WO2015043009A1 - 一种复合波片快轴垂直度调节装置及其调节方法 - Google Patents

一种复合波片快轴垂直度调节装置及其调节方法 Download PDF

Info

Publication number
WO2015043009A1
WO2015043009A1 PCT/CN2013/085427 CN2013085427W WO2015043009A1 WO 2015043009 A1 WO2015043009 A1 WO 2015043009A1 CN 2013085427 W CN2013085427 W CN 2013085427W WO 2015043009 A1 WO2015043009 A1 WO 2015043009A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave plate
turntable
fast axis
feedback control
control system
Prior art date
Application number
PCT/CN2013/085427
Other languages
English (en)
French (fr)
Inventor
张璐
胡强高
罗勇
王玥
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2015043009A1 publication Critical patent/WO2015043009A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/005Motorised alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/006Filter holders

Definitions

  • the invention provides a composite wave plate fast axis adjusting device and an adjusting method thereof, in particular to a high-precision feedback adjusting device for adjusting a vertical axis perpendicularity between individual wave plates in a composite wave plate and an adjusting method thereof, It belongs to the field of polarization optics detection. Background technique
  • Wave plates are often used as conversion devices for the polarization state of optical signals in ellipsometric or optical measurements, and their characteristics often have a large effect on the measurement results.
  • the wave plate can be divided into two categories: a single wave plate (hereinafter referred to as a single wave plate) and a composite wave plate; the composite wave plate usually consists of two or more multi-level wave plates, wherein The fast axes between adjacent wave plates are perpendicular to each other, that is, the fast axis of one wave plate and the slow axis of another adjacent wave plate are parallel to each other to obtain a desired glue wave plate of 0 to ⁇ phase retardation amount.
  • the composite wave plate Compared with single-wave plate, the composite wave plate has higher precision and can even eliminate the chromatic aberration of the wave plate itself. Therefore, it has been widely used in optical instrument design and optical measurement, for example, based on a rotary compensator, which can be rotated.
  • the dual-wave plate generalized ellipsometer has been used in the field of thin film and nanomaterial measurement. Among them, the performance of the two rotary compensators has an important influence on the overall characteristics of the general ellipsometer. The design, alignment and calibration will directly affect the measurement accuracy of the entire instrument.
  • each rotary compensator used that is, two single-wave plates in the composite wave plate must be guaranteed.
  • the fast axis is strictly vertical, otherwise it will cause high frequency oscillations due to the phase difference of the rotary compensator.
  • the adjustment method of the fast axis perpendicularity of the composite wave plate is divided into manual adjustment and electric adjustment.
  • Manual adjustment depends on the experience of the operator; taking the composite double wave plate as an example, first fixing One of the single wave plates, and then manually rotate another single wave plate, when the actual phase delay of the composite wave plate is observed to be close to the ideal value, the adjustment is considered complete.
  • the operation process is relatively simple, the accuracy of the vertical axis perpendicularity is difficult to ensure, and it is often difficult to meet the actual accuracy requirements in the case where the accuracy requirement is high. Journal [J. Opt. Soc. Am. A, 18, 1980 (2001)] mentioned that in the aspect of electric alignment, Collins et al.
  • the measurement and calculation of the composite phase difference are used to guide the rotation of the second single-wave plate to achieve fast axis vertical adjustment between the two single-wave plates.
  • the key to the electric adjustment method and device is the rotation accuracy of the control motor used to directly or indirectly drive the wave plate or the analyzer to rotate.
  • the existing electric alignment methods are based on the assumption that the motor has high rotation accuracy, and do not consider the error introduced by the actual rotation accuracy of the motor itself, and do not consider the error introduced by objective factors such as the light source fluctuation. This causes a certain error between the actual adjustment result and the ideal value. Therefore, how to realize the fast and high-precision alignment of the fast axis perpendicularity of the composite wave plate under the condition of fully considering the measurement error of the actual device is still an important problem to be solved. Summary of the invention
  • the object of the present invention is to overcome the deficiencies of the prior art, and provide a high-precision feedback adjusting device and an adjusting method for adjusting the vertical axis perpendicularity between individual wave plates in a composite wave plate, and the method and the device can be In the case where the fast axis directions of several single wave plates of the composite wave plate are unknown, the individual samples are quickly detected. The fast axis direction of the wave plate and the fast detection and high-precision feedback adjustment of the fast axis perpendicularity between adjacent single wave plates in the composite wave plate.
  • a composite wave plate fast axis verticality adjusting device comprises a polarization light source and a feedback control system, wherein the parallel linearly polarized light emitted by the polarized light source is sequentially placed through the common transmission axis, the first turntable, the second turntable, the analyzer, and the photodetector
  • the first turntable is connected to the first motor, and the second turntable is connected to the second motor;
  • the feedback control system is connected with the photodetector, the first motor and the second motor to collect and analyze the photocurrent data and feedback control the first motor and the second motor a rotating state of the motor;
  • the first turntable and the second turntable are hollow structures, the first turntable hollow structure is provided with a positioning device for fixing the first wave plate, and the second turntable hollow structure is provided with a fixed second Wave plate positioning device.
  • the feedback control system is provided with a relationship for calculating a perpendicularity error ⁇ of the first wave plate and the second wave plate fast axis:
  • I meaS ur e (a, e) is the feedback
  • K is the quantum efficiency of the photodetector
  • L is the insertion loss of the feedback adjustment device
  • L is the input light intensity of the polarized light source
  • the polarized light source is a linearly polarized light source with stable output characteristics or a wavelength-adjustable polarized light source.
  • a method for adjusting a fast axis verticality of a composite wave plate using the composite wave plate fast axis verticality adjusting device comprises the following steps:
  • Step 1 Adjust the polarization direction of the analyzer to be parallel to the polarization source
  • Step 2 Fix the first wave plate and the second wave plate on the positioning device of the first turntable and the second turntable respectively, and adjust the fast axis of the first wave plate and the second wave plate to make the fast axis direction of the two wave plates Basically perpendicular to each other;
  • the photocurrent data I_e( , ⁇ ) at +7i/2, k is a non-negative integer, and ⁇ is obtained by calculating the relationship between the perpendicularity error ⁇ of the first wave plate and the fast axis of the second wave plate set in the feedback control system. ;
  • Step 4 Determine whether the calculation result satisfies the preset ⁇ error tolerance in the feedback control system; when the set error tolerance is satisfied, the feedback adjustment ends; when the set error tolerance is not satisfied, the second turntable is calculated according to ⁇ Select the rotation length and rotation direction feedback to adjust the fast axis angle of the second wave plate, and then repeat the operation of the third step until the ⁇ calculation result satisfies the preset ⁇ error tolerance.
  • the steps between the first step and the second step further include the following steps:
  • Step A Find the fast axis orientation of the second wave plate, and after marking it, remove it from the second turntable;
  • Step B Find the fast axis orientation of the first wave plate, mark it, and then mark The second wave plate is placed back to the second turntable.
  • the specific implementation manner of finding the fast axis orientation of the wave plate in the step ⁇ ⁇ ⁇ is: fixing the wave plate on the turntable, ensuring the common transmission axis placement with the optical path device, rotating the turntable until the photocurrent output by the photodetector Reaches the maximum value.
  • the object of the present invention is to provide a rapid detection and high-precision feedback adjustment device for a fast axis perpendicularity of a composite wave plate and an adjustment method thereof, and the method and the device can be unknown in the fast axis direction of several single wave plates of the composite wave plate.
  • the fast axis direction of each single wave plate is quickly detected, and the fast detection and high-precision feedback adjustment of the fast axis perpendicularity between adjacent single wave plates in the composite wave plate are realized, and the actual adjustment precision is not affected by the motor in the measuring device.
  • the actual rotation accuracy of the turntable, as well as the influence of the fluctuation of the light intensity of the light source in the device the measurement accuracy is high, the measurement speed is fast and simple and easy.
  • FIG. 1 is a schematic diagram showing the basic structure of a fast-axis verticality feedback adjusting device for a composite wave plate according to the present invention
  • FIG. 2 is a flow chart of a method for quickly detecting and adjusting a vertical axis of a composite wave plate according to the present invention
  • the structure of the fast detection and high-precision feedback adjustment device for the fast axis perpendicularity of the composite wave plate according to the present invention is as shown in FIG. 1 , and includes a polarization light source 1 , a feedback control system 6 , and a parallel line of the polarization light source 1 .
  • the polarized light is sequentially received by the first turntable 2, the second turntable 3 and the analyzer 4 placed by the common transmission axis, and the photodetector 5 placed by the common transmission axis receives and converts into a photocurrent, and the feedback control system 6 collects the analyzed photocurrent data.
  • the first turntable 2 and the second turntable 3 are both hollow structures.
  • the hollow structure of the first turntable 2 and the second turntable are provided with positioning means.
  • a plurality of positioning holes are formed in the periphery of the hollow structure, The positioning hole fixes the first wave plate 9 and the second wave plate 10 to the hollow structure portions of the first turntable 2 and the second turntable 3, respectively; and controls the first turntable 2 by the first motor 7 and the second motor 8, respectively And the rotation state of the second turntable 3.
  • the light source 1 is a linearly polarized light source with stable output characteristics, and a polarizer can also be disposed after a natural light source with stable output characteristics to obtain linearly polarized light, and the output wavelength thereof can be according to the first wave plate 9 and the second wave plate 10
  • the specific wavelength of the working wavelength can also be selected as a wavelength-adjustable polarized light source.
  • the necessary beam expanding-collimating lens group can be added according to the spot size and beam quality of the light source.
  • the application requirements of the first turntable 2 and the second turntable 3 are that the rotational accuracy of the two turntables should be less than the ⁇ error tolerance set in the feedback control system 6, and the usual commercial products can satisfy the application requirements.
  • the analyzer 4 may employ one of a dichroic polarizer or a birefringent polarizer.
  • the photodetector 5 is a photodiode, a photomultiplier tube or a CCD (Charge-coupled Device) line array or area array sensor for transmitting the detected photocurrent signal to a computer through a data acquisition card for data processing.
  • CCD Charge-coupled Device
  • the photocurrent data at 2 o'clock is pulsed according to a certain feedback control algorithm to adjust the rotation state of the motor through the motor driver.
  • the first motor 7 and the second motor 8 and their motor drivers are selected from a servo motor, a permanent magnet type motor or a reactive motor, and a motor driver matched with each of the above types of motors. Since the first turntable 2 and the first motor 7 are connected in the present invention, the second turntable 3 and the second motor 8 are connected, and the rotation of the first turntable 2 and the second turntable 3 is controlled by the first motor 7 and the second motor 8, respectively. State, real The electric turntable product in which the single motor and the single turntable have been integrated together can also be selected as the first turntable 2 and the first motor 7 connected together, and the second turntable 3 and the second motor 8 connected to each other. .
