WO2015040679A1 - 非水電解質電池及び電池パック - Google Patents

非水電解質電池及び電池パック Download PDF

Info

Publication number
WO2015040679A1
WO2015040679A1 PCT/JP2013/075060 JP2013075060W WO2015040679A1 WO 2015040679 A1 WO2015040679 A1 WO 2015040679A1 JP 2013075060 W JP2013075060 W JP 2013075060W WO 2015040679 A1 WO2015040679 A1 WO 2015040679A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
negative electrode
battery
Prior art date
Application number
PCT/JP2013/075060
Other languages
English (en)
French (fr)
Inventor
哲也 笹川
高見 則雄
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2013/075060 priority Critical patent/WO2015040679A1/ja
Priority to JP2015537452A priority patent/JP6081604B2/ja
Publication of WO2015040679A1 publication Critical patent/WO2015040679A1/ja
Priority to US15/063,801 priority patent/US9755233B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments relate to non-aqueous electrolyte batteries and battery packs.
  • LiFePO 4 or the like is put into practical use as a highly safe positive electrode material, but the average operating potential is as low as 3.4 V with respect to Li.
  • a positive electrode active material having a higher operating potential is essential.
  • Li (Fe, Mn) SO 4 F having a tavolite-type or triplytite-type crystal structure has been widely studied as a positive electrode material satisfying the above requirements.
  • Tavorite type Li (Fe, Mn) average working potential of SO 4 F is 3.6V (vs. Li / Li + )
  • the average working potential of the triple light type Li (Fe, Mn) SO 4 F is 3.9V
  • the tavolite-type positive electrode material has a small change in potential during charge and discharge, it is difficult to measure the charge depth when used in combination with a negative electrode having a small change in potential as well.
  • the triplite-type positive electrode material has a problem that the potential drop at the end of discharge is severe and the output at a low charging depth is low.
  • An object of the embodiments is to provide a non-aqueous electrolyte battery and a battery pack that can easily measure the depth of charge, obtain high output even in a low state of charge (SOC), and have high energy density.
  • a non-aqueous electrolyte battery that includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode is represented by a general formula LiMSO 4 F (M is at least one element selected from the group consisting of Fe, Mn and Zn), and a first positive electrode active material having a triplite-type crystal structure, and a general formula And LiM′SO 4 F (M ′ is at least one element selected from the group consisting of Fe, Mn, and Zn), and includes a second positive electrode active material having a tavolite crystal structure.
  • the negative electrode contains a negative electrode active material.
  • a battery pack including the nonaqueous electrolyte battery of the embodiment is provided.
  • FIG. 5 is a partially cutaway perspective view schematically showing another flat type non-aqueous electrolyte battery according to the first embodiment.
  • the expanded sectional view of the B section of FIG. The disassembled perspective view of the battery pack which concerns on 2nd Embodiment.
  • the block diagram which shows the electric circuit of the battery pack of FIG.
  • a non-aqueous electrolyte battery that includes a positive electrode, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte.
  • the positive electrode is represented by a general formula LiMSO 4 F (M is at least one element selected from the group consisting of Fe, Mn and Zn), and a first positive electrode active material having a triplite-type crystal structure, and a general formula And LiM′SO 4 F (M ′ is at least one element selected from the group consisting of Fe, Mn, and Zn), and includes a second positive electrode active material having a tavolite crystal structure.
  • the negative electrode contains a negative electrode active material.
  • the first positive electrode active material can obtain a high potential with an average operating potential of 3.9 V (vs. Li / Li + ), but since the potential drop at the end of discharge is large, high output can be achieved at a low charge depth (SOC) I can not get it.
  • the second positive electrode active material is excellent in flatness of the charge and discharge potential, the average operating potential is 3.6 V (vs. Li / Li + ), and the potential change from the initial stage to the final stage of charge and discharge is small.
  • a mixture of the first positive electrode active material and the second positive electrode active material in the positive electrode to realize a high positive electrode potential and to measure the change in potential from the initial stage to the final stage of charge / discharge
  • SOC charge depth
  • the negative electrode active material has a negative electrode potential relative to lithium at a discharge depth of 10% and lithium relative to a discharge depth of 90% when the nonaqueous electrolyte battery is discharged at a rate of 0.2 C from a fully charged state to a fully discharged state.
  • the potential difference with the negative electrode potential is preferably 0.3 V or less. Since a negative electrode containing such a negative electrode active material is excellent in flatness of potential at a depth of discharge of 10% to 90%, combining with a positive electrode containing a first positive electrode active material and a second positive electrode active material Thus, the change in voltage from the initial stage to the final stage of charge and discharge of the battery can be made easy to measure the charge depth. Furthermore, since a high voltage can be obtained, energy density can be improved.
  • the ratio of the first positive electrode active material to the total mass of the first positive electrode active material and the second positive electrode active material is preferably in the range of 1% by mass to 99% by mass. By setting this range, it is possible to make the amount of voltage change from the initial stage to the final stage of charge and discharge suitable for measurement of the charge depth, and further improve the output at a low charge depth (SOC) .
  • a more preferable range is 10% by mass or more and 90% by mass or less.
  • the mixing ratio of the first positive electrode active material to the second positive electrode active material is a mixed crystal of triplite structure (space group C2 / c) and tavolite structure (space group P-1) in X-ray diffraction measurement. It is obtained from the composition ratio when the belt analysis is performed.
  • At least one surface of the first positive electrode active material and the second positive electrode active material may be coated with a carbon-containing layer.
  • the carbon material contained in the carbon-containing layer include at least one material selected from the group consisting of acetylene black, carbon black and graphite.
  • the first positive electrode active material and the second positive electrode active material are desirably particles having an average particle diameter in the range of 0.1 ⁇ m to 10 ⁇ m. A more preferable range of the average particle diameter is 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the average particle size of the particles can be measured by transmission electron microscopy (TEM) observation.
  • the positive electrode active material is synthesized, for example, by the method described below.
  • the first positive electrode active material having a triplylite structure is, for example, sulfuric acid salt hydrate (MSO 4 ⁇ H 2 O) of element M and lithium fluoride 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) And imide) and sealed in a sealed container and heated at a temperature in the range of 260 ° C. to 400 ° C.
  • the second positive electrode active material having a tavolite structure for example, a sulfate hydrate (M'SO 4 ⁇ H 2 O) of element M 'and lithium fluoride are sealed in an argon atmosphere in an airtight container, It can be obtained by heating in the range of not lower than 400 ° C.
  • a sulfate hydrate (M'SO 4 ⁇ H 2 O) of element M 'and lithium fluoride are sealed in an argon atmosphere in an airtight container, It can be obtained by heating in the range of not lower than 400 ° C.
  • a positive electrode is formed on one surface or both surfaces of a positive electrode current collector, and a positive electrode current collector, and includes a first positive electrode active material, a second positive electrode active material, a conductive agent, and a binder. Containing layer).
  • the conductive agent improves the current collection performance of the active material and suppresses the contact resistance with the current collector.
  • conductive agents include carbonaceous materials such as acetylene black, carbon black, graphite and the like.
  • the binder binds the active material and the conductive agent.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluorocarbon rubber.
  • the active material, the conductive agent, and the binder in the positive electrode material layer may be blended in a proportion of 80% by mass to 95% by mass, 3% by mass to 18% by mass, and 2% by mass to 17% by mass, respectively. preferable.
  • the conductive agent can exhibit the above-mentioned effects by setting it to 3% by mass or more.
  • the conductive agent can reduce the decomposition of the non-aqueous electrolyte on the surface of the conductive agent under high temperature storage by setting the amount to 18% by mass or less.
  • the binder is used in an amount of 2% by mass or more, sufficient positive electrode strength can be obtained.
  • the compounding amount of the binder as the insulating material in the positive electrode can be reduced to reduce the internal resistance.
  • the positive electrode current collector is preferably, for example, an aluminum foil or an aluminum alloy foil including at least one element selected from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu and Si.
  • the positive electrode is prepared, for example, by suspending the first positive electrode active material, the second positive electrode active material, the conductive agent, and the binder in a widely used solvent to prepare a slurry, and applying the slurry to a positive electrode current collector. , Dried and then pressed.
  • the positive electrode is also produced by forming the first positive electrode active material, the second positive electrode active material, the conductive agent, and the binder in the form of pellets to form a positive electrode material layer and forming it on the positive electrode current collector. It is also good.
  • the non-aqueous electrolyte battery of the first embodiment can further include a separator disposed between the positive electrode and the negative electrode, and an exterior member.
  • the exterior member contains the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte.
  • the negative electrode, the non-aqueous electrolyte, the separator and the exterior member will be described.
  • Negative Electrode A negative electrode is provided with a negative electrode current collector, and a negative electrode material layer (negative electrode active material containing layer) formed on one side or both sides of the negative electrode current collector and including a negative electrode active material, a conductive agent and a binder. .
  • the negative electrode active material is a negative electrode potential relative to lithium at a discharge depth of 10% and a negative electrode potential relative to lithium at a discharge depth of 90% when the nonaqueous electrolyte battery is discharged at a rate of 0.2 C from a fully charged state to a fully discharged state.
  • the one having a potential difference of 0.3 V or less is preferable.
  • Examples of negative electrode active materials having a potential difference of 0.3 V or less include lithium titanium oxide, titanium oxide, niobium titanium composite oxide, and carbon materials.
  • the type of negative electrode active material can be one or two or more.
  • lithium titanium oxide examples include Li 4 + x Ti 5 O 12 (x is ⁇ 1 ⁇ x ⁇ 3) of spinel structure, and Li 2+ x Ti 3 O 7 (x is ⁇ 1 ⁇ x) of ramsteride structure. ⁇ 3) is included.
  • titanium oxides include TiO 2 of anatase structure and TiO 2 (B) of monoclinic system.
  • the TiO 2 (B) is preferably heat-treated in the range of 300 to 500 ° C.
  • TiO 2 (B) preferably contains 0.5 to 10% by mass of Nb. Thereby, the negative electrode capacity can be increased. Since irreversible lithium may remain in the titanium oxide after the battery has been subjected to charge and discharge, the titanium oxide after the battery has been subjected to charge and discharge may have Li d TiO 2 (0 ⁇ d ⁇ It can be represented by 1).
  • Examples of the niobium titanium composite oxide include Li x Nb a Ti b O C (0 ⁇ x ⁇ 3, 0 ⁇ a ⁇ 3, 0 ⁇ b ⁇ 3, 5 ⁇ c ⁇ 10).
  • Examples of Li x Nb a Ti b O C include Li x Nb 2 TiO 7 , Li x Nb 2 Ti 2 O 9 , and Li x NbTiO 5 .
  • Li x Ti 1-y Nb y Nb 2 O 7 + ⁇ (0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 1, 0 ⁇ ⁇ ⁇ 0.3) heat-treated at 800 ° C. to 1200 ° C. has high true density and volume Specific capacity can be increased.
  • Li x Nb 2 TiO 7 is preferred because of its high density and high capacity. Thereby, the negative electrode capacity can be increased. Further, a part of Nb or Ti in the above-mentioned oxide is selected from the group consisting of V, Zr, Ta, Cr, Mo, W, Ca, Mg, Al, Fe, Si, B, P, K and Na It may be substituted by at least one element.
  • Examples of the carbon material include graphitic material or carbonaceous material (eg, graphite, coke, carbon fiber, spherical carbon, pyrolytic gas-phase carbonaceous material, resin fired body, etc.).
  • graphitic material or carbonaceous material eg, graphite, coke, carbon fiber, spherical carbon, pyrolytic gas-phase carbonaceous material, resin fired body, etc.
  • the conductive agent enhances the current collection performance of the negative electrode active material and suppresses the contact resistance with the negative electrode current collector.
  • Examples of conductive agents include acetylene black, carbon black and graphite.
  • the binder can bind the negative electrode active material and the conductive agent.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, and styrene butadiene rubber.
