JP2003035613A - Residual stress inspection device for light pervious substance - Google Patents

Residual stress inspection device for light pervious substance

Info

Publication number
JP2003035613A
JP2003035613A JP2001220892A JP2001220892A JP2003035613A JP 2003035613 A JP2003035613 A JP 2003035613A JP 2001220892 A JP2001220892 A JP 2001220892A JP 2001220892 A JP2001220892 A JP 2001220892A JP 2003035613 A JP2003035613 A JP 2003035613A
Authority
JP
Japan
Prior art keywords
light
residual stress
analyzer
polarized
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001220892A
Other languages
Japanese (ja)
Inventor
Shinichiro Kawamura
晋一郎 川村
Shogo Nagasaka
昭吾 長坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2001220892A priority Critical patent/JP2003035613A/en
Publication of JP2003035613A publication Critical patent/JP2003035613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a residual stress inspection device for a light pervious substance dispensing with the rotation of an analyzer and capable of inspecting residual stress at a high speed. SOLUTION: Red, green and blue linearly polarized lights, which are passed through three polarizers 27, 28 and 29 arranged in different polarizing directions, are transmitted through an object 32 to be inspected and the analyzer 30. These red, green and blue lights are detected by a color CCD camera 31 and the polarizing characteristics of the object 32 to be inspected are calculated from the intensities of the respective color lights.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光透過性物質の残
留応力検査装置に関する。例えば、本発明は、液晶ディ
スプレイなどに使用されるガラス基板や透明樹脂板等の
光学部品に内在する残留応力やその残留応力のムラを検
出するための残留応力検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a residual stress inspection device for a light transmissive substance. For example, the present invention relates to a residual stress inspection device for detecting residual stress and unevenness of the residual stress existing in an optical component such as a glass substrate or a transparent resin plate used for a liquid crystal display or the like.

【0002】[0002]

【従来の技術】液晶ディスプレイや導光板に用いられる
ガラス基板や樹脂成形透明体などの製造工程において
は、その素材や加工の出来映えを知るうえから、各種の
物性測定が行われており、その一つに残留応力の測定が
ある。透明体に残留応力が内在すると、光を透過させた
ときに複屈折が生じて輝度ムラの原因となるため、これ
らの製造工程では、製品の残留応力測定を行っている。
2. Description of the Related Art In the manufacturing process of glass substrates used for liquid crystal displays and light guide plates, resin molded transparent bodies, etc., various physical properties are measured in order to know the quality of the materials and processing. One is the measurement of residual stress. If the transparent body has residual stress, birefringence occurs when light is transmitted, which causes uneven brightness. Therefore, in these manufacturing processes, residual stress of the product is measured.

【0003】残留応力を検査する装置としては、偏光状
態の変化を検出する回転検光子法を用いた検査装置が従
来より知られている。図1は、このような回転検光子法
を用いた検査装置の構成を示す図である。この検査装置
1にあっては、単色光源2の前に偏光子3が置かれ、そ
の前方の光路上に被検査物4が配置され、その前方に検
光子5が配置され、その前方にCCDカメラ6が配置さ
れている。被検査物4は、その複屈折の方向が、偏光子
3の偏光方向に対して45°回転した方向を向くように
配置されており、検光子5は回転駆動手段7によって所
定の回転数で回転させられている。
As an apparatus for inspecting residual stress, an inspecting apparatus using a rotary analyzer method for detecting a change in polarization state has been conventionally known. FIG. 1 is a diagram showing a configuration of an inspection device using such a rotation analyzer method. In this inspection apparatus 1, a polarizer 3 is placed in front of a monochromatic light source 2, an object 4 to be inspected is placed on the optical path in front of it, an analyzer 5 is placed in front of it, and a CCD is placed in front of it. A camera 6 is arranged. The inspected object 4 is arranged so that the direction of its birefringence is turned by 45 ° with respect to the polarization direction of the polarizer 3, and the analyzer 5 is rotated by the rotation driving means 7 at a predetermined rotation speed. It has been rotated.

【0004】検光子5を回転させる回転駆動手段7は、
制御部8からパルスステップモータ9へ一定パルスの駆
動信号を出力することでパルスステップモータ9を一定
速度で回転させ、伝達機構10を介してパルスステップ
モータ9で検光子5を一定回転数で回転させている。一
方、エンコーダ11によって検光子5の回転角度を検出
している。CCDカメラ6は、単色光源2から出射さ
れ、偏光子3、被検査物4及び検光子5を通過した光の
強度を検出している。
The rotation driving means 7 for rotating the analyzer 5 is
By outputting a constant pulse drive signal from the control unit 8 to the pulse step motor 9, the pulse step motor 9 is rotated at a constant speed, and the pulse step motor 9 rotates the analyzer 5 at a constant rotation speed via the transmission mechanism 10. I am letting you. On the other hand, the encoder 11 detects the rotation angle of the analyzer 5. The CCD camera 6 detects the intensity of light emitted from the monochromatic light source 2 and passing through the polarizer 3, the inspection object 4, and the analyzer 5.

