WO2015040876A1 - レーザレーダ装置 - Google Patents

レーザレーダ装置 Download PDF

Info

Publication number
WO2015040876A1
WO2015040876A1 PCT/JP2014/057619 JP2014057619W WO2015040876A1 WO 2015040876 A1 WO2015040876 A1 WO 2015040876A1 JP 2014057619 W JP2014057619 W JP 2014057619W WO 2015040876 A1 WO2015040876 A1 WO 2015040876A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflected
laser
reflection
flat
Prior art date
Application number
PCT/JP2014/057619
Other languages
English (en)
French (fr)
Inventor
坂部 向志
Original Assignee
株式会社デンソーウェーブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソーウェーブ filed Critical 株式会社デンソーウェーブ
Priority to US15/023,559 priority Critical patent/US9964644B2/en
Publication of WO2015040876A1 publication Critical patent/WO2015040876A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Definitions

  • the present invention relates to a laser radar device that detects the presence, direction, distance, and the like of an object using laser light.
  • the laser radar apparatus is used as an apparatus for detecting the presence or absence of an object in a target detection area, the azimuth, the distance, and the like by using laser light.
  • laser light emitted light
  • the laser beam return light
  • the detection unit receives the reflected light and detects information on the object.
  • the outgoing light is set to a substantially parallel light state by reducing the spread angle.
  • the laser radar device detects the presence or absence and the orientation of the object based on whether or not the intensity level of the reflected light has reached the level with the object, and the distance to the object is determined from the time of emission of the laser light to the time of reception of the reflected light. It measures in time until Then, in the laser radar device, when the object is far, although the spread angle of the laser light is small, the laser light spreads to a certain extent while reciprocating the far distance, so the intensity of the reflected light reflected by the far object is It gets lower.
  • the laser beam is reflected with almost no spread, so that almost all of the reflected light enters the detection unit (for example, the laser beam emitting optical axis of the laser beam)
  • the detection unit for example, the laser beam emitting optical axis of the laser beam
  • the intensity of the reflected light is considerably high.
  • the detection unit outputs an electric signal of a level according to the intensity (received intensity) of the reflected light, but an object having the same reflectance is from the far distance (several tens m) to the near distance (several cm) Corrections such as attenuating the electric signal of a close distance (judged by measurement time) or raising the threshold of detection of the electric signal, etc. in order to be able to detect at substantially the same electric signal level uniformly I have to. In this way, fog or the like that is low in reflection is not detected.
  • the laser radar device 51 of FIG. 1 has a laser beam emitting portion 52 for emitting a laser beam, a reflecting mirror 53 for emitting light, a rotating mirror 54 for expanding and receiving emitted light, and a reflection for receiving light in which a hole 55a is formed.
  • a mirror 55, a detection unit 56 for detecting the reflected light reflected by the object, and a light receiving lens 57 are provided.
  • the reflecting surface 54a of the rotating mirror 54 is formed to be flat.
  • the laser beam emitted from the laser beam emitting unit 52 is emitted in a form close to a parallel beam whose spread angle is suppressed so that an object at a long distance can be detected.
  • the emitted light 52 a emitted from the laser light emitting portion 52 is reflected by the reflection mirror for emission 53, passes through the hole 55 a of the reflection mirror for light reception 55, and the flat reflection surface of the rotating mirror 54
  • the light beam is reflected by the light source 54a and developed and emitted toward the detection area.
  • the reflected light 52b reflected by the object and incident on the rotating mirror 54 is reflected by the rotating mirror 54 in the direction of the light receiving reflection mirror 55, and then reflected by the light receiving reflection mirror 55 in the direction of the light receiving lens 57 for detection It is detected by the part 56.
  • an emission light axis La of the emission light 52a passing through the output reflection mirror 53 toward the rotation mirror 54, and a reflection light axis Lb of the reflection light 52b reflected by the rotation mirror 54 to the light reception reflection mirror 55 are in agreement. Note that a part of the reflected light 52 b structurally escapes from the hole 55 a of the light receiving reflection mirror 55 toward the outgoing reflection mirror 53.
  • the laser radar device 51 is required to detect from a distance of several tens of meters to near several centimeters.
  • the laser light is emitted in the form of a reduced spread angle so that the degree of attenuation of the laser light does not increase.
  • the relationship between the light reception amount detected by the detection unit 56 and the distance from the laser radar device 51 to the object is shown in FIG.
  • a separation distance from the laser radar device 51 to the object for example, the point P1, the point P2, the point P3, the point P4, and the point P5 are shown from the far side.
  • the reflected light 52b reflected by the object at a point P1 far from the laser radar device 51 has a diameter of the reflected light 52b larger than that of the reflection surface 54a of the rotating mirror 54 as shown in FIG. ) And the intensity itself of the reflected light 52 b is weak.
  • the diameter of the reflected light 52b is large, although a part of the reflected light can be reflected in the entire area of the reflecting surface 54a, the remaining reflected light 52b is leaked to the periphery of the reflecting surface 54a, so the light reception loss is large. As a result, the amount of light received by the detection unit 56 is reduced.
  • the intensity itself of the reflected light 52b reflected by the object is somewhat strong, and the relative light reception loss is also small. In this case, the amount of light received by the detection unit 56 also increases. Further, at the point P3, as shown in FIG. 3C, the diameter of the reflected light 52b becomes substantially the same as the size of the reflecting surface 54a of the rotating mirror 54, and the amount of received light becomes maximum. In the case of the points P1, P2 and P3, a part (near the optical axis) of the reflected light 52b received by the rotating mirror 54 passes through the hole 55a of the light receiving reflection mirror 55.
  • the reflected light 52b reflected by the object is strong in light intensity, but the diameter of the reflected light 52b is smaller than that of the reflecting surface 54a as shown in FIG. Therefore, the reflection area of the reflected light 52b reflected in the direction of the detection unit 56 by the reflection mirror 55 for light reception is reduced, that is, the ratio of the reflected light 52b passing through the hole 55a is increased.
  • the reflected light 52b reflected by the object has a smaller diameter of the reflected light 52b than the reflection surface 54a as shown in FIG.
  • the total amount of light received by the detection unit 56 is further reduced.
  • the entire area of the reflection area of the emission light in the rotating mirror is formed by a flat planar reflection portion.
  • the relative proportion of the reflected light 52b passing through the hole 55a of the light receiving reflection mirror 55 increases as the object is closer.
  • the amount of light input to the detection unit 56 decreases.
  • the detection unit 56 performs the correction to lower the electric signal level as the distance is shorter, the electric signal level at the near distance becomes lower, and this tendency becomes remarkable.
  • the present invention has been made in view of the above-mentioned circumstances, and an object thereof is a laser capable of improving the light receiving performance at an extremely short distance in a laser radar device in which the outgoing light axis and the reflected light axis are the same. It is providing a radar apparatus.
  • the laser radar device has a laser beam emitting portion (6) for emitting a laser beam, and a hole (8b) for passing the emitted laser beam (6a) emitted from the laser beam emitting portion (6).
  • the outgoing laser beam (6a) that has passed through the light receiving reflection mirror (8) and the hole (8b) of the light receiving reflection mirror (8) is reflected and irradiated in the direction of the target area to be targeted, and the target area Mirror (9) that receives the return laser beam (6b) reflected back from it and reflects it toward the light reception reflection mirror (8), and the return laser reflected by the light reception reflection mirror (8) And a detection unit that detects the light (6b).
  • the rotating mirror (9, 20) includes a reflection area (E) for reflecting the emission laser light (6a), and the emission laser light (6a) emitted from the reflection area (E) is the reflection area (E). It was configured to spread around the optical axis (La1) more than the emitted laser light when E) is a flat reflective surface.
  • the rotating mirror (9) is a flat reflecting surface that forms a flat surface at the central portion of the reflecting area (E) that reflects the outgoing laser beam (6a).
  • the outgoing laser light reflected by the flat reflective surface is detected at the original small spread angle. It is emitted in the direction. Since this outgoing laser light has a small spread angle for long distance detection, the light intensity is higher at the part near the optical axis and lower at the end part farther from the optical axis. Then, the optical axis portion (the central portion with high light intensity) of the emitted laser light is reflected without being diffused by this flat reflective surface, and since it has high light intensity, it reaches far. Therefore, it is reflected with sufficient light intensity by a distant object.
  • the detection unit can detect a distant object with a sufficient amount of received light.
  • the emission laser light at the end portion (the peripheral portion) where the light intensity is low is reflected by the inclined reflection surface and is spread around the optical axis of the emission laser light emitted from the flat reflection surface ( Diffused). Therefore, when it is reflected by an object at a short distance, it is received by substantially the entire surface of the rotating mirror, and is further reflected toward the detecting portion by substantially the entire surface of the light receiving reflection mirror. Moreover, even if the light intensity is low, the outgoing laser light reflected by the inclined reflective surface is detected by the short distance distance when it is reflected by the object at a short distance and returns to the detection unit, so detection is performed. The light intensity is maintained at a level sufficient to detect light reception in the unit.
  • the diffused emission laser light is reflected to an object at a short distance while having sufficient light intensity for detection, and is incident on the entire rotating mirror and reflected by the reflection mirror for light reception. It is received in a wide area of Thereby, even if the return laser beam passes through the hole of the light receiving reflection mirror, the amount of light received by the detection unit increases. As a result, the light receiving performance at a short distance can be improved.
  • the rotating mirror (20) is a flat reflecting surface having a flat surface in the central portion of the reflecting area (E) for reflecting the emitted laser beam (6a).
  • FIG. 1 is a view showing an optical system of a laser radar device in a conventional example.
  • Fig. 2 is a diagram showing the relationship between the distance from the laser radar device to the object and the amount of light received by the detection unit;
  • FIG. 3 (a) is a diagram for explaining the light reception loss in the rotating mirror in the case of the point P1 in FIG. 2, and (b) is a diagram for explaining the light reception loss in the rotating mirror in the case of the point P2 in FIG.
  • C) is a diagram for explaining the light reception loss at the rotating mirror in the case of the point P3 in FIG.
  • FIG. 4 is a view showing a state of reflected light at point P4 in FIG. 2;
  • FIG. 5 is a view showing a state of reflected light at point P5 in FIG. 2;
  • FIG. 8 is a diagram showing the relationship between the distance from the laser radar device to the object and the amount of light received by the detection unit;
  • FIG. 9 is a side view of a rotating mirror portion showing a reference example;
  • Fig. 10 is a cross-sectional view of a rotating mirror portion according to a second embodiment of the present invention;
  • FIG. 11 is a longitudinal side view of a schematic configuration of a laser radar device according to a third embodiment of the present invention.
  • the laser radar device 1 of the first embodiment includes a device main body 2.
  • the device body 2 has a body base 3 and a device case 4.
  • a laser beam irradiation port 5 is formed in the device case 4, and a cover 5 a capable of transmitting a laser beam is provided to the laser beam irradiation port 5 integrally or separately from the device case 4.
  • a detection unit 11 for receiving a laser beam through a light receiving lens 10 and a motor 12 for rotating the rotating mirror 9 are provided.
  • the laser beam emitting portion 6 is provided in a direction for emitting laser beam in, for example, the horizontal direction in FIG. 6, and the emitting reflection mirror 7 is a laser beam emitted from the laser beam emitting portion 6 (emission The laser beam is provided at a portion receiving the emitted light 6a).
  • the outgoing reflection mirror 7 reflects the outgoing light 6a at a predetermined angle and directs it downward.
  • the light receiving reflection mirror 8 is disposed at a position where the reflected outgoing light 6a is allowed to pass, and the rotating mirror 9 is disposed at a position where the outgoing light 6a after passing the light is received.
  • the light reception reflection mirror 8 has a reflection surface 8a on one surface and a hole 8b at the center through which the emitted light 6a passes.
  • the rotating mirror 9 is a mirror of the output stage, which is the same as the outgoing light axis La of the outgoing light 6a (the optical axis of the outgoing light 6a that passes through the hole 8b of the light receiving reflection mirror 8 and goes to the rotating mirror 9)
  • the main body base 3 is rotatably provided so as to be rotated by the rotation shaft 12 a of the motor 12 having a central axis.
  • the reflection surface 9A of this rotary mirror 9 (the surface on the side that reflects the emitted light 6a and receives the reflected light from the object) is a portion excluding the inclined reflection surface 9A2 described later with respect to the rotation axis 12a. Is inclined at 45 °, for example.
  • the laser beam reflected by the object (corresponding to return laser beam, hereinafter reflected light 6b) is reflected by the reflection surface 9A of the rotating mirror 9, and is further reflected by the reflection surface 8a of the light receiving reflection mirror 8, and a light receiving lens 10 are detected by the detection unit 11.
  • the outgoing light axis La and the reflected light axis Lb of the reflected light 6b are coaxial.
  • the rotating mirror 9 is rotationally driven by a motor 12.
  • a flat reflective surface 9A1 having a flat surface is formed in the central portion of the reflection area E for reflecting the emitted light 6a on the reflective surface 9A of the rotating mirror 9, and the central area
  • An inclined reflective surface 9A2 is formed on the periphery of the portion.
  • the inclined reflecting surface 9A2 has an inclined form in which the outgoing light 6a incident on the inclined reflecting surface 9A2 is spread around the optical axis La1 of the outgoing light 6a emitted from the flat reflecting surface 9A1.
  • a region on the outer peripheral side than the reflection region E functions as a light receiving surface 9A3 of the reflected light 6b.
  • the flat reflecting surface 9A1 and the light receiving surface 9A3 are inclined at a predetermined angle, for example 45 °, with respect to the rotation axis 12a.
  • the reflection area E is entirely convex with respect to the light receiving surface 9A3, the central portion which is the top is constituted by the flat flat reflecting surface 9A1, and the surrounding portion is from the flat reflecting surface 9A1 to the light receiving surface 9A3. It is comprised by the inclined reflective surface 9A2 of the form which spreads to this.
  • the detection unit 11 includes, for example, a photodiode as a light receiving element, and is configured to include an electric signal correction unit and the like, receives the reflected light 6b, and detects the presence or absence, an orientation, a distance, etc. measure.
  • the emitted light 6a emitted from the laser light emitting portion 6 is reflected by the emission reflection mirror 7, passes through the hole 8b of the light reception reflection mirror 8, and the flat reflection of the reflection surface 9A of the rotating mirror 9
  • the light is incident on the surface 9A1 and the inclined reflective surface 9A2 and is reflected.
  • the overall light intensity of the emitted laser light is higher at the portion near the optical axis (central portion) as shown by the characteristic line A in FIG. Light intensity is so low that part).
  • the outgoing light 6a in the vicinity of the optical axis (central part) of the outgoing light 6a is incident on the flat reflective surface 9A1 at the central part of the reflection area E and reflected, and the end far from the optical axis La ) Is incident on and reflected by the inclined reflection surface 9A2 around the flat reflection surface 9A1.
  • the emitted light 6a1 in the vicinity of the optical axis La1 reflected by the flat reflection surface 9A1 is projected to the detection area as almost parallel light.
  • the emitted light 6a2 of the end reflected by the inclined reflection surface 9A2 is spread (diffused) around the optical axis La1 of the emitted light 6a1 reflected by the flat reflection surface 9A1.
  • the light intensities of the emitted lights 6a1 and 6a2 are as shown by the characteristic line B in FIG. That is, the emitted light 6a1 in the vicinity of the optical axis La1 has a high light intensity, and the emitted light 6a2 at the end is diffused with a weak light intensity.
  • the emitted light 6a1 reflected by the flat reflective surface 9A1 is emitted toward the detection area at an original small spread angle. Since this outgoing light 6a1 has a small spread angle for long distance detection, the light intensity is higher at the part near the optical axis La1 and the light intensity is lower at the end part farther from the optical axis La1. Then, of the emitted light 6a1, the optical axis La1 portion (central portion with high light intensity) is reflected without being diffused by the flat reflective surface 9A1, and since it has high light intensity, it reaches far. Therefore, it is reflected with sufficient light intensity by a distant object.
  • the detection unit 11 can detect a distant object with a sufficient amount of received light.
  • the emitted light 6a is reflected by the inclined reflection surface 9A2 and is spread around the optical axis La1 of the emitted light 6a1 emitted from the flat reflection surface 9A1. Be diffused (diffused). Therefore, when it is reflected by an object at a short distance, it is received by almost the entire surface of the rotating mirror 9 and is further reflected toward the detecting portion 11 by almost the entire surface of the light receiving reflection mirror 8.
  • the emitted light 6a2 reflected by the inclined reflective surface 9A2 is low in light intensity, when it is reflected by an object at a short distance and returns to the detection unit 11, the reciprocation distance is short. The light intensity is maintained to such an extent that the light reception can be sufficiently detected by the detection unit 11.
  • the diffused outgoing light 6a2 is reflected to the short distance object while having sufficient light intensity for detection, and is incident on the entire rotating mirror 9 and reflected for light reception.
  • the light is received by a wide area of the mirror 8.
  • the amount of light received by the detection unit 11 as a whole increases.
  • the light receiving performance at a short distance can be improved.
  • the inclined reflecting surface 9A2 is inclined in the form of a straight line in cross section, it may be inclined in the form of an arc convex in the cross section.
  • the flat reflecting surface 9A1 and the inclined reflecting surface 9A2 as shown in FIG. 9, it may look good if a reflecting surface 19 having an arc convex shape as a whole is formed, but it seems that the whole emitted light 6a Because the light is diffused, the light intensity near the optical axis also becomes weak, and the long-distance detection performance is degraded.
  • FIG. 10 shows a second embodiment, and the rotating mirror 20 is different from the rotating mirror 9 of the first embodiment.
  • the other configuration is the same as that of the first embodiment.
  • a flat reflective surface 20A1 in the form of a flat surface is formed in the central portion of the reflection area E for reflecting the emitted light 6a in the rotary mirror 20, and an inclined reflective surface 20A2 is formed in the peripheral portion of the central portion. ing.
  • the inclined reflecting surface 20A2 has an inclined form in which the emitted light 6a incident on the inclined reflecting surface 20A2 is spread around the optical axis La1 after intersecting the optical axis La1 of the emitted light 6a emitted from the flat reflecting surface 20A1.
  • a region on the outer peripheral side than the reflection region E functions as a light receiving surface 20A3 of the reflected light 6b.
  • the flat reflective surface 20A1 and the light receiving surface 20A3 are inclined at a predetermined angle (45 °) with respect to the rotation axis 12a.
  • the reflection area E is entirely concave with respect to the light receiving surface 20A3, the central portion which is the bottom is constituted by the flat flat reflecting surface 20A1, and the surrounding portion is from the flat reflecting surface 20A1 to the light receiving surface 20A3. It is comprised by the inclined reflective surface 9A2 of the form which spreads.
  • the inclined reflecting surface 20A2 is inclined in the form of a straight line in cross section, it may be inclined in the form of an arc concave in section.
  • the above-mentioned inclined reflecting surface 9A2 may be formed around the flat reflecting surface 9A1, and an inclined reflecting surface having the same inclination as the inclined reflecting surface 20A2 may be formed around the flat reflecting surface 9A1.
  • the light receiving surfaces 9A3 and 20A3 may be flat or concave.
  • the laser beam emitting portion 6 may be provided at a position where the emitted light 6 a is directly incident on the rotating mirror 9 through the hole 8 b of the light receiving reflection mirror 8.
  • 1 is a laser radar device
  • 6 is a laser light emitting portion
  • 7 is a reflection mirror for emission
  • 8 is a reflection mirror for light reception
  • 8b is a hole
  • 9 is a rotating mirror
  • 9A1 is a flat reflection surface
  • 9A2 is an inclined reflection surface 9A3 denotes a light receiving surface
  • 11 denotes a detection unit
  • 20 denotes a rotating mirror
  • 20A1 denotes a flat reflective surface
  • 20A2 denotes an inclined reflective surface
  • 20A3 denotes a light receiving surface
  • La and La1 denote an outgoing optical axis
  • Lb denotes a reflected optical axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

 回転ミラー(9)を備えたレーザレーダ装置が提供される。回転ミラー(9)は出射レーザ光を反射させる反射領域(E)を有する。この反射領域(E)の中央部に平坦面状をなす平坦反射面(9A1)が形成される。また、その反射領域(E)の中央部の周囲部に、当該周囲部に入射する出射レーザ光を平坦反射面(9A1)から出射される出射レーザ光の光軸(La1)の周囲に広げる傾斜反射面(9A2)が形成される。

Description

レーザレーダ装置
 本発明は、レーザ光を用いて対象物の有無、方位、及び距離などを検出するレーザレーダ装置に関する。
 レーザレーダ装置は、レーザ光を利用して目標とする検出エリアにおける対象物の有無や、方位、さらには距離などを検出する装置として使用される。このレーザレーダ装置では、一般に、レーザ光出射部から出射されたレーザ光(出射光)が回転ミラーで検出エリア方向に向けて反射されるとともに、回転ミラーの回転に伴ってスキャンされる。また、対象物で反射して戻ってきたレーザ光(戻り光)が前記回転ミラーで検出部に向けて反射される。検出部はその反射光を受信して対象物に関する情報を検出する。上記出射光は、遠い距離の対象物を検出するために、広がり角度を小さくしてほぼ平行光状態に設定されている。
 レーザレーダ装置では、反射光の強度レベルが対象物有りのレベルとなったか否かをもって対象物の有無や方位を検出し、対象物までの距離は、レーザ光の出射時点から反射光の受光時点までの時間で計測する。そして、レーザレーダ装置では、対象物が遠い場合、レーザ光の広がり角度が小さいとはいえ、レーザ光が遠距離を往復する間にある程度広がるから、遠くの対象物で反射した反射光の強度は低くなる。これに対して、対象物が近い場合、レーザ光は広がりがほとんどないまま反射するから、この反射光のほぼ全てが検出部に入光する構成のレーザレーダ装置(例えばレーザ光の出射光軸と反射光軸とが異なる
構成のレーザレーダ装置)では、反射光の強度はかなり高くなる。
 このため、前記検出部は反射光の強度(受光強度)に応じたレベルの電気信号を出力するが、同じ反射率の対象物を、遠い距離(数十m)から近い距離(数cm)まで、一様にほぼ同じ電気信号レベルで検出できるようにするために、近い距離(計測時間で判断)の電気信号を減衰させたり、電気信号の検出の閾値を上げたりするなどの補正を行うようにしている。これにより、低反射である霧などを検出しないようにしている。
 一方、レーザレーダ装置では、レーザ光の出射光軸と反射光軸とを合わせることで検出性能の向上を図るタイプのレーザレーダ装置が供されている。この種のレーザレーダ装置の基本的な構成を図1に示す。この図1のレーザレーダ装置51は、レーザ光を出射するレーザ光出射部52と、出射用反射ミラー53と、出射光展開用兼受光用の回転ミラー54と、孔55aを形成した受光用反射ミラー55と、対象物で反射した反射光を検出する検出部56と、受光レンズ57を備えている。回転ミラー54の反射面54aは平坦面に形成されている。
 前記レーザ光出射部52から出射されるレーザ光は、遠い距離の対象物を検出できるように、広がり角度を抑えた平行光に近い形態で出射される。
 このレーザレーダ装置51では、レーザ光出射部52から出射した出射光52aは出射用反射ミラー53で反射されて、受光用反射ミラー55の孔55aを通過して、回転ミラー54の平坦な反射面54aで反射されて検出エリア方向へ展開出射される。そして、対象物で反射して回転ミラー54に入射した反射光52bは回転ミラー54で受光用反射ミラー55方向へ反射された後、当該受光用反射ミラー55で受光レンズ57方向に反射されて検出部56で検出される。
 この場合、出射光52aが出射用反射ミラー53を通過して回転ミラー54に向かう出射光軸Laと、反射光52bが回転ミラー54で反射されて受光用反射ミラー55に向かう反射光軸Lbとが一致している。なお、反射光52bの一部は、構造的に、受光用反射ミラー55の孔55aから出射用反射ミラー53方向へ抜ける。
 レーザレーダ装置51は、数十mの遠方から数cmの近くまで検出することが要求されている。特に遠方の対象物を検出することを考慮して、レーザ光の減衰度が大きくならないようにレーザ光は、広がり角を小さくした形態で出射するようにしている。
 ここで、検出部56が検出する受光量と、レーザレーダ装置51から対象物までの距離との関係を図2に示す。レーザレーダ装置51からの対象物までの離間距離として、例えば、遠い方から、地点P1、地点P2、地点P3、地点P4、地点P5を示す。レーザレーダ装置51から遠い地点P1において対象物で反射した反射光52bは、図3(a)で示すように、回転ミラー54の反射面54aよりも反射光52bの径が大きくなるため(拡散するため)、反射光52bの強度自体が弱い。しかも反射光52bの径が大きいため、反射面54aの全域で反射光の一部を反射できるとはいうものの、残りの反射光52bが反射面54a周囲に抜けてしまうため、受光ロスが大きい。この結果、検出部56での受光量が低くなる。
 地点P2は、地点P1よりさらにレーザレーダ装置51に近いため、図3(b)で示すように、対象物で反射した反射光52bの強度自体がやや強く、又相対的な受光ロスも小さい。この場合、検出部56での受光量も多くなる。又、地点P3では、図3(c)に示すように、反射光52bの径が回転ミラー54の反射面54aの大きさと略同じとなり、受光量が最大となる。なお、上記地点P1、P2、P3の場合、回転ミラー54で受光された反射光52bの一部(光軸付近)は、受光用反射ミラー55の孔55aから抜ける。
 次に地点P4は、さらにレーザレーダ装置51に近いため、対象物で反射した反射光52bは、光強度は強いが、図4に示すように反射面54aよりも反射光52bの径が小さいことで、受光用反射ミラー55で検出部56方向へ反射される反射光52bの反射面積が小さくなって、つまり、孔55aを抜ける反射光52bの割合が大きくなってしまい、結果的に検出部56での受光量が少なくなる。
 次に地点P5は、さらにレーザレーダ装置51に近いため、対象物で反射した反射光52bは、図5に示すように反射面54aよりも反射光52bの径がさらに小さくなることで、結果的に検出部56での全体的な受光量がさらに低くなる。なお、特許文献1には、出射光軸と反射光軸とを同じとしたレーザレーダ装置において、回転ミラーにおける出射光の反射領域の全領域を平坦な平面反射部で形成した構成としている。
特開2009-121836号公報
 このように、出射光軸Laと反射光軸Lbとを同じとしたレーザレーダ装置51では、対象物が近いほど、受光用反射ミラー55の孔55aを抜ける反射光52bの相対的割合が増加して、検出部56への入光量(検出部56にとっての受光量)が少なくなってしまう。特に対象物が極近距離の場合には、検出部56への入光量が殆どなく、このため、極近距離に検出すべき対象物があってもこれを検出できないおそれがある。又、検出部56が前述したように、近い距離ほど電気信号レベルを下げる補正を行うと、近い距離での電気信号レベルがますます低くなって、この傾向が顕著となる。
 本発明は上述の事情に鑑みてなされたものであり、その目的は、出射光軸と反射光軸とを同じとしたレーザレーダ装置において、極近距離での受光性能を向上させることができるレーザレーダ装置を提供することにある。
 本発明に係るレーザレーダ装置は、レーザ光を出射するレーザ光出射部(6)と、前記レーザ光出射部(6)から出射された出射レーザ光(6a)を通過させる孔(8b)を有する受光用反射ミラー(8)と、前記受光用反射ミラー(8)の孔(8b)を通過した前記出射レーザ光(6a)を反射させて目標とする対象エリア方向へ照射すると共に、当該対象エリアから反射して戻ってきた戻りレーザ光(6b)を受光して前記受光用反射ミラー(8)方向へ反射させる回転ミラー(9)と、前記受光用反射ミラー(8)で反射された戻りレーザ光(6b)を検出する検出部と、を備える。前記受光用反射ミラー(8)の孔(8b)を通過して前記回転ミラー(9)で反射される出射レーザ光(6a)の出射光軸(La)と、前記回転ミラー(9)で反射した戻りレーザ光(6b)の反射光軸(Lb)とを一致させる。前記回転ミラー(9、20)は、前記出射レーザ光(6a)を反射させる反射領域(E)を備え、当該反射領域(E)から出射される出射レーザ光(6a)を、当該反射領域(E)が平坦反射面であるときの出射レーザ光よりも、その光軸(La1)の周囲に広げるように構成した。
 例えば、このレーザレーダ装置の第1の態様によれば、前記回転ミラー(9)は、前記出射レーザ光(6a)を反射させる反射領域(E)の中央部に平坦面状をなす平坦反射面(9A1)を備え、当該反射領域(E)の前記中央部の周囲部に、当該周囲部に入射する出射レーザ光(6a)を前記平坦反射面(9A1)から出射される出射レーザ光(6a)の光軸(La1)の周囲に広げる傾斜反射面(9A2)を備えている。
 このため、かかる第1の態様によれば、遠距離検出用として小さな広がり角度で出射された出射レーザ光のうち、平坦反射面で反射された出射レーザ光は、もともとの小さな広がり角度で検出エリア方向へ出射される。この出射レーザ光は、遠距離検出用に小さい広がり角度であるから、光軸付近の部分ほど光強度が高く、光軸から遠い端部ほど光強度が低い。そして、出射レーザ光のうち光軸部分(光強度が高い中央部分)は、この平坦反射面で拡散されることなく反射され、しかも強い光強度であるため、遠くまで到達する。従って、遠い距離にある対象物で十分な光強度で反射される。この場合、レーザ光は遠い距離を往復するから、もともとの広がり角が小さいとはいえ、回転ミラーの反射面の投影面積程度は広がる。従って、回転ミラーにおける戻りレーザ光の受光ロスも少ない。従って、検出部は、遠い対象物を十分な受光量で検出できる。
 一方、出射レーザ光のうち、光強度が低い端部分(周囲部分)の出射レーザ光は傾斜反射面で反射されて、平坦反射面から出射される出射レーザ光の光軸の周囲に広げられる(拡散される)。従って、近距離の対象物で反射された場合には、回転ミラーのほぼ全面で受光され、さらに受光用反射ミラーのほぼ全面で検出部方向へ反射される。しかも、この傾斜反射面で反射された出射レーザ光は、光強度が低いとはいっても、近距離の対象物で反射されて検出部に戻ってきた場合には、往復距離が短いから、検出部で受光を十分検出できる程度の光強度を維持している。
 このように、上記拡散された出射レーザ光は、近距離の対象物に対しては、検出に十分な光強度を備えたまま反射して、回転ミラーの全体に入光し且つ受光用反射ミラーの広い領域で受光される。これにより、戻りレーザ光が受光用反射ミラーの孔を通過しても検出部での受光量が増える。この結果、近距離での受光性能を向上させることができる。
 また、このレーザレーダ装置の第2の態様によれば、前記回転ミラー(20)は、前記出射レーザ光(6a)を反射させる反射領域(E)の中央部に平坦面状をなす平坦反射面(20A1)を備え、当該反射領域(E)の前記中央部の周囲部に、当該周囲部に入射する出射レーザ光(6a)を前記平坦反射面(20A1)から出射される出射レーザ光(6a)の光軸(La1)と交差した後、当該光軸(La1)の周囲に広げる傾斜反射面(20A2)を備えている。これによれば、請求項1と同様の効果を奏する。
 添付図面において:
図1は、従来例におけるレーザレーダ装置の光学系を示す図、 図2は、レーザレーダ装置から対象物までの距離と検出部の受光量との関係を示す図、 図3において、(a)は図2の地点P1の場合の回転ミラーでの受光ロスを説明するための図、(b)は図2の地点P2の場合の回転ミラーでの受光ロスを説明するための図、(c)は図2の地点P3の場合の回転ミラーでの受光ロスを説明するための図、 図4は、図2の地点P4の場合での反射光の様子を示す図、 図5は、図2の地点P5の場合での反射光の様子を示す図、 図6は、本発明の第1実施形態によるレーザレーダ装置の概略構成の縦断側面図、 図7は、回転ミラー部分の側面図、 図8は、レーザレーダ装置から対象物までの距離と検出部の受光量との関係を示す図、 図9は、参考例を示す回転ミラー部分の側面図、 図10は、本発明の第2実施形態による回転ミラー部分の断面図、 図11は、本発明の第3実施形態によるレーザレーダ装置の概略構成の縦断側面図。
 以下、本発明の各種の実施形態を、図面を参照して説明する。
 [第1の実施形態]
 本発明の第1実施形態について図6ないし図8を参照して説明する。
 図6に示すように、第1実施形態のレーザレーダ装置1は、装置本体2を備えている。この装置本体2は本体ベース3と装置ケース4とを有する。装置ケース4には、レーザ光照射口5が形成されており、このレーザ光照射口5には、レーザ光を透過可能なカバー5aが装置ケース4と一体又は別体で設けられている。
 さらに、前記装置ケース4内には、レーザ光を出射するレーザ光出射部6、出射用反射ミラー7、受光用反射ミラー8、出射光展開用兼受光用の回転ミラー9、対象物で反射したレーザ光を受光レンズ10を通して受光する検出部11、前記回転ミラー9を回転させるモータ12が設けられている。
 前記レーザ光出射部6は図6において例えば水平方向へレーザ光を出射する向きに設けられており、又、前記出射用反射ミラー7は、前記レーザ光出射部6から出射されたレーザ光(出射レーザ光に相当、以下出射光6aという)を受ける部位に設けられている。この出射用反射ミラー7は前記出射光6aを所定角度で反射させて下方に指向させる。この反射した出射光6aを通過させる位置に前記受光用反射ミラー8が配設され、さらにその通過後の当該出射光6aを受ける位置に前記回転ミラー9が配設されている。
 前記受光用反射ミラー8は、一面に反射面8aを有すると共に、中心に前記出射光6aを通過させる孔8bを有する。
 前記回転ミラー9は出力段のミラーであり、これは前記出射光6aの出射光軸La(受光用反射ミラー8の孔8bを通過して回転ミラー9に向かう出射光6aの光軸)と同じ軸心のモータ12の回転軸12aで回転するように、本体ベース3に回転可能に設けられている。そして、この回転ミラー9の反射面9A(出射光6aを反射し且つ対象物からの反射光を受光する側の面)は、前記回転軸12aに対して、後述する傾斜反射面9A2を除く部分が例えば45°傾斜した形態となっている。対象物で反射したレーザ光(戻りレーザ光に相当、以下反射光6b)は、前記回転ミラー9の反射面9Aで反射し、さらに
前記受光用反射ミラー8の反射面8aで反射し、受光レンズ10を通って前記検出部11で検出される。この場合、前記出射光軸Laと、反射光6bの反射光軸Lb(回転ミラー9で反射されて前記受光用反射ミラー8の反射面8aに向かう反射光6bの光軸)とは同軸である。この回転ミラー9はモータ12により回転駆動される。
 図7に示すように、この回転ミラー9の反射面9Aにおいて、前記出射光6aを反射させる反射領域Eのうち、中央部に、平坦面状をなす平坦反射面9A1を形成すると共に、前記中央部の周囲部に、傾斜反射面9A2を形成している。この傾斜反射面9A2は、当該傾斜反射面9A2に入射する出射光6aを前記平坦反射面9A1から出射される出射光6aの光軸La1の周囲に広がらせる傾斜形態をなす。又、この回転ミラー9の反射面9Aにおいて、前記反射領域Eより外周側の領域は反射光6bの受光面9A3として機能する。前記平坦反射面9A1及び受光面9A3が前記回転軸12aに対して所定角度例えば45°傾斜している。なお、前記反射領域Eは、受光面9A3に対して全体的に凸状をなすが、頂部である中央部は平坦な平坦反射面9A1で構成され、周囲部は平坦反射面9A1から受光面9A3へ広がる形態の傾斜反射面9A2で構成されている。
 前記検出部11は受光素子として例えばホトダイオードを備えると共に、電気信号の補正手段などを備えて構成されており、反射光6bを受光して、対象物の有無や方位、さらには距離などを検出(計測)する。
 上記構成において、レーザ光出射部6から出射した出射光6aは出射用反射ミラー7で反射して、受光用反射ミラー8の孔8bを通過して、回転ミラー9の反射面9Aの前記平坦反射面9A1及び傾斜反射面9A2に入射して反射される。この場合、この出射レーザ光の全体的な光強度は、便宜上図7に特性線Aで示すように、光軸付近の部分(中央部)ほど光強度が高く、光軸から遠い端部(周囲部)ほど光強度が低い。
 そして、出射光6aのうち光軸付近(中央部)の出射光6aは、反射領域Eの中央部にある平坦反射面9A1に入射して反射され、又光軸Laから遠い端部(周囲部)の出射光6aは平坦反射面9A1の周囲にある傾斜反射面9A2に入射して反射される。
 前記平坦反射面9A1で反射された光軸La1付近の出射光6a1はほぼ平行光のまま検出エリアへ投光される。これに対して、傾斜反射面9A2で反射された端部の出射光6a2は、前記平坦反射面9A1で反射された出射光6a1の光軸La1の周囲に広げられる(拡散される)。
 ここで、上記出射光6a1及び6a2の光強度は図7の特性線Bで示すようになる。つまり、光軸La1付近の出射光6a1は強い光強度であり、又、端部の出射光6a2は弱い光強度で拡散している。
 前記平坦反射面9A1で反射された出射光6a1は、もともとの小さな広がり角度で検出エリア方向へ出射される。この出射光6a1は、遠距離検出用に小さい広がり角度であるから、光軸La1付近の部分ほど光強度が高く、光軸La1から遠い端部ほど光強度が低い。そして、出射光6a1のうち光軸La1部分(光強度が高い中央部分)は、この平坦反射面9A1で拡散されることなく反射され、しかも強い光強度であるため、遠くまで到達する。従って、遠い距離にある対象物で十分な光強度で反射される。この場合、レーザ光は遠い距離を往復するから、もともとの広がり角が小さいとはいえ、回転ミラー9の反射面9Aの投影面積程度は広がる。従って、回転ミラー9における反射光6bの受光ロスも少ない。従って、検出部11は、遠い対象物を十分な受光量で検出できる。
 一方、出射光6aのうち、光強度が低い端部分(周囲部分)の出射光6aは傾斜反射面9A2で反射され、平坦反射面9A1から出射される出射光6a1の光軸La1の周囲に広げられる(拡散される)。従って、近距離の対象物で反射された場合には、回転ミラー9のほぼ全面で受光され、さらに受光用反射ミラー8のほぼ全面で検出部11方向へ反射される。しかも、この傾斜反射面9A2で反射された出射光6a2は、光強度が低いとはいっても、近距離の対象物で反射されて検出部11に戻ってきた場合には、往復距離が短いから、検出部11で受光を十分検出できる程度の光強度を維持している。
 このように、上記拡散された出射光6a2は、近距離の対象物に対しては、検出に十分な光強度を備えたまま反射して、回転ミラー9の全体に入光し且つ受光用反射ミラー8の広い領域で受光される。これにより、反射光6bの一部が受光用反射ミラー8の孔8bを通過しても全体として検出部11での受光量が増える。この結果、図8の実線で示すように、近距離での受光性能を向上させることができる。これにより、レーザレーダ装置1に対して遠い距離から極近い距離の対象物まで、その有無や方位及び距離などを十分に検出できる。
 そして、検出部11として、近距離の受光に対応した電気信号を減衰させたり閾値を上げたりする補正を行う構成の検出部を採用しても、近距離での距離計測が十分に可能である。又、検出部11として、近距離では、光強度の強い反射光6bはほとんど受光用反射ミラー8の孔8bから抜けるから、上述の補正をしないタイプの検出部の採用も可能となる。
 なお、上記傾斜反射面9A2は断面直線状をなす形態で傾斜しているが、断面円弧凸状をなす形態で傾斜していても良い。
 ここで、前記平坦反射面9A1及び傾斜反射面9A2に代えて、図9に示すように、全体として円弧凸面状をなす反射面19を形成しても良さそうにみえるが、出射光6aの全体が拡散するため、光軸付近の光強度も弱くなり、遠距離の検出性能が悪くなる。
 これに対して、本実施形態によれば、光軸付近の光強度は強いまま反射できる。
 [第2の実施形態]
 図10は第2実施形態を示しており、回転ミラー20が第1実施形態の回転ミラー9と異なる。その他の構成は第1の実施形態のものと同様である。
 回転ミラー20において前記出射光6aを反射させる反射領域Eのうち、中央部に、平坦面状をなす平坦反射面20A1を形成すると共に、前記中央部の周囲部に、傾斜反射面20A2を形成している。この傾斜反射面20A2は、当該傾斜反射面20A2に入射する出射光6aを前記平坦反射面20A1から出射される出射光6aの光軸La1と交差した後当該光軸La1の周囲に広がらせる傾斜形態をなす。又、この回転ミラー20の反射面20Aにおいて、前記反射領域Eより外周側の領域は反射光6bの受光面20A3として機能する。前記平坦反射面20A1及び受光面20A3が前記回転軸12aに対して所定角度(45°)傾斜している。なお、前記反射領域Eは、受光面20A3に対して全体的に凹状をなすが、底部である中央部は平坦な平坦反射面20A1で構成され、周囲部は平坦反射面20A1から受光面20A3へ広がる形態の傾斜反射面9A2で構成されている。
 この第2実施形態においても、第1実施形態と同様の効果を奏する。
 なお、上記傾斜反射面20A2は断面直線状をなす形態で傾斜しているが、断面円弧凹状をなす形態で傾斜していても良い。なお、平坦反射面9A1の周囲に上記傾斜反射面9A2が形成され、さらにその周囲に傾斜反射面20A2と同じ傾斜の傾斜反射面が形成される構成としても良い。受光面9A3、20A3は平坦面でも凹面でも良い。
 また、図11に示すように、レーザ光出射部6は、出射光6aが受光用反射ミラー8の孔8bを通して回転ミラー9に直接入射する位置に設けても良い。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 図面中、1はレーザレーダ装置、6はレーザ光出射部、7は出射用反射ミラー、8は受光用反射ミラー、8bは孔、9は回転ミラー、9A1は平坦反射面、9A2は傾斜反射面、9A3は受光面、11は検出部、20は回転ミラー、20A1は平坦反射面、20A2は傾斜反射面、20A3は受光面、La、La1は出射光軸、Lbは反射光軸を示す。

Claims (5)

  1.  レーザ光を出射するレーザ光出射部(6)と、
     前記レーザ光出射部(6)から出射された出射レーザ光(6a)を通過させる孔(8b)を有する受光用反射ミラー(8)と、
     前記受光用反射ミラー(8)の孔(8b)を通過した前記出射レーザ光(6a)を反射させて目標とする対象エリア方向へ照射すると共に、当該対象エリアから反射して戻ってきた戻りレーザ光(6b)を受光して前記受光用反射ミラー(8)方向へ反射させる回転ミラー(9)と、
     前記受光用反射ミラー(8)で反射された戻りレーザ光(6b)を検出する検出部と、を備え、
     前記受光用反射ミラー(8)の孔(8b)を通過して前記回転ミラー(9)で反射される出射レーザ光(6a)の出射光軸(La)と、前記回転ミラー(9)で反射した戻りレーザ光(6b)の反射光軸(Lb)とを一致させ、
     前記回転ミラー(9、20)は、前記出射レーザ光(6a)を反射させる反射領域(E)を備え、当該反射領域(E)から出射される出射レーザ光(6a)を、当該反射領域(E)が平坦反射面であるときの出射レーザ光よりも、その光軸(La1)の周囲に広げるように構成したことを特徴とするレーザレーダ装置。
  2.  前記回転ミラー(9)は、前記出射レーザ光(6a)を反射させる反射領域(E)の中央部に平坦面状をなす平坦反射面(9A1)を備え、当該反射領域(E)の前記中央部の周囲部に、当該周囲部に入射する出射レーザ光(6a)を前記平坦反射面(9A1)から出射される出射レーザ光(6a)の光軸(La1)の周囲に広げる傾斜反射面(9A2)を備えたことを特徴する請求項1に記載のレーザレーダ装置。
  3.  前記平坦反射面(9A1)は前記回転ミラー(9)の表面(9A3)よりも外側に膨らんで形成され、前記傾斜反射面(9A2)はその表面(9A3)と当該平坦反射面(9A1)とを繋ぐ傾斜面として形成されている請求項2に記載のレーザレーダ装置。
  4.  前記回転ミラー(20)は、前記出射レーザ光(6a)を反射させる反射領域(E)の中央部に平坦面状をなす平坦反射面(20A1)を備え、当該反射領域(E)の前記中央部の周囲部に、当該周囲部に入射する出射レーザ光(6a)を前記平坦反射面(20A1)から出射される出射レーザ光(6a)の光軸(La1)と交差した後、当該光軸(La1)の周囲に広げる傾斜反射面(20A2)を備えたことを特徴とする請求項1に記載のレーザレーダ装置。
  5.  前記平坦反射面(20A1)は前記回転ミラー(20)の表面(20A3)よりも内側に凹んで形成され、前記傾斜反射面(20A2)はその表面(20A3)と当該平坦反射面(20A1)とを繋ぐ傾斜面として形成されている請求項4に記載のレーザレーダ装置。
PCT/JP2014/057619 2013-09-19 2014-03-19 レーザレーダ装置 WO2015040876A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/023,559 US9964644B2 (en) 2013-09-19 2014-03-19 Laser radar apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013194171A JP2015059850A (ja) 2013-09-19 2013-09-19 レーザレーダ装置
JP2013-194171 2013-09-19

Publications (1)

Publication Number Publication Date
WO2015040876A1 true WO2015040876A1 (ja) 2015-03-26

Family

ID=52688539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057619 WO2015040876A1 (ja) 2013-09-19 2014-03-19 レーザレーダ装置

Country Status (3)

Country Link
US (1) US9964644B2 (ja)
JP (1) JP2015059850A (ja)
WO (1) WO2015040876A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101909327B1 (ko) * 2015-12-11 2018-10-17 전자부품연구원 송수광 렌즈를 공유하는 광학계 구조를 가지는 스캐닝 라이다
DE102017202634A1 (de) * 2017-02-20 2018-08-23 Robert Bosch Gmbh Lidar-Sensor zur Erfassung eines Objektes
CN109031348B (zh) * 2017-11-27 2022-08-05 无锡中科光电技术有限公司 一种零盲区激光雷达及其制造方法
WO2019239845A1 (ja) * 2018-06-14 2019-12-19 パナソニックIpマネジメント株式会社 物体検出装置および光検出器
CN109444857A (zh) * 2018-12-05 2019-03-08 宁波傲视智绘光电科技有限公司 一种可隔离杂光的激光雷达
WO2020228256A1 (zh) * 2019-05-15 2020-11-19 北醒(北京)光子科技有限公司 一种雷达和角度调整装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038859A (ja) * 2008-08-08 2010-02-18 Toyota Motor Corp 3次元レーザ測距装置
JP2012211831A (ja) * 2011-03-31 2012-11-01 Denso Wave Inc レーザレーダ装置
JP2013083624A (ja) * 2011-09-28 2013-05-09 Denso Wave Inc レーザレーダ装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056362B2 (ja) * 2007-02-06 2012-10-24 株式会社デンソーウェーブ レーザレーダ装置
EP1965225A3 (en) * 2007-02-28 2009-07-15 Denso Wave Incorporated Laser radar apparatus for three-dimensional detection of objects
JP5181628B2 (ja) 2007-11-12 2013-04-10 株式会社デンソーウェーブ レーザレーダ装置
LU91688B1 (en) * 2010-05-17 2011-11-18 Iee Sarl Scanning 3D imager

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038859A (ja) * 2008-08-08 2010-02-18 Toyota Motor Corp 3次元レーザ測距装置
JP2012211831A (ja) * 2011-03-31 2012-11-01 Denso Wave Inc レーザレーダ装置
JP2013083624A (ja) * 2011-09-28 2013-05-09 Denso Wave Inc レーザレーダ装置

Also Published As

Publication number Publication date
JP2015059850A (ja) 2015-03-30
US9964644B2 (en) 2018-05-08
US20160209510A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
WO2015040876A1 (ja) レーザレーダ装置
US9285266B2 (en) Object detector including a light source with light emitting region of a first size in a first direction and a second size in a second direction
KR102235710B1 (ko) 송수광 단일렌즈 광학계 구조를 가지는 스캐닝 라이다
KR101088360B1 (ko) 복수의 독립된 광 경로를 갖는 광 도파관 및 그를 이용한 ndir 가스 센서
CN109975783B (zh) 激光雷达
JP2015212647A (ja) 物体検出装置及びセンシング装置
JP6737296B2 (ja) 対象物検出装置
JP2009229462A (ja) 検出装置
JP2019523410A (ja) 走査範囲を検出するための光学系
US20140078489A1 (en) Optical radar device
US20210341610A1 (en) Ranging device
WO2017135224A1 (ja) 光走査型の対象物検出装置
US20160370176A1 (en) Displacement sensor
JP2017110964A (ja) 光波距離測定装置
JPWO2016056543A1 (ja) 走査光学系及びレーダー
KR20190012345A (ko) 라이다 장치
KR102350613B1 (ko) 비회전형 전방향 라이다 장치
JP2018151278A (ja) 計測装置
WO2024066524A1 (zh) 激光雷达和汽车
WO2018147454A1 (ja) 走査型の光学系及びレーザーレーダー装置
US11796678B2 (en) Optical device and LiDAR system including the same
JP6036116B2 (ja) レーザレーダ装置
US20230161003A1 (en) Lidar device
JP2017125765A (ja) 対象物検出装置
WO2017065049A1 (ja) 光走査型の対象物検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15023559

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14845322

Country of ref document: EP

Kind code of ref document: A1