WO2015045243A1 - 太陽電池モジュールおよび太陽電池モジュールの製造方法 - Google Patents

太陽電池モジュールおよび太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2015045243A1
WO2015045243A1 PCT/JP2014/003954 JP2014003954W WO2015045243A1 WO 2015045243 A1 WO2015045243 A1 WO 2015045243A1 JP 2014003954 W JP2014003954 W JP 2014003954W WO 2015045243 A1 WO2015045243 A1 WO 2015045243A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
light
sides
cell element
region
Prior art date
Application number
PCT/JP2014/003954
Other languages
English (en)
French (fr)
Inventor
悟司 東方田
平 茂治
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to DE112014004490.3T priority Critical patent/DE112014004490T5/de
Priority to JP2015538850A priority patent/JP6361935B2/ja
Publication of WO2015045243A1 publication Critical patent/WO2015045243A1/ja
Priority to US15/064,164 priority patent/US9991404B2/en
Priority to US15/970,592 priority patent/US10700224B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell module and a method for manufacturing the solar cell module.
  • the light receiving surface which is the light incident surface of the solar cell, may be provided with an ineffective region that hardly contributes to power generation even if light is incident on a region located on the outer periphery of the light receiving surface for the convenience of the manufacturing process.
  • an ineffective region that hardly contributes to power generation even if light is incident on a region located on the outer periphery of the light receiving surface for the convenience of the manufacturing process.
  • a structure for effectively using incident light by providing a light diffusion sheet on the ineffective region and diffusing the light incident on the ineffective region has been proposed (for example, , See Patent Document 1).
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique for improving the power generation efficiency of a solar cell module.
  • an aspect of the present invention is a method for manufacturing a solar cell module.
  • This method comprises preparing a solar cell element having a surface whose outer periphery is surrounded by a plurality of sides, a sealing layer for sealing the solar cell element, and a paint having light diffusibility, and an outer peripheral region of the surface.
  • a printing plate having a protective member provided at a position corresponding to a corner portion located between two sides extending in a direction intersecting with each other among the plurality of sides. The paint is applied to the outer peripheral region, and the solar cell element on which the paint is printed is sealed with the sealing layer.
  • the solar cell module includes a solar cell element having a surface whose outer periphery is surrounded by a plurality of sides, a light diffusion portion provided in an outer peripheral region of the surface, and a sealing layer that covers the surface and the light diffusion portion. .
  • the light diffusing portion is provided to avoid a corner portion located between two sides extending in a direction intersecting each other among the plurality of sides.
  • the power generation efficiency of the solar cell module can be improved.
  • FIG. 1 It is sectional drawing which shows the structure of the solar cell module which concerns on embodiment. It is an external view which shows the light-receiving surface of the solar cell element which concerns on embodiment. It is a figure which shows the light-diffusion part provided in the outer peripheral area
  • FIG. 1 It is a figure which shows a mode that incident light is scattered by the light-diffusion part which concerns on embodiment. It is a figure which shows the printing plate which concerns on the modification 1.
  • FIG. It is a figure which shows the printing plate which concerns on the modification 2.
  • FIG. It is a figure which shows the process of apply
  • FIG. It is a figure which shows the light-diffusion part which concerns on the modification 2.
  • FIG. It is a figure which shows the process of apply
  • FIG. It is a figure which shows the light-diffusion part which concerns on the modification 4. It is a figure which shows the light-diffusion part which concerns on the modification 5.
  • FIG. 5 shows a mode that incident light is scattered by the light-diffusion part which concerns on embodiment.
  • FIG. It is a figure which shows the printing
  • FIG. 1 is a cross-sectional view showing the structure of a solar cell module 100 according to the embodiment
  • FIG. 2 is an external view showing a light receiving surface 70a of the solar cell element 70.
  • the solar cell module 100 includes a plurality of solar cell elements 70, a light diffusion portion 60 provided in the outer peripheral region C1 of the light receiving surface 70a that is one of the surfaces of the solar cell element 70, and adjacent solar cells.
  • a tab wiring 72 for connecting the elements 70 to each other is provided.
  • the solar cell element 70 is formed in the outer peripheral region C1 of the light reception surface 70a. Is not formed. For this reason, the outer peripheral area C1 is an ineffective area that hardly contributes to power generation even when light enters.
  • the light diffusing unit 60 has light diffusibility with respect to the light incident on the light receiving surface 70a, and scatters the light incident toward the outer peripheral region C1 to contribute to power generation and contribute to power generation C2. To go to. Since the light diffusing unit 60 has a gentle curvature and a raised shape so as to draw a convex curved surface, it can effectively scatter incident light toward the outer peripheral region C1. Thereby, the light absorbed in the ineffective region can be reflected and absorbed in the effective region C2 to contribute to power generation, and the power generation efficiency of the solar cell element 70 can be improved as compared with the case where the light diffusion portion 60 is not provided. Can be improved.
  • the solar cell module 100 includes a plurality of solar cell elements 70.
  • the solar cell element 70 includes a power generation layer 10, a first metal electrode 20, and a second metal electrode 30.
  • the power generation layer 10 is a layer that absorbs incident light and generates a photovoltaic force, and includes, for example, a substrate made of a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP).
  • a substrate made of a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphorus (InP).
  • the structure of the power generation layer 10 is not particularly limited, but in the present embodiment, it has a heterojunction of an n-type single crystal silicon substrate and amorphous silicon.
  • the power generation layer 10 is, for example, an i-type amorphous silicon layer, a p-type amorphous silicon layer doped with boron (B) or the like on the light-receiving surface side of an n-type single crystal silicon substrate, and a light-transmitting material such as indium oxide.
  • boron B
  • a light-transmitting material such as indium oxide.
  • transparent conductive layers made of conductive conductive oxide.
  • an i-type amorphous silicon layer, an n-type amorphous silicon layer doped with phosphorus (P) or the like, and a transparent conductive layer are laminated on the back side of the substrate in this order.
  • the power generation layer 10 has a light receiving surface 70a that is one of the surfaces of the solar cell element 70 and a back surface 70b that is one of the surfaces of the solar cell element 70 and faces away from the light receiving surface 70a.
  • the light receiving surface means a main surface on which solar light is mainly incident in the solar cell element 70, and specifically, a surface on which most of the light incident on the power generation layer 10 is incident.
  • the light receiving surface 70 a in the present embodiment has an octagonal shape including four sides 74 and corner portions 76 cut at four corners.
  • a part of the semiconductor layer constituting the power generation layer 10 is not formed in the outer peripheral region C1 of the light receiving surface 70a.
  • the region where the i-type amorphous silicon layer and the p-type amorphous silicon layer formed on the n-type crystalline silicon substrate are not provided is the outer peripheral region C1, and these layers are provided.
  • the active area is the effective area C2.
  • the first metal electrode 20 and the second metal electrode 30 are electrodes for taking out the electric power generated by the power generation layer 10 to the outside.
  • the first metal electrode 20 is provided on the light receiving surface 70a of the solar cell element 70, and the second metal electrode 30 is provided on the back surface 70b facing the light receiving surface 70a.
  • the first metal electrode 20 and the second metal electrode 30 are conductive materials including, for example, copper (Cu) or aluminum (Al).
  • An electrolytic plating layer such as copper (Cu) or tin (Sn) may be included. However, it is not limited to this, It is good also as other metals, such as gold
  • the first metal electrode 20 includes a plurality of finger electrodes 21 extending in parallel to each other and three bus bar electrodes 22 extending perpendicular to the finger electrodes 21. Since the finger electrode 21 is an electrode formed on the effective region C2, it is desirable to form the finger electrode 21 so as not to block light incident on the power generation layer 10.
  • the bus bar electrode 22 connects a plurality of finger electrodes 21 to each other.
  • the bus bar electrode 22 needs to be thin to some extent so that the power collected from the plurality of finger electrodes 21 can be efficiently flowed while being thin enough not to block light incident on the power generation layer 10.
  • the second metal electrode 30 also includes a plurality of finger electrodes extending in parallel with each other and three bus bar electrodes extending perpendicular to the finger electrodes.
  • the back surface 70b side is not a main surface where sunlight is mainly incident, the number of finger electrodes on the back surface 70b side is higher than that on the light receiving surface 70a side, thereby increasing the current collection efficiency. Also good.
  • the light diffusing unit 60 is made of a material having light diffusibility with respect to light having a wavelength absorbed by the solar cell element 70.
  • having light diffusibility refers to a property of reflecting light incident on the light diffusing unit 60 mainly by diffuse reflection rather than specular reflection.
  • the light diffusing unit 60 is made of an electrically insulating material.
  • an insulating white material in which particles such as titania (TiO 2 ) and alumina (Al 2 O 3 ) are dispersed in a resin base material such as an epoxy resin or an acrylic resin. Is used.
  • the light diffusing unit 60 has a lower electrical conductivity than the first metal electrode 20 and a higher light diffusibility than the first metal electrode 20.
  • the light diffusion portion 60 needs to have a thickness that can sufficiently scatter incident light.
  • the thickness may be 3 ⁇ m or more and 100 ⁇ m or less, for example, about 20 ⁇ m to 30 ⁇ m.
  • the light diffusing unit 60 is formed in a convex curved surface having a gentle curvature so as to rise up with respect to the light receiving surface 70a so that incident light toward the outer peripheral region C1 can be effectively scattered. Further, the light diffusing unit 60 is formed so as to cover at least a part of the side surface 70c so that incident light directed toward the side surface 70c of the solar cell element 70 can also be scattered. By providing the light diffusing unit 60 on both the light receiving surface 70a and the side surface 70c, curved surfaces having various inclinations with respect to incident light can be formed, and light incident on the light diffusing unit 60 is effectively scattered. be able to.
  • the light diffusion portion 60 is formed so as to avoid the corner portion 70d formed by the light receiving surface 70a and the side surface 70c. By forming the light diffusion portion 60 while avoiding the corner portion 70d, the amount of the resin material necessary for forming the light diffusion portion 60 is reduced as compared with the case where the light diffusion portion 60 is provided so as to cover the corner portion 70d. Can do.
  • FIG. 3 is a view showing the light diffusion portion 60 provided in the outer peripheral region C1 of the solar cell element 70.
  • the light diffusion portion 60 is provided only in the first region D1 along the side 74 while avoiding the second region D2 along the corner portion 76 in the outer peripheral region C1.
  • the light diffusion part 60 is provided to avoid the second region D2 located between the two sides 74 extending in the direction intersecting each other.
  • the light diffusing unit 60 may be provided not only in the region corresponding to the outer peripheral region C1, but in a region adjacent to the outer peripheral region C1 in the effective region C2.
  • the solar cell module 100 includes a tab wiring 72 that connects adjacent solar cell elements 70 to each other.
  • the tab wiring 72 is an elongated metal foil, for example, a copper foil coated with silver. One end of the tab wiring 72 is connected to the first metal electrode 20 of the solar cell element 70, and the other end is connected to the second metal electrode 30 of another solar cell element 70 to be interconnected.
  • the solar cell module 100 includes a protective substrate 40, a back sheet 50, a first sealing layer 42, and a second sealing layer 44.
  • the protective substrate 40 and the back sheet 50 protect the solar cell element 70 from the external environment.
  • the protective substrate 40 provided on the light receiving surface 70a side transmits light in a wavelength band that the solar cell element 70 absorbs for power generation.
  • the protective substrate 40 is, for example, a glass substrate.
  • the back sheet 50 is a resin substrate such as EVA or polyimide, or the same glass substrate as the protective substrate 40.
  • the first sealing layer 42 and the second sealing layer 44 are resin materials such as EVA and polyimide. Thereby, while preventing the penetration
  • a white resin material in which particles such as titania are dispersed may be used.
  • the light transmitted through the solar cell element 70 and reaching the second sealing layer 44 can be scattered and directed again to the solar cell element 70.
  • FIG. 4 is a diagram illustrating a process of applying the light diffusion unit 60 according to the embodiment by screen printing.
  • the solar cell element 70 is disposed on the stage 90 provided with the groove 94.
  • the printing plate 80 having the openings 82c and 82d is disposed on the light receiving surface 70a of the solar cell element 70, and the squeegee 84 is moved in the Y direction, whereby the paint 62 is placed on the light receiving surface 70a via the printing plate 80.
  • the paint 62 is applied by forming the finger electrode and the bus bar electrode 22 on the light receiving surface 70a of the solar cell element 70 and then moving the squeegee 84 in the direction Y in which the finger electrode extends.
  • the distance d between the light receiving surface 70a and the mesh 80a can be increased as compared with the case where the bus bar electrode 22 is not provided, and the paint 62 can be thickened.
  • the printing plate 80 has a metal mesh 80 a and an emulsion 80 b arranged corresponding to the pattern of the printing plate 80.
  • a region where the emulsion 80b is provided is a region where the paint 62 is not applied, and a region W where the emulsion 80b is not provided corresponds to the openings 82c and 82d of the printing plate 80.
  • the opening area W is provided so that the outer periphery is larger than the application area E1 on the light receiving surface 70a, and the opening area W is an application area E1 and an extended area E2 provided so as to surround the outer periphery of the application area E1. Straddle both sides.
  • the coating 62 can be applied also to the side surface 70c.
  • FIG. 5 is a diagram illustrating a problem in the process of applying the light diffusion unit according to the embodiment by screen printing.
  • the mesh 80a of the printing plate 80 is a corner portion of the solar cell element 70 in the screen printing process. 70d will be contacted.
  • the corner portion 70d corresponding to the corner portion 76 of the solar cell element 70 extends obliquely with respect to the direction Y in which the squeegee 84 is moved, the force with which the mesh 80a is pressed by the squeegee 84 is concentrated. 80a is easily damaged.
  • the coating 62 is applied using the printing plate 80 provided with the emulsion 80b in the area corresponding to the corner portion 76.
  • the durability of the printing plate 80 can be enhanced, and the same printing plate 80 can be repeatedly used in the printing process. Further, by improving the durability of the printing plate 80, it is possible to prevent application defects that occur when the printing plate 80 is damaged.
  • FIG. 6 is a view showing a printing plate 80 used for application of the light diffusion portion according to the embodiment.
  • the printing plate 80 has openings 82a to 82d in regions corresponding to the four sides 74a to 74d.
  • no opening is provided in a region corresponding to the four corner portions 76, and an emulsion is provided as a protective member so that the mesh does not contact the corner portion 70 d of the solar cell element 70.
  • the position equivalent to the outer periphery of the solar cell element 70 and the boundary line between the outer peripheral region and the effective region is shown by broken lines.
  • FIG. 7 is a diagram illustrating a process of applying the light diffusing unit 60 according to the embodiment by screen printing.
  • the coating 62 e is applied to the outer peripheral areas corresponding to the four sides of the solar cell element 70.
  • the paint 62 is not applied to the outer peripheral area corresponding to the four corner portions.
  • the paint 62f pushed out by the squeegee 84 is likely to be accumulated at a position corresponding to the expansion area E2.
  • the collected paint 62f it is possible to apply a thick coating on the side surface 70c.
  • the paint 62f may adhere to the stage. If it does so, a stage and the solar cell element 70 will adhere
  • the light diffusion portion 60 is formed by curing the coating 62e applied by screen printing.
  • the first sealing layer 42 and the protective substrate 40 are disposed on the light receiving surface 70a side, and the second sealing layer 44 and the back surface are disposed on the back surface 70b.
  • the sheet 50 is arranged.
  • the solar cell element 70 is thermocompression-bonded in a state where it is sandwiched between the protective substrate 40 and the back sheet 50. Thereby, the 1st sealing layer 42 and the 2nd sealing layer 44 fuse
  • FIG. 8 is a diagram illustrating how incident light is diffused by the light diffusion unit 60 according to the embodiment. This figure has shown the light-receiving surface 70a of the solar cell module 100, and the several solar cell element 70 is juxtaposed in each of the direction where the finger electrode 21 is extended, and the direction where the bus-bar electrode 22 is extended.
  • the side 74 of the solar cell element 70 is disposed so as to face the side 74 of another adjacent solar cell element 70.
  • the corner portion 76 of the solar cell element 70 forms a blank area B where the solar cell element 70 is not provided by the four solar cell elements 70 provided nearby.
  • the light A1 incident on the light diffusing unit 60 provided along the side 74 is diffused by the light diffusing unit 60, and then totally reflected at the interface of the protective substrate 40 of the solar cell module 100, whereby the solar cell element 70. Re-enters the light receiving surface 70a. At this time, since the position where the light re-enters is mainly near the position where the light A 1 is incident, the light A 1 incident on the light diffusing unit 60 re-enters the effective region adjacent to the light diffusing unit 60. It will contribute to power generation. Since the blank region B is not provided near the side 74, by providing the light diffusing unit 60 on the side 74, incident light to the light diffusing unit 60 can be scattered in the effective region and contribute to power generation. .
  • the corner portion 76 is adjacent to the blank region B, a part of the light A2 incident on the light diffusion portion provided along the corner portion 76 is incident on the blank region B again.
  • the amount of power generation may be lower than when light is incident on the outer peripheral region C1 that can contribute to power generation while the power generation efficiency is low. Therefore, in the present embodiment, power generation efficiency can be increased by not providing the light diffusion portion along the corner portion 76.
  • the outer peripheral edge of the solar cell element 70 can be protected by providing the light diffusion portion 60 in the outer peripheral region C1 and the side surface 70c of the light receiving surface 70a. Further, by providing the light diffusing portion 60 along the four sides 74, a structure that is strong against the force applied in the direction in which the light receiving surface 70a of the solar cell element 70 bends can be obtained. Further, since the light diffusion portion 60 is provided around the corner portion 70d of the solar cell element 70, the light diffusion portion 60 can be structured to protect the corner portion 70d and to be resistant to an impact applied to the corner portion 70d.
  • the present invention has been described with reference to the above-described embodiments.
  • the present invention is not limited to the above-described embodiments, and the configurations of the embodiments are appropriately combined or replaced. Those are also included in the present invention. Further, it is possible to appropriately change the combination and processing order in each embodiment based on the knowledge of those skilled in the art and to add various modifications such as various design changes to each embodiment. Embodiments to which is added can also be included in the scope of the present invention.
  • FIG. 9 is a view showing a printing plate 80 according to the first modification.
  • the printing plate 80 according to the modified example 1 is different from the above-described embodiment in that a reinforcing portion 88 for protecting an area corresponding to the corner portion 76 is provided.
  • the reinforcing part 88 is a protective member that reinforces the mesh of the printing plate 80 and is made of, for example, a metal foil. By providing the reinforcing portion 88, the durability of the printing plate 80 can be further increased.
  • FIG. 10 is a view showing a printing plate 80 according to the second modification.
  • the printing plate 80 according to the second modification is provided with a plurality of reinforcing lines 88 b extending along the screen printing direction Y as reinforcing portions 88 that protect the area corresponding to the corner portion 76.
  • the striped reinforcing wire 88b extending in the Y direction, durability can be increased against the force pressed by the squeegee moving in the Y direction.
  • regions corresponding to the corner part 76 becomes the opening part 88a, and a coating material is apply
  • FIG. 11 is a diagram showing a process of applying the paint 62 through the printing plate 80 according to the second modification, and schematically showing the paint 62 applied to a region corresponding to the corner portion of the solar cell element 70. It is.
  • the paint 62 is applied in a stripe shape on the light receiving surface 70a.
  • FIG. 12 is a diagram illustrating a light diffusion unit 60 according to the second modification.
  • the light diffusion portion 60 is provided so as to cover the first region D1 corresponding to the side 74 and to cover a part of the second region D2 corresponding to the corner portion 76.
  • the light diffusion portion 60 is provided so that a striped pattern extending along the finger electrode 21 is formed.
  • FIG. 13 is a view showing a printing plate 80 according to the third modification.
  • the printing plate 80 according to the modified example 3 is provided with an opening 82e in a region corresponding to the corner portion 76, and at both the opening portions 82a and 82c corresponding to the side 74 and the opening portion 82e corresponding to the corner portion 76.
  • a reinforcing wire 88c is provided.
  • the reinforcing wire 88c is provided toward the outer peripheral end 82f, and is provided away from the inner peripheral end 82g.
  • the reinforcing wire 88c is provided so as to extend in a direction intersecting with the outer peripheral end 82f.
  • the reinforcing wire 88c is provided on the outer peripheral end 82f side where the corner portion 70d of the solar cell element 70 is easy to contact, and the durability against the force pressed by the squeegee can be enhanced.
  • the reinforcing wire 88c is provided on the inner peripheral end 82g side, it is possible to prevent the region where the light diffusion portion 60 is provided from becoming narrow.
  • a printing plate in which the reinforcing wire 88c extends from the outer peripheral end 82f to the inner peripheral end 82g may be used.
  • FIG. 14 is a diagram illustrating a process of applying the paint 62 through the printing plate 80 according to the fourth modification.
  • the printing plate 80 according to Modification 4 has the same structure as that of Modification 2.
  • the paint 62 disposed on the light receiving surface 70a through the opening 88a spreads to the periphery so as to fill the gap corresponding to the reinforcing wire 88b.
  • the coating material 62 can be apply
  • the width w S of the reinforcing wire 88b it is desirable to narrow the width w S of the reinforcing wire 88b so that the gap corresponding to the reinforcing wire 88b can be filled.
  • the width w S may be about 50 ⁇ m although it depends on the properties of the paint 62 used.
  • FIG. 15 is a diagram showing a light diffusion unit 60 according to the fourth modification.
  • the light diffusion portion 60 is provided so as to cover the first region D1 corresponding to the side 74 and to cover the entire surface of the second region D2 corresponding to the corner portion 76.
  • the appearance can be improved.
  • the light diffusing unit 60 on the entire surface of the corner portion 76, light incident on the vicinity of the corner portion 76 can be diffused to increase power generation efficiency.
  • durability of the printing plate used for printing can be improved and manufacturing cost can be reduced.
  • FIG. 16 is a diagram showing a solar cell element 170 and a light diffusing unit 60 according to the fifth modification.
  • the solar cell element 70 according to Modification 5 has a rectangular shape whose outer periphery is surrounded by four sides 174.
  • the light diffusion portion 60 is provided in the first region D1 along the side 174, and is provided avoiding the second region D2 corresponding to the vicinity of the corner portion 178 where the adjacent sides 174 contact each other.
  • the light diffusing unit 60 is provided to avoid the second region D2 located between the two sides 174 extending in the direction intersecting each other.
  • a printing plate for forming such a light diffusing unit 60 As a printing plate for forming such a light diffusing unit 60, a printing plate in which an opening corresponding to the side 174 is provided and a protective member is provided in a region corresponding to the corner 178 is used. By using a printing plate provided with a protective member at a position corresponding to the corner portion 178, it is possible to prevent the corner portion 178 of the solar cell element 170 from contacting the mesh of the printing plate and damage the mesh.
  • a light diffusion portion may be provided by avoiding a corner portion located between adjacent sides.
  • a printing plate for providing such a light diffusion portion a printing plate in which a protective member is provided at a position corresponding to the corner portion may be used. Thereby, the position corresponding to the corner part which is an easily damaged part of the printing plate can be protected, and the durability of the printing plate can be enhanced. In addition, the occurrence of coating defects can be prevented by increasing the durability of the printing plate.
  • the light diffusion portion 60 is provided so as to avoid the corner portion 70d formed by the light receiving surface 70a and the side surface 70c of the solar cell element 70.
  • the corner portion is provided. It is good also as providing the light-diffusion part 60 so that 70d may be covered.
  • the paint 62 that becomes the light diffusion portion 60 is applied after the bus bar electrode 22 is formed.
  • the light diffusion portion 60 is formed before the bus bar electrode 22 is formed. Then, the bus bar electrode 22 may be formed thereafter.
  • a method for manufacturing the solar cell module 100 includes: Preparing a solar cell element 70 having a surface whose outer periphery is surrounded by a plurality of sides 74, sealing layers 42 and 44 for sealing the solar cell element 70, and a paint 62 having light diffusibility; In the printing plate 80 having a pattern corresponding to the outer peripheral area C1 of the surface, a protective member is provided at a position corresponding to the corner portion 76 positioned between two sides extending in a direction intersecting each other among the plurality of sides 74. The coating 62e is applied to the outer peripheral area C1 through the printing plate 80 to be printed, The solar cell element 70 on which the paint 62e is printed is sealed with the sealing layers 42 and 44.
  • the paint 62 may be applied by screen printing.
  • This solar cell module 100 includes: A solar cell element 70 having a surface whose outer periphery is surrounded by a plurality of sides 74; A light diffusion portion 60 provided in the outer peripheral area C1 of the surface; Sealing layers 42 and 44 covering the surface and the light diffusion portion 60; With The light diffusion portion 60 is provided to avoid the corner portion 76 located between two sides extending in a direction intersecting each other among the plurality of sides 74.
  • the surface may have an octagonal shape in which four rectangular corners surrounded by four sides 74 are cut off.
  • the light diffusing unit 60 may be provided in a region along the side 74 while avoiding the corner portion 76 that is cut off at a corner.
  • the light diffusing unit 60 may be provided to avoid a partial region of the corner unit 76.
  • the power generation efficiency of the solar cell module can be improved.

Abstract

 太陽電池素子70は、外周が複数の辺74で囲まれる表面を有する。光拡散部60は、表面の外周領域C1に設けられる。封止層は、表面および光拡散部60の上を覆う。光拡散部60は、複数の辺74のうち、互いに交差する方向に延びる二辺の間に位置するコーナ部76を避けて設けられる。表面は、四つの辺74で囲まれる矩形状の四隅を隅切りした八角形の形状を有してもよい。光拡散部60は、隅切りされたコーナ部76を避けて、辺に沿った領域に設けられてもよい。光拡散部60は、コーナ部76の一部領域を避けて設けられてもよい。

Description

太陽電池モジュールおよび太陽電池モジュールの製造方法
 本発明は、太陽電池モジュールおよび太陽電池モジュールの製造方法に関する。
 太陽電池の光入射面である受光面には、製造工程の都合から、その外周に位置する領域に光が入射したとしても発電に寄与しにくい無効領域が設けられることがある。このような無効領域が設けられた太陽電池において、無効領域上に光拡散シートを設け、無効領域に入射する光を拡散させることで入射光を有効利用するための構造が提案されている(例えば、特許文献1参照)。
特開2009-147363号公報
 光を有効利用するためには、上述したような無効領域に入射する光を、発電に寄与する領域に向けてより効果的に散乱させる構造とすることが望ましい。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、太陽電池モジュールの発電効率を向上させる技術を提供することにある。
 上記課題を解決するために、本発明のある態様は、太陽電池モジュールの製造方法である。この方法は、外周が複数の辺で囲まれる表面を有する太陽電池素子と、前記太陽電池素子を封止する封止層と、光拡散性を有する塗料と、を準備し、前記表面の外周領域に対応したパターンを有する印刷版であって、前記複数の辺のうち、互いに交差する方向に延びる二辺の間に位置するコーナ部に対応する位置に保護部材が設けられる印刷版を介して、前記外周領域に前記塗料を塗布し、前記塗料が印刷された前記太陽電池素子を前記封止層で封止する。
 本発明の別の態様は、太陽電池モジュールである。この太陽電池モジュールは、外周が複数の辺で囲まれる表面を有する太陽電池素子と、前記表面の外周領域に設けられる光拡散部と、前記表面および前記光拡散部の上を覆う封止層と、を備える。前記光拡散部は、前記複数の辺のうち、互いに交差する方向に延びる二辺の間に位置するコーナ部を避けて設けられる。
 本発明によれば、太陽電池モジュールの発電効率を向上させることができる。
実施形態に係る太陽電池モジュールの構造を示す断面図である。 実施形態に係る太陽電池素子の受光面を示す外観図である。 実施形態に係る太陽電池素子の外周領域に設けられる光拡散部を示す図である。 実施形態に係る光拡散部をスクリーン印刷により塗布する工程を示す図である。 実施形態に係る光拡散部をスクリーン印刷により塗布する工程における課題を示す図である。 実施形態に係る光拡散部の塗布に用いる印刷版を示す図である。 実施形態に係る光拡散部をスクリーン印刷により塗布する工程を示す図である。 実施形態に係る光拡散部により入射光が散乱される様子を示す図である。 変形例1に係る印刷版を示す図である。 変形例2に係る印刷版を示す図である。 変形例2に係る印刷版を介して塗料を塗布する工程を示す図である。 変形例2に係る光拡散部を示す図である。 変形例3に係る印刷版を示す図である。 変形例4に係る印刷版を介して塗料を塗布する工程を示す図である。 変形例4に係る光拡散部を示す図である。 変形例5に係る光拡散部を示す図である。
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
 図1は、実施形態に係る太陽電池モジュール100の構造を示す断面図であり、図2は、太陽電池素子70の受光面70aを示す外観図である。
 本実施形態に係る太陽電池モジュール100は、複数の太陽電池素子70と、太陽電池素子70の表面の一つである受光面70aの外周領域C1に設けられる光拡散部60と、隣接する太陽電池素子70を互いに接続するタブ配線72を備える。太陽電池素子70は、発電層10を製造する過程で受光面70a側の半導体層と裏面70b側の半導体層とが短絡してしまうことを防ぐため、受光面70aの外周領域C1に発電層10を構成する一部の半導体層が形成されていない。このため、外周領域C1は、光が入射したとしても発電に寄与しにくい無効領域となっている。
 光拡散部60は、受光面70aに入射する光に対して光拡散性を有しており、外周領域C1に向かって入射する光を散乱させて発電に寄与する太陽電池素子70の有効領域C2に向かわせる。光拡散部60は緩やかな曲率を有して凸曲面を描くように盛り上がった形状を有しているため、外周領域C1に向かう入射光を効果的に散乱させることができる。これにより、無効領域に吸収されてしまう光を反射させ、有効領域C2に吸収させて発電に寄与させることができ、光拡散部60を設けない場合と比較して太陽電池素子70の発電効率を向上させることができる。
 太陽電池モジュール100は、複数の太陽電池素子70を備える。太陽電池素子70は、発電層10と、第1金属電極20と、第2金属電極30を備える。
 発電層10は、入射する光を吸収して光起電力を発生させる層であり、例えば、結晶系シリコン、ガリウム砒素(GaAs)又はインジウム燐(InP)等の半導体材料からなる基板を有する。発電層10の構造は、特に限定されないが、本実施形態では、n型単結晶シリコン基板と非晶質シリコンのヘテロ接合を有する。発電層10は、例えば、n型単結晶シリコン基板の受光面側に、i型非晶質シリコン層、ボロン(B)等がドープされたp型非晶質シリコン層、酸化インジウム等の透光性導電酸化物からなる透明導電層の順番で積層されている。また、基板の裏面側に、i型非晶質シリコン層、リン(P)等がドープされたn型非晶質シリコン層、透明導電層の順番で積層されている。
 発電層10は、太陽電池素子70の表面の一つである受光面70aと、太陽電池素子70の表面の一つであり、受光面70aに背向する裏面70bとを有する。ここで、受光面とは、太陽電池素子70において主に太陽光が入射される主面を意味し、具体的には、発電層10に入射される光の大部分が入射される面である。図2に示すように、本実施形態における受光面70aは、四つの辺74と、四隅に隅切りされたコーナ部76からなる八角形の形状を有している。
 なお、受光面70aの外周領域C1には、発電層10を構成する一部の半導体層が形成されていない。具体的には、n型結晶シリコン基板の上に形成されるi型非晶質シリコン層、p型非晶質シリコン層が設けられていない領域が外周領域C1であり、これらの層が設けられている領域が有効領域C2である。外周領域C1を設けることで、発電層10を形成する工程で受光面側のp型非晶質シリコン層と、裏面側のn型非晶質シリコン層の双方が太陽電池素子70の側面70cに回り込んで付着し、短絡状態となることを防ぐことができる。
