WO2015043994A1 - Ermittlung eines stromnulldurchgangs eines wechselstroms - Google Patents

Ermittlung eines stromnulldurchgangs eines wechselstroms Download PDF

Info

Publication number
WO2015043994A1
WO2015043994A1 PCT/EP2014/069586 EP2014069586W WO2015043994A1 WO 2015043994 A1 WO2015043994 A1 WO 2015043994A1 EP 2014069586 W EP2014069586 W EP 2014069586W WO 2015043994 A1 WO2015043994 A1 WO 2015043994A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
capacitor
burden
circuit arrangement
alternating current
Prior art date
Application number
PCT/EP2014/069586
Other languages
English (en)
French (fr)
Inventor
Manuel Blum
Thomas Komma
Mirjam Mantel
Monika POEBL
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US15/024,145 priority Critical patent/US10232721B2/en
Priority to EP14771244.2A priority patent/EP3025421A1/de
Publication of WO2015043994A1 publication Critical patent/WO2015043994A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a circuit arrangement for determining a current zero crossing of an alternating current, with a load to be traversed by the alternating current and an evaluation unit connected to the load for evaluating an electrical voltage formed at the load through which the alternating current flows and for determining the current zero crossings ,
  • the invention further relates to a Sen ⁇ judge with a DC link capacitor, with at least one electronic, connected to the DC link capacitor half-bridge module that provides a connection for connecting a coil for generating an alternating magnetic field, with a clock for driving the half-bridge module and with a circuit arrangement for determining a current zero crossing of an alternating current.
  • the invention relates to a charging station for an electrically driven vehicle, with a connection for an electrical energy source and a charging unit for a wireless power engineering coupling of the electrically driven vehicle by means of a magnetic alternating ⁇ the.
  • the invention also relates to a method for determining a current zero crossing of a Alternating current, wherein an electrical voltage formed at a load through which the alternating current flows are evaluated by means of an evaluation unit and the current zero crossings are determined.
  • Circuit arrangements of the generic type are known in principle and are often on drives of any kind, in particular inverters, used to ensure the operation of the converter or exchange Rich ⁇ ⁇ ters, determination, contemporary. For this purpose, it is necessary to know current characteristics, in particular of the output currents of the converter or inverter. An important parameter is the detection of a current zero passage at an output current of the inverter or inverter ⁇ .
  • Inverter of the generic type and processes for de- ren operation is also basically known in ⁇ play, from DE 10 2008 027 126 Al.
  • Inverters are a form of energy converter, by means of which a
  • inverters are used in the form of so-called static power converter, that is, to have unlike dynamic energy converter no mecha nically ⁇ movable, in particular rotatable parts for the purpose of energy conversion.
  • Inverters of the generic type as static energy converters are generally designed as clocked electronic energy converters and for this purpose have at least one half-bridge module by means of which an electrical DC voltage provided at a DC link capacitor of a DC link can be converted into an electrical AC voltage.
  • the half-bridge module two in Se ⁇ rie connected semiconductor switches which are operated by means of a clock in the clock operation, so that in ge ⁇ wünschter, the AC voltage to a center terminal of the half-bridge module, by an electrical junction of the two semiconductor switches of the Halbmaschinenmo ⁇ is formed is provided.
  • Such a circuit topology is also called a half-bridge circuit.
  • Such an inverter is therefore designed for a so-called single-phase operation.
  • a powerful variant of such an inverter has two parallel-connected half-bridge modules, whereby the height of the generated alternating voltage can be substantially doubled.
  • the Halbschulnmodu ⁇ le are controlled according to complementary.
  • Such a circuit topology is also called a full-bridge circuit.
  • inverter in particular for the production of a three-phase alternating voltage network, in a ⁇ set, it being provided for each of the AC voltage phases at least one half-bridge module.
  • Such a circuit topology is also called a half-bridge circuit.
  • the inverter may of course also comprise a pair of half-bridge modules for each phase, to provide ⁇ for each phase of the circuit topology of a full bridge circuit.
  • Inverters of the generic type are often used in charging stations, which are used for wireless energy technology coupling an electrically driven vehicle for the purpose of charging an electrical energy storage of the electrically driven vehicle. It is made a wireless ener ⁇ gietechnische coupling which avoids an expensive me chanical ⁇ connection via cable.
  • each ⁇ wells a coil arrangement provided charging station and onboard usually disposed during the loading operation opposite to each other and enable the energy-technical coupling using a magneti ⁇ rule alternating field.
  • Such an arrangement is known, for example, from KR 10 2012 0 016 521 A.
  • the disclosed there circuit detects the falling edge of the current by means of a differentiator and ver ⁇ compares them with a switch-off signal for semiconductor switches ⁇ a half-bridge module of the inverter.
  • a possible harmonics sinusoidal current waveform is required.
  • no interference may be superimposed.
  • these problems lead to the fact that the current zero crossings are not recognized with sufficient accuracy and thus an insufficient control of the inverter is the result.
  • Energy-technical coupling in the sense of the invention is a coupling for the purpose of transmitting energy, which makes it possible to transmit energy from an energy source to an energy sink, at least unidirectionally.
  • the energy source may be, for example a public power grid, an electrical generator, a solar cell, a fuel cell ⁇ , combinations thereof, and / or the like.
  • the energy sink may be, for example, a drive of the electrically driven vehicle, in particular an electric machine of the drive device and / or an electrical energy store of the drive device, for example an accumulator or the like. But it can also be provided a bidirectional energy transfer, that is, an energy transfer alternately in both directions.
  • this purpose is served by the charging station, which draws its energy, which is to be transmitted to the electrically driven vehicle, from an energy source to which it is electrically connected connected. But it can also be provided a bidirectional energy transfer, that is, an energy transfer alternately in both directions.
  • This purpose is served inter alia, the loading station, obtains its energy to be transmitted to the electric automobile by an energy source, to which it is electrically ⁇ closed.
  • Wireless energy-technical coupling means that between the charging station and the electrically driven vehicle no mechanical connection needs to be provided for producing an electrical coupling.
  • the production of an electrical connection by means of a cable can be avoided.
  • the energy-technical coupling takes place essentially solely on the basis of an energy field, preferably an alternating magnetic field.
  • the charging station is thus adapted to a corresponding energy field, especially an alternating magnetic field to generate ⁇ .
  • On the vehicle side is correspondingly vorgese ⁇ hen that such energy field or magneti ⁇ ULTRASONIC alternating field can be detected and energy for the intended operation of the electrically powered vehicle is recovered therefrom.
  • the energy is converted by means of a charging device ⁇ into an electric energy, which can then be stored in an energy storage of the vehicle for its intended operation so ⁇ preferably.
  • the energy-technical coupling thus essentially serves the transmission of energy and not primarily the transmission of information. Accordingly, the means for guidance are designed through ⁇ the invention for a correspondingly high power throughput, unlike with a wireless communication ⁇ compound.
  • the burden be measured current derived from the alternating current or a current derived therefrom souströmbaren capacitor and the evaluation unit is adapted to take into account a caused by the capacitor phase shift in determining the current zero crossings.
  • a capacitor is used as a burden and by means of the evaluation unit a phase shift caused by the capacitor is taken into account when determining the current zero crossings.
  • the invention utilizes a burden to the capacitor, which - in contrast to DE 10 2008 027 126 AI - provides an integrated self ⁇ economy for the alternating current so that disturbances that are usually high-frequency nature can be suppressed.
  • the condenser causes a phase shift between the alternating current flowing through it and an electrical voltage which is caused thereby on the capacitor, which is reversed in the further treatment by means of the evaluation unit.
  • the capacitor is preferably a measuring capacitor with a very low tolerance and the lowest possible loss factor, in order to enable a precise determination of the current zero crossings of the alternating current. Due to the ⁇ ser properties, the determination of the current zero crossings of the alternating current ⁇ can be done much more precise and interference-proof by means of the circuit arrangement of the invention. In particular, one caused by a used in the prior art Dif ⁇ ferenzierglied gain of interference can be avoided.
