WO2015037664A1 - シクロラバンジュロール及びその誘導体の製造方法 - Google Patents

シクロラバンジュロール及びその誘導体の製造方法 Download PDF

Info

Publication number
WO2015037664A1
WO2015037664A1 PCT/JP2014/074081 JP2014074081W WO2015037664A1 WO 2015037664 A1 WO2015037664 A1 WO 2015037664A1 JP 2014074081 W JP2014074081 W JP 2014074081W WO 2015037664 A1 WO2015037664 A1 WO 2015037664A1
Authority
WO
WIPO (PCT)
Prior art keywords
trimethyl
reaction
cyclohexene
group
acid
Prior art date
Application number
PCT/JP2014/074081
Other languages
English (en)
French (fr)
Inventor
金生 剛
尚樹 石橋
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN201480049929.1A priority Critical patent/CN105531251A/zh
Priority to US15/021,155 priority patent/US20160221923A1/en
Priority to EP14844894.7A priority patent/EP3045442A4/en
Publication of WO2015037664A1 publication Critical patent/WO2015037664A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/39Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester
    • C07C67/40Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester by oxidation of primary alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/14Preparation of carboxylic acid esters from carboxylic acid halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • C07C1/2076Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds by a transformation in which at least one -C(=O)- moiety is eliminated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/03Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the present invention relates to a process for producing monoterpene alcohols and derivatives thereof which are important as biologically active substances or synthetic intermediates thereof. More particularly, (2,4,4-trimethyl-2-cyclohexenyl) methanol (2,4,4-trimethyl-2-cyclohexenyl) derived from (2,4,4-trimethyl-2-cyclohexene) methanol known as cyclolavandulol.
  • the present invention relates to a method for producing a methyl ester compound.
  • Insect sex pheromones are biologically active substances that normally have the function of attracting male individuals to female individuals, and show high attracting activity even in small amounts. Sex pheromones are widely used as a means of predicting outbreaks and confirming geographical spread (invasion of specific areas) and as a means of controlling pests. As a means of pest control, mass trapping, attracting insecticidal method (Lure & kill or Attract & kill), attracting infection method (Lure & infect or Attract & infect) and communication disruption method (Matingdisruption method) Control methods are widely used in practice.
  • Butyric acid (2,4,4-trimethyl-2-cyclohexenyl) methyl [also known as: (2,4,4-trimethyl-2-cyclohexenyl) methyl n-butyrate, cyclolabandulyl butyrate] It was isolated as an attractant for parasites (Wasp), which is important for the control of (Mearybugs). That is, Tabata et al.
  • the methyl butyrate (2,4,4-trimethyl-2-cyclohexenyl) was discovered, the active substance was isolated and the structure was determined (Non-patent Document 1).
  • methyl butyrate (2,4,4-trimethyl-2-cyclohexenyl) is obtained in a yield of 1.2%.
  • the required amount of the active ingredient is used because the process is long and the yield is low, or a method such as chromatography, which is difficult to implement industrially for purification of the intermediate, is used. It was considered very difficult to secure.
  • the present invention has been made in view of the above circumstances, and is simple, efficient, and selective in order to supply a sufficient amount of an active ingredient necessary for biological, pharmacological or agricultural activity tests or actual use.
  • An object of the present invention is to provide an efficient manufacturing method.
  • each step for obtaining the (2,4,4-trimethyl-2-cyclohexene) methanol and the obtained (2,4,4-trimethyl-2-cyclohexene) methanol Is esterified into the following general formula (4) (In the formula, R represents hydrogen or a hydrocarbon group having 1 to 10 carbon atoms.)
  • R represents hydrogen or a hydrocarbon group having 1 to 10 carbon atoms.
  • monoterpene alcohols and their derivatives which are important as biologically active substances or synthetic intermediates thereof ie (2,4,4-trimethyl-2-cyclohexene) methanol, (2,4,4-trimethyl) -2-Cyclohexenyl) methyl ester compounds can be synthesized simply, efficiently and selectively.
  • 2,4,4-trimethyl-2-cyclohexenone (1) can be obtained, for example, by the enamine method (G. Stork et al., Journal of Organic Chemistry, 85, 207-221 and Y. Chan et al., Organic Synthesis, Coll. Vol. 6, 496-498) can be easily synthesized from an aldehyde derivative enamine and ethyl vinyl ketone. Then, it is possible to lead to the respective target products by one carbon (C1) increase and functional group conversion of the starting material.
  • C1 carbon
  • the carbonyl group of 2,4,4-trimethyl-2-cyclohexenone (1) which is the starting material, is converted into a methylene group, and 1-methylene-2,4,4-trimethyl-2-cyclohexene is converted. This is the process leading to (2).
  • a phosphorus ylide reagent prepared by treating a triphenylmethylphosphonium halide with a base in a solvent, that is, triphenylphosphonium methylide [(C 6 H 5 ) 3 P ⁇ CH 2 ] and a raw material React the ketone.
  • the raw material triphenylmethylphosphonium halide used in the preparation of the phosphorus ylide reagent include triphenylmethylphosphonium chloride, triphenylmethylphosphonium bromide, triphenylmethylphosphonium iodide, and the like.
  • Examples of the solvent in the preparation of the phosphorus ylide reagent include ethers such as diethyl ether, di-n-butyl ether, tetrahydrofuran and 1,4-dioxane, hydrocarbons such as hexane, heptane, benzene, toluene, xylene and cumene, N Aprotic polar solvents such as N, dimethylformamide (DMF), 1,3-dimethyl-2-imidazolidinone (DMI), dimethyl sulfoxide (DMSO), hexamethylphosphoric triamide (HMPA), acetonitrile, Nitriles such as propionitrile can be mentioned, and these can be used alone or in combination.
  • ethers such as diethyl ether, di-n-butyl ether, tetrahydrofuran and 1,4-dioxane
  • hydrocarbons such as hexane, heptane, benzene
  • Examples of the base in the preparation of the phosphorus ylide reagent include organometallic reagents such as methyllithium, ethyllithium, n-butyllithium and methylmagnesium chloride, alkoxides such as sodium methoxide, sodium ethoxide and potassium t-butoxide, lithium diisopropyl List metal amides such as amide, lithium hexamethyldisilazide, sodium hexamethyldisilazide, lithium dicyclohexylamide, metal hydrides such as sodium hydride, potassium hydride, calcium hydride, and sodium dimethylsil Can do.
  • organometallic reagents such as methyllithium, ethyllithium, n-butyllithium and methylmagnesium chloride
  • alkoxides such as sodium methoxide, sodium ethoxide and potassium t-butoxide
  • the amount of the base used is preferably 0.5 to 2 mol, more preferably 1.0 to 1.5 mol, per mol of triphenylmethylphosphonium halide.
  • the reaction temperature in the preparation of the phosphorus ylide reagent is preferably ⁇ 78 to 50 ° C., more preferably ⁇ 78 ° C. to room temperature (5 to 35 ° C., the same applies hereinafter), and further preferably ⁇ 10 ° C. to room temperature.
  • the reaction time in the preparation of the phosphorus ylide reagent is preferably 5 minutes to 18 hours, but more preferably 5 minutes to 1 hour in view of the stability of the reagent.
  • the phosphorus ylide reagent thus prepared, triphenylphosphonium methylide, is reacted with the ketone, 2,4,4-trimethyl-2-cyclohexenone (1).
  • a ketone is added dropwise to a solution of a phosphorus ylide reagent without a solvent or diluted with a solvent.
  • the solvent used for the dilution include the same ones used for preparing the phosphorus ylide reagent.
  • the reaction temperature in the Wittig reaction is preferably ⁇ 78 to 50 ° C., more preferably ⁇ 78 ° C. to room temperature, and further preferably ⁇ 10 ° C. to room temperature.
  • the amount of the phosphorus ylide reagent used in the Wittig reaction is preferably 0.5 to 10 mol per mol of the substrate ketone, and more preferably 1.0 to 2.5 mol from the viewpoint of yield and economy.
  • the reaction time in the Wittig reaction is preferably 30 minutes to 96 hours, although it is preferable to follow the progress of the reaction by gas chromatography (GC) or thin layer chromatography (TLC) to complete the reaction.
  • the Wittig reaction post-treatment that is, isolation and purification of the target product can be conveniently selected from purification methods in ordinary organic synthesis such as vacuum distillation and various chromatography, but from the viewpoint of industrial economy, Distillation is preferred.
  • triphenylphosphine oxide generated in the reaction may be previously removed by precipitation with a poor solvent and filtered, or may be distilled under reduced pressure without being removed.
  • 1-methylene-2,4,4-trimethyl-2-cyclohexene (2) is obtained.
  • the target product when the target product has sufficient purity, it may be used in the next step as a crude product.
  • the next step is a step of converting 1-methylene-2,4,4-trimethyl-2-cyclohexene (2) to (2,4,4-trimethyl-2-cyclohexene) methanol (3).
  • a known method of hydrating various olefins is used, and a method by hydroboration-oxidation and a method in which a silicon substituent is converted to a hydroxyl group in the presence of fluorine ions after hydrosilylation are preferred.
  • the boriding-oxidation method is preferable in that a hydroxyl group can be introduced selectively by selection of a reagent.
  • hydroboration the reaction substrate 1-methylene-2,4,4-trimethyl-2-cyclohexene (2) is reacted with boron compounds (boranes) in a normal solvent.
  • boron compound to be used examples include unsubstituted borane (including BH 3 , its dimer and a complex with ether or amine) or substituted borane, that is, monoalkylborane or dialkylborane.
  • the target product (2,4,4-trimethyl-2-cyclohexene) methanol (3) is formed outside the methylene group at the 1-position of the reaction substrate
  • 1-methylene-2,4,4-trimethyl-2-cyclohexene (2) ( exo-side) is a primary alcohol compound in which a hydroxyl group has been introduced, so it is desirable that it reacts only with the 1-position methylene group without reacting with the 2-position internal olefin, and the tertiary alcohol, That is, it is desirable that 1,2,4,4-tetramethyl-2-cyclohexen-1-ol is not by-produced.
  • monoalkylborane or dialkylborane is preferable as the boron compound.
  • borane having a large steric hindrance is preferable, and examples thereof include texylborane, isopinocanphenylborane, dicyclohexylborane, diciamylborane, diisopinocanphenylborane, 9-borabicyclo [3.3.1] nonane (9-BBN) and the like.
  • texylborane isopinocanphenylborane
  • dicyclohexylborane diciamylborane
  • diisopinocanphenylborane 9-borabicyclo [3.3.1] nonane (9-BBN) and the like.
  • 9-BBN 9-borabicyclo [3.3.1] nonane
  • the amount of boron compound used in the hydroboration is preferably 0.5 to 30 moles per mole of the reaction substrate 1-methylene-2,4,4-trimethyl-2-cyclohexene (2). In view of selectivity, it is more preferably 1.0 to 10 mol.
  • a reaction solvent in hydroboration for example, ethers such as diethyl ether, di-n-butyl ether, tetrahydrofuran, and 1,4-dioxane are preferable, and carbonization such as hexane, heptane, benzene, toluene, xylene, cumene and the like are preferable.
  • Aprotic polar solvents such as hydrogen, N, N-dimethylformamide (DMF), 1,3-dimethyl-2-imidazolidinone (DMI), dimethyl sulfoxide (DMSO), hexamethylphosphoric triamide (HMPA)
  • DMF N, N-dimethylformamide
  • DI 1,3-dimethyl-2-imidazolidinone
  • DMSO dimethyl sulfoxide
  • HMPA hexamethylphosphoric triamide
  • nitriles such as acetonitrile and propionitrile may be used.
  • the reaction temperature in hydroboration can be selected, for example, from ⁇ 78 ° C. to the boiling point of the solvent in consideration of reactivity, selectivity and reaction rate.
  • the reaction time in hydroboration is preferably 30 minutes to 96 hours, usually by tracking the progress of the reaction by thin layer chromatography (TLC) or the like to complete the reaction.
  • the substituted borane obtained by the hydroboration is oxidized using alkaline hydrogen peroxide to obtain the desired alcohol compound (2,4,4-trimethyl-2-cyclohexene) methanol (3).
  • alkaline hydrogen peroxide Usually, an alkali solution and then an aqueous hydrogen peroxide solution are dropped into the mixture of the hydroboration reaction. During the dropwise addition, the mixture is slowly dropped under cooling (from ⁇ 20 ° C. to ice-cooling) in order to prevent a sudden temperature rise of the reaction mixture.
  • an aqueous sodium hydroxide solution is usually used as the alkaline solution in the oxidation step.
  • a commercially available 35% aqueous solution is preferably used as the hydrogen peroxide in the oxidation step, but it may be diluted as appropriate.
  • the amount of the alkali solution and hydrogen peroxide used is not particularly limited as long as it is an amount necessary for allowing the reaction to proceed completely because both are available in large quantities at low cost industrially.
  • Isolation and purification of the target product can be appropriately selected and used from purification methods in ordinary organic synthesis such as vacuum distillation and various chromatography, but vacuum distillation is preferred from the viewpoint of industrial economy.
  • the alcohol compound derived from the alkyl group of the substituted borane when the substituted borane is used for hydroboration can be separated from the target product by evaporation of the solvent or distillation under reduced pressure.
  • (2,4,4-trimethyl-2-cyclohexene) methanol (3) is obtained from 2,4,4-trimethyl-2-cyclohexenone (1) with good yield and selectivity. .
  • the resulting (2,4,4-trimethyl-2-cyclohexene) methanol (3) is further esterified and converted to (2,4,4-trimethyl-2-cyclohexenyl) methyl ester (4). be able to.
  • R is hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms.
  • various ester compounds can be obtained.
  • the ester compound when R is hydrogen is a formate ester.
  • Specific examples of the hydrocarbon group for R include a methyl group (acetate ester as an ester compound), an ethyl group (propionate ester as an ester compound), an n-propyl group, an isopropyl group, and an n-butyl group.
  • esterification reaction a known ester production method, for example, a reaction with an acylating agent, a reaction with a carboxylic acid, or a transesterification reaction can be applied.
  • the solvent is preferably a chlorinated solvent such as methylene chloride, chloroform or trichloroethylene, or a hydrocarbon such as hexane, heptane, benzene, toluene, xylene or cumene.
  • a chlorinated solvent such as methylene chloride, chloroform or trichloroethylene
  • a hydrocarbon such as hexane, heptane, benzene, toluene, xylene or cumene.
  • ethers such as 1,4-dioxane, nitriles such as acetonitrile, ketones such as acetone and 2-butanone, ethyl acetate, n-butyl acetate, etc.
  • aprotic polar solvents such as N, N-dimethylformamide, dimethyl sulfoxide, hexamethylphosphoric triamide, and the like, which can be used alone or in admixture of two or more.
  • the acylating agent is preferably an acid halide including an acid halide or a mixed acid anhydride.
  • the acid halide include acid chloride (RCOCl corresponding to the hydrocarbon group of R in formula (4)), acid bromide (RCOBr corresponding to R in formula (4)), and the like.
  • the acid anhydride including the mixed acid anhydride is preferably RCOOX corresponding to R in the formula (4), where X is R 2 C ⁇ O (R 2 is hydrogen or carbon number 1 To a hydrocarbon group having 1 to 5 carbon atoms, preferably a hydrocarbon group having 1 to 5 carbon atoms, which may be the same as or different from R, but preferably the same as R, and the same specific examples as R described above may be used.
  • a leaving group such as a trifluoroacetyl group, a methanesulfonyl group, a trifluoromethanesulfonyl group, a benzenesulfonyl group, a p-toluenesulfonyl group, or a p-nitrophenyl group.
  • the reaction substrate (2,4,4-trimethyl-2-cyclohexene) methanol (3) the acylating agent, triethylamine, diisopropylethylamine, N, N-dimethylaniline in the above solvent are used.
  • bases such as pyridine and 4-dimethylaminopyridine are added sequentially or simultaneously to react.
  • acylating agents such as acid anhydrides
  • inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, oxalic acid, trifluoroacetic acid, methanesulfonic acid, benzenesulfonic acid, p-toluene instead of base
  • the reaction can also be carried out under an acid catalyst selected from organic acids such as sulfonic acid.
  • the amount of the acylating agent used depends on the structure of the reaction substrate, but is preferably in the range of 1 to 40 mol, more preferably 1 to 5 mol, per mol of the starting alcohol compound.
  • an appropriate reaction temperature can be selected depending on the type of acylating agent used and reaction conditions, but in general, the boiling point of the solvent is preferably ⁇ 50 ° C., more preferably ⁇ 20 ° C. to room temperature.
  • the amount of carboxylic acid used depends on the structure of the reaction substrate, but is preferably in the range of 1 to 40 mol, more preferably 1 to 5 mol, per mol of the starting alcohol compound.
  • acid catalysts used for the reaction with carboxylic acid include inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, oxalic acid, trifluoroacetic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, etc.
  • An organic acid can be mentioned, These are used individually or in mixture.
  • the amount of the acid catalyst used is preferably 0.001 to 1 mol, more preferably 0.01 to 0.05 mol of catalyst per mol of the starting alcohol compound.
  • the solvent used for the reaction with the carboxylic acid include the same solvents as those mentioned above for the reaction with the acylating agent, but generally the boiling point of the solvent is preferably from ⁇ 50 ° C.
  • the reaction may be allowed to proceed while removing the generated water out of the system by azeotropic distillation. In this case, water may be distilled off while refluxing at the boiling point of the solvent at normal pressure, but water may be distilled off at a temperature lower than the boiling point under reduced pressure.
  • the reaction is carried out by reacting the corresponding carboxylic acid ester compound of a carboxylic acid and a lower alcohol and the starting alcohol compound in the presence of a catalyst, and removing the resulting lower alcohol.
  • a primary alkyl ester is preferable, and methyl ester, ethyl ester, and n-propyl ester are particularly preferable from the viewpoints of price, easiness of progress of reaction, and the like.
  • the amount of the carboxylic acid ester compound used depends on the structure of the reaction substrate, but is preferably in the range of 1 to 40 mol, more preferably 1 to 5 mol, per mol of the starting alcohol compound.
  • Examples of the catalyst used in the transesterification reaction include inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, and nitric acid, and organic acids such as oxalic acid, trifluoroacetic acid, methanesulfonic acid, benzenesulfonic acid, and p-toluenesulfonic acid.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, and nitric acid
  • organic acids such as oxalic acid, trifluoroacetic acid, methanesulfonic acid, benzenesulfonic acid, and p-toluenesulfonic acid.
  • Sodium methoxide, sodium ethoxide, potassium t-butoxide, bases such as 4-dimethylaminopyridine, sodium cyanate, potassium cyanate, sodium acetate, potassium acetate, calcium acetate, tin acetate, aluminum acetate, aluminum acetoacetate, alumina Salts such as aluminum trichloride, aluminum ethoxide, aluminum isopropoxide, boron trifluoride, boron trichloride, boron tribromide, tin tetrachloride, tin tetrabromide, dibutyltin dichloride, dibutyltin dimethoxide, dibutyl Tin oxide, titanium tetrachloride, titanium tetrabromide , Titanium (IV) methoxide, titanium (IV) ethoxide, titanium (IV) isopropoxide, may be mentioned Lewis acids such as titanium oxide (IV), which are used alone or in combination.
  • the amount of the catalyst used for the transesterification reaction is preferably 0.001 to 20 mol, more preferably 0.01 to 0.05 mol per mol of the starting alcohol compound.
  • the reaction can be carried out without solvent (the carboxylic acid ester itself, which is a reaction reagent, may be used as a solvent), and is preferable because it does not require extra operations such as concentration and solvent recovery. It is also possible to use a solvent supplementarily for the purpose of preventing polymerization.
  • Examples of the solvent used for the transesterification reaction include hydrocarbons such as hexane, heptane, benzene, toluene, xylene, cumene, diethyl ether, dibutyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, 1,4-dioxane and the like. Use of ethers alone or in combination is preferred.
  • the reaction temperature of the transesterification reaction can be selected appropriately depending on the type of carboxylic acid ester compound used and the reaction conditions, but it is usually performed under heating and a low-boiling lower alcohol produced by the transesterification reaction, that is, methanol. It is better to carry out the reaction near the boiling point of ethanol, 1-propanol, etc. and distill off the resulting lower alcohol.
  • the alcohol may be distilled off at a temperature lower than the boiling point under reduced pressure.
  • Isolation and purification of the desired (2,4,4-trimethyl-2-cyclohexenyl) methyl ester compound (4) is appropriately selected from purification methods in ordinary organic synthesis such as vacuum distillation and various chromatography. Although it can be used, vacuum distillation is preferred from the viewpoint of industrial economy. As described above, the (2,4,4-trimethyl-2-cyclohexenyl) methyl ester compound (4) is obtained with good yield and selectivity from 2,4,4-trimethyl-2-cyclohexenone (1). ) Is obtained.
  • Synthesis example 1 Synthesis of starting raw material 2,4,4-trimethyl-2-cyclohexenone (1)
  • Starting raw material 2,4,4-trimethyl-2-cyclohexenone (1) was prepared by the following reaction route, specifically: Synthesized by the method.
  • Example 1 Synthesis of 1-methylene-2,4,4-trimethyl-2-cyclohexene (2) 55.0 g of 2,4,4-trimethyl-2-cyclohexenone (1) synthesized by the method of Synthesis Example 1 under a nitrogen atmosphere was added dropwise over 20 minutes to an ice-cooled phosphorus ylide solution prepared from 181 g of methyltriphenylphosphonium bromide and 56.1 g of potassium t-butoxide in a mixed solvent of 700 ml of tetrahydrofuran and 300 ml of toluene. The mixture was stirred for 80 minutes with ice cooling, and then poured into ice water to separate the organic layer.
  • Example 2 Synthesis Example 1 of (2,4,4-trimethyl-2-cyclohexene) methanol (3) In a nitrogen atmosphere, ice-cooled borane-tetrahydrofuran solution 0.9M, 19.0 g of 2-methyl-2-butene was added dropwise to 145 ml over 5 minutes, and the mixture was stirred for 2 hours under ice-cooling to prepare disiamilborane. did. Next, a mixture of 11.24 g of 1-methylene-2,4,4-trimethyl-2-cyclohexene (2) synthesized by the method of Example 1 and 50 ml of tetrahydrofuran was added dropwise to dicyamilborane prepared for 5 minutes.
  • Example 3 Synthesis Example 2 of (2,4,4-trimethyl-2-cyclohexene) methanol (3) 1-methylene-2 was prepared by the same method as in Example 2, except that 9-borabicyclo [3.3.1] nonane (9-BBN) was used instead of dicyamilborane prepared in the system in Example 2 above. , 4,4-Trimethyl-2-cyclohexene (2), the desired product (2,4,4-trimethyl-2-cyclohexene) methanol (3) (quantitative yield) was obtained. Various spectra of the target product obtained were consistent with those of the target product of Example 2.
  • Example 4 Synthesis of butyric acid (2,4,4-trimethyl-2-cyclohexenyl) methyl in which R is n-propyl group in formula (4) Synthesized by the method of Example 2 while cooling with ice in a nitrogen atmosphere (2,4 To a mixture of 18.8 g of 4,4-trimethyl-2-cyclohexene) methanol (3), 14.5 g of pyridine, and 200 ml of acetonitrile, 18.9 g of butyric chloride was added dropwise over 10 minutes. After stirring on ice for 10 minutes and at room temperature for 90 minutes, the reaction mixture was poured into ice water and extracted with n-hexane.
  • EI-MS (70 eV): m / z 27, 43, 55, 71, 93, 108, 121, 136.
  • IR (D-ATR): ⁇ 22956, 2934, 2864, 1738, 1453, 1303, 1176 cm ⁇ 1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 所定の化合物を簡便で効率的、かつ選択的に製造する。具体的には、2,4,4-トリメチル-2-シクロヘキセノン(1)のカルボニル基を反応させて1-メチレン-2,4,4-トリメチル-2-シクロヘキセン(2)を得る工程と、(2)の環外二重結合を反応させて(2,4,4-トリメチル-2-シクロヘキセン)メタノール(3)を得る工程とを少なくとも含む(2,4,4-トリメチル-2-シクロヘキセン)メタノールの製造方法、(3)をエステル化して(2,4,4-トリメチル-2-シクロヘキセニル)メチル・エステル化合物(4)を得る工程とを少なくとも含む(2,4,4-トリメチル-2-シクロヘキセニル)メチル・エステル化合物の製造方法を提供する。

Description

シクロラバンジュロール及びその誘導体の製造方法
 本発明は、生物活性物質として又はその合成中間体として重要なモノテルペンアルコール及びその誘導体の製造方法に関するものである。より詳しくは、シクロラバンジュロール(cyclolavandulol)として知られる(2,4,4-トリメチル-2-シクロヘキセン)メタノール及びこのアルコール化合物から誘導される(2,4,4-トリメチル-2-シクロヘキセニル)メチル・エステル化合物の製造方法に関するものである。
 昆虫の性フェロモンは、通常雌個体が雄個体を誘引する機能をもつ生物活性物質であり、少量で高い誘引活性を示す。性フェロモンは、発生予察や地理的な拡散(特定地域への侵入)の確認の手段として、また、害虫防除の手段として広く利用されている。害虫防除の手段としては、大量誘殺法(Mass trapping)、誘引殺虫法(Lure & kill又はAttract & kill)、誘引感染法(Lure & infect又はAttract & infect)や交信攪乱法(Mating disruption)と呼ばれる防除法が広く実用に供されている。性フェロモンの利用にあたっては必要量のフェロモン原体を経済的に製造することが、基礎研究のために、更には、応用のために必要とされる。
 酪酸(2,4,4-トリメチル-2-シクロヘキセニル)メチル[別名:(2,4,4-トリメチル-2-シクロヘキセニル)メチル・n-ブチレート、シクロラバンジュリルブチレート]は、コナカイガラムシ(Mealybug)類の防除のために重要な寄生蜂(Wasp)の誘引物質として単離された。すなわち、Tabataらは、ラバンジュロール(Lavandulol)を酪酸クロリドで処理して、酪酸ラバンジュリルを合成した際の副生成物中からコナカイガラムシに寄生する蜂の一種であるAnagyrus sawadaiを誘引する物質である酪酸(2,4,4-トリメチル-2-シクロヘキセニル)メチルを発見し、この活性物質を単離し、構造を決定した(非特許文献1)。そして、ラバンジュロールを出発原料として酪酸クロリドで処理することにより1.2%の収率で酪酸(2,4,4-トリメチル-2-シクロヘキセニル)メチルを得ている。
 Teshibaらは、フジコナカイガラムシ(Planococcus kraunhiae)による被害のあるカキ圃場において、この物質が本来フジコナカイガラムシに寄生しない種の寄生蜂であるAnagyrus sawadai及び別の寄生蜂Leptomastix dactylopiiを誘引し、フジコナカイガラムシの防除のために有効な手段となり得ることを示した(非特許文献2)。
 これらの生物活性物質の構造活性相関等の基礎的な生物学的や薬学的研究のため、更には、応用や実用に供する目的には十分量の物質供給が必要となり、効率的で選択性のよい(異性体の副生が少なく分離の手間がかからない)これらの生物活性物質の製造方法が強く望まれている。
Appl.Entomol.Zool.,46,117-123(2011) Journal of Pharmacy Research、4,2126-2128(2011) Appl.Entomol.Zool.,43,369-375(2008)
 しかし、これらの合成例では工程が長く低収率であったり、また、中間体の精製に工業的には実施しにくいクロマトグラフィー等の手段を用いている等の理由で、必要量の原体の確保が非常に困難と考えられた。
 本発明は上記事情に鑑みなされたもので、生物学的、薬理学的や農学的活性試験や実際の利用等に必要な十分量の原体を供給するために、簡便で効率的、かつ選択的な製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、出発原料である2,4,4-トリメチル-2-シクロヘキセノンから、(2,4,4-トリメチル-2-シクロヘキセン)メタノールが、更に、このアルコールのエステル化反応により(2,4,4-トリメチル-2-シクロヘキセニル)メチル・エステル化合物がそれぞれ収率よく、かつ選択性よく工業的に製造可能であることを見出し、本発明を完成させたものである。
 すなわち、本発明の一つの態様では、下記式(1)に示す2,4,4-トリメチル-2-シクロヘキセノンのカルボニル基を反応させて下記式(2)に示す1-メチレン-2,4,4-トリメチル-2-シクロヘキセンを得る工程と、得られた1-メチレン-2,4,4-トリメチル-2-シクロヘキセンの環外二重結合を反応させて下記式(3)に示す(2,4,4-トリメチル-2-シクロヘキセン)メタノールを得る工程とを少なくとも含む(2,4,4-トリメチル-2-シクロヘキセン)メタノールの製造方法が提供される。
Figure JPOXMLDOC01-appb-C000003
 また、本発明の別の態様では、この(2,4,4-トリメチル-2-シクロヘキセン)メタノールを得るための各工程と、得られた(2,4,4-トリメチル-2-シクロヘキセン)メタノールをエステル化して下記一般式(4)
Figure JPOXMLDOC01-appb-C000004
(式中、Rは水素又は炭素数1から10の炭化水素基を表す。)
で示される(2,4,4-トリメチル-2-シクロヘキセニル)メチル・エステル化合物を得る工程とを少なくとも含む(2,4,4-トリメチル-2-シクロヘキセニル)メチル・エステル化合物の製造方法が提供される。
 本発明によれば、生物活性物質として又はその合成中間体として重要なモノテルペンアルコール及びその誘導体、すなわち、(2,4,4-トリメチル-2-シクロヘキセン)メタノール、(2,4,4-トリメチル-2-シクロヘキセニル)メチル・エステル化合物を簡便で効率的、かつ選択的に合成することができる。
 以下、本発明の実施の形態を詳細に説明するが、本発明はこれらに限定されるものではない。
 本発明の出発原料である2,4,4-トリメチル-2-シクロヘキセノン(1)は、例えば、エナミン法(G.Storkら、Journal of Organic Chemistry,85,207-221及びY.Chanら、Organic Syntheses,Coll.Vol.6,496-498)でアルデヒド誘導体エナミンとエチルビニルケトンから容易に合成できる。そして、上記出発原料の一炭素(C1)増炭と官能基変換によってそれぞれの目的物へと導くことが可能である。
 第一工程は、上記出発原料である2,4,4-トリメチル-2-シクロヘキセノン(1)のカルボニル基をメチレン基に変換し、1-メチレン-2,4,4-トリメチル-2-シクロヘキセン(2)に導く工程である。
Figure JPOXMLDOC01-appb-C000005
 この工程には、既知の種々の方法、例えば、リンイリドを用いるWittig反応、α-シリルメチルカルバニオンの付加に次いで酸又は塩基で処理するPeterson反応、Tebbe錯体を用いる方法、Petasis試薬を用いる方法、四塩化チタン存在下に、ジヨードメタン又はジブロモメタンを亜鉛で処理して得られる試薬による方法、ハロゲン化メチルマグネシウム、メチルリチウム、トリメチルアルミニウム等のメチルカルバニオン(メチル有機金属試薬)の付加による第三級アルコールの生成に次いで脱水させる方法等が用いられる。このうち、Wittig反応とPeterson反応は、既存の二重結合の位置が変化せず単一の異性体を与える点で好ましく、特に反応条件や後処理及び生成物の単離の容易さの点で、Wittig反応が好ましい。
 Wittig反応の好ましい例としては、ハロゲン化トリフェニルメチルホスホニウムを溶媒中、塩基で処理して調製したリンイリド試薬、すなわち、トリフェニルホスホニウムメチリド[(CP=CH]と原料のケトンを反応させる。
 リンイリド試薬の調製における原料のハロゲン化トリフェニルメチルホスホニウムとしては、例えば、塩化トリフェニルメチルホスホニウム、臭化トリフェニルメチルホスホニウム、ヨウ化トリフェニルメチルホスホニウム等が挙げられる。
 リンイリド試薬の調製における溶媒としては、例えば、ジエチルエーテル、ジ-n-ブチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クメン等の炭化水素類、N,N-ジメチルホルムアミド(DMF)、1,3-ジメチル-2-イミダゾリジノン(DMI)、ジメチルスルホキシド(DMSO)、ヘキサメチルホスホリックトリアミド(HMPA)等の非プロトン性極性溶媒類、アセトニトリル、プロピオニトリル等のニトリル類を挙げることができ、これらを単独又は混合して用いることができる。
 リンイリド試薬の調製における塩基としては、例えば、メチルリチウム、エチルリチウム、n-ブチルリチウム、塩化メチルマグネシウム等の有機金属試薬やナトリウムメトキシド、ナトリウムエトキシド、カリウムt-ブトキシド等のアルコキシド類、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラジド、ナトリウムヘキサメチルジシラジド、リチウムジシクロヘキシルアミド等の金属アミド類、水素化ナトリウム、水素化カリウム、水素化カルシウム等の水素化金属類、ジムシルナトリウム等を挙げることができる。塩基の使用量は、ハロゲン化トリフェニルメチルホスホニウム1モルにつき、好ましくは0.5から2モル、より好ましくは1.0から1.5モルである。
 リンイリド試薬の調製における反応温度は、好ましくは-78から50℃、より好ましくは-78℃から室温(5から35℃、以下同様。)、更に好ましくは-10℃から室温である。
 リンイリド試薬の調製における反応時間は、5分間から18時間が好ましいが、試薬の安定性から5分間から1時間がより好ましい。
 このようにして調製したリンイリド試薬であるトリフェニルホスホニウムメチリドと、ケトンである2,4,4-トリメチル-2-シクロヘキセノン(1)を反応させる。通常、リンイリド試薬の溶液にケトンを無溶媒で又は溶媒で希釈して滴下する。
 希釈に使用する溶媒は、リンイリド試薬の調製に用いるものと同様のものが例示できる。
 Wittig反応における反応温度は、好ましくは-78から50℃、より好ましくは-78℃から室温、更に好ましくは-10℃から室温である。
 Wittig反応におけるリンイリド試薬の使用量は、基質のケトン1モルにつき、好ましくは0.5から10モル、収率や経済性の観点からより好ましくは1.0から2.5モルである。
 Wittig反応における反応時間は、ガスクロマトグラフィー(GC)や薄層クロマトグラフィー(TLC)で反応の進行を追跡して反応を完結させるのがよいが、通常30分間から96時間である。
 Wittig反応の後処理、すなわち目的物の単離や精製は、減圧蒸留や各種クロマトグラフィー等の通常の有機合成における精製方法から便宜選択して用いることができるが、工業的経済性の観点から減圧蒸留が好ましい。この際、予め反応で生じるトリフェニルフォスフィンオキシドを貧溶媒で析出させてろ別する等して除去しておいてもよいし、除去せずそのまま減圧蒸留してもよい。以上のようにして、1-メチレン-2,4,4-トリメチル-2-シクロヘキセン(2)を得る。また、目的物が十分な純度を有している場合には、粗生成物のまま次の工程に用いてもよい。
 次の工程は、1-メチレン-2,4,4-トリメチル-2-シクロヘキセン(2)を(2,4,4-トリメチル-2-シクロヘキセン)メタノール(3)に変換する工程である。
Figure JPOXMLDOC01-appb-C000006
 この工程には、既知の種々のオレフィンを水和する方法が用いられるが、ヒドロホウ素化-酸化による方法、ヒドロシリル化後にケイ素置換基をフッ素イオン存在下水酸基に変換する方法が好ましく、特に、ヒドロホウ素化-酸化による方法は試薬の選択により水酸基を位置選択的に導入できる点で好ましい。
 ヒドロホウ素化では、反応基質1-メチレン-2,4,4-トリメチル-2-シクロヘキセン(2)を通常溶媒中、ホウ素化合物(ボラン類)と反応させる。
 用いられるホウ素化合物としては、例えば、無置換ボラン(BH、その二量体及びエーテルやアミンとの錯体を含む)又は置換ボラン、すなわち、モノアルキルボラン又はジアルキルボラン等が挙げられる。目的物(2,4,4-トリメチル-2-シクロヘキセン)メタノール(3)は、反応基質1-メチレン-2,4,4-トリメチル-2-シクロヘキセン(2)の1位のメチレン基の外側(exo-側)に水酸基が導入された第一級アルコール化合物であるので、基質の2位の内部オレフィンと反応せず1位のメチレン基とのみ反応することが望ましく、しかも、第三級アルコール、すなわち、1,2,4,4-テトラメチル-2-シクロヘキセン-1-オールが副生しないことが望ましい。これらの選択性の実現のためには、ホウ素化合物としてモノアルキルボラン又はジアルキルボランが好ましい。特に、立体障害の大きなボランが好ましく、テキシルボラン、イソピノカンフェニルボラン、ジシクロヘキシルボラン、ジシアミルボラン、ジイソピノカンフェニルボラン、9-ボラビシクロ[3.3.1]ノナン(9-BBN)等を例示でき、また後述するが、次の酸化工程では置換ボランのアルキル置換基由来の対応するアルコール化合物が本質的に生成するので、目的物との分離を考慮してボラン類を選択するとよい。これらのホウ素化合物は別途調製又は購入したものを使用できるが、系内で調製してそのまま反応基質との反応に用いることもできる。
 ヒドロホウ素化におけるホウ素化合物の使用量としては、反応基質1-メチレン-2,4,4-トリメチル-2-シクロヘキセン(2)1モルにつき、好ましくは0.5から30モル、収率や経済性や選択性からより好ましくは1.0から10モルである。
 ヒドロホウ素化における反応溶媒としては、例えば、ジエチルエーテル、ジ-n-ブチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類が好ましく、これらにヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クメン等の炭化水素類、N,N-ジメチルホルムアミド(DMF)、1,3-ジメチル-2-イミダゾリジノン(DMI)、ジメチルスルホキシド(DMSO)、ヘキサメチルホスホリックトリアミド(HMPA)等の非プロトン性極性溶媒類、アセトニトリル、プロピオニトリル等のニトリル類を混合して用いてもよい。
 ヒドロホウ素化における反応温度は、例えば-78℃から溶媒の沸点まで反応性や選択性や反応速度を考慮して選択できる。
 ヒドロホウ素化における反応時間は、薄層クロマトグラフィー(TLC)等で反応の進行を追跡して反応を完結させるのがよく、通常30分間から96時間である。
 続く酸化工程は、上記ヒドロホウ素化で得られた置換ボランをアルカリ性過酸化水素を用いて酸化処理して目的のアルコール化合物(2,4,4-トリメチル-2-シクロヘキセン)メタノール(3)を得る工程である。通常、ヒドロホウ素化反応の混合物中にアルカリ溶液、次いで、過酸化水素水溶液を滴下して実施する。滴下の際は反応混合物の急激な温度上昇を防ぐために、冷却下(-20℃から氷冷が好ましい)、ゆっくりと滴下する。
 酸化工程におけるアルカリ溶液としては、水酸化ナトリウム水溶液が通常用いられる。また、酸化工程における過酸化水素は市販の35%水溶液が好ましく用いられるが、適宜希釈して用いてもよい。これらアルカリ溶液及び過酸化水素の使用量は、どちらも工業的に大量に安価で入手できるものであるので、反応を完全に進行させるために必要な量であれば特に制限されない。
 目的物の単離や精製は、減圧蒸留や各種クロマトグラフィー等の通常の有機合成における精製方法から適宜選択して用いることができるが、工業的経済性の観点から減圧蒸留が好ましい。また、置換ボランをヒドロホウ素化に用いた場合の置換ボランのアルキル基由来のアルコール化合物は、溶媒留去又は減圧蒸留によって目的物から分離できる。
 以上のようにして、2,4,4-トリメチル-2-シクロヘキセノン(1)から収率よく、かつ選択性よく(2,4,4-トリメチル-2-シクロヘキセン)メタノール(3)が得られる。
 得られた(2,4,4-トリメチル-2-シクロヘキセン)メタノール(3)は、更にエステル化して、(2,4,4-トリメチル-2-シクロヘキセニル)メチル・エステル(4)に変換することができる。
Figure JPOXMLDOC01-appb-C000007
 Rは、水素又は炭素数1から10、好ましくは炭素数1から5の炭化水素基である。Rの種類によって種々のエステル化合物になり得る。例えば、Rが水素の場合のエステル化合物としてはギ酸エステルとなる。
 Rの炭化水素基の具体例としては、メチル基(エステル化合物としては酢酸エステルとなる)、エチル基(エステル化合物としてはプロピオン酸エステルとなる)、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、n-オクチル基、n-ノニル基、n-デシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、メチルシクロプロピル基、ジメチルシクロプロピル基(すべてのメチル基の置換位置を含む、以下同じ。)、メチルシクロブチル基、ジメチルシクロブチル基、トリメチルシクロブチル基、テトラメチルシクロブチル基、メチルシクロペンチル基、ジメチルシクロペンチル基、トリメチルシクロペンチル基、テトラメチルシクロペンチル基、メチルシクロヘキシル基、ジメチルシクロヘキシル基、トリメチルシクロヘキシル基等の直鎖状、分岐状もしくは環状の飽和炭化水素基、又は、ビニル基(エステル化合物としてはアクリル酸エステルとなる。)、1-プロペニル基(エステル化合物としてはクロトン酸エステルとなる。)、2-プロペニル基(エステル化合物としてはメタクリル酸エステルとなる。)、2-メチル-1-プロペニル基(エステル化合物としてはセネシオ酸エステルとなる。)、エチニル基(エステル化合物としてはプロピオール酸エステルとなる。)、プロピニル基、1-ブチニル基、シクロペンテニル基(すべての二重結合の位置を含む、以下同じ。)、シクロヘキセニル基、ジクロヘキサジエニル基、メチルシクロヘキセニル基等の直鎖状、分岐状もしくは環状の不飽和炭化水素基、又はこれらと異性体の関係にある炭化水素基が挙げられる。
 エステル化反応としては、公知のエステルの製造方法、例えば、アシル化剤との反応、カルボン酸との反応、エステル交換反応を適用できる。
 エステル化反応としてアシル化剤との反応を用いる場合、溶媒は、好ましくは、塩化メチレン、クロロホルム、トリクロロエチレン等の塩素系溶剤類、へキサン、ヘプタン、ベンゼン、トルエン、キシレン、クメン等の炭化水素類、ジエチルエーテル、ジブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、アセトニトリル等のニトリル類、アセトン、2-ブタノン等のケトン類、酢酸エチル、酢酸n-ブチル等のエステル類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホリックトリアミド等の非プロトン性極性溶媒類から選択して、単独あるいは2種類以上を混合して使用できる。
 アシル化剤は、好ましくは、酸ハロゲン化物、又は混合酸無水物を含む酸無水物である。酸ハロゲン化物としては、好ましくは、酸クロリド(式(4)中のRの炭化水素基に対応したRCOCl)、酸ブロミド(式(4)中のRに対応したRCOBr)等が挙げられる。混合酸無水物を含む酸無水物として、好ましくは、式(4)中のRに対応したRCOOXが挙げられ、ここで、Xは、RC=O(Rは、水素又は炭素数1から10の炭化水素基、好ましくは炭素数1から5の炭化水素基であり、Rと同じであっても異なってもよいが、好ましくはRと同じであり、上述したRと同じ具体例が挙げられる。)、トリフルアセチル基、メタンスルホニル基、トリフルオロメタンスルホニル基、ベンゼンスルホニル基、p-トルエンスルホニル基、又はp-ニトロフェニル基等の脱離基を表す。
 アシル化剤との反応では、上記溶媒中、反応基質の(2,4,4-トリメチル-2-シクロヘキセン)メタノール(3)と、アシル化剤と、トリエチルアミン、ジイソプロピルエチルアミン、N,N-ジメチルアニリン、ピリジン、4-ジメチルアミノピリジン等の塩基類を順次又は同時に加えて反応させる。酸無水物等のアシル化剤を用いる反応では、塩基の代わりに塩酸、臭化水素酸、硫酸、硝酸等の無機酸類、シュウ酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機酸類から選ばれる酸触媒下に反応を行うこともできる。
 アシル化剤の使用量は、反応基質の構造に依存するが、原料のアルコール化合物1モルにつき、好ましくは1から40モル、より好ましくは1から5モルの範囲である。
 アシル化反応温度は、用いるアシル化剤の種類や反応条件により適切な反応温度を選択できるが、一般的には-50℃から溶媒の沸点が好ましく、-20℃から室温が更に好ましい。
 エステル化反応としてカルボン酸との反応を用いる場合、対応するカルボン酸と原料のアルコール化合物(2,4,4-トリメチル-2-シクロヘキセン)メタノール(3)との脱水反応であり、酸触媒下に行うのが一般的である。
 カルボン酸の使用量は、反応基質の構造に依存するが、原料のアルコール化合物1モルにつき、好ましくは1から40モル、より好ましくは1から5モルの範囲である。
 カルボン酸との反応に用いる酸触媒の例として、塩酸、臭化水素酸、硫酸、硝酸等の無機酸類、シュウ酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機酸類を挙げることができ、これらは単独又は混合して用いられる。酸触媒の使用量は、原料のアルコール化合物1モルにつき、好ましくは0.001から1モル、より好ましくは0.01から0.05モルの触媒量である。
 カルボン酸との反応に用いる溶媒としては、上記アシル化剤との反応に挙げたものと同様のものを例示できるが、一般的には-50℃から溶媒の沸点が好ましい。へキサン、ヘプタン、ベンゼン、トルエン、キシレン、クメン等の炭化水素類を含む溶媒を用いて、生じる水を共沸により系外に除去しながら反応を進行させてもよい。この場合、常圧で溶媒の沸点で還流しながら水を留去してもよいが、減圧下に沸点より低い温度で水の留去を行ってもよい。
 エステル化反応としてエステル交換反応を用いる場合、対応するカルボン酸と低級アルコールとのカルボン酸エステル化合物と原料のアルコール化合物とを触媒存在下に反応させ、生じる低級アルコールを除去することにより実施する。
 カルボン酸エステル化合物としては、第一級アルキルエステルが好ましく、特にメチルエステル、エチルエステル、n-プロピルエステルが価格、反応の進行のし易さ等の点から好ましい。このカルボン酸エステル化合物の使用量は、反応基質の構造に依存するが、原料のアルコール化合物1モルにつき、好ましくは1から40モル、より好ましくは1から5モルの範囲である。
 エステル交換反応に用いる触媒としては、例えば、塩酸、臭化水素酸、硫酸、硝酸等の無機酸類、シュウ酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機酸類、ナトリウムメトキシド、ナトリウムエトキシド、カリウムt-ブトキシド、4-ジメチルアミノピリジン等の塩基類、青酸ナトリウム、青酸カリウム、酢酸ナトリウム、酢酸カリウム、酢酸カルシウム、酢酸錫、酢酸アルミニウム、アセト酢酸アルミニウム、アルミナ等の塩類、三塩化アルミニウム、アルミニウムエトキシド、アルミニウムイソプロポキシド、三フッ化ホウ素、三塩化ホウ素、三臭化ホウ素、四塩化錫、四臭化錫、二塩化ジブチル錫、ジブチル錫ジメトキシド、ジブチル錫オキシド、四塩化チタン、四臭化チタン、チタン(IV)メトキシド、チタン(IV)エトキシド、チタン(IV)イソプロポキシド、酸化チタン(IV)等のルイス酸類を挙げることができ、これらは単独又は混合して用いられる。
 エステル交換反応に用いる触媒の使用量は、原料のアルコール化合物1モルにつき、好ましくは0.001から20モル、より好ましくは0.01から0.05モルの触媒量である。反応は無溶媒(反応試薬であるカルボン酸エステル自身を溶媒として用いてもよい)で行うことができ、余計な濃縮や溶媒回収等の操作を必要としないので好ましいが、目的物や反応試薬の重合を防ぐ等の目的で溶媒を補助的に用いることも可能である。
 エステル交換反応に用いる溶媒として、例えば、へキサン、ヘプタン、ベンゼン、トルエン、キシレン、クメン等の炭化水素類、ジエチルエーテル、ジブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類の単独又は混合使用が好ましい。
 エステル交換反応の反応温度は、用いるカルボン酸エステル化合物の種類や反応条件により適切な反応温度を選択できるが、通常、加熱下に行われ、エステル交換反応で生じる低沸点の低級アルコール、即ち、メタノール、エタノール、1-プロパノール等の沸点付近で反応を行い、生じる低級アルコールを留去しながら行うのがよい結果を与える。減圧下に沸点より低い温度でアルコールの留去を行ってもよい。
 目的の(2,4,4-トリメチル-2-シクロヘキセニル)メチル・エステル化合物(4)の単離や精製は、減圧蒸留や各種クロマトグラフィー等の通常の有機合成における精製方法から適宜選択して用いることができるが、工業的経済性の観点から減圧蒸留が好ましい。
 以上のようにして、2,4,4-トリメチル-2-シクロヘキセノン(1)から収率よく、かつ選択性よく(2,4,4-トリメチル-2-シクロヘキセニル)メチル・エステル化合物(4)が得られる。
 以下、実施例を示して、本発明を更に具体的に説明するが、本発明はこれらにより限定されるものではない。
合成例1
出発原料2,4,4-トリメチル-2-シクロヘキセノン(1)の合成
 出発原料2,4,4-トリメチル-2-シクロヘキセノン(1)は、以下の反応経路により、具体的には下記の方法によって合成された。
Figure JPOXMLDOC01-appb-C000008
 窒素雰囲気下、氷冷したイソブチルアルデヒドピロリジンエナミン68.5gにエチルビニルケトン40.4gを10分かけて滴下した。滴下後、反応混合物を徐々に室温まで上げ、更に室温で17時間かき混ぜた。反応混合物を再び氷冷した後、20%塩酸400mlを滴下した。滴下後、反応混合物を徐々に室温まで上げ、更に室温で30時間かき混ぜた。反応混合物をジエチルエーテルで抽出し、ジエチルエーテル層を分離し、水層を炭酸水素ナトリウムで中和した後、更にジエチルエーテルで抽出した。合わせたジエチルエーテル層を硫酸ナトリウムで乾燥し、減圧濃縮して得られた粗生成物を減圧蒸留して目的物53.9g(収率82%)を得た。
2,4,4-トリメチル-2-シクロヘキセノン(2)
 無色の液体
 沸点 76℃/1.9kPa
 IR(D-ATR):ν=2958,2925,2867,1676,1448,1362cm-1
 EI-MS(70eV):m/z=27,41,55,67,81,95,110,123,138(M)。
 1H-NMR(500MHz,CDCl):δ=1.11(6H,s),1.70(3H,d,J=1.5Hz),1.81(2H,dt様,J=0.8,6.9Hz),2.42(2H,t様,J=7.0Hz),6.37-6.39(1H,m)ppm。
 13C-NMR(125MHz,CDCl):δ=15.91,27.93(2C),32.89,34.44,36.33,132.47,155.07,199.73ppm。
実施例1
1-メチレン-2,4,4-トリメチル-2-シクロヘキセン(2)の合成
 窒素雰囲気下、合成例1の方法で合成した2,4,4-トリメチル-2-シクロヘキセノン(1)55.0gを氷冷した臭化メチルトリフェニルホスホニウム181gとカリウムt-ブトキシド56.1gからテトラヒドロフラン700mlとトルエン300mlの混合溶媒中で調製したリンイリド溶液に20分間かけて滴下した。混合物を氷冷のまま80分間かき混ぜた後、氷水にあけて有機層を分取した。水層をジエチルエーテルで抽出し、合わせた有機層を飽和食塩水で洗い、硫酸マグネシウムで乾燥し、減圧濃縮した。残渣にn-ヘキサンを加え、生じたトリフェニルフォスフィンオキシドを濾別した。濾液を減圧濃縮して得た粗生成物を減圧蒸留して目的物44.31g(収率83%)を得た。
1-メチレン-2,4,4-トリメチル-2-シクロヘキセン(2)
 無色の液体
 沸点 110℃/21kPa
 EI-MS(70eV):m/z=27,39,53,65,79,93,105,121,136(M)。
 IR(D-ATR):ν=2955,2922,2854,1604,1440,878cm-1
 1H-NMR(500MHz,CDCl):δ=1.01(6H,s),1.50-1.53(3H,m),1.79(2H,d,J=1.5Hz),2.37-2.41(2H,m),4.77(1H,quint-様,J=1.5Hz),4.87(1H,br.s),5.39(1H,s)ppm。
 13C-NMR(125MHz,CDCl):δ=19.65,28.97,29.20(2C),32.66,37.44,107.58,129.95,138.59,144.50ppm。
実施例2
(2,4,4-トリメチル-2-シクロヘキセン)メタノール(3)の合成例1
 窒素雰囲気下、氷冷したボラン-テトラヒドロフラン溶液 0.9M、145mlに2-メチル-2-ブテン19.0gを5分間かけて滴下し、氷冷下2時間かき混ぜ系内でジシアミルボラン(Disiamylborane)を調製した。
 次に、実施例1の方法で合成した1-メチレン-2,4,4-トリメチル-2-シクロヘキセン(2)11.24gとテトラヒドロフラン50mlの混合物を調製したジシアミルボランに5分間で滴下した。反応混合物を氷冷下5分かき混ぜ、次いで氷浴をとり、室温で終夜かき混ぜた。
 反応混合物を再び氷冷した後、99.5質量%エタノール12ml、25%水酸化ナトリウム水溶液44g、35%過酸化水素水44gを注意深く順次加え、氷冷下30分間、更に室温で1時間かき混ぜた。水25mlを加え、有機層を分取し、水層をエーテルで抽出した。合わせた有機層を飽和食塩水で洗い、硫酸マグネシウムで乾燥し、減圧濃縮し粗生成物19.87g(ガスクロマトグラフィー純度76.0%、純度換算収率84%)を得た。
 この粗生成物の各種クロマトグラフィー及びスペクトル分析において、異性体(2,4,4-トリメチル-1-シクロヘキセン)メタノール及び1,2,4,4-テトラメチル-2-シクロヘキセン-1-オールは検出されず、シクロヘキセン環内二重結合の移動は起こらなかった。また、ヒドロホウ素化反応はexo-側から選択的に進行したことが示された。この粗製生物は中間体として十分な純度を有しており、このまま次の工程に用いた。
(2,4,4-トリメチル-2-シクロヘキセン)メタノール(3)
 無色の液体
 EI-MS(70eV):m/z=31,41,55,67,81,93,108,123,139,154(M)。
 1H-NMR(500MHz,CDCl):δ=0.937(3H,s),0.941(3H,s),1.32-1.40(2H,m),1.45-1.52(1H,m),1.65-1.68(3H,m),1.68-1.74(2H,m),2.50-2.12(1H,m),3.56-3.71(2H,m),5.28(1H,s)ppm。
実施例3
(2,4,4-トリメチル-2-シクロヘキセン)メタノール(3)の合成例2
 上記実施例2で系内で調製したジシアミルボランの代わりに、9-ボラビシクロ[3.3.1]ノナン(9-BBN)を用いた以外は、実施例2に準じた方法により1-メチレン-2,4,4-トリメチル-2-シクロヘキセン(2)から目的物(2,4,4-トリメチル-2-シクロヘキセン)メタノール(3)(定量的収率)を得た。得られた目的物の各種スペクトルは、実施例2の目的物のそれらと一致した。
実施例4
式(4)においてRがn-プロピル基である酪酸(2,4,4-トリメチル-2-シクロヘキセニル)メチルの合成
 窒素雰囲気下氷冷しながら、実施例2の方法で合成した(2,4,4-トリメチル-2-シクロヘキセン)メタノール(3)18.8g、ピリジン14.5g、アセトニトリル200mlの混合物に、酪酸クロリド18.9gを10分間で滴下した。氷冷で10分間、室温で90分間かき混ぜた後、反応混合物を氷水にあけ、n-ヘキサンで抽出した。分取した有機層を希塩酸、水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗い、硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残渣を減圧蒸留して目的物17.42g(収率84%)を得た。
酪酸(2,4,4-トリメチル-2-シクロヘキセニル)メチル
 無色の液体
 沸点 80-83℃/400Pa
 EI-MS(70eV):m/z=27,43,55,71,93,108,121,136。
 IR(D-ATR):ν=2956,2934,2864,1738,1453,1303,1176cm-1
 1H-NMR(500MHz,CDCl):δ=0.91-0.97(9H,m),1.29-1.36(1H,m),1.41-1.48(1H,m),1.56-1.73(7H,m),2.17-2.23(1H,m),2.28(2H,t,J=7.2Hz),3.98(1H,dd,J=8.4,11Hz),4.14(1H,dd,J=4.0,11Hz),5.23(1H,s)ppm。
 13C-NMR(150MHz,CDCl):δ=13.67,18.44,22.03,22.83,29.56,30.06,31.78,33.76,36.29,38.30,65.43,130.11,135.79,173.81ppm。
 これらのスペクトルデータは非特許文献1のものとよい一致を示した。

Claims (2)

  1.  下記式(1)に示す2,4,4-トリメチル-2-シクロヘキセノンのカルボニル基を反応させて下記式(2)に示す1-メチレン-2,4,4-トリメチル-2-シクロヘキセンを得る工程と、
     得られた1-メチレン-2,4,4-トリメチル-2-シクロヘキセンの環外二重結合を反応させて下記式(3)に示す(2,4,4-トリメチル-2-シクロヘキセン)メタノールを得る工程と
    を少なくとも含む(2,4,4-トリメチル-2-シクロヘキセン)メタノールの製造方法。
    Figure JPOXMLDOC01-appb-C000001
  2.  請求項1に記載された(2,4,4-トリメチル-2-シクロヘキセン)メタノールを得るための各工程と、
     得られた(2,4,4-トリメチル-2-シクロヘキセン)メタノールをエステル化して下記一般式(4)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素又は炭素数1から10の炭化水素基を表す。)
    で示される(2,4,4-トリメチル-2-シクロヘキセニル)メチル・エステル化合物を得る工程と
    を少なくとも含む(2,4,4-トリメチル-2-シクロヘキセニル)メチル・エステル化合物の製造方法。
PCT/JP2014/074081 2013-09-12 2014-09-11 シクロラバンジュロール及びその誘導体の製造方法 WO2015037664A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480049929.1A CN105531251A (zh) 2013-09-12 2014-09-11 用于制备环薰衣草醇及其衍生物的方法
US15/021,155 US20160221923A1 (en) 2013-09-12 2014-09-11 Method for producing cyclolavandulol and derivative thereof
EP14844894.7A EP3045442A4 (en) 2013-09-12 2014-09-11 Method for producing cyclolavandulol and derivative thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-189554 2013-09-12
JP2013189554 2013-09-12

Publications (1)

Publication Number Publication Date
WO2015037664A1 true WO2015037664A1 (ja) 2015-03-19

Family

ID=52665764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074081 WO2015037664A1 (ja) 2013-09-12 2014-09-11 シクロラバンジュロール及びその誘導体の製造方法

Country Status (5)

Country Link
US (1) US20160221923A1 (ja)
EP (1) EP3045442A4 (ja)
JP (1) JP2015078179A (ja)
CN (1) CN105531251A (ja)
WO (1) WO2015037664A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115215725A (zh) * 2021-04-15 2022-10-21 宋晓瑜 一种制备乙酸薰衣草酯及薰衣草醇的方法
WO2023205404A2 (en) * 2022-04-22 2023-10-26 Invizyne Technologies, Inc. Biosynthesis of cyclolavandulyl derivatives of aromatic compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004524312A (ja) * 2001-02-27 2004-08-12 アラーガン、インコーポレイテッド α2Bアドレナリン受容体の調節剤として有用な(2−ヒドロキシ)エチル−チオウレア
JP2007513922A (ja) * 2003-12-12 2007-05-31 ソルベイ・フアーマシユーチカルズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング ヒトorl1受容体へのアゴニストとしてのヒドロノポール誘導体
JP2009500409A (ja) * 2005-06-29 2009-01-08 アラーガン、インコーポレイテッド 痛みを処置するためのα2アドレナリン作動剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004524312A (ja) * 2001-02-27 2004-08-12 アラーガン、インコーポレイテッド α2Bアドレナリン受容体の調節剤として有用な(2−ヒドロキシ)エチル−チオウレア
JP2007513922A (ja) * 2003-12-12 2007-05-31 ソルベイ・フアーマシユーチカルズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング ヒトorl1受容体へのアゴニストとしてのヒドロノポール誘導体
JP2009500409A (ja) * 2005-06-29 2009-01-08 アラーガン、インコーポレイテッド 痛みを処置するためのα2アドレナリン作動剤

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"mine-, 1.4.2 Hydroboration", JIKKEN KAGAKU KOZA 20 YUKI GOSEI II -ALCOHOL, A, 1992, pages 72 - 81, XP008183194 *
APPL. ENTOMOL. ZOOL., vol. 43, 2008, pages 369 - 375
APPL. ENTOMOL. ZOOL., vol. 46, 2011, pages 117 - 123
EILBRACHT,P. ET AL.: "Regioselectivity and steric course of Lewis acid-induced ring enlargement of cyclohexadiene complexes with carbon monoxide", CHEMISCHE BERICHTE, vol. 117, no. 12, 1984, pages 3473 - 89, XP055337887 *
G. STORK ET AL., JOURNAL OF ORGANIC CHEMISTRY, vol. 85, pages 207 - 221
JOURNAL OF PHARMACY RESEARCH, vol. 4, 2011, pages 2126 - 2128
TABATA,J. ET AL.: "Cyclolavandulyl butyrate: an attractant for a mealybug parasitoid, Anagyrus sawadai (Hymenoptera: Encyrtidae", APPLIED ENTOMOLOGY AND ZOOLOGY, vol. 46, no. 1, 2011, pages 117 - 123, XP055324644 *
Y. CHAN ET AL., ORGANIC SYNTHESES, COLL., vol. 6, pages 496 - 498

Also Published As

Publication number Publication date
JP2015078179A (ja) 2015-04-23
EP3045442A4 (en) 2017-04-05
EP3045442A1 (en) 2016-07-20
CN105531251A (zh) 2016-04-27
US20160221923A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6208110B2 (ja) 酢酸(e)−2−イソプロピル−5−メチル−2,4−ヘキサジエニルの製造方法
US20240025837A1 (en) Methods of producing 7-methyl-3-methylene-7-octenal acetal compounds
WO2015037664A1 (ja) シクロラバンジュロール及びその誘導体の製造方法
EP3037403B1 (en) Method for producing 7-methyl-3-methylene-7-octenyl halide and 7-methyl-3-methylene-7-octenyl propionate
JP6254925B2 (ja) 酪酸2−イソプロピリデン−5−メチル−4−ヘキセニルの製造方法
JP6249938B2 (ja) 4−アルキル−3−メチレンブチル=カルボキシレートの製造方法
US11370741B2 (en) Processes for preparing alpha-necrodyl compounds and processes for preparing gamma-necrodyl compounds
US9278899B2 (en) Method for producing 3,5-dimethyldodecanoic acid; and 4-carboxy-3,5-Dimethyl-3,5-dodecadienoic acid
JP6208103B2 (ja) β−シクロラバンジュラール及びその誘導体の製造方法
JP2017193493A (ja) 末端共役ジエン構造を有する脂肪族アルデヒド化合物の製造方法及びその中間体
JP6249937B2 (ja) 1−(2−アシロキシエチル)シクロプロピル=スルホネート化合物及び4−アルキル−3−メチレンブチル=カルボキシレートの製造方法
JP2017039717A (ja) (e)−2−イソプロピル−5−メチル−3,5−ヘキサジエノエート化合物及びその製造方法並びにこれを用いた(e)−2−イソプロピル−5−メチル−3,5−ヘキサジエノール及び(e)−2−イソプロピル−5−メチル−3,5−ヘキサジエニル=カルボキシレートの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480049929.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844894

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014844894

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014844894

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15021155

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE