WO2015037605A1 - 多孔質構造を有する生分解性樹脂組成物、及び、その表面処理方法 - Google Patents

多孔質構造を有する生分解性樹脂組成物、及び、その表面処理方法 Download PDF

Info

Publication number
WO2015037605A1
WO2015037605A1 PCT/JP2014/073890 JP2014073890W WO2015037605A1 WO 2015037605 A1 WO2015037605 A1 WO 2015037605A1 JP 2014073890 W JP2014073890 W JP 2014073890W WO 2015037605 A1 WO2015037605 A1 WO 2015037605A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable resin
acid
resin molded
molded article
biodegradable
Prior art date
Application number
PCT/JP2014/073890
Other languages
English (en)
French (fr)
Inventor
傳喜 片山
成志 吉川
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Priority to US14/917,509 priority Critical patent/US20160208062A1/en
Priority to KR1020167008202A priority patent/KR20160048921A/ko
Priority to EP14844359.1A priority patent/EP3045500A4/en
Priority to CN201480049479.6A priority patent/CN105518078A/zh
Publication of WO2015037605A1 publication Critical patent/WO2015037605A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0033Additives activating the degradation of the macromolecular compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a biodegradable resin molded article using a biodegradable resin having a porous structure in the biodegradable resin composition on the surface, and a method for treating the surface.
  • Such wastewater treatment is generally performed by biochemical treatment which is advantageous in terms of cost.
  • the sewage introduced into the treatment tank is aerated in the presence of activated sludge, and the organic matter (BOD (Biochemical Oxygen Demand) source) contained in the sewage is oxidized and decomposed by the action of aerobic microorganisms in the activated sludge. Is done.
  • This treatment with activated sludge has a weak function of removing nitrogen components, and nitrogen components such as ammonia tend to remain.
  • nitrate nitrogen component
  • nitrification treatment with ammonia as nitrate is performed by nitrifying bacteria, and then nitrogen components (nitrates) are removed by denitrification treatment with denitrifying bacteria under anoxic conditions. It is.
  • This denitrification treatment uses the reducing action of denitrifying bacteria using organic matter (ie, BOD source) as an energy source and nitrate as an electron acceptor, and the organic matter that is the energy source is necessary for the reduction reaction of the denitrification reaction.
  • organic matter ie, BOD source
  • nitrate is reduced to nitrogen through nitrous acid, nitric oxide, and dinitrogen monoxide, and as a result, various nitrogen compounds in the wastewater are diffused into the atmosphere as nitrogen gas and removed.
  • This denitrification treatment uses microorganisms as described above, and uses a solid organic substance as an energy source required for the denitrification reaction while supplementing the reducing power necessary for denitrification (solid-phase denitrification method). Etc. are adopted.
  • the treatment efficiency can be improved by using microorganisms adhered to the surface of the resin carrier.
  • surface treatment such as porosity
  • surface treatment (such as porosity) is generally used. ) Must be applied.
  • a production method by a so-called precipitation method has been proposed as shown in JP-A-2009-144012 and JP-A-2009-242728.
  • a carrier that is easy to adhere to microorganisms and that is more suitable as a carbon source in the solid-phase denitrification method.
  • An object of the present invention is to provide a biodegradable resin molded article that is easily fixed with microorganisms and that is particularly suitable for use in the solid-phase denitrification method, and a method for treating the surface thereof.
  • the inventors of the present application have found that the above-described problems can be solved by treating a biodegradable resin molded article obtained by dispersing an ester decomposition accelerator in a biodegradable resin in a specific decomposition solution.
  • the present invention has been completed.
  • the present invention provides a biodegradable bioresin molded article having a porous structure in the biodegradable resin composition on the surface portion and having an ester degradation accelerator dispersed in the internal biodegradable resin composition.
  • the present invention also relates to a method for treating the surface of a biodegradable resin molded article in which an ester degradation accelerator is dispersed in a biodegradable resin, the phosphoric acid having a pH in the range of 9 to 12 containing hydrolase.
  • a surface treatment of a biodegradable resin molded article which comprises treating the biodegradable resin in a containing solution.
  • a biodegradable resin molded product having a porous structure on the resin surface with low energy thereby allowing useful microorganisms to adhere easily, and having a high ability to supply a carbon source such as lactic acid used in a denitrification reaction.
  • a carbon source such as lactic acid used in a denitrification reaction.
  • the rate of resin degradation after treating a biodegradable resin molded article in a decomposition solution for 4 days is shown.
  • the electron micrograph of the surface of a biodegradable resin molding and an inside is represented.
  • the confocal laser scanning micrograph of the surface of a biodegradable resin molding is represented.
  • the biodegradable resin molded article of the present invention has a porous structure in the biodegradable resin composition on the surface, and an ester decomposition accelerator is dispersed in the internal biodegradable resin composition.
  • the arithmetic average roughness Sa of the surface of the porous structure is 1.0 ⁇ m or more, particularly 1.0 to 5.0 ⁇ m, and more preferably 1.0 to 2.0 ⁇ m. If it is larger than this range, the weight reduction rate with respect to the biodegradable resin molded product before the enzyme treatment is increased, so that the productivity is lowered. On the other hand, if it is smaller than this range, carriers such as microorganisms are hardly fixed.
  • the arithmetic mean roughness Sa of the surface of the porous structure means the degree of porosity of the surface of the molded body.
  • the porous structure surface is measured using a confocal laser scanning microscope (LSM-5 PASCAL-MAT: Carl Zeiss). It can be obtained from the 3D data obtained by observing the surface using the attached software.
  • the biodegradable resin used in the present invention produces a carbon source such as lactic acid or a derivative of lactic acid mainly by non-biological hydrolysis, and the lactic acid or the like is a substrate that is an energy source of denitrifying bacteria. Become.