  • the capacitor enables smoothing of the alternating current superimposed by interference signals.
  • the circuit arrangement of the invention has a constant phase shift between current and measurement voltage of substantially 90 degrees. Due to the fact that this voltage shift is constant, taking into account this fact, the determination of the current zero crossings of the alternating current can be very accurate. To For this purpose, a suitable compensation is provided by the evaluation unit.
  • a further aspect of the invention provides that the load comprise a current transformer, the primary side from the alternating current flow through ⁇ and is connected to the secondary side of the capacitor.
  • the current transformer can be designed as a conventional transformer for the purpose of Stromwandeins. It provides at its secondary-side terminals a current that corresponds to the primary-side alternating current corresponding to the number of turns.
  • the current ⁇ converter thus provides the secondary side, the measuring current, which is substantially proportional to the alternating current and flows through the condenser. The resulting at the capacitor thereby AC voltage is then again - as before - the evaluation unit for determining the current zero crossings supplied ⁇ leads.
  • the evaluation circuit has an amplification unit, in particular a comparator.
  • the linear amplification unit that provided on the capacitor due to the alternating current of the measuring current or voltage signal can be introduced ⁇ ver ⁇ strengthening in the desired manner and ge to a desired electrical potential.
  • the amplification unit may be provided to adapt the voltage signal of the capacitor to a conversion range for an analog-to-digital converter. This allows a high resolution of the analog-to-digital conversion can be achieved.
  • the amplification unit may be formed as playing at ⁇ by a semiconductor amplifier based on a transistor circuit or by a correspondingly suitable interconnected operational amplifiers. For potential matching, it may be provided that the electrical voltage supplied to the capacitor via a head Pelkondensator the amplifier unit is supplied.
  • the Kop ⁇ pelkondensator is preferably chosen in terms of its capacity so that it does not affect the evaluation substantially.
  • the amplifier is formed by a comparator.
  • the load provided by means of the alternating electric voltage can be directly converted into a di ⁇ gitales signal which can be fed to a digital controller. In this case, an analog-to-digital conversion is not required.
  • the Verstär ⁇ kung unit output side includes a low pass filter.
  • the low-pass filter it is possible to filter further unwanted interference signals.
  • the evaluation can be further improved by means of the evaluation unit.
  • the evaluation unit comprises a digital processing unit for digitizing and evaluating the electrical voltage formed at the load.
  • the digital processing unit may for this purpose include, for example, the aforementioned analog-digital converter.
  • the digital processing unit a computer unit, a gate array (ASIC), combinations thereof or the like, which is adapted to that caused by the capacitor to take into account phases ⁇ shift when detecting the current zero crossings, and in particular to make this reversed.
  • a generic inverter is further proposed, which is characterized in that the circuit arrangement is formed according to the invention.
  • the advantages associated with the circuit arrangement can be realized in the inverter, whereby an operation with greater reliability can be achieved.
  • the use of the circuit arrangement makes it possible to reliably operate the inverter even at a high operating frequency.
  • a generic La ⁇ destation is proposed with the invention, which is characterized in particular by the fact that the charging unit comprises an inverter according to the invention as well as a ⁇ connected to the inverter coil for generating the alternating magnetic field.
  • the method according to another aspect of the invention proposes that the electrical voltage formed on the capacitor be digitized and the phase shift be digitally reversed.
  • this includes a computer unit of the evaluation unit, by means of which the corresponding measures can be realized.
  • the computer unit to a Rechnerprogrammpro ⁇ domestic product, the program code portions which toughen the computer unit to perform the method of the invention.
  • FIG 2 is a diagram with a schematic representation of graphs in a graph representing the coil current according to FIG 1, a second graph, a Wech ⁇ selschreib by a capacitor according to a The invention formed burden and a third graph of a square wave voltage formed here,
  • FIG. 3 shows a schematic block diagram view of a
  • FIG 4 shows a diagram representing a series of Signalzeitverläu ⁇ fen, different signal processing steps ⁇ a digital signal processing according to a flowchart of FIG 5, and
  • FIG. 1 shows a diagram with a schematic signal curve of an inverter output voltage 16 and of a coil current 14 of a coil connected to the inverter. These elements are not shown in the FIGN.
  • the time axis 12 sets the time in ys.
  • the ordinate 10 indicates normalized values for the inverter voltage 16 and the coil current 14. It can be seen from the diagram according to FIG. 1 that the coil current 14 is offset in phase with respect to the alternating voltage 16 of the inverter.
  • FIG. 2 shows a second diagram likewise with an abscissa 12 as the time axis and an ordinate 10 with standardized values as in FIG. 1.
  • the coil current 14 is again shown with a graph.
  • a second graph shows phase-shifted to graphene 14 an AC voltage 18 to a capacitor 30 according to the invention, which is part of a burden 26 (FIG 3).
  • FIG 3 shows a burden 26
  • both the coil current 14 and the electrical voltage see 18 substantially have a sinusoidal shape, but the coil current 14 is superimposed by a disturbance.
  • the electrical voltage 18 is substantially unaffected with respect to this disturbance.
  • a square-wave voltage formed from the electrical voltage 18 shown This serves in the further course of determining the current zero crossings or the phase difference between the coil current 14 and the inverter output voltage 16.
  • FIG. 3 shows a schematic block diagram representation of a circuit arrangement 22 according to the invention. It can be seen that the circuit arrangement 22 is connected to an alternating current generator 24, which supplies the alternating current 14. In the present case, the alternator is formed by the inverter, which allows the coil current 14.
  • the coil current 14 flows through a burden 26, which in turn is connected to an evaluation unit 58.
  • the burden 26 provides for this purpose a current transformer 28, which is flowed through on the primary side of the coil current 14.
  • a capacitor 30 is connected to the current transformer 28 according to the invention, to which an electrical voltage 18 is formed. The electrical voltage 18 is then the
  • Evaluation unit 58 for further signal processing in particular ⁇ sondereterrorismge ⁇ represents the determination of the current zero crossings.
  • the evaluation unit a Verstär ⁇ kung unit 48, which is formed by an operational amplifier, which is connected to the corresponding electronic components, namely, a coupling capacitor 34, and electrical resistors 40 to 46 to achieve a desired encryption strengthening and Signal Conditioning to be able to.
  • the amplification unit 48 operates at maximum amplification, that is, as a comparator, so that a rectangular voltage is formed from the substantially sinusoidal electrical voltage 18 as a digital signal, from which a further electrical voltage 20 is formed in the further course , Essentially, the electric resistors 40 to 46 serve this purpose.
  • two series-connected diodes 36, 38 are provided, which naleingang, which is connected via the coupling capacitor 34, to limit the positive or negative operating clamping ⁇ potential of the amplification unit 48.
  • On the output side of the amplifying unit 48 is connected downstream of a polymer formed from elec trical ⁇ resistors 50, 52 and a capacitor 54 filters, which in the present realizes a low-pass function ⁇ and as an output voltage which provides previously said filtered square wave voltage 20th DIE se is supplied to a digital processing unit 56 of the Ausireein ⁇ standardized 58 which is embodied here as a field-programmable gate array (FPGA).
  • FPGA field-programmable gate array
  • FIG. 5 shows a schematic view of a detail of a signal flow diagram of the digital processing unit 56.
  • FIG. 4 shows the corresponding signal curves belonging to the flowchart of FIG. 5.
  • FIG. 4 the time chart of the inverter voltage 16, the coil current 14 and the electrical voltage 18 at the capacitor 30 is shown in the uppermost diagram labeled 1.
  • FIG. 4 One possibility for evaluating the areas consists of counting by means of a help clock.
  • a counter reading for determining the duration between a zero crossing of the inverter voltage 16 and the zero crossing of the coil current 14 is shown shifted by 90 degrees.
  • the fourth diagram of FIG. 4 that is to say, the lowest diagram, shows a count of the inverter output voltage 16. From these variables, the current inverter frequency and the existing phase shift between the inverter voltage 16 and the coil current 14 can be derived. From the variables tZCC90 and T / 2, the current phase position can be determined independently of frequency. This is done with a signal processing according to FIG. 5

