WO2015043584A1 - Verfahren zur bestimmung des abstandes eines objektes mit-tels eines polarisationsmodulierten sendelichtstrahls - Google Patents

Verfahren zur bestimmung des abstandes eines objektes mit-tels eines polarisationsmodulierten sendelichtstrahls Download PDF

Info

Publication number
WO2015043584A1
WO2015043584A1 PCT/DE2014/200358 DE2014200358W WO2015043584A1 WO 2015043584 A1 WO2015043584 A1 WO 2015043584A1 DE 2014200358 W DE2014200358 W DE 2014200358W WO 2015043584 A1 WO2015043584 A1 WO 2015043584A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
light sources
light
light beam
pulse
Prior art date
Application number
PCT/DE2014/200358
Other languages
English (en)
French (fr)
Inventor
Günter Anton FENDT
Original Assignee
Conti Temic Microelectronic Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conti Temic Microelectronic Gmbh filed Critical Conti Temic Microelectronic Gmbh
Priority to DE112014002787.1T priority Critical patent/DE112014002787B4/de
Priority to US14/904,492 priority patent/US9971025B2/en
Publication of WO2015043584A1 publication Critical patent/WO2015043584A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/499Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using polarisation effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters

Definitions

  • the invention relates to methods for determining the distance of an object by means of a polarization-modulated transmission ⁇ light beam according to the preamble of claim 1.
  • Be propagated today's vehicles with assistance and Safe ⁇ care systems such as. Navigation systems, ACC (adaptive cruise control), lane assistance systems, Traffic Sign ⁇ chenerkennung etc. equipped.
  • the function of many of these systems requires the determination of a distance to an Whether ⁇ ject in the surroundings of the vehicle, for example.
  • known methods such as ultrasound, infrared, laser, radar, lidar, etc., are used, in which a coded signal is usually transmitted and the distance to the object is calculated on the basis of the transit time of the reflected signal.
  • a generic method is described in EP 0911645 Bl, in which by means of an optical device the distance and / or speed of an object by means of a polarization-modulated transmitted light beam are ge ⁇ measure.
  • This optical device comprises a laser diode for generating a polarized along the transmitted light beam whose plane of polarization changes by means of a polarization- ⁇ onsmodulators between a first polarization state and a second polarization state in accordance with a binary control signal.
  • the beam scattered back to the object than Empfangslicht- transmitted light beam is converted by a polarization detector in an amplitude modulated light beam to generate therefrom by means of a detector, an electrical ⁇ signals are available, which with the polarization modulator controlling binary control signal is compared. From the phase shift between these two signals, the distance and / or the speed of the object are determined.
  • Such a method for determining the distance of an object involved by means of a polarization-modulated transmitting light ⁇ beam, wherein the on the object reflected transmission light ⁇ beam as a reception light beam from a Polarisationsanaly- sator received and whose output signal is fed to an evaluation unit for determining the spacing characterized according to the invention characterized in that
  • the polarization analyzer is formed with at least the number of light sources corresponding polarization filters whose polarization plane is in each case a polarization ⁇ level of the light beams adjusted accordingly.
  • the polarization-modulated transmission ⁇ light beam is generated by at least two light beams with this inventive method, which are differently polarized and each operated with a defined pulse-pause pattern.
  • the transmitted light beam is generated which is reflected on an object whose distance is to be measured and received as a received light beam from the polarization analyzer.
  • the most significant advantage of such a method is DA rin that the light output of the polarization-modulated transmitted light beam is kept constant at a high level who can ⁇ and thereby it is ⁇ reichbar a high signal / noise ratio useful.
  • the light sources are operated with disjunctively phase-shifted pulse-pause patterns. As a result, the transmitted light beam only has the polarization planes generated by the respective light sources.
  • At least two light sources are operated with non-disjunctive phase-shifted pulse-pause patterns.
  • the transmit beam has also generated by the superposition of the polarization planes of these two light sources polarization plane on ⁇ addition to the planes of polarization of the light sources.
  • a PWM pattern or a PPM pattern can be used as a pulse-pause pattern for further development.
  • a PWM pattern leads to a Pulse width modulation of the light sources, a PPM pattern to a pulse-pause modulation.
  • the light beams of the light sources can be linearly polarized, circularly or elliptically polarized.
  • two light sources are used, the light beams are linearly polarized and the polarization planes are at an angle of 90 ° to each other.
  • the inventive method can be realized with a low design cost.
  • Figure 2 is a schematic representation of the polarization ⁇ plane of the light sources used in the apparatus of Figure 1;
  • FIG. 3 shows a pulse-pause pattern for controlling the light sources used in the device according to FIG. 1
  • FIG. 4 shows a further pulse-pause pattern for controlling the light sources used in the device according to FIG.
  • This device 1 shows a device 1 of a vehicle for loading ⁇ humor a distance to an object 10, which may, for example, be a preceding vehicle.
  • This device 1 comprises three laser diodes D1, D2 and D3, each of which generates a linearly polarized light beam LI, L2 L3.