【0005】しかして、単色光源2から出射された単色
光は、偏光子3を通過することによって偏光子3の偏光
方向に平行な直線偏光に変換された後、被検査物4を透
過する。ここで、被検査物4に残留応力が生じていて被
検査物4を透過した光が複屈折を起こすと、被検査物4
を透過した光は一般に楕円偏光となる。よって、この楕
円偏光を透過させる検光子5の偏光方向が、光軸の回り
に回転していると、CCDカメラ6で検出されている光
の強度は、図2に示すようにサインカーブを描いて変化
する。図2において、Imaxは検光子5を回転させたと
きの光強度の最大値、Iminは検光子5を回転させたと
きの光強度の最小値、ψは被検査物4の偏光角度であ
る、
The monochromatic light emitted from the monochromatic light source 2 passes through the polarizer 3, is converted into linearly polarized light parallel to the polarization direction of the polarizer 3, and then passes through the inspection object 4. Here, when residual stress is generated in the inspection object 4 and light transmitted through the inspection object 4 undergoes birefringence, the inspection object 4
The light transmitted through is generally elliptically polarized light. Therefore, when the polarization direction of the analyzer 5 for transmitting the elliptically polarized light is rotated around the optical axis, the intensity of light detected by the CCD camera 6 draws a sine curve as shown in FIG. Change. In FIG. 2, Imax is the maximum value of the light intensity when the analyzer 5 is rotated, Imin is the minimum value of the light intensity when the analyzer 5 is rotated, and ψ is the polarization angle of the inspection object 4.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
回転検光子法による残留応力検査装置では、検光子を回
転駆動手段に取付けて回転させられるようにし、検光子
を少なくとも180°回転させて光強度の変化を検出す
る必要がある。すなわち、楕円偏光を検光子に透過させ
るだけでは、被検査物の複屈折の方向(つまり、進相軸
および遅相軸の方向)と複屈折量(つまり、光波の電場
が進相軸方向を向いている透過光と遅相軸方向を向いて
いる透過光の位相の差)を同時に測定することができな
いので、これらを同時に測定するためには、検光子を回
転させる必要がある。そのため、残留応力の検査に要す
る時間が長く掛かるという問題があった。
However, in the conventional residual stress inspection apparatus by the rotary analyzer method, the analyzer is attached to the rotation driving means so that the analyzer can be rotated, and the analyzer is rotated at least 180 ° to obtain the light intensity. Need to detect changes. That is, by simply transmitting the elliptically polarized light to the analyzer, the birefringence direction (that is, the directions of the fast axis and the slow axis) and the birefringence amount (that is, the electric field of the light wave changes the fast axis direction) of the inspection object. Since it is not possible to simultaneously measure the phase difference between the transmitted light that is directed and the transmitted light that is directed in the slow axis direction, it is necessary to rotate the analyzer in order to measure them simultaneously. Therefore, there is a problem that it takes a long time to inspect the residual stress.

【0007】[0007]

【発明の開示】本発明は上記従来例の技術的課題に鑑み
てなされたものであり、その目的とするところは、検光
子を回転させる必要がなくて高速で残留応力の検査を行
うことができる光透過性物質の残留応力検査装置を提供
することにある。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the technical problems of the above-described conventional examples, and an object thereof is to perform residual stress inspection at high speed without the need to rotate an analyzer. An object of the present invention is to provide a residual stress inspection device for a light transmissive material.

【0008】本発明にかかる光透過性物質の残留応力検
査装置は、偏光照射手段から出射された偏光を光透過性
物質に透過させ、この透過光を検光手段に通過させて得
られる像により光透過性物質の残留応力を観察する残留
応力検査装置において、波長及び偏光角度が互いに異な
る複数の偏光を発生させ、当該偏光を光透過性物質に照
射させる手段と、光透過性物質を透過した前記偏光を透
過させる検光手段と、前記検光手段を透過した偏光を受
光する受光手段とを備えたことを特徴としている。
The residual stress inspecting device for a light transmitting material according to the present invention transmits the polarized light emitted from the polarized light irradiating means to the light transmitting material and transmits the transmitted light to the light detecting means. In a residual stress inspection device for observing the residual stress of a light-transmitting substance, a means for irradiating the light-transmitting substance with a plurality of polarized lights having different wavelengths and polarization angles and transmitting the light-transmitting substance It is characterized in that it is provided with a light detecting means for transmitting the polarized light and a light receiving means for receiving the polarized light transmitted through the light detecting means.

【0009】本発明にかかる光透過性物質の残留応力検
査装置は、偏光方向の異なる複数の光を光透過性物質に
照射させる手段を備えているので、検光手段を回転させ
ることなく検光手段を回転させるのと同様な効果を得る
ことができ、検光手段を回転させることなく残留応力な
いし残留応力のムラの検査を行うことができる。よっ
て、可動部分が必要なくて残留応力検査装置の構造を簡
単にすることができ、また残留応力検査を高速で行うこ
とができる。
Since the residual stress inspection apparatus for a light-transmitting substance according to the present invention includes means for irradiating the light-transmitting substance with a plurality of lights having different polarization directions, the light-transmitting substance can be detected without rotating the light-detecting means. The same effect as rotating the means can be obtained, and the residual stress or unevenness of the residual stress can be inspected without rotating the light detecting means. Therefore, it is possible to simplify the structure of the residual stress inspection device without the need for moving parts, and to perform the residual stress inspection at high speed.

【0010】しかも、この残留応力検査装置は、偏光方
向の異なる光毎に波長が異なっているので、偏光方向の
異なる光を光透過性物質に同時に照射することができ、
さらに検査を高速化することができる。すなわち、偏光
方向の異なる光は互いに波長が異なっているので、検光
手段を透過した後の光を波長毎に分離させることによ
り、検光手段を通過した後の像を偏光方向毎に分離させ
て観察することができ、偏光方向の異なる光を同時に照
射して残留応力を検査することができる。
Moreover, in this residual stress inspection apparatus, since the wavelengths of the light beams having different polarization directions are different from each other, it is possible to simultaneously irradiate the light transmissive substance with the light beams having different polarization directions.
Further, the inspection can be speeded up. That is, since the lights having different polarization directions have different wavelengths from each other, the light after passing through the light detecting means is separated for each wavelength so that the image after passing through the light detecting means is separated for each polarization direction. The residual stress can be inspected by simultaneously irradiating light with different polarization directions.

【0011】偏光方向の異なる光の像を分離させるため
には、例えば受光手段としてカラー撮像素子を用い、前
記偏光照射手段により照射される光を、当該カラー撮像
素子により分光することが可能な波長域の光とすればよ
い。例えば、偏光方向の異なる光として、光の三原色で
ある赤色光、青色光、緑色光を用いればよい。さらに、
カラーCCDカメラのようなカラー撮像素子を用いれ
ば、高ゲインとすることができ、なおかつ、指向性によ
る見逃しを低減させることができ、高速性を有する残留
応力検査を可能とすることができる。
In order to separate the images of light having different polarization directions, for example, a color image pickup device is used as a light receiving device, and the light emitted by the polarized light irradiation device is separated by the color image pickup device. It should be the light of the area. For example, red light, blue light, and green light, which are the three primary colors of light, may be used as light having different polarization directions. further,
If a color image pickup device such as a color CCD camera is used, it is possible to obtain a high gain, reduce overlooking due to directivity, and perform residual stress inspection with high speed.