  • the negative electrode active material, the conductive agent, and the binder in the negative electrode material layer should be compounded in proportions of 70% by mass to 96% by mass, 2% by mass to 28% by mass, and 2% by mass to 28% by mass, respectively. Is preferred.
  • the amount of the conductive agent By setting the amount of the conductive agent to 2% by mass or more, the current collection performance of the negative electrode material layer can be improved, and the large current characteristics of the non-aqueous electrolyte battery can be improved.
  • the amount of the binder to 2% by mass or more, the binding property between the negative electrode material layer and the current collector can be enhanced, and the cycle characteristics can be improved.
  • the conductive agent and the binder are preferably 28% by mass or less, respectively, in order to achieve high capacity.
  • the negative electrode current collector is an aluminum foil which is electrochemically stable in a potential range which is nobler than 1 V (vs. Li / Li + ) or from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu and Si It is preferable that it is an aluminum alloy foil containing at least one element selected.
  • the negative electrode is prepared, for example, by suspending a negative electrode active material, a conductive agent and a binder in a widely used solvent to prepare a slurry, applying the slurry to a negative electrode current collector, drying it, and then applying a press. It is made.
  • the negative electrode may also be produced by forming a negative electrode active material, a conductive agent and a binder in the form of pellets to form a negative electrode material layer and forming it on a negative electrode current collector.
  • the nonaqueous electrolyte can be, for example, a liquid nonaqueous electrolyte prepared by dissolving the electrolyte in an organic solvent, or a gelled nonaqueous electrolyte in which a liquid electrolyte and a polymer material are complexed.
  • the liquid non-aqueous electrolyte preferably dissolves the electrolyte in an organic solvent at a concentration of 0.5 M or more and 2.5 M or less.
  • electrolytes examples include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), trifluorometasulfone Lithium acid (LiCF 3 SO 3 ), lithium salt of bis trifluoromethyl sulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ], or a mixture thereof.
  • the electrolyte is preferably one that is not easily oxidized even at high potential, and LiPF 6 is most preferable.
  • the type of electrolyte can be one or two or more.
  • organic solvents examples include propylene carbonate (PC), ethylene carbonate (EC), cyclic carbonates such as vinylene carbonate; linear carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC) Cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2 MeTHF), dioxolane (DOX); linear ethers such as dimethoxyethane (DME), dietethane (DEE); or ⁇ -butyrolactone (GBL), acetonitrile (A) AN), including sulfolane (SL).
  • PC propylene carbonate
  • EC ethylene carbonate
  • cyclic carbonates such as vinylene carbonate
  • linear carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC)
  • Cyclic ethers such as tetra
  • polymeric materials examples include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO).
  • PVdF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • PEO polyethylene oxide
  • the preferred organic solvent is a mixed solvent obtained by mixing at least two or more of propylene carbonate (PC), ethylene carbonate (EC) and diethyl carbonate (DEC), or a mixed solvent containing ⁇ -butyrolactone (GBL) is there.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • GBL ⁇ -butyrolactone
  • a porous film or a synthetic resin non-woven fabric can be used.
  • the material constituting the separator may include at least one selected from the group consisting of polyethylene, polypropylene, cellulose and polyvinylidene fluoride (PVdF).
  • PVdF polyvinylidene fluoride
  • Exterior member is formed of a laminate film having a thickness of 0.5 mm or less, or a metal container having a thickness of 1 mm or less is used.
  • the metal container is more preferably 0.5 mm or less in thickness.
  • the shape of the exterior member can be selected from flat (thin), square, cylindrical, coin and button types.
  • Examples of the exterior member include, for example, a small battery exterior member loaded on a portable electronic device or the like, a large battery exterior member loaded on a two- or four-wheeled automobile or the like according to the battery size.
  • the laminate film a multilayer film in which a metal layer is interposed between resin layers is used.
  • the metal layer is preferably aluminum foil or aluminum alloy foil in order to reduce the weight.
  • the resin layer for example, one or more types of polymer materials selected from polypropylene (PP), polyethylene (PE), nylon, polyethylene terephthalate (PET) and the like can be used.
  • PP polypropylene
  • PE polyethylene
  • PET polyethylene terephthalate
  • the laminated film can be molded into the shape of the exterior member by sealing by heat fusion.
  • the metal container is made of aluminum or aluminum alloy or the like.
  • the aluminum alloy is preferably an alloy containing one or more elements selected from magnesium, zinc, silicon and the like.
  • transition metals such as iron, copper, nickel, and chromium are contained in the alloy, the amount is preferably 100 mass ppm or less.
  • the positive electrode and the negative electrode in the non-aqueous electrolyte battery are taken out and the mixing ratio and the potential are confirmed, the positive electrode and the negative electrode are taken out from the non-aqueous electrolyte battery by the method described below. After disassembling the battery in a discharged state and taking out the positive electrode and the negative electrode, each of the positive electrode and the negative electrode is washed in ethyl methyl carbonate. After washing, the positive electrode and the negative electrode are put in a vacuum chamber and decompressed, and the ethyl methyl carbonate remaining in the washing step is evaporated and removed.
  • a nonaqueous electrolyte battery (nonaqueous electrolyte secondary battery) according to an embodiment will be more specifically described with reference to the drawings.
  • Each figure is a schematic diagram for promoting explanation and understanding of the embodiment, and its shape, size, ratio, etc. are different from the actual device, but these refer to the following description and known techniques. Design changes can be made accordingly.
  • the flat wound electrode group 1 is housed in a bag-like exterior member 2 made of a laminate film in which a metal layer is interposed between two resin layers. As shown in FIG. 2, the flat wound electrode group 1 is formed by spirally winding a laminate obtained by laminating the negative electrode 3, the separator 4, the positive electrode 5, and the separator 4 in this order from the outside, and pressing it. Be done.
  • the negative electrode 3 includes a negative electrode current collector 3a and a negative electrode active material containing layer 3b. As shown in FIG. 2, the outermost layer negative electrode 3 has a configuration in which the negative electrode active material containing layer 3b is formed only on one side of the inner surface side of the negative electrode current collector 3a. The other negative electrode 3 has a negative electrode active material containing layer 3 b formed on both sides of the negative electrode current collector 3 a. In the positive electrode 5, a positive electrode active material containing layer 5b is formed on both sides of the positive electrode current collector 5a.
  • the negative electrode terminal 6 is connected to the negative electrode current collector 3a of the negative electrode 3 of the outermost layer, and the positive electrode terminal 7 is a positive electrode current collector of the positive electrode 5 inside. Connected to 5a.
  • the negative electrode terminal 6 and the positive electrode terminal 7 are extended from the opening of the bag-like exterior member 2 to the outside. For example, a liquid non-aqueous electrolyte is injected from the opening of the bag-like exterior member 2.
  • the wound electrode group 1 and the liquid non-aqueous electrolyte are completely sealed by heat sealing the opening of the bag-like exterior member 2 with the negative electrode terminal 6 and the positive electrode terminal 7 interposed therebetween.
  • the negative electrode terminal can be formed of a material that is electrochemically stable at the lithium storage / release potential of the negative electrode active material and has conductivity. Specific examples thereof include copper, nickel, stainless steel, aluminum, and an aluminum alloy containing one or more elements selected from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu and Si.
  • the negative electrode terminal is preferably formed of the same material as the negative electrode current collector in order to reduce the contact resistance with the negative electrode current collector.
  • the positive electrode terminal may be formed of a material having electrical stability and conductivity in the range of 3 V to 5 V, preferably 3 V to 4.25 V, with respect to the lithium ion metal. Specifically, aluminum or an aluminum alloy containing one or more elements selected from the group consisting of aluminum or Mg, Ti, Zn, Ni, Cr, Mn, Fe, Cu and Si can be mentioned.
  • the positive electrode terminal is preferably formed of the same material as the positive electrode current collector in order to reduce the contact resistance with the positive electrode current collector.
  • the non-aqueous electrolyte battery according to the embodiment is not limited to the configuration shown in FIGS. 1 and 2, and may be, for example, a battery having the configuration shown in FIG. 3 and FIG.
  • the laminated electrode group 11 is accommodated in an exterior member 12 formed of a laminate film in which a metal layer is interposed between two resin films.
  • the stacked electrode group 11 has a structure in which the positive electrode 13 and the negative electrode 14 are alternately stacked with the separator 15 interposed therebetween as shown in FIG.
  • a plurality of positive electrodes 13 exist, each including a current collector 13a and a positive electrode active material-containing layer 13b supported on both sides of the current collector 13a.
  • a plurality of negative electrodes 14 exist, and each includes a negative electrode current collector 14 a and a negative electrode active material containing layer 14 b supported on both sides of the negative electrode current collector 14 a.
  • One side of the negative electrode current collector 14 a of each negative electrode 14 protrudes from the negative electrode 14.
  • the protruding negative electrode current collector 14 a is electrically connected to the strip-shaped negative electrode terminal 16.
  • the tip of the strip-like negative electrode terminal 16 is pulled out of the exterior member 11 to the outside.
  • the side of the positive electrode current collector 13 a of the positive electrode 13 opposite to the protruding side of the negative electrode current collector 14 a protrudes from the positive electrode 13.
  • the positive electrode current collector 13 a protruding from the positive electrode 13 is electrically connected to the strip-like positive electrode terminal 17.
  • the end of the strip-like positive electrode terminal 17 is located on the opposite side to the negative electrode terminal 16 and is drawn out from the side of the exterior member 11.
  • the positive electrode including the first positive electrode active material and the second positive electrode active material is provided, the high positive electrode potential is realized, and from the beginning of charge and discharge.
  • the potential change up to the end can be measured for the charge depth, and high output can be obtained at a low charge depth (SOC).
  • the battery pack according to the second embodiment includes one or more non-aqueous electrolyte batteries (unit cells) according to the second embodiment.
  • the unit cells are electrically connected in series or in parallel.
  • the battery pack further includes a protection circuit capable of detecting the voltage of the non-aqueous electrolyte battery.
  • FIG. 5 An example of the battery pack 20 is shown in FIG. 5 and FIG.
  • This battery pack 20 includes a plurality of flat batteries 21 having the structure shown in FIG.
  • the plurality of unit cells 21 are stacked such that the negative electrode terminal 6 and the positive electrode terminal 7 extended to the outside are aligned in the same direction, and are assembled with the adhesive tape 22 to configure the assembled battery 23. These single cells 21 are electrically connected in series as shown in FIG.
  • the printed wiring board 24 is disposed to face the side surface of the unit cell 21 from which the negative electrode terminal 6 and the positive electrode terminal 7 extend. As shown in FIG. 6, a thermistor 25, a protection circuit 26, and a terminal 27 for energization to an external device are mounted on the printed wiring board 24. An insulating plate (not shown) is attached to the surface of the printed wiring board 24 facing the battery assembly 23 in order to avoid unnecessary connection with the wiring of the battery assembly 23.
  • the positive electrode side lead 28 is connected to the positive electrode terminal 7 located in the lowermost layer of the assembled battery 23, and the tip thereof is inserted into the positive electrode side connector 29 of the printed wiring board 24 and is electrically connected.
  • the negative electrode lead 30 is connected to the negative electrode terminal 6 located in the uppermost layer of the assembled battery 23, and the tip thereof is inserted into the negative electrode connector 31 of the printed wiring board 24 and is electrically connected.
  • the connectors 29 and 31 are connected to the protective circuit 26 through the wirings 32 and 33 formed on the printed wiring board 24.
  • the thermistor 25 detects the temperature of the unit cell 21, and the detection signal is transmitted to the protection circuit 26.