  • These three laser diodes D1, D2 and D3 are arranged in such a way that their polarization planes E1, E2 and E3 each extend offset by 120 ° relative to one another, as is schematically illustrated in FIG.
  • the polarization plane E2 ⁇ the Laser diode D2 with respect to the polarization plane of the laser diode Dl El is rotated by 120 ° and the polarization plane of the laser diode D3 E3 by a further 120 °.
  • Each of these three laser diodes Dl, D2 and D3 is provided with a
  • Pulsed-pause pattern driven these three pulse-pause patterns Ml, M2 and M3 generated by a control unit S and these laser diodes Dl, D2 and D3 are supplied.
  • a first pulse-pause pattern is shown in FIG. 3, wherein an identical pattern is used for all three laser diodes D1, D2 and D3, but they are phase-shifted with respect to one another such that these three laser diodes D1, D2 and D3 each at a time only one laser diode is active.
  • These three pulse-pause patterns Ml, M2 and M3 are thus phase-shifted with respect to each other disjointly.
  • the three light beams LI, L2 and L3 of the laser diodes D1, D2 and D3 are collected and overlaid by an optical system Ol to a transmitted light beam LS, which is now polarization modulated.
  • This light beam LS thus has the three polar ⁇ tion levels El, E2 and E3, which alternate in accordance with the light ⁇ pulses of the light beams LI, L2 and L3.
  • the transmitted light beam LS is reflected at the object 10 and impinges as a received light beam LE on a second optical system 02 of the device 1.
  • the received light beam LE which is parallelized by the optical system 02 is directed to a polarization analyzer comprising polarization filters PI, P2 and P3.
  • the polarization ⁇ direction of the polarization filter PI is on the polarisati ⁇ onsebene El of the laser diode Dl
  • the polarization direction of the polarization filter P2 is on the plane of polarization E2 of the laser diode D2
  • the polarization direction of the Polarisati ⁇ onsfilters P3 is tuned or adapted to the polarization E3.
  • Light LP1, LP2 and LP3 are each fed to a detector K1, K2 and K3, which generate therefrom signals a1, a2 and a3 which are fed to an evaluation unit A.
  • the control unit S which include the pulse-pause model Ml, M2 and M3 and so likewise the evaluation unit A via a line Lt supplied who ⁇ is A means of this evaluation unit determines the distance of the object 10 on the basis of the zeitli ⁇ chen phase shift between these signals.
  • the pulse-pause patterns M1, M2 and M3 according to FIG. 3 it is also possible to use a pulse-pause pattern M4, M5 and M6 according to FIG. 4, which also represent an identical pulse-pause pattern, but to form the individual ones Pulse-pause patterns M4, M5 and M6 are mutually phase-shifted, so that the light pulses from each two laser diodes
  • the transmitted light beam LS formed by these three light beams LI, L2 and L3 therefore has, in addition to the polarization planes El, E2 and E3, a further polarization plane generated by two superimposed light beams LI and L2 or LI and L3 or L2 and L3. This makes it possible for the existing polarizing filters
  • PI, P2 and P3 are adjusted to these previously mentioned polarization planes or that, in addition to the polarization filters PI, P2 and P3, further polarization filters set to these newly formed polarization planes are used.
  • the pulse-pause patterns illustrated in FIGS. 2 and 3 represent a PWM pattern, the laser diodes D1, D2 and D3 are therefore controlled pulse width modulated. Likewise, a control by means of a PPM pattern is possible. Besides ei ⁇ nem pulse-pause pattern with constant frame a pulse-pause pattern with non-constant frame can be used.
  • light beams LI, L2 and L3 are used with linear polarized light.
  • a "right-handed” or “left-handed” and / or “direction of rotation changing” Modula ⁇ tion process is possible.
  • light sources are used with circularly and / or elliptically polarized light beams.
  • pulse pauses patterns respectively To use variations with weighted distribution of the individual polarization planes.
  • laser diodes are used which already generate linearly polarized light. It is also possible to use light sources with unpolarized, but monochromatic light and polarize this light with downstream polarizers linear or circular or elliptical. Finally, it is also possible, as an alternative, to set the desired polarization direction via an electric field by means of a so-called Pockels cell.
  • three light sources Dl, D2 and D3 are used, which form the transmitted light ⁇ beam LS.
  • a particularly simple construction of this device 1 results if, instead of the three light sources, only two light sources, for example two laser diodes with two by 90 ° be used against each other twisted polarization planes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Bestimmung des Abstandes eines Objektes (10) mittels eines polarisationsmodulierten Sendelichtstrahls (LS), bei dem der an dem Objekt (10) reflektierte Sendelichtstrahl (LS) als Empfangslichtstrahl (LE) von einem Polarisationsanalysator empfangen und dessen Ausgangssignal einer Auswerteeinheit (A) zur Bestimmung des Abstandes zugeführt wird. Erfindungsgemäß ist vorgesehen, dass der polarisationsmodulierte Sendelichtstrahl (LS) mittels wenigstens zwei unterschiedlich polarisierte Lichtstrahlen (L1, L2, L3) abgebenden Lichtquellen (D1, D2, D3) erzeugt wird, wobei die Lichtquellen (D1, D2, D3) jeweils mit einem definierten Puls-Pausen-Muster (M1, M2, M3, M4, M5, M6) betrieben werden, und der Polarisationsanalysator mit mindestens der Anzahl der Lichtquellen (D1, D2, D3) entsprechenden Polarisationsfiltern (P1, P2, P3) ausgebildet wird, deren Polarisationsebene jeweils einer Polarisationsebene (E1, E2, E3) der Lichtstrahlen (L1, L2, L3) entsprechend angepasst ist.