  • an ester decomposition accelerator is dispersed in the biodegradable resin composition.
  • Any biodegradable resin may be used as long as it exhibits biodegradability, for example, polylactic acid resin, polybutylene succinate, polycaprolactone, polyhydroxyalkanoate, polybutylene succinate-adipate copolymer, polybutylene terephthalate.
  • polylactic acid resins are particularly preferred. These may be used alone or in combination of two or more.
  • the above components may form a copolymer with other components.
  • the component forming the biodegradable resin copolymer include polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, bisphenol A, and polyethylene glycol.
  • Dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, anthracene dicarboxylic acid; glycolic acid, lactic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxy Hydroxycarboxylic acids such as herbic acid, hydroxycaproic acid, hydroxybenzoic acid; glycolide, caprolactone, butyrolactone, valerolactone, poropiola Tons, such as lactones, such as undecalactone and the like.
  • the molecular weight of the biodegradable resin is not particularly limited, but in view of mechanical properties and processability, the weight average molecular weight is preferably in the range of 5,000 to 1,000,000, and 10,000 to A range of 500,000 is more preferred.
  • the ester decomposition accelerator used in the present invention is not particularly limited as long as it can accelerate the decomposition of the biodegradable resin.
  • the ester decomposition accelerator is an acid releasing resin.
  • the acid releasing resin is a polyester having a high polarity, that is, a high affinity to water, and preferably has a higher hydrolysis rate than the biodegradable resin. Since such an acid-releasing resin has a high hydrolysis rate, it is hydrolyzed in the biodegradable resin to release a water-soluble acid, and the acid is bleed from the biodegradable resin. Disassemble. As a result, the decomposition rate of the electron donor supply agent is also increased.
  • Polarity can use SP value (solubility parameter) calculated from Fedors method (Polym.Eng.Sci., 14,147-154 (1974)) as an index, and the SP value is, for example, 22.0 or more. It may be 23.0 or more and 24.0 or more, and is preferably 25.0 or more.
  • the acid to be released is preferably an aqueous solution having a concentration of 0.005 g / ml and a pH (25 ° C.) of 4 or less, particularly 3 or less.
  • the acid released by the acid releasing resin is selected from the group consisting of lactic acid, oxalic acid, maleic acid, or glycolic acid and combinations thereof.
  • Polyoxalate and polyglycolic acid-based resins are exemplified as those having the above characteristics, and these may be used alone or blended.
  • a polymer obtained by polymerizing oxalic acid as at least one monomer in the homopolymer, copolymer or blend is preferably polyoxalate.
  • the above components may form a copolymer with other components.
  • the component forming the copolymer of the acid releasing resin include polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, bisphenol A, and polyethylene glycol.
  • Dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, anthracene dicarboxylic acid; glycolic acid, lactic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxy Hydroxycarboxylic acids such as herbic acid, hydroxycaproic acid, hydroxybenzoic acid; glycolide, caprolactone, butyrolactone, valerolactone, poropiola Tons, such as lactones, such as undecalactone and the like.
  • the component released from the acid releasing resin is preferably used for biological treatment by microorganisms after bleeding from the biodegradable resin.
  • the biodegradable resin molding is completely decomposed in the decomposition solution, and the entire decomposition product is used for biological treatment, thereby providing an environmental purification method that does not generate a residue.
  • the component released from the acid releasing resin can be expected to have an effect of increasing the activity of microorganisms that purify the substance to be treated.
  • the bleeding here refers to a phenomenon in which the hydrolyzate of the acid-releasing resin oozes from the inside of the biodegradable resin to the surface of the biodegradable resin.
  • the content of the ester decomposition accelerator in the biodegradable resin molded product of the present invention is preferably 1 to 30% by weight, more preferably 5 to 20% by weight in view of processability.
  • a biodegradable resin molded body containing a biodegradable resin and an ester decomposition accelerator before the treatment having a porous structure on the surface can be produced by a conventional method.
  • an electron donor supply agent can be produced by supplying a biodegradable resin and an ester decomposition accelerator to a uniaxial or biaxial extrusion kneader at the same time, melt mixing them, and then pelletizing them.
  • the melt extrusion temperature can be appropriately set by those skilled in the art in consideration of the glass transition temperature, melting point, mixing ratio, etc. of the biodegradable resin and ester decomposition accelerator to be used, but is generally 100 to 250 ° C. .
  • biodegradable resin molded product of the present invention a known plasticizer, heat stabilizer, light stabilizer, antioxidant, ultraviolet absorber, flame retardant, colorant, pigment, filler, filler, if necessary Additives such as mold release agents, antistatic agents, fragrances, lubricants, foaming agents, antibacterial / antifungal agents, and nucleating agents may be blended. Moreover, you may mix
  • water-soluble resins such as polyethylene glycol and polyvinyl alcohol
  • water-soluble resins such as polyethylene glycol and polyvinyl alcohol
  • a copolymer of a biodegradable resin and an acid releasing resin may be blended.
  • the form of the biodegradable resin molded product of the present invention is not particularly limited, and may be in the form of pellets, films, powders, fibers, or filters.
  • the biodegradable resin molded product of the present invention has a porous structure on the surface.
  • the porous structure of the above-described surface portion of the biodegradable resin molded body is obtained by converting a biodegradable resin molded body in which an ester decomposition accelerator is dispersed in a biodegradable resin into phosphoric acid containing a hydrolase. It is obtained by processing in the method of the present invention including processing in a containing solution.
  • a phosphoric acid-containing solution containing a hydrolase is used as a decomposition solution, and the above-described biodegradable resin molded body is treated in the same solution.
  • the phosphoric acid-containing solution include aqueous solutions of sodium dihydrogen phosphate (NaH 2 PO 4 ), disodium hydrogen phosphate (Na 2 HPO 4 ), and buffers using these solutions, such as sodium dihydrogen phosphate.
  • examples thereof include a phosphate buffer solution and a citrate-phosphate buffer solution obtained by mixing aqueous solutions of (NaH 2 PO 4 ) and disodium hydrogen phosphate (Na 2 HPO 4 ).
  • the salt concentration can be, for example, 10 to 150 mM, preferably 50 to 120 mM.
  • the pH of the phosphoric acid-containing solution can be appropriately selected depending on the type of biodegradable resin, ester degradation accelerator, hydrolase used, etc., and is preferably alkaline pH, for example, pH 9-12, preferably pH 10 11 can be adopted.
  • the hydrolase used in the present invention is not particularly limited as long as it generally decomposes a biodegradable resin, and those skilled in the art can use any hydrolase.
  • examples of such enzymes include protease, cellulase, cutinase, lipase and the like.
  • proteases particularly alkaline proteases showing activity in an alkaline pH range are preferable, and for example, Savinase 16.0 L can be used.
  • the amount of the hydrolyzable enzyme can be appropriately determined by those skilled in the art. For example, the amount of the hydrolyzable enzyme can be determined corresponding to the resin to be decomposed on the basis of the activity unit for each enzyme used.
  • the biodegradable resin molding is treated by placing it in the decomposition solution. If necessary, operations such as shaking and stirring may be performed. Conditions such as treatment temperature and time can be appropriately set by those skilled in the art depending on the type and amount of biodegradable resin, ester degradation accelerator, and hydrolase used. -60 ° C, preferably 40-50 ° C, and the time can be 1 to 10 days, preferably 3 to 5 days.
  • the portion of the ester decomposition accelerator is decomposed to make the surface portion porous. It is possible to have a quality structure.
  • the decomposition of the biodegradable resin molded body is stopped at the surface portion, and the entire decomposition amount (weight reduction) of the main body of the biodegradable resin molded body is suppressed, so that it is possible to leave a large amount of base material. Therefore, the state in which the ester decomposition accelerator is present in the biodegradable resin can be maintained while the inside of the biodegradable resin molded body remains untreated.
  • the biodegradable resin molded product produced by the method of the present invention is used in the solid-phase denitrification method, microorganisms adhere to the porous structure formed on the surface of the biodegradable resin molded product.
  • Carbon that serves as an energy source for denitrifying bacteria in the denitrifying reaction because the ester decomposition accelerator remaining inside the biodegradable resin molded body promotes the decomposition from the inside of the biodegradable resin.
  • the supply of the source is performed efficiently, and the efficiency of the denitrification process can be improved.
  • the method of the present invention makes it possible to selectively treat the surface portion while minimizing the degradation of the base material itself of the biodegradable resin molded article.
  • the weight loss of the entire resin molding is reduced.
  • the weight reduction rate with respect to the biodegradable resin molded body before being treated by the method of the present invention is 40% or less, 10% or less, preferably 5% or less.
  • ⁇ Degradable resin composition > 1. Polylactic acid; Nature Works 4032D was used. 2. Polyethylene oxalate (hereinafter abbreviated as “PEOx”) What was synthesize
  • PEOx Polyethylene oxalate
  • the taken-out polymer was granulated with a crusher, and crystallized by vacuum drying at 110 ° C. for 4 hours.
  • the obtained polymer had a weight average molecular weight of 70,000, a melting point of 180 ° C., and a glass transition temperature of 35 ° C.
  • the degree of porosity was evaluated using a phosphoric acid aqueous solution (disodium hydrogen phosphate 100 mM, pH 10.5) or a CHES aqueous solution (CHES 100 mM, pH 10.5).
  • Example 1 A hydrolysis test was performed using PLA containing 5% PEOx as a biodegradable resin molded article, an aqueous phosphoric acid solution as a decomposition solution, and Savinase 16.0L (manufactured by Novozymes) as an enzyme.
  • Comparative Example 1 The same procedure as in Example 1 was performed except that a CHES aqueous solution was used as the decomposition solution.
  • Reference Example 1 The same procedure as in Example 1 was performed except that PLA was used as the biodegradable resin molded product.
  • Reference Example 2 The same procedure as in Reference Example 1 was performed except that a CHES aqueous solution was used as the decomposition solution.
  • FIG. 1 shows the resin degradation rates after 4 days for Example 1, Comparative Example 1, and Reference Examples 1 and 2.
  • the weight reduction rate of each test example is as follows.
  • FIG. 2 shows electron micrographs of the surface and the inside (only Example 1 and Comparative Example 1) of Example 1, Comparative Example 1, and Reference Examples 1 and 2.
  • the confocal laser scanning micrograph which measured arithmetic mean roughness Sa about said Example 1, the comparative example 1, and the reference example 2 is shown in FIG.
  • Example 1 in which the predetermined biodegradable resin molded body of the present application was treated with a phosphoric acid aqueous solution was compared with Comparative Example 1 in which the CHES aqueous solution was treated, It can be understood that a porous structure is formed on the surface of the degradable resin molded body while largely suppressing the overall decomposition (weight reduction). Further, referring to an electron micrograph of the inside of the biodegradable resin molded body, in Comparative Example 1, the internal porous structure is advanced due to the decomposition of the ester decomposition accelerator (PEOx) present inside. Can understand.
  • PEOx ester decomposition accelerator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明は、表面部の生分解性樹脂組成物に多孔質構造を有し、内部の生分解性樹脂組成物中にエステル分解促進剤が分散されている、生分解性樹脂成形体に関する。