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)

Abstract

Die Erfindung betrifft eine Schaltungsanordnung (22) zur Ermittlung eines Stromnulldurchgangs eines Wechselstromes (14), mit einer vom Wechselstrom (14) durchströmbaren Bürde (26) sowie einer an die Bürde (26) angeschlossenen Auswerteeinheit (58) zum Auswerten einer an der vom Wechselstrom (14) durchströmten Bürde (26) ausgebildeten elektrischen Spannung (32) und zum Ermitteln der Stromnulldurchgänge, dadurch gekennzeichnet, dass die Bürde (26) einen vom Wechselstrom (14) oder einem hiervon abgeleiteten Messstrom durchströmbaren Kondensator (30) aufweist und die Auswerteeinheit (58) dazu eingerichtet ist, eine durch den Kondensator (30) bewirkte Phasenverschiebung beim Ermitteln der Stromnulldurchgänge zu berücksichtigen.

Description

Beschreibung
Ermittlung eines Stromnulldurchgangs eines Wechselstroms Die vorliegende Erfindung betrifft eine Schaltungsanordnung zur Ermittlung eines Stromnulldurchgangs eines Wechselstroms, mit einer vom Wechselstrom durchströmbaren Bürde sowie einer an die Bürde angeschlossenen Auswerteeinheit um Auswerten einer an der vom Wechselstrom durchströmten Bürde ausgebilde- ten elektrischen Spannung und zum Ermitteln der Stromnulldurchgänge. Die Erfindung betrifft weiterhin einen Wechsel¬ richter mit einem Zwischenkreiskondensator, mit wenigstens einem elektronischen, an dem Zwischenkreiskondensator angeschlossenen Halbbrückenmodul, das einen Anschluss zum An- schließen einer Spule zum Erzeugen eines magnetischen Wechselfeldes bereitstellt, mit einem Taktgeber zum Ansteuern des Halbbrückenmoduls sowie mit einer Schaltungsanordnung zur Ermittlung eines Stromnulldurchgangs eines Wechselstromes. Weiterhin betrifft die Erfindung eine Ladestation für ein elektrisch antreibbares Fahrzeug, mit einem Anschluss für eine elektrische Energiequelle sowie einer Ladeeinheit für eine drahtlose energietechnische Kopplung des elektrisch antreibbaren Fahrzeugs mittels eines magnetischen Wechselfel¬ des. Schließlich betrifft die Erfindung auch ein Verfahren zur Ermittlung eines Stromnulldurchgangs eines Wechselstroms, wobei eine an einer vom Wechselstrom durchströmten Bürde ausgebildete elektrische Spannung mittels einer Auswerteeinheit ausgewertet und die Stromnulldurchgänge ermittelt werden. Schaltungsanordnungen der gattungsgemäßen Art sind dem Grunde nach bekannt und werden häufig bei Umrichtern jeglicher Art, insbesondere Wechselrichtern, eingesetzt, um den bestimmungs¬ gemäßen Betrieb des Umrichters beziehungsweise Wechselrich¬ ters gewährleisten zu können. Zu diesem Zweck ist es nämlich erforderlich, Stromverläufe, insbesondere von Ausgangsströmen des Umrichters beziehungsweise Wechselrichters, zu kennen. Ein wichtiger Parameter ist die Erkennung eines Stromnull- durchgangs bei einem Ausgangsstrom des Umrichters beziehungs¬ weise Wechselrichters.
Wechselrichter der gattungsgemäßen Art sowie Verfahren zu de- ren Betrieb sind ebenfalls dem Grunde nach bekannt, bei¬ spielsweise aus der DE 10 2008 027 126 AI. Wechselrichter sind eine Form eines Energiewandlers, mittels dem eine
Gleichspannung in eine Wechselspannung, insbesondere eine einphasige oder auch eine dreiphasige Wechselspannung, gewan- delt werden kann. Heutzutage werden Wechselrichter in Form sogenannter statischer Energiewandler eingesetzt, das heißt, dass sie anders als dynamische Energiewandler keine mecha¬ nisch bewegbaren, insbesondere rotierbaren Teile für den Zweck der Energiewandlung aufweisen. Wechselrichter der gat- tungsgemäßen Art als statische Energiewandler sind in der Regel als getaktete elektronische Energiewandler ausgebildet und weisen zu diesem Zweck wenigstens ein Halbbrückenmodul auf, mittels welchem eine an einem Zwischenkreiskondensator eines Zwischenkreises bereitgestellte elektrische Gleichspan- nung in eine elektrische Wechselspannung umgewandelt werden kann. Zu diesem Zweck weist das Halbbrückenmodul zwei in Se¬ rie geschaltete Halbleiterschalter auf, die mittels eines Taktgebers im Taktbetrieb betrieben werden, so dass in ge¬ wünschter Weise die Wechselspannung an einem Mittelanschluss des Halbbrückenmoduls, der durch einen elektrischen Verbindungspunkt der beiden Halbleiterschalter des Halbbrückenmo¬ duls gebildet ist, bereitgestellt wird. Eine solche Schal- tungstopologie wird auch Halbbrückenschaltung genannt. Ein solcher Wechselrichter ist demnach für einen sogenannten ein- phasigen Betrieb ausgelegt.
Eine leistungsstarke Variante eines solchen Wechselrichters weist zwei parallelgeschaltete Halbbrückenmodule auf, wodurch sich die Höhe der erzeugten Wechselspannung im Wesentlichen verdoppeln lässt. Zu diesem Zweck werden die Halbbrückenmodu¬ le entsprechend komplementär gesteuert. Eine solche Schal- tungstopologie wird auch Vollbrückenschaltung genannt. Darüber hinaus sind Wechselrichter, insbesondere für die Erzeugung eines dreiphasigen Wechselspannungsnetzes, im Ein¬ satz, wobei für jede der Wechselspannungsphasen wenigstens ein Halbbrückenmodul vorgesehen ist. Eine solche Schaltungs- topologie wird auch Halbbrückenschaltung genannt. Darüber hinaus kann der Wechselrichter natürlich für jede Phase auch ein Paar von Halbbrückenmodulen aufweisen, um für jede Phase die Schaltungstopologie einer Vollbrückenschaltung bereit¬ stellen zu können.
Wechselrichter der gattungsgemäßen Art werden häufig in Ladestationen eingesetzt, die zum drahtlosen energietechnischen Koppeln eines elektrisch antreibbaren Fahrzeugs zum Zwecke des Ladens eines elektrischen Energiespeichers des elektrisch antreibbaren Fahrzeugs dienen. Es wird eine drahtlose ener¬ gietechnische Kopplung hergestellt, die eine aufwendige me¬ chanische Anbindung mittels Kabel vermeidet. Zu diesem Zweck sind ladestationsseitig und fahrzeugseitig in der Regel je¬ weils eine Spulenanordnung vorgesehen, die während des Lade- Vorgangs gegenüberliegend zueinander angeordnet sind und die eine energietechnische Kopplung unter Nutzung eines magneti¬ schen Wechselfeldes ermöglichen. Eine solche Anordnung ist beispielsweise aus der KR 10 2012 0 016 521 A bekannt. Um ein geeignetes magnetisches Wechselfeld mit der Ladestati¬ on erzeugen zu können, weist diese neben einer hierfür geeigneten Spule einen Wechselrichter auf, der an die Spule angeschlossen ist und die Spule mit einem entsprechenden Wechselstrom beaufschlagt. Für den zuverlässigen Betrieb der Lade- Station, insbesondere des Wechselrichters, ist es erforder¬ lich, die Stromnulldurchgänge zu kennen. Zu diesem Zweck of¬ fenbart beispielsweise die DE 10 2008 027 126 AI einen Strom¬ sensor, der mit einer Schaltungsanordnung verbunden ist, die eine Stromauswertung über ein differenzierendes Glied ermög- licht. Die dort offenbarte Schaltung erkennt die fallende Flanke des Stroms mittels eines Differenzierers und ver¬ gleicht diese mit einem Ausschaltsignal für einen Halbleiter¬ schalter eines Halbbrückenmoduls des Wechselrichters. Damit diese Schaltung zuverlässig betrieben werden kann, ist ein möglichst oberschwingungsfreier sinusförmiger Stromverlauf erforderlich. Insbesondere dürfen keine Störungen überlagert sein. Im praktischen Betrieb führen diese Probleme dazu, dass die Stromnulldurchgänge nicht hinreichend genau genug erkannt werden und so eine ungenügende Steuerung des Wechselrichters die Folge ist.
Es ist also die Aufgabe der Erfindung, die Steuerung für einen Wechselrichter zu verbessern.
Als Lösung wird mit der Erfindung eine Schaltungsanordnung gemäß dem unabhängigen Anspruch 1 vorgeschlagen. Wechselrich- terseitig wird ein Wechselrichter gemäß dem weiteren unabhän- gigen Anspruch 6 vorgeschlagen. Ladestationsseitig wird eine Ladestation gemäß dem weiteren unabhängigen Anspruch 7 vorgeschlagen. Schließlich wird verfahrensseitig ein Verfahren gemäß dem weiteren unabhängigen Anspruch 8 vorgeschlagen. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich durch Merkmale und Eigenschaften der abhängigen Ansprüche.
Energietechnisches Koppeln im Sinne der Erfindung ist eine Kopplung zum Zwecke der Übertragung von Energie, die es ermöglicht, zumindest unidirektional Energie von einer Energie- quelle zu einer Energiesenke zu übertragen. Die Energiequelle kann beispielsweise ein öffentliches Energieversorgungsnetz, ein elektrischer Generator, eine Solarzelle, eine Brennstoff¬ zelle, Kombinationen hiervon und/oder dergleichen sein. Die Energiesenke kann beispielsweise ein Antrieb des elektrisch antreibbaren Fahrzeugs sein, insbesondere eine elektrische Maschine der Antriebsvorrichtung und/oder ein elektrischer Energiespeicher der Antriebsvorrichtung, beispielsweise ein Akkumulator oder dergleichen. Es kann aber auch eine bidirektionale Energieübertragung vorgesehen sein, das heißt, eine Energieübertragung wechselweise in beide Richtungen. Diesem Zweck dient unter anderem die Ladestation, die ihre Energie, die an das elektrisch antreibbare Fahrzeug übertragen werden soll, von einer Energiequelle bezieht, an die sie elektrisch angeschlossen ist. Es kann aber auch eine bidirektionale Energieübertragung vorgesehen sein, das heißt, eine Energieübertragung wechselweise in beide Richtungen. Diesem Zweck dient unter anderem die Ladestation, die ihre Energie, die an das elektrisch antreibbare Fahrzeug übertragen werden soll, von einer Energiequelle bezieht, an die sie elektrisch ange¬ schlossen ist.
Drahtloses energietechnisches Koppeln im Sinne der Erfindung meint, dass zwischen der Ladestation und dem elektrisch antreibbaren Fahrzeug keine mechanische Verbindung zum Herstellen einer elektrischen Kopplung vorgesehen zu werden braucht. Insbesondere kann das Herstellen einer elektrischen Verbindung mittels eines Kabels vermieden werden. Stattdessen erfolgt die energietechnische Kopplung im Wesentlichen allein aufgrund eines Energiefeldes, vorzugsweise eines magnetischen Wechselfeldes .
Die Ladestation ist deshalb dazu eingerichtet, ein entspre- chendes Energiefeld, insbesondere ein magnetisches Wechsel¬ feld, zu erzeugen. Fahrzeugseitig ist entsprechend vorgese¬ hen, dass ein derartiges Energiefeld beziehungsweise magneti¬ sches Wechselfeld erfasst werden kann und daraus Energie für den bestimmungsgemäßen Betrieb des elektrisch antreibbaren Fahrzeugs gewonnen wird. Die Energie wird mittels einer Lade¬ einrichtung in eine elektrische Energie umgewandelt, die so¬ dann vorzugsweise in einem Energiespeicher des Fahrzeugs für dessen bestimmungsgemäßen Betrieb gespeichert werden kann. Die energietechnische Kopplung dient also im Wesentlichen dem Übertragen von Energie und nicht zuvorderst dem Übertragen von Informationen. Dementsprechend sind die Mittel zur Durch¬ führung der Erfindung für einen entsprechend hohen Leistungsdurchsatz im Unterschied bei einer drahtlosen Kommunikations¬ verbindung ausgelegt.
Mit der Erfindung wird bei einer gattungsgemäßen Schaltungsanordnung insbesondere vorgeschlagen, dass die Bürde einen vom Wechselstrom oder einem hiervon abgeleiteten Messstrom durchströmbaren Kondensator aufweist und die Auswerteeinheit dazu eingerichtet ist, eine durch den Kondensator bewirkte Phasenverschiebung beim Ermitteln der Stromnulldurchgänge zu berücksichtigen. Entsprechend wird für das gattungsgemäße Verfahren insbesondere vorgeschlagen, dass als Bürde ein Kondensator verwendet wird und mittels der Auswerteeinheit eine durch den Kondensator bewirkte Phasenverschiebung beim Ermitteln der Stromnulldurchgänge berücksichtigt wird. Die Erfindung nutzt als Bürde den Kondensator, der - im Gegensatz zur DE 10 2008 027 126 AI - eine integrierende Eigen¬ schaft für den Wechselstrom bereitstellt, so dass Störgrößen, die in der Regel hochfrequenter Natur sind, unterdrückt werden können. Zugleich bewirkt der Kondensator eine Phasenver- Schiebung zwischen dem ihn durchströmenden Wechselstrom und einer hierdurch bewirkten elektrischen Spannung am Kondensator, die bei der weiteren Behandlung mittels der Auswerteeinheit rückgängig gemacht wird. Der Kondensator ist vorzugsweise ein Messkondensator mit einer sehr geringen Toleranz und einem möglichst geringen Verlustfaktor, um ein genaues Ermitteln der Stromnulldurchgänge des Wechselstroms ermöglichen zu können. Aufgrund die¬ ser Eigenschaften kann mittels der Schaltungsanordnung der Erfindung die Ermittlung der Stromnulldurchgänge des Wechsel¬ stroms erheblich genauer und störsicherer erfolgen. Insbesondere eine durch ein im Stand der Technik verwendetes Dif¬ ferenzierglied bewirkte Verstärkung von Störgrößen kann vermieden werden. Der Kondensator ermöglicht eine Glättung des von Störsignalen überlagerten Wechselstromes. Im Gegensatz zu weiter üblichen Filterschaltungen auf Basis von Widerstands- Kondensatoren-Filtergliedern weist die Schaltungsanordnung der Erfindung eine konstante Phasenverschiebung zwischen Strom und Messspannung von im Wesentlichen 90 Grad auf. Da- durch, dass diese Spannungsverschiebung konstant ist, kann unter Berücksichtigung dieses Sachverhalts die Ermittlung der Stromnulldurchgänge des Wechselstroms sehr genau erfolgen. Zu diesem Zweck ist eine geeignete Kompensation durch die Auswerteeinheit vorgesehen.