Description

Verfahren zur Bestimmung des Abstandes eines Objektes mittels eines polarisationsmodulierten Sendelichtstrahls
Die Erfindung betrifft Verfahren zur Bestimmung des Abstandes eines Objektes mittels eines polarisationsmodulierten Sende¬ lichtstrahls gemäß dem Oberbegriff des Patentanspruchs 1.
Vermehrt werden heutige Fahrzeuge mit Assistenz- und Sicher¬ heitssystemen, wie bspw. Navigationssysteme, ACC-Systeme (Adaptive Cruise Control), Spurassistenzsysteme, Verkehrszei¬ chenerkennung usw. ausgestattet. Die Funktion vieler dieser Systeme erfordert die Bestimmung eines Abstandes zu einem Ob¬ jekt im Umfeld des Fahrzeugs, bspw. eines vorausfahrenden Fahrzeugs. Dabei kommen bekannte Verfahren, wie Ultraschall, Infrarot, Laser, Radar, Lidar usw. zur Anwendung, bei denen in der Regel ein codiertes Signal ausgesendet und anhand der Laufzeit des reflektierten Signals der Abstand zu dem Objekt berechnet wird. Ein gattungsbildendes Verfahren wird in der EP 0 911 645 Bl beschrieben, bei welchem mittels einer optischen Vorrichtung die Entfernung und/oder die Geschwindigkeit eines Objektes mittels eines polarisationsmodulierten Sendelichtstrahls ge¬ messen werden. Diese optische Vorrichtung umfasst eine Laser- diode zur Erzeugung eines längspolarisierten Sendelichtstrahls, dessen Polarisationsebene mittels eines Polarisati¬ onsmodulators zwischen einem ersten Polarisationszustand und einem zweiten Polarisationszustand entsprechend eines binären Steuersignals wechselt. Der an dem Objekt als Empfangslicht- strahl rückgestreute Sendelichtstrahl wird von einem Polarisationsdetektor in einen amplitudenmodulierten Lichtstrahl umgewandelt, um hieraus mittels eines Detektors ein elektri¬ sches Signal zu erzeugen, welches mit dem den Polarisations- modulator steuernden binären Steuersignal verglichen wird. Aus der Phasenverschiebung zwischen diesen beiden Signalen werden die Entfernung und/oder die Geschwindigkeit des Objektes bestimmt.
Ausgehend von diesem Stand der Technik ist es Aufgabe der Er¬ findung ein weiteres Verfahren der eingangs genannten Art zu schaffen, welches insbesondere einfach und kostengünstig rea¬ lisierbar ist .
Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkma¬ len des Patentanspruchs 1.
Ein solches Verfahren zur Bestimmung des Abstandes eines Ob- jektes mittels eines polarisationsmodulierten Sendelicht¬ strahls, bei dem der an dem Objekt reflektierte Sendelicht¬ strahl als Empfangslichtstrahl von einem Polarisationsanaly- sator empfangen und dessen Ausgangssignal einer Auswerteeinheit zur Bestimmung des Abstandes zugeführt wird, zeichnet sich erfindungsgemäß dadurch aus, dass
- der polarisationsmodulierte Sendelichtstrahl mittels we¬ nigstens zwei unterschiedlich polarisierte Lichtstrahlen abgebenden Lichtquellen erzeugt wird, wobei die Lichtquellen jeweils mit einem definierten Puls-Pausen-Muster betrieben werden, und
- der Polarisationsanalysator mit mindestens der Anzahl der Licht-quellen entsprechenden Polarisationsfiltern ausgebildet wird, deren Polarisationsebene jeweils einer Polarisations¬ ebene der Lichtstrahlen entsprechend angepasst ist.
In überraschender und einfacher Weise wird bei diesem erfindungsgemäßen Verfahren der polarisationsmodulierte Sende¬ lichtstrahl mittels wenigstens zwei Lichtstrahlen erzeugt, die unterschiedlich polarisiert sind und jeweils mit einem definierten Puls-Pausen-Muster betrieben werden. Durch die Überlagerung dieser beiden unterschiedlich polarisierten und gepulst betriebenen Lichtstrahlen wird der Sendelichtstrahl erzeugt, der an einem Objekt, dessen Entfernung gemessen werden soll, reflektiert und als Empfangslichtstrahl von dem Polarisationsanalysator empfangen wird.
Der wesentlichste Vorteil eines solchen Verfahrens liegt da- rin, dass die Lichtleistung des polarisationsmodulierten Sendelichtstrahls konstant auf einem hohen Niveau gehalten wer¬ den kann und dadurch ein hoher Signal/Nutz-Störabstand er¬ reichbar ist. Nach einer bevorzugten Ausgestaltung der Erfindung werden die Lichtquellen mit disjunkt gegeneinander phasenverschobenen Puls-Pausen-Mustern betrieben. Dadurch weist der Sendelichtstrahl nur die von den jeweiligen Lichtquellen erzeugten Polarisationsebenen auf.
Des Weiteren ist es gemäß einer anderen Weiterbildung der Erfindung möglich, dass wenigstens zwei Lichtquellen mit nicht- disjunkten gegeneinander phasenverschobenen Puls-Pausen- Mustern betrieben werden. Dies führt dazu, dass der Sende- lichtstrahl neben den Polarisationsebenen der Lichtquellen auch die durch die Überlagerung der Polarisationsebenen dieser beiden Lichtquellen entstehende Polarisationsebene auf¬ weist . Zur gepulsten Ansteuerung der Lichtquellen kann weiterbildungsgemäß als Puls-Pausen-Muster ein PWM-Muster oder ein PPM-Muster verwendet werden. Ein PWM-Muster führt zu einer Pulsweitenmodulation der Lichtquellen, ein PPM-Muster zu einer Puls-Pausen-Modulation.
Des Weiteren stehen zur Polarisation der Lichtquellen unter- schiedliche Polarisationsarten zur Verfügung. So können weiterbildungsgemäß die Lichtstrahlen der Lichtquellen linear polarisiert, zirkulär oder elliptisch polarisiert werden.
Gemäß einer vorteilhaften Ausgestaltung werden zwei Licht- quellen verwendet, deren Lichtstrahlen linear polarisiert sind und die Polarisationsebenen in einem Winkel von 90° zueinander stehen. Damit kann das erfindungsgemäße Verfahren mit einem geringen konstruktiven Aufwand realisiert werden. Darüber hinaus ist es weiterbildungsgemäß auch möglich, drei Lichtquellen mit linearer polarisierten Lichtstrahlen zu verwenden, deren Polarisationsebenen in einem Winkel von 120° zueinander stehen. Die Erfindung wird nachfolgend unter Bezugnahme auf die bei¬ gefügten Figuren näher erläutert. Es zeigen:
Figur 1 ein schematisches Blockschaltbild einer Vorrich¬ tung zur Erläuterung des erfindungsgemäßen Ver- fahrens,
Figur 2 eine schematische Darstellung der Polarisations¬ ebenen der in der Vorrichtung nach Figur 1 verwendeten Lichtquellen,
Figur 3 eine Puls-Pausen-Muster zur Ansteuerung der in der Vorrichtung nach Figur 1 verwendeten Lichtquellen, und Figur 4 ein weiteres Puls-Pausen-Muster zur Ansteuerung der in der Vorrichtung nach Figur 1 verwendeten Lichtquellen .
Die Figur 1 zeigt eine Vorrichtung 1 eines Fahrzeugs zur Be¬ stimmung eines Abstandes zu einem Objekt 10, welches bspw. ein vorausfahrendes Fahrzeug darstellen kann. Diese Vorrichtung 1 umfasst drei Laserdioden Dl, D2 und D3, die jeweils einen linear polarisierten Lichtstrahl LI, L2 L3 erzeugen. Diese drei Laserdioden Dl, D2 und D3 sind derart angeordnet, dass deren Polarisationsebenen El, E2 und E3 jeweils um 120° zueinander versetzt verlaufen, wie dies in Fi- gur 2 schematisch dargestellt ist. So ist die Polarisations¬ ebene E2 der Laserdiode D2 gegenüber der Polarisationsebene El der Laserdiode Dl um 120° und die Polarisationsebene E3 der Laserdiode D3 um weitere 120° verdreht. Jede dieser drei Laserdioden Dl, D2 und D3 wird mit einem
Puls-Pausen-Muster angesteuert, wobei diese drei Puls-Pausen- Muster Ml, M2 und M3 von einer Steuereinheit S erzeugt und diesen Laserdioden Dl, D2 und D3 zugeführt werden. Ein erstes Puls-Pausen-Muster zeigt Figur 3, wobei für alle drei Laser- dioden Dl, D2 und D3 ein identisches Muster verwendet wird, die jedoch gegeneinander derart phasenverschobenen sind, dass von diesen drei Laserdioden Dl, D2 und D3 zu einem Zeitpunkt jeweils nur eine Laserdiode aktiv ist. Diese drei Puls- Pausen-Muster Ml, M2 und M3 sind also gegeneinander disjunkt phasenverschoben.
Die drei Lichtstrahlen LI, L2 und L3 der Laserdioden Dl, D2 und D3 werden von einer Optik Ol gesammelt und überlagern sich zu einem Sendelichtstrahl LS, der nun polarisationsmoduliert ist. Dieser Lichtstrahl LS weist somit die drei Polari¬ sationsebenen El, E2 und E3, die sich entsprechend den Licht¬ impulsen der Lichtstrahlen LI, L2 und L3 abwechseln.
Der Sendelichtstrahl LS wird an dem Objekt 10 reflektiert und trifft als Empfangslichtstrahl LE auf eine zweite Optik 02 der Vorrichtung 1. Der von der Optik 02 parallelisierte Empfangslichtstrahl LE wird auf einen Polarisationsanalysator geleitet, welcher Polarisationsfilter PI, P2 und P3 umfasst. Die Polarisations¬ richtung des Polarisationsfilters PI ist auf die Polarisati¬ onsebene El der Laserdiode Dl, die Polarisationsrichtung des Polarisationsfilters P2 ist auf die Polarisationsebene E2 der Laserdiode D2 und die Polarisationsrichtung des Polarisati¬ onsfilters P3 ist auf die Polarisationsebene E3 abgestimmt bzw. angepasst. Da die Polarisationsebenen El, E2 und E3 bei der Reflexion an dem Objekt 10 geringfügig gedreht wird, wird diese Drehung bspw. bei der Anordnung der Laserdioden Dl, D2 und D3 oder bei der Anordnung der Polarisationsfilter PI, P2 und P3 berücksichtigt. Die Polarisationsrichtung des Polarisationsfilters PI, P2 bzw. P3 stimmt damit mit der Polarisa¬ tionsebene El, E2 bzw. E3 der Laserdiode Dl, D2 bzw. D3 über- ein, bedeutet, dass hierbei geringfügige Abweichungen oder geringfügige Verdrehungen berücksichtigt sind, die aufgrund von Reflexionen an dem Objekt 100 oder konstruktiv infolge von Fertigungstoleranzen auftreten können. Das von den Polarisationsfiltern PI, P 2 und P3 erzeugte
Licht LP1, LP2 und LP3 wird jeweils einem Detektor Kl, K2 und K3 zugeführt, die hieraus Signale al, a2 und a3 erzeugen, die einer Auswerteeinheit A zugeführt werden. Durch Vergleich dieser Signale mit den die Laserdioden Dl, D2 und D3 ansteuernden Steuersignalen der Steuereinheit S, die die Puls-Pausen-Muster Ml, M2 und M3 beinhalten und die eben- so der Auswerteeinheit A über eine Leitung Lt zugeführt wer¬ den, wird mittels dieser Auswerteeinheit A anhand der zeitli¬ chen Phasenverschiebung zwischen diesen Signalen die Entfernung des Objektes 10 bestimmt. Anstelle der Puls-Pausen-Muster Ml, M2 und M3 nach Figur 3 kann auch ein Puls-Pausen-Muster M4, M5 und M6 nach Figur 4 verwendet werden, die ebenso ein identisches Puls-Pausen- Muster darstellen, jedoch zur Bildung der einzelnen Puls- Pausen-Muster M4, M5 und M6 gegeneinander phasenverschobenen sind, so dass die Lichtimpulse von jeweils zwei Laserdioden
Dl und D2 oder Dl und D3 oder D2 und D3 gleichzeitig teilwei¬ se überlagern.
Der von diesen drei Lichtstrahlen LI, L2 und L3 gebildete Sendelichtstrahl LS weist daher neben den Polarisationsebenen El, E2 und E3 zusätzlich eine durch jeweils zwei überlagerte Lichtstrahlen LI und L2 bzw. LI und L3 bzw. L2 und L3 erzeugte weitere Polarisationsebene auf. Damit es möglich, dass die vorhandenen Polarisationsfilter
PI, P2 und P3 auf diese zuvor genannten neu entstandenen Polarisationsebenen eingestellt werden oder dass zusätzlich zu den Polarisationsfilter PI, P2 und P3 weitere auf diese neu entstandenen Polarisationsebenen eingestellte Polarisations- filter eingesetzt werden.
Die in den Figuren 2 und 3 dargestellten Puls-Pausen-Muster stellen ein PWM-Muster dar, die Laserdioden Dl, D2 und D3 werden daher pulsweitenmodulierten angesteuert. Ebenso ist eine Ansteuerung mittels eines PPM-Musters möglich. Neben ei¬ nem Puls-Pausen-Muster mit konstanten Rahmen kann auch ein Puls-Pausen-Muster mit nicht konstanten Rahmen eingesetzt werden.
In dem oben beschriebenen Ausführungsbeispielen werden Lichtstrahlen LI, L2 und L3 mit linearer polarisiertem Licht eingesetzt. Als weitere Variation ist ein „rechtsdrehendes" oder „linksdrehendes" und/oder „drehrichtungswechselndes" Modula¬ tionsverfahren möglich. Hierzu werden Lichtquellen mit zirkulär und/oder elliptisch polarisierten Lichtstrahlen verwendet . Schließlich ist es auch möglich, hinsichtlich der Puls- Pausen-Muster jeweils Variationen mit gewichteter Verteilung der einzelnen Polarisationsebenen zu verwenden.
Ferner werden in den oben beschriebenen Ausführungsbeispielen Laserdioden verwendet, die bereits linear polarisiertes Licht erzeugen. Ebenso ist es möglich, Lichtquellen mit nicht polarisierten, aber monochromatischen Licht zu verwenden und dieses Licht mit nachgeschalteten Polarisatoren linear oder zirkulär bzw. elliptisch zu polarisieren. Schließlich ist es al- ternativ auch möglich, die gewünschte Polarisationsrichtung über ein elektrisches Feld mittels einer sogenannten Pockels- Zelle einzustellen.
In dem oben beschriebenen Ausführungsbeispiel werden drei Lichtquellen Dl, D2 und D3 verwendet, die den Sendelicht¬ strahl LS bilden. Ein besonders einfacher Aufbau dieser Vorrichtung 1 ergibt sich, wenn anstelle der drei Lichtquellen nur zwei Lichtquellen, bspw. zwei Laserdioden mit zwei um 90° gegeneinander verdrehten Polarisationsebenen verwendet werden .

Claims

Patentansprüche
Verfahren zur Bestimmung des Abstandes eines Objektes (10) mittels eines polarisationsmodulierten Sendelichtstrahls (LS), bei dem der an dem Objekt (10) reflektierte Sende¬ lichtstrahl (LS) als Empfangslichtstrahl (LE) von einem Polarisationsanalysator empfangen und dessen Ausgangssignal einer Auswerteeinheit (A) zur Bestimmung des Abstandes zugeführt wird,
dadurch gekennzeichnet, dass
- der polarisationsmodulierte Sendelichtstrahl (LS) mit¬ tels wenigstens zwei unterschiedlich polarisierte Licht¬ strahlen (LI, L2, L3) abgebenden Lichtquellen (Dl, D2, D3) erzeugt wird, wobei die Lichtquellen (Dl, D2, D3) jeweils mit einem definierten Puls-Pausen-Muster (Ml, M2, M3, M4, M5, M6 ) betrieben werden, und
- der Polarisationsanalysator mit mindestens der Anzahl der Lichtquellen (Dl, D2, D3) entsprechenden Polarisationsfiltern (PI, P 2, P3) ausgebildet wird, deren Polarisa¬ tionsebene jeweils einer Polarisationsebene (El, E2, E3) der Lichtstrahlen (LI, L2, L3) entsprechend angepasst ist.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Lichtquellen (LI, L2, L3) mit disjunkten gegeneinander phasenverschobenen Puls-Pausen-Mustern (Ml, M2, M3 ) betrieben werden.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens zwei Lichtquellen (LI, L2, L3) mit nichtdis- junkten gegeneinander phasenverschobenen Puls-Pausen- Mustern (M4, M5, M6 ) betrieben werden. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Puls-Pausen-Muster (Ml, M2, M3, M4, M5, M6) ein PWM-Muster verwendet wird.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Puls-Pausen-Muster (Ml, M2, M3, M4, M5, M6) ein PPM-Muster verwendet wird.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lichtstrahlen (LI, L2, L3) der Lichtquellen (Dl, D2, D3) linear polarisiert sind.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lichtstrahlen (LI, L2, L3) der Lichtquellen (Dl, D2, D3) zirkulär oder elliptisch polarisiert sind.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwei Lichtquellen (Dl, D2, D3) verwendet werden, deren Polarisationsebenen (El, E2) in einem Winkel von 90° zueinander stehen.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass drei Lichtquellen (Dl, D2, D3) verwendet werden, deren Polarisationsebenen (El, E2, E3) in einem Winkel von 120° zueinander stehen.
PCT/DE2014/200358 2013-09-26 2014-07-28 Verfahren zur bestimmung des abstandes eines objektes mit-tels eines polarisationsmodulierten sendelichtstrahls WO2015043584A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112014002787.1T DE112014002787B4 (de) 2013-09-26 2014-07-28 Verfahren zur Bestimmung des Abstandes eines Objektes mittels eines polarisationsmodulierten Sendelichtstrahls
US14/904,492 US9971025B2 (en) 2013-09-26 2014-07-28 Method for determining the distance of an object by means of a polarization-modulated transmission light beam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013219344.0 2013-09-26
DE102013219344.0A DE102013219344A1 (de) 2013-09-26 2013-09-26 Verfahren zur Bestimmung des Abstandes eines Objektes mittels eines polarisationsmodulierten Sendelichtstrahls

Publications (1)

Publication Number Publication Date
WO2015043584A1 true WO2015043584A1 (de) 2015-04-02

Family

ID=51392032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/200358 WO2015043584A1 (de) 2013-09-26 2014-07-28 Verfahren zur bestimmung des abstandes eines objektes mit-tels eines polarisationsmodulierten sendelichtstrahls

Country Status (3)

Country Link
US (1) US9971025B2 (de)
DE (2) DE102013219344A1 (de)
WO (1) WO2015043584A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016201599A1 (de) * 2016-02-03 2017-08-03 pmdtechnologies ag Lichtlaufzeitkamerasystem
US10545238B1 (en) * 2015-09-25 2020-01-28 Apple Inc. Combining laser pulse transmissions in LiDAR

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101795218B1 (ko) * 2016-03-07 2017-11-08 현대자동차주식회사 차량용 조명 장치
DE102017204586A1 (de) * 2017-03-20 2018-09-20 Robert Bosch Gmbh SPAD-basiertes LiDAR-System
CN106918321A (zh) * 2017-03-30 2017-07-04 西安邮电大学 一种利用图像上目标物视差进行测距的方法
DE102017205619A1 (de) 2017-04-03 2018-10-04 Robert Bosch Gmbh LiDAR-System und Verfahren zum Betreiben eines LiDAR-Systems
US11561084B2 (en) * 2017-04-19 2023-01-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Polarization sensitive devices, methods and applications
DE102017211707A1 (de) 2017-07-10 2019-01-10 Robert Bosch Gmbh Verfahren und LIDAR-Vorrichtung zum Abtasten eines Abtastbereiches mit mindestens zwei pulskodierten Strahlen
CN113156459B (zh) * 2020-01-03 2023-10-13 华为技术有限公司 一种tof深度传感模组和图像生成方法
DE102020100448A1 (de) * 2020-01-10 2021-07-15 Ifm Electronic Gmbh Lichtlaufzeitkamerasystem und Verfahren zum Betreiben eines solchen
DE102020107450A1 (de) 2020-03-18 2021-09-23 Audi Aktiengesellschaft Lidar-Sensoreinrichtung für ein Kraftfahrzeug, Verfahren zum Betrieb einer Lidar-Sensoreinrichtung und Kraftfahrzeug
TWI746313B (zh) * 2020-12-15 2021-11-11 和碩聯合科技股份有限公司 距離偵測系統及距離偵測方法
WO2022237848A1 (zh) * 2021-05-12 2022-11-17 武汉路特斯汽车有限公司 一种激光雷达集成盒、清洗装置及车辆
DE102021006106A1 (de) 2021-12-11 2023-06-15 Jenoptik Robot Gmbh Stationäres Verkehrsüberwachungssystem zum Überwachen eines Erfassungsbereiches einer Verkehrsfläche und ausgebildet zur Kommunikation mit Fahrzeugen welche die Verkehrsfläche befahren, sowie Kraftfahrzeug
DE102022127122A1 (de) 2022-10-17 2024-04-18 Bayerische Motoren Werke Aktiengesellschaft LIDAR-System für ein Fahrassistenzsystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4324308C1 (de) * 1993-07-20 1994-12-22 Bayerische Motoren Werke Ag Verfahren zum Bestimmen der Sichtweite bei dichtem Nebel sowie Sichtweitensensor
EP0911645B1 (de) 1997-10-21 2005-06-22 Thales Optisches Messgerät zur Feststellung der Entfernung zu einem Objekt und/oder der Geschwindigkeit eines Objekts unter Verwendung von modulierter Polarisations
EP1628141A1 (de) * 2004-08-17 2006-02-22 Robert Bosch Gmbh Triangulationsverfahren mit Laserdioden und einer Mono-Kamera zur Abstandsbestimmung für Stop-and-Go Anwendungen für Kraftfahrzeuge
EP2159603A1 (de) * 2008-09-01 2010-03-03 Sick Ag Objektfeststellungsverfahren und Objektfeststellungssensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4439298A1 (de) * 1994-11-07 1996-06-13 Rudolf Prof Dr Ing Schwarte 3D-Kamera nach Laufzeitverfahren
DE19834583C1 (de) * 1998-07-31 1999-12-02 Sivus Ges Fuer Verfahrens Umwe Verfahren und Anordnung zur optischen Bestimmung einer Abstandskoordinate einer bewegten Partikel in einem transparenten Medium
DE10016892B4 (de) 1999-04-10 2006-03-23 Leuze Electronic Gmbh & Co Kg Optoelektronische Vorrichtung
US7495748B1 (en) * 2007-08-20 2009-02-24 Sandia Corporation Scannerless loss modulated flash color range imaging
EP2260551A4 (de) * 2008-03-31 2013-03-27 Electro Scient Ind Inc Kombination mehrerer laserstrahlen zur erreichung einer hohen wiederholungsrate und polarisierter laserstrahl mit hoher durchschnittsleistung
JP5108676B2 (ja) * 2008-08-13 2012-12-26 日立オートモティブシステムズ株式会社 可変容量形ポンプ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4324308C1 (de) * 1993-07-20 1994-12-22 Bayerische Motoren Werke Ag Verfahren zum Bestimmen der Sichtweite bei dichtem Nebel sowie Sichtweitensensor
EP0911645B1 (de) 1997-10-21 2005-06-22 Thales Optisches Messgerät zur Feststellung der Entfernung zu einem Objekt und/oder der Geschwindigkeit eines Objekts unter Verwendung von modulierter Polarisations
EP1628141A1 (de) * 2004-08-17 2006-02-22 Robert Bosch Gmbh Triangulationsverfahren mit Laserdioden und einer Mono-Kamera zur Abstandsbestimmung für Stop-and-Go Anwendungen für Kraftfahrzeuge
EP2159603A1 (de) * 2008-09-01 2010-03-03 Sick Ag Objektfeststellungsverfahren und Objektfeststellungssensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10545238B1 (en) * 2015-09-25 2020-01-28 Apple Inc. Combining laser pulse transmissions in LiDAR
US11226414B2 (en) 2015-09-25 2022-01-18 Apple Inc. Combining laser pulse transmissions in LiDAR
DE102016201599A1 (de) * 2016-02-03 2017-08-03 pmdtechnologies ag Lichtlaufzeitkamerasystem

Also Published As

Publication number Publication date
DE102013219344A1 (de) 2015-03-26
DE112014002787A5 (de) 2016-03-10
US9971025B2 (en) 2018-05-15
US20160187471A1 (en) 2016-06-30
DE112014002787B4 (de) 2023-03-09

Similar Documents

Publication Publication Date Title
WO2015043584A1 (de) Verfahren zur bestimmung des abstandes eines objektes mit-tels eines polarisationsmodulierten sendelichtstrahls
EP1395846B1 (de) Verfahren und vorrichtung zur selbstkalibrierung einer radarsensoranordnung
DE102008014274B4 (de) Verfahren und Vorrichtung zum Bestimmen einer Entfernung zu einem Objekt
EP1813965B1 (de) PMD-System und Verfahren zur Abstandsmessung von einem Objekt
DE102012021973A1 (de) Verfahren zum Betreiben eines Radarsensors eines Kraftfahrzeugs, Fahrerassistenzeinrichtung und Kraftfahrzeug
DE2724093A1 (de) Verfahren und vorrichtung zum bestimmen der winkelverschiebung eines vor einem motorfahrzeug befindlichen objektes
WO2016050629A1 (de) Radarsensor
EP3444633A1 (de) Verfahren zum betreiben einer ultraschallsensorvorrichtung für ein kraftfahrzeug mit anpassung eines zeitlichen verlaufs einer amplitude bei frequenzmodulierten anregungssignalen
WO2018215251A1 (de) Vorrichtung und verfahren zur entfernungsmessung
DE2635952A1 (de) Wegmessystem fuer streckengebundene fahrzeuge unter verwendung eines doppler- radargeraetes
WO2019243290A1 (de) Lichtlaufzeitkamerasystem mit einer einstellbaren optischen ausgangsleistung
DE102009047931A1 (de) Verfahren und Vorrichtung zur Bestimmung von Abstand und Relativgeschwindigkeit wenigstens eines entfernten Objektes
DE102013210567B3 (de) Verfahren und Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr
EP1600793A2 (de) Radarsensor für Kraftfahrzeuge
DE102018201302A1 (de) Verfahren zum Betreiben eines Radarsensorsystems in einem Kraftfahrzeug
EP2196823A1 (de) Verfahren zur Bestimmung der Entfernung zwischen zwei Objekten
DE3910537C2 (de)
EP1251363A2 (de) Verarbeitungsverfahren für ein Frequenzsignal
DE112016007343B4 (de) Radarvorrichtung und Steuersystem
DE4129580A1 (de) Vorrichtung und verfahren zur beruehrungslosen ermittlung der bewegungsgroessen von fahrzeugen mittels des doppler-effektes
DE102018114388A1 (de) Verfahren zur Steuerung einer Antriebseinrichtung eines Mikroschwingspiegels, Steuervorrichtung und Umlenkspiegeleinrichtung
DE19938398C2 (de) Verfahren und Anordnung zur Störung eines Messsystems zur Entfernungs- und/oder Geschwindigkeitsmessung eines Objektes mittels Laserreflexion
DE102018124056B4 (de) Verfahren zum Bestimmen eines Abstands eines Objekts in einem Ausschwingbereich des Ultraschallsensors, elektronische Recheneinrichtung sowie Ultraschallsensor
DE102021118333A1 (de) Prüfvorrichtung zum Test eines mit elektromagnetischen Wellen arbeitenden Abstandssensors
WO2009080491A1 (de) Radarsensoranordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14755015

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014002787

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14904492

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112014002787

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14755015

Country of ref document: EP

Kind code of ref document: A1