【0012】本発明にかかる光透過性物質の別な残留応
力検査装置は、偏光照射手段から出射された偏光を光透
過性物質に透過させ、この透過光を検光手段に通過させ
て得られる像により光透過性物質の残留応力を観察する
残留応力検査装置において、偏光角度が互いに異なる複
数の偏光を発生させ、当該偏光を順次光透過性物質に照
射させる手段と、光透過性物質を透過した前記偏光を透
過させる検光手段と、前記検光手段を透過した偏光を受
光する受光手段とを備えたことを特徴としている。
Another apparatus for inspecting residual stress of a light-transmitting substance according to the present invention is obtained by transmitting the polarized light emitted from the polarized light irradiation means to the light-transmitting substance and passing the transmitted light to the light detecting means. In a residual stress inspection device for observing the residual stress of a light-transmitting substance by an image, a means for generating a plurality of polarized lights having different polarization angles and sequentially irradiating the light-transmitting substance with the polarized light, and transmitting the light-transmitting substance. It is characterized in that it is provided with a light detecting means for transmitting the polarized light and a light receiving means for receiving the polarized light transmitted through the light detecting means.

【0013】本発明にかかる光透過性物質の別な残留応
力検査装置は、偏光方向の異なる複数の光を光透過性物
質に照射させる手段を備えているので、検光手段を回転
させることなく検光手段を回転させるのと同様な効果を
得ることができ、検光手段を回転させることなく残留応
力ないし残留応力のムラの検査を行うことができる。よ
って、可動部分が必要なくて残留応力検査装置の構造を
簡単にすることができ、また残留応力検査を高速で行う
ことができる。
Another residual stress inspection device for a light-transmitting substance according to the present invention is provided with means for irradiating the light-transmitting substance with a plurality of lights having different polarization directions. It is possible to obtain the same effect as that of rotating the light detecting means, and it is possible to inspect the residual stress or unevenness of the residual stress without rotating the light detecting means. Therefore, it is possible to simplify the structure of the residual stress inspection device without the need for moving parts, and to perform the residual stress inspection at high speed.

【0014】しかも、この残留応力検査装置は、偏光方
向の異なる光を順次照射させるようにしているので、偏
光方向の異なる光を時間的に分離させることができる。
よって、偏光方向の異なる光の波長を互いに異ならせる
必要が無く、偏光照射手段や受光手段の構成を簡略にす
ることができる。
In addition, since the residual stress inspection device sequentially irradiates light beams having different polarization directions, it is possible to temporally separate the light beams having different polarization directions.
Therefore, it is not necessary to make the wavelengths of lights having different polarization directions different from each other, and the configurations of the polarized light irradiation means and the light receiving means can be simplified.

【0015】楕円偏光は、3つのパラメータを用いて表
現されるので、本発明の残留応力検査装置における偏光
角度が互いに異なる光としては、少なくとも3種の光が
必要となる。
Since elliptically polarized light is expressed by using three parameters, at least three kinds of light are required as lights having different polarization angles in the residual stress inspection apparatus of the present invention.

【0016】なお、この発明の以上説明した構成要素
は、可能な限り任意に組み合わせることができる。
The above-described constituent elements of the present invention can be arbitrarily combined as much as possible.

【0017】[0017]

【発明の実施の形態】(第1の実施形態)図3は本発明
の一実施形態による残留応力検査装置21の構成を示す
概略図である。この残留応力検査装置21においては、
偏光照射手段は、3種類の光源(この実施形態では、こ
れを赤色光源22、緑色光源23、青色光源24とす
る。)と、2つの無偏光ビームスプリッタ25、26
と、3枚の偏光子27、28、29とから構成されてい
る。2つの無偏光ビームスプリッタ、すなわち第1の無
偏光ビームスプリッタ25と第2の無偏光ビームスプリ
ッタ26は、残留応力検査装置21の光軸に沿って配置
されており、第1の無偏光ビームスプリッタ25の正面
には、第1の偏光子27を介して赤色光源22が対向配
置されており、第1の無偏光ビームスプリッタ25の側
面には、第2の偏光子28を介して緑色光源23が対向
配置されている。また、第2の無偏光ビームスプリッタ
26の側面には、第3の偏光子29を介して青色光源2
4が対向配置されている。これら赤色光源22、緑色光
源23、青色光源24は、発光強度の等しいものが用い
られる。さらに、第2の無偏光ビームスプリッタ26の
後方には、検光子30が配置されている。この検光子3
0は、残留応力検査装置21の光軸上で固定されてお
り、その後方にはカラーCCDカメラ31が設置されて
いる。なお、無偏光ビームスプリッタとは、透過又は反
射する光の偏光状態に変化を及ぼすことなく光を透過又
は反射させる光学素子である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 3 is a schematic diagram showing the structure of a residual stress inspection apparatus 21 according to an embodiment of the present invention. In this residual stress inspection device 21,
The polarized light irradiation means includes three types of light sources (in this embodiment, these are a red light source 22, a green light source 23, and a blue light source 24) and two non-polarized beam splitters 25 and 26.
And three polarizers 27, 28 and 29. The two non-polarizing beam splitters, that is, the first non-polarizing beam splitter 25 and the second non-polarizing beam splitter 26 are arranged along the optical axis of the residual stress inspection device 21, and A red light source 22 is arranged in front of 25 via a first polarizer 27, and a green light source 23 is placed on a side surface of the first non-polarizing beam splitter 25 via a second polarizer 28. Are opposed to each other. In addition, the blue light source 2 is provided on the side surface of the second non-polarizing beam splitter 26 via the third polarizer 29.
4 are arranged facing each other. The red light source 22, the green light source 23, and the blue light source 24 have the same light emission intensity. Further, an analyzer 30 is arranged behind the second non-polarizing beam splitter 26. This analyzer 3
0 is fixed on the optical axis of the residual stress inspection device 21, and a color CCD camera 31 is installed behind it. The non-polarizing beam splitter is an optical element that transmits or reflects light without changing the polarization state of the transmitted or reflected light.