Ein weiterer Aspekt der Erfindung sieht vor, dass die Bürde einen Stromwandler aufweist, der primärseitig vom Wechsel¬ strom durchströmbar ist und an dem sekundärseitig der Kondensator angeschlossen ist. Der Stromwandler kann als konventioneller Transformator zum Zwecke des Stromwandeins ausgebildet sein. Er stellt an seinen sekundärseitigen Anschlüssen einen Strom bereit, der dem primärseitigen Wechselstrom entsprechend des Windungszahlenverhältnisses entspricht. Dadurch kann der Messaufbau hinsichtlich der Anforderungen bezüglich eines Leistungsdurchsatzes reduziert sein und den Einsatz hochgenauer Bauelemente erlauben. In der Regel sind solche Bauelemente nicht für große Leistungen ausgelegt. Der Strom¬ wandler stellt sekundärseitig also den Messstrom bereit, der im Wesentlichen proportional zum Wechselstrom ist und den Kondensator durchströmt. Die am Kondensator hierdurch entstehende Wechselspannung wird dann wieder - wie zuvor - der Aus- werteeinheit zur Feststellung der Stromnulldurchgänge zuge¬ führt .
Eine Weiterbildung sieht vor, dass die Auswerteschaltung eine Verstärkungseinheit, insbesondere einen Komparator, aufweist. Mit der linearen Verstärkungseinheit kann das am Kondensator aufgrund des Wechselstromes beziehungsweise des Messstromes bereitgestellte Spannungssignal in gewünschter Weise ver¬ stärkt und auf ein gewünschtes elektrisches Potential ge¬ bracht werden. Beispielsweise kann die Verstärkungseinheit dazu vorgesehen sein, das Spannungssignal des Kondensators an einen Wandlungsbereich für einen Analog-Digital-Wandler anzupassen. Dadurch kann eine hohe Auflösung der Analog-Digital- Wandlung erreicht werden. Die Verstärkungseinheit kann bei¬ spielsweise durch einen Halbleiterverstärker basierend auf einer Transistorschaltung oder auch durch einen entsprechend geeignet verschalteten Operationsverstärker gebildet sein. Zur Potentialanpassung kann vorgesehen sein, dass die am Kondensator bereitgestellte elektrische Spannung über einen Kop- pelkondensator der Verstärkereinheit zugeführt wird. Der Kop¬ pelkondensator ist hinsichtlich seiner Kapazität vorzugsweise derart gewählt, dass er das Auswerten im Wesentlichen nicht beeinflusst. Besonders vorteilhaft ist der Verstärker durch einen Komparator gebildet. Damit kann die mittels der Bürde bereitgestellte elektrische Wechselspannung direkt in ein di¬ gitales Signal umgewandelt werden, welches einer digitalen Steuerung zugeführt werden kann. In diesem Fall ist eine Ana- log-Digital-Wandlung nicht erforderlich.
Eine weitere Ausgestaltung schlägt vor, dass die Verstär¬ kungseinheit ausgangsseitig ein Tiefpassfilter aufweist. Mit dem Tiefpassfilter ist es möglich, weitere unerwünschte Störsignale zu filtern. Hierdurch kann das Auswerten mittels der Auswerteeinheit weiter verbessert werden.
Ein weiterer Aspekt der Erfindung sieht vor, dass die Auswerteeinheit eine Digitalverarbeitungseinheit zum Digitalisieren und Auswerten der an der Bürde ausgebildeten elektrischen Spannung umfasst. Die Digitalverarbeitungseinheit kann zu diesem Zweck beispielsweise den zuvor genannten Analog-Digi- tal-Wandler umfassen. Darüber hinaus kann die Digitalverarbeitungseinheit eine Rechnereinheit, ein Gate-Array (ASIC) , Kombinationen hiervon oder dergleichen aufweisen, die dazu eingerichtet ist, die durch den Kondensator bewirkte Phasen¬ verschiebung beim Ermitteln der Stromnulldurchgänge zu berücksichtigen, insbesondere diese rückgängig zu machen.
Mit der Erfindung wird ferner ein gattungsgemäßer Wechsel- richter vorgeschlagen, der sich dadurch auszeichnet, dass die Schaltungsanordnung gemäß der Erfindung ausgebildet ist. Dadurch können die mit der Schaltungsanordnung verbundenen Vorteile im Wechselrichter realisiert werden, wodurch ein Betrieb mit größerer Zuverlässigkeit erreicht werden kann. Da- rüber hinaus erlaubt es die Nutzung der Schaltungsanordnung, den Wechselrichter auch bei einer hohen Arbeitsfrequenz zuverlässig betreiben zu können. Darüber hinaus wird mit der Erfindung eine gattungsgemäße La¬ destation vorgeschlagen, die sich insbesondere dadurch auszeichnet, dass die Ladeeinheit einen erfindungsgemäßen Wech¬ selrichter sowie eine an den Wechselrichter angeschlossene Spule zum Erzeugen des magnetischen Wechselfeldes aufweist. Dadurch können die mit dem Wechselrichter verbundenen Vorteile auch mit der Ladestation erreicht werden, wodurch deren Betrieb ebenfalls zuverlässiger möglich ist. Schließlich wird mit der Erfindung gemäß einem weiteren Aspekt verfahrensseitig vorgeschlagen, dass die am Kondensator ausgebildete elektrische Spannung digitalisiert wird und die Phasenverschiebung digital rückgängig gemacht wird. Dadurch kann eine zuverlässige und sehr genaue Ermittlung der Strom- nulldurchgänge erreicht werden. Entsprechend ist hierfür eine Rechnereinheit von der Auswerteeinheit umfasst, mittels der die entsprechenden Maßnahmen realisiert werden können. Dementsprechend weist die Rechnereinheit ein Rechnerprogrammpro¬ dukt auf, das Programmcodeabschnitte umfasst, die die Rech- nereinheit dazu ertüchtigen, das Verfahren der Erfindung durchführen zu können.
Weitere Vorteile und Merkmale sind der folgenden Beschreibung eines Ausführungsbeispiels anhand der Figuren zu entnehmen. In den FIG sind gleiche Bauteile und Funktionen mit gleichen Bezugszeichen bezeichnet.
Es zeigen: FIG 1 ein Diagramm mit einer schematisierten, normierten
Darstellung einer Ausgangsspannung eines Wechselrichters sowie eines Spulenstromes einer am Wech¬ selrichter angeschlossenen Spule,
FIG 2 ein Diagramm mit einer schematischen Darstellung von Graphen, bei der ein Graph den Spulenstrom gemäß FIG 1 darstellt, ein zweiter Graph eine Wech¬ selspannung an einer durch einen Kondensator gemäß der Erfindung gebildeten Bürde sowie ein dritter Graph eine hier aus gebildete Rechteckspannung,
FIG 3 in schematischer Prinzipschaltbildansicht eine
Schaltungsanordnung gemäß der Erfindung;
FIG 4 ein Diagramm mit einer Reihe von Signalzeitverläu¬ fen, die unterschiedliche Signalverarbeitungs¬ schritte einer digitalen Signalverarbeitung gemäß einem Flussdiagramm nach FIG 5 darstellen, und
FIG 5 ein schematisches Flussdiagramm für eine digitale
Signalverarbeitung gemäß der Erfindung.
