WO2024066524A1 - 激光雷达和汽车 - Google Patents

激光雷达和汽车 Download PDF

Info

Publication number
WO2024066524A1
WO2024066524A1 PCT/CN2023/102327 CN2023102327W WO2024066524A1 WO 2024066524 A1 WO2024066524 A1 WO 2024066524A1 CN 2023102327 W CN2023102327 W CN 2023102327W WO 2024066524 A1 WO2024066524 A1 WO 2024066524A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflecting surface
galvanometer
laser radar
laser
angled
Prior art date
Application number
PCT/CN2023/102327
Other languages
English (en)
French (fr)
Inventor
刘佳
杨野
疏达
Original Assignee
北醒(北京)光子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北醒(北京)光子科技有限公司 filed Critical 北醒(北京)光子科技有限公司
Publication of WO2024066524A1 publication Critical patent/WO2024066524A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • B60R11/0258Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof for navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Definitions

  • the present application relates to the field of radar technology, and in particular, to a laser radar and a car.
  • LiDAR products have the technical characteristics of fast, non-contact detection, and can detect the road environment in real time, thereby assisting the car's autonomous driving system to pre-plan the driving route.
  • the requirements for the scanning field of view of LiDAR are getting higher and higher, and the volume requirements are getting smaller and smaller.
  • on-board LiDAR usually uses a galvanometer plus a rotating mirror (or prism) to achieve the scanning requirements of a small field of view in the vertical direction and a large field of view in the horizontal direction.
  • the technical solutions generally adopted are: whole machine rotation scanning, array LiDAR horizontal field of view splicing, or reducing the number of rotating mirrors and increasing the rotation speed.
  • these methods may bring about problems such as larger overall size of the LiDAR and increased power consumption.
  • the purpose of this application includes providing a laser radar that can improve the problems of existing laser radars such as the increase in overall size and power consumption caused by ensuring the detection effect.
  • the present application provides a laser radar, including a laser transmitter, an angled galvanometer, a rotating mirror and a laser receiver, the angled galvanometer including a first reflecting surface and a second reflecting surface set at an angle, the normal vector of the first reflecting surface and the normal vector of the second reflecting surface are divergent, the laser transmitter is used to form a first light path, the first light path passes through the first reflecting surface of the angled galvanometer and the rotating mirror in sequence to be emitted toward a target object to be measured; the laser receiver is used to receive a second light path reflected by the target object to be measured, the second light path passes through the rotating mirror and the second reflecting surface of the angled galvanometer in sequence, and then reaches the laser receiver.
  • the angle between the normal vector of the first reflecting surface and the normal vector of the second reflecting surface is 1° to 15°.
  • the angle between the normal vector of the first reflecting surface and the normal vector of the second reflecting surface is 5°.
  • the laser radar further includes a first reflector, which is disposed in the first optical path and is used to reflect the light beam emitted by the laser transmitter to the first reflective surface.
  • the laser radar further includes a second reflector, which is disposed in the second optical path and is configured to reflect the light beam from the second reflective surface to the laser receiver.
  • the angled galvanometer is used to achieve vertical scanning of the laser radar by rotation, and the rotation range of the angled galvanometer is ⁇ (2° ⁇ 10°).
  • the rotating mirror is used to achieve horizontal scanning of the laser radar by rotation, and the horizontal field of view of the laser radar is ⁇ (50° ⁇ 70°).
  • the laser emission width of the laser transmitter is 2-10 mm.
  • an embodiment of the present application provides a car, comprising a laser radar according to any one of the embodiments of the first aspect described above.
  • the laser radar provided by the present application includes a laser transmitter, an angled galvanometer, a rotating mirror and a laser receiver.
  • the angled galvanometer includes a first reflecting surface and a second reflecting surface set at an angle, and the normal vector of the first reflecting surface is divergent from the normal vector of the second reflecting surface.
  • the laser transmitter is used to form a first optical path, and the first optical path passes through the first reflecting surface of the angled galvanometer and the rotating mirror in sequence to the target object to be measured; the laser receiver is used to receive the second optical path reflected by the target object to be measured, and the second optical path passes through the rotating mirror and the second reflecting surface of the angled galvanometer in sequence, and then reaches the laser receiver.
  • the angle between the echo light and the mirror surface of the rotating mirror can be increased when it is grazingly incident, and the effective projection area of the echo signal can be increased, thereby improving the echo signal intensity and energy utilization, and increasing the long-distance detection range.
  • a smaller optical aperture can also be used, thereby reducing the size of the rotating mirror, reducing wind resistance and power consumption.
  • the coaxial characteristics of the transmitting optical path and the receiving optical path can be changed, which is conducive to reducing the size of the galvanometer, thereby reducing the cutting distance of the edge of the galvanometer.
  • the automobile provided in the present application includes the above-mentioned laser radar, and therefore also has the above-mentioned beneficial effects accordingly.
  • FIG1 is a schematic diagram showing the principle of laser radar detecting a target object in the conventional related technology
  • FIG2 is a schematic diagram showing the principle of laser radar detecting a target object in one embodiment of the present application
  • FIG3 is a schematic diagram of an angled galvanometer in an embodiment of the present application.
  • FIG4 is a schematic diagram of a laser radar horizontally scanning to the left extreme position in one embodiment of the present application.
  • FIG5 is a schematic diagram of a laser radar horizontally scanning to the right limit position in one embodiment of the present application.
  • FIG6 is a schematic diagram of a laser radar horizontally scanning to a left extreme position in a conventional related art
  • FIG. 7 is a schematic diagram of a laser radar horizontally scanning to the right extreme position in the conventional related technology.
  • Icon 101 - laser transmitter; 102 - first reflector; 103 - plane galvanometer; 104 - rotating mirror; 105 - target to be measured; 106 - second reflector; 107 - laser receiver; 203 - angled galvanometer; 2031 - first reflective surface; 2032 - second reflective surface.
  • FIG1 is a schematic diagram of the principle of laser radar detecting the target object to be measured in the traditional related technology.
  • the laser radar in the related technology includes a laser transmitter 101, a first reflector 102, a plane galvanometer 103, a rotating mirror 104, a second reflector 106 and a laser receiver 107.
  • the target object 105 to be measured is located far away.
  • the laser transmitter 101 generates laser light, which passes through the first reflector 102, the plane galvanometer 103, and the rotating mirror 104 in sequence to reach the target object 105 to be measured.
  • the reflected light returns from the original direction of the target object 105 to be measured, passes through the rotating mirror 104, the plane galvanometer 103, and the second reflector 106 in sequence to reach the laser receiver 107 and is converted into an electrical signal for processing.
  • the angle ⁇ between the plane galvanometer 103 and the emitted light is generally set to 45°.
  • the embodiment of the present application provides a laser radar, which uses an angled galvanometer to improve the echo signal strength and energy utilization rate, thereby achieving the purpose of reducing the size and power consumption of the device.