Description

多孔質構造を有する生分解性樹脂組成物、及び、その表面処理方法
 本発明は、表面部の生分解性樹脂組成物に多孔質構造を有する、生分解性樹脂を利用した生分解性樹脂成形体、及び、その表面の処理方法に関する。
 従来より、生活廃水や工場廃水などの影響による河川、湖沼の富栄養化や、農地への窒素肥料の施肥による周辺水環境(地下水、河川、湖沼)への汚染を防止するために、廃水処理が行なわれている。
 かかる廃水処理は、一般的にコスト的に有利な生化学的処理によって行なわれる。廃水処理施設では、処理槽に導入された汚水が活性汚泥の存在下で曝気され、汚水に含まれる有機物(BOD(Biochemical Oxygen Demand)源)は、活性汚泥中の好気性微生物の作用によって酸化分解される。この活性汚泥による処理では、窒素成分を除去する機能が弱く、アンモニア等の窒素成分は残存しやすい。
 富栄養化の原因物質の一つは硝酸塩(窒素成分)であり、廃水中の有機物が完全に取り除かれたとしても、最終放流水中にかかる窒素成分が多く含まれていると、植物性プランクトンの異常増殖を促進するなどして廃水処理は意味を失ってしまう。
 そこで、近年では、活性汚泥処理の後に、硝化菌によってアンモニアを硝酸塩とする硝化処理が行われ、次いで、無酸素条件下で、脱窒菌による脱窒処理にて窒素成分(硝酸塩)の除去が行なわれている。
 この脱窒処理は、有機物(即ちBOD源)をエネルギー源とし、硝酸塩を電子受容体とする脱窒菌の還元作用を利用したものであり、エネルギー源である有機物は脱窒反応の還元反応に必要な電子を供給する。これにより、硝酸塩は、亜硝酸、一酸化窒素、一酸化二窒素を経て窒素まで還元され、その結果、廃水中の各種窒素化合物は、窒素ガスとして大気中に放散されて除去される。
 この脱窒処理は、前述の通り微生物を使用するものであり、脱窒反応に必要なエネルギー源として固形有機物を用いることにより脱窒に必要な還元力を補いながら行う方法(固相脱窒法)等が採用されている。ここで、脱窒処理を行う際、樹脂担体表面に微生物を固着させて使用すると処理効率を向上させることができるが、微生物の固着速度を高めるためには、一般的に表面処理(多孔化など)を施す必要がある。樹脂の多孔質粒子の製造方法としては、例えば、特開2009-144012号公報及び特開2009-242728号公報に示すような、いわゆる析出法による製造方法が提案されている。しかしながら、微生物が固着しやすく、かつ、特に固相脱窒法における炭素源の供給源としてより適した担体の開発が求められている。
 本発明は、微生物が固着しやすく、かつ、特に固相脱窒法における使用に適した生分解性樹脂成形体、及び、その表面を処理する方法を提供することを目的とする。
 本願発明者らは、生分解性樹脂中にエステル分解促進剤が分散してなる生分解性樹脂成形体に対し、特定の分解溶液中で処理を行うことにより、上記の課題を解決できることを見出し、本願発明を完成するに至った。
 即ち、本発明は、表面部の生分解性樹脂組成物に多孔質構造を有し、内部の生分解性樹脂組成物中にエステル分解促進剤が分散された生分解生樹脂成形体を提供する。
 また、本発明は、生分解性樹脂中にエステル分解促進剤が分散してなる生分解性樹脂成形体の表面を処理する方法であって、加水分解酵素を含むpH9~12の範囲のリン酸含有溶液中で生分解性樹脂を処理することを含む、生分解性樹脂成形体の表面処理を提供する。
 本発明により、低エネルギーで樹脂表面に多孔質構造を有し、それにより有用微生物が固着しやすく、かつ、脱窒反応に用いられる乳酸等の炭素源の供給能力の高い生分解性樹脂成形体を得ることができる。
生分解性樹脂成形体を分解溶液中で4日間処理した後の樹脂分解率を表す。 生分解性樹脂成形体の表面及び内部の電子顕微鏡写真を表す。 生分解性樹脂成形体の表面の共焦点レーザースキャン顕微鏡写真を表す。
 本発明の生分解性樹脂成形体は、表面部の生分解性樹脂組成物に多孔質構造を有し、かつ、内部の生分解性樹脂組成物中にエステル分解促進剤が分散されているという特徴を有する。好ましくは、該多孔質構造表面の算術平均粗さSaが1.0μm以上であり、特に1.0~5.0μm、さらに1.0~2.0μmの範囲が好ましい。この範囲よりも大きいと酵素処理される前の生分解性樹脂成形体に対する重量減少率が大きくなるので生産性が低下してしまう。また、この範囲よりも小さいと微生物などの担体が固着しにくくなる。
 本発明において、孔質構造表面の算術平均粗さSaは、成形体表面の多孔化度を意味し、例えば、共焦点レーザースキャン顕微鏡(LSM 5 PASCAL MAT:Carl Zeiss社)を用いて多孔質構造表面の観察を行い得られた3次元データから付属ソフトウェアを用いて求めることができる。
 本発明に使用する生分解性樹脂は、主に非生物学的加水分解によって、乳酸または乳酸の誘導体等の炭素源を産生するものであり、かかる乳酸等が脱窒菌のエネルギー源である基質となる。
 本発明の生分解性樹脂成形体は、生分解性樹脂組成物中にエステル分解促進剤が分散されている。生分解性樹脂としては、生分解性を示すものであればよく、例えばポリ乳酸系樹脂、ポリブチレンサクシネート、ポリカプロラクトン、ポリヒドロキシアルカノエート、ポリブチレンサクシネート・アジペート共重合体、ポリブチレンテレフタレート・アジペート、澱粉系樹脂、セルロース系樹脂、キチン、キトサン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートなどの芳香族系ポリエステルなどが挙げられる。上記のうち、ポリ乳酸系樹脂が特に好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記生分解性樹脂において、上記の成分は他の成分とコポリマーを形成してもよい。生分解性樹脂のコポリマーを形成する成分としては、例えばエチレングリコール、プロピレングリコール、ブタンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビタン、ビスフェノールA、ポリエチレングリコールなどの多価アルコール;コハク酸、アジピン酸、セバシン酸、グルタル酸、デカンジカルボン酸、シクロヘキヘキサンジカルボン酸、テレフタル酸、イソフタル酸、アントラセンジカルボン酸などのジカルボン酸;グリコール酸、乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸;グリコリド、カプロラクトン、ブチロラクトン、バレロラクトン、ポロピオラクトン、ウンデカラクトンなどのラクトン類などが挙げられる。
 生分解性樹脂の分子量としては、特に制限されるものではないが、機械的特性や加工性を考えると、重量平均分子量で5,000~1,000,000の範囲が好ましく、10,000~500,000の範囲がより好ましい。
 本発明に使用するエステル分解促進剤としては、上記生分解性樹脂の分解を促進することができるものであれば特に限定はされない。エステル分解促進剤は、酸放出性樹脂である。ここで、酸放出性樹脂は、極性が高い、即ち水への親和性が高いポリエステルであり、生分解性樹脂より加水分解速度が速いことが好ましい。このような酸放出性樹脂は加水分解速度が速くなるため、生分解性樹脂中で加水分解し、水溶性の酸を放出し、その酸が生分解性樹脂からブリーディングする過程で生分解性樹脂を分解する。その結果、電子供与体供給剤の分解速度も速くなる。極性はFedors法から計算されるSP値(溶解度パラメーター)(Polym.Eng.Sci.,14,147-154(1974))などを指標とすることが可能であり、前記SP値は例えば場合22.0以上、23.0以上、24.0以上であればよく、25.0以上であることが好ましい。
 放出する酸としては、0.005g/ml濃度の水溶液でpH(25℃)が4以下、特に3以下を示すものがよい。好ましくは、酸放出性樹脂が放出する酸は、乳酸、シュウ酸、マレイン酸、又は、グリコール酸及びその組み合わせからなる群から選択される。
 上記特徴を有するものとして、ポリオキサレート、ポリグリコール酸系樹脂が挙げられ、これらは単独で用いてもよく、ブレンドしてもよい。本発明においては、ホモポリマー、共重合体、ブレンド体において、少なくとも一つのモノマーとしてシュウ酸を重合したポリマーをポリオキサレートとすることが好ましい。
 上記酸放出性樹脂において、上記の成分は他の成分とコポリマーを形成してもよい。酸放出性樹脂のコポリマーを形成する成分としては、例えばエチレングリコール、プロピレングリコール、ブタンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビタン、ビスフェノールA、ポリエチレングリコールなどの多価アルコール;コハク酸、アジピン酸、セバシン酸、グルタル酸、デカンジカルボン酸、シクロヘキヘキサンジカルボン酸、テレフタル酸、イソフタル酸、アントラセンジカルボン酸などのジカルボン酸;グリコール酸、乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸;グリコリド、カプロラクトン、ブチロラクトン、バレロラクトン、ポロピオラクトン、ウンデカラクトンなどのラクトン類などが挙げられる。
 また、酸放出性樹脂から放出される成分は、生分解性樹脂からブリーディングした後、微生物による生物学的処理に利用されるものがよい。生分解性樹脂成形体が分解溶液中で完全に分解し、全分解物を生物学的処理に利用されることで、残渣を発生しない環境浄化方法を提供できる。また、酸放出性樹脂から放出される成分は、被処理物質を浄化する微生物の活性を高める等の効果も見込める。ここでいうブリーディングとは、酸放出性樹脂の加水分解物が生分解性樹脂内部から生分解性樹脂表面ににじみ出る現象をいう。
 本発明の生分解性樹脂成形体におけるエステル分解促進剤の含有量は、加工性を考えると好ましくは1~30重量%であり、より好ましくは5~20重量%である。
 生分解性樹脂とエステル分解促進剤とを含む、表面部の多孔質構造を有する処理をする前の生分解性樹脂成形体は、常法により製造することができる。例えば、生分解性樹脂とエステル分解促進剤とを、同時に単軸又は二軸押出し混練機に供給して溶融混合した後、ペレット化することにより電子供与体供給剤を製造することができる。溶融押出し温度としては、使用する生分解性樹脂とエステル分解促進剤のガラス転移温度、融点、混合比率などを考慮して、当業者が適宜設定できるが、一般的には100~250℃である。
 本発明の生分解性樹脂成形体には、必要に応じて、公知の可塑剤、熱安定剤、光安定剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤、顔料、フィラー、充填剤、離型剤、帯電防止剤、香料、滑剤、発泡剤、抗菌・抗カビ剤、核形成剤などの添加剤を配合してもよい。また、前記生分解性樹脂及び酸放出性樹脂以外の樹脂を、本発明の効果を損なわない範囲で配合してもよい。例えば、ポリエチレングリコール、ポリビニルアルコールなどの水溶性の樹脂の他、ポリエチレン、ポリプロピレン、エチレンープロピレン共重合体、酸変性ポリオレフィン、エチレンーメタクリル酸共重合体、エチレンー酢酸ビニル共重合体、アイオノマー樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ酢酸ビニル、ポリ塩化ビニル、ポリスチレン、ポリエステルゴム、ポリアミドゴム、スチレンーブタジエンースチレン共重合体などを配合することができる。また、酸放出性樹脂の分散性を向上させる目的で生分解性樹脂と酸放出性樹脂の共重合体を配合してもよい。また、本発明の生分解性樹脂成形体の形態は特に限定されるものではなく、ペレット、フィルム、粉末、繊維又は、フィルターなどの形態にすることができる。
 本願発明の生分解性樹脂成形体は、表面部に多孔質構造を有する。ここで、生分解性樹脂成形体の上記の表面部の多孔質構造は、生分解性樹脂中にエステル分解促進剤が分散してなる生分解性樹脂成形体を、加水分解酵素を含むリン酸含有溶液中で処理することを含む本発明の方法に処理することにより得られる。
 本願発明の方法においては、加水分解酵素を含むリン酸含有溶液を分解溶液として用い、同溶液中で上記の生分解性樹脂成形体を処理する。リン酸含有溶液としては、リン酸二水素ナトリウム(NaH2PO4)、リン酸水素二ナトリウム(Na2HPO4)の各水溶液、及び、これらを使用した緩衝液、例えば、リン酸二水素ナトリウム(NaH2PO4)及びリン酸水素二ナトリウム(Na2HPO4)の各水溶液を混合したリン酸緩衝液、クエン酸-リン酸緩衝液等が挙げられる。塩濃度としては、例えば10~150mM、好ましくは50~120mMとすることができる。
 リン酸含有溶液のpHは、使用する生分解性樹脂、エステル分解促進剤、加水分解酵素の種類等によって適宜選択することが可能であり、好ましくはアルカリ性のpH、例えばpH9~12、好ましくはpH10~11を採用することができる。
 本発明に使用される加水分解酵素としては、一般に生分解性樹脂を分解するものであれば特に限定はされず、当業者が任意のものを使用することができる。このような酵素としては例えばプロテアーゼ、セルラーゼ、クチナーゼ、リパーゼ等が挙げられる。上記のうち、プロテアーゼ、特にアルカリ性のpH領域で活性を示すアルカリプロテアーゼが好ましく、例えばSavinase 16.0Lを使用することができる。加水分解性酵素の量は当業者が適宜決定することが可能であり、例えば使用する酵素ごとの活性単位を基準として分解しようとする樹脂に対応して決定することができる。