  • the protection circuit 26 can cut off the plus side wire 34 a and the minus side wire 34 b between the protection circuit 26 and the current-carrying terminal 27 to the external device under a predetermined condition.
  • the predetermined condition is, for example, when the detected temperature of the thermistor 25 becomes equal to or higher than a predetermined temperature. Further, the predetermined condition is when overcharging, overdischarging, overcurrent, or the like of the unit cell 21 is detected.
  • the detection of the overcharge and the like is performed for each single battery 21 or the entire single battery 21. When detecting each single battery 21, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected.
  • a lithium electrode used as a reference electrode is inserted into each single battery 21.
  • wires 35 for voltage detection are connected to each of the single cells 21, and detection signals are transmitted to the protection circuit 26 through the wires 35.
  • Protective sheets 36 made of rubber or resin are respectively disposed on three side surfaces of the assembled battery 23 except the side surfaces from which the positive electrode terminal 7 and the negative electrode terminal 6 protrude.
  • the battery assembly 23 is stored in the storage container 37 together with the protective sheets 36 and the printed wiring board 24. That is, the protective sheet 36 is disposed on both the inner side in the long side direction of the storage container 37 and the inner side in the short side direction, and the printed wiring board 24 is disposed on the inner side opposite to the short side.
  • the battery assembly 23 is located in a space surrounded by the protective sheet 36 and the printed wiring board 24.
  • the lid 38 is attached to the upper surface of the storage container 37.
  • a heat shrink tape may be used in place of the adhesive tape 22 for fixing the battery assembly 23.
  • protective sheets are disposed on both sides of the battery pack, and after the heat-shrinkable tube is circulated, the heat-shrinkable tube is thermally shrunk to bind the battery pack.
  • the battery pack is suitably used for applications requiring excellent cycle characteristics when taking out a large current. Specifically, it is used as a power source of a digital camera or as an on-vehicle battery of, for example, a two- or four-wheel hybrid electric vehicle, a two- or four-wheel electric vehicle, or an assist bicycle. In particular, it is suitably used as a vehicle-mounted battery.
  • the non-aqueous electrolyte battery of the first embodiment since the non-aqueous electrolyte battery of the first embodiment is included, it is possible to measure the change in potential from the initial stage to the final stage of charge / discharge while realizing high energy density. Thus, it is possible to provide a battery pack capable of obtaining high output at a low charge depth (SOC).
  • SOC charge depth
  • Example A-1 88% by mass of Li 4 Ti 5 O 12 of spinel structure, 6% by mass of acetylene black as a conductive material, and 6% by mass of polyvinylidene fluoride (PVdF) in N-methylpyrrolidone (NMP) was prepared.
  • the slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 ⁇ m, dried, and pressed to produce a negative electrode.
  • the content of the first positive electrode active material was 90% by mass of the total mass (100% by mass) of the first positive electrode active material and the second positive electrode active material. N-methyl 88% by mass of the positive electrode active material comprising the first positive electrode active material and the second positive electrode active material, 6% by mass of acetylene black as a conductive material, and 6% by mass of polyvinylidene fluoride (PVdF)
  • the slurry was prepared by adding to pyrrolidone (NMP) and mixing. The slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 ⁇ m, dried, and pressed to produce a positive electrode.
  • test cell A test cell was obtained by storing the positive electrode and the negative electrode laminated via a polypropylene separator in an aluminum-containing laminate film container together with an electrolytic solution. The capacity of the test cell was 1 Ah.
  • the electrolytic solution was prepared by dissolving 1 mol / L of LiPF 6 as an electrolyte in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 2).
  • Examples A-2 to A-9) The test was conducted under the same conditions as in Example A-1, except that the mass ratio of the first positive electrode active material to the total mass of the first positive electrode active material and the second positive electrode active material is changed as shown in Table 1 below. A cell was made.
  • Example A-1 A test cell was fabricated under the same conditions as Example A-1, except that only LiFe 0.9 Mn 0.1 SO 4 F having a triplite-type crystal structure was used as the positive electrode active material.
  • Example A-2 A test cell was fabricated under the same conditions as Example A-1, except that only LiFe 0.9 Mn 0.1 SO 4 F having a tavolite crystal structure was used as the positive electrode active material.
  • Example B-1 A test cell was produced under the same conditions as Example A-1, except that TiO 2 (B) was used as the negative electrode active material.
  • Example B-2 to B-9 The test was conducted under the same conditions as in Example B-1, except that the mass ratio of the first positive electrode active material to the total mass of the first positive electrode active material and the second positive electrode active material is changed as shown in Table 2 below. A cell was made.
  • Example B-1 A test cell was fabricated under the same conditions as Example B-1, except that only LiFe 0.9 Mn 0.1 SO 4 F having a triplite-type crystal structure was used as the positive electrode active material.
  • Example B-2 A test cell was fabricated under the same conditions as Example B-1, except that only LiFe 0.9 Mn 0.1 SO 4 F having a tavolite crystal structure was used as the positive electrode active material.
  • Example C-1 A test cell was produced under the same conditions as in Example A-1, except that Nb 2 TiO 7 was used as the negative electrode active material.
  • Examples C-2 to C-9) The test was conducted under the same conditions as in Example C-1, except that the mass ratio of the first positive electrode active material to the total mass of the first positive electrode active material and the second positive electrode active material is changed as shown in Table 3 below. A cell was made.
  • Example C-1 A test cell was fabricated under the same conditions as Example C-1, except that only LiFe 0.9 Mn 0.1 SO 4 F having a triplite-type crystal structure was used as the positive electrode active material.
  • Example C-2 A test cell was fabricated under the same conditions as Example C-1, except that only LiFe 0.9 Mn 0.1 SO 4 F having a tavolite crystal structure was used as the positive electrode active material.
  • Example D-1 Using graphite as a negative electrode active material, 90% by mass of this negative electrode active material and 10% by mass of polyvinylidene fluoride (PVdF) were added to N-methylpyrrolidone (NMP) and mixed to prepare a slurry. The slurry was applied to both sides of a current collector made of a copper foil having a thickness of 15 ⁇ m, dried, and pressed to produce a negative electrode. A test cell was produced under the same conditions as in Example A-1 except that this negative electrode was used.
  • PVdF polyvinylidene fluoride
  • Examples D-2 to D-9 The test was conducted under the same conditions as Example D-1, except that the mass ratio of the first positive electrode active material to the total mass of the first positive electrode active material and the second positive electrode active material is changed as shown in Table 4 below. A cell was made.
  • Example D-1 A test cell was fabricated under the same conditions as Example D-1, except that only LiFe 0.9 Mn 0.1 SO 4 F having a triplite-type crystal structure was used as the positive electrode active material.
  • Example D-2 A test cell was produced under the same conditions as Example D-1, except that only LiFe 0.9 Mn 0.1 SO 4 F having a tavolite crystal structure was used as a positive electrode active material.
  • Example E-1 A test cell was produced under the same conditions as in Example A-1, except that LiFe 0.9 Zn 0.1 SO 4 F having a triplite-type crystal structure was used as the first positive electrode active material.
  • Example E-2 to E-9 The test was conducted under the same conditions as Example E-1, except that the mass ratio of the first positive electrode active material to the total mass of the first positive electrode active material and the second positive electrode active material is changed as shown in Table 5 below. A cell was made.
  • Example E-1 A test cell was fabricated under the same conditions as Example E-1, except that only LiFe 0.9 Zn 0.1 SO 4 F having a triplite-type crystal structure was used as a positive electrode active material.
  • Example E-2 A test cell was produced under the same conditions as in Example E-1, except that only LiFe 0.9 Mn 0.1 SO 4 F having a tavolite crystal structure was used as the positive electrode active material.
  • Example F-1 A test cell was produced under the same conditions as in Example A-1, except that LiFeSO 4 F having a tavolite crystal structure was used as the second positive electrode active material.
  • Example F-2 to F-9 The test was conducted under the same conditions as Example F-1, except that the mass ratio of the first positive electrode active material to the total mass of the first positive electrode active material and the second positive electrode active material is changed as shown in Table 6 below. A cell was made.
  • Example F-1 A test cell was produced under the same conditions as Example F-1, except that only LiFe 0.9 Mn 0.1 SO 4 F having a triplite-type crystal structure was used as a positive electrode active material.
  • Example F-2 A test cell was produced under the same conditions as Example F-1, except that only LiFeSO 4 F having a tavolite crystal structure was used as a positive electrode active material.
  • each test cell After each test cell is charged with a constant current at a 0.1 C rate, it is charged until the current value converges in a constant voltage mode, and the cell voltage relative to the discharge capacity when discharged from a full charge state at a constant current of 0.1 C rate Change was measured.
  • Examples A-1 to D-1 and Comparative Examples A-1 to D-1 are shown in FIG. 8 to FIG.
  • the test cell is discharged from the fully charged state to a discharge depth of 80% at a constant current of 0.1 C rate, held for 1 hour in an open circuit state, and then discharged for 10 seconds at 10 C rate.
  • the resistance value was calculated.
  • Tables 1 to 6 As a 10 second direct current resistance (m ⁇ ) at a discharge depth of 80%.
  • the rate of 0.2 C from the fully charged state to the fully discharged state of the non-aqueous electrolyte battery The negative electrode potential curve (V vs. Li / Li + ) from 0% to 100% of the discharge depth was measured by the method described below.
  • the measurement used the tripolar cell which used Li metal for the counter electrode and the reference electrode.
  • the lower limit potential and the upper limit potential for Li during charging and discharging are respectively 1.4 V and 2.0 V for Li 4 Ti 5 O 12 , TiO 2 (B) and Nb 2 TiO 7 , and 0.05 V and 2 for graphite. .0V.
  • the negative electrode potential curve of Example A-1 is shown in FIG. As apparent from FIG. 7, the negative electrode potential at a discharge depth of 10% is 1.57 V (vs. Li / Li + ), and the negative electrode potential at a discharge depth of 90% is 1.58 V (vs. Li / Li + ). Therefore, the potential difference between the negative electrode potential with respect to lithium at a discharge depth of 10% and the negative electrode potential with respect to lithium at a discharge depth of 90% is 0.01 V.
  • Tables 1 to 6 show the potential differences between the negative electrode potential with respect to lithium at a discharge depth of 10% and the negative electrode potential with respect to lithium at a discharge depth of 90% for the negative electrodes of other test cells.
  • the 10 seconds direct current resistance at a discharge depth of 80% is smaller than that of Comparative Example A-1, and high output is obtained at low SOC. It can be understood that Further, as is apparent from FIG. 8, in the battery of Comparative Example A-2, the change in cell voltage with the change in discharge depth is smaller than in the other examples. Therefore, it is difficult for the battery of Comparative Example A-2 to accurately measure the charging depth. From the above, the batteries of Examples A-1 to A-9 can obtain high output with low SOC and can easily measure the charge depth.
  • the 10 seconds direct current resistance at a discharge depth of 80% is smaller than that of Comparative Example B-1, and the high output is obtained at the low SOC. It can be understood that Further, as apparent from FIG. 9, in the battery of Comparative Example B-2, the change in cell voltage with the change in depth of discharge is smaller than in the other examples. Therefore, it is difficult for the battery of Comparative Example B-2 to accurately measure the charge depth. From the above, the batteries of Examples B-1 to B-9 can obtain high output with low SOC, and can easily measure the charge depth.
  • the 10 seconds direct current resistance at the discharge depth of 80% is smaller than that of Comparative Example C-1, and the high output is obtained at the low SOC. It can be understood that Further, as apparent from FIG. 10, in the battery of Comparative Example C-2, the change in cell voltage with the change in depth of discharge is smaller than in the other examples. Therefore, it is difficult for the battery of Comparative Example C-2 to accurately measure the charge depth. From the above, the batteries of Examples C-1 to C-9 can obtain high output with low SOC, and can easily measure the charge depth.
  • the nonaqueous electrolyte battery of at least one embodiment and example described above since the first positive electrode active material and the second positive electrode active material are included, high output can be obtained with low SOC, and measurement of charge depth The energy density can be further improved.