  • a car comprising the laser radar provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the principle of laser radar detecting the target object to be measured in one embodiment of the present application
  • FIG3 is a schematic diagram of the angled galvanometer 203 in one embodiment of the present application.
  • the laser radar provided in the embodiment of the present application includes a laser transmitter 101, a first reflector 102, an angled galvanometer 203, a rotating mirror 104, a second reflector 106 and a laser receiver 107.
  • the angled galvanometer 203 can be selected as an integrally formed structure.
  • the angled galvanometer 203 has a first reflecting surface 2031 and a second reflecting surface 2032 set at an angle, and the normal vector of the first reflecting surface 2031 and the normal vector of the second reflecting surface 2032 are divergent.
  • connection between the first reflecting surface 2031 and the second reflecting surface 2032 forms an outward convex structure.
  • the laser transmitter 101 is used to form a first optical path, which is the emission optical path.
  • the first optical path passes through the first reflector 102, the first reflection surface 2031 of the angled galvanometer 203, and the rotating mirror 104 in sequence and is emitted to the target object 105 to be measured; the laser receiver 107 is used to receive the second optical path reflected by the target object to be measured, which is the reflection optical path.
  • the second optical path passes through the rotating mirror 104, the second reflection surface 2032 of the angled galvanometer 203, and the second reflector 106 in sequence, and then reaches the laser receiver 107.
  • the first reflector 102 changes the direction of the light beam by 90°
  • the second reflector 106 changes the direction of the light beam by an angle less than 90°. Since the angled galvanometer 203 is used, the light beam from the first reflector 102 to the angled galvanometer 203 and the light beam from the angled galvanometer 203 to the second reflector 106 are tilted to each other rather than parallel, which is different from the related art of FIG1.
  • the laser radar may also omit the first reflector 102 and the second reflector 106.
  • the angle between the normal vector of the first reflecting surface 2031 and the normal vector of the second reflecting surface 2032 is 1° to 15°, which is equal to the flip angle ⁇ of the first reflecting surface 2031 relative to the second reflecting surface 2032 in FIG3 .
  • the angle between the emitted light and the plane galvanometer 103 is ⁇ , and the angle ⁇ is usually set to 45°, so that the plane galvanometer 103 changes the direction of the emitted light beam by 90°.
  • the angle between the first optical path (emitted light beam) and the first reflecting surface 2031 can be set to be slightly larger than the angle between the incident laser and the plane galvanometer 103 in the conventional technology (see FIG1 ).
  • the angle between the first reflection surface 2031 and the emitted light and the angle between the second reflection surface 2032 and the reflected light in the embodiment of the present application are increased.
  • the angle between the working surface of the rotating mirror 104 and the emitted light and the echo light is ⁇ 11 + ⁇
  • the values of S 01 and S 02 can also be reduced by increasing the angle between the incident light and the plane galvanometer 103 to ⁇ + ⁇ , but the reduction of S 02 is still not as good as S 12 in the embodiment of the present application.
  • the plane galvanometer 103 may cause the echo light to be blocked due to the clockwise deflection.
  • the use of the plane galvanometer 103 will cause the light beam between the first reflector 102 and the plane galvanometer 103 to be parallel to the light beam between the second reflector 106 and the plane galvanometer 103. This characteristic of parallel light receiving and light transmission paths may limit the layout of the laser receiver 107 and the laser transmitter 101.
  • the angle between the normal vector of the first reflecting surface 2031 and the normal vector of the second reflecting surface 2032 is 1° to 15°, that is, the flip angle ⁇ between the first reflecting surface 2031 and the second reflecting surface 2032 is 1° to 15°.
  • the angle between the normal vector of the first reflecting surface 2031 and the normal vector of the second reflecting surface 2032 is 5°, that is, the angle ⁇ is 5°.
  • the angle ⁇ can be selected as 3°, that is, based on the traditional laser radar, the angle between the first reflecting surface 2031 and the emitted light can be increased above ⁇ (taken as 45°). Add 3°.
  • FIG4 is a schematic diagram of a laser radar horizontally scanning to the left extreme position in an embodiment of the present application
  • FIG5 is a schematic diagram of a laser radar horizontally scanning to the right extreme position in an embodiment of the present application.
  • the horizontal field of view of the laser radar in this embodiment is ⁇ 60° and the vertical field of view is ⁇ 5°.
  • the width of the laser emitted by the laser transmitter 101 is 2-10mm, which is 8mm in this embodiment; the receiving aperture of the laser receiver 107 is not less than 30mm, and the size of the rotating mirror 104 is minimized as much as possible to reduce the power consumption of the motor used to drive the rotating mirror 104 to rotate.
  • the horizontal field of view of the laser radar can also be adjusted, such as ⁇ (50° ⁇ 70°); the vertical field of view can also be adjusted, such as ⁇ (4° ⁇ 20°).
  • the design is shown in FIG2 , and the vertical field of view scanning is realized by using the angled galvanometer 203 , and the range of the angled galvanometer 203 is ⁇ (2° ⁇ 10°).
  • the rotation range of the angled galvanometer 203 is ⁇ 2.5°, corresponding to the optical vertical field of view range of ⁇ 5°.
  • the rotating mirror 104 rotates clockwise during operation to realize a line of scanning.
  • the line of scanning starts when the angle between its working surface and the reference position is -30°, corresponding to a -60° field of view, as shown in FIG4 ; the line of scanning ends when the angle between the working surface of the rotating mirror 104 and the reference position is +30°, corresponding to a +60° field of view, as shown in FIG5 .
  • the angled galvanometer 203 can realize other line scanning by adjusting the pitch angle.
  • Figure 6 is a schematic diagram of a laser radar in the conventional related art scanning horizontally to the left extreme position
  • Figure 7 is a schematic diagram of a laser radar in the conventional related art scanning horizontally to the right extreme position. The advantages of the laser radar of the embodiment of the present application are explained below in conjunction with Figures 1 to 7.
  • An embodiment of the present application also provides a car (not shown in the figure), which includes the laser radar provided in the above embodiment of the present application.
  • the laser radar provided by the present application includes a laser transmitter 101, an angled galvanometer 203, a rotating mirror 104, and a laser receiver 107.
  • the angled galvanometer 203 includes a first reflection surface 2031 and a second reflection surface 2032 set at an angle, and the normal vector of the first reflection surface 2031 and the normal vector of the second reflection surface 2032 are divergent.
  • the laser transmitter 101 is used to form a first light path, and the first light path passes through the first reflection surface 2031 of the angled galvanometer 203 and the rotating mirror 104 in sequence to the target object 105 to be measured; the laser receiver 107 is used to receive the second light path reflected by the target object to be measured, and the second light path passes through the rotating mirror 104, The second reflecting surface 2032 of the angled galvanometer 203 further reaches the laser receiver 107.
  • the coaxial characteristics of the transmitting light path and the receiving light path can be changed, which is beneficial to reducing the size of the galvanometer, thereby reducing the degree of light cutting at the edge of the galvanometer.
  • the automobile provided in the present application includes the above-mentioned laser radar, and therefore also has the above-mentioned beneficial effects accordingly.

Abstract

本申请提供一种激光雷达和汽车,涉及雷达技术领域。激光雷达包括激光发射器、折角振镜、转镜以及激光接收器。折角振镜包括呈夹角设置的第一反射面和第二反射面,第一反射面的法向量与第二反射面的法向量呈发散状。通过设置折角振镜,能够增大回波光线入射时与转镜镜面的夹角,增大回波信号的有效投影面积,从而提高回波信号强度和能量利用率,增加远距离探测量程。换言之,也可以在相同量程的条件下,使用更小的光学口径,从而减小转镜尺寸,降低风阻和功耗。本申请提供的汽车包括上述的激光雷达,因此也相应地具有上述的有益效果。

Description

激光雷达和汽车 技术领域
本申请涉及雷达技术领域,具体而言,涉及一种激光雷达和汽车。
背景技术
激光雷达产品具有快速、非接触式探测的技术特点,能够实时探测路面环境,从而协助汽车自动驾驶系统预先规划行驶路线。当前车载激光雷达领域,对于激光雷达的扫描视场范围要求越来越高,且体积要求越来越小。目前,车载激光雷达通常使用振镜加转镜(或称棱镜)的方式实现垂直方向小视场、水平方向大视场的扫描要求。当激光雷达的帧率和角分辨率要求一定时,为了提高水平探测视场,一般会采用的技术方案是:整机旋转扫描、阵列激光雷达水平视场拼接或者减少转镜面数,提高转速。但这些方法都可能会带来激光雷达整体尺寸变大、功耗增加等问题。
发明内容
本申请的目的包括提供一种激光雷达,其能够改善现有的激光雷达为保证探测效果导致的激光雷达整体尺寸变大、功耗增加等问题。
本申请的实施例可以这样实现:
第一方面,本申请提供一种激光雷达,包括激光发射器、折角振镜、转镜以及激光接收器,折角振镜包括呈夹角设置的第一反射面和第二反射面,第一反射面的法向量与第二反射面的法向量呈发散状,激光发射器用于形成第一光路,第一光路依次经过折角振镜的第一反射面、转镜射向待测目标物;激光接收器用于接收目标待测物反射的第二光路,第二光路依次经过转镜、折角振镜的第二反射面,进而到达激光接收器。
在可选的实施方式中,第一反射面的法向量与第二反射面的法向量的夹角为1°~15°。
在可选的实施方式中,第一反射面的法向量与第二反射面的法向量的夹角为5°。
在可选的实施方式中,激光雷达还包括第一反射镜,第一反射镜设置于第一光路中,用于将激光发射器发出的光束反射至第一反射面。
在可选的实施方式中,激光雷达还包括第二反射镜,第二反射镜设置于第二光路中,用于将来自第二反射面的光束反射至激光接收器。
在可选的实施方式中,折角振镜用于通过转动实现激光雷达的竖直方向扫描,折角振镜的转动范围为±(2°~10°)。
在可选的实施方式中,转镜用于通过转动实现激光雷达的水平方向扫描,激光雷达的水平视场范围为±(50°~70°)。
在可选的实施方式中,激光发射器的发射激光宽度为2-10mm。
第二方面,本申请实施例提供一种汽车,其包括前述第一方面中任一实施方式的激光雷达。
本申请实施例的有益效果包括,例如:
本申请提供的激光雷达包括激光发射器、折角振镜、转镜以及激光接收器。折角振镜包括呈夹角设置的第一反射面和第二反射面,第一反射面的法向量与第二反射面的法向量呈发散状,激光发射器用于形成第一光路,第一光路依次经过折角振镜的第一反射面、转镜射向待测目标物;激光接收器用于接收目标待测物反射的第二光路,第二光路依次经过转镜、折角振镜的第二反射面,进而到达激光接收器。通过设置折角振镜,能够增大回波光线掠入射时与转镜镜面的夹角,增大回波信号的有效投影面积,从而提高回波信号强度和能量利用率,增加远距离探测量程。换言之,也可以在相同量程的条件下,使用更小的光学口径,从而减小转镜尺寸,降低风阻和功耗。此外,通过特殊设计的折角振镜,能够改变发射光路、接收光路部分同轴的特性,有利于减小振镜尺寸,从而降低振镜边缘的切光程 度。本申请提供的汽车包括上述的激光雷达,因此也相应地具有上述的有益效果。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为传统相关技术中激光雷达探测目标待测物的原理示意图;
图2为本申请一种实施例中激光雷达探测目标待测物的原理示意图;
图3为本申请一种实施例中折角振镜的示意图;
图4为本申请一种实施例中激光雷达水平扫描至左极限位置的示意图;
图5为本申请一种实施例中激光雷达水平扫描至右极限位置的示意图;
图6为传统相关技术中激光雷达水平扫描至左极限位置的示意图;
图7为传统相关技术中激光雷达水平扫描至右极限位置的示意图。
图标:101-激光发射器;102-第一反射镜;103-平面振镜;104-转镜;105-待测目标物;106-第二反射镜;107-激光接收器;203-折角振镜;2031-第一反射面;2032-第二反射面。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,若出现术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,若出现术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
需要说明的是,在不冲突的情况下,本申请的实施例中的特征可以相互结合。
图1为传统相关技术中激光雷达探测目标待测物的原理示意图。如图1所示,根据图1所示,相关技术中激光雷达包括激光发射器101、第一反射镜102、平面振镜103、转镜104、第二反射镜106和激光接收器107。待测目标物105位于远处。激光发射器101产生激光,依次经过第一反射镜102、平面振镜103、转镜104到达待测目标物105。反射光从待测目标物105原方向返回,依次经过转镜104、平面振镜103、第二反射镜106到达激光接收器107转化为电信号进行处理。其中平面振镜103与发射光线的夹角α一般设为45°,转镜104位于零位时,当前工作面与平面振镜103平行。此时从待测目标物105反射回来的回波光线的有效回波宽度d01=sinθ01*S01,θ01为转镜104接收回波光线的接收面与回波光线的夹角,S01为回波光线在转镜104的接收面上投射区域的宽度,其中θ01=α=45°。在图1所示的情况下,照射至平面振镜103的发射光线与反射至转镜的回波 光线是平行的,因此存在θ01=α的关系。可以发现:
(1)当S01不变时,θ01越大则d01越大,即有效回波能量更强;
(2)当d01不变时,θ01越大则S01越小,即转镜尺寸可以减小。
此外,传统激光雷达的回波光线在平面振镜103表面的投影尺寸S02=S01=d01/sinθ01
现有的激光雷达中采用平面型振镜,该类振镜会导致回波光线入射时与转镜镜面的夹角较小,回波信号的有效投影面积较低,导致回波信号强度和能量利用率较低,这样不利于增加远距离探测量程。在量程较长的情况下,需要使用更大的光学口径,从而导致转镜尺寸较大,激光雷达的风阻和功耗会变高。现有技术中,当激光雷达的帧率和角分辨率要求一定时,为了提高水平探测视场,一般会采用的技术方案如下:
(1)整机旋转扫描:使用转台带动整个激光雷达进行旋转扫描,缺点是存在较大的转动部件,可靠性存在隐患,系统功耗增加、尺寸较大;
(2)阵列激光雷达水平视场拼接:使用多个小视场的激光雷达,光轴在不同水平角度方向排布,使相邻雷达之间的视场存在部分重叠区域,利用数据处理和标定的方法拼接出水平大视场,该方案会使激光雷达整体尺寸、成本和数据处理难度增加。
(3)减少转镜面数,提高转速:使用传统单激光发射、振镜加转镜同轴收发扫描的方式,视场要求大则转镜的面数将很少,转速要求会非常高,从而带来风阻增大(风阻与转速和转镜尺寸均为正相关)、转镜电机功耗过高、系统稳态温升增大等一系列问题。同时大视场扫描还会导致边缘视场的回波信号光线掠入射、振镜边缘切光、杂散光等问题,造成激光雷达的量程衰减、盲区增大。
可见上述方案都存在会增加设备尺寸、增加功耗的问题。
为了改善现有相关技术中激光雷达所存在的上述至少一种问题,本申请实施例提供一种激光雷达,通过采用折角振镜,来提高回波信号强度和能量利用率较低,从而达到减小设备尺寸和功耗的目的。本申请实施例还 提供一种汽车,包含本申请实施例提供的激光雷达。
图2为本申请一种实施例中激光雷达探测目标待测物的原理示意图;图3为本申请一种实施例中折角振镜203的示意图。如图2、图3所示,本申请实施例提供的激光雷达包括激光发射器101、第一反射镜102、折角振镜203、转镜104、第二反射镜106和激光接收器107。其中折角振镜203可选为一体成型的结构。折角振镜203具有呈夹角设置的第一反射面2031和第二反射面2032,第一反射面2031的法向量与第二反射面2032的法向量呈发散状。换言之,第一反射面2031与第二反射面2032的连接处形成外凸结构,从折角振镜203的截面来看,第一反射面2031与第二反射面2032形成的内角小于180°,外角大于180°。激光发射器101用于形成第一光路,第一光路即为发射光路,第一光路依次经过第一反射镜102、折角振镜203的第一反射面2031、转镜104射向待测目标物105;激光接收器107用于接收目标待测物反射的第二光路,第二光路即反射光路,第二光路依次经过转镜104、折角振镜203的第二反射面2032、第二反射镜106,进而到达激光接收器107。
在本实施例中,第一反射镜102将光束方向改变90°,第二反射镜106将光束方向改变的角度小于90°,由于采用了折角振镜203,因此第一反射镜102到折角振镜203的光束与折角振镜203到第二反射镜106的光束是相互倾斜而非平行的,这与图1的相关技术不同。在可选的实施例中,激光雷达也可以省略第一反射镜102和第二反射镜106。
在本实施例中,第一反射面2031的法向量与第二反射面2032的法向量的夹角为1°~15°,该夹角即等于图3中第一反射面2031相对于第二反射面2032的翻转角γ。在图1的传统激光雷达中,发射光线与平面振镜103的夹角为α,通常角度α设置为45°,使得平面振镜103将发射光束的方向改变90°。而采用了本申请实施例的折角振镜203后,可将第一光路(发射光束)与第一反射面2031的夹角设置为比传统技术(见图1)中入射激光与平面振镜103的夹角略大。在本实施例中,第一反射面2031与发射光线的夹角为α+β,其中α=45°,β>0°。可以理解,光线与反射面的夹角越大,则越接近于垂直入射,那么接收/反射的能量密度越大,对反射面的尺 寸要求越小。
相对于传统激光雷达光学结构,本申请实施例中第一反射面2031与发射光线的夹角以及第二反射面2032与反射光线的夹角均得到了增加。以水平中心视场为0°、激光指向正前方为例,此时α=θ11=θ01,根据几何光学原理可知:转镜104工作面与发射光线和回波光线的夹角均为θ11+β,此时从待测目标物105反射回来的回波光线的有效回波宽度d11=sin(θ11+β)*S11,且θ11+β>θ01,因此可以对比图1和图2两种方案:
(1)当S11=S01时,d11>d01,即可以接收到更多的回波能量;
(2)当d11=d01时,S11<S01,即可以缩小转镜104尺寸,从而减小风阻和电机功耗。
同时,由于第一反射面2031和第二反射面2032的之间存在翻转角γ(即两个反射面法向量的夹角),回波光线与第二反射面2032的夹角为θ11+γ+β,即回波光线在第二反射面2032的投影尺寸S12=d11/sin(θ11+γ+β),sin(θ11+γ+β)大于sin(θ01),在d11=d01时,S12<S02,即回波光线在第二反射面2032的投影尺寸更小,因此转角振镜的长度可以进一步缩小,从而能够优化边缘视场扫描时的振镜切光现象。
当然,在使用平面振镜103时,也可以通过提高入射光线与平面振镜103的夹角为α+β,来减小S01和S02的值,但S02的缩小成都仍然不及本申请实施例中的S12。并且,平面振镜103可能会因为顺时针的偏转导致回波光线被阻挡。另外,采用平面振镜103会导致第一反射镜102与平面振镜103之间的光束平行于第二反射镜106与平面振镜103之间的光束,这种收发光路平行的特性可能导致激光接收器107和激光发射器101的布局受到限制。
在可选的实施例中,第一反射面2031的法向量与第二反射面2032的法向量的夹角为1°~15°,即第一反射面2031与第二反射面2032的翻转角γ为1°~15°。在本实施例中,第一反射面2031的法向量与第二反射面2032的法向量的夹角为5°,即角γ为5°。而角度β可选为3°,即在传统激光雷达基础上,第一反射面2031与发射光线的夹角可在α(取45°)之上增 加3°。
图4为本申请一种实施例中激光雷达水平扫描至左极限位置的示意图;图5为本申请一种实施例中激光雷达水平扫描至右极限位置的示意图。如图4和图5所示,本实施例的激光雷达的水平视场范围为±60°、垂直视场范围为±5°。其中激光发射器101的发射激光宽度为2-10mm,在本实施例中选择为8mm;激光接收器107的接收口径不小于30mm,同时尽可能减小转镜104尺寸以便降低用于驱动转镜104转动的电机功耗。可选的,激光雷达的水平视场范围也可以进行调整,比如选用±(50°~70°);垂直视场范围也可以进行调整,比如选用±(4°~20°)。
设计如图2所示,利用折角振镜203实现垂直方向的视场扫描,折角振镜203范围为±(2°~10°),具体在本实施例中,折角振镜203的转动范围为±2.5°,对应光学垂直视场范围±5°。设计折角振镜203初始安装角度α+β=45°+3°=48°,第一反射面2031和第二反射面2032的翻转角度γ=5°,转镜104工作面基准位置与第一反射面2031平行,对应为0°视场。转镜104工作时顺时针旋转,实现一行扫描,其工作面与基准位置角度为-30°时开始本行扫描,对应-60°视场,如图4所示;转镜104的工作面与基准位置角度为﹢30°时结束本行扫描,对应﹢60°视场,如图5所示。折角振镜203调整俯仰角度,即可实现其他行扫描。
图6为传统相关技术中激光雷达水平扫描至左极限位置的示意图;图7为传统相关技术中激光雷达水平扫描至右极限位置的示意图。下面结合图1至图7,来说明本申请实施例的激光雷达的优点。
本申请实施例和传统相关技术的激光雷达的参数对比如错误!未找到引用源。所示。
表1

根据以上表格可以计算,为实现设计目标,传统方案振镜尺寸至少需要11.31mm+42.43mm=53.74mm,本申请实施例的折角振镜203尺寸只需要10.77mm+37.56mm=48.33mm;传统方案的转镜104尺寸至少需要115.91mm才能保证全视场范围内的通光口径,本发明方案转镜104尺寸只需要97.08mm就可以保证全视场范围内的通光口径。可见本申请实施例提供的激光雷达通过采用折角振镜203,能够有效地降低设备的尺寸。
本申请实施例还提供一种汽车(图中未示出),包含本申请上述实施例提供的激光雷达。
综上所述,本申请提供的激光雷达包括激光发射器101、折角振镜203、转镜104以及激光接收器107。折角振镜203包括呈夹角设置的第一反射面2031和第二反射面2032,第一反射面2031的法向量与第二反射面2032的法向量呈发散状,激光发射器101用于形成第一光路,第一光路依次经过折角振镜203的第一反射面2031、转镜104射向待测目标物105;激光接收器107用于接收目标待测物反射的第二光路,第二光路依次经过转镜104、 折角振镜203的第二反射面2032,进而到达激光接收器107。通过设置折角振镜203,能够增大回波光线掠入射时与转镜104镜面的夹角,增大回波信号的有效投影面积,从而提高回波信号强度和能量利用率,增加远距离探测量程。换言之,也可以在相同量程的条件下,使用更小的光学口径,从而减小转镜104尺寸,降低风阻和功耗。此外,通过特殊设计的折角振镜203,能够改变发射光路、接收光路部分同轴的特性,有利于减小振镜尺寸,从而降低振镜边缘的切光程度。本申请提供的汽车包括上述的激光雷达,因此也相应地具有上述的有益效果。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (9)

  1. 一种激光雷达,其特征在于,包括激光发射器、折角振镜、转镜以及激光接收器,所述折角振镜包括呈夹角设置的第一反射面和第二反射面,所述第一反射面的法向量与所述第二反射面的法向量呈发散状,所述激光发射器用于形成第一光路,所述第一光路依次经过所述折角振镜的所述第一反射面、所述转镜射向待测目标物;所述激光接收器用于接收所述目标待测物反射的第二光路,所述第二光路依次经过所述转镜、所述折角振镜的所述第二反射面,进而到达所述激光接收器。
  2. 根据权利要求1所述的激光雷达,其特征在于,所述第一反射面的法向量与所述第二反射面的法向量的夹角为1°~15°。
  3. 根据权利要求2所述的激光雷达,其特征在于,所述第一反射面的法向量与所述第二反射面的法向量的夹角为5°。
  4. 根据权利要求1所述的激光雷达,其特征在于,所述激光雷达还包括第一反射镜,所述第一反射镜设置于所述第一光路中,用于将所述激光发射器发出的光束反射至所述第一反射面。
  5. 根据权利要求1所述的激光雷达,其特征在于,所述激光雷达还包括第二反射镜,所述第二反射镜设置于所述第二光路中,用于将来自所述第二反射面的光束反射至所述激光接收器。
  6. 根据权利要求1所述的激光雷达,其特征在于,所述折角振镜用于通过转动实现所述激光雷达的竖直方向扫描,所述折角振镜的转动范围为±(2°~10°)102.5°。
  7. 根据权利要求6所述的激光雷达,其特征在于,其特征在于,所述转镜用于通过转动实现所述激光雷达的水平方向扫描,所述激光雷达的水平视场范围为±(50°~70°)。
  8. 根据权利要求1所述的激光雷达,其特征在于,所述激光发射器的发射激光宽度为2~10mm。
  9. 一种汽车,其特征在于,包括权利要求1-8中任一项所述的激光雷达。
PCT/CN2023/102327 2022-09-28 2023-06-26 激光雷达和汽车 WO2024066524A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211187305.9 2022-09-28
CN202211187305.9A CN115291245B (zh) 2022-09-28 2022-09-28 激光雷达和汽车

Publications (1)

Publication Number Publication Date
WO2024066524A1 true WO2024066524A1 (zh) 2024-04-04

Family

ID=83833109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102327 WO2024066524A1 (zh) 2022-09-28 2023-06-26 激光雷达和汽车

Country Status (2)

Country Link
CN (1) CN115291245B (zh)
WO (1) WO2024066524A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115291245B (zh) * 2022-09-28 2022-12-16 北醒(北京)光子科技有限公司 激光雷达和汽车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151958A (ja) * 2008-12-24 2010-07-08 Toyota Central R&D Labs Inc 光走査装置及びレーザレーダ装置
CN114236499A (zh) * 2021-12-16 2022-03-25 武汉天眸光电科技有限公司 一种激光雷达
CN115267738A (zh) * 2022-08-25 2022-11-01 深圳北醒科技有限公司 激光雷达
CN115291245A (zh) * 2022-09-28 2022-11-04 北醒(北京)光子科技有限公司 激光雷达和汽车

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843886B (zh) * 2016-09-19 2024-03-19 武汉万集光电技术有限公司 一种非机械式扫描激光雷达光学装置和激光雷达系统
CN108205124A (zh) * 2016-12-19 2018-06-26 北京万集科技股份有限公司 一种基于微机电振镜的光学装置和激光雷达系统
CN107272014B (zh) * 2017-08-05 2023-12-12 广州市杜格科技有限公司 一种固态的二维扫描激光雷达及其扫描方法
EP3460519A1 (en) * 2017-09-25 2019-03-27 Hexagon Technology Center GmbH Laser scanner
CN108445467B (zh) * 2018-03-26 2021-08-03 宁波傲视智绘光电科技有限公司 一种扫描激光雷达系统
CN109031244A (zh) * 2018-08-16 2018-12-18 北醒(北京)光子科技有限公司 一种激光雷达同轴光学系统及激光雷达
CN210119568U (zh) * 2018-12-06 2020-02-28 蔚来汽车有限公司 激光雷达扫描装置及具有该装置的车辆
CN113447938A (zh) * 2020-03-27 2021-09-28 北醒(北京)光子科技有限公司 一种激光雷达光学系统
CN114076929A (zh) * 2020-08-11 2022-02-22 宁波舜宇车载光学技术有限公司 激光雷达系统、车辆以及激光雷达探测方法
WO2022041137A1 (zh) * 2020-08-28 2022-03-03 上海禾赛科技股份有限公司 激光雷达和测距方法
CN113093149B (zh) * 2021-03-15 2024-02-20 昂纳科技(深圳)集团股份有限公司 一种转镜装置以及激光雷达
CN114966609A (zh) * 2022-04-27 2022-08-30 蔚来汽车科技(安徽)有限公司 激光雷达以及激光雷达检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151958A (ja) * 2008-12-24 2010-07-08 Toyota Central R&D Labs Inc 光走査装置及びレーザレーダ装置
CN114236499A (zh) * 2021-12-16 2022-03-25 武汉天眸光电科技有限公司 一种激光雷达
CN115267738A (zh) * 2022-08-25 2022-11-01 深圳北醒科技有限公司 激光雷达
CN115291245A (zh) * 2022-09-28 2022-11-04 北醒(北京)光子科技有限公司 激光雷达和汽车

Also Published As

Publication number Publication date
CN115291245B (zh) 2022-12-16
CN115291245A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
US10545223B2 (en) Optical scanning object detection device detecting object that invades detection area
JP5511333B2 (ja) 光走査装置、レーザレーダ装置、及び光走査方法
US20180231644A1 (en) Mirror Assembly
US20240085564A1 (en) LIDAR Systems with Multi-faceted Mirrors
US20090123158A1 (en) Light detection and ranging system
WO2024066524A1 (zh) 激光雷达和汽车
JP2015180956A (ja) 走査光学系及びレーダー
WO2016056543A1 (ja) 走査光学系及びレーダー
CN210015229U (zh) 一种距离探测装置
CN110850437B (zh) 激光雷达
US20210341610A1 (en) Ranging device
WO2017135225A1 (ja) 光走査型の対象物検出装置
CN110998358B (zh) 具有提高的扫描频率的激光雷达设备和用于扫描扫描区域的方法
JPWO2017135224A1 (ja) 光走査型の対象物検出装置
CN111398933B (zh) 激光雷达探测系统及激光雷达
US20210341730A1 (en) Optical scanning apparatus
US20210223396A1 (en) Multiple mirror monostatic scanning lidar optical ranging sensor
WO2016056541A1 (ja) 走査光学系及びレーダー
WO2017065048A1 (ja) 光走査型の対象物検出装置
JP2017125765A (ja) 対象物検出装置
US20220146639A1 (en) Distance measuring apparatus
WO2017065049A1 (ja) 光走査型の対象物検出装置
CN218601470U (zh) 激光测量系统及激光雷达
CN220584482U (zh) 抬头显示系统
CN115656971A (zh) 一种光路结构及混合固态激光雷达