 本発明の方法においては、上記の生分解性樹脂成形体を上記の分解溶液中に置くことによって処理する。必要により振盪や攪拌等の操作を行ってもよい。処理温度及び時間等の条件は、使用する生分解性樹脂、エステル分解促進剤、加水分解酵素の種類や量などに応じて当業者が適宜設定することが可能であるが、温度としては例えば30~60℃、好ましくは40~50℃、時間としては1日~10日、好ましくは3~5日とすることができる。
 上記の方法を採用することにより、生分解性樹脂中にエステル分解促進剤が分散してなる生分解性樹脂成形体の表面部のうち、エステル分解促進剤の部分を分解して表面部に多孔質構造を持たせることが可能である。本発明の方法では生分解性樹脂成形体の分解が表面部に止まり、生分解性樹脂成形体の本体の全体の分解量(重量減少)が抑制されて基材を多く残すことが可能であり、そのため、生分解性樹脂成形体の内部は未処理のまま生分解性樹脂中にエステル分解促進剤が存在する状態を維持することができる。本発明の方法によって作製された生分解性樹脂成形体は、固相脱窒法に使用された場合に、生分解性樹脂成形体の表面部に形成された多孔質構造の部分に微生物が固着することが容易になると同時に、生分解性樹脂成形体の内部に残存するエステル分解促進剤の作用により生分解性樹脂内部からの分解を促進するため、脱窒反応における脱窒菌のエネルギー源となる炭素源の供給が効率的に行われ、脱窒処理の効率を向上させることが可能となる。
 前述の通り、本発明の方法では生分解性樹脂成形体の基材自体の分解を最小限としつつ表面部を選択的に処理することが可能となるため、分解溶液中の処理によっても生分解性樹脂成形体の全体の重量減少が小さくなる。例えば、本発明の方法により処理される前の生分解性樹脂成形体に対する重量減少率は40%以下、10%以下、好ましくは5%以下となる。
<融点、ガラス転移温度の測定>
装置:セイコーインスツルメント株式会社製DSC6220(示差走査熱量測定)
試料調整:試料量5~10mg
測定条件:窒素雰囲気下、10℃/minの昇温速度で0℃~250℃の範囲で測定。
<分子量の測定>
装置:ゲル浸透クロマトグラフGPC
検出器:示差屈折率検出器RI(Waters製RI-2414型、感度512)
カラム:昭和電工製Shodex HFIP-LG(1本)、HFIP-806M(2本)
溶媒:ヘキサフルオロイソプロパノール(5mM トリフルオロ酢酸ナトリウム添加)
流速:0.5mL/min
カラム温度:40℃
試料調製:試料約1.5mgに溶媒5mLを加え、室温で緩やかに攪拌した(試料濃度約0.03%)。目視で溶解していることを確認した後、0.45μmフィルターにて濾過した(秤量から繰り返し2回行った)。全ての試料について、調製開始から約1時間以内に測定を行った。
<分解性樹脂組成物>
1.ポリ乳酸;
   Nature Works社製 4032Dを用いた。
2.ポリエチレンオキサレート(以下「PEOx」と略す)
   以下の方法で合成したものを用いた。
<PEOxの合成>
 マントルヒーター、攪拌装置、窒素導入管、冷却管を取り付けた1Lのセパラブルフラスコに、
   シュウ酸ジメチル 472g(4mol)
   エチレングリコール 297g(4.8mol)
   テトラブチルチタネート 0.42g
を入れ、窒素気流下フラスコ内温度を120℃からメタノールを留去しながら180℃まで加熱し7時間反応させた。最終的に270mlのメタノールを留去した。
 その後、内温170℃~190℃に段階的に昇温し、0.1kPa~0.2kPaの減圧度で7時間反応後、粘度が上がり取り出した。
 取り出したポリマーをクラッシャーで造粒し、110℃で4時間真空乾燥処理し結晶化させた。
 得られたポリマーは重量平均分子量70000、融点180℃、ガラス転移温度35℃であった。
<生分解性樹脂成形体の作製>
 上述したポリ乳酸(PLA)、又は、PLAとPEOxのドライブレンドを、二軸押出機(テクノベル社製ULT Nano05-20AG)を用いて200℃で溶融混合し、ペレット状の生分解性樹脂成形体を試料とした。PLAとPEOxのブレンド比は重量比で95:5となるように成形した。得られた成形体は120℃5時間で乾燥し、吸水を防止するためアルミ袋に封入し、4℃にて保存した。
<多孔化試験>
 50mlのバイアル瓶に、上記で作製された生分解性樹脂成形体200mgを、所定量の酵素と共に、分解溶液30mlに加え、45℃、100rpmで振とうした。4日後にペレットを取りだし、60℃の真空乾燥機で4時間乾燥させ、重量を測定し、重量保持率を測定した。重量保持率は下記式で算出した。
  重量保持率=100-{(初期重量-分解後重量)×100/初期重量}
その後、SEMにて形態観察を行った。
 尚、分解溶液としては、リン酸水溶液(リン酸水素二ナトリウム 100mM, pH10.5)、又は、CHES水溶液(CHES 100mM, pH10.5)を用いて、多孔化度の評価を行った。
<電子顕微鏡による観察及び算術平均粗さの測定>
 上述試験により得られたペレットを走査型電子顕微鏡(S-3400N:HITACHI社)を用いて表面形状を観察した。また、共焦点レーザースキャン顕微鏡(LSM 5 PASCAL MAT:Carl Zeiss社)を用いて1000倍にて267x210μm2の範囲で観察を行い、得られた3次元データから付属ソフトウェアを用いて多孔質構造表面の算術平均粗さ(Sa)を求めた。
(実施例1)
 生分解性樹脂成形体として5%PEOx含有PLA、分解液としてリン酸水溶液、酵素としてSavinase 16.0L(Novozymes社製)を用いて加水分解試験を行った。
(比較例1)
 分解液としてCHES水溶液を用いた他は実施例1と同様に行った。
(参考例1)
 生分解性樹脂成形体としてPLAを用いた他は実施例1と同様に行った。
(参考例2)
 分解液としてCHES水溶液を用いた他は参考例1と同様に行った。
 上記の実施例1、比較例1、参考例1、2について、4日後の樹脂分解率を図1に示す。各試験例の重量減少率は以下の通りである。
Figure JPOXMLDOC01-appb-I000001
 また、上記の実施例1、比較例1、参考例1、2について、表面及び内部(実施例1、比較例1のみ)の電子顕微鏡写真を図2に示す。
 また、上記の実施例1、比較例1、参考例2について、算術平均粗さSaを測定した共焦点レーザースキャン顕微鏡写真を図3に示す。
 図1及び図2の結果より、本願所定の生分解性樹脂成形体をリン酸水溶液で処理した実施例1と、CHES水溶液で処理した比較例1とを比較すると、実施例1においては、生分解性樹脂成形体の全体的な分解(重量減少)を大きく抑制しながら、その表面に多孔質構造を形成していることが理解できる。また、生分解性樹脂成形体の内部の電子顕微鏡写真を参照すると、比較例1では内部に存在するエステル分解促進剤(PEOx)が分解されたことにより内部の多孔質構造化が進んでいることが理解できる。

Claims (10)

  1.  表面部の生分解性樹脂組成物に多孔質構造を有し、内部の生分解性樹脂組成物中にエステル分解促進剤が分散されている、生分解性樹脂成形体。
  2.  前記多孔質構造表面の算術平均粗さSaが1.0μm以上である、請求項1に記載の生分解性樹脂成形体。
  3.  エステル分解促進剤が酸放出性樹脂であり、前記酸放出性樹脂が放出する酸が、乳酸、シュウ酸、マレイン酸、又は、グリコール酸及びその組み合わせからなる群から選択される、請求項1又は2に記載の生分解性樹脂成形体。
  4.  前記酸放出性樹脂のFedors法から計算される溶解度パラメーターが22以上である、請求項1~3のいずれか1項に記載の生分解性樹脂成形体。
  5.  前記酸放出性樹脂がポリオキサレート及び/又はポリグリコール酸系樹脂である、請求項3又は4に記載の生分解性樹脂成形体。
  6.  ペレット、フィルム、粉末、繊維、又は、フィルターの形態にある、請求項1~5のいずれか1項に記載の生分解性樹脂成形体。
  7.  酵素処理される前の生分解性樹脂成形体に対する重量減少率が40%以下である請求項1~6のいずれかに記載の生分解性樹脂成形体。
  8.  生分解性樹脂組成物中にエステル分解促進剤が分散してなる生分解性樹脂成形体の表面を処理する方法であって、加水分解酵素を含むpH9~12の範囲のリン酸含有溶液中で生分解性樹脂成形体を処理することを含む、生分解性樹脂成形体の表面処理方法。
  9.  酵素処理される前の生分解性樹脂組成物に対する重量減少率が40%以下である請求項8に記載の方法。
  10.  加水分解酵素がアルカリプロテアーゼである、請求項8又は9に記載の方法。
PCT/JP2014/073890 2013-09-10 2014-09-10 多孔質構造を有する生分解性樹脂組成物、及び、その表面処理方法 WO2015037605A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/917,509 US20160208062A1 (en) 2013-09-10 2014-09-10 Biodegradable resin composition having a porous structure and method for surface treatment of same
KR1020167008202A KR20160048921A (ko) 2013-09-10 2014-09-10 다공질 구조를 갖는 생분해성 수지 조성물 및 그 표면 처리 방법
EP14844359.1A EP3045500A4 (en) 2013-09-10 2014-09-10 Biodegradable resin composition having a porous structure and method for surface treatment of same
CN201480049479.6A CN105518078A (zh) 2013-09-10 2014-09-10 具有多孔结构的生物降解性树脂组合物及其表面处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013187055A JP6365811B2 (ja) 2013-09-10 2013-09-10 多孔質構造を有する生分解性樹脂組成物、及び、その表面処理方法
JP2013-187055 2013-09-10

Publications (1)

Publication Number Publication Date
WO2015037605A1 true WO2015037605A1 (ja) 2015-03-19

Family

ID=52665707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073890 WO2015037605A1 (ja) 2013-09-10 2014-09-10 多孔質構造を有する生分解性樹脂組成物、及び、その表面処理方法

Country Status (6)

Country Link
US (1) US20160208062A1 (ja)
EP (1) EP3045500A4 (ja)
JP (1) JP6365811B2 (ja)
KR (1) KR20160048921A (ja)
CN (1) CN105518078A (ja)
WO (1) WO2015037605A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127573A (ja) * 2018-01-26 2019-08-01 学校法人立教学院 樹脂組成物の加水分解方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107650381B (zh) * 2016-07-26 2021-02-19 精工爱普生株式会社 三维造型物的造型工作台、制造装置以及制造方法
WO2020014466A1 (en) 2018-07-13 2020-01-16 Novomer, Inc. Polylactone foams and methods of making the same
CN113735252A (zh) * 2021-10-11 2021-12-03 广州科宝水处理科技股份有限公司 一种生物填料及其制备方法、废水处理方法
CN113880546A (zh) * 2021-10-27 2022-01-04 杭州金鼎实业有限公司 一种碱式硫酸镁水泥混凝土及其制备方法
KR20230131143A (ko) * 2022-03-04 2023-09-12 씨제이제일제당 (주) 폴리락트산 수지 기화 촉진제 및 이를 포함하는 조성물
JP7401028B1 (ja) 2022-04-28 2023-12-19 Dic株式会社 生分解性樹脂分解促進剤、生分解性樹脂組成物、成形体および生分解性樹脂の分解方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026684A1 (fr) * 2006-08-31 2008-03-06 Nisshinbo Industries, Inc. Film poreux et base d'impression
JP2009057408A (ja) * 2007-08-30 2009-03-19 Toray Ind Inc 易分解性フィルム
JP2009144012A (ja) 2007-12-12 2009-07-02 Toho Chem Ind Co Ltd 生分解性ポリエステル系樹脂からなる多孔質微粒子の製造方法
JP2009242728A (ja) 2008-03-31 2009-10-22 Ryukoku Univ ポリ乳酸多孔質粒子およびその製造方法
WO2010055903A1 (ja) * 2008-11-13 2010-05-20 東洋製罐株式会社 生分解性樹脂組成物
JP2012077246A (ja) * 2010-10-05 2012-04-19 Toyo Seikan Kaisha Ltd 生分解性樹脂組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3839136B2 (ja) * 1997-07-02 2006-11-01 独立行政法人科学技術振興機構 微生物固定化磁性担体、その製造方法及び廃水処理方法
US8158689B2 (en) * 2005-12-22 2012-04-17 Kimberly-Clark Worldwide, Inc. Hybrid absorbent foam and articles containing it
US8048502B2 (en) * 2006-09-26 2011-11-01 Toyo Seikan Kaisha, Ltd. Readily degradable resin composition and biodegradable container using the same
US8501445B2 (en) * 2008-10-27 2013-08-06 Toyo Seikan Kaisha, Ltd. Method for producing oligomer and/or monomer by degrading biodegradable resin
JP5630597B2 (ja) * 2008-12-04 2014-11-26 東洋製罐株式会社 生分解性樹脂成形体を含む有機系廃棄物の処理方法
JP5829393B2 (ja) * 2010-10-05 2015-12-09 東洋製罐株式会社 生分解性樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026684A1 (fr) * 2006-08-31 2008-03-06 Nisshinbo Industries, Inc. Film poreux et base d'impression
JP2009057408A (ja) * 2007-08-30 2009-03-19 Toray Ind Inc 易分解性フィルム
JP2009144012A (ja) 2007-12-12 2009-07-02 Toho Chem Ind Co Ltd 生分解性ポリエステル系樹脂からなる多孔質微粒子の製造方法
JP2009242728A (ja) 2008-03-31 2009-10-22 Ryukoku Univ ポリ乳酸多孔質粒子およびその製造方法
WO2010055903A1 (ja) * 2008-11-13 2010-05-20 東洋製罐株式会社 生分解性樹脂組成物
JP2012077246A (ja) * 2010-10-05 2012-04-19 Toyo Seikan Kaisha Ltd 生分解性樹脂組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
POLYM. ENG. SCI., vol. 14, 1974, pages 147 - 154
See also references of EP3045500A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127573A (ja) * 2018-01-26 2019-08-01 学校法人立教学院 樹脂組成物の加水分解方法
JP7049627B2 (ja) 2018-01-26 2022-04-07 学校法人立教学院 樹脂組成物の加水分解方法

Also Published As

Publication number Publication date
CN105518078A (zh) 2016-04-20
EP3045500A4 (en) 2017-05-03
KR20160048921A (ko) 2016-05-04
US20160208062A1 (en) 2016-07-21
EP3045500A1 (en) 2016-07-20
JP2015054864A (ja) 2015-03-23
JP6365811B2 (ja) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6365811B2 (ja) 多孔質構造を有する生分解性樹脂組成物、及び、その表面処理方法
Zaaba et al. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation
ES2773919T3 (es) Aditivos químicos para hacer biodegradables los materiales poliméricos
CN111548610B (zh) 一种可调控降解速率的生物降解复合材料及其制备与应用
JP3369565B2 (ja) コハク酸から誘導される繰り返し単位を有するコポリエステル
JP5630597B2 (ja) 生分解性樹脂成形体を含む有機系廃棄物の処理方法
US20140051780A1 (en) COPOLYESTERS HAVING REPEAT UNITS DERIVED FROM w-HYDROXY FATTY ACIDS
JPH04146953A (ja) プラスチックの生分解性制御方法
JP2011104551A (ja) 電子供与体供給剤、電子供与体供給剤の製造方法、およびそれを用いた環境浄化方法
JP5909836B2 (ja) 電子供与体供給剤および、それを用いた環境浄化方法
JPH04168150A (ja) 生分解性プラスチック
CN105064005A (zh) 一种掺杂改性蜂巢石-氧化石墨烯的高效聚乳酸-聚丙烯生物膜复合纤维载体材料及其制备方法
JP2012077246A (ja) 生分解性樹脂組成物
CN113105725A (zh) 一种可生物降解材料及其制备方法和应用
JP2011157483A (ja) 生分解性樹脂の処理方法
CN105002723A (zh) 一种高光催化活性的掺杂改性蜂巢石的聚乳酸-聚丙烯生物膜复合纤维载体材料及其制备方法
Mai et al. Enhanced nutrient removal from lake water via biodegradation of poly (L-lactide)/poly (3-hydroxybutyrate-co-4-hydroxybutyrate) blends
JPH10120889A (ja) 三成分系生分解性樹脂組成物
JP2005076026A (ja) 生分解性セルロース誘導体とその製造方法
EP3950839B1 (en) Solid poly(lactic acid) composition and production method therefor
JP4092942B2 (ja) 生分解性樹脂成形体の廃棄処理方法
Nomadolo et al. A Comparative Study on the Aerobic Biodegradation of the Biopolymer Blends of Poly (butylene succinate), Poly (butylene adipate terephthalate) and Poly (lactic acid). Polymers, 2022, 14 (9), 1894
Liang Production of Biocomposite Materials From Activated Sludge: Polyhydroxyalkanoates Reinforced With Filamentous Bacteria
Kaur et al. Biodegradable plastics: mechanisms of degradation and generated bio microplastic impact on soil health
WO2015115633A1 (ja) 繊維

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844359

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014844359

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014844359

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14917509

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167008202

Country of ref document: KR

Kind code of ref document: A