  • the first wave plate 9 and the second wave plate 10 are each a single wave plate made of a crystalline material or a polymer material, or a composite wave plate glued together by a single wave plate.
  • the fast detection of the fast axis verticality of the composite wave plate and the high-precision feedback adjustment device of the invention are as follows:
  • the photodetector 5 placed by the common transmission axis receives and converts into a photocurrent, light.
  • the rotation states of the first motor 7 and the second motor 8 are controlled according to a certain feedback control algorithm, and the rapid detection of the fast axis of the composite wave plate and the high-precision feedback adjustment are realized.
  • the first turntable 2 and the second turntable 3 can respectively clamp and fix the first wave plate 9 and the second wave plate 10 to be connected; the first turntable 2 and the first turntable 3 are composed of the first motor 7 and the second motor 8 control its rotation state separately.
  • the innovation of the invention lies in that the measuring method of the invention can quickly detect the fast axis direction of each single wave plate and realize two single wave plates in the case that the fast axis directions of several single wave plates of the composite wave plate are unknown. Fast detection of high-speed vertical axis and high-precision feedback adjustment. Taking the adjustment of the vertical axis perpendicularity between two single wave plates in the composite double wave plate as an example, the working principle and adjustment procedure of the composite wave plate fast axis verticality adjusting device are as follows:
  • Step 1 Adjusting the analyzer to be parallel to the polarization direction of the polarized light source 1: Turning on the composite wave plate fast axis aligning device of the present invention ensures that all optical path devices in the measuring device are placed in common transmission axis. In the default state of the first wave plate 9 and the second wave plate 10, if the polarization direction of the output light signal of the polarization light source 1 is adjustable, the polarization direction of the polarization light source 1 is adjusted; otherwise, the analyzer having a known polarization axis direction is adjusted.
  • the first step is an operation step when the wave plate fast axis aligning device is initially activated, and the operation purpose thereof is to ensure that the polarization directions of the polarization light source 1 and the analyzer 4 are the same, and can be omitted in the repeatability measurement of continuous operation.
  • Step 2 Fix the first wave plate 9 and the second wave plate 10 to the positioning device of the first turntable 2 and the second turntable 3, respectively, and adjust the fast axis of the first wave plate 9 and the second wave plate 10, so that The fast axis directions of the two wave plates are substantially perpendicular to each other. Since there is a certain manual error in the process of marking the fast axis and the adjustment process, the adjustment is a coarse adjustment.
  • the step 1 and the second step further include the following steps:
  • Step A Find the fast axis orientation of the second wave plate 10, and after marking it, remove it from the second turntable 3;
  • Step B Find the fast axis orientation of the first wave plate 9, and mark it, then put the second wave plate 10 back to the second turntable 3;
  • the specific implementation manner of finding the fast axis orientation of the wave plate in the step B and the step B is as follows: fixing the wave plate on the corresponding turntable, ensuring the common transmission axis placement with the optical path device, and rotating the turntable until the light output by the photodetector The current reaches its maximum value.
  • steps A and B can generally be omitted.
  • Step 3 Simultaneously start the first motor 7 and the second motor 8, the first motor 7 drives the first turntable 2 carrying the first wave plate 9 to rotate, and the second motor 8 drives the second wheel carrying the second wave plate 10
  • the turntable 3 rotates, and the first turntable 2 and the second turntable 3 rotate in the same direction and the rotational angular velocity is w.
  • the absolute rotation angle of the fast axis of the first wave plate 9 with respect to the starting position
  • is the actual angle between the fast axis of the first wave plate 9 and the second wave plate 10
  • ⁇ F is a known fixed error irrespective of a and ⁇ in the adjusting device
  • Si, ⁇ 2 are respectively the first wave plate 9 and the phase retardation amount of the second wave plate 10
  • is the first The rotation accuracy of the turntable 2 and the second turntable 3
  • is the quantum efficiency of the photodetector 5
  • L is the insertion loss of the feedback adjustment device
  • L is the input light intensity of the polarized light source 1
  • I measure (a, for the feedback control system (6) collecting a br Photocurrent data.
  • Step 4 Determine whether the calculation result satisfies the preset ⁇ error tolerance of the feedback control system.
  • the feedback adjustment ends; when the set error margin is not satisfied, according to the magnitude and positive and negative of the calculated value of ⁇ , the second turntable 3 is selected with its rotation length and rotation direction to feedback and adjust the second wave.
  • the fast axis angle of the slice 10 is then repeated for the operation of the third step until the calculation result in the subsequent step 3 satisfies the preset ⁇ error tolerance.
  • the way of “adjusting the fast axis angle of the second wave plate 10" in the fourth step is expressed as "selecting the appropriate rotation length and rotation direction for the second turntable 3 to feedback-adjust the fast axis angle of the second wave plate 10"
  • the rotation angle of the second turntable 3 directly corresponds to the rotation angle of the fast axis of the second wave plate 10, and the second turntable 3 is rotated by the second motor 8, and the rotational angular velocity of the motor and the turntable satisfy a certain degree.
  • the proportional relationship, and the proportional relationship is determined by the specific transmission ratio value of the transmission device used between the motor and the turntable. Therefore, the feedback control system 6 sends the command directly to adjust the rotation axis length and rotation of the second motor 8.
  • the ratio of the rotation length of the motor to the rotation length of the turntable is equal to the ratio of the rotational angular speeds of the two wheels; since the electric turntable product combining the motor and the turntable can be directly selected in practical applications, the specification of the product
  • the proportional relationship between the angular velocity of rotation between the second turntable 3 and the second motor 8 has generally been given, so here is a more convenient understanding, and the way of "adjusting the fast axis angle of the second wave plate 10" is expressed as " A suitable rotation length and a rotation direction are selected for the second turntable 3 to feedback adjust the fast axis angle of the second wave plate 10.
  • the first motor 7 is directly adjusted; and in the adjusting device of the present invention, the first turntable 2
  • the angle of rotation also directly corresponds to the angle of rotation of the fast axis of the first wave plate 9, and the usual pattern between the first turntable 2 and the second turntable 3, and between the first motor 7 and the second motor 8 is exactly the same.
  • the parallel linearly polarized light emitted from the polarized light source 1 sequentially passes through the first wave plate 9, the second wave plate 10, and the analyzer 4 placed on the common transmission axis, and then becomes photocurrent after being received by the photodetector 5.
  • the rotation state of the first motor 7 and the second motor 8 is feedback-controlled according to a certain feedback control algorithm, thereby realizing rapid detection of the vertical axis of the composite wave plate and high-precision feedback adjustment.
  • the first wave plate 9 and the second wave plate 10 are respectively clamped and fixed by the first turntable 2 and the second turntable 3; the first turntable 2 and the second turntable 3 are respectively controlled by the first motor 7 and the second motor 8 Its rotation state.
  • the phase retardation amount Si of the first wave plate 9 and the phase retardation amount ⁇ 2 of the second wave plate 10 are usually supplied directly by the manufacturer, or may be refracted according to the wave plate provided by the manufacturer.
  • the Stokes representation of the input and output optical signals in the optical path structure shown in Fig. 3 that is, the sum S. The relationship between:
  • A is a function of ⁇ and ⁇ , and its concrete expression is as follows:
  • A(a,e) l +— [l + cos 2o-+(l-cos 2a-)-cos ⁇ ]- ⁇ l + cos 2( ⁇ + ⁇ )+[ ⁇ - cos 2(a + ⁇ ) ] - cos S 2 ⁇
  • the output photocurrent I of the photodetector unit at the receiving end of the measuring device of the present invention is proportional to the intensity of the So component in the Stokes representation of the output optical signal at the wavelength.
  • the quantum efficiency ⁇ of the photodetector 5 is usually given in the product data, and ⁇ 1;
  • is the optical amplitude of the direction of vibration of the analyzer 4;
  • L is the total insertion loss of the device of the present invention, and the unit is dB, and the loss value can be measured.
  • is the optical amplitude of the direction of vibration of the analyzer 4;
  • L is the total insertion loss of the device of the present invention, and the unit is dB, and the loss value can be measured.
  • is the optical amplitude of the direction of vibration of the analyzer 4
  • L is the total insertion loss of the device of the present invention, and the unit is dB, and the loss value can be measured.
  • I measure a, ⁇
  • I ldeal a, ⁇
  • is the rotation precision of the first turntable 2 and the second turntable 3, and the rotation accuracy is ultimately determined by the accuracy of a motor 7 and the second motor 8, and the partial derivative of ⁇ with respect to ⁇ can be calculated as
  • the relative error of the actual output photocurrent is always equal to the relative error introduced by the source intensity fluctuation.
  • the error can be found in the indicator specification of the polarized light source 1, or the spectrometer is straight.
  • the significance of the estimated value I estimate (k7i, ⁇ /2) here is based on the characteristic parameters of the devices in the adjusting device and the whole without considering the systematic error (such as the fluctuation of the light source intensity).
  • the expression of the ideal photocurrent value I ldeal (br+7i/2, ⁇ /2) is as follows: 10- 10 - /; -. ( L + cos 2) 10 "10 - /; -. (L + cos 2) Therefore, according to the magnitude and positive and negative of the obtained ⁇ , it is judged whether it satisfies the set ⁇ error tolerance; if it is satisfied, the feedback adjustment ends; when the set error margin is not satisfied, the magnitude and positive value of the calculated value according to ⁇ Negatively, the second turntable 3 is selected to have its rotation length and rotation direction to feedback adjust the fast axis angle of the second wave plate 10, and then repeat the operation of the third step until the calculation result in the subsequent step 3 satisfies the preset ⁇ error tolerance. At this time, the total phase delay amount of the composite wave plate ⁇
  • the above is a specific operation step of adjusting the vertical axis perpendicularity by the composite wave plate composed of two single wave plates.
  • the two single wave plates constituting the composite wave plate may be separately separated.
  • adjusting the vertical axis perpendicularity according to the adjusting step then bonding the two single wave plates adjusted, and
  • the glued composite wave plate is regarded as a new single wave plate, and the vertical axis of the fast single axis is adjusted and adjusted by using the adjusting device and the adjusting method according to the present invention.
  • Wave plate gluing; and so on re-make the glued composite wave plate as a new single wave plate, continue to align with the remaining single wave plate, and so on.
  • a plurality of single wave plates constituting the composite wave plate may be grouped first, and each set of two water single wave plates is respectively adjusted by using the adjusting device and the adjusting method according to the present invention.
  • the fast axes are perpendicular to each other, and each set of wave plates adjusted is glued; for example, for a composite wave plate composed of 5 single wave plates, the first and second single wave plates constituting the composite wave plate may be first grouped.
  • the single wave plate glued composite wave plate and the fifth single wave plate are adjusted and glued to the fast axis perpendicularity, and then the glue wave plate is used as the new second wave plate 10, which will be composed of the first and second single waves.
  • the laminated composite wave plate can be adjusted and glued to the vertical axis.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

公开了一种复合波片快轴垂直度调节装置以及应用这种装置的调节方法。调节装置包括偏振光源(1)和反馈控制系统(6)。偏振光源(1)出射的平行线偏振光依次通过共传输轴放置的第一转盘(2)、第二转盘(3)、检偏器(4)和光电探测器(5)。第一转盘(2)和第一电机(7)连接,第二转盘(3)和第二电机(8)连接。反馈控制系统(6)同光电探测器(5)、第一电机(7)、第二电机(8)相连实现采集分析光电流数据并反馈控制第一电机(7)和第二电机(8)的旋转状态。第一转盘(2)和第二转盘(3)为中空结构。第一转盘(2)的中空结构内设置有固定第一波片(9)的定位装置,第二转盘(3)的中空结构内设置有固定第二波片(10)的定位装置。这种调节装置对复合波片快轴垂直度测量的精度高、测量速度快且简便易行。

Description

一种复合波片快轴垂直度调节装置及其调节方法 技术领域
本发明提出一种复合波片快轴调节装置及其调节方法, 特别是一种用于调 节复合波片中各单个波片之间的快轴垂直度的高精度反馈调节装置及其调节方 法, 属于偏振光学检测领域。 背景技术
波片常用作椭偏测量或光学测量中光信号偏振态的变换器件, 它的特性常 会对测量结果产生很大的影响。 从组成结构和使用方法上看, 波片可分为单个 波片 (以下简称单波片) 和复合波片两大类; 复合波片通常由两个或两个以上 多级波片组成, 其中相邻波片间的快轴相互垂直, 即将一个波片的快轴与另一 个相邻波片的慢轴相互平行, 以得到所需的 0〜π相位延迟量的胶合波片。与单 波片相比, 复合波片具有更高的精度, 甚至可以消除波片本身的色差, 因此在 光学仪器设计与光学测量中获得了广泛应用, 例如基于旋转补偿器, 即可旋转 的复合双波片的广义椭偏仪已经在薄膜和纳米材料测量领域大显身手。 其中, 两个旋转补偿器的工作性能对广义椭偏仪的整机特性有重要影响, 其设计、 对 准及标定将直接影响到整个仪器的测量精度。 期刊 【 Thin Solid Films, 455-456, 14-23 (2004)】提到, 在椭偏仪的设计制造过程中, 必须保证所用到的每个旋转 补偿器, 即复合波片中两单波片的快轴严格垂直, 否则会引起经过旋转补偿器 的相位差产生高频振荡
实际生产应用中, 复合波片的快轴垂直度的调节方式分手动调节和电动调 节两种。 手动调节高度依赖于操作人员的经验; 以复合双波片为例, 首先固定 其中一个单波片, 然后手动旋转另一单波片, 当肉眼观察到复合波片的实际相 位延迟接近理想值时, 即认为调节完毕。 这种方式虽然操作过程相对简单, 但 快轴垂直度的精度难以保证, 在精度要求较高的场合往往难以满足实际精度要 求。 期刊 【J. Opt. Soc. Am. A, 18,1980 (2001)】提到, 电动对准方面, 美国宾夕 法尼亚州立大学的 Collins等人借助于旋转检偏器式椭偏仪来实现复合双波片的 快轴垂直度调节该方法将复合双波片看作特殊的测试样品并测量、 计算其复合 相位差, 以此来指导调节双波片快轴的相对位置, 尽管调节精度较高, 但是调 节过程相对复杂, 且最终的调节精度与操作人员的经验有较大关系。 此外, 中 国专利 CN201110350098.X和 CN201110349669.8中将复合双波片的两个单波片 分别设置为固定和可旋转, 利用旋转检偏器的方法 (与旋转检偏器式椭偏仪的 测量机理相似) 测量、 计算其复合相位差, 以此指导第二个单波片的旋转, 实 现两个单波片间的快轴垂直度调节。 如专利 CN201110350098.X所述, 电动调 节方法和装置的关键在于所用控制电机 (用于直接或间接带动波片或检偏器旋 转) 的旋转精度。 可是, 现有的电动对准方法均是建立在电机具有高旋转精度 的假设之上, 均未考虑电机自身的实际旋转精度所引入的误差, 更没有考虑光 源光强波动等客观因素引入的误差, 这就导致实际调节结果与理想值之间总是 存在一定的误差。 所以, 如何在充分考虑实际装置测量误差的条件下, 实现复 合波片快轴垂直度的快速、 高精度对准, 仍然是一个待解决的重要问题。 发明内容
本发明的目的在于克服现有技术存在的不足, 提供一种用于调节复合波片 中各单个波片之间的快轴垂直度的高精度反馈调节装置及调节方法, 该方法及 装置能够在复合波片的若干个单波片快轴方向均未知的情况下, 快速检测各单 波片的快轴方向, 并实现复合波片中相邻单波片间快轴垂直度的快速检测与高 精度反馈调节。
本发明采用如下技术方案:
一种复合波片快轴垂直度调节装置, 包括偏振光源、 反馈控制系统, 偏振 光源出射的平行线偏振光依次通过共传输轴放置的第一转盘、 第二转盘、 检偏 器、 光电探测器, 第一转盘和第一电机连接, 第二转盘和第二电机连接; 反馈 控制系统同光电探测器、 第一电机、 第二电机相连实现采集分析光电流数据并 反馈控制第一电机和第二电机的旋转状态; 所述第一转盘和第二转盘为中空结 构, 所述第一转盘中空结构内设置有固定第一波片的定位装置, 所述第二转盘 中空结构内设置有固定第二波片的定位装置。
所述反馈控制系统设置有计算第一波片和第二波片快轴的垂直度误差 ΔΘ 的关系式:
I (k + -, 0)≥ Iidea, (k + -, -)
ΑΘ --
I (k + -, 0) < IiJea, (k + - ,-)
Figure imgf000005_0001
其中, α为第一波片的快轴相对于起始位置的绝对旋转角度; Θ为第一波片 和第二波片快轴间的实际夹角; σF为调节装置中与 a和 Θ无关的已知固定误差; δ1、 δ2分别为第一波片和第二波片的相位延迟量; Δα为第一转盘和第二转盘的 旋转精度; ImeaSure(a, e)为反馈控制系统采集 a=br+7i/2时的光电流数据, k为非 负整数; Ildeal(br+7r/2, 7i/2)为 a=br+7i/2时的理想光电流值, 其获得表达式如下:
Figure imgf000006_0001
其中, K为光电探测器的量子效率、 L为反馈调节装置的插入损耗、 L为偏 振光源的输入光强、 Imeasure(a, 为反馈控制系统采集 a=br的光电流数据。
所述偏振光源为输出特性稳定的线偏振光源或者是波长可调型偏振光源。 一种利用所述复合波片快轴垂直度调节装置的复合波片快轴垂直度调节方 法, 包括如下歩骤:
歩骤一: 调节检偏器与偏振光源的偏振方向平行;
歩骤二: 将第一波片、 第二波片分别固定于第一转盘、 第二转盘的定位装 置上, 调节第一波片和第二波片的快轴, 使两波片快轴方向基本相互垂直; 歩骤三: 同向、 同速旋转第一转盘和第二转盘, 反馈控制系统采集第一波 片快轴相对于起始位置的绝对旋转角度 a为 a=br和 a=br+7i/2时的光电流数据 I_e( , Θ), k为非负整数, 由反馈控制系统中设置的计算第一波片和第二波 片快轴的垂直度误差 ΔΘ的关系式获得 ΔΘ;
歩骤四:判断计算结果是否满足反馈控制系统中预设的 ΔΘ误差容限; 当满 足设定误差容限时, 反馈调节结束; 当不满足设定误差容限时, 根据 ΔΘ计算值 对第二转盘选择其旋转歩长和旋转方向反馈调节第二波片的快轴角度, 然后重 复上歩骤三的操作, 直至 ΔΘ计算结果满足预设的 ΔΘ误差容限。
所述歩骤一和歩骤二之间还包括如下歩骤:
歩骤 A: 查找第二波片的快轴方位, 做好标记后, 将其从第二转盘上取下; 歩骤 B: 查找第一波片的快轴方位, 并做好标记, 然后将第二波片放回第 二转盘。 所述反馈控制系统在歩骤三中采集 k = 0 1 k 时 Imeasure(0, θ)、
Figure imgf000007_0001
Imeasure(k7l,6)禾口 I measure (br+7r/2,e;)中的多组 I measur e(a, Θ)数据, 由 公式
(0^)]2 + [ _(^,^)]2 +Λ + [/ (fer )]:
Figure imgf000007_0002
计算方均根 (0' 和 ―、 2 ' ',用其分别取代 I_(kTI, Θ)和 Imeasure(kTI
+π/2, Θ), 代入反馈控制系统中设置的关于 ΔΘ和 Ildeal(br+7i/2, π/2)的表达式, 计算出 Δθ
所述歩骤八、 歩骤 Β中查找波片的快轴方位的具体实现方式为: 将波片固 定在转盘上, 保证与光路器件共传输轴放置, 旋转转盘直至光电探测器输出的 光电流达到最大值。
本发明具有如下有益效果:
本发明的目的在于提供一种复合波片快轴垂直度的快速检测与高精度反馈 调节装置及其调节方法, 该方法及装置能够在复合波片的若干个单波片快轴方 向均未知的情况下, 快速检测各单波片的快轴方向, 并实现复合波片中相邻单 波片间快轴垂直度的快速检测与高精度反馈调节, 其实际调节精度不会受测量 装置中电机和转盘的实际旋转精度, 以及装置中光源光强波动误差的影响, 测 量精度高、 测量速度快且简便易行。 附图说明
图 1为本发明所涉及的复合波片快轴垂直度反馈调节装置的基本结构示意 图;
图 2为本发明所涉及的复合波片快轴垂直度的快速检测与反馈调节方法的 流程图;
其中:
1、 偏振光源;
2、 第一转盘;
3、 第二转盘;
4、 检偏器;
5、 光电探测器;
6、 反馈控制系统;
7、 第一电机;
8、 第二电机;
9、 第一波片;
10、 第二波片; 具体实施方式
下面结合实施例对本发明做出详细说明。
本发明所述的一种复合波片快轴垂直度的快速检测与高精度反馈调节装置 的结构如图 1所示, 包括一个偏振光源 1、 反馈控制系统 6, 偏振光源 1其出射 的平行线偏振光依次通过共传输轴放置的第一转盘 2、第二转盘 3和检偏器 4 , 被共传输轴放置的光电探测器 5接收并转变成光电流, 反馈控制系统 6采集分 析光电流数据并反馈控制第一电机 7和第二电机 8的旋转状态; 第一转盘 2和 第一电机 7连接, 第二转盘 3和第二电机 8连接, 光电探测器 5、 第一电机 7、 第二电机 8同反馈控制系统 6相连接。 所述第一转盘 2和第二转盘 3均为中空 结构, 第一转盘 2和第二转盘的中空结构内设置有定位装置, 本实施例中采用 中空结构的外围开有多个定位孔, 通过此定位孔, 将第一波片 9和第二波片 10 分别固定在第一转盘 2和第二转盘 3的中空结构部分; 并由第一电机 7和第二 电机 8分别控制第一转盘 2和第二转盘 3的旋转状态。
所述光源 1为输出特性稳定的线偏振光源, 也可在输出特性稳定的自然光 源后放置起偏器来得到线偏振光, 其输出波长可根据第一波片 9和第二波片 10 的工作波长具体选择, 也可选择为波长可调型偏振光源。 具体应用中可根据该 光源的光斑大小和光束质量添加必要的扩束-准直透镜组。
所述第一转盘 2和第二转盘 3的应用要求是两个转盘的转动精度均应小于 反馈控制系统 6中设定的 ΔΘ误差容限, 通常的商用产品均可满足该应用要求。
所述检偏器 4可采用二向色性偏振器或双折射偏振器中的一种。
所述光电探测器 5 为光电二极管、 光电倍增管或 CCD ( Charge-coupled Device) 线阵或面阵传感器, 用于将探测到的光电流信号经数据采集卡传至计 算机进行数据处理。
所述反馈控制系统 6采集分析光电探测器 5探测到的光电流数据后, 尤其 是第一波片 9快轴相对于起始位置的绝对旋转角度 α为 a=br和 a=br+7i/2时的 光电流数据, 依据一定的反馈控制算法发出脉冲信号经电机驱动器调整电机的 旋转状态。
所述第一电机 7和第二电机 8及其电机驱动器选用伺服电机、 永磁式歩进 电机或反应式歩进电机, 以及与以上每种类型的电机相配套的电机驱动器。 由 于本发明中第一转盘 2和第一电机 7连接, 第二转盘 3和第二电机 8连接, 并 由第一电机 7和第二电机 8分别控制第一转盘 2和第二转盘 3的旋转状态, 实 际应用中也可以选择已经将单个电机和单个转盘集成制作在一起的电动转盘商 品来分别作为相连接的第一转盘 2和第一电机 7, 以及相连接的第二转盘 3和 第二电机 8。
所述第一波片 9和第二波片 10均为由晶体材料或聚合物材料制作的单个波 片, 或由单个波片胶合在一起的复合波片。
本发明所述的一种复合波片快轴垂直度的快速检测与高精度反馈调节装置 实现功能的过程如下:
偏振光源 1 出射的平行线偏振光依次通过共传输轴放置的第一转盘 2、 第 二转盘 3和检偏器 4后,被共传输轴放置的光电探测器 5接收并转变成光电流, 光电流数据经反馈控制系统 6采集分析后, 依据一定的反馈控制算法控制第一 电机 7和第二电机 8的旋转状态, 实现复合波片快轴垂直度的快速检测与高精 度反馈调节。 所述第一转盘 2和第二转盘 3可分别装夹、 固定待连接的第一波 片 9和第二波片 10; 第一转盘 2和第一转盘 3由第一电机 7和第二电机 8分别 控制其旋转状态。
本发明的创新点在于, 本发明所述测量方法能够在复合波片的若干个单波 片快轴方向未知的情况下, 快速检测各单波片的快轴方向, 并实现两个单波片 间快轴垂直度的快速检测与高精度反馈调节。 下面结合附图 2, 以复合双波片 中两个单波片之间快轴垂直度的调节为例, 将复合波片快轴垂直度调节装置的 工作原理及调节歩骤陈述如下:
歩骤一: 调节检偏器与偏振光源 1 的偏振方向平行: 开启本发明所述的复 合波片快轴对准装置, 保证测量装置中所有光路器件共传输轴放置。 在第一波 片 9和第二波片 10缺省的状态下, 若偏振光源 1输出光信号的偏振方向可调, 调节偏振光源 1的偏振方向; 否则调节偏振轴方向已知的检偏器 4的偏振轴方 位; 查找输出光电流最大值所对应的检偏器偏振轴方位, 该方位即为检偏器 4 的偏振轴与偏振光源 1 的输出线偏振光偏振方向平行的位置。 歩骤一为波片快 轴对准装置在最初启用时的操作歩骤, 其操作目的是保证偏振光源 1和检偏器 4的偏振方向相同, 在连续操作的重复性测量中通常可省略。
歩骤二: 将第一波片 9、 第二波片 10分别固定于第一转盘 2、 第二转盘 3 的定位装置上, 调节第一波片 9和第二波片 10的快轴, 使两波片快轴方向基本 相互垂直。 由于标记快轴的过程及调节过程中均会存在一定的人工误差, 所以 该调节为粗调。
其中, 所述歩骤一和歩骤二之间还包括如下歩骤:
歩骤 A: 查找第二波片 10的快轴方位, 做好标记后, 将其从第二转盘 3上 取下;
歩骤 B: 查找第一波片 9的快轴方位, 并做好标记, 然后将第二波片 10放 回第二转盘 3 ;
所述歩骤八、 歩骤 B中查找波片的快轴方位的具体实现方式为: 将波片固 定在相应转盘上, 保证与光路器件共传输轴放置, 旋转转盘直至光电探测器输 出的光电流达到最大值。 对于快轴方向已知的第一波片 9和第二波片 10, 歩骤 A和歩骤 B通常可省略。
歩骤三: 同时启动第一电机 7和第二电机 8, 第一电机 7带动载有第一波 片 9的第一转盘 2旋转, 第二电机 8带动载有第二波片 10的第二转盘 3旋转, 第一转盘 2和第二转盘 3旋转方向相同且旋转角速度均为 w。 在系统性能稳定 的情况下, 如果将第一波片 9 的快轴相对于起始位置的绝对旋转角度记作 α (a=wt, t=0的起始时刻对应于 a=0, 此后转盘每旋转半周, a的值增加 π, 如 果转盘从 t=0的起始时刻开始旋转 k周, a的值就从 0增加到 2k7i, 其中 k为 非负整数), 并将第一波片 9和第二波片 10快轴间的实际夹角记作 Θ; 由于当 两个波片快轴完全垂直时应有 θ =π/2 ,通过下文关于歩骤三的具体理论分析可 以看出, 两波片快轴的垂直度误差 ΔΘ就是光电流函数 Ι(α, Θ)在 θ=π/2处关于 Θ 求微分得到的 Θ的微分量, 即有 ΔΘ=θ-π/2; 反馈控制系统 6采集 α取特殊角度 a=k;i和 a=br+7i/2时的光电流数据 Imeasure(a,e), 其中 k为非负整数, 歩骤三每 次开始进行时反馈控制系统 6 自动将 k的值清零并重新计数, 而且第一转盘 2 和第二转盘 3每旋转一周, k的数值增加 2; 由反馈控制系统 6中设置的以下关 系式, 计算出两波片快轴的垂直度误差 ΔΘ:
I (k + -, 0)≥ Iidea, (k + -, -)
ΑΘ --
I (k + -, 0) < IiJea, (k + - ,-)
Figure imgf000012_0002
其中, Θ为第一波片 9和第二波片 10快轴间的实际夹角, σF为调节装置中与 a和 Θ无关的已知固定误差; Si、 δ2分别为第一波片 9和第二波片 10的相位延 迟量; Imeasure(a, Θ)为反馈控制系统 (6) 采集 a=br+7i/2时的光电流数据, k为 非负整数; Δα为第一转盘 2和第二转盘 3的旋转精度; Ildeal(br+7i/2, π/2)为 a=br +π/2时的理想光电流值, 其表达式如下:
Figure imgf000012_0001
上式中, Κ为光电探测器 5 的量子效率、 L为反馈调节装置的插入损耗、 L 为偏振光源 1的输入光强、 Imeasure(a, 为反馈控制系统 (6) 采集 a=br的光电 流数据。 在歩骤三所述的反馈调节过程中, 为进一歩减小误差, 反馈控制系统 6可 采集 k = 0 1 k 时的多组 I measure (α, Θ)数据, 包括 I measure (ο, θ)、
Figure imgf000013_0001
······ 1_(1«1,0:)和 + 71/2,0;) ,其中非负整数 k的取值可根 据装置操作人员对实际调节装置调节速度和误差容限 ΔΘ的具体需求进行选择; 按其设置的关系式
(0 )]2 ( )]2 +Λ + [ _(^,^)]2
Figure imgf000013_0004
Figure imgf000013_0002
Figure imgf000013_0003
计算方均根 — ((3, 和 2 ' ,用其分别取代1_0«1, 6)和1_^71 +π/2, Θ), 代入反馈控制系统 6中设置的关于 ΔΘ和 Ildeal(br+7i/2, π/2)的表达式, 计算出 Δθ
歩骤四:判断计算结果是否满足反馈控制系统 6预设的 ΔΘ误差容限。当满 足设定误差容限时, 反馈调节结束; 当不满足设定误差容限时, 根据 ΔΘ计算值 的大小和正负, 对第二转盘 3选择其旋转歩长和旋转方向来反馈调节第二波片 10的快轴角度, 然后重复上歩骤三的操作, 直到后续歩骤三中的计算结果满足 预设的 ΔΘ误差容限为止。
此处将歩骤四中 "调节第二波片 10快轴角度"的途径表述为 "对第二转盘 3选择合适的旋转歩长和旋转方向来反馈调节第二波片 10的快轴角度"; 实际 上, 第二转盘 3的旋转角度直接对应于第二波片 10快轴的旋转角度, 而第二转 盘 3是由第二电机 8带动旋转, 电机和转盘的旋转角速度之间满足一定的比例 关系, 且该比例关系由电机和转盘之间所用传动装置的具体传动比数值决定, 所以反馈控制系统 6发送指令直接调的是第二电机 8的转轴旋转歩长和旋转方 向, 且该电机旋转歩长与转盘旋转歩长之比就等于两者旋转角速度之比; 由于 在实际应用中可直接选择将电机和转盘结合在一起的电动转盘商品, 而该类产 品的说明书中通常已经给出第二转盘 3和第二电机 8之间旋转角速度的比例关 系, 所以此处为使理解起来更为方便, 将 "调节第二波片 10快轴角度"的途径 表述为 "对第二转盘 3选择合适的旋转歩长和旋转方向来反馈调节第二波片 10 的快轴角度"。 同理, 反馈控制系统 6在发送指令旋转载有第一波片 9的第一转 盘 2时, 直接调的也是第一电机 7 ; 而且在本发明所述的调节装置中, 第一转 盘 2的旋转角度同样直接对应于第一波片 9快轴的旋转角度, 且第一转盘 2和 第二转盘 3之间、 以及第一电机 7和第二电机 8之间通常型号完全相同。
其中, 歩骤三的具体理论分析如下文所示:
由图 1可知, 偏振光源 1出射的平行线偏振光依次通过共传输轴放置的第 一波片 9、 第二波片 10和检偏器 4后, 经光电探测器 5接收后变成光电流, 光 电流数据经反馈控制系统 6采集分析后, 依据一定的反馈控制算法反馈控制第 一电机 7和第二电机 8的旋转状态, 实现复合波片快轴垂直度的快速检测与高 精度反馈调节。 所述第一波片 9和第二波片 10分别由第一转盘 2和第二转盘 3 装夹、 固定; 第一转盘 2和第二转盘 3分别由第一电机 7和第二电机 8控制其 旋转状态。
在图 1所示的光路结构中, 第一波片 9的相位延迟量 Si和第二波片 10的 相位延迟量 δ2通常由生产厂家直接提供, 或者可以根据生产厂家所提供的波片 折射率和厚度等参数计算得出;第一波片 9和第二波片 10快轴之间的实际夹角 为 Θ , 当两个波片的快轴完全垂直时应有 θ=π/2 ; 根据偏振光学的相关理论, 图 3所示光路结构中输入与输出光信号的 Stokes表示, 即 和 S。之间的关系为:
Figure imgf000015_0001
公式 (1)中, A是 α和 Θ的函数, 其具体表达式如下:
A(a,e) = l +— [l + cos 2o-+(l-cos 2a-)-cos^]-{l + cos 2(α +θ)+[ΐ- cos 2(a + θ)] - cos S2 }
+ ― + sin 2a + sin - cos S2 + sin · sin ( + θ) + sin δχ + sin S2
Figure imgf000015_0002
在光强为 L的线偏振光入射的情况下, 本发明所述测量装置的接收端光电 探测器单元的输出光电流 I正比于该波长处输出光信号的 Stokes表示法中 So分 量的光强, 即
1 丄
Ι(α,θ) = - Κ \0 10 iSOl+Su)-A(a,0)
Figure imgf000015_0003
Κ
1010 I A(a,0)
2 (3)
其中, 光电探测器 5的量子效率 Κ通常已经在产品数据中给出, 且 ≤1;
Ερ为检偏器 4透振方向的光振幅; L为本发明所述装置的总插入损耗, 单位为 dB, 该损耗值可以测量得到。 需要特别说明的是, 对自变量 α而言, Ι(α, Θ)和 Α(α, Θ)均是周期为 π的函数。 由于实际应用中任何类型的电机和转盘均有一定 的旋转精度, 偏振光源 1 的输出光强也会有一定的波动, 所以即使第一波片 9 和第二波片 10的快轴严格垂直(即 θ=π/2),光电探测器 5的实测光电流 Imeasure(a, Θ)与其理论计算值 Ildeal(a, Θ)之间也会有一定的误差。 在现有的几种复合波片快 轴调节装置(或称光轴对准装置) 中, 光电流的误差来源主要有三种: ω 两个 待对准波片的快轴不严格垂直引入的误差; (ii) 电动转台的旋转精度引入的误 差 , 该旋转精度最终决定于电机的旋转精度; (iii) 与 α和 Θ无关的已知固定误 差, 通常体现为光源光强波动引起的误差。 在本发明所述的复合波片快轴调节 装置中, 上述三种光电流误差特性可通过如下方式进行分析: 即分别考虑每种 误差单独作用时的光电流误差, 然后求出所有误差共同作用下的方均根误差。 具体分析如下:
(i) 第一波片 9和第二波片 10的快轴不严格垂直引入的光电流相对误差。 其表达式如下:
^ = 、 2 )
, )
Figure imgf000016_0001
其中, ΔΘ就是光电流函数 Ι(α, Θ)在 θ=π/2处关于 Θ求微分得到的 Θ的微分 :, 也就是两波片快轴的垂直度误差, 并有 ΔΘ=θ-π/2, 且 Α关于 Θ的偏导数为
― A a, y ) =— [l + cos 2 + (l - cos 2a) . cos δ ] . sin 2a - (1
Figure imgf000016_0002
(ii) 第一波片 9和第二波片 10的旋转精度引入的光电流相对误差。 其表 达式如下: da 2
Figure imgf000016_0003
其中, Δα为第一转盘 2和第二转盘 3的旋转精度, 该旋转精度最终决定于 ;一电机 7和第二电机 8的精度, 可计算得到 Α关于 α的偏导数为
-^— A(a, ) = [l + cos 2a+ (l - cos 2a) . cos δχ ] . sin 2a (l - cos S2 )
+— [l - cos 2" + (1 + cos 2a) + cos δ2 ] + sin 2a + (cos δχ - 1)
. sin a {\ - cos δχ ) {\ - cos δ2 + cos 2a + sin δ + sin δΊ
(5.a) 或直接从相关器件的指标说明书中找到。 以光源光强波动引起的光电流相对误 差为例, 根据公式 (3), 实际输出光电流的相对误差为:
1
Κ ΙΟ Μ Α(α,θ) ΑΙί Μ
ΑΙ
σ, 2
1
2 (6)
由此可知, 实际输出光电流的相对误差总是等于光源光强波动引入的相对 误差, 通常情况下该误差可从偏振光源 1 的指标说明书中找到, 或用光谱仪直
(iv) 上述因素共同影响下的
Figure imgf000017_0001
ImeaSure(a,e)与理想值 Ildeal(a,7i/2)之间的总误差为:
Figure imgf000017_0002
a=br时, 可认为
Figure imgf000017_0003
(8-a)
当 a=br+7i/2时, 可认为
j ( , Λ" Λ I r , π π
I ^+-,6» I- Ildea, \ k + -,- π sin2 δ . sin2 ■ (Aa2 + Αθ a(k +—,θ): σ„ +-
(1 + cos Sl ):
由公式 (8.a)可知, σ π, Θ)与 ΔΘ无关, 所以可利用己知的 σΡ、 δ2和 Δα 值计算出 σ π, θ), 然后求出 a=br时的光电流理想值 Ildeal(k;r, π/2), 如公式 (9)
兀,; V- 其中 Iestimate(k7i, π/2)为 a= r时,光电流理想值的估算值,其表达式如公式 (9.a) 式 (9.a)直接算出。
I = .10 + ,.. = --10^ ·/,·(! + cos δ2
(9.a) 此处估算值 Iestimate(k7i, π/2)的意义是在不考虑系统误差(如光源光强波动等) 的情况下, 仅根据调节装置中各器件的特征参数和整个光路的传输特性估算出 的光电流值, 如果光电流测量值大于估算值, 说明测量值应大于理想值 Ildeal(k7l, π/2)ο注意此处引入了区别于估算值 Iestimate(k7i, π/2)的光电流理想值 Ildeal(k7i, π/2), 这是为了充分利用调节装置中的各种已知条件,包括已知量 oF、 Si、 δ2、 Δα、 Κ、 L禾口 ,尤其是 k=0, 1, ······, k时的多组光电流测量值 Imeasure(k7i,e)和 Imeasure(br
+π/2,θ); 因为整个的反馈调节过程实际上就是通过若干次的迭代计算, 不断得 到 Ildeal(k7i, π/2)的优化计算值, 进而实现 ΔΘ的优化调节。 同时根据公式 (3), 认 为光电流理想值 Ικ^ι π, π/2)和 Ildeal(br+7i/2, π/2)之间存在如下关系:
71 71. τ 7 π、 1 + cos δλ
(^-)·— "~ f
2 1 + cos ό (10)
综合以上公式, 可以计算出两波片快轴的垂直度误差 Δθ:
Figure imgf000018_0001
ΑΘ--
{kn + -,0)< I lieal{kn +
Figure imgf000018_0002
(11)
其中, 理想光电流值 Ildeal(br+7i/2, π/2)的表达式如下: 10— 10 - /;. - (l + cos 2 ) 10"10 - /;. - (l + cos 2 )
Figure imgf000019_0001
由此, 根据所得到的 ΔΘ的大小和正负, 判断其是否满足设定的 ΔΘ误差容 限; 如果满足, 反馈调节结束; 当不满足设定误差容限时, 根据 ΔΘ计算值的大 小和正负,对第二转盘 3选择其旋转歩长和旋转方向来反馈调节第二波片 10的 快轴角度, 然后重复上歩骤三的操作, 直到后续歩骤三中的计算结果满足预设 的 ΔΘ误差容限为止。 此时, 复合波片的总相位延迟量^
本发明所述方法实际上是通过多次迭代计算并进行相应反馈调节来逐歩接 近调节的最优值, 即 θ=π/2。 因第一波片 9和第二波片 10的快轴经过歩骤二的 调节后已经基本垂直, 通常情况下 I Δθ I <5°, 所以本发明所述方法的调节速 度很快, 而且因为该方法充分考虑了影响光电流测量误差的各种因素, 所以调 节精度极高, 理论上可以将误差 ΔΘ调节为 0。 以上为由两个单波片组成的复合波片进行快轴垂直度调节的具体操作歩 骤。 对于由多个单波片组成的复合波片, 例如对由几层不同的聚合物或晶体精 确对准层叠而成的消色差波片, 可以首先将组成复合波片的两个单波片分别看 作第一波片 9和第二波片 10, 并采用本发明所述的调节装置, 依照上述调节歩 骤进行快轴垂直度的调节; 然后将调节好的两个单波片胶合, 并将胶合好的复 合波片看作一个新的单波片, 采用本发明所述的调节装置和调节方法将其与待 胶合的下一个单波片进行快轴的垂直度调节, 并将调节好的波片胶合; 以此类 推, 将胶合好的复合波片重新看作一个新的单波片, 继续与剩余的单波片进行 对准, 等等。 此外, 还可先将组成复合波片的若干个单波片进行分组, 每组两 水单波片, 分别采用采用本发明所述的调节装置和调节方法调节每组单波片的 快轴相互垂直, 并将调节好的每组波片胶合; 例如对由 5个单波片组成的复合 波片, 可首先将组成该复合波片的第一个和第二个单波片分组调节并胶合, 将 组成该复合波片的第三个和第四个单波片分组调节并胶合, 然后将胶合好的波 片重新看作新的单波片, 将由第三个和第四个单波片胶合的复合波片与第五个 单波片进行快轴垂直度的调节并胶合,然后将该胶合波片作为新的第二波片 10, 将由第一个和第二个单波片胶合的复合波片作为新的第一波片 9, 进行快轴垂 直度的调节及胶合即可。
以上所述为本发明的较佳实施例而已, 但本发明不应该局限于该实施例和 附图所公开的内容。 所以凡是不脱离本发明所公开的精神下完成的各种等效或 修改, 都在本发明的保护范围之内。

Claims

权 利 要 求 书
1.一种复合波片快轴垂直度调节装置, 其特征在于: 包括偏振光源 (1)、 反馈控制系统(6), 偏振光源(1) 出射的平行线偏振光依次通过共传输轴放置 的第一转盘(2)、 第二转盘(3)、 检偏器(4)、 光电探测器(5), 第一转盘(2) 和第一电机(7)连接, 第二转盘(3)和第二电机(8)连接; 反馈控制系统(6) 同光电探测器 (5)、第一电机 (7)、第二电机 (8)相连实现采集分析光电流数据并反 馈控制第一电机(7)和第二电机(8) 的旋转状态; 所述第一转盘 (2) 和第二 转盘(3)为中空结构, 所述第一转盘(2)中空结构内设置有固定第一波片(9) 的定位装置, 所述第二转盘(3) 中空结构内设置有固定第二波片 (10) 的定位 装置。
2. 如权利要求 1所述的一种复合波片快轴垂直度调节装置, 其特征在于: 所述反馈控制系统 (6) 设置有计算第一波片 (9) 和第二波片 (10) 快轴的垂 直度误差 ΔΘ的关系式:
(^ + ~,θ)≥ I iJeal + - , -)
ΑΘ-- (^ + ~,θ)< I iJeal {k + - ,-)
Figure imgf000021_0001
其中, α为第一波片 (9) 的快轴相对于起始位置的绝对旋转角度; Θ为第 一波片 (9)和第二波片 (10)快轴间的实际夹角; σF为调节装置中与 a和 Θ无 关的已知固定误差; δ、 δ2分别为第一波片 (9) 和第二波片 (10) 的相位延迟 量; Δα为第一转盘 (2) 和第二转盘 (3) 的旋转精度; Imeasure(a, Θ)为反馈控制 系统 (6) 采集 a=br+7i/2时的光电流数据, k为非负整数; Ildeal(br+7i/2, π/2) 为 a=br+7i/2时的理想光电流值, 其获得表达式如下: ( e)≥yio /i (i+cos )
Figure imgf000022_0001
其中, K为光电探测器 (5) 的量子效率、 L为反馈调节装置的插入损耗、 L为偏振光源 (1 ) 的输入光强、 Imeasure(a, Θ)为反馈控制系统 (6) 采集 a=k;i的 光电流数据。
3. 如权利要求 1所述的一种复合波片快轴垂直度调节装置, 其特征在于: 所述偏振光源 (1 ) 为输出特性稳定的线偏振光源或者是波长可调型偏振光源。
4. 如权利要求 1所述的一种复合波片快轴垂直度调节装置, 其特征在于: 所述第一转盘(2)和第二转盘(3 ) 的转动精度均小于反馈控制系统 (6) 中设 定的 ΔΘ误差容限。
5. —种利用权利要求 1所述复合波片快轴垂直度调节装置的复合波片快轴 垂直度调节方法, 其特征在于, 包括如下歩骤:
歩骤一: 调节检偏器 (4) 与偏振光源 (1 ) 的偏振方向平行;
歩骤二: 将第一波片 (9)、 第二波片 (10) 分别固定于第一转盘 (2)、 第 二转盘 (3 ) 的定位装置上, 调节第一波片 (9) 和第二波片 (10) 的快轴, 使 两波片快轴方向基本相互垂直;
歩骤三: 同向、 同速旋转第一转盘(2)和第二转盘(3 ), 反馈控制系统(6) 采集第一波片(9)快轴相对于起始位置的绝对旋转角度 a为 a=br和 a=br+7i/2 时的光电流数据 Imeasure(a, e), k为非负整数, 由反馈控制系统(6) 中设置的计 算第一波片 (9) 和第二波片 (10) 快轴的垂直度误差 ΔΘ的关系式获得 ΔΘ;
歩骤四: 判断计算结果是否满足反馈控制系统(6)中预设的 ΔΘ误差容限; 当满足设定误差容限时, 反馈调节结束; 当不满足设定误差容限时, 根据 ΔΘ 计算值对第二转盘(3 )选择其旋转歩长和旋转方向反馈调节第二波片 (10) 的 快轴角度, 然后重复上歩骤三的操作, 直至 ΔΘ计算结果满足预设的 ΔΘ误差容 限。
6. 如权利要求 5所述的一种复合波片快轴垂直度调节方法, 其特征在于: 所述歩骤一和歩骤2二,之间还包括如下歩骤:
歩骤 A: 查找第二波片 (10) 的快轴方位, 做好标记后, 将其从第二转盘 (3) 上取下;
歩骤 B:查找第一波片(9)的快轴方位,并做好标记,然后将第二波片( 10) 放回第二转盘 (3)。
7. 如权利要求 5或 6所述的一种复合波片快轴垂直度调节方法, 其特征在 于: 所述反馈控制系统 (6)在歩骤三中采集 k=0 1 ······ k时 Imeasure(0, θ)、
Ι—(π/2,θ)、 ······ Imeasure(k7i,e)和 I_(br+7i/2,e)中的多组 Imeasure(a, Θ)数据, 由 公式
(0^)]2+[ _(^,^)]2 +Λ +[/ (fer )]: π
+Λ +
π
I ^ ' ^、
k
计算方均根 I 和 I (~,θ),用其分别取代 I_(k;r, Θ)和 Imeasure(br
+π/2,θ), 代入反馈控制系统 (6) 中设置的关于 ΔΘ和 Ildeal(br+7r/2, 7i/2)的表达 式, 计算出 Δθ
8. 如权利要求 6 所述的一种应用复合波片快轴垂直度调节装置的调节方 法, 其特征在于: 所述歩骤 、 歩骤 Β中查找波片的快轴方位的具体实现方式 为: 将波片固定在转盘上, 保证与光路器件共传输轴放置, 旋转转盘直至光电
PCT/CN2013/085427 2013-09-30 2013-10-18 一种复合波片快轴垂直度调节装置及其调节方法 WO2015043009A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310462635.9A CN103472556B (zh) 2013-09-30 2013-09-30 一种复合波片快轴垂直度调节装置及其调节方法
CN201310462635.9 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015043009A1 true WO2015043009A1 (zh) 2015-04-02

Family

ID=49797470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085427 WO2015043009A1 (zh) 2013-09-30 2013-10-18 一种复合波片快轴垂直度调节装置及其调节方法

Country Status (2)

Country Link
CN (1) CN103472556B (zh)
WO (1) WO2015043009A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655280B (zh) * 2015-02-04 2016-09-07 中国科学技术大学 一种偏振量子比特的误差补偿测量方法
CN106197949A (zh) * 2015-04-30 2016-12-07 睿励科学仪器(上海)有限公司 宽波段消色差复合波片的定标方法
CN104833485B (zh) * 2015-05-12 2017-09-01 山东大学 一种能够同时检测两个双折射器件光轴方向的装置及方法
CN107991785A (zh) * 2017-12-26 2018-05-04 福州大学 一种组合式的双波片偏振态转换装置
KR102676825B1 (ko) * 2019-07-16 2024-06-19 코니카 미놀타 가부시키가이샤 위상차 필름의 배향 불균일 결함 검출 방법 및 배향 불균일 결함 검출 장치
CN115951464B (zh) * 2022-12-26 2023-08-18 福州新三捷光电技术有限公司 一种自动对位胶合的波片加工设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158701A (ja) * 1988-12-13 1990-06-19 Fujimori Kogyo Kk 複合位相板
CN201032473Y (zh) * 2007-03-15 2008-03-05 中国科学院上海光学精密机械研究所 测量1/4波片的相位延迟和快轴方向的装置
CN102508346A (zh) * 2011-11-08 2012-06-20 华中科技大学 一种用于复合波片光轴对准的装夹装置
CN102393555B (zh) * 2011-11-08 2013-02-13 华中科技大学 一种复合波片光轴对准方法及装置
CN203178064U (zh) * 2013-04-19 2013-09-04 山东大学 波片相位延迟光谱特性的测量装置
CN203519903U (zh) * 2013-09-30 2014-04-02 武汉光迅科技股份有限公司 一种复合波片快轴垂直度调节装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259560B1 (en) * 1999-04-16 2001-07-10 The United States Of America As Represented By The Secretary Of The Navy Continuously variable beam combiner
CN1144037C (zh) * 2001-02-22 2004-03-31 中国兵器工业第二○五研究所 偏光应力仪检定标准装置及光强极小值定位方法
JP2008167235A (ja) * 2006-12-28 2008-07-17 Fujitsu Ltd 偏波スクランブラ装置、送信装置、中継装置および偏波スクランブラ方法
CN103196658B (zh) * 2013-04-19 2015-02-18 山东大学 波片相位延迟光谱特性的测量方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158701A (ja) * 1988-12-13 1990-06-19 Fujimori Kogyo Kk 複合位相板
CN201032473Y (zh) * 2007-03-15 2008-03-05 中国科学院上海光学精密机械研究所 测量1/4波片的相位延迟和快轴方向的装置
CN102508346A (zh) * 2011-11-08 2012-06-20 华中科技大学 一种用于复合波片光轴对准的装夹装置
CN102393555B (zh) * 2011-11-08 2013-02-13 华中科技大学 一种复合波片光轴对准方法及装置
CN203178064U (zh) * 2013-04-19 2013-09-04 山东大学 波片相位延迟光谱特性的测量装置
CN203519903U (zh) * 2013-09-30 2014-04-02 武汉光迅科技股份有限公司 一种复合波片快轴垂直度调节装置

Also Published As

Publication number Publication date
CN103472556B (zh) 2015-10-28
CN103472556A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2015043009A1 (zh) 一种复合波片快轴垂直度调节装置及其调节方法
CN103196658B (zh) 波片相位延迟光谱特性的测量方法及装置
US20180113069A1 (en) Achromatic rotating-element ellipsometer and method for measuring mueller-matrix elements of sample using the same
TWI467157B (zh) 光學異向性參數測量方法及測量裝置
CN1834623A (zh) 半导体材料残余应力的测试装置及方法
CN102589850A (zh) 一种波片相位延迟的精密测量系统及其实现方法
CN112469987B (zh) 正交入射椭圆仪以及使用其测量样本的光学性质的方法
CN101231238A (zh) 一种用于椭偏测量中的光强调节方法和装置
CN103954435B (zh) 一种检测相位延迟和偏振相关损耗的装置及其检测方法
CN102393555B (zh) 一种复合波片光轴对准方法及装置
CN108519335A (zh) 一种基于弹光调制的光谱椭偏测量装置及方法
CN103424839B (zh) 一种复合波片光轴对准方法
CN1696632A (zh) 晶体消光比半波电压及波片相位延迟的智能综合测量仪
CA2463768A1 (en) Accuracy calibration of birefringence measurement systems
KR102139995B1 (ko) 수직입사 및 경사입사 결합형 타원계측기 및 이를 이용한 시편의 광물성 측정 방법
CN101093176A (zh) 消光/光度兼容式自动椭偏仪和测量方法
CN104215432B (zh) 光源偏振状态动态反馈的相位延迟器特性检测装置及方法
CN101539512A (zh) 双折射测定装置以及双折射测定方法
CN102636333B (zh) 波片相位延迟量与快轴方位角的实时测量装置和方法
CN201004124Y (zh) 一种用于光度测量中的调节装置
CN206557092U (zh) 一种材料折射率的测量装置
CN115112028A (zh) 一种基于激光椭偏系统的薄膜厚度测量装置及测量方法
CN203519903U (zh) 一种复合波片快轴垂直度调节装置
JP2011117792A (ja) 楕円偏光板の貼合角測定装置
CN204214635U (zh) 光源偏振状态动态反馈的相位延迟器特性检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07.06.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13894104

Country of ref document: EP

Kind code of ref document: A1