【0018】しかして、この残留応力検査装置21にお
いて、赤色光源22、緑色光源23及び青色光源24を
点灯させると、赤色光源22から出射された赤色光は第
1の偏光子27を透過して直線偏光に変換された後、第
1の無偏光ビームスプリッタ25及び第2の無偏光ビー
ムスプリッタ26を透過して直進し、検光子30に向か
う。また、緑色光源23から出射された緑色光は第2の
偏光子28を透過して直線偏光に変換された後、第1の
無偏光ビームスプリッタ25の接合面で反射され、さら
に第2の無偏光ビームスプリッタ26を透過して検光子
30に向かう。また、青色光源24から出射された青色
光は第3の偏光子29を透過して直線偏光に変換された
後、第2の無偏光ビームスプリッタ26の接合面で反射
されて検光子30に向かう。ここで、第1〜第3の偏光
子27、28、29は、それぞれの偏光方向が検光子3
0の偏光方向に対して互いに異なる偏光角度となるよう
に配置されている。例えば、第1の偏光子27の偏光方
向は、検光子30の偏光方向に対して0°の角度(平
行)をなし、第2の偏光子28の偏光方向は、検光子3
0の偏光方向に対して60°の角度をなし、第3の偏光
子29は、検光子30の偏光方向に対して120°の角
度をなしている。このようにして各偏光子27、28、
29を透過した波長及び偏光方向の異なる各偏光は重な
り合って検光子30に照射され、検光子30を同時に透
過した各偏光は、カラーCCDカメラ31によって受光
ないし撮影される。
In the residual stress inspection device 21, however, when the red light source 22, the green light source 23 and the blue light source 24 are turned on, the red light emitted from the red light source 22 passes through the first polarizer 27. After being converted into linearly polarized light, the light passes through the first non-polarizing beam splitter 25 and the second non-polarizing beam splitter 26 and goes straight to the analyzer 30. Further, the green light emitted from the green light source 23 is transmitted through the second polarizer 28, converted into linearly polarized light, and then reflected by the cemented surface of the first non-polarizing beam splitter 25, and further, the second non-polarizing beam. The light passes through the polarization beam splitter 26 and goes toward the analyzer 30. Further, the blue light emitted from the blue light source 24 passes through the third polarizer 29 and is converted into linearly polarized light, and then is reflected by the joint surface of the second non-polarizing beam splitter 26 and heads for the analyzer 30. . Here, the polarization directions of the first to third polarizers 27, 28 and 29 are different from each other in the analyzer 3
The polarization angles are different from each other with respect to the polarization direction of 0. For example, the polarization direction of the first polarizer 27 forms an angle (parallel) of 0 ° with the polarization direction of the analyzer 30, and the polarization direction of the second polarizer 28 corresponds to the analyzer 3.
The third polarizer 29 forms an angle of 60 ° with respect to the polarization direction of 0, and the third polarizer 29 forms an angle of 120 ° with respect to the polarization direction of the analyzer 30. In this way, the polarizers 27, 28,
Polarizations having different wavelengths and polarization directions that have passed through 29 are overlapped and applied to the analyzer 30, and the respective polarizations that have simultaneously transmitted through the analyzer 30 are received or photographed by the color CCD camera 31.

【0019】被検査物(光透過性物質)32の残留応力
を検査しようとする場合には、第2の無偏光ビームスプ
リッタ26と検光子30との間に被検査物32をセット
する。この状態で、赤色光源22、緑色光源23及び青
色光源24を点灯させると、偏光子27、28、29に
よって互いに異なる偏光方向を有する直線偏光に変換さ
れた赤色偏光、緑色偏光、青色偏光が被検査物32を透
過する。被検査物32に残留応力がある場合には、被検
査物32を通過した光の偏光状態が変化し、各色の直線
偏光はそれぞれ楕円偏光に変換され、検光子30を透過
した直線偏光は、被検査物32による偏光状態の変化に
応じて光強度が弱くなる。被検査物32及び検光子30
を透過した各色の偏光は、カラーCCDカメラ31に到
達し、カラーCCDカメラ31によって各波長別に3色
の像が得られる。そして、各波長像の光量に基づいて被
検査物32の複屈折量と複屈折の方向とが算出される。
When the residual stress of the inspection object (light transmitting substance) 32 is to be inspected, the inspection object 32 is set between the second non-polarizing beam splitter 26 and the analyzer 30. In this state, when the red light source 22, the green light source 23, and the blue light source 24 are turned on, the red polarized light, the green polarized light, and the blue polarized light converted into linearly polarized light having different polarization directions by the polarizers 27, 28, 29 are received. It passes through the inspection object 32. When the inspection object 32 has residual stress, the polarization state of the light that has passed through the inspection object 32 changes, the linearly polarized light of each color is converted into elliptically polarized light, and the linearly polarized light that has passed through the analyzer 30 is The light intensity becomes weaker according to the change of the polarization state caused by the inspection object 32. Inspected object 32 and analyzer 30
The polarized light of each color that has passed through reaches the color CCD camera 31, and the color CCD camera 31 obtains an image of three colors for each wavelength. Then, the birefringence amount and the birefringence direction of the inspection object 32 are calculated based on the light amounts of the respective wavelength images.

【0020】次に、本発明の残留応力検査装置21にお
ける複屈折量と複屈折の方向の測定原理を具体的に説明
する。被検査物32に残留応力がある場合、各偏光子2
7、28、29によって直線偏光に変換された各波長の
光は、被検査物32を透過することによって楕円偏光に
変換される。楕円偏光を表現する場合には、図4に示す
ように、光の進行方向に対向した面内での電界ベクトル
の先端の描く楕円の長半径a、短半径b、傾きψの3つ
のパラメータが必要である。ただし、a、bのいずれか
一方が0の場合には、この楕円偏光は直線偏光となり、
a=bの場合には円偏光となる。
Next, the principle of measuring the amount of birefringence and the direction of birefringence in the residual stress inspection device 21 of the present invention will be specifically described. If the inspection object 32 has residual stress, each polarizer 2
The light of each wavelength converted into the linearly polarized light by 7, 28 and 29 is converted into the elliptically polarized light by passing through the inspection object 32. In the case of expressing elliptically polarized light, as shown in FIG. 4, the three parameters of the major radius a, the minor radius b, and the inclination ψ of the ellipse drawn by the tip of the electric field vector in the plane opposed to the traveling direction of light are set. is necessary. However, when either a or b is 0, this elliptically polarized light becomes linearly polarized light,
When a = b, circularly polarized light is obtained.

【0021】直線偏光が被検査物32に入射し、被検査
物32を透過して楕円偏光に変換された光が、検光子3
0を介してカラーCCDカメラ31で受光される場合の
光強度をIは、次式で表される。 I=α+β・cos2(θ−ψ) …(1) ただし、α、βは、図4の長半径aと短半径bを用いて α=(a+b)/2 β=(a−b)/2 と表される。また、ψは、検光子30の偏光方向を基準
としたときの被検査物32の複屈折の方向であり、θ
は、被検査物32に入射する直線偏光の偏光方向が検光
子30の偏光方向となす角度である。
The linearly polarized light enters the inspection object 32, passes through the inspection object 32, and is converted into elliptically polarized light.
The light intensity I when light is received by the color CCD camera 31 via 0 is expressed by the following equation. I = α + β · cos2 (θ−ψ) (1) where α and β are α = (a 2 + b 2 ) / 2 β = (a 2 − using the major radius a and the minor radius b of FIG. It is expressed as b 2 ) / 2. Further, ψ is the direction of the birefringence of the inspection object 32 with reference to the polarization direction of the analyzer 30, and θ
Is an angle formed by the polarization direction of the linearly polarized light incident on the inspection object 32 and the polarization direction of the analyzer 30.

【0022】上記(1)式における光強度Iは、偏光子
の偏光方向の角度θの変化に応じ、理想的には図2に示
した正弦波と同じように変化する。ここで、光強度Iの
最大値Imax、最小値Iminは、それぞれ次の式で表すこ
とができる。 Imax=a Imin=b
The light intensity I in the above equation (1) ideally changes in the same manner as the sine wave shown in FIG. 2 according to the change in the angle θ of the polarization direction of the polarizer. Here, the maximum value Imax and the minimum value Imin of the light intensity I can be expressed by the following equations, respectively. Imax = a 2 Imin = b 2

【0023】上記(1)式には、偏光特性を表すα、
β、ψの3つの未知のパラメータが存在するため、これ
らのパラメータを求めるためには、異なる波長と異なる
偏光角度を有する少なくとも3つの直線偏光を被検査物
32に照射させ、各波長の光の出力強度Iを測定すれ
ば、3つの未知数α、β、ψの値を求めることができ
る。
In the above equation (1), α representing the polarization characteristic,
Since there are three unknown parameters of β and ψ, in order to obtain these parameters, at least three linearly polarized lights having different wavelengths and different polarization angles are irradiated to the inspection object 32, and light of each wavelength is If the output intensity I is measured, the values of three unknowns α, β, ψ can be obtained.

【0024】具体的に説明すると、前記のように第1の
偏光子27(赤色直線偏光)の偏光方向θが0°で、こ
の赤色光が被検査物32及び検光子30を通過してカラ
ーCCDカメラ31で受光される光強度がIrであると
する。また、第2の偏光子28(緑色直線偏光)の偏光
方向θが60°で、この緑色光がカラーCCDカメラ3
1で受光される光強度がIgであるとする。同様に、第
3の偏光子29(青色直線偏光)の偏光方向θが120
°で、この青色光がカラーCCDカメラ31で受光され
る光強度がIbであるとする。このとき、各波長の光強
度Ir、Ig、Ibは、上記(1)式より、次の(2)
〜(4)式のように表される。 Ir=α+β・cos2(0°−ψ) …(2) Ig=α+β・cos2(60°−ψ) …(3) Ib=α+β・cos2(120°−ψ) …(4) これを未知数α、β、ψについて求めると、次の(5)
〜(7)式が得られる。
More specifically, as described above, the polarization direction θ of the first polarizer 27 (red linearly polarized light) is 0 °, and this red light passes through the object 32 to be inspected and the analyzer 30 and is colored. It is assumed that the light intensity received by the CCD camera 31 is Ir. Further, the polarization direction θ of the second polarizer 28 (green linearly polarized light) is 60 °, and this green light is the color CCD camera 3
It is assumed that the light intensity received at 1 is Ig. Similarly, the polarization direction θ of the third polarizer 29 (blue linearly polarized light) is 120
It is assumed that the intensity of this blue light received by the color CCD camera 31 is Ib. At this time, the light intensities Ir, Ig, and Ib of the respective wavelengths are calculated by the following equation (2) from the equation (1).
It is expressed as in equation (4). Ir = α + β · cos2 (0 ° −ψ) (2) Ig = α + β · cos2 (60 ° −ψ) (3) Ib = α + β · cos2 (120 ° −ψ) (4) This is an unknown number α, For β and ψ, the following (5)
~ Equation (7) is obtained.

【数1】 [Equation 1]

【0025】カラーCCDカメラ31から出力される光
強度のデータに基づき、演算処理装置により偏光特性を
示すパラメータα、β、ψが演算されると、演算処理装
置は、求めたパラメータとあらかじめ記憶している基準
値とを比較し、基準値を満足するかどうかで残留応力の
良否判定を行う。
When the arithmetic processing unit calculates the parameters α, β, ψ indicating the polarization characteristics based on the light intensity data output from the color CCD camera 31, the arithmetic processing unit stores the obtained parameters in advance. The residual stress is judged as good or bad by comparing it with the standard value.

【0026】あるいは、解析が終了すると、例えば偏光
方向ψの角度を明暗の階調に変換してディスプレイ装置
に表示し、あるいはドットの大きさに変換してプリント
アウトするようにしてもよい。このようにすれば、解析
された上記のパラメータは、画素毎の単一データとして
ではなく、隣接する画素に対する相対的な相違として意
味を持ち、この相違を表示することにより、被検査物3
2の偏光特性のバラツキを全体として視覚的に捉えるこ
とができる。
Alternatively, when the analysis is completed, for example, the angle of the polarization direction ψ may be converted into light and dark gradations and displayed on the display device, or converted into dot sizes and printed out. In this way, the analyzed parameter has a meaning not as a single data for each pixel but as a relative difference with respect to an adjacent pixel, and by displaying this difference, the inspection object 3
The variation of the polarization characteristics of No. 2 can be visually grasped as a whole.

【0027】本発明の残留応力検査装置にあっては、上
記のように検光子30を回転させる必要がないので、検
光子30を回転させるための機構が必要なく、構造を簡
単にすることができる。特に、検光子30を回転させて
検査を行う必要がないので、検査所要時間を短くするこ
とができ、検査速度を高速化及び高精度化することがで
きる。
In the residual stress inspection device of the present invention, since it is not necessary to rotate the analyzer 30 as described above, a mechanism for rotating the analyzer 30 is not required and the structure can be simplified. it can. In particular, since it is not necessary to rotate the analyzer 30 to perform the inspection, the time required for the inspection can be shortened, and the inspection speed can be increased and the accuracy can be improved.

【0028】なお、赤色光源、青色光源、緑色光源の位
置は、任意に入れ替えても差し支えない。また、ここで
は3種類の光源を用いたが、4種類以上の光源を用いて
もよい。
The positions of the red light source, the blue light source, and the green light source may be arbitrarily changed. Although three types of light sources are used here, four or more types of light sources may be used.

【0029】(第2の実施形態)図5は本発明の別な実
施形態による残留応力検査装置41の構成を示す図であ
る。この残留応力検査装置41にあっては、3つ以上の
光源42、43、44(図5では、3つの光源を示して
いる。)を各偏光子27、28、29に対向させて配置
している。これらの光源42、43、44は、発光強度
の等しいものであればよく、波長の異なる光源でもよ
く、同一波長の光源でもよい。また、撮像手段であるC
CDカメラ45は、各光源の光を判別する必要は無く、
光源の種類に応じたものであればよい。例えば、各光源
42、43、44が同じ単一色の光源である場合には、
モノクロCCDカメラであってもよい。CCDカメラ4
5からの受光信号は、演算処理回路46に送られる。
(Second Embodiment) FIG. 5 is a diagram showing the structure of a residual stress inspection apparatus 41 according to another embodiment of the present invention. In this residual stress inspection device 41, three or more light sources 42, 43 and 44 (three light sources are shown in FIG. 5) are arranged facing each polarizer 27, 28 and 29. ing. These light sources 42, 43 and 44 may be light sources having the same emission intensity, light sources having different wavelengths, or light sources having the same wavelength. In addition, the image pickup means C
The CD camera 45 does not need to distinguish the light of each light source,
Any type may be used as long as it corresponds to the type of light source. For example, if each light source 42, 43, 44 is the same single color light source:
It may be a monochrome CCD camera. CCD camera 4
The light reception signal from 5 is sent to the arithmetic processing circuit 46.

【0030】各光源42、43、44は発光タイミング
制御回路47によって発光制御されており、各光源4
2、43、44は、発光タイミング制御回路47からの
発光同期信号(トリガパルス信号)によって順次、間隔
をあけて短時間発光させられる。また、この発光同期信
号は、演算処理回路46にも送信される。
The light sources 42, 43 and 44 are controlled by a light emission timing control circuit 47 to emit light.
2, 43, and 44 are sequentially made to emit light for a short time at intervals by a light emission synchronization signal (trigger pulse signal) from the light emission timing control circuit 47. The light emission synchronization signal is also transmitted to the arithmetic processing circuit 46.

【0031】しかして、この残留応力検査装置41にあ
っては、各光源42、43、44が発光同期信号に同期
して順次発光させられ、しかも、その発光同期信号が演
算処理回路46にも送られるので、波長が同じであって
も各光源42、43、44の光を判別することができ、
演算処理回路46はCCDカメラ45から受信した受光
信号に対応する直線偏光の偏光方向を知ることができ
る。よって、この実施形態によれば、同一波長の光源を
用いて、また高価なカラーCCDカメラを用いることな
く、第1の実施形態と同様、検光子30を回転させるこ
となく複屈折を計測することができる。
In the residual stress inspection device 41, the light sources 42, 43 and 44 are sequentially caused to emit light in synchronization with the light emission synchronization signal, and the light emission synchronization signal is also sent to the arithmetic processing circuit 46. Since it is sent, the light of each light source 42, 43, 44 can be discriminated even if the wavelength is the same.
The arithmetic processing circuit 46 can know the polarization direction of the linearly polarized light corresponding to the received light signal received from the CCD camera 45. Therefore, according to this embodiment, the birefringence can be measured without rotating the analyzer 30 using the light source of the same wavelength and without using the expensive color CCD camera, as in the first embodiment. You can

【0032】[0032]

【発明の効果】本発明の光透過性物質の残留応力検査装
置によれば、検光手段を回転させることなく検光手段を
回転させるのと同様な効果を得ることができるので、検
光手段を回転させることなく残留応力ないし残留応力の
ムラの検査を行うことができる。よって、可動部分が必
要なくて残留応力検査装置の構造を簡単にすることがで
き、また残留応力検査を高速で行うことができる。
According to the residual stress inspection device for a light-transmitting substance of the present invention, the same effect as rotating the light detecting means without rotating the light detecting means can be obtained. The residual stress or unevenness of the residual stress can be inspected without rotating. Therefore, it is possible to simplify the structure of the residual stress inspection device without the need for moving parts, and to perform the residual stress inspection at high speed.

【0033】しかも、この残留応力検査装置は、偏光方
向の異なる光毎に波長が異なっているので、偏光方向の
異なる光を光透過性物質に同時に照射することができ、
さらに検査を高速化することができる。すなわち、偏光
方向の異なる光は互いに波長が異なっているので、検光
手段を透過した後の光を波長毎に分離させることによ
り、検光手段を通過した後の像を偏光方向毎に分離させ
て観察することができ、偏光方向の異なる光を同時に照
射して残留応力を検査することができる。
Further, in this residual stress inspection apparatus, since the wavelengths of the light beams having different polarization directions are different, it is possible to simultaneously irradiate the light transmissive substance with light beams having different polarization directions.
Further, the inspection can be speeded up. That is, since the lights having different polarization directions have different wavelengths from each other, the light after passing through the light detecting means is separated for each wavelength so that the image after passing through the light detecting means is separated for each polarization direction. The residual stress can be inspected by simultaneously irradiating light with different polarization directions.

【0034】本発明にかかる光透過性物質の別な残留応
力検査装置は、偏光方向の異なる複数の光を光透過性物
質に照射させる手段を備えているので、検光手段を回転
させることなく検光手段を回転させるのと同様な効果を
得ることができ、検光手段を回転させることなく残留応
力ないし残留応力のムラの検査を行うことができる。よ
って、可動部分が必要なくて残留応力検査装置の構造を
簡単にすることができ、また残留応力検査を高速で行う
ことができる。
Another residual stress inspection apparatus for a light-transmitting substance according to the present invention comprises means for irradiating the light-transmitting substance with a plurality of lights having different polarization directions, so that the light detecting means is not rotated. It is possible to obtain the same effect as that of rotating the light detecting means, and it is possible to inspect the residual stress or unevenness of the residual stress without rotating the light detecting means. Therefore, it is possible to simplify the structure of the residual stress inspection device without the need for moving parts, and to perform the residual stress inspection at high speed.

【0035】しかも、この残留応力検査装置は、偏光方
向の異なる光を順次照射させるようにしているので、偏
光方向の異なる光を時間的に分離させることができる。
よって、偏光方向の異なる光の波長を互いに異ならせる
必要が無く、偏光照射手段や受光手段の構成を簡略にす
ることができる。
In addition, since the residual stress inspection device sequentially irradiates light with different polarization directions, it is possible to temporally separate light with different polarization directions.
Therefore, it is not necessary to make the wavelengths of lights having different polarization directions different from each other, and the configurations of the polarized light irradiation means and the light receiving means can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】回転検光子法を用いた検査装置の構成を示す図
である。
FIG. 1 is a diagram showing a configuration of an inspection device using a rotation analyzer method.

【図2】検光子と偏光子の相対的な偏光回転角度を変化
させた時の、光強度の変化を示す図である。
FIG. 2 is a diagram showing a change in light intensity when a relative polarization rotation angle between an analyzer and a polarizer is changed.

【図3】本発明の一実施形態による残留応力検査装置の
構成を示す概略図である。
FIG. 3 is a schematic diagram showing a configuration of a residual stress inspection device according to an embodiment of the present invention.

【図4】楕円偏光の数学的表現を示す図である。FIG. 4 is a diagram showing a mathematical expression of elliptically polarized light.

【図5】本発明の別な実施形態による残留応力検査装置
の構成を示す概略図である。
FIG. 5 is a schematic diagram showing a configuration of a residual stress inspection device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

21 残留応力検査装置 22 赤色光源 23 緑色光源 24 青色光源 25、26 無偏光ビームスプリッタ 27、28、29 偏光子 30 検光子 31 カラーCCDカメラ 32 被検査物 21 Residual stress inspection device 22 Red light source 23 Green light source 24 blue light source 25,26 Non-polarizing beam splitter 27, 28, 29 Polarizer 30 Analyzer 31 color CCD camera 32 Inspection object

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA65 BB22 DD06 FF50 GG21 HH15 JJ03 JJ26 LL33 LL34 LL46 QQ25 RR06 RR09 2H049 BA02 BA18 BB03 BC23    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2F065 AA65 BB22 DD06 FF50 GG21                       HH15 JJ03 JJ26 LL33 LL34                       LL46 QQ25 RR06 RR09                 2H049 BA02 BA18 BB03 BC23

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 偏光照射手段から出射された偏光を光透
過性物質に透過させ、この透過光を検光手段に通過させ
て得られる像により光透過性物質の残留応力を観察する
残留応力検査装置において、 波長及び偏光角度が互いに異なる複数の偏光を発生さ
せ、当該偏光を光透過性物質に照射させる手段と、 光透過性物質を透過した前記偏光を透過させる検光手段
と、 前記検光手段を透過した偏光を受光する受光手段とを備
えたことを特徴とする光透過性物質の残留応力検査装
置。
1. A residual stress test for observing the residual stress of a light-transmitting substance by an image obtained by transmitting the polarized light emitted from the polarized light irradiation means to the light-transmitting substance and passing the transmitted light through the light-detecting means. In the device, means for generating a plurality of polarized lights having wavelengths and polarization angles different from each other and irradiating the light-transmissive substance with the polarized lights, analyzing means for transmitting the polarized light transmitted through the light-transmissive substance, and the light analyzer And a light receiving means for receiving polarized light transmitted through the means.
【請求項2】 前記受光手段はカラー撮像素子であっ
て、前記偏光照射手段により照射される光は、当該カラ
ー撮像素子により分光することが可能な波長域の光であ
ることを特徴とする、請求項1に記載の光透過性物質の
残留応力検査装置。
2. The light receiving unit is a color image pickup device, and the light emitted by the polarized light irradiation unit is light in a wavelength range that can be separated by the color image pickup device. The residual stress inspection device for a light-transmitting substance according to claim 1.
【請求項3】 偏光照射手段から出射された偏光を光透
過性物質に透過させ、この透過光を検光手段に通過させ
て得られる像により光透過性物質の残留応力を観察する
残留応力検査装置において、 偏光角度が互いに異なる複数の偏光を発生させ、当該偏
光を順次光透過性物質に照射させる手段と、 光透過性物質を透過した前記偏光を透過させる検光手段
と、 前記検光手段を透過した偏光を受光する受光手段とを備
えたことを特徴とする光透過性物質の残留応力検査装
置。
3. A residual stress test for observing the residual stress of a light transmissive substance by an image obtained by transmitting the polarized light emitted from the polarized light irradiation means to the light transmissive substance and passing the transmitted light through the light detecting means. In the apparatus, means for generating a plurality of polarized lights having different polarization angles and sequentially irradiating the light-transmissive substance with the polarized light; light-analyzing means for transmitting the polarized light having passed through the light-transmissive substance; A residual stress inspection device for a light-transmissive substance, comprising:
【請求項4】 前記偏光照射手段により照射される光
は、偏光角度が互いに異なる3つ以上の光であることを
特徴とする、請求項1又は3に記載の光透過性物質の残
留応力検査装置。
4. The residual stress test of a light-transmissive material according to claim 1, wherein the light emitted by the polarized light irradiation means is three or more lights having different polarization angles. apparatus.
JP2001220892A 2001-07-23 2001-07-23 Residual stress inspection device for light pervious substance Pending JP2003035613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220892A JP2003035613A (en) 2001-07-23 2001-07-23 Residual stress inspection device for light pervious substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001220892A JP2003035613A (en) 2001-07-23 2001-07-23 Residual stress inspection device for light pervious substance

Publications (1)

Publication Number Publication Date
JP2003035613A true JP2003035613A (en) 2003-02-07

Family

ID=19054648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220892A Pending JP2003035613A (en) 2001-07-23 2001-07-23 Residual stress inspection device for light pervious substance

Country Status (1)

Country Link
JP (1) JP2003035613A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121291A (en) * 2005-10-24 2007-05-17 General Electric Co <Ge> Method and device for inspecting object
JP2009276088A (en) * 2008-05-12 2009-11-26 Avanstrate Inc Method and equipment for inspecting strain of glass plate
WO2015045434A1 (en) * 2013-09-24 2015-04-02 研治 田中 Distortion measurement system for transparent film
CN108593172A (en) * 2018-05-03 2018-09-28 深圳精创视觉科技有限公司 Glass internal stress defect automatic detection device
JPWO2018216349A1 (en) * 2017-05-24 2020-03-26 ソニー株式会社 Object detection device, object detection method, and program
CN111830053A (en) * 2019-04-18 2020-10-27 克朗斯股份公司 Transmitted light inspection apparatus and transmitted light inspection method for inspecting containers
WO2021130222A1 (en) * 2019-12-27 2021-07-01 Sony Group Corporation Polarization imaging system and polarization imaging method
KR20220069765A (en) * 2020-11-20 2022-05-27 한국광기술원 Polarization analysis apparatus and method for lens quality inspection, and polarization analysis system using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121291A (en) * 2005-10-24 2007-05-17 General Electric Co <Ge> Method and device for inspecting object
JP2009276088A (en) * 2008-05-12 2009-11-26 Avanstrate Inc Method and equipment for inspecting strain of glass plate
WO2015045434A1 (en) * 2013-09-24 2015-04-02 研治 田中 Distortion measurement system for transparent film
JPWO2018216349A1 (en) * 2017-05-24 2020-03-26 ソニー株式会社 Object detection device, object detection method, and program
JP7031664B2 (en) 2017-05-24 2022-03-08 ソニーグループ株式会社 Object detection device, object detection method, and program
CN108593172A (en) * 2018-05-03 2018-09-28 深圳精创视觉科技有限公司 Glass internal stress defect automatic detection device
CN111830053A (en) * 2019-04-18 2020-10-27 克朗斯股份公司 Transmitted light inspection apparatus and transmitted light inspection method for inspecting containers
CN111830053B (en) * 2019-04-18 2024-03-15 克朗斯股份公司 Transmitted light inspection apparatus and transmitted light inspection method for inspecting containers
WO2021130222A1 (en) * 2019-12-27 2021-07-01 Sony Group Corporation Polarization imaging system and polarization imaging method
KR20220069765A (en) * 2020-11-20 2022-05-27 한국광기술원 Polarization analysis apparatus and method for lens quality inspection, and polarization analysis system using the same
KR102517637B1 (en) * 2020-11-20 2023-04-04 한국광기술원 Polarization analysis apparatus and method for lens quality inspection, and polarization analysis system using the same

Similar Documents

Publication Publication Date Title
EP3161437B1 (en) Measuring polarisation
JP2014185958A (en) Coloration measuring device
JP4832187B2 (en) High-speed polarizing device, high-speed birefringence measuring device using the same, and stereoscopic image display device
CN101473212A (en) Focused-beam ellipsometer
JP2002162360A (en) Method and equipment for evaluating liquid crystal panel
JP2008076324A (en) Optical anisotropy parameter measuring apparatus
JP5145357B2 (en) System and process for analyzing specimens
KR20100027951A (en) Method and apparatus for measuring optical anisotropy parameter
JPH10332533A (en) Birefringence evaluation system
JP2017207447A5 (en)
JP4663529B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JPH05142141A (en) Thin film measuring instrument
JP2003035613A (en) Residual stress inspection device for light pervious substance
JP3365474B2 (en) Polarizing imaging device
KR100336696B1 (en) Apparatus and method for detecting polarization
CN108362667A (en) A kind of Medium Optics parameter estimation apparatus and method
JP2008020231A (en) Method and device for measuring optical main axis distribution
JP2004340833A (en) Optical measuring device
JPH08248372A (en) Inspection method of flat panel display
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP4468153B2 (en) Terahertz imaging apparatus and terahertz imaging method
JP3441180B2 (en) Alignment film evaluation system
CN116026760B (en) Wavelength type SPR sensing system and method
JPH11108847A (en) Defect evaluation apparatus
TWI314641B (en) Apparatus for detecting the orientation of polarization axis and the method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508