偏光フィルタ2-1~2-nを交互に配置する。そして、複数の光源1-1~1-nを、異なる種類の偏光フィルタが配置されたものを順次切り替えるようにして点滅させる。このとき偏光フィルタ2-1~2-nおよび透明フィルム200を透過した光をイメージセンサ3で撮像し、それによって得られた透過光像に基づいて透過光の位相差および光軸方位を解析し、透明フィルム200の歪みを測定するようにしている。
As described above in detail, in the present embodiment, a plurality of light sources 1 -1 ~ 1 -n for illuminating from one side of the transparent film 200, with respect to the plurality of light sources 1 -1 ~ 1 -n, respectively Plural types of polarizing filters 2 -1 to 2 -n having different main axis directions are alternately arranged. Then, the plurality of light sources 1 -1 to 1 -n are blinked so as to sequentially switch ones having different types of polarizing filters. At this time, the light transmitted through the polarizing filters 2 -1 to 2- n and the transparent film 200 is imaged by the image sensor 3, and the phase difference and optical axis direction of the transmitted light are analyzed based on the transmitted light image obtained thereby. The distortion of the transparent film 200 is measured.
このように構成した本実施形態によれば、点灯させる光源1-1~1-nを順次切り替えることにより、透明フィルタ200を透過させる偏光の角度を変えることができるので、偏光板を回転させる場合に比べて高速に偏光の角度を切り替えることができ、透明フィルム200の歪み部分によって生じる透過光の位相差および光軸方位を1つのイメージセンサ3で高速に測定することができる。また、イメージセンサ3としては汎用のセンサを用いることができるので、高価な偏光イメージセンサを用いる必要なく、システムのコスト増を抑えることができる。
According to the present embodiment configured as described above, the polarization angle transmitted through the transparent filter 200 can be changed by sequentially switching the light sources 1 -1 to 1 -n to be turned on. The polarization angle can be switched at a higher speed than in the above, and the phase difference and optical axis direction of the transmitted light generated by the distorted portion of the transparent film 200 can be measured at a high speed by one image sensor 3. Further, since a general-purpose sensor can be used as the image sensor 3, it is not necessary to use an expensive polarization image sensor, and an increase in system cost can be suppressed.
なお、上記実施形態では、解析装置4において、イメージセンサ3により撮像された透過光像の中で極大となる輝度情報を検出して位相差および光軸方位を解析する例について説明したが、本発明はこれに限定されない。例えば、どの光源1-1~1-nを点灯させたときにどの画素位置において輝度値が極大となるかをあらかじめ特定しておき、その特定した画素において得られる輝度情報を用いて位相差および光軸方位を解析するようにしてもよい。
In the above-described embodiment, the example in which the analyzing apparatus 4 detects the maximum luminance information in the transmitted light image captured by the image sensor 3 and analyzes the phase difference and the optical axis direction has been described. The invention is not limited to this. For example, it is specified in advance at which pixel position the luminance value is maximized when which light source 1 -1 to 1 -n is turned on, and the phase difference and the luminance information obtained at the specified pixel are used. The optical axis direction may be analyzed.
また、上記実施形態では、複数の光源1-1~1-nとして指向性のLEDを用いる例について説明したが、図5に示すように、無指向性の光源を用いてもよい。この場合、偏光フィルタ2-1~2-nは異なる種類のものが1つずつあればよく、光源1-1~1-nの数も偏光フィルタ2-1~2-nの種類と同数あればよい。また、解析装置4は、極大となる輝度情報だけを用いて解析をするのではなく、全ての画素位置の輝度情報を用いて位相差および光軸方位を解析する。
In the above embodiment, an example in which directional LEDs are used as the plurality of light sources 1 -1 to 1 -n has been described. However, as shown in FIG. 5, non-directional light sources may be used. In this case, the polarizing filters 2 -1 to 2 -n only need to have one of different types, and the number of light sources 1 -1 to 1 -n is the same as the number of polarizing filters 2 -1 to 2 -n. That's fine. In addition, the analysis device 4 does not analyze using only the luminance information that is the maximum, but analyzes the phase difference and the optical axis direction using the luminance information of all the pixel positions.
このように構成した場合は、使用する光源1-1~1-nおよび偏光フィルタ2-1~2-nの数を少なくすることができるというメリットを有する。また、どの光源1-1~1-nを発光させたときにも(つまり、どの偏光フィルタ2-1~2-nを光が通過したときにも)、イメージセンサ3の全域で透明フィルム200の歪みを測定することができるというメリットも有する。
Such a configuration has the advantage that the number of light sources 1 -1 to 1 -n and polarization filters 2 -1 to 2 -n to be used can be reduced. Further, when any light source 1 -1 to 1 -n emits light (that is, when light passes through any polarizing filter 2 -1 to 2 -n ), the transparent film 200 is spread over the entire area of the image sensor 3. This also has the merit that the distortion can be measured.
また、上記実施形態では、透明フィルム200の通常部分を透過した通常光と歪み部分を透過した異常光との位相差を測定する際に、1つのグループに属する光源が点灯されているときの通常光と異常光との位相差を測定するということには必ずしも限定していないが、そのような限定の中で通常光と異常光との位相差を測定するようにしてもよい。このようにすれば、同種類の偏光フィルタを透過した光どうしの比較によって位相差を測定することができるので、位相差の測定精度を上げることができる。
Moreover, in the said embodiment, when measuring the phase difference of the normal light which permeate | transmitted the normal part of the transparent film 200, and the abnormal light which permeate | transmitted the distortion part, it is normal when the light source which belongs to one group is turned on. Although it is not necessarily limited to measuring the phase difference between light and extraordinary light, the phase difference between normal light and extraordinary light may be measured within such limitation. In this way, since the phase difference can be measured by comparing the lights transmitted through the same type of polarizing filter, the measurement accuracy of the phase difference can be increased.
その他、上記実施形態は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
In addition, each of the above-described embodiments is merely an example of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed in a limited manner. That is, the present invention can be implemented in various forms without departing from the gist or the main features thereof.
1-1~1-n 光源
2-1~2-n 偏光フィルタ
3 イメージセンサ
4 解析装置
5 発光制御部 1 -1 to 1 -nlight source 2 -1 to 2 -n polarizing filter 3 image sensor 4 analyzer 5 light emission controller
2-1~2-n 偏光フィルタ
3 イメージセンサ
4 解析装置
5 発光制御部 1 -1 to 1 -n
Claims (4)
- 透明フィルムの一方の側から照明する複数の光源と、
上記複数の光源に対して交互に配置され、主軸方向が異なる複数種類の偏光フィルタと、
上記透明フィルムの他方の側に配置され、上記光源から出力され上記偏光フィルタおよび上記透明フィルムを透過した光を撮像するイメージセンサと、
上記イメージセンサにより撮像された透過光像に基づいて、上記透明フィルムの歪みによって生じる透過光の位相差および光軸方位を解析する解析装置と、
上記複数の光源を、異なる種類の偏光フィルタが配置されたものを順次切り替えて点滅させるように制御する発光制御部とを備えたことを特徴とする透明フィルムの歪み測定システム。 A plurality of light sources that illuminate from one side of the transparent film;
A plurality of types of polarizing filters that are alternately arranged with respect to the plurality of light sources and have different principal axis directions;
An image sensor that is disposed on the other side of the transparent film and that captures light output from the light source and transmitted through the polarizing filter and the transparent film;
Based on the transmitted light image picked up by the image sensor, an analyzer for analyzing the phase difference and optical axis direction of the transmitted light caused by the distortion of the transparent film;
A transparent film distortion measurement system comprising: a light emission control unit that controls the plurality of light sources so that a plurality of light sources having different types of polarizing filters are sequentially switched and blinked. - 上記光源は指向性の発光ダイオードであり、
上記発光制御部は、上記複数の光源を、同種類の偏光フィルタが配置されたものどうしを1グループとして、グループ毎に光源を順次切り替えて点滅させ、
上記解析装置は、上記イメージセンサにより撮像された透過光像の中で極大となる輝度情報を用いて、上記位相差および光軸方位を解析することを特徴とする請求項1に記載の透明フィルムの歪み測定システム。 The light source is a directional light emitting diode,
The light emission control unit blinks the plurality of light sources by sequentially switching the light sources for each group, with the same type of polarizing filters arranged as one group.
2. The transparent film according to claim 1, wherein the analysis device analyzes the phase difference and the optical axis direction using luminance information that is maximum in a transmitted light image captured by the image sensor. Strain measurement system. - 上記解析装置は、1つのグループに属する光源が点灯されているときに上記透明フィルムの通常部分を透過した通常光と歪み部分を透過した異常光との位相差を測定することを特徴とする請求項2に記載の透明フィルムの歪み測定システム。 The analysis apparatus measures a phase difference between normal light transmitted through a normal portion of the transparent film and abnormal light transmitted through a distorted portion when light sources belonging to one group are turned on. Item 3. The distortion measurement system for a transparent film according to Item 2.
- 上記光源は無指向性の照明であり、
上記解析装置は、上記イメージセンサにより撮像された透過光像の全領域の輝度情報を用いて、上記位相差および光軸方位を解析することを特徴とする請求項1に記載の透明フィルムの歪み測定システム。 The light source is omnidirectional illumination,
The distortion of the transparent film according to claim 1, wherein the analysis device analyzes the phase difference and the optical axis direction using luminance information of the entire region of the transmitted light image captured by the image sensor. Measuring system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013196456A JP5649705B1 (en) | 2013-09-24 | 2013-09-24 | Distortion measurement system for transparent film |
JP2013-196456 | 2013-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015045434A1 true WO2015045434A1 (en) | 2015-04-02 |
Family
ID=52344830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/052431 WO2015045434A1 (en) | 2013-09-24 | 2014-02-03 | Distortion measurement system for transparent film |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5649705B1 (en) |
WO (1) | WO2015045434A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN206583816U (en) * | 2015-12-15 | 2017-10-24 | 住友化学株式会社 | Defect inspection filming apparatus, defect inspecting system and film manufacturing device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04329339A (en) * | 1991-04-30 | 1992-11-18 | Kanzaki Paper Mfg Co Ltd | Double refraction measuring device |
JPH06180282A (en) * | 1991-03-29 | 1994-06-28 | New Oji Paper Co Ltd | Method and device for birefringence measurement |
JP2003035613A (en) * | 2001-07-23 | 2003-02-07 | Omron Corp | Residual stress inspection device for light pervious substance |
JP2007263593A (en) * | 2006-03-27 | 2007-10-11 | Photonic Lattice Inc | Measuring instrument for phase difference and optical axis direction |
JP2009276088A (en) * | 2008-05-12 | 2009-11-26 | Avanstrate Inc | Method and equipment for inspecting strain of glass plate |
JP2012234081A (en) * | 2011-05-06 | 2012-11-29 | Oputeikon:Kk | Illumination device and optical device |
JP2013068500A (en) * | 2011-09-22 | 2013-04-18 | Dainippon Printing Co Ltd | Film inspection system and film inspection method |
-
2013
- 2013-09-24 JP JP2013196456A patent/JP5649705B1/en not_active Expired - Fee Related
-
2014
- 2014-02-03 WO PCT/JP2014/052431 patent/WO2015045434A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06180282A (en) * | 1991-03-29 | 1994-06-28 | New Oji Paper Co Ltd | Method and device for birefringence measurement |
JPH04329339A (en) * | 1991-04-30 | 1992-11-18 | Kanzaki Paper Mfg Co Ltd | Double refraction measuring device |
JP2003035613A (en) * | 2001-07-23 | 2003-02-07 | Omron Corp | Residual stress inspection device for light pervious substance |
JP2007263593A (en) * | 2006-03-27 | 2007-10-11 | Photonic Lattice Inc | Measuring instrument for phase difference and optical axis direction |
JP2009276088A (en) * | 2008-05-12 | 2009-11-26 | Avanstrate Inc | Method and equipment for inspecting strain of glass plate |
JP2012234081A (en) * | 2011-05-06 | 2012-11-29 | Oputeikon:Kk | Illumination device and optical device |
JP2013068500A (en) * | 2011-09-22 | 2013-04-18 | Dainippon Printing Co Ltd | Film inspection system and film inspection method |
Also Published As
Publication number | Publication date |
---|---|
JP2015064204A (en) | 2015-04-09 |
JP5649705B1 (en) | 2015-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5825278B2 (en) | Defect inspection apparatus and defect inspection method | |
JP6328130B2 (en) | Measurement of fiber orientation of carbon fiber materials and production of objects in carbon fiber composite structures | |
EP2401603A1 (en) | System and method for detecting defects of substrate | |
EP2539853B1 (en) | Light filter with varying polarization angles and processing algorithm | |
WO2012176106A4 (en) | Method and apparatus for inspection of light emitting semiconductor devices using photoluminescence imaging | |
JP2016535288A5 (en) | ||
WO2014139231A1 (en) | System and method for testing and regulating uniformity of light intensity of light source | |
KR102135999B1 (en) | Compressive sensing with illumination patterning | |
CN105486690A (en) | Optical detection device | |
JP2018013438A (en) | Inspection device and inspection method | |
JP5649705B1 (en) | Distortion measurement system for transparent film | |
JP7151469B2 (en) | Sheet defect inspection device | |
JP2012234081A (en) | Illumination device and optical device | |
CN205139027U (en) | 360 degree body assembly line visual inspection device in a poor light | |
US9234836B2 (en) | Measurement of a fiber direction of a carbon fiber material and fabrication of an object in carbon fiber composite technique | |
KR20140087715A (en) | Apparatus for in-line measurement | |
US11974046B2 (en) | Multimodality multiplexed illumination for optical inspection systems | |
CH706948A2 (en) | Device for optoelectronic analyzing and receiving of measuring material e.g. textile material such as yarn, has image processing unit providing light image data to separately analyze light image data in accordance to spectral region | |
CN102937774B (en) | Lens module detecting device | |
KR101650226B1 (en) | Optical characteristic measuring device and method | |
US11341630B2 (en) | Lighting for defect inspection of sheet-shaped objects, defect inspection apparatus for sheet-shaped objects, and method of defect inspection of sheet-shaped objects | |
CN203235697U (en) | Color selector optical system totally adopting polarized light | |
KR20150017102A (en) | System and method of detecting a defect of an object | |
WO2005048171A1 (en) | Method and apparatus for imaging through glossy surfaces and/or through transparent materials | |
KR101146922B1 (en) | Optical detection module for Wafer inspection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14849890 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14849890 Country of ref document: EP Kind code of ref document: A1 |