Abstract

 実施形態によれば、正極と、負極と、非水電解質とを含む非水電解質電池が提供される。正極は、一般式LiMSO4F(MはFe,Mn及びZnよりなる群から選択される少なくとも1種類の元素)で表され、トリプライト型結晶構造を有する第1の正極活物質と、一般式LiM'SO4F(M'はFe,Mn及びZnよりなる群から選択される少なくとも1種類の元素)で表され、タボライト型結晶構造を有する第2の正極活物質とを含む。

Description

非水電解質電池及び電池パック
 実施形態は、非水電解質電池及び電池パックに関する。
 リチウムイオン二次電池の電気自動車やハイブリッド電気自動車への適用が進むにつれ、更なる高エネルギー密度化が必要とされている。現在、安全性の高い正極材料として、LiFePO4等が実用化されているが、平均作動電位がLi基準で3.4Vと低い。リチウムイオン二次電池の高エネルギー密度化のためには、より高作動電位の正極活物質が不可欠である。
 上記の要望を満たす正極材料として、近年、タボライト型またはトリプライト型の結晶構造を有するLi(Fe,Mn)SO4Fが幅広く研究されている。タボライト型のLi(Fe,Mn)SO4Fの平均作動電位は3.6V(vs. Li/Li+)、トリプライト型のLi(Fe,Mn)SO4Fの平均作動電位は3.9V(vs. Li/Li+)であることから、これらは次世代の高エネルギー密度二次電池正極材料として有望である。しかしながら、タボライト型の正極材料は、充放電時の電位変化が小さいため、同様に電位変化が小さい負極と組み合わせて使用する場合、充電深度が計測しにくい。また、トリプライト型の正極材料は、放電末期の電位降下が激しく、低い充電深度での出力が低くなる問題がある。
特表2012-506361号公報 米国特許公報20120129050号公報
P. Barpanda et al., Nature Materials 10 (2011) 772.
 実施形態は、充電深度の計測が容易で、低い充電状態(SOC)でも高出力が得られ、高エネルギー密度を有する非水電解質電池及び電池パックを提供することを目的とする。
 実施形態によれば、正極と、負極と、非水電解質とを含む非水電解質電池が提供される。正極は、一般式LiMSO4F(MはFe,Mn及びZnよりなる群から選択される少なくとも1種類の元素)で表され、トリプライト型結晶構造を有する第1の正極活物質と、一般式LiM’SO4F(M’はFe,Mn及びZnよりなる群から選択される少なくとも1種類の元素)で表され、タボライト型結晶構造を有する第2の正極活物質とを含む。負極は、負極活物質を含む。
 また、実施形態によれば、実施形態の非水電解質電池を含む電池パックが提供される。
第1実施形態に係る扁平型非水電解質電池の断面図。 図1のA部の拡大断面図。 第1実施形態に係る他の扁平型非水電解質電池を模式的に示す部分切欠斜視図。 図3のB部の拡大断面図。 第2実施形態に係る電池パックの分解斜視図。 図5の電池パックの電気回路を示すブロック図。 実施例A-1の電池の負極の電位曲線を示す図。 実施例A-1~比較例A-2の電池の放電電圧曲線を示す図。 実施例B-1~比較例B-2の電池の放電電圧曲線を示す図。 実施例C-1~比較例C-2の電池の放電電圧曲線を示す図。 実施例D-1~比較例D-2の電池の放電電圧曲線を示す図。
(第1の実施形態)
 第1の実施形態によれば、正極と、負極活物質を含む負極と、非水電解質とを含む非水電解質電池が提供される。正極は、一般式LiMSO4F(MはFe,Mn及びZnよりなる群から選択される少なくとも1種類の元素)で表され、トリプライト型結晶構造を有する第1の正極活物質と、一般式LiM’SO4F(M’はFe,Mn及びZnよりなる群から選択される少なくとも1種類の元素)で表され、タボライト型結晶構造を有する第2の正極活物質とを含む。一方、負極は、負極活物質を含む。
 第1の正極活物質は、平均作動電位が3.9V(vs. Li/Li+)と高い電位を得られるが、放電末期の電位降下が大きいため、低い充電深度(SOC)で高出力を得られない。一方、第2の正極活物質は、充放電電位の平坦性に優れるものの、平均作動電位が3.6V(vs. Li/Li+)で、充放電初期から末期までの電位変化が小さい。第1の正極活物質と第2の正極活物質の混合物を正極に含有させることにより、高い正極電位を実現しつつ、充放電の初期から末期までの電位変化を充電深度の計測が可能なものとし、かつ放電末期に急激な電位降下を生じさせることなく、低い充電深度(SOC)で高出力を得ることを可能とした。
 また、負極活物質は、非水電解質電池を満充電状態から完全放電状態まで0.2Cのレートで放電した時の、放電深度10%でのリチウムに対する負極電位と放電深度90%でのリチウムに対する負極電位との電位差が0.3V以下となるものであることが望ましい。このような負極活物質を含む負極は、放電深度が10%から90%までの電位の平坦性に優れているため、第1の正極活物質及び第2の正極活物質を含む正極と組み合わせることにより、電池の充放電の初期から末期までの電圧変化を充電深度の計測が容易なものにすることができる。さらに、高電圧が得られるため、エネルギー密度を向上することができる。
 第1の正極活物質と第2の正極活物質の合計質量に対する、第1の正極活物質の割合を1質量%以上99質量%以下の範囲にすることが望ましい。この範囲にすることにより、充放電の初期から末期までの電圧変化量を充電深度の計測に適したものにすることができると共に、低い充電深度(SOC)での出力をさらに向上することができる。より好ましい範囲は、10質量%以上90質量%以下の範囲である。
 第1の正極活物質と第2の正極活物質の混合比は、そのX線回折測定において、トリプライト構造(空間群C2/c)とタボライト構造(空間群P-1)の混晶としてリートベルト解析を行った際の構成比率から求められる。
 正極活物質の電気伝導性を向上させるため、第1の正極活物質と第2の正極活物質のうちの少なくとも一方の表面を炭素含有層で被覆してもよい。炭素含有層に含まれる炭素材料としては、例えば、アセチレンブラック、カーボンブラック及び黒鉛よりなる群から選択される少なくとも1種類の材料を挙げることができる。
 第1の正極活物質と第2の正極活物質は、平均粒径が0.1μm以上10μm以下の範囲の粒子であることが望ましい。平均粒径のより好ましい範囲は、0.1μm以上1μm以下である。粒子の平均粒径は、透過型電子顕微鏡(TEM)観察により測定することができる。
 正極活物質は、例えば、以下に説明する方法で合成される。トリプライト構造を有する第1の正極活物質は、例えば、元素Mの硫酸塩水和物(MSO4・H2O)とフッ化リチウムを1-エチル-3-メチルイミダゾリウム-ビス(トリフルオロメタンスルホニル)イミドとともに密閉容器内に封入し、260℃以上400℃以下の範囲で加熱することで得られる。一方、タボライト構造を有する第2の正極活物質は、例えば、元素M’の硫酸塩水和物(M’SO4・H2O)とフッ化リチウムをアルゴン雰囲気で密閉容器内に封入し、260℃以上400℃以下の範囲加熱することで得られる。
 以下、この正極活物質を含む正極について、説明する。
 正極は、正極集電体と、正極集電体の片面または両面に形成され、第1の正極活物質、第2の正極活物質、導電剤及び結着剤を含む正極材料層(正極活物質含有層)とを含む。
 導電剤は、活物質の集電性能を高め、集電体との接触抵抗を抑える。導電剤の例は、アセチレンブラック、カーボンブラック、黒鉛などの炭素質物を含む。
 結着剤は、活物質と導電剤を結着させる。結着剤の例は、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴムを含む。
 正極材料層中の活物質、導電剤及び結着剤は、それぞれ80質量%以上95質量%以下、3質量%以上18質量%以下及び2質量%以上17質量%以下の割合で配合することが好ましい。導電剤は、3質量%以上の量にすることにより上述した効果を発揮することができる。導電剤は、18質量%以下の量にすることにより高温保存下での導電剤表面での非水電解質の分解を低減することができる。結着剤は、2質量%以上の量にすることにより十分な正極強度が得られる。結着剤は、17質量%以下の量にすることにより、正極中の絶縁材料である結着剤の配合量を減少させ、内部抵抗を減少できる。
 正極集電体は、例えばアルミニウム箔、またはMg、Ti、Zn、Mn、Fe、Cu及びSiよりなる群から選択される少なくとも1種類の元素を含むアルミニウム合金箔であることが好ましい。
 正極は、例えば、第1の正極活物質、第2の正極活物質、導電剤及び結着剤を汎用されている溶媒に懸濁してスラリーを調製し、このスラリーを正極集電体に塗布し、乾燥し、その後、プレスを施すことにより作製される。正極はまた第1の正極活物質、第2の正極活物質、導電剤及び結着剤をペレット状に形成して正極材料層とし、これを正極集電体上に形成することにより作製されてもよい。
 第1の実施形態の非水電解質電池は、さらに、正極と負極の間に配置されるセパレータと、外装部材とを含むことができる。外装部材には、正極、負極、セパレータ及び非水電解質が収容される。以下、負極、非水電解質、セパレータ及び外装部材について説明する。
 1)負極
 負極は、負極集電体と、この負極集電体の片面または両面に形成され、負極活物質、導電剤及び結着剤を含む負極材料層(負極活物質含有層)とを備える。
 負極活物質は、非水電解質電池を満充電状態から完全放電状態まで0.2Cのレートで放電した時の、放電深度10%でのリチウムに対する負極電位と放電深度90%でのリチウムに対する負極電位との電位差が0.3V以下となるものが好ましい。
 電位差が0.3V以下の負極活物質の例には、リチウムチタン酸化物、チタン酸化物、ニオブチタン複合酸化物、炭素材料が含まれる。負極活物質の種類は1種類または2種類以上にすることができる。
 リチウムチタン酸化物の例には、スピネル構造のLi4+xTi512(xは-1≦x≦3)、ラムステライド構造のLi2+xTi37(xは-1≦x≦3)が含まれる。
 チタン酸化物の例には、アナターゼ構造のTiO2、単斜晶系のTiO(B)が含まれる。TiO(B)は、300~500℃の範囲で熱処理されているものが好ましい。TiO(B)は、Nbを0.5~10質量%含有することが好ましい。これにより負極容量を高容量化することができる。電池に充放電が施された後のチタン酸化物には、不可逆なリチウムが残存することがあるため、電池に充放電が施された後のチタン酸化物はLidTiO2(0<d≦1)で表すことができる。
 ニオブチタン複合酸化物の例には、LiNbaTibC(0≦x≦3、0<a≦3、0<b≦3、5≦c≦10)が含まれる。LiNbaTibCの例には、LiNbTiO、LiNbTi、LiNbTiOが含まれる。800℃~1200℃で熱処理されたLiTi1-yNbNb7+σ(0≦x≦3、0≦y≦1、0≦σ≦0.3)は、真密度が高く、体積比容量を増大することができる。LiNbTiOは、高密度及び高容量であるため、好ましい。これにより負極容量を高容量化することができる。また、上述の酸化物におけるNbまたはTiの一部をV,Zr,Ta、Cr,Mo、W、Ca,Mg、Al,Fe、Si、B、P、K及びNaよりなる群から選択される少なくとも一種類の元素で置換しても良い。
 炭素材料の例には、黒鉛質材料もしくは炭素質材料(例えば、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体など)が含まれる。
 導電剤は、負極活物質の集電性能を高め、負極集電体との接触抵抗を抑える。導電剤の例は、アセチレンブラック、カーボンブラック、黒鉛を含む。
 結着剤は、負極活物質と導電剤を結着できる。結着剤の例は、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴムを含む。
 負極材料層中の負極活物質、導電剤及び結着剤は、それぞれ70質量%以上96質量%以下、2質量%以上28質量%以下及び2質量%以上28質量%以下の割合で配合することが好ましい。導電剤の量を2質量%以上とすることにより、負極材料層の集電性能を向上させ、非水電解質電池の大電流特性を向上させることができる。また、結着剤の量を2質量%以上とすることにより、負極材料層と集電体の結着性を高め、サイクル特性を向上させることができる。一方、導電剤及び結着剤はそれぞれ28質量%以下にすることが高容量化を図る上で好ましい。
 負極集電体は、1V(vs. Li/Li+)よりも貴である電位範囲において電気化学的に安定であるアルミニウム箔またはMg、Ti、Zn、Mn、Fe、Cu及びSiよりなる群から選択される少なくとも1種類の元素を含むアルミニウム合金箔であること好ましい。
 負極は、例えば負極活物質、導電剤及び結着剤を汎用されている溶媒に懸濁してスラリーを調製し、このスラリーを負極集電体に塗布し、乾燥し、その後、プレスを施すことにより作製される。負極は、また負極活物質、導電剤及び結着剤をペレット状に形成して負極材料層とし、これを負極集電体上に形成することにより作製されてもよい。
 2)非水電解質
 非水電解質は、例えば電解質を有機溶媒に溶解することにより調製される液状非水電解質、または液状電解質と高分子材料を複合化したゲル状非水電解質を用いることができる。
 液状非水電解質は、電解質を0.5M以上2.5M以下の濃度で有機溶媒に溶解することが好ましい。
 電解質の例は、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]のリチウム塩、またはこれらの混合物を含む。電解質は、高電位でも酸化し難いものであることが好ましく、LiPFが最も好ましい。電解質の種類は1種類または2種類以上にすることができる。
 有機溶媒の例は、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネートのような環状カーボネート;ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)のような鎖状カーボネート;テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)、ジオキソラン(DOX)のような環状エーテル;ジメトキシエタン(DME)、ジエトエタン(DEE)のような鎖状エーテル;またはγ-ブチロラクトン(GBL)、アセトニトリル(AN)、スルホラン(SL)を含む。これらの有機溶媒は、単独または混合溶媒の形態で用いることができる。
 高分子材料の例は、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)を含む。
 好ましい有機溶媒は、プロピレンカーボネート(PC)、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)からなる群のうち、少なくとも2つ以上を混合した混合溶媒、またはγ-ブチロラクトン(GBL)を含む混合溶媒である。これらの混合溶媒を用いることにより、高温特性の優れた非水電解質電池を得ることができる。
 3)セパレータ
 セパレータには、例えば、多孔質フィルムまたは合成樹脂製不織布を用いることができる。セパレータを構成する材料には、ポリエチレン、ポリプロピレン、セルロース及びポリフッ化ビニリデン(PVdF)よりなる群から選択される少なくとも1種類を挙げることができる。ポリエチレンまたはポリプロピレンを含む多孔質フィルムは、一定温度において溶融し、電流を遮断することが可能であるために安全性を向上できる。
 4)外装部材
 外装部材は、厚さ0.5mm以下のラミネートフィルムから形成されるか、厚さ1mm以下の金属製容器が用いられる。金属製容器は、厚さ0.5mm以下であることがより好ましい。
 外装部材の形状は、扁平型(薄型)、角型、円筒型、コイン型、及びボタン型から選択できる。外装部材の例には、電池寸法に応じて、例えば携帯用電子機器等に積載される小型電池用外装部材、二輪乃至四輪の自動車等に積載される大型電池用外装部材などが含まれる。
 ラミネートフィルムは、樹脂層間に金属層を介在した多層フィルムが用いられる。金属層は、軽量化のためにアルミニウム箔若しくはアルミニウム合金箔が好ましい。樹脂層は、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等から選択される1種類以上の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に成形することができる。
 金属製容器は、アルミニウムまたはアルミニウム合金等から作られる。アルミニウム合金は、マグネシウム、亜鉛、ケイ素等から選択される1種類以上の元素を含む合金が好ましい。合金中に鉄、銅、ニッケル、クロム等の遷移金属が1種類以上含まれる場合、その量は100質量ppm以下にすることが好ましい。
 なお、非水電解質電池内の正極、負極を取り出し、混合比、電位を確認する場合、以下に説明する方法で非水電解質電池から正極及び負極を取り出す。放電状態にて電池を解体し、正極及び負極を取り出した後、正極及び負極それぞれを、エチルメチルカーボネート中で洗浄する。洗浄後、真空チャンバーに正極及び負極を入れて減圧状態にし、洗浄工程で残留したエチルメチルカーボネートを揮発させ、取り除く。
 実施形態に係る非水電解質電池(非水電解質二次電池)を、図面を参照してより具体的に説明する。なお、各図は実施形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる点があるが、これらは以下の説明と公知の技術を参酌して適宜設計変更することができる。
 扁平状の捲回電極群1は、2枚の樹脂層の間に金属層を介在したラミネートフィルムからなる袋状外装部材2内に収納されている。扁平状の捲回電極群1は、図2に示すように、外側から負極3、セパレータ4、正極5、セパレータ4の順で積層した積層物を渦巻状に捲回し、プレス成型することにより形成される。
 負極3は、負極集電体3aと負極活物質含有層3bとを含む。最外層の負極3は、図2に示すように負極集電体3aの内面側の片面のみに負極活物質含有層3bを形成した構成を有する。その他の負極3は、負極集電体3aの両面に負極活物質含有層3bが形成されている。正極5は、正極集電体5aの両面に正極活物質含有層5bが形成されている。
 図1に示すように、捲回電極群1の外周端近傍において、負極端子6が最外層の負極3の負極集電体3aに接続され、正極端子7が内側の正極5の正極集電体5aに接続されている。これらの負極端子6および正極端子7は、袋状外装部材2の開口部から外部に延出されている。例えば液状非水電解質は、袋状外装部材2の開口部から注入される。袋状外装部材2の開口部を負極端子6および正極端子7を挟んでヒートシールすることにより捲回電極群1および液状非水電解質が完全密封される。
 負極端子は、負極活物質のリチウム吸蔵・放出電位において電気化学的に安定であり、かつ導電性を有する材料から形成されることができる。具体的には、銅、ニッケル、ステンレス、アルミニウム、或いは、Mg、Ti、Zn、Mn、Fe、Cu及びSiよりなる群から選択される1種類以上の元素を含むアルミニウム合金等が挙げられる。負極端子は、負極集電体との接触抵抗を低減するために、負極集電体と同様の材料から形成されることが好ましい。
 正極端子は、リチウムイオン金属に対する電位が3V以上5V以下、好ましくは3V以上4.25V以下の範囲における電気的安定性と導電性とを有する材料から形成されると良い。具体的には、アルミニウム、または、Mg、Ti、Zn、Ni、Cr、Mn、Fe、Cu及びSiよりなる群から選択される1種類以上の元素を含むアルミニウム合金等が挙げられる。正極端子は、正極集電体との接触抵抗を低減するために、正極集電体と同様の材料から形成されることが好ましい。
 実施形態に係る非水電解質電池は、図1および図2に示す構成のものに限らず、例えば図3および図4に示す構成の電池であってもよい。
 積層型電極群11は、2枚の樹脂フィルムの間に金属層を介在したラミネートフィルムからなる外装部材12内に収納されている。積層型電極群11は、図4に示すように正極13と負極14とをその間にセパレータ15を介在させながら交互に積層した構造を有する。正極13は複数枚存在し、それぞれが集電体13aと、集電体13aの両面に担持された正極活物質含有層13bとを備える。負極14は複数枚存在し、それぞれが負極集電体14aと、負極集電体14aの両面に担持された負極活物質含有層14bとを備える。各負極14の負極集電体14aは、一辺が負極14から突出している。突出した負極集電体14aは、帯状の負極端子16に電気的に接続されている。帯状の負極端子16の先端は、外装部材11から外部に引き出されている。また、図示しないが、正極13の正極集電体13aは、負極集電体14aの突出辺と反対側に位置する辺が正極13から突出している。正極13から突出した正極集電体13aは、帯状の正極端子17に電気的に接続されている。帯状の正極端子17の先端は、負極端子16とは反対側に位置し、外装部材11の辺から外部に引き出されている。
 以上記載した第1の実施形態の非水電解質電池によれば、第1の正極活物質及び第2の正極活物質を含む正極を備えるため、高い正極電位を実現しつつ、充放電の初期から末期までの電位変化を充電深度の計測が可能なものとし、かつ低い充電深度(SOC)で高出力を得ることができる。
(第2の実施形態)
 第2の実施形態に係る電池パックについて、図面を参照して説明する。第2の実施形態に係る電池パックは、第2の実施形態に係る非水電解質電池(単電池)を1個又は複数有する。複数の単電池を含む場合、各単電池は、電気的に直列もしくは並列に接続して配置される。また、電池パックは、非水電解質電池の電圧が検知可能な保護回路をさらに備えることが望ましい。
 図5及び図6に、電池パック20の一例を示す。この電池パック20は、図1に示した構造を有する扁平型電池21を複数含む。
 複数の単電池21は、外部に延出した負極端子6及び正極端子7が同じ向きに揃えられるように積層され、粘着テープ22で締結することにより組電池23を構成している。これらの単電池21は、図6に示すように電気的に直列に接続されている。
 プリント配線基板24は、負極端子6および正極端子7が延出する単電池21側面と対向して配置されている。プリント配線基板24には、図6に示すようにサーミスタ25、保護回路26および外部機器への通電用端子27が搭載されている。なお、プリント配線基板24が組電池23と対向する面には、組電池23の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
 正極側リード28は、組電池23の最下層に位置する正極端子7に接続され、その先端はプリント配線基板24の正極側コネクタ29に挿入されて電気的に接続されている。負極側リード30は、組電池23の最上層に位置する負極端子6に接続され、その先端はプリント配線基板24の負極側コネクタ31に挿入されて電気的に接続されている。これらのコネクタ29,31は、プリント配線基板24に形成された配線32,33を通して保護回路26に接続されている。
 サーミスタ25は、単電池21の温度を検出し、その検出信号は保護回路26に送信される。保護回路26は、所定の条件で保護回路26と外部機器への通電用端子27との間のプラス側配線34aおよびマイナス側配線34bを遮断できる。所定の条件とは、例えばサーミスタ25の検出温度が所定温度以上になったときである。また、所定の条件とは単電池21の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池21もしくは単電池21全体について行われる。個々の単電池21を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池21中に参照極として用いるリチウム電極が挿入される。図5および図6の場合、単電池21それぞれに電圧検出のための配線35を接続し、これら配線35を通して検出信号が保護回路26に送信される。
 正極端子7および負極端子6が突出する側面を除く組電池23の三側面には、ゴムもしくは樹脂からなる保護シート36がそれぞれ配置されている。
 組電池23は、各保護シート36およびプリント配線基板24と共に収納容器37内に収納される。すなわち、収納容器37の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート36が配置され、短辺方向の反対側の内側面にプリント配線基板24が配置される。組電池23は、保護シート36およびプリント配線基板24で囲まれた空間内に位置する。蓋38は、収納容器37の上面に取り付けられている。
 なお、組電池23の固定には粘着テープ22に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮チューブを周回させた後、熱収縮チューブを熱収縮させて組電池を結束させる。
 図5、図6では単電池21を直列接続した形態を示したが、電池容量を増大させるためには並列に接続してもよい。あるいは、直列接続と並列接続を組合せてもよい。組み上がった電池パックをさらに直列又は並列に接続することもできる。
 また、電池パックの態様は用途により適宜変更される。電池パックは、大電流を取り出したときにサイクル特性が優れていることが要求される用途に好適に用いられる。具体的には、デジタルカメラの電源として、又は、例えば二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、及び、アシスト自転車の車載用電池として用いられる。特に、車載用電池として好適に用いられる。
 以上の第2の実施形態によれば、第1の実施形態の非水電解質電池を含むため、高エネルギー密度を実現しつつ、充放電の初期から末期までの電位変化を充電深度の計測が可能であり、かつ低い充電深度(SOC)で高出力を得ることが可能な電池パックを提供することができる。
 以下、実施例を詳細に説明する。
(実施例A-1)
 スピネル構造のLi4Ti512を88質量%、導電材としてアセチレンブラックを6質量%、及び、ポリフッ化ビニリデン(PVdF)6質量%をN-メチルピロリドン(NMP)に加えて混合してスラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔からなる集電体に両面に塗布した後、乾燥し、プレスすることにより負極を作製した。
 Mnの硫酸塩水和物(MnSO4・H2O)とフッ化リチウムを1-エチル-3-メチルイミダゾリウム-ビス(トリフルオロメタンスルホニル)イミドとともに密閉容器内に封入し、300℃で3日間加熱することにより、第1の正極活物質としてトリプライト型結晶構造を有するLiFe0.9Mn0.1SO4Fを合成した。また、Mnの硫酸塩水和物(MnSO4・H2O)とフッ化リチウムをアルゴン雰囲気で密閉容器内に封入し、300℃で3日間加熱することにより、第2の正極活物質としてタボライト型結晶構造を有するLiFe0.9Mn0.1SO4Fを合成した。
 第1の正極活物質の含有量は、第1の正極活物質と第2の正極活物質の合計質量(100質量%)の90質量%とした。第1の正極活物質と第2の正極活物質からなる正極活物質を88質量%と、導電材としてアセチレンブラックを6質量%と、ポリフッ化ビニリデン(PVdF)を6質量%とをN-メチルピロリドン(NMP)に加えて混合してスラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔からなる集電体に両面に塗布した後、乾燥し、プレスすることにより正極を作製した。
(試験セルの作製)
 正極及び負極をポリプロピレン製のセパレータを介して積層したものを、電解液と共にアルミニウム含有ラミネートフィルム製容器に収納することで試験セルを得た。試験セルの容量は1Ahとした。電解液は、エチレンカーボネートとジエチルカーボネートの混合溶媒(体積比率1:2)に電解質としてLiPF6を1mol/L溶解することにより調製した。
(実施例A-2~A-9)
 第1の正極活物質と第2の正極活物質の合計質量に対する、第1の正極活物質の質量割合を下記表1にしめすように変更する以外は、実施例A-1と同じ条件で試験セルを作製した。
(比較例A-1)
 正極活物質としてトリプライト型結晶構造を有するLiFe0.9Mn0.1SO4Fのみを用いた以外は、実施例A-1と同じ条件で試験セルを作製した。
(比較例A-2)
 正極活物質としてタボライト型結晶構造を有するLiFe0.9Mn0.1SO4Fのみを用いた以外は、実施例A-1と同じ条件で試験セルを作製した。
(実施例B-1)
 負極活物質としてTiO2(B)を用いた以外は、実施例A-1と同じ条件で試験セルを作製した。
(実施例B-2~B-9)
 第1の正極活物質と第2の正極活物質の合計質量に対する、第1の正極活物質の質量割合を下記表2にしめすように変更する以外は、実施例B-1と同じ条件で試験セルを作製した。
(比較例B-1)
 正極活物質としてトリプライト型結晶構造を有するLiFe0.9Mn0.1SO4Fのみを用いた以外は、実施例B-1と同じ条件で試験セルを作製した。
(比較例B-2)
 正極活物質としてタボライト型結晶構造を有するLiFe0.9Mn0.1SO4Fのみを用いた以外は、実施例B-1と同じ条件で試験セルを作製した。
(実施例C-1)
 負極活物質としてNb2TiO7を用いた以外は、実施例A-1と同じ条件で試験セルを作製した。
(実施例C-2~C-9)
 第1の正極活物質と第2の正極活物質の合計質量に対する、第1の正極活物質の質量割合を下記表3にしめすように変更する以外は、実施例C-1と同じ条件で試験セルを作製した。
(比較例C-1)
 正極活物質としてトリプライト型結晶構造を有するLiFe0.9Mn0.1SO4Fのみを用いた以外は、実施例C-1と同じ条件で試験セルを作製した。
(比較例C-2)
 正極活物質としてタボライト型結晶構造を有するLiFe0.9Mn0.1SO4Fのみを用いた以外は、実施例C-1と同じ条件で試験セルを作製した。
(実施例D-1)
 負極活物質として黒鉛を用い、この負極活物質90質量%とポリフッ化ビニリデン(PVdF)10質量%をN-メチルピロリドン(NMP)に加えて混合してスラリーを調整した。このスラリーを厚さ15μmの銅箔からなる集電体に両面に塗布した後、乾燥し、プレスすることにより負極を作製した。この負極を用いる以外は、実施例A-1と同じ条件で試験セルを作製した。
(実施例D-2~D-9)
 第1の正極活物質と第2の正極活物質の合計質量に対する、第1の正極活物質の質量割合を下記表4にしめすように変更する以外は、実施例D-1と同じ条件で試験セルを作製した。
(比較例D-1)
 正極活物質としてトリプライト型結晶構造を有するLiFe0.9Mn0.1SO4Fのみを用いた以外は、実施例D-1と同じ条件で試験セルを作製した。
(比較例D-2)
 正極活物質としてタボライト型結晶構造を有するLiFe0.9Mn0.1SO4Fのみを用いた以外は、実施例D-1と同じ条件で試験セルを作製した。
(実施例E-1)
 第1の正極活物質として、トリプライト型結晶構造を有するLiFe0.9Zn0.1SO4Fを用いた以外は、実施例A-1と同じ条件で試験セルを作製した。
(実施例E-2~E-9)
 第1の正極活物質と第2の正極活物質の合計質量に対する、第1の正極活物質の質量割合を下記表5にしめすように変更する以外は、実施例E-1と同じ条件で試験セルを作製した。
(比較例E-1)
 正極活物質としてトリプライト型結晶構造を有するLiFe0.9Zn0.1SO4Fのみを用いた以外は、実施例E-1と同じ条件で試験セルを作製した。
(比較例E-2)
 正極活物質としてタボライト型結晶構造を有するLiFe0.9Mn0.1SO4Fのみを用いた以外は、実施例E-1と同じ条件で試験セルを作製した。
(実施例F-1)
 第2の正極活物質として、タボライト型結晶構造を有するLiFeSO4Fを用いた以外は、実施例A-1と同じ条件で試験セルを作製した。
(実施例F-2~F-9)
 第1の正極活物質と第2の正極活物質の合計質量に対する、第1の正極活物質の質量割合を下記表6にしめすように変更する以外は、実施例F-1と同じ条件で試験セルを作製した。
(比較例F-1)
 正極活物質としてトリプライト型結晶構造を有するLiFe0.9Mn0.1SO4Fのみを用いた以外は、実施例F-1と同じ条件で試験セルを作製した。
(比較例F-2)
 正極活物質としてタボライト型結晶構造を有するLiFeSO4Fのみを用いた以外は、実施例F-1と同じ条件で試験セルを作製した。
 各試験セルを0.1Cレートの定電流で充電した後、定電圧モードで電流値が収束するまで充電し、満充電状態から0.1Cレートの定電流で放電したときの放電容量に対するセル電圧の変化を測定した。その結果のうち、実施例A-1~D-1及び比較例A-1~D-1を図8~図11に示す。また、試験セルを満充電状態から0.1Cレートの定電流で放電深度80%まで放電し、開回路状態で1時間保持した後、10Cレートで10秒間放電し、放電前後の電圧差からセル抵抗値を算出した。その結果を放電深度80%における10秒直流抵抗(mΩ)として表1~表6に示す。
 さらに、各試験セルで用いたスピネル構造のLi4Ti512、TiO2(B)、Nb2TiO7、黒鉛について、非水電解質電池を満充電状態から完全放電状態まで0.2Cのレートで放電した時の、放電深度0%から100%までの負極電位曲線(V vs.Li/Li+)を以下に説明する方法で測定した。測定は対極と参照極にLi金属を用いた三極式セルを用いた。充放電時のLiに対する下限電位と上限電位はそれぞれ、Li4Ti512、TiO2(B)、Nb2TiO7については、1.4Vと2.0V、黒鉛については0.05V、2.0Vとした。
 実施例A-1の負極電位曲線を図7に示す。図7から明らかなように、放電深度10%での負極電位は1.57V(vs.Li/Li+)であり、放電深度90%での負極電位は1.58V(vs.Li/Li+)である。よって、放電深度10%でのリチウムに対する負極電位と放電深度90%でのリチウムに対する負極電位との電位差は、0.01Vである。
 他の試験セルの負極について、放電深度10%でのリチウムに対する負極電位と放電深度90%でのリチウムに対する負極電位との電位差を表1~表6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1から明らかなように、実施例A-1~A-9の電池は、放電深度80%における10秒直流抵抗が、比較例A-1に比して小さく、低いSOCで高い出力を得られることがわかる。また、図8から明らかなように、比較例A-2の電池では、放電深度の変化に伴うセル電圧変化が他の例に比して小さい。このため、比較例A-2の電池は、充電深度を正確に計測することが困難である。以上のことから、実施例A-1~A-9の電池は、低いSOCで高い出力が得られ、かつ充電深度の計測を容易に行えるものである。
 表2から明らかなように、実施例B-1~B-9の電池は、放電深度80%における10秒直流抵抗が、比較例B-1に比して小さく、低いSOCで高い出力を得られることがわかる。また、図9から明らかなように、比較例B-2の電池は、放電深度の変化に伴うセル電圧変化が他の例に比して小さい。このため、比較例B-2の電池は、充電深度を正確に計測することが困難である。以上のことから、実施例B-1~B-9の電池は、低いSOCで高い出力が得られ、かつ充電深度の計測を容易に行えるものである。
 表3から明らかなように、実施例C-1~C-9の電池は、放電深度80%における10秒直流抵抗が、比較例C-1に比して小さく、低いSOCで高い出力を得られることがわかる。また、図10から明らかなように、比較例C-2の電池は、放電深度の変化に伴うセル電圧変化が他の例に比して小さい。このため、比較例C-2の電池は、充電深度を正確に計測することが困難である。以上のことから、実施例C-1~C-9の電池は、低いSOCで高い出力が得られ、かつ充電深度の計測を容易に行えるものである。
 表4から明らかなように、実施例D-1~D-9の電池は、放電深度80%における10秒直流抵抗が、比較例D-1に比して小さく、低いSOCで高い出力を得られることがわかる。また、図11から明らかなように、比較例D-2の電池は、放電深度の変化に伴うセル電圧変化が他の例に比して小さい。このため、比較例D-2の電池は、充電深度を正確に計測することが困難である。以上のことから、実施例D-1~D-9の電池は、低いSOCで高い出力が得られ、かつ充電深度の計測を容易に行えるものである。
 表5から明らかなように、実施例E-1~E-9の電池は、放電深度80%における10秒直流抵抗が、比較例E-1に比して小さく、低いSOCで高い出力を得られることがわかる。また、比較例E-2の電池は、比較例A-2と同様、放電深度の変化に伴うセル電圧変化が他の例に比して小さい。このため、比較例E-2の電池は、充電深度を正確に計測することが困難である。以上のことから、実施例E-1~E-9の電池は、低いSOCで高い出力が得られ、かつ充電深度の計測を容易に行えるものである。
 表6から明らかなように、実施例F-1~F-9の電池は、放電深度80%における10秒直流抵抗が、比較例F-1に比して小さく、低いSOCで高い出力を得られることがわかる。また、比較例F-2の電池は、放電深度の変化に伴うセル電圧変化が他の例に比して小さかった。このため、比較例F-2の電池は、充電深度を正確に計測することが困難である。以上のことから、実施例F-1~F-9の電池は、低いSOCで高い出力が得られ、かつ充電深度の計測を容易に行えるものである。
 以上述べた少なくとも一つの実施形態及び実施例の非水電解質電池によれば、第1の正極活物質及び第2の正極活物質を含むため、低いSOCで高い出力が得られ、充電深度の計測を容易に行うことができ、さらにはエネルギー密度を向上することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1,11…電極群、2,12…外装部材、3,13…正極、3a,13a…正極集電体、3b,13b…正極活物質含有層、4,15…セパレータ、5,14…負極、5a,14a…負極集電体、5b,14b…負極活物質含有層、6,16…負極端子、7,17…正極端子、20…電池パック、21…単電池、22…粘着テープ、23…組電池、24…プリント配線基板、28…正極側配線、29…正極側コネクタ、30…負極側配線、31…負極側コネクタ、37…収納容器、38…蓋。

Claims (5)

  1.  一般式LiMSO4F(MはFe,Mn及びZnよりなる群から選択される少なくとも1種類の元素)で表され、トリプライト型結晶構造を有する第1の正極活物質と、一般式LiM’SO4F(M’はFe,Mn及びZnよりなる群から選択される少なくとも1種類の元素)で表され、タボライト型結晶構造を有する第2の正極活物質とを含む正極と、
     負極活物質を含む負極と、
     非水電解質と
    を含むことを特徴とする非水電解質電池。
  2.  前記負極活物質は、前記非水電解質電池を満充電状態から完全放電状態まで0.2Cのレートで放電した時の、放電深度10%でのリチウムに対する負極電位と放電深度90%でのリチウムに対する負極電位との電位差が0.3V以下となることを特徴とする請求項1に記載の非水電解質電池。
  3.  前記第1の正極活物質と前記第2の正極活物質の合計質量に対する、前記第1の正極活物質の割合が1質量%以上99質量%以下の範囲であることを特徴とする請求項1に記載の非水電解質電池。
  4.  前記第1の正極活物質と前記第2の正極活物質の合計質量に対する、前記第1の正極活物質の割合が10質量%以上90質量%以下の範囲であることを特徴とする請求項1に記載の非水電解質電池。
  5.  請求項1~4のいずれか1項に記載の非水電解質電池を含むことを特徴とする電池パック。
PCT/JP2013/075060 2013-09-17 2013-09-17 非水電解質電池及び電池パック WO2015040679A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/075060 WO2015040679A1 (ja) 2013-09-17 2013-09-17 非水電解質電池及び電池パック
JP2015537452A JP6081604B2 (ja) 2013-09-17 2013-09-17 非水電解質電池、電池パック及び自動車
US15/063,801 US9755233B2 (en) 2013-09-17 2016-03-08 Nonaqueous electrolyte battery and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075060 WO2015040679A1 (ja) 2013-09-17 2013-09-17 非水電解質電池及び電池パック

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/063,801 Continuation US9755233B2 (en) 2013-09-17 2016-03-08 Nonaqueous electrolyte battery and battery pack

Publications (1)

Publication Number Publication Date
WO2015040679A1 true WO2015040679A1 (ja) 2015-03-26

Family

ID=52688366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075060 WO2015040679A1 (ja) 2013-09-17 2013-09-17 非水電解質電池及び電池パック

Country Status (3)

Country Link
US (1) US9755233B2 (ja)
JP (1) JP6081604B2 (ja)
WO (1) WO2015040679A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3220448A1 (en) * 2016-03-15 2017-09-20 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108054360B (zh) * 2017-12-08 2020-04-10 安徽天时新能源科技有限公司 一种低温锂电池用氟化硫酸铁锂正极材料及其制备方法
US11121408B2 (en) 2019-03-14 2021-09-14 Medtronic, Inc. Lithium-ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506361A (ja) * 2008-10-23 2012-03-15 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク 電極材料として有用なフルオロ硫酸塩
JP2013140734A (ja) * 2012-01-05 2013-07-18 Gs Yuasa Corp 非水電解質二次電池
JP2013163602A (ja) * 2012-02-09 2013-08-22 National Institute Of Advanced Industrial Science & Technology 鉄含有複合リン酸フッ化物、その製造方法、及びそれを正極活物質として用いた二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011091521A1 (en) * 2010-01-28 2011-08-04 Phostech Lithium Inc. Method for reducing activation of lithium secondary battery and lithium secondary battery having reduced activation
JP2013535787A (ja) * 2010-07-30 2013-09-12 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 酸化ニオブ組成物およびその使用方法
FR2972441B1 (fr) * 2011-03-08 2013-04-05 Centre Nat Rech Scient Nouveau materiau fluore utilisable comme matiere active d'electrode
JP5710535B2 (ja) * 2012-03-28 2015-04-30 株式会社東芝 非水電解質二次電池及び電池パック
US9601803B2 (en) * 2013-07-22 2017-03-21 Nanotek Instruments, Inc. Non-flammable quasi-solid electrolyte-separator layer product for lithium battery applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506361A (ja) * 2008-10-23 2012-03-15 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク 電極材料として有用なフルオロ硫酸塩
JP2013140734A (ja) * 2012-01-05 2013-07-18 Gs Yuasa Corp 非水電解質二次電池
JP2013163602A (ja) * 2012-02-09 2013-08-22 National Institute Of Advanced Industrial Science & Technology 鉄含有複合リン酸フッ化物、その製造方法、及びそれを正極活物質として用いた二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOHAMED ATI ET AL.: "Understanding and Promoting the Rapid Preparation of the Triplite -Phase of LiFeSO4F for Use as a Large-Potential Fe Cathode", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 134, 44, 7 November 2012 (2012-11-07), pages 18380 - 18387 *
P.BARPANDA ET AL.: "A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure", NATURE MATERIALS, vol. 10, November 2011 (2011-11-01), pages 772 - 779 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3220448A1 (en) * 2016-03-15 2017-09-20 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
CN107195870A (zh) * 2016-03-15 2017-09-22 株式会社东芝 非水电解质电池、电池包及车辆
US10559820B2 (en) 2016-03-15 2020-02-11 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle

Also Published As

Publication number Publication date
US9755233B2 (en) 2017-09-05
US20160190581A1 (en) 2016-06-30
JP6081604B2 (ja) 2017-02-15
JPWO2015040679A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
US10700350B2 (en) Nonaqueous electrolyte battery and battery pack
JP6130053B1 (ja) 組電池及び電池パック
JP5694221B2 (ja) 非水電解質電池及び電池パック
JP6100385B2 (ja) 非水電解質電池用正極、非水電解質電池、電池パック及び車
JP5639533B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用正極活物質の製造方法
JP6305263B2 (ja) 非水電解質電池、組電池、電池パック及び車
JP5710533B2 (ja) 非水電解質二次電池、該電池用電極、および電池パック
JP6523483B2 (ja) 非水電解質電池用正極活物質、非水電解質電池用正極、非水電解質電池および電池パック、車両
KR20170107895A (ko) 비수 전해질 전지, 전지 팩 및 차량
US11831005B2 (en) Electrode group, battery, and battery pack
US20180006338A1 (en) Assembled battery and battery pack using the same
US9755233B2 (en) Nonaqueous electrolyte battery and battery pack
JP6668509B2 (ja) 非水電解質電池及び電池パック
JP6878447B2 (ja) 非水電解質電池及び電池パック
US10230102B2 (en) Positive electrode active material, nonaqueous electrolyte battery and battery pack
JP7242834B2 (ja) 電極、非水電解質電池、及び電池パック
JP6113852B2 (ja) 非水電解質電池、電池パック及び車
JP7024083B2 (ja) 正極、非水電解質電池、及び電池パック
JP2018110127A (ja) 組電池、電池パック及び車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893799

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015537452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893799

Country of ref document: EP

Kind code of ref document: A1