 第1金属電極20及び第2金属電極30は、発電層10が発電した電力を外部に取り出すための電極である。第1金属電極20は太陽電池素子70の受光面70aに設けられ、第2金属電極30は受光面70aに対向する裏面70bに設けられる。第1金属電極20及び第2金属電極30は、例えば、銅(Cu)やアルミニウム(Al)を含む導電性の材料である。なお、銅(Cu)や錫(Sn)等の電解メッキ層を含んでもよい。ただし、これに限定されるものでなく、金、銀等の他の金属、他の導電性材料、又はそれらの組み合わせとしてもよい。
 図2に示すように、第1金属電極20は、互いに平行に延びる複数のフィンガー電極21と、フィンガー電極21と直交して延びる3本のバスバー電極22を備える。フィンガー電極21は、有効領域C2の上に形成される電極であるため、発電層10に入射する光を遮らないように細く形成することが望ましい。
 バスバー電極22は、複数のフィンガー電極21を互いに接続する。バスバー電極22は、発電層10に入射する光を遮らない程度に細く形成するとともに、複数のフィンガー電極21から集電した電力を効率的に流せるよう、ある程度太くする必要がある。
 第2金属電極30も、第1金属電極20と同様に、互いに平行に延びる複数のフィンガー電極と、フィンガー電極と直交して延びる3本のバスバー電極を備える。なお、裏面70b側は、太陽光が主に入射される主面ではないため、裏面70b側のフィンガー電極の本数は、受光面70a側よりもその本数を増やすことで、集電効率を高めてもよい。
 図1に戻り、光拡散部60は、太陽電池素子70が吸収する波長の光に対して光拡散性を有する材料で構成される。ここで、光拡散性を有するとは、光拡散部60に入射した光を主に鏡面反射ではなく拡散反射によって反射させる性質のことをいう。また、光拡散部60は、電気的に絶縁性を有する材料で構成される。このような性質を有する光拡散部60として、例えば、エポキシ樹脂やアクリル樹脂などの樹脂基材にチタニア(TiO)やアルミナ(Al)などの粒子を分散させた絶縁性の白色材料を用いる。したがって、光拡散部60は、第1金属電極20と比べて電導率が低く、第1金属電極20と比べて光拡散性が高い。光拡散部60は、入射する光を十分に散乱させることのできる程度の厚さが必要である。その厚さは、3μm以上100μm以下とすればよく、例えば、20μm~30μm程度とすればよい。
 光拡散部60は、外周領域C1に向かう入射光を効果的に散乱させることができるよう、受光面70aに対して盛り上がったように緩やかな曲率を有する凸曲面状に形成される。また、光拡散部60は、太陽電池素子70の側面70cに向かう入射光も散乱できるよう側面70cの少なくとも一部を覆うように形成される。光拡散部60を受光面70aと側面70cの双方に設けることで、入射光に対して様々な傾きを有する曲面を形成することができ、光拡散部60に入射する光を効果的に散乱させることができる。なお、光拡散部60は、受光面70aと側面70cとで形成される角部70dを避けるようにして形成される。角部70dを避けて光拡散部60を形成することで、角部70dを覆うように光拡散部60を設ける場合と比べて、光拡散部60の形成に必要な樹脂材料の量を減らすことができる。
 図3は、太陽電池素子70の外周領域C1に設けられる光拡散部60を示す図である。光拡散部60は、外周領域C1のうちコーナ部76に沿った第2領域D2を避けて、辺74に沿った第1領域D1にのみ設けられる。いいかえれば、光拡散部60は、互いに交差する方向に伸びる二つの辺74の間に位置する第2領域D2を避けて設けられる。なお、光拡散部60は、外周領域C1に相当する領域のみに設けるのではなく、有効領域C2のうち外周領域C1に隣接する領域にはみ出して設けることとしてもよい。
 図1に戻り、太陽電池モジュール100は、隣接する太陽電池素子70同士を互いに接続するタブ配線72を備える。タブ配線72は、細長い金属箔であり、例えば、銅箔に銀をコーティングしたものが用いられる。タブ配線72の一端は、太陽電池素子70の第1金属電極20に接続され、他端は、相互接続される他の太陽電池素子70の第2金属電極30に接続される。
 太陽電池モジュール100は、保護基板40と、バックシート50と、第1封止層42と、第2封止層44を備える。保護基板40及びバックシート50は、太陽電池素子70を外部環境から保護する。また、受光面70a側に設けられる保護基板40は、太陽電池素子70が発電のために吸収する波長帯域の光を透過する。保護基板40は、例えば、ガラス基板である。バックシート50は、EVA、ポリイミド等の樹脂基板や、保護基板40と同じガラス基板である。
 第1封止層42及び第2封止層44は、EVA、ポリイミド等の樹脂材料である。これにより、太陽電池モジュール100の発電層への水分の浸入等を防ぐとともに、太陽電池モジュール100全体の強度を向上させる。
 裏面70b側の第2封止層44には、チタニアなどの粒子を分散させた白色の樹脂材料を用いてもよい。これにより、太陽電池素子70を透過して第2封止層44に到達した光を散乱させて、太陽電池素子70に再び向かわせることができる。
 次に、太陽電池モジュール100の製造方法の一例について説明する。
 図4は、実施形態に係る光拡散部60をスクリーン印刷により塗布する工程を示す図である。太陽電池素子70は、溝94が設けられたステージ90の上に配置される。その後、開口部82c、82dを有する印刷版80を太陽電池素子70の受光面70a上に配置し、スキージ84をY方向に移動させることにより、印刷版80を介して塗料62を受光面70a上に塗布する。なお、塗料62は、太陽電池素子70の受光面70aにフィンガー電極およびバスバー電極22を形成した後に、フィンガー電極が延びる方向Yにスキージ84を移動させて塗布する。バスバー電極22を設けた後に塗料62を塗布することで、バスバー電極22がない場合と比べて受光面70aとメッシュ80aとの距離dを取ることができ、塗料62を厚くすることができる。
 印刷版80は、金属製のメッシュ80aと、印刷版80のパターンに対応して配置される乳剤80bを有する。乳剤80bが設けられる領域は、塗料62が塗布されない領域であり、乳剤80bが設けられない領域Wが印刷版80の開口部82c、82dに相当する。開口領域Wは、受光面70a上の塗布領域E1よりも外周が大きくなるように設けられており、開口領域Wは、塗布領域E1と、塗布領域E1の外周を囲うように設けられる拡張領域E2の双方にまたがる。拡張領域E2に相当する領域にも開口を設けることで、側面70cにも塗料62を塗布することができる。
 図5は、実施形態に係る光拡散部をスクリーン印刷により塗布する工程における課題を示す図である。本実施形態では、印刷版80の開口領域Wの外周が受光面70aの外周よりも一回り大きく設けられているため、スクリーン印刷の工程において印刷版80のメッシュ80aが太陽電池素子70の角部70dと接触することとなる。特に、太陽電池素子70のコーナ部76に対応する角部70dは、スキージ84を移動させる方向Yに対して斜めに延びているため、スキージ84によってメッシュ80aが押圧される力が集中し、メッシュ80aが損傷しやすい。
 そこで、本実施形態では、コーナ部76に対応する領域に乳剤80bを設けた印刷版80を用いて塗料62を塗布する。スクリーン印刷の工程上メッシュ80aが損傷しやすい箇所を乳剤80bで保護することにより、印刷版80の耐久性を高めることができ、同じ印刷版80を繰り返し印刷工程に用いることができる。また、印刷版80の耐久性を高めることにより、印刷版80が損傷することにより発生する塗布不良を防ぐことができる。
 図6は、実施形態に係る光拡散部の塗布に用いる印刷版80を示す図である。図示するように、印刷版80は、四つの辺74a~74dに対応する領域に開口部82a~82d有する。一方で、四つのコーナ部76に対応する領域には開口部が設けられず、メッシュが太陽電池素子70の角部70dに接触しないように保護部材として乳剤が設けられる。なお、本図では破線により太陽電池素子70の外周と、外周領域と有効領域の境界線に相当する位置を示している。
 図7は、実施形態に係る光拡散部60をスクリーン印刷により塗布する工程を示す図である。図6に示す印刷版80を介して塗料62を塗布することにより、太陽電池素子70の四つの辺に対応する外周領域に塗料62eが塗布される。一方で、四つのコーナ部に対応する外周領域には塗料62が塗布されないこととなる。
 なお、拡張領域E2の下には太陽電池素子70が設けられないことから、拡張領域E2に相当する位置にはスキージ84により押し出された塗料62fが溜まりやすい。この溜まった塗料62fを利用することで、側面70cに厚く塗布することができるが、太陽電池素子70が平坦なステージに載置されていると、ステージに塗料62fが付着するおそれがある。そうすると、塗料によってステージと太陽電池素子70とが接着されてしまい、ステージから太陽電池素子70を引き上げようとする際に、太陽電池素子70に応力が加わって破損するおそれがある。そこで、太陽電池素子70の外周に対応する位置に溝94が設けられたステージ90を使用する。これにより、ステージ90への塗料62の付着を防ぐことができる。
 その後、スクリーン印刷により塗布した塗料62eを硬化させることにより、光拡散部60が形成される。
 光拡散部60を形成した太陽電池素子70をタブ配線72で接続した後、受光面70a側に第1封止層42および保護基板40を配置し、裏面70bに第2封止層44およびバックシート50配置する。そして、太陽電池素子70を保護基板40とバックシート50で挟み込んだ状態で加熱圧着する。これにより、第1封止層42および第2封止層44が融着して図1に示す太陽電池モジュール100が形成される。
 以下、本実施形態に係る光拡散部60が奏する効果について説明する。
 図8は、実施形態に係る光拡散部60により入射光が拡散される様子を示す図である。本図は、太陽電池モジュール100の受光面70aを示しており、複数の太陽電池素子70は、フィンガー電極21が延びる方向と、バスバー電極22が延びる方向のそれぞれに並置されている。太陽電池素子70の辺74は、隣接する別の太陽電池素子70の辺74と向かい合うように配置される。一方、太陽電池素子70のコーナ部76は、近くに設けられる四つの太陽電池素子70により、太陽電池素子70が設けられない空白領域Bを形成する。
 辺74に沿って設けられる光拡散部60に入射する光A1は、光拡散部60によって拡散され、その後、太陽電池モジュール100の保護基板40の界面で全反射されることによって太陽電池素子70の受光面70aへ再入射する。このとき、光が再入射する位置は、主に光A1が入射した位置の近傍となることから、光拡散部60へ入射する光A1は、光拡散部60に隣接する有効領域に再入射し発電に寄与することとなる。辺74の近くには空白領域Bが設けられないことから、辺74に光拡散部60を設けることで、光拡散部60への入射光を有効領域に散乱させて発電に寄与させることができる。
 一方、コーナ部76は、空白領域Bに隣接することから、コーナ部76に沿って設けられた光拡散部に入射する光A2の一部は、空白領域Bに再入射することとなる。そうすると、発電効率が低いながらも発電に寄与しうる外周領域C1に光を入射させる場合よりも、発電量が低下してしまうおそれがある。そこで、本実施形態では、コーナ部76に沿って光拡散部を設けないこととすることで、発電効率を高めることができる。
 また、本実施形態に係る太陽電池モジュール100では、受光面70aの外周領域C1および側面70cに光拡散部60を設けることで、太陽電池素子70の外周端を保護することができる。また、四つの辺74に沿って光拡散部60を設けることで、太陽電池素子70の受光面70aが曲がる方向に加わる力に対して、強い構造とすることができる。また、光拡散部60は、太陽電池素子70の角部70dの周囲に設けられることから、角部70dを保護して角部70dに加わる衝撃にも強い構造とすることができる。
 以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて各実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を各実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。
 図9は、変形例1に係る印刷版80を示す図である。変形例1に係る印刷版80は、コーナ部76に対応する領域を保護するための補強部88が設けられる点で上述の実施形態と異なる。補強部88は、印刷版80のメッシュを補強する保護部材であり、例えば、金属箔などにより構成される。補強部88を設けることで、印刷版80の耐久性をより高めることができる。
 図10は、変形例2に係る印刷版80を示す図である。変形例2に係る印刷版80は、コーナ部76に対応する領域を保護する補強部88として、スクリーン印刷の方向Yに沿って延びる複数の補強線88bが設けられる。Y方向に延びる縞状の補強線88bを設けることで、Y方向に移動するスキージによって押圧される力に対して耐久力を高めることができる。なお、コーナ部76に対応する領域のうち補強線88bが設けられない領域は開口部88aとなり、印刷によって塗料が塗布される。
 図11は、変形例2に係る印刷版80を介して塗料62を塗布する工程を示す図であり、太陽電池素子70のコーナ部に対応する領域に塗布される塗料62を模式的に示す図である。縞状に補強線88bが設けられた印刷版80を用いることで、受光面70aの上に塗料62が縞状に塗布される。
 図12は、変形例2に係る光拡散部60を示す図である。図示するように、光拡散部60は、辺74に対応する第1領域D1を覆うように設けられるとともに、コーナ部76に対応する第2領域D2の一部を覆うように設けられる。コーナ部76に対応する第2領域D2では、フィンガー電極21に沿って延びる縞模様が形成されるように光拡散部60が設けられる。このように光拡散部60を設けることで、コーナ部76に入射する光を拡散させて発電効率を高めることができる。また、印刷版の耐久性を高めることができ、製造コストを低減させることができる。
 図13は、変形例3に係る印刷版80を示す図である。変形例3に係る印刷版80は、コーナ部76に対応する領域に開口部82eが設けられるとともに、辺74に対応する開口部82a、82cと、コーナ部76に対応する開口部82eの双方に補強線88cが設けられる。補強線88cは、開口部82a、82c、82eのうち、外周端82fの方に設けられ、内周端82gの方を避けて設けられる。また、補強線88cは、外周端82fに交差する方向に延びるように設けられる。これにより、太陽電池素子70の角部70dが接触しやすい外周端82f側に補強線88cが設けられることとなり、スキージによって押圧される力に対する耐久力を高めることができる。また、内周端82g側に補強線88cを設けないことによって、光拡散部60が設けられる領域が狭くなることを防ぐことができる。なお、さらなる変形例として、補強線88cが外周端82fから内周端82gまで延びるような印刷版を用いることとしてもよい。
 図14は、変形例4に係る印刷版80を介して塗料62を塗布する工程を示す図である。変形例4に係る印刷版80は、変形例2と同様の構造を有する。塗料62として、粘性の低いものを選択することにより、開口部88aを通って受光面70a上に配置された塗料62は、補強線88bに対応する隙間を埋めるように周囲に広がることとなる。これにより、補強線88bを有する印刷版80であっても、コーナ部76に対応する領域の全面に塗料62を塗布することができる。このとき、補強線88bに対応する隙間を埋めることができるよう、補強線88bの幅wを狭くすることが望ましい。例えば、その幅wは、用いる塗料62の性質にもよるが、50μm程度とすればよい。
 図15は、変形例4に係る光拡散部60を示す図である。図示するように、光拡散部60は、辺74に対応する第1領域D1を覆うように設けられるとともに、コーナ部76に対応する第2領域D2の全面を覆うように設けられる。このように光拡散部60を設けることで、外観を良くすることができる。また、コーナ部76の全面に光拡散部60を設けることで、コーナ部76の近傍に入射する光を拡散させて発電効率を高めることができる。また、印刷に用いる印刷版の耐久性を高めることができ、製造コストを低減させることができる。
 図16は、変形例5に係る太陽電池素子170および光拡散部60を示す図である。変形例5に係る太陽電池素子70は、上述の実施形態および変形例とは異なり、外周が四つの辺174で囲まれる矩形状を有している。光拡散部60は、辺174に沿った第1領域D1に設けられる一方で、隣接する辺174同士が接するコーナ部178の近傍に対応する第2領域D2を避けて設けられる。いいかえれば、光拡散部60は、互いに交差する方向に伸びる二つの辺174の間に位置する第2領域D2を避けて設けられる。このような光拡散部60を形成するための印刷版として、辺174に対応する開口部が設けられるとともに、コーナ部178に対応する領域に保護部材が設けられる印刷版を用いる。コーナ部178に対応する位置に保護部材を設けた印刷版を用いることにより、印刷版のメッシュに太陽電池素子170のコーナ部178が接触し、メッシュが損傷することを防ぐことができる。
 その他の変形例として、太陽電池素子の表面が三角形や六角形などその他の多角形の形状である場合に、隣接する辺の間に位置するコーナ部を避けて光拡散部を設けることとしてもよい。このような光拡散部を設けるための印刷版として、コーナ部に対応する位置に保護部材が設けられる印刷版を用いることとしてもよい。これにより、印刷版の損傷しやすい箇所であるコーナ部に対応する位置を保護することができ、印刷版の耐久性を高めることができる。また、印刷版の耐久性を高めることで、塗布不良の発生を防ぐことができる。
 上述の実施形態においては、太陽電池素子70の受光面70aと側面70cとで形成される角部70dを避けるようにして光拡散部60を設けることとしたが、さらなる変形例においては、角部70dを覆うようにして光拡散部60を設けることとしてもよい。
 上述の実施形態においては、バスバー電極22を形成した後に光拡散部60となる塗料62を塗布することとしたが、さらなる変形例においては、バスバー電極22を形成する前に光拡散部60を形成し、その後にバスバー電極22を形成することとしてもよい。
 一態様は次の通りである。ある態様の太陽電池モジュール100の製造方法は、
 外周が複数の辺74で囲まれる表面を有する太陽電池素子70と、太陽電池素子70を封止する封止層42,44と、光拡散性を有する塗料62と、を準備し、
 表面の外周領域C1に対応したパターンを有する印刷版80であって、複数の辺74のうち、互いに交差する方向に延びる二辺の間に位置するコーナ部76に対応する位置に保護部材が設けられる印刷版80を介して、外周領域C1に塗料62eを塗布し、
 塗料62eが印刷された太陽電池素子70を封止層42,44で封止する。
 スクリーン印刷により塗料62を塗布してもよい。
 別の態様は、太陽電池モジュール100である。この太陽電池モジュール100は、
 外周が複数の辺74で囲まれる表面を有する太陽電池素子70と、
 表面の外周領域C1に設けられる光拡散部60と、
 表面および光拡散部60の上を覆う封止層42,44と、
を備え、
 光拡散部60は、複数の辺74のうち、互いに交差する方向に延びる二辺の間に位置するコーナ部76を避けて設けられる。
 表面は、四つの辺74で囲まれる矩形状の四隅を隅切りした八角形の形状を有してもよい。
 光拡散部60は、隅切りされたコーナ部76を避けて、辺74に沿った領域に設けられてもよい。
 光拡散部60は、コーナ部76の一部領域を避けて設けられてもよい。
 C1…外周領域、D1…第1領域、D2…第2領域、60…光拡散部、62,62e…塗料、70…太陽電池素子、74…辺、76…コーナ部、80…印刷版、80a…メッシュ、80b…乳剤、82a,82b,82c,82d,82e…開口部、88…補強部、88b…補強線、100…太陽電池モジュール。
 本発明によれば、太陽電池モジュールの発電効率を向上させることができる。

Claims (5)

  1.  外周が複数の辺で囲まれる表面を有する太陽電池素子と、前記太陽電池素子を封止する封止層と、光拡散性を有する塗料と、を準備し、
     前記表面の外周領域に対応したパターンを有する印刷版であって、前記複数の辺のうち、互いに交差する方向に延びる二辺の間に位置するコーナ部に対応する位置に保護部材が設けられる印刷版を介して、前記外周領域に前記塗料を塗布し、
     前記塗料が印刷された前記太陽電池素子を前記封止層で封止する太陽電池モジュールの製造方法。
  2.  スクリーン印刷により前記塗料を塗布する請求項1に記載の太陽電池モジュールの製造方法。
  3.  外周が複数の辺で囲まれる表面を有する太陽電池素子と、
     前記表面の外周領域に設けられる光拡散部と、
     前記表面および前記光拡散部の上を覆う封止層と、
    を備え、
     前記光拡散部は、前記複数の辺のうち、互いに交差する方向に延びる二辺の間に位置するコーナ部を避けて設けられる太陽電池モジュール。
  4.  前記表面は、四つの前記辺で囲まれる矩形状の四隅を隅切りした八角形の形状を有し、
     前記光拡散部は、隅切りされた前記コーナ部を避けて、前記辺に沿った領域に設けられる請求項3に記載の太陽電池モジュール。
  5.  前記光拡散部は、前記コーナ部の一部領域を避けて設けられる請求項3または4に記載の太陽電池モジュール。
PCT/JP2014/003954 2013-09-30 2014-07-28 太陽電池モジュールおよび太陽電池モジュールの製造方法 WO2015045243A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014004490.3T DE112014004490T5 (de) 2013-09-30 2014-07-28 Solarzellenmodul und Solarzellenmodulfertigungsverfahren
JP2015538850A JP6361935B2 (ja) 2013-09-30 2014-07-28 太陽電池モジュールおよび太陽電池モジュールの製造方法
US15/064,164 US9991404B2 (en) 2013-09-30 2016-03-08 Solar cell module and solar cell module manufacturing method
US15/970,592 US10700224B2 (en) 2013-09-30 2018-05-03 Solar cell module manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-204127 2013-09-30
JP2013204127 2013-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/064,164 Continuation US9991404B2 (en) 2013-09-30 2016-03-08 Solar cell module and solar cell module manufacturing method

Publications (1)

Publication Number Publication Date
WO2015045243A1 true WO2015045243A1 (ja) 2015-04-02

Family

ID=52742424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003954 WO2015045243A1 (ja) 2013-09-30 2014-07-28 太陽電池モジュールおよび太陽電池モジュールの製造方法

Country Status (4)

Country Link
US (2) US9991404B2 (ja)
JP (1) JP6361935B2 (ja)
DE (1) DE112014004490T5 (ja)
WO (1) WO2015045243A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD839180S1 (en) * 2017-10-31 2019-01-29 Flex Ltd. Busbar-less solar cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712567A (en) * 1980-06-02 1982-01-22 Exxon Research Engineering Co Solar battery module and method of increasing power of same
JP2003037281A (ja) * 2001-05-17 2003-02-07 Canon Inc 被覆材及び光起電力素子
JP2005019901A (ja) * 2003-06-27 2005-01-20 Sanyo Electric Co Ltd 太陽電池モジュール

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062698A (en) * 1976-11-03 1977-12-13 International Business Machines Corporation Photoelectrical converter
US4321417A (en) * 1978-06-30 1982-03-23 Exxon Research & Engineering Co. Solar cell modules
JPS61226972A (ja) * 1985-04-01 1986-10-08 Hitachi Ltd 光電変換装置
JP3162398B2 (ja) * 1992-11-27 2001-04-25 康博 小池 光散乱導光装置
JPH09260696A (ja) * 1996-03-19 1997-10-03 Daido Hoxan Inc 太陽電池
EP2320477A4 (en) * 2008-08-22 2012-08-08 Sanyo Electric Co SOLAR CELL MODULE, SOLAR CELL AND METHOD FOR PRODUCING A SOLAR CELL MODULE
TWI430462B (zh) * 2008-12-12 2014-03-11 Ind Tech Res Inst 封裝材料、矽晶太陽光電模組及薄膜太陽光電模組
JP5147754B2 (ja) 2009-02-19 2013-02-20 三洋電機株式会社 太陽電池モジュール
JP5842166B2 (ja) * 2010-06-25 2016-01-13 パナソニックIpマネジメント株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2012069566A (ja) * 2010-09-21 2012-04-05 Mitsubishi Electric Corp 薄膜太陽電池の製造方法
JP5643620B2 (ja) * 2010-11-29 2014-12-17 デクセリアルズ株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712567A (en) * 1980-06-02 1982-01-22 Exxon Research Engineering Co Solar battery module and method of increasing power of same
JP2003037281A (ja) * 2001-05-17 2003-02-07 Canon Inc 被覆材及び光起電力素子
JP2005019901A (ja) * 2003-06-27 2005-01-20 Sanyo Electric Co Ltd 太陽電池モジュール

Also Published As

Publication number Publication date
US20160190356A1 (en) 2016-06-30
US10700224B2 (en) 2020-06-30
JPWO2015045243A1 (ja) 2017-03-09
DE112014004490T5 (de) 2016-09-01
US9991404B2 (en) 2018-06-05
US20180254358A1 (en) 2018-09-06
JP6361935B2 (ja) 2018-07-25

Similar Documents

Publication Publication Date Title
JP5874011B2 (ja) 太陽電池及び太陽電池モジュール
TWI495124B (zh) 太陽能電池及太陽能電池模組
US20180013025A1 (en) Solar cell module
JP6311999B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP5084133B2 (ja) 光起電力素子、光起電力モジュールおよび光起電力モジュールの製造方法
JP6241763B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP6361935B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
US20150059829A1 (en) Solar cell module, solar cell and method of manufacturing the same
JP6124166B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP6249368B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP6414550B2 (ja) 太陽電池セルおよび太陽電池セルの製造方法
JP6414704B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
EP2980859B1 (en) Solar cell module
JP6429032B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP6771200B2 (ja) 太陽電池モジュール
JP5906422B2 (ja) 太陽電池及び太陽電池モジュール
JP6731660B2 (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538850

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014004490

Country of ref document: DE

Ref document number: 1120140044903

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847248

Country of ref document: EP

Kind code of ref document: A1