FIG 1 zeigt ein Diagramm mit einem schematischen Signalverlauf einer Wechselrichterausgangsspannung 16 sowie eines Spulenstroms 14 einer an den Wechselrichter angeschlossenen Spu- le . Diese Elemente sind in den FIGN nicht dargestellt. In dem Diagramm sind eine Zeitachse, die Abszisse, mit dem Bezugs¬ zeichen 12 und eine Signalachse, die Ordinate, mit dem Be¬ zugszeichen 10 bezeichnet. Die Zeitachse 12 stellt die Zeit in ys . Die Ordinate 10 gibt normierte Werte für die Wechsel- richterspannung 16 sowie den Spulenstrom 14 an. Aus dem Diagramm gemäß FIG 1 ist ersichtlich, dass der Spulenstrom 14 in der Phase zeitlich versetzt gegenüber der Wechselspannung 16 des Wechselrichters ist. FIG 2 zeigt ein zweites Diagramm ebenfalls mit einer Abszisse 12 als Zeitachse und einer Ordinate 10 mit normierten Werten wie FIG 1. In dem Diagramm der FIG 2 ist wieder der Spulenstrom 14 mit einem Graph dargestellt. Ein zweiter Graph zeigt phasenversetzt zum Graphen 14 eine Wechselspannung 18 an einem Kondensator 30 gemäß der Erfindung, der Bestandteil einer Bürde 26 ist (FIG 3) . Zu erkennen ist, dass zwischen der elektrischen Spannung 18 und dem Spulenstrom 14 eine Phasenverschiebung von etwa 90 Grad besteht. Ferner ist zu erkennen, dass sowohl der Spulenstrom 14 als auch die elektri- sehe Spannung 18 im Wesentlichen eine Sinusform aufweisen, wobei jedoch der Spulenstrom 14 durch eine Störgröße überlagert ist. Die elektrische Spannung 18 ist in Bezug auf diese Störgröße im Wesentlichen nicht beeinflusst. Ferner ist mit dem Graph 20 eine aus der elektrischen Spannung 18 gebildete Rechteckspannung dargestellt. Diese dient im weiteren Verlauf der Ermittlung der Stromnulldurchgänge beziehungsweise der Phasendifferenz zwischen dem Spulenstrom 14 und der Wechsel- richterausgangsspannung 16.
FIG 3 zeigt in schematischer Prinzipschaltbilddarstellung eine Schaltungsanordnung 22 gemäß der Erfindung. Zu erkennen ist, dass die Schaltungsanordnung 22 an einen Wechselstromge- nerator 24 angeschlossen ist, der den Wechselstrom 14 liefert. Vorliegend ist der Wechselstromgenerator durch den Wechselrichter gebildet, der den Spulenstrom 14 ermöglicht.
Der Spulenstrom 14 durchströmt eine Bürde 26, die ihrerseits an eine Auswerteeinheit 58 angeschlossen ist. Die Bürde 26 stellt zu diesem Zweck einen Stromwandler 28 bereit, der pri- märseitig vom Spulenstrom 14 durchströmt wird. Sekundärseitig ist an dem Stromwandler 28 ein Kondensator 30 gemäß der Erfindung angeschlossen, an dem sich eine elektrische Spannung 18 ausbildet. Die elektrische Spannung 18 wird sodann der
Auswerteeinheit 58 für die weitere Signalverarbeitung, insbe¬ sondere die Ermittlung der Stromnulldurchgänge bereitge¬ stellt . Zu diesem Zweck weist die Auswerteeinheit 58 eine Verstär¬ kungseinheit 48 auf, die durch einen Operationsverstärker gebildet ist, der mit entsprechenden elektronischen Bauteilen, nämlich einem Koppelkondensator 34, sowie elektrischen Widerständen 40 bis 46 verschaltet ist, um eine gewünschte Ver- Stärkung und Signalformung erreichen zu können. Vorliegend ist vorgesehen, dass die Verstärkungseinheit 48 mit maximaler Verstärkung arbeitet, das heißt, als Komparator, so dass aus der im Wesentlichen sinusförmigen elektrischen Spannung 18 eine Rechteckspannung als ein digitales Signal bildet wird, aus der im Weiteren Verlauf eine weitere elektrische Spannung 20 gebildet wird. Diesem Zweck dienen im Wesentlichen die elektrischen Widerstände 40 bis 46. Darüber hinaus sind zwei in Serie geschaltete Dioden 36, 38 vorgesehen, die den Sig- naleingang, der über den Koppelkondensator 34 angeschlossen ist, auf das positive beziehungsweise negative Betriebsspan¬ nungspotential der Verstärkungseinheit 48 begrenzen. Ausgangsseitig ist der Verstärkungseinheit 48 ein aus elek¬ trischen Widerständen 50, 52 und einem Kondensator 54 gebildetes Filter nachgeschaltet, welches vorliegend eine Tief¬ passfunktion realisiert und als Ausgangsspannung die zuvor bereits genannte gefilterte Rechteckspannung 20 liefert. Die- se wird einer Digitalverarbeitungseinheit 56 der Auswerteein¬ heit 58 zugeführt, die vorliegend als Field Programmable Gate Array (FPGA) ausgebildet ist. Diese nutzt die elektrische Spannung 20 zur Ermittlung der Stromnulldurchgänge bezie¬ hungsweise der Phasenverschiebung zwischen der Wechselrich- terausgangsspannung 16 und dem Spulenstrom 14.
FIG 5 zeigt in schematischer Ansicht einen Ausschnitt aus einem Signalflussdiagramm der Digitalverarbeitungseinheit 56. FIG 4 zeigt die entsprechenden Signalverläufe zugehörig zum Flussdiagramm der FIG 5.
In FIG 4 ist im mit 1 bezeichneten obersten Diagramm der Zeitverlauf der Wechselrichterspannung 16, des Spulenstroms 14 und der elektrischen Spannung 18 am Kondensator 30 darge- stellt.
In den drei darauffolgenden Diagrammen der FIG 4 sind entsprechende Signal-Zeit-Verläufe von Signalen bezüglich des Flussdiagramms gemäß FIG 5 dargestellt.
Zu erkennen ist, dass im zweiten Diagramm der FIG 4 die aus den entsprechenden Nulldurchgängen der in 1 dargestellten elektrischen Spannungen gewonnenen Signale und deren Verknüpfungen für die Auswerteeinheit 58 dargestellt. Die Signale sind Rechtecksignale. Die Flächen unter den Rechtecksignalen repräsentieren Durchgangszeiten der Wechselrichterspannung 16 und des Spulenstroms 14 und der Verknüpfung der Wechselrich- terspannung 16 und der elektrischen Spannung 18 am Kondensator 30.
Eine Möglichkeit zur Auswertung der Flächen besteht im Zählen mittels eines Hilftaktes. Im dritten Diagramm der FIG 4 ist deshalb ein Zählerstand zur Ermittlung der Dauer zwischen einem Nulldurchgang der Wechselrichterspannung 16 und dem Nulldurchgang des Spulenstromes 14 verschoben um 90 Grad dargestellt. Das vierte Diagramm der FIG 4, das heißt, das un- terste Diagramm, zeigt einen Zählerstand der Wechselrichterausgangsspannung 16. Aus diesen Größen können die aktuelle Wechselrichterfrequenz und die vorhandene Phasenverschiebung zwischen der Wechselrichterspannung 16 und dem Spulenstrom 14 abgeleitet werden. Aus den Größen tZCC90 und T/2 lässt sich die aktuelle Phasenlage frequenzunabhängig ermitteln. Dies erfolgt mit einer Signalverarbeitung gemäß FIG 5.
Das anhand der Figuren erläuterte Ausführungsbeispiel dient lediglich der Erläuterung der Erfindung und ist für diese nicht beschränkend. Selbstverständlich wird der Fachmann bei Bedarf entsprechende Variationen vornehmen, ohne den Kerngedanken der Erfindung zu verlassen.
Natürlich können auch einzelne Merkmale bedarfsgerecht in be- liebiger Weise miteinander kombiniert werden, insbesondere
Merkmale der abhängigen Ansprüche. Darüber hinaus können na¬ türlich auch Vorrichtungsmerkmale durch entsprechende Verfah¬ rensschritte und umgekehrt angegeben sein.

Claims

Patentansprüche
1. Schaltungsanordnung (22) zur Ermittlung eines Stromnulldurchgangs eines Wechselstromes (14), mit einer vom Wechsel- ström (14) durchströmbaren Bürde (26) sowie einer an die Bürde (26) angeschlossenen Auswerteeinheit (58) zum Auswerten einer an der vom Wechselstrom (14) durchströmten Bürde (26) ausgebildeten elektrischen Spannung (32) und zum Ermitteln der Stromnulldurchgänge, dadurch gekennzeichnet, dass
die Bürde (26) einen vom Wechselstrom (14) oder einem hiervon abgeleiteten Messstrom durchströmbaren Kondensator (30) aufweist und die Auswerteeinheit (58) dazu eingerichtet ist, eine durch den Kondensator (30) bewirkte Phasenverschiebung beim Ermitteln der Stromnulldurchgänge zu berücksichtigen.
2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Bürde (26) einen Stromwandler (28) aufweist, der primärseitig vom Wechselstrom (14) durchströmbar ist und an dem sekundärseitig der Kondensator (30) angeschlossen ist.
3. Schaltungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Auswerteschaltung (58) eine Verstär¬ kungseinheit (48), insbesondere einen Komparator, aufweist.
4. Schaltungsanordnung nach Anspruch 3, dadurch gekennzeichnet, dass die Verstärkungseinheit (48) ausgangsseitig ein Tiefpassfilter (50, 52, 54) aufweist.
5. Schaltungsanordnung nach einem der Ansprüche 1 bis 4, da- durch gekennzeichnet, dass die Auswerteeinheit (58) eine Di- gitalverarbeitungseinheit (56) zum Digitalisieren und Auswer¬ ten der an der Bürde (26) ausgebildeten elektrischen Spannung (32) umfasst.
6. Wechselrichter mit einem Zwischenkreiskondensator, mit wenigstens einem elektronischen, an dem Zwischenkreiskondensa¬ tor angeschlossenen Halbbrückenmodul, das einen Anschluss zum Anschließen einer Spule zum Erzeugen eines magnetischen Wech- selfeldes bereitstellt, mit einem Taktgeber zum Ansteuern des Halbbrückenmoduls sowie mit einer Schaltungsanordnung (22) zur Ermittlung eines Stromnulldurchgangs eines Wechselstro¬ mes, dadurch gekennzeichnet, dass die Schaltungsanordnung (22) nach einem der vorhergehenden Ansprüche ausgebildet ist.
7. Ladestation für ein elektrisch antreibbares Fahrzeug, mit einem Anschluss für eine elektrische Energiequelle sowie einer Ladeeinheit für eine drahtlose energietechnische Kopp- lung des elektrisch antreibbaren Fahrzeugs mittels eines mag¬ netischen Wechselfeldes, wobei die Ladeeinheit einen Wechsel¬ richter nach Anspruch 6 sowie eine an den Wechselrichter angeschlossene Spule zum Erzeugen des magnetischen Wechselfel¬ des aufweist.
8. Verfahren zur Ermittlung eines Stromnulldurchgangs eines Wechselstromes (14), wobei eine an einer vom Wechselstrom (14) durchströmten Bürde (26) ausgebildete elektrische Span¬ nung (32) mittels einer Auswerteeinheit (58) ausgewertet und die Stromnulldurchgänge ermittelt werden, dadurch gekenn¬ zeichnet, dass als Bürde (26) ein Kondensator (30) verwendet wird und mittels der Auswerteeinheit (58) eine durch den Kon¬ densator (30) bewirkte Phasenverschiebung beim Ermitteln der Stromnulldurchgänge berücksichtigt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die am Kondensator (30) ausgebildete elektrische Spannung (32) digitalisiert wird und die Phasenverschiebung digital rückgängig gemacht wird.
PCT/EP2014/069586 2013-09-27 2014-09-15 Ermittlung eines stromnulldurchgangs eines wechselstroms WO2015043994A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/024,145 US10232721B2 (en) 2013-09-27 2014-09-15 Determining a zero current of an alternating current
EP14771244.2A EP3025421A1 (de) 2013-09-27 2014-09-15 Ermittlung eines stromnulldurchgangs eines wechselstroms

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013219530.3A DE102013219530A1 (de) 2013-09-27 2013-09-27 Ermittlung eines Stromnulldurchgangs eines Wechselstroms
DE102013219530.3 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015043994A1 true WO2015043994A1 (de) 2015-04-02

Family

ID=51582367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/069586 WO2015043994A1 (de) 2013-09-27 2014-09-15 Ermittlung eines stromnulldurchgangs eines wechselstroms

Country Status (4)

Country Link
US (1) US10232721B2 (de)
EP (1) EP3025421A1 (de)
DE (1) DE102013219530A1 (de)
WO (1) WO2015043994A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10232721B2 (en) 2013-09-27 2019-03-19 Siemens Aktiengesellschaft Determining a zero current of an alternating current

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110751421B (zh) * 2019-10-31 2022-09-13 清华大学 无线充电系统性能评价方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19642871A1 (de) * 1996-10-17 1998-04-30 Reinhausen Maschf Scheubeck Meßschaltung für Spannungsregler
DE102008027126A1 (de) * 2008-06-06 2009-12-10 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Betreiben eines Schwingkreises mit mindestens zwei elektronischen Schaltern und Schwingkreis
CN202600040U (zh) * 2012-05-29 2012-12-12 长沙奥托自动化技术有限公司 精简型交流电流过零点检测及幅值采样装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4328630C2 (de) * 1993-08-20 1995-06-29 Aeg Westinghouse Transport Verfahren zur Detektion des Nulldurchganges der Grundwelle periodischer, Frequenzschwankungen unterworfener Wechselspannungen und Anordnung zur Durchführung des Verfahrens
DE19535271C2 (de) * 1995-09-22 1998-11-19 Werner Hanke Nulldurchgangserkennungsschaltung mit phasenkorrigiertem Filter
DE19757573B4 (de) * 1997-12-23 2006-04-13 Wolf Kusserow Verfahren und Vorrichtung zum Anzeigen der Richtung eines Energieflusses in elektrischen Wechselspannungsnetzen
MX2007009324A (es) * 2005-02-02 2007-11-14 Magnetic Applic Inc Generador de impulso para rectificador controlado.
KR101201292B1 (ko) 2010-08-16 2012-11-14 한국과학기술원 자기유도식 전력전달 장치 및 이를 이용한 이동체
JP5684064B2 (ja) * 2011-07-28 2015-03-11 ブラザー工業株式会社 ゼロクロス検出回路および同検出回路を備えた画像形成装置
DE102013219530A1 (de) 2013-09-27 2015-04-16 Siemens Aktiengesellschaft Ermittlung eines Stromnulldurchgangs eines Wechselstroms

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19642871A1 (de) * 1996-10-17 1998-04-30 Reinhausen Maschf Scheubeck Meßschaltung für Spannungsregler
DE102008027126A1 (de) * 2008-06-06 2009-12-10 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Betreiben eines Schwingkreises mit mindestens zwei elektronischen Schaltern und Schwingkreis
CN202600040U (zh) * 2012-05-29 2012-12-12 长沙奥托自动化技术有限公司 精简型交流电流过零点检测及幅值采样装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10232721B2 (en) 2013-09-27 2019-03-19 Siemens Aktiengesellschaft Determining a zero current of an alternating current

Also Published As

Publication number Publication date
US10232721B2 (en) 2019-03-19
US20160229300A1 (en) 2016-08-11
DE102013219530A1 (de) 2015-04-16
EP3025421A1 (de) 2016-06-01

Similar Documents

Publication Publication Date Title
EP3069158B1 (de) Verfahren und wechselrichter zum bestimmen von kapazitätswerten von kapazitäten einer energieversorgungsanlage
DE102010031615A1 (de) Ladevorrichtung mit galvanischer Trennung und vielfältigen Betriebsarten
DE102013113000A1 (de) Verfahren zum Betreiben eines Wechselrichters und Wechselrichter mit einem Schalter zwischen einem Mittelpunkt eines Gleichspannungszwischenkreises und einem Anschluss für einen Nullleiter eines Wechselstromnetzes
DE3806752A1 (de) Direktantriebsmotoranordnung
EP2651043B1 (de) Vorrichtung und Verfahren zur Übertragung von Energie und Daten zwischen einer Steuerungseinheit und einem Positionsmessgerät
DE102013225243A1 (de) Verfahren zum Übertragen eines minimalen und/oder eines maximalen Wertes eines Batteriesystemparameters und Batteriesystem zur Ausführung eines solchen Verfahrens
DE102004021495A1 (de) Stromsensor
DE102014205652A1 (de) Modulationsverfahren für den Hochsetzsteller-Betrieb eines Gegentaktwandlers
EP1869747A1 (de) Primärteil für eine kontaktlose stromversorgung mit betriebszustandsüberwachung des sekundärteils
WO2015043994A1 (de) Ermittlung eines stromnulldurchgangs eines wechselstroms
DE102007053881A1 (de) Messverfahren und Messvorrichtung zur induktiven Winkel- und/oder Positionsbestimmung
DE102016203150A1 (de) Spannungswandler und elektrisches Antriebssystem mit einem Spannungswandler
EP3538396B1 (de) Ladestation, elektrofahrzeug sowie system mit einer ladestation und einem elektrofahrzeug
DE102012218589B4 (de) Ladevorrichtung zur Ladung des Energiespeichers eines tragbaren elektrischen Geräts
DE102006033046A1 (de) Anordnung und Verfahren zum Versorgen von Verbrauchern in einem Schienenfahrzeug
DE102007036558A1 (de) Übertragung von Informationen zwischen einem elektrischen Verbraucher und einem Betriebsmittel
DE4142342A1 (de) Verfahren und vorrichtung zur digitalen strommessung
DE102011080442A1 (de) Verfahren zum Betrieb einer Drehfeldmaschine
DE102007048439A1 (de) Verfahren zum Erzeugen von PWM-Signalen
WO2020043608A1 (de) Vorrichtung zur induktiven übertragung elektrischer energie von einem primärkreis zu einem sekundärkreis und verfahren zum betreiben einer solchen vorrichtung
EP3929595A1 (de) Energiemessklemme beziehungsweise messschaltung einer energiemessklemme
DE102019204398A1 (de) Vorrichtung und Verfahren zur Ansteuerung von wenigstens zwei Wechselrichtern
EP4165768A2 (de) Messanordnung für einen umrichter und umrichteranordnung
DE102019203776A1 (de) Vorrichtung und Verfahren zur Ansteuerung von wenigstens zwei Wechselrichtern
DE102012104801A1 (de) Stromrichter mit redundanter Zwischenkreisspannungsmessung, sowie Verfahren zum Betreiben eines Stromrichters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14771244

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014771244

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15024145

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE