WO2015043135A1 - 一种紫外灭菌消毒装置及其设置方法 - Google Patents

一种紫外灭菌消毒装置及其设置方法 Download PDF

Info

Publication number
WO2015043135A1
WO2015043135A1 PCT/CN2014/072065 CN2014072065W WO2015043135A1 WO 2015043135 A1 WO2015043135 A1 WO 2015043135A1 CN 2014072065 W CN2014072065 W CN 2014072065W WO 2015043135 A1 WO2015043135 A1 WO 2015043135A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
sterilization
lamp
current density
inner diameter
Prior art date
Application number
PCT/CN2014/072065
Other languages
English (en)
French (fr)
Inventor
何志明
Original Assignee
何志明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 何志明 filed Critical 何志明
Priority to EP14847129.5A priority Critical patent/EP3031476B1/en
Priority to JP2016541769A priority patent/JP6442511B2/ja
Priority to US14/907,832 priority patent/US10322204B2/en
Publication of WO2015043135A1 publication Critical patent/WO2015043135A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury

Definitions

  • the invention relates to the field of air purification technology, in particular to an ultraviolet sterilization and disinfection device and a setting method thereof. Background technique
  • UV disinfection technology is widely used in various sterilization and disinfection fields, and the ultraviolet source can be ultraviolet
  • UV mercury vapor discharge lamps etc.
  • UV disinfection it is also possible to kill harmful substances in the air by ultraviolet disinfection to achieve the purpose of improving air quality.
  • Ultraviolet light destroys the DNA and RNA of microorganisms and kills microorganisms.
  • Ultraviolet rays have a decomposing effect on some harmful organic substances, and are better combined with ozone, hydrogen peroxide and the like.
  • the UV dose determines the effectiveness of UV sterilization, ie: micro-kill rate, primary removal rate of harmful organic matter.
  • UV dose UV illuminance X irradiation time, theoretically, to kill bacteria, viruses and other microorganisms in the ultraviolet irradiation area at one time, each of the ultraviolet irradiation areas (each colony unit) bacteria, Microorganisms such as viruses are able to receive a sufficient dose of ultraviolet radiation.
  • low UV illuminance can be used to achieve disinfection by prolonging the irradiation time. Such methods are easier to implement.
  • this method has certain congenital defects: that is, in order to prolong the ultraviolet irradiation time, it is usually necessary to increase the area or volume of the ultraviolet source irradiation disinfection area, thereby achieving the purpose of thorough disinfection, and therefore the method is not practical.
  • many UV sterilization devices are affected by volume and cost. Low ultraviolet illumination and short irradiation time are used. The number of irradiations is increased by circulating drainage, and the sterilization efficiency is very low.
  • the existing ultraviolet purifying and disinfecting devices for air purifiers and central air-conditioning airflow pipes generally use 4W, 8W, 15W, 20W, 30W, 40W conventional mercury vapor discharge ultraviolet lamps, lamp current density or power density is low, ultraviolet irradiance Low, there is no effective UV sterilization chamber.
  • the time for the air to flow through the UV irradiation area is short.
  • the actual UV dose is much smaller than the UV dose required for sterilization. It is achieved by multiple cycles combined with filtration. Sterilization effect, low disposable sterilization rate, For highly infectious, highly pathogenic bacteria and viruses, there is still a big risk.
  • a small-power UV lamp with an outer diameter of 15mm4W is used, combined with photocatalyst, the body is coated with titanium dioxide, the wind speed is 1.5m/s, and the ultraviolet dose is much less than lmJ/cm 2 .
  • Photocatalyst can not be quickly sterilized, and the system as a whole cannot achieve good sterilization and disinfection functions.
  • Another example is a medical hand-pushing UV sterilization and sterilization vehicle.
  • the sterilization and disinfection chamber is a rectangular sterilization chamber: 60cm long, 40cm wide and 10cm high. Three H-type UV lamps are placed side by side. The UV lamp diameter is 19mm and the power is 40W.
  • the wind speed is 2.0 m/s
  • the minimum illuminance at the edge is: 5 mW/cm 2
  • the average ultraviolet dose is about 0.3 mJ/cm 2 (mWs/cm)
  • the flow rate per second is 0.48 m3.
  • the proposed baseline dose is 5 mJ/cm 2 (mWs/cm 2 ) and the baseline flow rate is 10 m3/h (0.00278 m3/s or 0.00278 cubic meters per second).
  • the reference dose of 5 mJ/cm 2 was reached, and the flow ratio of the volume of the ultraviolet sterilization chamber to the unit time (per second) was 0.83.
  • the power of the UV lamp required to reach the reference dose of 5 mJ/cm and the reference flow rate of 10 m3/h is 23.2W.
  • UV air disinfection devices are usually designed with a single cartridge.
  • the UV dose is often much smaller than the required biological dose.
  • the one-time sterilization and disinfection efficiency is low, and the overall sterilization and disinfection efficiency is not satisfactory.
  • the ultraviolet lamp for air disinfection has a tube current density of less than 0.2 A / cm 2 , and the ultraviolet illuminance value around the lamp is low.
  • a large number of ultraviolet lamps and a long ultraviolet disinfection are required. Cavity.
  • the prior art is used to increase the ultraviolet dose and improve the efficiency of one-time sterilization and disinfection.
  • volume V of the sterilization chamber and UV dose J and flow Q ratio V / (JQ) and UV lamp power P and UV dose J and flow Q ratio P / (JQ) are two measures of the performance of the UV sterilization device Important indicators.
  • the ratio of the flow rate per second ie, l m3 per second
  • the reference dose is 5 mJ/cm 2
  • the lamp power required for the reference flow rate of 10 m3/h is >22.0 W.
  • the technical problem to be solved by the embodiments of the present invention is to provide an ultraviolet sterilization and disinfection device and a setting method thereof, as far as possible, while increasing the ultraviolet dose, rapid sterilization (ie, increasing the one-time killing rate or removal rate), Reduce the volume of the UV disinfection device, reduce the cost of the sterilization and disinfection device, and take into account the energy consumption of the sterilization and disinfection device.
  • the ultraviolet sterilization method and the device thereof can quickly reduce the microorganisms in the confined space to a non-treatment concentration and ensure public health safety.
  • an embodiment of the present invention provides an ultraviolet sterilization and disinfection device, wherein the ultraviolet sterilization and disinfection device is provided with one or more low-pressure ultraviolet lamps, and the inner diameter of the low-pressure ultraviolet lamps is ⁇ 30-36 ⁇ , Tube current density: 0.250-0.800 A/cm 2 ; or , inner diameter ⁇ 26-30 ⁇ , tube current density: 0.280-0.850 A/cm2; or, inner diameter D 20-26mm, tube current density: 0.300-1.100 A/cm2 Or, the inner diameter is ⁇ 15-20 ⁇ , the tube current density is 0.340-1.350 A/cm 2 ; or the inner diameter is ⁇ 12-15 ⁇ 3 ⁇ 4 tube current density 0.335-1.000 A/cm 2 ; or, the inner diameter is ⁇ 10-12 ⁇ , Tube current density 0.300-1.000 A/cm2 ; or , inner diameter ⁇ 8-10 ⁇ 3 ⁇ 4 tube current density 0.300-0.900 A/cm2; or, inner diameter ⁇ 5-8 ⁇ , tube current density
  • the tube diameter and tube current density are optimized to increase the UV lamp power density.
  • the low-pressure UV lamp is set to U-shaped, ⁇ -shaped, H-shaped, double-U-shaped, double-twisted, double-H, three-U, three-turn, three-H, four-U, four-inch according to the structure of the cavity.
  • Various shapes such as type, four H type, W type, M type, UH connection type, ⁇ - ⁇ connection type, etc., to meet the requirements of small footprint and uniform distribution of ultraviolet illuminance.
  • the electrodeless low-pressure ultraviolet lamp is arranged according to the structure of the cavity, and the electrodeless low-pressure ultraviolet lamp is arranged in various ring-shaped shapes such as a ring shape, a rectangular shape, a square shape, an elliptical shape, etc., so as to satisfy a small occupied space and a uniform distribution of ultraviolet illuminance. Claim.
  • the apparatus also includes an adjustment module that adjusts the power of the low pressure ultraviolet lamp to adjust the ultraviolet dose of the gas stream.
  • the ultraviolet disinfection device can adjust the ultraviolet dose to improve the adaptability of the sterilization and disinfection device, and ensure a high kill rate for microorganisms with high ultraviolet dose requirements;
  • the equipment operation can set the initial full-load operation and reduce the power consumption operation under the general sterilization and disinfection state, and the ultraviolet dose adjustment is beneficial to reduce the energy consumption of the device operation.
  • UV dose adjustment is achieved with a low-voltage UV lamp with adjustable power. When the lamp current drops, the power decreases. When the mercury vapor pressure in the lamp is effectively controlled near the optimum mercury vapor pressure required for the lamp, the 253.7nm UV conversion efficiency of the lamp will not decrease or even increase.
  • the choice of tube current density and the control of mercury vapor pressure are two key balancing factors.
  • the tube current density is selected with upper and lower limits. When the current density changes, the wall temperature changes, the mercury vapor pressure in the lamp changes, and the upper and lower limits of the current density need to effectively control the mercury vapor pressure, all of which need to be optimized by testing.
  • the ultraviolet sterilization and disinfection device has a wind speed of l-5 m/s, a small change in the wall temperature of the lamp, a small change in the mercury vapor pressure in the lamp, a small change in the ultraviolet output of the lamp, and a stable ultraviolet dose. To achieve this, it is also necessary to balance the tube current density and control the mercury vapor pressure.
  • the ambient temperature changes from 10-35 °C, or changes within 30 °C and 40 °C, and the ultraviolet output of the lamp changes little, and the ultraviolet dose is stable.
  • the ultraviolet sterilization and disinfection device has high ultraviolet conversion efficiency when adjusting the ultraviolet output power.
  • the optimized inner diameter and tube current density of the low-pressure ultraviolet lamp are: inner diameter ⁇ 30-36 mm, tube current density: 0.400-0.750 A/cm 2 ; or, inner diameter ⁇ 26-30 ⁇ , tube current density: 0.450-0.800 A/cm 2 ; or , the inner diameter is ⁇ 20-26 ⁇ , the tube current density is 0.450-1.050 A/cm2; or, the inner diameter is ⁇ 15-20 ⁇ , the tube current density is 0.450-1.300 A/cm 2 ; or The inner diameter is ⁇ 12-15 ⁇ , the tube current density is 0.450-0.950 A/cm 2 ; or , the inner diameter is ⁇ 10-12 ⁇ , the tube current density is 0.400-0.950 A/cm2; or, the inner diameter is ⁇ 8- 10mm, the tube current density 0.400-0.850 A/cm2 ; or , the inner diameter is ⁇ 5-8 ⁇ , the tube current density is 0.400-0.750 A/cm 2 ; or the inner diameter is ⁇ 3-5 ⁇ , and
  • the low-pressure ultraviolet lamp is set to:
  • the tube current density is one of the following parameters: 0.450-0.500 A/cm 2 , 0.500-0.550 A/cm 2 , 0.550-0.600 A/cm 2 , 0.600-0.650 A/cm 2 , 0.650- 0.700 A/cm 2 , 0.700-0.750 A/cm2 ; or,
  • Inner diameter (D26-30mm, tube current density is one of the following parameters: 0.350-0.400 A/cm 2 , 0.400-0.450A/cm2, 0.450-0.500A/cm 2 , 0.500-0.550A/cm 2 , 0.550 -0.600 A/cm 2 , 0.600-0.650 A/cm 2 , 0.650-0.700 A/cm 2 , 0.700-0.750 A/cm 2 , 0.750-0.800 A/cm 2 ; or,
  • the inner diameter (D20-26mm, tube current density is one of the following parameters: 0.400-0.450 A / cm 2, 0.450-0.500 A / cm2, 0.500-0.550A / cm 2, 0.550-0.600 A / cm 2, 0.600 - 0.650 A/cm 2 , 0.650-0.700 A/cm2, 0.700-0.750 A/cm 2 , 0.750-0.800 A/cm 2 , 0.800-0.850 A/cm2, 0.850-0.900 A/c
  • Inner diameter (D 15-20mm, tube current density is one of the following parameters: 0.450-0.500 A/cm 2 , 0.500-0.550 A/cm 2 , 0.550-0.600 A/cm 2 , 0.600-0.650 A/cm 2 , 0.650-0.700A/cm 2 , 0.700-0.750A/cm2 , 0.750-0.800A/cm 2 , 0.800-0.850A/cm 2 , 0.850-0.900 A/cm2, 0.900-0.950A/cm2, 0.950- l.OOOA /crm, 1.000-1.050 A/cm 2 , 1.050-1.000 A/cm 2 , 0.950- 1.100 A/cm 2 , 1.100-1.150 A/cm 2 , 1.150-1.200 A/cm 2 , 1.200-1.250 A/cm 2 , 1.250 -1.300A/cm 2 ; or
  • Inner diameter (D 12-15mm, tube current density is one of the following parameters: 0.450-0.500A/cm 2 , 0.500-0.550A/cm2, 0.550-0.600 A/cm 2 , 0.600- 0.650A/cm 2 , 0.650-0.700 A/cm 2 , 0.700-0.750 A/cm 2 , 0.750-0.800 A/cm 2 , 0.800-0.850 A/cm 2 , 0.850-0.900 A/cm 2 , 0.900-0.950 A/cm 2 ;
  • the inner diameter (D 10-12mm, tube current density is one of the following parameters: 0.400-0.450 A / cm 2, 0.450-0.500 A / cm2, 0.500-0.550A / cm 2, 0.550-0.600 A / cm 2, 0.600-0.650 A/cm 2 , 0.650-0.700 A/cm2, 0.700-0.750 A/cm 2 , 0.750-0.800 A/cm 2 , 0.800-0.850 A/cm2, 0.850-0.900 A/cm 2 , 0.900- 0.950 A /cm 2 ; or,
  • the inner diameter (D8-10mm, tube current density is one of the following parameters: 0.400-0.450 A / cm 2, 0.450-0.500 A / cm2, 0.500-0.550A / cm 2, 0.550-0.600 A / cm 2, 0.600 - 0.650 A/cm 2 , 0.650-0.700 A/cm2, 0.700-0.750 A/cm 2 , 0.750-0.800 A/cm 2 , 0.800-0.850 A/cm2 ;
  • the inner diameter (D5-8mm, tube current density is one of the following parameters: 0.400- 0.450 A / cm 2, 0.450- 0.500 A / cm2, 0.500-0.550A / cm 2, 0.550-0.600 A / cm 2, 0.600 - 0.650 A/cm 2 , 0.650-0.700 A/cm2, 0.700-0.750 A/cm 2 ; or,
  • the inner diameter (D 3-5mm, tube current density is one of the following parameters: 0.400-0.450 A / cm 2, 0.450-0.500 A / cm2, 0.500-0.550A / cm 2, 0.550-0.600 A / cm 2, 0.600-0.650 A/cm 2 , 0.650-0.700 A/cm 2 , 0.700-0.750 A/cm 2 , 0.750-0.800 A/cm 2 , 0.800-0.850 A/cm 2 .
  • the low-pressure ultraviolet lamp is set to: inner diameter ⁇
  • the low-pressure ultraviolet lamp comprises: a discharge capacitor and a discharge device for maintaining an electron discharge in the discharge vessel, wherein the discharge vessel has a sealed discharge space inside, and the discharge space contains mercury or an amalgam, a rare gas.
  • the material for controlling the vapor pressure of mercury in the low-pressure ultraviolet lamp is liquid mercury.
  • the material for controlling the mercury vapor pressure of the low-pressure ultraviolet lamp is an alloy containing antimony indium tin-mercury or an alloy containing antimony, lead, and tin-mercury.
  • the liquid mercury is built in the discharge chamber of the low-pressure ultraviolet lamp.
  • the exhaust pipe of the low-pressure ultraviolet lamp or the connecting member of the low-pressure ultraviolet lamp that does not pass the airflow is at a temperature of 75-95 ° C, 85-105 ° C, 95-135 ° C, built in
  • the material that controls the vapor pressure of mercury is an alloy containing 4 indium tin hydride.
  • the temperature is 60-90 ° C, 65-95 ° C, 65-105 ° C, 70-115 At °C, the material built into the mercury vapor pressure control is an alloy containing antimony, lead, and tin.
  • the rare gas filled in the low-pressure ultraviolet lamp is a helium or argon-argon mixture, preferably an argon-helium mixture, and further preferably an argon-helium mixture having a helium content of more than 50% or a helium content of more than 70 % argon-helium mixture.
  • Embodiments of the present invention provide a method for setting an ultraviolet sterilization and disinfection apparatus, including the optimization and design of the aforementioned low-pressure ultraviolet lamp, environmental changes such as temperature and wind speed changes, and optimization and design of power adjustment. Also includes:
  • the size, structure, and tube current density of each of the positionally adjusted low pressure ultraviolet lamps are determined in accordance with predetermined ultraviolet dose requirements.
  • the flow field of the airflow is analyzed by ANSYS or similar fluid analysis software to make the flow field distribution uniform.
  • an average illuminance value of each node in the predetermined discrete grid may be obtained according to the following formula:
  • E is the ultraviolet intensity
  • P is the ultraviolet power
  • is the half angle between the UV intensity node and the UV lamp arc length to be calculated
  • L is the discharge arc length of the UV lamp
  • D is the UV intensity node distance lamp to be calculated Normal distance.
  • the ultraviolet sterilization and disinfection device designed according to the invention comprises a fan, an air inlet, a sterilization and disinfection chamber, and an air outlet.
  • the sterilization and disinfection module in the sterilization chamber contains at least one ultraviolet module, and the ultraviolet module adopts the optimized low-pressure ultraviolet lamp, and Reasonable design of UV illumination and flow field.
  • the sterilization and disinfection module further comprises one or more of a photocatalyst module, an electrostatic module, a filter module, and an ozone module.
  • the ultraviolet sterilization and disinfection device comprises a light-shielding baffle
  • the light-shielding baffle is a grid bar structure, and each of the grids includes a bent light-shielding flow guiding portion and at least one straight plate along the air flow direction. Straight plate diversion section.
  • the light shielding baffle is a metal plate, and different voltages are applied on the light shielding baffle to make the light shielding baffle have an electrostatic adsorption function at the same time.
  • the sterilization and disinfection module has at least one detachable embedded structure, and the ultraviolet module, the photocatalyst module, the electrostatic module, the filter module, and the ozone module may all be detachable embedded structures. It can be loaded and unloaded separately, or multiple sterilization and disinfection modules can be connected by connectors, which can be integrated and unloaded.
  • the sterilizing and disinfecting module of the detachable embedded structure is directly embedded in the pre-made card slot of the ultraviolet sterilizing device;
  • the sterilizing and disinfecting module of the detachable embedded structure is connected to the ultraviolet sterilizing device by a spring snap, a snap fastener or the like;
  • the sterilizing and sterilizing module of the detachable embedded structure is tightly connected by a screw or a casing Connected to the UV sterilization equipment described.
  • the ultraviolet illuminance around the low-pressure ultraviolet lamp is improved, that is, the ultraviolet radiation dose received by the airflow flowing through the sterilization and disinfection chamber is increased, which can be extremely
  • the earth improves the sterilization and disinfection efficiency of the device; in addition, the shape of the ultraviolet irradiation region is compressed, and then the specific node position of the ultraviolet lamp and the ultraviolet illuminance corresponding to each node are obtained by discrete and re-integration, and the lamp pairs are comprehensively considered. Calculate the influence of the points so that the illumination of the UV lamps at different positions is more reasonable, and the ultraviolet illuminance in the entire device is uniform.
  • UV sterilization and disinfection device ensures the safety by setting the light-shielding and diversion structure to avoid ultraviolet leakage.
  • the shell is designed as a device with different performances; the sterilization and disinfection performance can also be adjusted according to the needs of the use place at different times.
  • FIG. 1 is a specific embodiment of a method for setting an ultraviolet sterilization device according to an embodiment of the present invention
  • FIG. 2 is another embodiment of a method for setting an ultraviolet sterilization device according to an embodiment of the present invention.
  • FIG. A schematic cross-sectional view of three different shaped sterilization chambers in the example;
  • FIG. 4 is a schematic diagram of dividing a discrete mesh into three different shapes of cross-section as shown in FIG. 3;
  • FIG. 5 is a schematic diagram showing the meanings of a, L and D in the embodiment of the present invention.
  • Figure 6 is a schematic view showing the structure of the ultraviolet sterilization and disinfection device. Detailed ways
  • the ultraviolet sterilizing and disinfecting device and the setting method thereof provided by the invention provide a sterilizing and disinfecting device which is suitable for human and animal activities, and can be quickly, safely and continuously effective.
  • the ultraviolet sterilizing and disinfecting device has the following characteristics: 1. ultraviolet dose Large, that is, one-time sterilization and sterilization efficiency is high. 2, sterilization and sterilization cavity body Small size, low cost, and easy to install. 3, UV light 253.7nm ultraviolet energy conversion efficiency, UV illuminance distribution are hooked, power adjustable, comprehensive energy utilization efficiency. 4, wind speed, ambient temperature and other factors change, sterilization and disinfection effect is good. 5, no UV leakage, good safety. 6. Easy to install, disassemble and maintain, the function can be flexibly adjusted.
  • the ultraviolet sterilization and disinfection device and the setting method thereof provided by the invention are sterilized and disinfected by a newly designed low-pressure ultraviolet lamp, with a reference dose of 5 mJ/cm 2 and a reference flow rate of 10 m 3 /h ( 0.00278 m 3 /s or 0.00278 cubic meters per In seconds, the reference dose is 5mJ/cm 2 , and the ratio of the volume of the UV sterilization chamber to the flow rate per second is ⁇ 0.8.
  • the ratio is different according to the actual device structure and performance requirements.
  • the ratio may be ⁇ 0.75, ⁇ 0.70. , ⁇ 0.65, ⁇ 0.60, ⁇ 0.55, ⁇ 0.50, ⁇ 0.45, ⁇ 0.40, ⁇ 0.35, ⁇ 0.30 or ⁇ 0.25.
  • the lamp power required to reach the reference dose of 5mJ/cm 2 and the reference flow rate of 10 m3/h is ⁇ 22.0W.
  • the value is different depending on the actual device structure and performance requirements. The value may be ⁇ 21.5W, ⁇ 21.0W, ⁇ 20.5. W, ⁇ 20.0W, ⁇ 19.5W, ⁇ 19.0W, ⁇ 18.5W, ⁇ 18.0W, ⁇ 17.5W, ⁇ 17.0W, ⁇ 16.5W, ⁇ 16.0W, ⁇ 15.5W, ⁇ 15.0W, ⁇ 14.5W or ⁇ 14.0W.
  • Reducing the volume of the UV sterilization chamber can be achieved in several ways: 1.
  • the tube current density is increased, and the ultraviolet illuminance value in the sterilization chamber is increased, and the target ultraviolet dose is achieved, and the ultraviolet irradiation time can be reduced, that is, the volume is reduced.
  • the structure is optimized, the ultraviolet illuminance is uniform, the flow field is uniform, or the ultraviolet illuminance is matched with the flow field, so that the ultraviolet dose at each point in the space is uniform, which helps to shorten the time of ultraviolet irradiation and reduce the volume.
  • the ultraviolet illuminance of the sterilization and disinfection chamber is further improved by the ultraviolet reflective layer.
  • the reduction of energy consumption can be achieved in several ways: 1. Although the 253.7nm UV energy conversion efficiency will decrease when the tube current density increases, the correct selection of the arc length of the lamp by the optimal matching of the gas and the amalgam in the lamp can Taking into account the energy conversion efficiency of 253.7nm ultraviolet light, it can even be improved compared with ordinary UV lamps. 2, the structure is optimized, the UV dose is uniform at each point in the space, and the UV energy required to achieve the same ultraviolet dose is reduced. 3. Improve the utilization of ultraviolet rays through the ultraviolet reflective layer. 4. Adjust the power to reduce the power consumption in the general sterilization and disinfection state, reduce the energy consumption, and the energy conversion efficiency of the 253.7nm ultraviolet light is improved under the state of reducing power consumption. 5.
  • the tube current density increases, the tube diameter decreases, the flow resistance decreases, and the effective cross-sectional area of the fluid flows increases, increasing the flow rate of the fluid for the same sterilizing chamber section and the same flow rate, and correspondingly reducing The lamp power per unit flow.
  • the inventors have found that in order to reduce the volume of the sterilization and disinfection chamber of the ultraviolet sterilization and disinfection device, This can be achieved by increasing the power of the UV lamp, ie increasing the tube current or tube current density while ensuring a higher UV conversion efficiency.
  • a low-pressure ultraviolet lamp using different tube currents or tube current densities is optimized or designed for each tube diameter of the ultraviolet lamp. Further, the optimization and design of the filling gas and the mercury source in the ultraviolet lamp can further improve the ultraviolet conversion efficiency.
  • Test phase In the high and low temperature chamber, select the tube current corresponding to the tube current density of 0.6-0.8A/cm, test the change characteristics of ultraviolet illuminance and liquid mercury temperature, and obtain the saturation corresponding to the maximum ultraviolet illuminance of each tube diameter.
  • Mercury vapor pressure that is, the optimum mercury vapor pressure corresponding to each pipe diameter.
  • Tube current density tube current / tube internal cross-sectional area
  • the tube current density upper limit value is determined according to the set minimum ultraviolet conversion efficiency. From Table 1, the tube current density range corresponding to each specific tube diameter range can be preliminarily determined. :
  • the inner diameter of 35.0 mm is selected to be a tube current density of 0.850 A/cm 2 and the ultraviolet conversion efficiency ⁇ > 30%.
  • the tube current density is selected: 0.800 A/cm 2
  • the ultraviolet conversion efficiency ⁇ is 29.0 mm
  • the tube current density is 0.900 A/cm 2
  • the tube current density is selected: 0.850 A/cm 2
  • the ultraviolet conversion efficiency ⁇ is 22.0 mm
  • the tube current density is 1.150 A/cm 2
  • the tube current density ⁇ 1.100 A/cm 2
  • the ultraviolet conversion efficiency ⁇ and the inner diameter of 17.0 mm were selected to obtain a tube current density of 1.400 A/cm 2 and an ultraviolet conversion efficiency ⁇ > 30%.
  • the tube current density is selected: ⁇ 1.350 A/cm 2
  • the ultraviolet conversion efficiency ⁇ is 13.6 mm
  • the tube current density is 1.050 A/cm 2
  • the tube current density is selected: ⁇ 1.000 A/cm 2 , the ultraviolet conversion efficiency ⁇ is 10.8 mm, and the tube current density is ⁇ 1.050 A/cm 2 , and the ultraviolet conversion efficiency ⁇ > 30%.
  • the tube current density was selected: ⁇ 1.000 A/cm 2 , the ultraviolet conversion efficiency ⁇ was 9.0 mm, and the tube current density was ⁇ 0.950 A/cm 2 , and the ultraviolet conversion efficiency ⁇ > 25 %.
  • select the tube current density ⁇ 0.900 A/cm 2 , UV conversion efficiency ⁇
  • the inner diameter is 7.0 mm, and the tube current density is selected: ⁇ 0.850 A/cm2, and the ultraviolet conversion efficiency ⁇ > 25 %.
  • the tube current density is selected: 0.800 A/cm 2 , and the ultraviolet conversion efficiency ⁇ > .
  • the inner diameter is 4.0 mm, and the tube current density is selected to be ⁇ 0.950 A/cm 2 , and the ultraviolet conversion efficiency ⁇ > 25 %.
  • the tube current density is selected: 0.900 A/cm 2 , and the ultraviolet conversion efficiency ⁇ > .
  • the tube current density corresponding to each tube diameter range is further determined, see Table 2.
  • the tube wall of the lamp is high, and amalgam must be used to control the mercury vapor pressure; the inventors have unexpectedly found that when the gas flow rate is l-5 m/s, the mercury source is used. Liquid mercury also ensures high UV conversion efficiency due to the heat transfer of the gas stream during gas sterilization and sterilization. The cold end of the mercury vapor pressure is controlled.
  • This design liquid mercury is built into the discharge chamber of the low-pressure ultraviolet lamp. Another design is to fix the amalgam to a specific position on the inner wall of the quartz tube of the low-pressure ultraviolet lamp.
  • the position is the junction of the fixed lamp, where the airflow does not flow, the heat conduction is poor, and the temperature is relatively high, such as a fixed connection.
  • the temperature of this connection varies from 60-130 °C, depending on the current and connection structure and material of the lamp.
  • the output change is less than 10%. That is, when the environment is bad or the change is large, the sterilization effect can be ensured.
  • the high wind speed and low current density meet the minimum value of the set UV conversion efficiency, and the corresponding tube current density is the lower limit of the tube current density.
  • the air flow rate is set to be l-3 m/s, 1.5-3.5 m/s, 2-4 m/s, 2.5-4.5 m/s, 1.5-4 m/s, 2-5 m/s or the like, which may be Further, the UV conversion efficiency is higher, or the environment is more adaptable.
  • the ultraviolet sterilization and disinfection apparatus in the embodiment of the present invention further includes an adjustment module that adjusts the power of the low-pressure ultraviolet lamp and adjusts the ultraviolet dose of the airflow.
  • Select tube current density: 0.450 A/cm 2 power can be adjusted to 62%;
  • select tube current density: 0.500 A/cm 2 power can be adjusted to 56%;
  • select tube current density: 0.550A/cm 2 Adjustable to 51%;
  • select tube current density: 0.600 A/cm 2 power can be adjusted to 46%;
  • select tube current density: 0.650A/cm 2 power can be adjusted to 43%;
  • select tube current density: 0.700 A/cm 2 power can be adjusted to 40%; tube current density: 0.750 A/cm 2 , power can be adjusted to 37%.
  • the tube current density can be selected separately: 0.400-0.450A/cm 2 , 0.450-0.500 A/cm 2 , 0.500-0.550A/cm2 , 0.550-0.600 A/cm 2 , 0.600-0.650 A/cm 2 or 0.650-0.700 A/cm 2 , 0.650-0.750 A/cm 2 .
  • Similar adjustment modules can be set for power adjustment for other inner diameters.
  • the inner diameter is ⁇ 26-30 ⁇
  • the tube current density is selected from 0.300 to 0.850 A/cm 2
  • the wind speed is l-5 m/s
  • the tube current density 0.330-0.800 A/cm 2 .
  • the tube current density can be selected separately: 0.450-0.500 A/cm 2 , 0.500-0.550 A/cm 2 , 0.550-0.600 A/cm 2 , 0.600- 0.650 A/cm 2 , 0.650-0.700 A/cm 2 , 0.700-0.750 A/cm 2 , 0.750-0.800 A/cm 2 .
  • the tube current density can be selected separately: 0.450-0.500 A/cm 2 , 0.500-0.550 A/cm2, 0.550-0.600 A/cm 2 , 0.600-0.650 A/cm 2 , 0.650-0.700 A/cm 2 , 0.700-0.750 A/cm 2 , 0.750-0.800 A/cm 2 , 0.800-0.850 A/cm 2 , 0.850-0.900 A/cm2, 0.900-0.950 A/cm 2 , 0.950- 1.000 A/cm 2 , 1.000-1.050 A/cm 2 .
  • Inner diameter D 15-20mm, tube current density: 0.340- 1.350 A/cm 2 , wind speed l-5m/s, UV conversion efficiency ⁇ > 30%. UV to ensure ambient temperature changes from 10-35 °C Conversion efficiency, select tube current density: 0.400-1.300 A/cm 2.
  • the tube current density can be selected separately: 0.450-0.500 A/cm 2 , 0.500- 0.550 A / cm 2, 0.550-0.600 A / cm 2, 0.600-0.650A / cm 2, 0.650-0.700 A / cm 2, 0.700-0.750A / cm2, 0.750-0.800A / cm 2, 0.800-0.850A / cm 2, 0.850-0.900 A / cm 2 , 0.900-0.950A / cm2, 0.950- 1.000A / cm 2, 1.000-1.050A / cm 2, 1.050-1.000A / cm 2, 0.950-1.100 A / cm2, 1.100 -1.150 A/cm 2 , 1.150-1.200 A/cm 2 , 1.200-1.250 A/cm 2 , 1.250-1.300 A/cm 2 .
  • the tube current density can be selected separately: 0.450-0.500A/cm 2 , 0.500- 0.550 A/cm 2 , 0.550-0.600 A/cm 2 , 0.600-0.650 A/cm 2 , 0.650-0.700 A/cm 2 , 0.700-0.750 A/cm 2 , 0.750-0.800 A/cm 2 , 0.800-0.850 A/cm 2 , 0.850-0.900 A/cm2, 0.900-0.950 A/cm 2 .
  • the tube current density can be selected separately: 0.400-0.450 A/cm 2 , 0.450-0.500 A/cm 2 , 0.500-0.550 A/cm 2 , 0.550-0.600 A/cm, 0.600-0.650 A/cm 2 , 0.650-0.700 A/cm2, 0.700-0.750 A/cm 2 , 0.750-0.800 A/cm 2 , 0.800-0.850 A/cm 2 , 0.850-0.900 A/cm 2 , 0.900-0.950 A/cm 2 .
  • the tube current density can be selected separately from 0.400-0.450 A/cm2, 0.450-0.500 A/ Cm 2 , 0.500-0.550 A/cm 2 , 0.550-0.600 A/cm 2 , 0.600-0.650 A/cm 2 , 0.650-0.700 A/cm 2 , 0.700-0.750 A/cm 2 , 0.750-0.800 A/cm 2 , 0.800 -0.850 A/cm 2 .
  • Tube current density can be selected separately: 0.400-0.450 A/cm2, 0.450-0.500 A/ Cm2, 0.500-0.550 A/cm2, 0.550-0.600 A/cm 2 , 0.600-0.650 A/cm 2 , 0.650-0.700 A/cm 2 , 0.700-0.750 A/cm 2 .
  • Inner diameter D3-5mm, selected tube current density: 0.280-0.900 A/cm 2 , wind speed l-5m/s, UV conversion efficiency ⁇ > 25 %.
  • the tube current density can be selected separately from 0.400-0.450 A/cm2, 0.450-0.500 A/cm.
  • the embodiment of the present invention proposes an ultraviolet sterilization and disinfection device, which has high ultraviolet conversion efficiency when the temperature, wind speed environment changes and power is adjusted.
  • the ultraviolet sterilization device is provided with one or more low-pressure ultraviolet lamps, and the preferred parameters of the low-pressure ultraviolet lamp are: an inner diameter of ⁇ 30-36 ⁇ , a tube current density of 0.400-0.750 A/cm2, or an inner diameter D 26-30mm, tube current density: 0.450-0.800 A/cm2; or, inner diameter is ⁇ 20-26 ⁇ , tube current density: 0.450-1.050 A/cm 2 ; or, inner diameter is (D 15-20mm, tube current density: 0.450 -1.350 A/cm 2 ; or , the inner diameter is ⁇ 12-15 mm, the tube current density is 0.450-0.950 A/cm 2 ; or the inner diameter is ⁇ 10-12 ⁇ , the tube current density is 0.400-0.950 A/cm 2 ; or , inner diameter is ⁇ 8-10 ⁇ , tube current density: 0.400-0.
  • the above preferred range is to take into account the UV conversion efficiency under various conditions such as the volume and temperature of the sterilization and sterilization chamber, the change of the wind speed environment and the adjustment of the power.
  • the tube current density is selected too small: 1.
  • the volume of the sterilization and disinfection chamber is large, 2.
  • Power The adjustment range is small.
  • the UV conversion efficiency is low.
  • the mercury vapor pressure is controlled by an alloy containing antimony indium tin mercury or an alloy containing antimony, tin, lead, and mercury.
  • the above ambient temperature is more adaptable, and may be 0-35 ° C, 0-45 ° C, 5-35 ° C, 5 -45 °C, 10-45 °C, 10-55 °C, 15-55 °C, 15-60 °C, 15-65 °C, 15-70 °C, 15-75 °C, at these temperatures within the range, the UV output of the lamp changes by less than 10% and the UV dose of the gas stream changes by less than 10%.
  • the material for controlling the vapor pressure of mercury in the low-pressure ultraviolet lamp is liquid mercury.
  • the material for controlling the mercury vapor pressure of the low-pressure ultraviolet lamp is an alloy containing antimony indium tin-mercury or an alloy containing antimony, lead, and tin-mercury.
  • the liquid mercury is built in the discharge chamber of the low-pressure ultraviolet lamp.
  • the bismuth-indium-tin-mercury-containing alloy or the bismuth-lead-tin-mercury-containing alloy is built in the exhaust pipe of the low-pressure ultraviolet lamp or at the connection of the low-pressure ultraviolet lamp through which the fluid does not pass.
  • the ultraviolet sterilization and disinfection apparatus in the embodiment of the present invention may further comprise an adjustment module for adjusting the ultraviolet dose of the airflow by adjusting the power of the low-pressure ultraviolet lamp.
  • the low-pressure ultraviolet lamp is specifically set as follows:
  • the inner diameter ⁇ 30-36 ⁇ , the single lamp discharge arc length can be one of the following parameters: ⁇ 80cm, >90cm>100cm>110cm, >120cm>130cm, >140cm>150cm>160cm>170cm,
  • Inner diameter (D26-30mm, single lamp discharge arc length can be one of the following parameters: > 80cm, >90cm > 100cm > 110cm, > 120cm > 130cm > 140cm > 150cm > 160cm > 170cm,
  • Inner diameter (D20-26mm, single lamp discharge arc length can be one of the following parameters: > 80cm, >90cm > 100cm > 110cm, > 120cm > 130cm > 140cm > 150cm > 160cm > 170cm,
  • Inner diameter (D 15-20mm, single lamp discharge arc length can be one of the following parameters: ⁇ 60cm, ⁇ 70cm, ⁇ 80cm, ⁇ 90cm, >100cm, ⁇ 110cm, >120cm, ⁇ 130cm, >140cm , ⁇ 150cm,
  • Inner diameter (D 12-15mm, single lamp discharge arc length can be one of the following parameters: ⁇ 60cm, ⁇ 70cm, ⁇ 80cm, ⁇ 90cm, >100cm, ⁇ 110cm, >120cm, ⁇ 130cm, >140cm , ⁇ 150cm,
  • Inner diameter (D 8-10mm, single lamp discharge arc length can be one of the following parameters: > 40cm, > 50cm, > 60cm, > 70cm, > 80cm, > 90cm, > 100cm, > 110cm, > 120cm , > 130cm,
  • the inner diameter (D 5-8mm, single lamp discharge arc length can be one of the following parameters: 25>cm, ⁇ 30cm, ⁇ 35cm, ⁇ 40cm, ⁇ 50cm, ⁇ 60cm, ⁇ 70cm, ⁇ 80cm, ⁇ 90cm, >100cm, >110cm, >120cm;
  • the inner diameter ⁇ 3-5 ⁇ the single lamp discharge arc length can be one of the following parameters: 15>cm, ⁇ 18cm, ⁇ 20cm, ⁇ 25cm, ⁇ 30cm, ⁇ 35cm, ⁇ 40cm, ⁇ 50cm, ⁇ 60cm , ⁇ 70cm, ⁇ 80cm.
  • the embodiment of the invention further provides a method for setting an ultraviolet sterilization and disinfection device, comprising: a tube diameter, a tube current, a discharge arc length, a material for controlling a mercury vapor pressure, and a filling gas for various low-pressure ultraviolet lamps; Optimization and design, including environmental changes such as temperature and wind speed changes, and parameter optimization and design during power regulation. Also includes:
  • the one or more low-pressure ultraviolet lamps are disposed in the ultraviolet sterilization and disinfection device, comprising: preset an initial position of the low-pressure ultraviolet lamp according to a cavity structure of the ultraviolet sterilization and disinfection device;
  • the size, structure, and tube current density of each of the positionally adjusted low pressure ultraviolet lamps are determined in accordance with predetermined ultraviolet dose requirements.
  • the flow field of the airflow is analyzed by ANSYS or similar fluid analysis software to make the flow field distribution uniform.
  • an average illuminance value of each node in the predetermined discrete grid may be obtained according to the following formula: E _ P(2a + sm 2a)
  • E is the ultraviolet intensity
  • P is the ultraviolet power
  • is the half angle between the UV intensity node and the UV lamp arc length to be calculated
  • L is the discharge arc length of the UV lamp
  • D is the UV lamp distance to be calculated. The normal distance of the node.
  • the sterilization and disinfection efficiency of the low-pressure ultraviolet lamp can be greatly improved; on the other hand, by shaping the shape of the ultraviolet irradiation region, then The method of discrete and re-integration obtains the specific node position of the ultraviolet sterilization lamp and the ultraviolet sterilization intensity corresponding to each node, and comprehensively considers the influence of each lamp on the calculation point, so that the ultraviolet sterilization lamp of different positions The intensity setting is more reasonable, and the illumination of the ultraviolet sterilization lamp in the whole device is hooked, thereby increasing the efficiency of ultraviolet sterilization.
  • FIG. 1 it is a specific embodiment of a method for setting an ultraviolet sterilization device in an embodiment of the present invention, which is mainly used for setting a position of an ultraviolet sterilization lamp in an ultraviolet sterilization device, the ultraviolet
  • the sterilization lamp includes a discharge device, a discharge vessel, and an amalgam filled in the discharge vessel.
  • the method comprises the following steps:
  • the average illuminance value of each node in the predetermined discrete grid may be obtained according to the following formula:
  • E is the ultraviolet intensity
  • P is the ultraviolet power
  • is the half angle between the UV intensity node and the UV lamp arc length to be calculated
  • L is the discharge arc length of the UV lamp
  • D is the UV lamp distance to be calculated. The normal distance of the node.
  • the method further includes: calculating an ultraviolet dose uniformity of the ultraviolet irradiation region, and adjusting each of the discrete grids preset in step 103 according to the ultraviolet dose uniformity and the expected ultraviolet dose uniformity The position of the node, the average illuminance value, and the time at which the air flows through the ultraviolet irradiation region until the calculated ultraviolet dose uniformity satisfies the expected ultraviolet dose uniformity.
  • FIG. 2 it is another specific embodiment of the method for setting the ultraviolet sterilization and disinfection apparatus in the embodiment of the present invention.
  • a discrete mesh into the cross section of the ultraviolet irradiation region. That is, after the desired ultraviolet illuminance is known, one or more low pressure high intensity ultraviolet lamps corresponding to the ultraviolet dose are selected and placed at a preliminary uniform interval in the region. In the subsequent steps, the plurality of lamp distributions and regions are differentiated and discretely calculated to obtain an optimal arrangement. As shown in Fig. 4, a schematic diagram of a discrete mesh is divided into three differently shaped sections as shown in FIG.
  • V the lamp voltage
  • I the discharge current
  • (1 tube current density A / cm2
  • the lamp voltage V VAK + e Lc
  • VAK is the electrode drop, generally 17V Left and right
  • e is the axial electric field strength of the positive column area
  • Lc discharges the length of the positive column area.
  • the value of the lamp voltage is generally 40-70% of the supply voltage according to the difference of the supply voltage, and ⁇ ⁇ is the distortion factor of the lamp.
  • is the conversion efficiency of the ultraviolet lamp, that is, the electric power supplied to the ultraviolet lamp is converted into ultraviolet The ratio of flux (power).
  • is the half angle between the UV intensity node and the UV lamp arc length to be calculated
  • L is the discharge arc length of the lamp
  • D is the normal distance of the UV lamp from the UV intensity node to be calculated.
  • FIG. 5 it is a schematic diagram of the meanings of ⁇ , L and D.
  • the average illuminance value of two adjacent points in the vertical direction is taken as the illuminance value of the discrete small segment.
  • each node takes into account the influence of each tube on it.
  • the average illuminance value of the discrete small segment is obtained by multiplying the upper step by the time required for the fluid to flow through the small segment, that is, the illuminance of the entire flow line flowing through the ultraviolet irradiation region is summed; the other flow lines are calculated by the same method. Illumination, calculate the illuminance of different streamlines. What is obtained is the dose of ultraviolet light that the bacteria are exposed to in the UV-irradiated area.
  • the low-voltage high-intensity ultraviolet lamp corresponding to the required ultraviolet dose and adjust the position of the node arranged in step 203 to satisfy the above value range. Further, the ultraviolet dose uniformity in the ultraviolet irradiation region can be calculated, and the node position of the 203 array is adjusted to meet the expected value of the ultraviolet dose uniformity.
  • Dose uniformity D0SE ⁇
  • the lowest dose appears at the wall surface, the lowest dose value is: 6414 uws/cm2; the highest dose appears in the middle about 5 mm near the sides, the highest dose value is: 8598 uws/cm2; then the uniformity distribution value is: 75%.
  • the shape of the ultraviolet irradiation region is compressed, and then the specific node position of the ultraviolet sterilization lamp and the ultraviolet sterilization intensity corresponding to each node are obtained by discrete and re-integration. Taking into account the influence of each lamp on the calculation point, the intensity setting of the ultraviolet sterilization lamp at different positions is more reasonable, the illumination of the ultraviolet sterilization lamp in the whole device is uniform, and the ultraviolet sterilization efficiency is increased.
  • the ultraviolet sterilization and disinfection device comprises an ultraviolet sterilization lamp, a fan, an air inlet, a sterilization and disinfection chamber, an air outlet, and a sterilization and disinfection module in the sterilization and disinfection chamber, which comprises at least one ultraviolet module, and the ultraviolet module adopts the above optimization.
  • the low-pressure UV lamp is designed with UV illumination and flow field.
  • the sterilization module includes a photocatalyst module, an electrostatic module, a filtration module, and an ozone module in addition to the ultraviolet module.
  • the ultraviolet sterilization and disinfection device further comprises a light-shielding baffle, wherein the light-shielding baffle is a grid bar structure, and each of the grids comprises a bent light-shielding flow guiding portion and a straight plate diversion flow of at least one straight line along the air flow direction. section.
  • the light shielding baffle is a metal plate, and different voltages are applied on the light shielding baffle to make the light shielding baffle have an electrostatic adsorption function at the same time.
  • the sterilization and disinfection module has at least one detachable embedded structure, and the ultraviolet module, the photocatalyst module, the electrostatic module, the filter module, and the ozone module may all be detachable embedded structures. It can be loaded and unloaded separately, or multiple sterilization and disinfection modules can be connected by connectors, which can be integrally loaded and unloaded.
  • the sterilizing and disinfecting module of the detachable embedded structure is directly embedded in the pre-made card slot of the ultraviolet sterilizing device;
  • the sterilizing and disinfecting module of the detachable embedded structure is connected to the ultraviolet sterilizing device by a spring snap, a snap fastener or the like;
  • the sterilizing and sterilizing module of the detachable embedded structure is connected to the ultraviolet sterilizing device by screw or shell.
  • FIG. 6 is a schematic structural view of an ultraviolet sterilization and disinfection device: the air sterilization and disinfection device includes a plurality of ultraviolet sterilization and disinfection modules 30 and a frame 32 for fixing the ultraviolet sterilization and disinfection module, and each of the ultraviolet sterilization and disinfection modules includes One or more UV sterilization lamps, the frame including a removable insert structure for receiving and securing one or more sterilization and disinfection modules.
  • the sterilization and disinfection module in the sterilization and disinfection device is a replaceable module, and when the sterilization and disinfection lamp in the sterilization and disinfection device fails, the battery can be replaced or repaired independently; on the other hand, according to actual needs, When the UV illuminance needs to be adjusted, it can be realized by increasing or decreasing the UV sterilization module. When the sterilization and disinfection module is reduced, the frame can be supplemented at this position. The frame has no UV sterilization lamp, and only serves to maintain the device structure and The purpose of preventing ultraviolet light and air leakage; it is also possible to supplement the photocatalyst module here to enhance the function of removing organic matter.
  • the ultraviolet air sterilization and disinfection apparatus shown in FIG. 6 further includes a photocatalyst module 8 disposed in the casing for removing gas odor and other organic pollutants, and also killing the bacterial virus.
  • the photocatalyst module of the embodiment includes a plate or a mesh material disposed at two ends of the sterilization cavity of the sterilization and disinfecting device, and the photocatalyst material is one or more of nano titanium oxide, nano zinc oxide, and nano silver.
  • the sterilization and disinfection device comprises a plurality of sterilization and disinfection modules
  • the photocatalyst module A photocatalyst sheet or mesh material placed at each end of each of the sterilization and disinfection modules is included.
  • the ultraviolet air sterilization and disinfection device as shown in FIG. 6 further includes an electrostatic device 7 disposed in the casing for removing solid particles and also adsorbing and removing the bacterial virus.
  • the electrostatic devices of this embodiment are respectively disposed at the front end of the sterilization and disinfection module, and may be disposed at the rear end of the sterilization and disinfection module as needed.
  • Cuboid sterilization chamber 30cm long, 20cm wide and 40cm high.
  • Three M-type UV lamps are used. The center distance of the three rows of lamps is 15cm, the outer diameter of the UV lamp is 15mm, the power is 120W, and the airflow velocity in the sterilization chamber is 1.2m/ s, the minimum illuminance is: 27mW/cm 2 , the minimum ultraviolet dose is about 9.0mJ/cm 2 , and the flow rate per second is 0.072m3.
  • the UV dose reaches the reference dose of 5 mJ/cm 2 (mWs/cm 2 ).
  • Cylindrical sterilization chamber 40cm in diameter and 60cm in height, using four annular UV lamps, the center of the four rows of lamps is 15cm, the outer diameter of the UV lamp is 19mm, the power is 250W, and the flow velocity in the sterilization chamber is 2.0m/s.
  • the minimum illuminance is: 25mW/cm 2
  • the minimum ultraviolet dose is about 7.5mJ/cm 2
  • the flow rate per second is 0.25 m3.
  • the UV dose reaches the reference dose of 5mJ/cm 2 (mWs/cm 2 ).
  • the ratio of the volume of the UV sterilization chamber to the flow rate per second is 0.20.
  • the UV lamp power required for the reference flow rate of 10m3/h is: 14.8W.
  • Central air-conditioning cuboid sterilization chamber 60cm high, 60cm wide, 190cm long, 9 straight-tube type UV lamps, 8 lamps are arranged in a square shape, the distance from the end face is 10cm, and another lamp is placed outside the UV lamp.
  • the diameter is 38mm
  • the power is 800W
  • the total power of the lamp is 7200W
  • the flow rate is 3.0m/s
  • the inner wall of the sterilization and disinfection chamber is polished aluminum layer
  • the minimum illumination is 20mW/cm 2
  • the minimum ultraviolet dose is about 12.7mJ/cm2.
  • the second flow rate is: 1.08m3, the ultraviolet dose reaches the reference dose of 5mJ/cm 2 (mWs/cm 2 ), and the ratio of the volume of the UV sterilization chamber to the flow rate per second is 0.249, and the UV light required for the reference flow rate is 10m3/h.
  • the power is: 14.6W.
  • Cylindrical sterilization chamber 60cm in diameter and 70cm in height, using four annular UV lamps.
  • the center of the four rows of lamps is 18cm apart, the outer diameter of the UV lamp is 38mm, the center of the ring is 40cm, and the power is 700W.
  • the electrodeless UV lamp is embedded in a duct structure with a flow rate of 2.0m/s.
  • the inner wall of the sterilization chamber is a polished aluminum layer with a minimum illumination of 22mW/cm 2 , a minimum UV dose of approximately 7.7mJ/cm 2 , a flow rate of 0.565 m3 per second, and a UV dose of 5 mJ/cm 2 (mWs). /cm 2 ) , the ratio of the volume of the UV sterilization chamber to the flow rate per second is 0.23, and the reference flow rate is 10m3/h.
  • the required UV lamp power is 15.8W.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Water Treatments (AREA)
  • Discharge Lamp (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Electrostatic Separation (AREA)

Abstract

一种紫外灭菌消毒装置,该紫外灭菌消毒装置中设置有一支或多支低压紫外线灯,设置方法为低压紫外线灯的内径为Φ30-36mm,管电流密度:0.250-0.800A/cm2;或,内径为Φ26-30mm,管电流密度:0.280-0.850A/cm2;或,内径为Φ20-26mm,管电流密度:0.300-1.100A/cm2;或,内径为Φ15-20mm,管电流密度0.340-1.350A/cm2等。该方法可以使得紫外灭菌消毒装置的紫外剂量提高,提高灭菌消毒效率。

Description

一种紫外灭菌消毒装置及其设置方法 技术领域
本发明涉及空气净化技术领域, 特别涉及一种紫外灭菌消毒装置及其设置 方法。 背景技术
紫外线消毒技术被广泛应用于各种灭菌消毒领域, 紫外线源可以是紫外线
LED 或紫外线汞蒸汽放电灯等。 在空气净化领域, 也可以通过紫外线消毒的方 式杀灭空气中的有害物质, 达到提高空气质量的目的。 紫外线会破坏微生物的 DNA、 RNA, 对微生物具有杀灭作用。 紫外线对一些有害有机物具有分解作用, 结合臭氧、 过氧化氢等氧化分解效果更好。 无论何种紫外线源, 其紫外剂量决 定紫外灭菌消毒的效果, 即: 微生物一次杀灭率、 有害有机物一次去除率。
紫外剂量 =紫外照度 X辐照时间, 从理论上分析, 欲一次性将经过紫外辐 照区域的细菌、 病毒等微生物杀灭则需要经过紫外辐照区域的每一个 (每一个 菌落单位) 细菌、 病毒等微生物均能够接受到足够剂量的紫外线辐照。 理论上 可以采用低的紫外照度, 通过延长辐照时间来达到消毒杀菌的效果, 此类方法 较易实施。 但该方法具有一定的先天缺陷: 即为延长紫外照射时间, 通常需要 增加紫外源照射消毒区域的面积或体积, 从而达到彻底消毒的目的, 因此该方 法实用性不强。 现实中很多紫外灭菌消毒装置受体积和成本影响, 采用低的紫 外照度、 短的辐照时间, 通过循环引流照射增加照射次数, 其杀菌消毒效率非 常低。
目前现有空气净化器、 中央空调气流管道内紫外灭菌消毒装置一般采用 4W、 8W、 15W、 20W、 30W、 40W常规汞蒸汽放电紫外线灯管, 灯电流密度或 功率密度低, 紫外辐照度低, 没有设置一个有效的紫外灭菌消毒腔, 空气流经 紫外辐照区的时间短, 实际的紫外剂量远小于灭菌消毒所需的紫外剂量, 是通 过多次循环并结合过滤来达到一定的灭菌消毒效果, 一次性的灭菌消毒率低, 对于高传染性、 高致病性的细菌、 病毒, 仍有 4艮大的风险。 如市场某一设置了 紫外灭菌消毒的小型空气净化器, 使用一支外径 15mm4W小功率紫外线灯管, 结合光触媒, 腔体内涂二氧化钛, 风速 1.5m/s, 紫外剂量远小于 lmJ/ cm2 , 光 触媒也不能快速灭菌, 系统整体达不到好的灭菌消毒功能。 再如医用手推紫外 灭菌消毒车, 灭菌消毒腔体为长方体灭菌消毒腔: 长 60cm、 宽 40cm、 高 10cm, 采用三支 H型紫外线灯并排放置, 紫外线灯管径 19mm 功率 40W,风速 2.0m/s, 边缘的最小照度为: 5mW/cm2 , 平均紫外剂量约为: 0.3mJ/cm2 ( mWs/cm ), 每秒流量为: 0.48m3。 拟定基准剂量为 5mJ/cm2 ( mWs/cm2 ), 基准流量为 10 m3/h ( 0.00278 m3/s即 0.00278立方米每秒)。 达到基准剂量 5mJ/cm2 , 紫外灭 菌消毒腔体体积与单位时间(每秒)的流量比值为: 0.83。 达到基准剂量 5mJ/cm , 基准流量 10 m3/h所需紫外线灯的功率为: 23.2W。
现有紫外线空气消毒装置通常设计筒单, 紫外剂量常远小于要求的生物剂 量, 一次性灭菌消毒效率低, 整体灭菌消毒效率也不理想。 一般的空气消毒用 的紫外线灯, 其管电流密度小于 0.2A / cm2 , 灯周围的紫外照度值低, 要达到 杀灭微生物的目标紫外剂量需要很多数量的紫外线灯管及很长的紫外消毒腔 体。 采用现有技术把紫外剂量提高, 提高一次性灭菌消毒效率, 一方面装置体 积庞大、 成本高, 也不便于放置; 另一方面在气流流速的热传导作用下, 现有 普通紫外线灯 253.7nm能量效率大幅下降, 系统能耗高。 灭菌消毒腔的体积 V 与紫外剂量 J和流量 Q比值 V/(JQ)及紫外线灯的功率 P与紫外剂量 J和流量 Q 比值 P/(JQ)是衡量紫外灭菌消毒装置性能的两项重要指标。 以基准剂量 5mJ/cm 、 基准流量 10 m3/h ( 0.00278 m3/s即 0.00278立方米每秒)计, 现有技术从 上述例推算可知: 达到基准剂量 5mJ/cm2 , 紫外灭菌消毒腔体积与每秒的流量 (即每秒 l m3 )的比值〉0.8; 达到基准剂量 5mJ/cm2 , 基准流量 10 m3/h所需的 灯功率〉22.0W。
在公共场所, 采用消防设施应对突发的火灾危害, SARS、 H7N9及未来可 能突发、 群发的高传染性、 高致病性微生物的传播也是严重威胁公共卫生安全 的重要隐患。 随着环境污染的加剧, 微生物以雾霾中的颗粒物 PM10、 PM2.5为 载体的传播, 可能导致大面积的人员伤亡, 是一个需要全球密切关注的问题, 一直困惑着人类, 我们迫切需要一种有效而实用的技术方案及装置来应对。 发明内容
本发明实施例所要解决的技术问题在于, 提供一种紫外灭菌消毒装置及其 设置方法, 在提高紫外剂量、 快速灭菌消毒(即提高一次性杀灭率或去除率) 的同时, 尽可能减小紫外灭菌消毒装置体积, 降低灭菌消毒装置的成本, 兼顾 灭菌消毒装置的能耗。
本紫外灭菌消毒方法及其装置能快速将密闭空间的微生物降至非治病浓 度, 保障公共卫生安全。
为达到上述技术效果, 本发明实施例提供了一种紫外灭菌消毒装置, 所述 紫外灭菌消毒装置中设置有一支或多支低压紫外线灯, 所述低压紫外线灯的内 径为 Φ30-36ιηιη, 管电流密度: 0.250-0.800 A/cm2 ; 或, 内径为 Φ26-30ιηιη, 管电流密度: 0.280-0.850 A/cm2 ; 或, 内径为 D 20-26mm , 管电流密度: 0.300-1.100 A/cm2 ; 或, 内径为 Φ 15-20ιηιη, 管电流密度: 0.340-1.350 A/cm2 ; 或, 内径为 Φ 12-15ιηη¾ 管电流密度 0.335-1.000 A/cm2 ; 或, 内径为 Φ 10-12ιηιη, 管电流密度 0.300-1.000 A/cm2 ; 或, 内径为 Φ8-10ιηι¾ 管电流密度 0.300-0.900 A/cm2 ; 或, 内径为 Φ5-8ιηιη, 管电流密度: 0.250-0.800 A/cm2 ; 或, 内径为 Φ3-5ιηιη, 管电流密度: 0.280-0.900 A/cm2
相比现有的低压紫外灯, 管径与管电流密度进行优化, 提高紫外灯功率密 度,
Figure imgf000005_0001
灯。 低压紫外灯根据腔体的结构, 设置为 U型、 Π型、 H型、 双 U型、 双 Π型、 双 H型、 三 U型、 三 Π型、 三 H型、 四 U型、 四 Π型、 四 H型、 W型、 M型、 U-H连接型、 Π -Η连接型等各种形状, 以满足占用空间小、 紫外照度分布均匀 的要求。
所述无电极低压紫外线灯根据腔体的结构, 无电极低压紫外线灯设置为圆 环型、 长方型、 正方型、 椭圆型等各种闭环形状, 以满足占用空间小、 紫外照 度分布均匀的要求。
所述装置还包括调节模块, 调节低压紫外线灯功率, 调节气流的紫外剂量。 所述紫外线灭菌消毒装置, 紫外剂量可调节, 一方面可提高灭菌消毒装置的适 应性, 保证能对紫外剂量要求高的微生物具有较高的一次杀灭率; 另一方面, 设备运行可设置初始的满负荷运行和一般灭菌消毒状态下降低功耗运行, 紫外 剂量调节, 有利于降低装置运行能耗。 紫外剂量调节是采用可调功率的低压紫 外线灯来实现。 灯管电流下降时, 功率下降, 当灯内的汞蒸气压有效控制在灯 所需的最佳汞蒸气压附近, 灯的 253.7nm 紫外转换效率就不会下降, 甚至会有 所提高。 管电流密度的选择和控制汞蒸气压是两个关键的平衡要素, 管电流密 度的选取有上下限值。 当电流密度变化, 管壁温度变化, 灯内的汞蒸气压变化, 对应于电流密度的上下限值均需要有效控制汞蒸气压, ,均需要经过测试优化选 定。
所述紫外线灭菌消毒装置, 风速为 l-5m/s , 灯的管壁温度变化小, 灯内的 汞蒸气压变化小, 灯的紫外输出变化小, 紫外剂量稳定。 实现这一功能, 同样 需要平衡管电流密度、 控制汞蒸气压。
所述紫外线灭菌消毒装置, 环境温度从 10-35 °C变化, 或在 30°C、 40°C范围 内变化, 灯的紫外输出变化小, 紫外剂量稳定。
所述紫外线灭菌消毒装置, 调节紫外输出功率时, 紫外转换效率高。
其中, 经过优化后的所述低压紫外线灯的内径和管电流密度为: 内径为 Φ 30-36mm, 管电流密度: 0.400-0.750 A/cm2 ; 或, 内径为 Φ26-30ιηιη, 管电流 密度: 0.450-0.800 A/cm2 ; 或, 内径为 Φ20-26ιηιη, 管电流密度: 0.450-1.050 A/cm2 ; 或, 内径为 Φ 15-20ιηιη, 管电流密度: 0.450-1.300 A/cm2 ; 或, 内径 为 Φ 12-15ιηιη, 管电流密度: 0.450-0.950 A/cm2 ; 或, 内径为 Φ 10-12ιηιη, 管 电流密度 0.400-0.950 A/cm2 ; 或, 内径为 Φ 8- 10mm, 管电流密度 0.400-0.850 A/cm2 ; 或, 内径为 Φ5-8ιηιη, 管电流密度: 0.400-0.750 A/cm2 ; 或, 内径为 Φ3-5ιηιη, 管电流密度: 0.400-0.850 A/cm2
具体的, 所述低压紫外线灯设置为:
内径 Φ30-36ιηιη, 管电流密度为下述参数中的一种: 0.450- 0.500 A/cm2 、 0.500-0.550 A/cm2 、 0.550- 0.600 A/cm2 、 0.600- 0.650 A/cm2 、 0.650- 0.700 A/cm 2 、 0.700- 0.750 A/cm2 ; 或,
内径 (D26-30mm, 管电流密度为下述参数中的一种: 0.350- 0.400 A/cm2 、 0.400-0.450A/cm2 、 0.450- 0.500A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm 2 、 0.600- 0.650 A/cm2 、 0.650-0.700 A/cm2 、 0.700- 0.750 A/cm2 、 0.750- 0.800 A/cm2 ; 或 , 内径 (D20-26mm, 管电流密度为下述参数中的一种: 0.400-0.450 A/cm2 、 0.450-0.500 A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm 2 、 0.650- 0.700 A/cm2 、 0.700- 0.750 A/cm2 、 0.750- 0.800 A/cm2 、 0.800- 0.850 A/cm2 、 0.850- 0.900 A/cm2 、 0.900- 0.950 A/cm2 、 0.950- 1.000 A/cm2 、 1.000- 1.050 A/cm2 ; 或,
内径 (D 15-20mm, 管电流密度为下述参数中的一种: 0.450-0.500 A/cm2 、 0.500-0.550 A/cm2 、 0.550-0.600 A/cm2 、 0.600-0.650A/cm2 、 0.650-0.700A/cm 2 、 0.700-0.750A/cm2 、 0.750-0.800A/cm2 、 0.800-0.850A/cm2 、 0.850-0.900 A/cm2 、 0.900-0.950A/cm2 、 0.950- l.OOOA/crm 、 1.000- 1.050 A/cm 2 、 1.050-1.000 A/cm2 、 0.950- 1.100 A/cm2 、 1.100-1.150A/cm2 、 1.150-1.200 A/cm 2 、 1.200-1.250A/cm2 、 1.250-1.300A/cm2 ; 或
内径 (D 12-15mm, 管电流密度为下述参数中的一种: 0.450-0.500A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650A/cm2 、 0.650- 0.700A/cm 2 、 0.700- 0.750 A/cm2 、 0.750- 0.800 A/cm2 、 0.800- 0.850 A/cm2 、 0.850- 0.900 A/cm2 、 0.900- 0.950 A/cm2 ; 或,
内径 (D 10-12mm, 管电流密度为下述参数中的一种: 0.400-0.450 A/cm2 、 0.450-0.500 A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm 2 、 0.650- 0.700 A/cm2 、 0.700- 0.750 A/cm2 、 0.750- 0.800 A/cm2 、 0.800- 0.850 A/cm2 、 0.850- 0.900 A/cm2 、 0.900- 0.950 A/cm2 ; 或,
内径 (D8-10mm, 管电流密度为下述参数中的一种: 0.400-0.450 A/cm2 、 0.450-0.500 A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm 2 、 0.650- 0.700 A/cm2 、 0.700- 0.750 A/cm2 、 0.750- 0.800 A/cm2 、 0.800- 0.850 A/cm2 ; 或 ,
内径 (D5-8mm, 管电流密度为下述参数中的一种: 0.400- 0.450 A/cm2 、 0.450- 0.500 A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm 2 、 0.650- 0.700 A/cm2 、 0.700- 0.750 A/cm2 ; 或,
内径 (D 3-5mm, 管电流密度为下述参数中的一种: 0.400-0.450 A/cm2 、 0.450-0.500 A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm 2 、 0.650- 0.700 A/cm2 、 0.700- 0.750 A/cm2 、 0.750- 0.800 A/cm2 、 0.800- 0.850 A/cm2 。 进一步的, 为了保证紫外转换效率, 所述低压紫外线灯设置为: 内径 Φ
30-36mm单支灯放电弧长〉 80cnx 或, 内径 Φ26-30ιηι¾单支灯放电弧长〉 80cm; 或, 内径 Φ20-26ηιιη, 单支灯放电弧长〉 80cm; 或,
内径 Φ 15-20ιηιη, 单支灯放电弧长〉 60cm; 或,
内径 Φ 12-15ιηιη, 单支灯放电弧长〉 60cm; 或,
内径 Φ 8-10mm, 单支灯放电弧长〉 40cm; 或,
内径 (D5-8mm, 单支灯放电弧长〉 25cm; 或,
内径 Φ3-5ιηιη, 单支灯放电弧长〉 15cm。
所述的低压紫外灯, 包括: 放电容器及用于维持该放电容器内电子放电的 放电装置, 其中该放电容器内部具有密封的放电空间, 该放电空间内包含有汞 或汞合金、 稀有气体。
其中, 所述低压紫外线灯中控制汞蒸气压的材料为液汞。 或, 所述低压紫 外线灯控制汞蒸气压的材料为含铋铟锡汞的合金或含铋铅锡汞的合金。
具体的, 所述液汞内置于所述低压紫外线灯放电腔体内。
具体的, 当所述低压紫外线灯的排气管或气流不经过的所述低压紫外线灯 的连接件处温度为 75-95 °C、 85-105 °C、 95-135 °C , 内置于其中控制汞蒸气压的 材料为含 4必铟锡汞的合金。
具体的, 当所述低压紫外线灯的排气管或气流不经过的所述低压紫外线灯 的连接件处温度为 60-90°C、 65-95 °C、 65-105 °C、 70-115 °C时, 内置于其中控制 汞蒸气压的材料为含铋铅锡汞的合金。
其中, 所述低压紫外线灯中填充的稀有气体是氖气或氩氖混合气, 优选的 是氩氖混合气, 进一步优选的是氖气含量大于 50%的氩氖混合气或氖气含量大 于 70%的氩氖混合气。
本发明实施例提供了一种紫外灭菌消毒装置的设置方法, 包括前述的低压 紫外线灯的优化和设计, 温度、 风速变化等环境变化及功率调节时的优化和设 计。 还包括:
根据所述紫外灭菌消毒装置的腔体结构, 预设所述低压紫外线灯的初始位 置;
对所述低压紫外线灯的紫外辐照区域划分离散网格, 对离散网格中的初始 位置的平均照度值进行求和, 计算所述紫外辐照区域紫外照度的均匀度, 并根 据紫外照度的均勾度调整所述低压紫外线灯的位置, 使紫外照度均勾度符合设 计要求;
根据预定的紫外剂量要求确定经过位置调整后的各所述低压紫外线灯的尺 寸、 结构、 管电流密度。
其中, 在所述根据紫外照度的均勾度调整所述低压紫外线灯的位置步骤 中, 采用 ANSYS或类似流体分析软件分析气流流场, 使流场分布均匀。
进一步的, 可根据下式获得预设的所述离散网格中各节点的平均照度值:
Ε _ Ρ(2α+ ήη 2α)
_ 2rfDL ; 其中, E为紫外线强度, P为紫外线功率, α为待计算紫外线强度节点与紫 外灯弧长的半夹角, L为紫外灯的放电电弧长度, D为待计算紫外强度节点距离 灯的法线距离。
据此设计的紫外灭菌消毒装置包括风机、 进风口、 灭菌消毒腔、 出风口, 灭 菌消毒腔中的灭菌消毒模块含有至少一个紫外模块, 紫外模块采用上述优化的 低压紫外线灯, 并经紫外照度、 流场的合理设计。
进一步的, 灭菌消毒模块还含有光触媒模块、 静电模块、 过滤模块、 臭氧模 块中的一种或多种。
进一步的, 所述紫外灭菌消毒装置包含遮光导流板, 所述遮光导流板为栅格 条结构, 每个栅格包括弯折的遮光导流部分和沿气流出风方向至少一段为直板 的直板导流部分。
优选地, 所述遮光导流板为金属板材, 并在所述遮光导流板上间隔施加不 同的电压, 以使所述遮光导流板同时具有静电吸附功能。
进一步的, 所述灭菌消毒模块至少含有一个为可装卸嵌入式结构, 紫外模 块、 光触媒模块、 静电模块、 过滤模块、 臭氧模块可以均为可装卸嵌入式结构。 可单独装卸, 或多个灭菌消毒模块采用连接件连接, 可整体装卸。
具体的, 所述的可装卸嵌入式结构的灭菌消毒模块直接嵌入所述的紫外灭 菌设备预制卡槽内;
具体的, 所述的可装卸嵌入式结构的灭菌消毒模块通过弹簧卡扣、 弹片卡 扣等类似活动结构连接在所述的紫外灭菌设备上;
具体的, 所述的可装卸嵌入式结构的灭菌消毒模块通过螺釘或外壳压紧连 接在所述的紫外灭菌设备上。
在本发明实施例中, 通过设置合理的低压紫外线灯的内径和管电流密度, 提高了低压紫外线灯周围的紫外照度, 即提高了气流流经灭菌消毒腔所受到的 紫外辐射剂量, 可以极大地提高装置的灭菌消毒效率; 另外通过筒化紫外辐照 区域的形状, 然后再离散、 再积分的方式获得设置紫外灯的具体节点位置和各 节点对应的紫外照度, 综合考虑了各灯对计算点的影响, 使得不同位置的紫外 灯的照度设置更加合理, 整个设备中的紫外照度均匀。 另一方面, 通过流体流 场的分析, 避免产生涡流、 湍流, 使流体流经各截面流速均匀。 另一种方法是 通过模型或软件计算, 低的紫外照度配合低流速, 高的紫外照度配合高的流速, 使各气流单元均获得接近的紫外剂量。 综合获得既提高紫外剂量、 提高灭菌消 毒效率, 同时使灭菌消毒腔体体积减小、 装置成本降低, 兼顾装置的能量转换 效率及能耗成本。 紫外灭菌消毒装置通过设置遮光导流结构, 避免紫外泄漏, 保障了安全性; 通过设置可装卸嵌入式结构的灭菌消毒模块, 安装、 拆卸及维 修方便, 可根据不同使用场所需要, 同机壳设计成不同性能的装置; 也可根据 使用场所不同时间的需要, 调整灭菌消毒性能。 附图说明
图 1是本发明实施例中的紫外灭菌消毒装置设置方法的一个具体实施例; 图 2是本发明实施例中的紫外灭菌消毒装置设置方法的另一个具体实施僻 图 3是本发明实施例中的三种不同形状的杀菌腔截面示意图;
图 4是对如图 3所示的三种不同形状的截面划分离散网格的示意图; 图 5是本发明实施例中的为 a、 L与 D的含义示意图;
图 6为紫外灭菌消毒装置结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 作进一步地详细描述。
本发明提供的紫外线灭菌消毒装置及其设置方法提供一种适合人和动物活 动场所, 能快速、 安全、 持续有效的灭菌消毒装置, 该紫外线灭菌消毒装置具 有以下特点: 1、 紫外剂量大, 即一次性灭菌消毒效率高。 2、 灭菌消毒腔体体 积小、 成本低, 利于安装放置。 3、 紫外线灯 253.7nm紫外能量转换效率高, 紫 外照度分布均勾, 功率可调, 综合能量利用效率高。 4、 风速、 环境温度等因素 变化, 灭菌消毒效果稳定性好。 5、 无紫外泄漏, 安全性好。 6、 安装、 拆卸及 维修方便, 功能可灵活调整。
本发明提供的紫外线灭菌消毒装置及其设置方法, 采用新设计的低压紫外 线灯进行灭菌消毒, 以基准剂量 5mJ/cm2 、 基准流量 10 m3/h ( 0.00278 m3/s即 0.00278立方米每秒)计, 达到基准剂量 5mJ/cm2 , 紫外灭菌消毒腔体积与每秒 的流量的比值 <0.8, 根据实际装置结构、 性能要求不同该比值不同, 该比值具体 可以是 <0.75、 <0.70、 <0.65、 <0.60、 <0.55、 <0.50、 <0.45、 <0.40、 <0.35、 <0.30 或 <0.25。 达到基准剂量 5mJ/cm2 , 基准流量 10 m3/h所需的灯功率 <22.0W, 根 据实际装置结构、 性能要求不同该数值不同, 该数值具体可以是 <21.5W、 <21.0W、 <20.5W、 <20.0W、 <19.5W、 <19.0W、 <18.5W、 <18.0W、 <17.5W、 <17.0W、 <16.5W、 <16.0W、 <15.5W、 <15.0W、 <14.5W或 <14.0W。
减小紫外灭菌消毒腔体积可以通过几方面实现的: 1、 管电流密度增加, 灭 菌消毒腔内紫外照度值增加, 达到目标紫外剂量, 紫外辐照的时间可减少, 即 体积减小。 2、 管电流密度与管径的优化, 灯内汞合金与灯的最佳匹配, 灯放电 弧长的正确选择, 使 253.7nm 紫外线的能量转换效率有所提升, 有助于减小体 积。 3、 结构的优化, 使紫外照度均匀、 流场均匀, 或紫外照度与流场相匹配, 使空间各点紫外剂量均匀, 有助于缩短紫外辐照的时间, 减小体积。 4、 通过紫 外反射层, 进一步提高灭菌消毒腔体的紫外照度。
能耗减少可以通过几方面实现: 1、 尽管管电流密度增加时, 253.7nm紫外 能量转换效率会有所下降, 但通过气体、 灯内汞合金的优化匹配, 灯放电弧长 的正确选择, 能兼顾 253.7nm 紫外线的能量转换效率, 与普通紫外线灯相比, 甚至还可以有所提升。 2、 结构的优化, 空间各点紫外剂量均匀, 达到同等的紫 外剂量所需的紫外能量减少。 3、 通过紫外反射层, 提高紫外线的利用率。 4、 调功率使一般灭菌消毒状态下降低功耗运行, 能耗降低, 且此降低功耗的状态 下 253.7nm紫外线的能量转换效率有所提高。 5、 管电流密度增加, 管径减小, 流阻减小, 流体流经的有效截面积增加, 对同等的灭菌消毒腔体截面、 同等的 流速而言增加了流体的流量, 相应地降低单位流量的灯功率。
本发明人研究发现, 为了减少紫外灭菌消毒装置的灭菌消毒腔体的体积, 可以通过提高紫外线灯的功率, 即提高管电流或管电流密度, 同时保证较高的 紫外转换效率来实现。 在本发明实施例中, 针对各管径的紫外线灯, 优化或设 计获得采用不同的管电流或管电流密度的低压紫外线灯。 进一步的, 对紫外线 灯中的填充气体以及汞源进行优化和设计, 可以进一步提高其紫外转换效率。
具体优化和设计过程包括: 1、 初步选择: 1 )、 初步确定低压紫外线灯的填 充气体。 常用的惰性气体中, 氙气太昂贵, 不考虑; 氪气会降低管电压, 降低 功率, 也不考虑; 氦气热传导太大, 会导致管壁温度过高, 控制汞蒸气压的材 料难设计、 选择, 也不考虑。 一般来说: 电流越大, 选择的填充气体中氖气含 量比例越高。 如, 可采用 Ar: Ne=l :l混合气制灯。 2 )确定汞源, 如采用液汞。 3 )确定灯丝设计参数, 如采用最大试验电流所对应的设计参数。
2、 测试阶段: 在高低温箱中, 选择管电流密度为 0.6-0.8A/cm 所对应的管 电流, 测试紫外照度与液汞温度的变化特性, 获得各管径最大紫外照度所对应 的饱和汞蒸气压, 即各管径所对应的最佳汞蒸气压。
3、 确定汞合金: 1 )、 根据各种管径所需的最佳汞蒸气压, 分别设计汞合金 或设计灯的结构, 使灯在环境温度 20-30°C时具有最大紫外照度。 2 )、 分别采用 三种气体: 纯 Ar、 纯 Ne、 Ar: Ne=l:l混合气制灯, 每种管径制得三组灯。
4、 进一步测试: 在暗室内, 对每种灯采用不同电流(调电流或换镇流器—— 预设值)测试紫外照度, 由紫外照度换算成紫外功率, 计算紫外转换效率。
5、 进一步优化: 调整填充气体, 使灯在各种管电流密度下功率提高并使效 率提高。 并最终选择确定管径、 管电流密度、 紫外转换效率。
根据上述经特殊设计的大量试验, 获得优化结果见表 1。 紫外照度与液汞或 汞合金温度的变化特性测试采用发明人发明的独有测试方法 ( ZL 200910041936.8 ), 紫外照度计型号为远方 UZ-2000Z 。
不同管径、 不同管电流密度下优化的紫外转换效率:
Figure imgf000012_0001
/:/:/ O s90i/-0H0si>l£ S2£ssl0iAV
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000020_0001
备注: 管电流密度 =管电流 /管的内截面积 根据设定的最小紫外转换效率确定管电流密度上限值, 从表 1 中可以初步 确定各种特定管径范围所对应的管电流密度范围:
内径 35.0 mm选取管电流密度 0.850 A/cm2 , 紫外转换效率 η > 30 %。 对于内径 Φ30-36ιηιη, 选取管电流密度: 0.800 A/cm2 , 紫外转换效率 η 内径 29.0 mm选取管电流密度 0.900 A/cm2 , 紫外转换效率 η > 30 %。 对于内径 Φ26-30ιηιη, 选取管电流密度: 0.850 A/cm2 , 紫外转换效率 η 内径 22.0 mm选取管电流密度 1.150 A/cm2 , 紫外转换效率 η > 30 %。 对于内径 Φ20-26ιηιη, 选取管电流密度: < 1.100 A/cm2 , 紫外转换效率 η 内径 17.0 mm选取管电流密度 1.400 A/cm2 , 紫外转换效率 η > 30 %。 对于内径 Φ 15-20ιηιη, 选取管电流密度: < 1.350 A/cm2 , 紫外转换效率 η 内径 13.6 mm选取管电流密度 1.050 A/cm2 , 紫外转换效率 η > 30 %。 对于内径 Φ 12-15ιηιη, 选取管电流密度: < 1.000 A/cm2 , 紫外转换效率 η 内径 10.8 mm 选取管电流密度 < 1.050A/cm2 , 紫外转换效率 η > 30 %。 对于内径 Φ 10-12ιηιη, 选取管电流密度: < 1.000 A/cm2 , 紫外转换效率 η 内径 9.0 mm, 选取管电流密度: < 0.950 A/cm2 , 紫外转换效率 η > 25 %。 对于内径 Φ8-10ιηιη, 选取管电流密度: < 0.900 A/cm2 , 紫外转换效率 η
> 25 %。
内径 7.0 mm, 选取管电流密度: < 0.850 A/cm2 , 紫外转换效率 η > 25 %。 对于内径 Φ5-8ιηιη, 选取管电流密度: 0.800 A/cm2 , 紫外转换效率 η > 。
内径 4.0 mm, 选取管电流密度: < 0.950 A/cm2 , 紫外转换效率 η > 25 %。 对于内径 Φ3-5ιηιη, 选取管电流密度: 0.900 A/cm2 , 紫外转换效率 η > 。
由上述优化的管电流密度范围, 结合气体气流热传导的影响, 即风速的变 进一步确定各管径范围所对应的管电流密度, 参见表 2。
表 2: Φ 17ιηιη、 Φ 13.6mm不同风速下的紫外转换效率
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
其它管径采用类似的方法进行测试对比, 不——列出。
一般地, 当管电流密度 > 0.300 A/cm2 时, 灯的管壁较高, 必须使用汞合金 控制汞蒸气压; 本发明人意外发现在气流流速为 l-5m/s时, 汞源采用液汞也能 保证紫外转换效率较高, 是由于气体灭菌消毒中气流的热传导作用, 额外制造 了控制汞蒸气压的冷端, 这种设计液汞内置于低压紫外线灯放电腔体内。 另一 种设计是将汞合金固定于低压紫外线灯石英管内壁的某特定位置, 该位置为固 定灯的连接处, 该处气流不流经, 热传导较差, 温度相对较高, 比如连接固定 的 H管接桥处, 此连接处温度从 60-130°C不等, 视灯的电流及连接结构、 材料 决定。 使用含铋铟锡汞的合金或含铋铅锡汞的合金, 可使灯的环境适应特性更 好,环境温度 0-40°C, 或环境温度变化 50°C、 60 °C,灯的紫外输出变化小于 10%。 即环境恶劣或变化大时, 也能保证较好的灭菌消毒效果。
高风速、 低电流密度下符合设定的紫外转换效率最小值, 相应的管电流密 度为管电流密度下限值。
具体的, 气流流速设定为 l-3m/s、 1.5-3.5m/s、 2-4m/s、 2.5-4.5m/s、 1.5-4m/s、 2-5m/s或其它, 可将进一步使紫外转换效率更高、 或环境适应性更强。
据此, 综合选择:
内径 Φ30-36ιηιη, 选取管电流密度: 0.280- 0.800 A/cm2 , 风速为 l-5m/s , 紫外转换效率 η > 30 %。 为保证环境温度从 10-35 °C变化时的紫外转换效率, 选 取管电流密度: 0.350- 0.750 A/cm2 。 为保证调节灯功率时的紫外转换效率, 根 据调节的范围选取管电流密度。 即, 本发明实施例中的紫外灭菌消毒装置还包 括调节模块, 调节低压紫外线灯功率, 调节气流的紫外剂量。 选取管电流密度: 0.400A/cm2 , 管电流密度从 0.400 A/cm2 降至 0.280A/cm2 时, 功率下降至 70%, 即功率可调节至 70%; 。 选取管电流密度: 0.450 A/cm2 , 功率可调节至 62%; ; 选取管电流密度: 0.500 A/cm2 ; 功率可调节至 56%; , 选取管电流密 度: 0.550A/cm2 ; 功率可调节至 51%; , 选取管电流密度: 0.600 A/cm2 , 功 率可调节至 46%; , 选取管电流密度: 0.650A/cm2 , 功率可调节至 43%; 选取 管电流密度: 0.700 A/cm2, 功率可调节至 40%; 选取管电流密度: 0.750 A/cm2, 功率可调节至 37%。 为保证调节灯功率时的紫外转换效率, 根据功率调节的范 围, 可分别选取管电流密度: 0.400-0.450A/cm2 、 0.450- 0.500 A/cm 2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm2 或 0.650-0.700A/cm 2 、 0.650-0.750A/cm2 。
同理, 对于其他内径情况下, 也可以设置类似的调节模块进行功率调节。 内径 Φ26-30ιηιη, 选取管电流密度: 0.300- 0.850 A/cm2 , 风速为 l-5m/s , 紫外转换效率 η > 30 %。 为保证环境温度从 10-35 °C变化时的紫外转换效率, 选 取管电流密度: 0.330-0.800 A/cm2 。 为保证调节灯功率时的紫外转换效率, 根 据功率调节的范围, 可分别选取管电流密度: 0.450- 0.500 A/cm 2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm2 、 0.650-0.700 A/cm 2 、 0.700- 0.750 A/cm2 、 0.750- 0.800 A/cm2
内径 (D20-26mm, 选取管电流密度: 0.300- 1.100 A/cm2 , 风速为 l-5m/s, 紫外转换效率 η > 30 %。 为保证环境温度从 10-35 °C变化时的紫外转换效率, 选 取管电流密度: 0.350- 1.050 A/cm2 。 为保证调节灯功率时的紫外转换效率, 根 据功率调节的范围, 可分别选取管电流密度: 0.450-0.500 A/cm 2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm2 、 0.650- 0.700 A/cm 2 、 0.700- 0.750 A/cm2 、 0.750- 0.800 A/cm2 、 0.800- 0.850 A/cm2 、 0.850- 0.900 A/cm2 、 0.900- 0.950 A/cm2 、 0.950- 1.000 A/cm2 、 1.000- 1.050 A/cm2
内径 (D 15-20mm, 选取管电流密度: 0.340- 1.350 A/cm2 , 风速为 l-5m/s , 紫外转换效率 η > 30 %。 为保证环境温度从 10-35 °C变化时的紫外转换效率, 选 取管电流密度: 0.400-1.300 A/cm2 。 为保证调节灯功率时的紫外转换效率, 根 据功率调节的范围, 可分别选取管电流密度: 0.450-0.500 A/cm2 、 0.500-0.550 A/cm 2 、 0.550-0.600 A/cm 2 、 0.600-0.650A/cm 2 、 0.650-0.700 A/cm 2 、 0.700-0.750A/cm2 、 0.750-0.800A/cm2 、 0.800-0.850A/cm2 、 0.850-0.900 A/cm 2 、 0.900-0.950A/cm2 、 0.950- 1.000A/cm2 、 1.000-1.050A/cm2 、 1.050-1.000A/cm 2 、 0.950-1.100 A/cm2 、 1.100-1.150A/cm2 、 1.150-1.200A/cm2 、 1.200-1.250A/cm 2 、 1.250-1.300A/cm2 。
内径 (D 12-15mm, 选取管电流密度: 0.335- 1.000 A/cm2 , 风速为 l-5m/s , 紫外转换效率 η > 30 %。 为保证环境温度从 10-35 °C变化时的紫外转换效率, 选 取管电流密度: 0.400- 0.950 A/cm2 。 为保证调节灯功率时的紫外转换效率, 根 据功率调节的范围, 可分别选取管电流密度: 0.450-0.500A/cm 2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600-0.650A/cm2 、 0.650-0.700 A/cm 2 、 0.700- 0.750 A/cm2 、 0.750- 0.800 A/cm2 、 0.800- 0.850 A/cm2 、 0.850- 0.900 A/cm2 、 0.900- 0.950 A/cm2
内径 (D 10-12mm, 选取管电流密度: 0.300-1.000 A/cm2 , 风速为 l-5m/s, 紫外转换效率 η > 30 %。 为保证环境温度从 10-35 °C变化时的紫外转换效率, 选 取管电流密度: 0.350- 0.950 A/cm2 。 为保证调节灯功率时的紫外转换效率, 根 据功率调节的范围, 可分别选取管电流密度: 0.400-0.450 A/cm2 、 0.450-0.500 A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm 、 0.600- 0.650 A/cm2 、 0.650- 0.700 A/cm2 、 0.700- 0.750 A/cm2 、 0.750-0.800 A/cm2 、 0.800-0.850 A/cm2 、 0.850- 0.900 A/cm2 、 0.900- 0.950 A/cm2
内径 (D8-10mm, 选取管电流密度: 0.300- 0.900 A/cm2 , 风速为 l-5m/s, 紫 外转换效率 η > 25 %。 为保证环境温度从 10-35 °C变化时的紫外转换效率, 选取 管电流密度: 0.350-0.850 A/cm2 。 为保证调节灯功率时的紫外转换效率, 根据 功率调节的范围, 可分别选取管电流密度 0.400-0.450 A/cm2 、 0.450-0.500 A/cm 2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm2 、 0.650- 0.700 A/cm2 、 0.700- 0.750 A/cm2 、 0.750-0.800 A/cm2 、 0.800-0.850 A/cm2
内径 (D5-8mm, 选取管电流密度: 0.250- 0.800 A/cm2 , 风速为 l-5m/s, 紫 外转换效率 η > 25 %。 为保证环境温度从 10-35 °C变化时的紫外转换效率, 选取 管电流密度: 0.300-0.750 A/cm2 。 为保证调节灯功率时的紫外转换效率, 根据 功率调节的范围, 可分别选取管电流密度: 0.400- 0.450 A/cm2 、 0.450- 0.500 A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm2 、 0.650- 0.700 A/cm2 、 0.700- 0.750 A/cm2
内径 (D3-5mm, 选取管电流密度: 0.280- 0.900 A/cm2 , 风速为 l-5m/s, 紫 外转换效率 η > 25 %。 为保证环境温度从 10-35 °C变化时的紫外转换效率, 选取 管电流密度: 0.330- 0.850 A/cm2 。 为保证调节灯功率时的紫外转换效率, 根据 功率调节的范围, 可分别选取管电流密度 0.400-0.450 A/cm2 、 0.450-0.500 A/cm 2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm2 、 0.650- 0.700 A/cm2 、 0.700- 0.750 A/cm2 、 0.750-0.800 A/cm2 、 0.800-0.850 A/cm2
据此, 本发明实施例提出了一种紫外灭菌消毒装置, 温度、 风速环境改变 及调节功率时, 均具有高的紫外转换效率。 所述紫外灭菌消毒装置中设置有一 支或多支低压紫外线灯, 所述低压紫外线灯优选的参数为: 内径为 Φ30-36ιηιη, 管电流密度: 0.400-0.750 A/cm2 ; 或, 内径为 D 26-30mm , 管电流密度: 0.450-0.800 A/cm2 ; 或, 内径为 Φ20-26ιηιη, 管电流密度: 0.450-1.050 A/cm2 ; 或, 内径为(D 15-20mm , 管电流密度: 0.450-1.350 A/cm2 ; 或, 内径为 Φ 12- 15mm, 管电流密度: 0.450-0.950A/cm2 ; 或, 内径为 Φ 10-12ιηιη, 管电流密 度: 0.400-0.950 A/cm2 ; 或, 内径为 Φ8-10ιηιη, 管电流密度: 0.400-0.850 A/cm 2 ; 或, 内径为 Φ5-8ιηι¾ 管电流密度 0.400-0.750 A/cm2 ; 或, 内径为 Φ3-5ιηιη, 管电流密度: 0.400-0.850 A/cm2 。 上述优选范围是要兼顾灭菌消毒腔体积及温 度、 风速环境改变及调节功率等各种条件下的紫外转换效率, 当管电流密度选 择太小时: 1、 灭菌消毒腔体积大, 2、 功率调节范围小。 当管电流密度选择太 大时: 紫外转换效率底。
使用含铋铟锡汞的合金或含铋铅锡汞的合金控制汞蒸气压, 上述环境温度 适应性更强, 可以是 0-35 °C、 0-45 °C、 5-35 °C、 5-45 °C、 10-45 °C、 10-55 °C、 15-55 °C、 15-60°C、 15-65 °C、 15-70°C、 15-75 °C , 在这些温度范围内, 灯的紫外输出 变化小于 10% , 气流的紫外剂量变化小于 10%。
其中, 所述低压紫外线灯中控制汞蒸气压的材料为液汞。 或, 所述低压紫 外线灯控制汞蒸气压的材料为含铋铟锡汞的合金或含铋铅锡汞的合金。
具体的, 所述液汞内置于所述低压紫外线灯放电腔体内。 或, 所述含铋铟 锡汞的合金或含铋铅锡汞的合金内置于所述低压紫外线灯的排气管中或固定于 流体不经过的所述低压紫外线灯的连接件处。
进一步的, 本发明实施例中的紫外灭菌消毒装置还可包括调节模块, 用于 通过调节低压紫外线灯功率调节气流的紫外剂量。
进一步的, 灯的放电弧长对 253.7nm紫外转换效率也有影响, 放电弧长短, 效率低。 所述低压紫外线灯具体设置为:
内径 Φ 30-36ιηιη, 单支灯放电弧长具体可为下述参数中的一种: 〉80cm、 >90cm >100cm〉110cm、 > 120cm〉130cm、 > 140cm >150cm > 160cm〉170cm、
> 180cm, > 190cm, >200cm;
内径 (D26-30mm, 单支灯放电弧长具体可为下述参数中的一种: 〉80cm、 >90cm >100cm〉110cm、 > 120cm > 130cm > 140cm >150cm > 160cm〉170cm、
> 180cm, > 190cm, >200cm;
内径 (D20-26mm, 单支灯放电弧长具体可为下述参数中的一种: 〉80cm、 >90cm >100cm〉110cm、 > 120cm > 130cm > 140cm >150cm > 160cm > 170cm,
> 180cm, > 190cm, >200cm;
内径 (D 15-20mm, 单支灯放电弧长具体可为下述参数中的一种: 〉60cm、 〉70cm、 〉80cm、 〉90cm、 > 100cm, 〉110cm、 > 120cm, 〉130cm、 > 140cm, 〉150cm、
> 160cm, > 170cm, > 180cm, > 190cm, >200cm; 内径 (D 12-15mm, 单支灯放电弧长具体可为下述参数中的一种: 〉60cm、 〉70cm、 〉80cm、 〉90cm、 > 100cm, 〉110cm、 > 120cm, 〉130cm、 > 140cm, 〉150cm、
> 160cm, > 170cm, >180cm;
内径 (D 8-10mm, 单支灯放电弧长具体可为下述参数中的一种: 〉40cm、 〉50cm、 〉60cm、 〉70cm、 〉80cm、 〉90cm、 > 100cm, 〉110cm、 > 120cm, > 130cm,
> 140cm, >150cm;
内径 (D 5-8mm , 单支灯放电弧长具体可为下述参数中的一种: 25〉cm、 〉30cm、 〉35cm、 〉40cm、 〉50cm、 〉60cm、 〉70cm、 〉80cm、 〉90cm、 > 100cm, 〉110cm、 > 120cm;
内径 Φ 3-5ιηηι , 单支灯放电弧长具体可为下述参数中的一种: 15〉cm、 〉18cm、 〉20cm、 〉25cm、 〉30cm、 〉35cm、 〉40cm、 〉50cm、 〉60cm、 〉70cm、 〉80cm。
另一方面, 本发明实施例还提供了一种紫外灭菌消毒装置的设置方法, 包 括: 对各种低压紫外线灯管径、 管电流、 放电弧长、 控制汞蒸气压的材料、 填 充气体的优化和设计, 也包括温度、 风速变化等环境变化及功率调节时的参数 优化和设计。 还包括:
在所述紫外灭菌消毒装置中设置一支或多支低压紫外线灯;
进一步的, 在所述紫外灭菌消毒装置中设置一支或多支低压紫外线灯包括: 根据所述紫外灭菌消毒装置的腔体结构, 预设所述低压紫外线灯的初始位 置;
对所述低压紫外线灯的紫外辐照区域划分离散网格, 对离散网格中的初始 位置的平均照度值进行求和, 计算所述紫外辐照区域紫外照度的均匀度, 并根 据紫外照度的均勾度调整所述低压紫外线灯的位置, 使紫外照度均勾度符合设 计要求;
根据预定的紫外剂量要求确定经过位置调整后的各所述低压紫外线灯的尺 寸、 结构、 管电流密度。
其中, 在所述根据紫外照度的均勾度调整所述低压紫外线灯的位置步骤 中, 采用 ANSYS或类似流体分析软件分析气流流场, 使流场分布均匀。
进一步的, 可根据下式获得预设的所述离散网格中各节点的平均照度值: E _ P(2a + sm 2a)
_ 2rfDL ; 其中, E为紫外线强度, P为紫外线功率, α为待计算紫外强度节点与紫外 灯弧长的半夹角, L为紫外灯的放电电弧长度, D为紫外灯距离待计算紫外强度 节点的法线距离。
在本发明实施例中, 通过设置合理的低压紫外线灯的内径和管电流密度, 可以极大的提高低压紫外线灯的灭菌消毒效率; 另一方面, 通过筒化紫外辐照 区域的形状, 然后再离散、 再积分的方式获得设置紫外灭菌消毒灯的具体节点 位置和各节点对应的紫外灭菌消毒强度, 综合考虑了各灯对计算点的影响, 使 得不同位置的紫外灭菌消毒灯的强度设置更加合理, 整个设备中的紫外灭菌消 毒灯的照度均勾, 增加了紫外灭菌消毒效率。
如图 1 所示, 为本发明实施例中的紫外灭菌消毒装置的设置方法的一个具 体实施例, 该方法主要用于设置紫外灭菌消毒装置中的紫外灭菌消毒灯的位 置, 该紫外灭菌消毒灯包括放电装置、 放电容器和填充在所述放电容器中的汞 合金。 该方法包括如下步骤:
101、 根据所述紫外灭菌消毒设备的特性确定所需紫外辐照区域形状、 体积 和单位时间待灭菌消毒风量;
102、 根据所述紫外辐照区域截面划分离散网格;
103、 根据所述所需紫外辐照区域形状、 体积和单位时间待灭菌消毒风量预 设所述离散网格中各节点的位置、 平均照度值以及空气流经所述紫外辐照区域 的时间。
其中, 可根据下式获得预设的所述离散网格中各节点的平均照度值:
Ε _ Ρ(2α + ήη 2α)
_ 2rfDL ; 其中, E为紫外线强度, P为紫外线功率, α为待计算紫外强度节点与紫外 灯弧长的半夹角, L为紫外灯的放电电弧长度, D为紫外灯距离待计算紫外强度 节点的法线距离。
取垂直方向上的相邻两点的平均照度值 '作为该离散小段的照度值
104、 根据所述各节点的平均照度值和所述空气流经所述紫外辐照区域的时 间对流经所述紫外辐照区域的各条流线的照度进行求和, 获得空气流经所述紫 外辐照区域的各流线的紫外剂量。
在本步骤中可进一步包括: 计算所述紫外辐照区域的紫外剂量均勾度, 并 根据所述紫外剂量均匀度与预期紫外剂量均匀度调整步骤 103 中预设的所述离 散网格中各节点的位置、 平均照度值以及空气流经所述紫外辐照区域的时间的 取值, 直至计算获得的所述紫外剂量均匀度满足所述预期紫外剂量均匀度。
105、 根据所述各流线的紫外剂量确定所述紫外灭菌消毒灯的紫外剂量, 并 根据所述离散网络中的各节点确定各所述紫外灭菌消毒灯排列的位置。
以下通过更具体的实施例, 进一步说明本发明的技术细节, 如图 2所示, 为本发明实施例中的紫外灭菌消毒装置的设置方法的另一个具体实施例。
201、 确定所需紫外辐照区域形状及面积, 并调整及选择单位时间待灭菌消 毒的风量。 假设紫外辐照区域截面积 =S,紫外辐照区域高度 =H, 设每小时的风量 =Q, 则空气流经紫外辐照区域的时间 t就是确定的, t=H/(Q/S)。 由于时间确定, 根据公知的每种细菌、 病毒、 微生物所需的不同剂量要求, 则所需的紫外辐照 度就可以反算出。 如图 3所示, 为几种不同形状的杀菌腔截面示意图。
202、 对该紫外辐照区域截面划分离散网格。 即, 当得知所需紫外照度后, 选择对应该紫外剂量的一个或多个低压高强紫外灯, 并在该区域内初步均匀间 隔安置。 在之后的步骤中对该多个灯分布情况及区域进行微分、 离散计算, 以 获得最佳的排布方式。 如图 4所示, 为对如图 3所示的三种不同形状的截面划 分离散网格的示意图。
203、 预设该低压高强紫外灯管排列节点位置。 如图 3和图 4中的小圆圈所 示, 为不同紫外辐照区域形状对应的节点位置示意图。
204、 预设各节点平均照度值(Ei )。 其中 Ei可根据下式获得。 即, 分别对 每个离散了的节点都用 Keitz公式的变形形式进行照度计算。
Ε _ Ρ(2α+ ήη 2α)
~ 2rfDL
公式中, P为紫外灯的紫外通量(功率), 具体的: P=Pl x g=I < V x α ΐ χ η, 其中 V为灯电压, I为放电电流, (1=管电流密度 A/ cm2 灯管轴向截面积 cm 2 , 其中灯管轴向截面积 cm =π X (管径 /2 ) 2); 灯电压 V=VAK+e Lc , VAK 为电极位降, 一般地为 17V左右, e为正柱区轴向电场强度, Lc放电正柱区长 度。 灯电压的取值, 根据供电电压的不同, 一般的取供电电压的 40-70%, α ΐ 为灯的畸变因数。 η为紫外灯的转换效率, 即供给紫外灯的电功率中转换为紫外 通量(功率)的比例。 α为待计算紫外强度节点与紫外灯弧长的半夹角, L为灯 的放电电弧长度, D为紫外灯距离待计算紫外强度节点的法线距离。 如图 5所 示, 为 α、 L与 D的含义示意图。
取垂直方向上的相邻两点的平均照度值 作为该离散小段的照度值。
可见, 各节点的照度值考虑了每支灯管对它的影响。 离散的网格越多, 节 点就越多, 计算量越大, 但精度越高。
205、 对流经紫外辐照区域的整条流线的照度进行求和; 进一步的, 可计算 紫外辐照区域紫外剂量均勾度, 对比预期值并调整步骤 204各参数预设取值至 满足紫外剂量均匀度预期值。
具体的, 利用上步计算获得离散小段的平均照度值乘以流体流经该小段所 需时间 即对流经紫外辐照区域的整条流线的照度进行求和; 用同样的方 法计算其它流线的照度, 计算不同流线的照度大小情况。 得到的即为细菌经过 紫外辐照区域所受到紫外线照射的剂量。
206、 选取对应所需紫外剂量的该低压高强紫外灯, 调整步骤 203排列的节 点位置满足上述取值范围。 进一步的, 可计算紫外辐照区域紫外剂量均匀度, 对比预期值, 调整 203排列的节点位置至满足紫外剂量均勾度预期值。
剂量均勾度分布按下式计算获得: 剂量均匀度 = D0SE^)
当转速在 1300rpm 时: 最低剂量出现在靠壁面处, 最低的剂量值: 6414uws/cm2 ; 最高剂量出现在中间靠近两边大约 5mm处, 最高剂量值为: 8598uws/cm2 ; 则均匀度分布值为: 75%。
通过上述描述可知, 在本发明实施例中, 筒化紫外辐照区域的形状, 然后 再离散、 再积分的方式获得设置紫外灭菌消毒灯的具体节点位置和各节点对应 的紫外灭菌消毒强度, 综合考虑了各灯对计算点的影响, 使得不同位置的紫外 灭菌消毒灯的强度设置更加合理, 整个设备中的紫外灭菌消毒灯的照度均匀, 增加了紫外灭菌消毒效率。
据此设计的紫外灭菌消毒装置包括紫外灭菌消毒灯、 风机、 进风口、 灭菌消 毒腔、 出风口、 灭菌消毒腔中的灭菌消毒模块含有至少一个紫外模块, 紫外模 块采用上述优化的低压紫外线灯, 并经紫外照度、 流场的合理设计。 灭菌消毒模块除紫外模块外, 还含有光触媒模块、 静电模块、 过滤模块、 臭 氧模块。
紫外灭菌消毒装置还含有遮光导流板, 所述遮光导流板为栅格条结构, 每个 栅格包括弯折的遮光导流部分和沿气流出风方向至少一段为直板的直板导流部 分。
所述遮光导流板为金属板材, 并在所述遮光导流板上间隔施加不同的电 压, 以使所述遮光导流板同时具有静电吸附功能。
所述灭菌消毒模块至少含有一个为可装卸嵌入式结构, 紫外模块、 光触媒 模块、 静电模块、 过滤模块、 臭氧模块可以均为可装卸嵌入式结构。 可单独装 卸, 或多个灭菌消毒模块采用连接件连接, 可整体装卸。
具体的, 所述的可装卸嵌入式结构的灭菌消毒模块直接嵌入所述的紫外灭 菌设备预制卡槽内;
具体的, 所述的可装卸嵌入式结构的灭菌消毒模块通过弹簧卡扣、 弹片卡 扣等类似活动结构连接在所述的紫外灭菌设备上;
具体的, 所述的可装卸嵌入式结构的灭菌消毒模块通过螺釘或外壳压紧连 接在所述的紫外灭菌设备上。
如图 6 为紫外灭菌消毒装置结构示意图: 该空气灭菌消毒装置包括多个紫 外灭菌消毒模块 30和固定所述紫外灭菌消毒模块的框架 32, 每个所述紫外灭菌 消毒模块包括一个或多个紫外灭菌消毒灯, 所述框架包括可装卸式嵌入结构用 以容纳并固定一个或多个灭菌消毒模块。 即, 该灭菌消毒装置中的灭菌消毒模 块为可替换模块, 当灭菌消毒装置中的灭菌消毒灯发生故障等问题时, 可以独 立的更换或检修; 另一方面, 根据实际需要, 当需要调整紫外照度时, 可以通 过增减紫外灭菌消毒模块来实现, 当减少灭菌消毒模块时, 可以在该位置补充 框架, 该框架无紫外灭菌消毒灯, 仅起到保持装置结构和防止紫外光和空气泄 漏的目的; 也可以在此处补充光触媒模块增强去除有机物功能。
另外, 如图 6所述紫外空气灭菌消毒装置还包括设置于机壳中的光触媒模 块 8 , 用来去除气体异味以及其他有机污染物, 同时也对细菌病毒也可进行杀 灭。 本实施例的光触媒模块包括置于所述灭菌消毒装置的消毒腔体两端, 含光 触媒材料的板材或网材, 光触媒材料为纳米氧化钛、 纳米氧化锌、 纳米银中的 一种或多种; 当所述灭菌消毒装置包括多个灭菌消毒模块时, 所述光触媒模块 包括置于各个所述灭菌消毒模块两端的光触媒板材或网材。
另外, 如图 6所述紫外空气灭菌消毒装置还包括设置于机壳中的静电装置 7, 用来去除固体颗粒物, 同时也可对细菌病毒进行吸附去除。 本实施例的静电 装置, 分别设置于灭菌消毒模块的前端, 根据需要也可将其设置于灭菌消毒模 块的后端。
以下举例说明根据上述方法设计的紫外灭菌消毒装置的情况:
长方体灭菌消毒腔: 长 30cm、 宽 20cm、 高 40cm, 采用三支 M型紫外线灯, 三排灯平面中心距 15cm, 紫外线灯外径 15mm, 功率 120W, 灭菌消毒腔内气 流流速 1.2m/s, 最小照度为: 27mW/cm2 , 最小紫外剂量约为: 9.0mJ/cm2 , 每秒流量为: 0.072m3。 紫外剂量达到基准剂量 5mJ/cm2 ( mWs/cm2 ) , 紫外 灭菌消毒腔体体积与每秒的流量比值为: ( 0.3*0.2*0.4 ) *5/(0.0720*9.0)=0.185 , 基准流量 10 m3/h ( 0.0278 m3/s即 0.0278立方米每秒)所需的紫外线灯功率为: ( 3*120*10*0.00278 ) /(0.0720*9)=15.4W。
圆柱体灭菌消毒腔: 直径 40cm、 高 60cm, 采用四支环形型紫外线灯, 四排 灯平面中心距 15cm, 紫外线灯外径 19mm, 功率 250W, 灭菌消毒腔内气流流 速 2.0m/s , 最小照度为: 25mW/cm2 , 最小紫外剂量约为: 7.5mJ/cm2 , 每秒 流量为: 0.25 m3。 紫外剂量达到基准剂量 5mJ/cm2 ( mWs/cm2 ), 紫外灭菌消 毒腔体体积与每秒的流量比值为: 0.20, 基准流量 10m3/h所需的紫外线灯功率 为: 14.8W。
中央空调长方体灭菌消毒腔: 高 60cm、 宽 60cm、 长 190cm, 采用 9支直管 型紫外线灯, 8支灯切面呈正方形排布, 灯离端面距离 10cm, 中心放置另一支 灯紫外线灯外径 38mm, 功率 800W, 灯的总功率 7200W, 选择流速 3.0m/s, 灭 菌消毒腔内壁为抛光铝层, 最小照度为: 20mW/cm2 , 最小紫外剂量约为: 12.7mJ/cm2 , 每秒流量为: 1.08m3, 紫外剂量达到基准剂量 5mJ/cm2 ( mWs/cm 2 ) , 紫外灭菌消毒腔体体积与每秒的流量比值为: 0.249, 基准流量 10m3/h所 需的紫外线灯功率为: 14.6W。 长方体灭菌消毒腔后连接静电除尘, 可同时除 10um以下的颗粒尘埃, 静电极板上的尘埃每天、 每周、 每月自动刷除或手动开 关式启动刷尘功能, 聚集的尘埃无菌(病毒), 通过小型吸尘器进入小型吸尘盒, 可安全、 方便地处理。
圆柱体灭菌消毒腔: 直径 60cm、 高 70cm, 采用四支环形型无极紫外线灯, 四排灯平面中心距 18cm, 紫外线灯外径 38mm, 环中心直径 40 cm, 功率 700W, 无极紫外线灯采用嵌入管道式结构, 选择流速 2.0m/s。 灭菌消毒腔内壁为抛光铝 层, 最小照度为: 22mW/cm2 , 最小紫外剂量约为: 7.7mJ/cm2 , 每秒流量为: 0.565 m3 , 紫外剂量达到基准剂量 5mJ/cm2 ( mWs/cm2 ) , 紫外灭菌消毒腔体 体积与每秒的流量比值为: 0.23 , 基准流量 10m3/h 所需的紫外线灯功率为: 15.8W。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这 些改进和润饰也视为本发明的保护范围。

Claims

权 利 要 求
1、 一种紫外灭菌消毒装置, 其特征在于, 所述紫外灭菌消毒装置中设置有一支 或多支低压紫外线灯,
所述低压紫外线灯的内径为 Φ30-36ηπη, 管电流密度: 0.250-0.800 A/cm2 ; 或, 内径为 Φ26-30ιηιη, 管电流密度: 0.280-0.850 A/cm2
或, 内径为 (D20-26mm, 管电流密度: 0.300-1.100 A/cm2
或, 内径为 D 15-20mm, 管电流密度: 0.340-1.350 A/cm2
或, 内径为 D 12-15mm, 管电流密度: 0.335- 1.000A/cm2
或, 内径为 (D 10-12mm, 管电流密度: 0.300-1.000 A/cm2
或, 内径为 Φ 8- 10mm, 管电流密度: 0.300-0.900 A/cm2
或, 内径为 (D5-8mm, 管电流密度: 0.250-0.800 A/cm2
或, 内径为 Φ3-5ιηιη, 管电流密度: 0.280-0.900 A/cm2
2、 如权利要求 1所述的紫外灭菌消毒装置, 其特征在于:
所述的紫外灭菌消毒装置紫外剂量达到基准剂量 5mJ/cm2 , 紫外灭菌消毒腔体 积与每秒的流量比值 <0.8;
紫外剂量达到基准剂量 5mJ/cm2 , 基准流量 10 m3/h所需的灯功率 <22.0W。
3、 如权利要求 1所述的紫外灭菌消毒装置, 其特征在于, 所述低压紫外线灯为 有电极低压紫外线灯或无电极紫外线灯。
4、 如权利要求 3所述的紫外灭菌消毒装置, 其特征在于, 所述有电极低压紫外 线灯设置为直管型、 U型、 Π型、 H型、 双 U型、 双 Π型、 双 H型、 三 U型、 三 Π 型、 三 H型、 四 U型、 四 Π型、 四 H型、 W型、 M型、 U-H连接型或 Π -Η连接型。
5、 如权利要求 3所述的紫外灭菌消毒装置, 其特征在于, 所述无电极紫外线灯 设置为圆环型、 长方型、 正方型、 椭圆型或其他闭环型。
6、 如权利要求 1至 5中任一项所述的紫外灭菌消毒装置, 其特征在于, 当所述 紫外灭菌消毒装置中的气流流速为 l-5m/s时, 所述低压紫外线灯设置为:
内径 Φ 30-36ιηιη , 管电流密度为下述参数中的一种: 0.450- 0.500 A/cm2 、 0.500-0.550 A/cm2 、 0.550- 0.600 A/cm2 、 0.600- 0.650 A/cm2 、 0.650- 0.700 A/cm2 、 0.700- 0.750 A/cm2 , 紫外转换效率 η > 30 %; 或,
内径 Φ 26-30ιηιη , 管电流密度为下述参数中的一种: 0.450- 0.500A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm2 、 0.650-0.700A/cm2 、 0.700- 0.750 A/cm2 、 0.750- 0.800 A/cm2 , 紫外转换效率 η > 30 %; 或,
内径 Φ 20-26ιηιη , 管电流密度为下述参数中的一种: 0.450-0.500 A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm2 、 0.650- 0.700 A/cm2 、 0.700- 0.750 A/cm2 、 0.750- 0.800 A/cm2 、 0.800- 0.850 A/cm2 、 0.850- 0.900 A/cm 2 、 0.900- 0.950 A/cm2 、 0.950- 1.000 A/cm2 、 1.000- 1.050 A/cm2 , 紫外转换 效率 η > 30 %; 或,
内径 Φ 15-20ιηιη , 管电流密度为下述参数中的一种: 0.450-0.500 A/cm2 、 0.500-0.550 A/cm2 、 0.550-0.600 A/cm2 、 0.600-0.650A/cm2 、 0.650-0.700 A/cm2 、 0.700-0.750A/cm2 、 0.750-0.800A/cm2 、 0.800-0.850A/cm2 、 0.850-0.900 A/cm 2 、 0.900-0.950A/cm2 、 0.950- 1.000A/cm2 、 1.000-1.050A/cm2 、 1.050-1.000 A/cm 2 、 0.950- 1.100 A/cm2 、 1.100-1.150A/cm2 、 1.150-1.200A/cm2 、 1.200-1.250A/cm 2 、 1.250-1.300A/cm2 , 紫外转换效率 η > 30 %; 或
内径 Φ 12-15ιηιη , 管电流密度为下述参数中的一种: 0.450-0.500A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650A/cm2 、 0.650- 0.700A/cm 2 、 0.700- 0.750 A/cm2 、 0.750- 0.800 A/cm2 、 0.800- 0.850 A/cm2 、 0.850- 0.900 A/cm2 、 0.900- 0.950 A/cm2 , 紫外转换效率 η > 30 %; 或,
内径 Φ 10-12ιηιη , 管电流密度为下述参数中的一种: 0.400-0.450 A/cm2 、 0.450-0.500 A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm2 、 0.650- 0.700 A/cm2 、 0.700- 0.750 A/cm2 、 0.750- 0.800 A/cm2 、 0.800- 0.850 A/cm 2 、 0.850- 0.900 A/cm2 、 0.900- 0.950 A/cm2 , 紫外转换效率 η > 30 %; 或,
内径 Φ 8-10ιηιη , 管电流密度为下述参数中的一种: 0.400-0.450 A/cm2 、 0.450-0.500 A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm2 、 0.650- 0.700 A/cm2 、 0.700- 0.750 A/cm2 、 0.750- 0.800 A/cm2 、 0.800- 0.850 A/cm 2 , 紫外转换效率 η > 25 %; 或,
内径 Φ5-8ιηιη, 管电流密度为下述参数中的一种: 0.400- 0.450 A/cm2 、 0.450- 0.500 A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm2 、 0.650- 0.700 A/cm2 、 0.700- 0.750 A/cm2 , 紫外转换效率 η > 25 %; 或,
内径 Φ 3-5ιηιη , 管电流密度为下述参数中的一种: 0.400-0.450 A/crm 、 0.450-0.500 A/cm2 、 0.500-0.550A/cm2 、 0.550-0.600 A/cm2 、 0.600- 0.650 A/cm2 、 0.650- 0.700 A/cm2 、 0.700- 0.750 A/cm2 、 0.750- 0.800 A/cm2 、 0.800- 0.850 A/cm 2 , 紫外转换效率 η > 25 %。
7、 如权利要求 1至 6所述的紫外灭菌消毒装置, 其特征在于, 所述装置还包括 调节模块, 用于通过调节低压紫外线灯功率, 调节气流的紫外剂量。
8、 如权利要求 1至 6中任一项所述的紫外灭菌消毒装置, 其特征在于, 所述低 压紫外线灯设置为:
内径 (D30-36mm, 单支灯放电弧长〉 80cm; 或,
内径 (D26-30mm, 单支灯放电弧长〉 80cm; 或,
内径 (D20-26mm, 单支灯放电弧长〉 80cm; 或,
内径 Φ 15-20ιηιη, 单支灯放电弧长〉 60cm; 或,
内径 Φ 12- 15mm, 单支灯放电弧长〉 60cm; 或,
内径 Φ 8- 10mm, 单支灯放电弧长〉 40cm; 或,
内径 (D5-8mm, 单支灯放电弧长〉 25cm; 或,
内径 Φ3-5ιηιη, 单支灯放电弧长〉 15cm。
9、 如权利要求 1至 6中任一项所述的紫外灭菌消毒装置, 其特征在于, 所述低 压紫外线灯中控制汞蒸气压的材料为液汞。
10、 如权利要求 1至 6中任一项所述的紫外灭菌消毒装置, 其特征在于, 所述 低压紫外线灯控制汞蒸气压的材料为含铋铟锡汞的合金或含铋铅锡汞的合金。
11、 如权利要求 9所述的紫外灭菌消毒装置, 其特征在于, 所述液汞内置于所 述低压紫外线灯放电腔体内。
12、 如权利要求 11所述的紫外灭菌消毒装置, 其特征在于, 所述含铋铟锡汞的 合金或含铋铅锡汞的合金内置于所述低压紫外线灯的排气管中或固定于流体不经过 的所述低压紫外线灯的连接件处。
13、 如权利要求 10所述的紫外灭菌消毒装置, 其特征在于, 所述低压紫外线灯 的排气管或气流不经过的所述低压紫外线灯的连接件处温度为 75-95 °C、 85-105 °C、 95-135 °C , 控制汞蒸气压的材料为含铋铟锡汞的合金。
14、 如权利要求 10所述的紫外灭菌消毒装置, 其特征在于, 所述低压紫外线灯 的排气管或气流不经过的所述低压紫外线灯的连接件处温度为 60-90°C、 65-95 °C、 65-105 °C、 70-115 °C时, 控制汞蒸气压的材料为含铋铅锡汞的合金。
15、 一种紫外灭菌消毒装置的设置方法, 其特征在于, 所述方法包括:
根据所述紫外灭菌消毒装置的腔体结构, 预设所述低压紫外线灯的初始位置; 对所述低压紫外线灯的紫外辐照区域划分离散网格, 对离散网格中的初始位置 的平均照度值进行求和, 计算所述紫外辐照区域紫外照度的均勾度, 并根据紫外照 度的均匀度调整所述低压紫外线灯的位置, 使紫外照度均匀度符合设计要求;
根据预定的紫外剂量要求确定经过位置调整后的各所述低压紫外线灯的尺寸、 结构、 管电流密度。
16、 如权利要求 15所述的紫外灭菌消毒装置的设置方法, 其特征在于, 在所述 根据紫外照度的均匀度调整所述低压紫外线灯的位置步骤中, 采用 ANSYS或类似流 体分析软件分析气流流场, 使流场分布均匀。
17、 一种紫外灭菌消毒装置, 其特征在于, 所述紫外灭菌消毒装置包括如权利 要求 1至 14中所述一支或多支低压紫外线灯、 风机、 进风口、 灭菌消毒腔、 出风口, 灭菌消毒腔中的灭菌消毒模块含有至少一个紫外模块。
18、 如权利要求 17所述的紫外灭菌消毒装置, 其特征在于, 所述紫外灭菌消毒 装置含有光触媒模块、 静电模块、 过滤模块、 臭氧模块中的一种或多种。
19、 如权利要求 17所述的紫外灭菌消毒装置, 其特征在于, 所述紫外灭菌消毒 装置含有至少一块遮光导流板, 所述遮光导流板为栅格条结构。
20、 如权利要求 19所述的紫外灭菌消毒装置, 其特征在于, 所述遮光导流板每 个栅格包括弯折的遮光导流部分和沿气流出风方向至少一段为直板的直板导流部
21、 如权利要求 19所述的紫外灭菌消毒装置, 其特征在于, 所述遮光导流板为 金属板材, 并在所述遮光导流板上间隔施加不同的电压, 以使所述遮光导流板同时 具有静电吸附功能。
22、 如权利要求 17、 18所述的紫外灭菌消毒装置, 其特征在于, 所述灭菌消毒 模块至少一个为可装卸嵌入式结构。
23、 如权利要求 22所述的紫外灭菌消毒装置, 其特征在于, 所述可装卸嵌入式 结构灭菌消毒模块可单独装卸, 或多个灭菌消毒模块采用连接件连接, 可整体装卸。
24、 如权利要求 22所述的紫外灭菌消毒装置, 其特征在于, 所述的可装卸嵌入 式结构的灭菌消毒模块直接嵌入所述的紫外灭菌设备预制卡槽内;
或, 所述的可装卸嵌入式结构的灭菌消毒模块通过弹簧卡扣、 弹片卡扣等类似 活动结构连接在所述的紫外灭菌设备上;
或, 所述的可装卸嵌入式结构的灭菌消毒模块通过螺釘或外壳压紧连接在所述 的紫外灭菌设备上。
PCT/CN2014/072065 2013-09-27 2014-02-13 一种紫外灭菌消毒装置及其设置方法 WO2015043135A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14847129.5A EP3031476B1 (en) 2013-09-27 2014-02-13 Ultraviolet sterilization and disinfection apparatus
JP2016541769A JP6442511B2 (ja) 2013-09-27 2014-02-13 紫外線殺菌消毒装置及びその配置方法
US14/907,832 US10322204B2 (en) 2013-09-27 2014-02-13 Ultraviolet sterilization and disinfection device and configuration method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310451448.0A CN103463666B (zh) 2013-09-27 2013-09-27 一种紫外灭菌消毒装置及其设置方法
CN201310451448.0 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015043135A1 true WO2015043135A1 (zh) 2015-04-02

Family

ID=49788852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072065 WO2015043135A1 (zh) 2013-09-27 2014-02-13 一种紫外灭菌消毒装置及其设置方法

Country Status (5)

Country Link
US (1) US10322204B2 (zh)
EP (1) EP3031476B1 (zh)
JP (1) JP6442511B2 (zh)
CN (1) CN103463666B (zh)
WO (1) WO2015043135A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016202092A (ja) * 2015-04-23 2016-12-08 株式会社トクヤマ 液体の殺菌方法及び殺菌装置
WO2022023666A1 (fr) * 2020-07-28 2022-02-03 Excloosiva Éclairage comprenant un conduit ventilé de désinfection
CN114832129A (zh) * 2022-05-31 2022-08-02 淮北翌光科技有限公司 一种紫外杀菌消毒装置及其控制方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104784717B (zh) * 2015-04-16 2018-03-06 何志明 一种快速消毒方法及装置
CN105428203B (zh) * 2015-12-22 2017-12-26 佛山柯维光电股份有限公司 一种稳定输出的紫外装置
CN105417626A (zh) * 2015-12-27 2016-03-23 天津川川智能科技有限公司 一种水处理紫外消毒装置
JP7129757B2 (ja) * 2016-03-31 2022-09-02 旭化成メディカル株式会社 血液浄化装置及び滅菌方法
KR20180010877A (ko) * 2016-07-22 2018-01-31 엘지전자 주식회사 자외선 살균 모듈 및 이를 포함하는 공기조화기
US20190247529A1 (en) * 2017-12-29 2019-08-15 Tomi Environmental Solutions, Inc. Method and system for decontaminating small enclosures
CN109165870B (zh) * 2018-09-15 2021-11-02 广州市朗普光电科技有限公司 一种应用生产线上的uv灯选装方法
JP7191705B2 (ja) * 2019-01-11 2022-12-19 日機装株式会社 加湿器および加湿器の制御方法
US20200297889A1 (en) * 2019-03-22 2020-09-24 Alfa Laval Corporate Ab Airborne microorganisms neutralizing system and method of neutralizing airbone microorganism
CN110894996B (zh) * 2019-12-03 2021-04-20 深圳市檀玥科技有限公司 一种通道式主动空气净化发生器装置
CN111265682A (zh) * 2020-02-15 2020-06-12 何志明 一种空间消毒方法及装置
WO2021179474A1 (zh) * 2020-03-13 2021-09-16 浙江维尔科技有限公司 一种紫外照射剂量的自动控制方法和紫外消毒杀菌设备
CN111228532A (zh) * 2020-04-01 2020-06-05 袁华 一种手持便携式深紫外led快速灭菌设备
CN113529360A (zh) * 2020-04-14 2021-10-22 青岛海尔洗衣机有限公司 紫外线杀菌消毒模块及具有其的洗涤设备
CN113663098A (zh) * 2020-05-14 2021-11-19 恩斯迈电子(深圳)有限公司 场域消毒机器人及控制方法
US11672882B1 (en) 2020-06-21 2023-06-13 Proair, Llc Air treatment system for vehicles
CN111661898A (zh) * 2020-07-09 2020-09-15 广西碧福环保工程有限公司 一种多离子强氧化催化消毒器
CN112741925B (zh) * 2021-01-27 2023-03-14 山东中医药大学附属医院 一种用于医学检验的立体消毒系统
CN113041373B (zh) * 2021-04-29 2023-09-08 北京航天三发高科技有限公司 一种切削液紫外线消毒装置及其消毒效率的确定方法
CN113289041B (zh) * 2021-05-11 2023-05-23 广东稳健药业有限公司 一种润肠药剂生产设备及生产工艺
US11213603B1 (en) * 2021-06-21 2022-01-04 Akcasu Airborne Virus Protection Systems, Inc. Ultraviolet-c (UV-c) light emitting diode (LED) irradiated forced airflow face shield
CN114259596A (zh) * 2021-12-21 2022-04-01 广东国志激光技术有限公司 一种负压隔离舱激光消毒装置
CN114796580A (zh) * 2022-05-18 2022-07-29 山东杰普特净化设备有限公司 一种医用负压站房排气口专用废气消毒灭菌装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101418407A (zh) * 2008-11-14 2009-04-29 何志明 低气压汞放电灯用铋铅锡汞合金
CN102276014A (zh) * 2011-08-13 2011-12-14 何志明 一种快速运行并高效消毒的紫外消毒方法及其装置
CN102284075A (zh) * 2011-08-25 2011-12-21 佛山柯维光电股份有限公司 一种高效的空气消毒杀菌方法及其装置
CN202198887U (zh) * 2011-08-13 2012-04-25 何志明 一种快速运行并高效消毒的紫外消毒装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617933A (en) * 1969-06-17 1971-11-02 Hitachi Ltd Method for generating oscillation in krypton laser
US3679928A (en) * 1970-06-26 1972-07-25 Gen Electric High intensity far u.v. radiation source
US3657590A (en) * 1970-06-26 1972-04-18 Gen Electric High intensity far u.v. radiation source
US3883764A (en) * 1974-03-04 1975-05-13 Gen Electric Cathode structure for high current, low pressure discharge devices
JPS57203446A (en) * 1981-06-09 1982-12-13 Ushio Electric Inc Sterilization of air flowed through duct
JPS6010649U (ja) * 1983-07-01 1985-01-24 東芝機器株式会社 エア−クリ−ナ
JPH073782B2 (ja) * 1987-03-26 1995-01-18 東芝ライテック株式会社 大出力殺菌ランプ
US4835442A (en) * 1987-01-29 1989-05-30 Kabushiki Kaisha Toshiba Lamp for generating ultraviolet radiation
US5170091A (en) * 1990-12-10 1992-12-08 Ultraviolet Energy Generators, Inc. Linear ultraviolet flash lamp with self-replenishing cathode
JP3198519B2 (ja) * 1991-03-29 2001-08-13 東芝ライテック株式会社 紫外線照射装置
NO934765L (no) * 1993-12-22 1995-06-23 Klean As Anordning ved renseanlegg
JP3269976B2 (ja) * 1996-10-07 2002-04-02 ウシオ電機株式会社 高圧紫外線水銀ランプ
JP3670799B2 (ja) * 1997-05-16 2005-07-13 三洋電機株式会社 空気清浄機
JPH1116541A (ja) * 1997-06-25 1999-01-22 Toshiba Lighting & Technol Corp 無電極放電ランプ、放電ランプ点灯装置及び液体処理装置
US20020159215A1 (en) * 1999-12-06 2002-10-31 Siess Harold Edward Protecting transmissive surfaces
DE10108970A1 (de) * 2000-02-29 2001-10-25 Toshiba Lighting & Technology Leuchtstofflampe und Verfahren zum Herstellen derselben und Beleuchtungskörper
JP3563373B2 (ja) * 2001-06-14 2004-09-08 株式会社日本フォトサイエンス 放電灯および紫外線照射装置並びにその運用方法
JP2003168308A (ja) * 2001-11-30 2003-06-13 Toshiba Lighting & Technology Corp 照明装置
US7875247B2 (en) * 2002-11-27 2011-01-25 Novatron, Inc. UV flux multiplication system for sterilizing air, medical devices and other materials
NL1030174C2 (nl) * 2005-10-12 2007-04-13 Hermannus Gerhardus Silderhuis Hulpinrichting, bestemd om te worden toegevoegd aan een lucht-behandelingsinrichting.
US20070101867A1 (en) * 2005-11-08 2007-05-10 Hunter Charles E Air sterilization apparatus
US20090268429A1 (en) * 2005-11-10 2009-10-29 Nozomu Hashimoto Fluorescent lamp, manufacturing method therefor, lighting device using the fluorescent lamp, and display device
JP5156957B2 (ja) * 2006-03-17 2013-03-06 苓州建設工業株式会社 抗菌・脱臭装置
JP2007299563A (ja) * 2006-04-28 2007-11-15 Sankyo Denki Kk 高出力殺菌ランプ
JP2010165509A (ja) * 2009-01-14 2010-07-29 Ushio Inc 高圧水銀ランプ
CN101634599B (zh) 2009-08-17 2011-04-06 何志明 一种汞蒸汽压的测量方法
US20120199005A1 (en) * 2009-10-19 2012-08-09 Hoshin Kagaku Sangyosho Co., Ltd. Lighting and air cleaning device
US20110095685A1 (en) * 2009-10-25 2011-04-28 Onn Fah Foo Quick-start Type Fluorescent Lamp
US20120246863A1 (en) * 2011-04-01 2012-10-04 Douglas Ryan J Control systems for uvc light source temperature and function in sanitizing device
GB2494448A (en) * 2011-09-09 2013-03-13 Steriflow Ltd Ultra-violet liquid steriliser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101418407A (zh) * 2008-11-14 2009-04-29 何志明 低气压汞放电灯用铋铅锡汞合金
CN102276014A (zh) * 2011-08-13 2011-12-14 何志明 一种快速运行并高效消毒的紫外消毒方法及其装置
CN202198887U (zh) * 2011-08-13 2012-04-25 何志明 一种快速运行并高效消毒的紫外消毒装置
CN102284075A (zh) * 2011-08-25 2011-12-21 佛山柯维光电股份有限公司 一种高效的空气消毒杀菌方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, YAN.: "Development of UV Disinfection Model and Equipment Optimization .", HARBIN INSTITUTE OF TECHNOLOGY MASTER'S DEGREE PAPER., 15 February 2012 (2012-02-15), pages 44 - 49, XP008181253 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016202092A (ja) * 2015-04-23 2016-12-08 株式会社トクヤマ 液体の殺菌方法及び殺菌装置
WO2022023666A1 (fr) * 2020-07-28 2022-02-03 Excloosiva Éclairage comprenant un conduit ventilé de désinfection
CN114832129A (zh) * 2022-05-31 2022-08-02 淮北翌光科技有限公司 一种紫外杀菌消毒装置及其控制方法

Also Published As

Publication number Publication date
JP6442511B2 (ja) 2018-12-19
CN103463666A (zh) 2013-12-25
US10322204B2 (en) 2019-06-18
EP3031476A4 (en) 2017-01-11
EP3031476B1 (en) 2019-04-10
EP3031476A1 (en) 2016-06-15
CN103463666B (zh) 2015-06-24
JP2016536082A (ja) 2016-11-24
US20160158400A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
WO2015043135A1 (zh) 一种紫外灭菌消毒装置及其设置方法
CN203555980U (zh) 一种紫外灭菌消毒装置
CN201578633U (zh) 负压排风空气净化消毒装置
CN101922766B (zh) 空气消毒净化中央空调机
CN111895541B (zh) 一种中央空调的杀毒灭菌装置
CN203694182U (zh) 一种紫外灭菌设备
WO2013143080A1 (zh) 一种空气净化装置及等离子发生器
CN102434920A (zh) 壁挂式室内空气净化装置
CN108325380A (zh) 一种低温等离子体协同吸附催化的气体净化装置
CN101929255B (zh) 设有等离子体空气消毒净化器的医院手术室
CN208145767U (zh) 一种低温等离子体协同吸附催化的气体净化装置
CN212756613U (zh) 一种光电催化立式杀毒灭菌器
CN210699498U (zh) 一种用于消毒净化装置的紫外线杀菌装置
CN211503081U (zh) 一种离子净化器
CN113847672A (zh) 一种净化效果好的纳米水离子空气净化器
CN201874265U (zh) 设有等离子体空气消毒净化器的医院手术室
CN211526594U (zh) 一种高洁净度医用无菌净化车间
CN207520382U (zh) 一种高效医用空气消毒净化装置
CN219103263U (zh) 一种移动式等离子体空气消毒机
CN214074438U (zh) 一种基于微波无极紫外灯的空气净化装置
CN208642211U (zh) 一种新型光离复合净化器
CN110327756A (zh) 一种用于消毒净化装置的紫外线杀菌装置及控制方法
CN212005887U (zh) 一种供热建筑内的暖气通风装置
CN211424564U (zh) 一种医用便携易固定的空气净化装置
CN215675685U (zh) 离子风组件和空气处理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847129

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14907832

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016541769

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014847129

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE