WO2015037125A1 - ダンパ装置 - Google Patents
ダンパ装置 Download PDFInfo
- Publication number
- WO2015037125A1 WO2015037125A1 PCT/JP2013/074847 JP2013074847W WO2015037125A1 WO 2015037125 A1 WO2015037125 A1 WO 2015037125A1 JP 2013074847 W JP2013074847 W JP 2013074847W WO 2015037125 A1 WO2015037125 A1 WO 2015037125A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spring
- rigidity
- damper device
- outer diameter
- diameter direction
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/10—Suppression of vibrations in rotating systems by making use of members moving with the system
- F16F15/12—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
- F16F15/121—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
- F16F15/123—Wound springs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/02—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
- F16D3/12—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted for accumulation of energy to absorb shocks or vibration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/10—Suppression of vibrations in rotating systems by making use of members moving with the system
- F16F15/12—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
- F16F15/121—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
- F16F15/123—Wound springs
- F16F15/1232—Wound springs characterised by the spring mounting
- F16F15/12326—End-caps for springs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
- F16F1/04—Wound springs
- F16F1/12—Attachments or mountings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2200/00—Materials; Production methods therefor
- F16D2200/0078—Materials; Production methods therefor laminated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/50—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
- F16D3/64—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts
- F16D3/66—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts the elements being metallic, e.g. in the form of coils
Definitions
- the present invention relates to a damper device provided with a spring seat that is provided in a transmission system of a vehicle and supports a coil spring that absorbs torsional vibration.
- a spring seat supporting a coil spring that includes a resin spring seat having a cored bar therein (see, for example, Patent Document 1). ).
- a plurality of coil springs are interposed in the circumferential direction between a first rotating body and a second rotating body, and both ends of each coil spring are attached to each rotating body via a spring seat.
- the spring seat includes a seat portion on which an axial end portion of the coil spring is seated, and a flange portion provided in the radial direction of the axial line of the coil spring.
- the flange portion prevents the coil spring from being deformed in the outer diameter direction by the centrifugal force. For this reason, the cored bar has a structure having a strength sufficient to suppress deformation of the flange portion and the coil spring.
- the following problems occur when the rigidity of the damper device is reduced and a coil spring having a relatively low elastic modulus is used. That is, in the above-described prior art, the flange portion of the spring seat has a structure that regulates deformation of the coil spring in the outer diameter direction due to centrifugal force. For this reason, when a coil spring having a low elastic modulus is used, when the coil spring is deformed in the device outer diameter direction, between the portion where the deformation is restricted by the flange and the portion outside this restriction range, Excessive deformation may occur, leading to a decrease in durability of the coil spring. On the other hand, in order to solve this problem, when the rigidity of the collar part is reduced, the collar part may be damaged by the input from the coil spring.
- the present invention has been made paying attention to the above problem, and provides a damper device capable of improving the durability of the flange portion and the coil spring while allowing the flange portion of the spring seat to deform following the coil spring. It is intended to provide.
- the damper device of the present invention provides: A resin spring seat provided with a cored bar inside that supports a coil spring interposed in the circumferential direction between the first rotating body and the second rotating body, and a seating portion on which the coil spring is seated And a collar portion extending in a circumferential direction from an outer radial direction end portion of the rotating body in the seating portion,
- the collar core material extending in the circumferential direction in the collar part is provided on the side close to the seating part in the circumferential direction and has a relatively low rigidity, and the seating in the circumferential direction.
- a high-rigidity portion provided on a side far from the portion and having relatively high rigidity.
- FIG. 1 is a longitudinal sectional view of a damper device according to a first embodiment.
- FIG. 3 is an exploded perspective view of the damper device according to the first embodiment. It is sectional drawing which shows the principal part of the damper apparatus of Embodiment 1, Comprising: The state which cut
- FIG. 5 is a perspective view of a second spring seat of the damper device according to the first embodiment. It is the bottom view which looked at the device outside diameter direction from the device inside diameter direction of the 2nd spring seat. It is action explanatory drawing of the damper apparatus of Embodiment 1, and has shown the state which looked at the principal part when there was an input in an apparatus axial direction in the state which a coil spring deform
- FIG. 7B is an operation explanatory diagram of the damper device according to the first embodiment, showing a state in which the outer diameter direction is viewed from the inner diameter direction during the operation illustrated in FIG. 7A.
- FIG. 5 is an operation explanatory diagram of the damper device according to the first embodiment, showing a state in which the inner diameter direction is viewed from the outer diameter direction when there is an input in the device axial direction in a state where the coil spring is not deformed in the outer diameter direction of the device. ing. It is a figure which shows operation
- FIG. 5 is a bottom view of the damper outer device according to the first embodiment, showing a mounting structure using a first spring seat clamping protrusion, as viewed from the device inner diameter direction. It is a figure which shows the modification of a collar part metal core as other embodiment of this invention, and is the bottom view which looked at the apparatus outer diameter direction from the apparatus inner diameter direction of the 2nd spring seat. It is a figure which shows the modification of a collar part metal core as other embodiment of this invention, and is the bottom view which looked at the apparatus outer diameter direction from the apparatus inner diameter direction of the 2nd spring seat. It is a figure which shows the modification of a collar part metal core as other embodiment of this invention, and is the bottom view which looked at the apparatus outer diameter direction from the apparatus inner diameter direction of the 2nd spring seat.
- FIGS. 1 is a sectional view of the damper device A
- FIG. 2 is an exploded perspective view of the damper device A
- FIG. 3 is a sectional view showing a main part of the damper device A.
- the damper device A is a mechanism for transmitting torque and absorbing and attenuating torsional vibration.
- the damper device A is provided in a driving force transmission path between the motor Mot and the engine Eng (not shown). Shall. That is, the damper device A is provided in the driving force transmission system of the hybrid vehicle, although not shown.
- the engine Eng When the engine Eng is driven, the engine driving force can be transmitted to the motor Mot side to generate electric power, and further, the engine driving force can be transmitted to the driving wheel side (not shown) via the motor Mot. It has become. Further, when the engine Eng is not driven, the driving force of the motor Mot is input to the engine Eng so that the engine can be started.
- the damper device A absorbs and dampens torsional vibrations mainly caused by driving the engine Eng during such drive transmission.
- the damper device A includes a hub plate (first rotating body) 1 connected to the motor Mot so as to allow input / output and an input / output plate connected to the engine Eng so as to allow input / output. (Second rotating body) 2.
- Three sets of first coil springs 31 and second coil springs 32 are interposed in the circumferential direction with respect to both plates 1 and 2. That is, as the hub plate 1 and the input / output plate 2 move relatively in the circumferential direction, one of the first coil spring 31 and the second coil spring 32 is shortened and the other is expanded. The Due to the elastic deformation of the coil springs 31 and 32, the torsional vibration input to the hub plate 1 and the input / output plate 2 is absorbed and damped.
- a clutch that connects and disconnects transmission of driving force may be provided between the hub plate 1 and the motor Mot (not shown).
- the input / output plate 2 has an intermediate plate 23 sandwiched between the axial direction of the damper device A and in the direction of the arrow Ce in FIGS. 1 and 2 (hereinafter referred to as the device axial direction).
- Two plates 22 are fixed by a plurality of rivets 21.
- the input / output plate 2 and the second plate 22 have three sets of receiving windows 2a and 22a extending in the circumferential direction for receiving the pair of coil springs 31 and 32 in the circumferential direction. It should be noted that between the housing windows 2a of the input / output plate 2 in the circumferential direction, the inside and outside of the device radial direction (the radial direction of the damper device A, and the arrow OUT in the figure indicates the outer diameter direction) is connected. A connecting portion 2b is provided. Similarly, a connecting portion 22b for connecting the inside and the outside in the apparatus radial direction is provided between the accommodating windows 22a of the second plate 22 in the circumferential direction.
- the intermediate plate 23 is provided with three intermediate plate side support arms 24 extending in the outer diameter direction at regular intervals in the circumferential direction.
- each intermediate plate-side support arm 24 is disposed at an intermediate portion in the circumferential direction of the housing windows 2a and 22a.
- a gear member 25 for starting the engine is coupled to the outer periphery of the input / output plate 2 by a plurality of rivets 21. Accordingly, the second plate 22, the intermediate plate 23, and the gear member 25 rotate integrally with the input / output plate 2.
- the hub plate 1 is provided with three hub plate side support arms 11 extending in the outer diameter direction at regular intervals in the circumferential direction, like the intermediate plate 23. These hub plate side support arms 11 are arranged at positions between the accommodating windows 2a and 22a in the circumferential direction. Therefore, the hub plate side support arms 11 and the intermediate plate side support arms 24 are alternately arranged in the circumferential direction.
- the intermediate plate side support arm 24 of the intermediate plate 23 and the hub plate side support arm 11 of the hub plate 1 are relatively movable in the circumferential direction, and the above-described two coil springs 31 and 32 are both supported. It is interposed between the arms 11 and 24 in the circumferential direction. As shown in FIG. 3, the two coil springs 31 and 32 are alternately arranged in the circumferential direction between the two support arms 11 and 24, and three sets of the first coil springs 31 and three sets of the second coils. When one of the springs 32 is compressed in parallel, the other is expanded in parallel.
- the seating portion 43 supports the end portions of the coil springs 31 and 32 in the direction of the spring center axis Sc, and is formed in a substantially disc shape as shown in FIG.
- the coil springs 31 and 32 are inserted into the inner periphery of the end portions of the coil springs 31 and 32 from the radial center of the spring seating surface 43a on which the coil springs 31 and 32 are seated.
- a guide protrusion 43c is formed to protrude.
- the flange portion 44 is formed so as to extend in the axial direction along the outer peripheral portion of the seating portion 43 from the region of a substantially half portion on the apparatus outer diameter direction (arrow OUT direction in FIG. 3) side.
- the flange portion 44 prevents the coil springs 31 and 32 from being deformed in the damper outer diameter direction by the centrifugal force when the damper device A is rotated. It is formed so as to cover.
- the flange portion 44 has three axial positions (a direction along the spring center axis Sc indicated by a one-dot chain line in FIG. 5) at the circumferential center and both ends in the circumferential direction. Extending ribs 44a, 44b, 44b are provided.
- the metal core material 45 is formed of a thin metal plate, and as shown in FIG. 5, the seating core metal material 451, the flange core metal material 452, and the side edge reinforcing arm portions 453 and 453 are integrated. Is formed.
- the seat core metal 451 is embedded in the seat 43 and is formed in a disk shape having a smaller diameter than the seat 43.
- the flange core metal member 452 is a top portion of the flange portion 44 in the apparatus outer diameter direction and is disposed inside the rib 44a.
- the side edge reinforcing arm portions 453 are arranged along the ribs 44b at both edges in the circumferential direction of the arc of the flange portion 44, and are formed in a bar shape narrower than the flange core metal member 452.
- the flange core metal member 452 includes a low rigidity portion 452 a on the side close to the seating portion 43, and a high rigidity portion 452 b on the side far from the seating portion 43 and on the tip side of the flange portion 44.
- the difference in rigidity between the low-rigidity portion 452a and the high-rigidity portion 452b is set by the difference in the width of the metal plate material that forms the flange core metal material 452, and the high-rigidity portion 452b is low. It is formed wider than the rigid portion 452a.
- the collar part core metal material 452 is formed in the planar view T shape.
- the dimension L1 of the low-rigidity part 452a in the flange projecting direction is formed to be larger than the axial dimension L2 of the guide protrusion 43c. Therefore, the low-rigidity part 452a is provided in the circumferential direction to a position in the distal direction side of the flange part 44 rather than the distal end of the guide protrusion 43c. Further, the high-rigidity portion 452b is provided at a position on the distal end side of the flange portion 44 with respect to the distal end of the guide projection 43c in the circumferential direction.
- the collar core material 452 is exposed in the apparatus inner diameter direction (the direction opposite to the arrow OUT) with respect to the resin material forming the collar 44.
- the entire side edge portion reinforcing arm portion 453 is embedded in the resin material forming the flange portion 44.
- the seating portion 43 will be described. As shown in FIG. 5, the seating portion 43 is exposed so that the seating core metal member 451 can come into contact with the coil springs 31 and 32 at the contact portion with the coil springs 31 and 32 on the spring seating surface 43 a.
- the exposed cored bar 451a is provided.
- the cored bar exposed portion 451a is provided at a portion where the coil springs 31 and 32 are in strong contact with each other on the spring seating surface 43a. That is, the cored bar exposed portion 451a is located on the spring seating surface 43a at a position closer to the device inner diameter direction (the opposite direction to the arrow OUT shown in FIGS. 4A and 4B) than the spring center axis Sc of each of the coil springs 31 and 32.
- the cored bar exposed portion 451a is provided in a semicircular arc shape along a winding-shaped circumferential portion with which the end portions of the coil springs 31 and 32 abut on the spring seating surface 43a.
- the spring seating surface 43a includes a region on the apparatus outer diameter direction side of the spring center axis Sc, and a region other than the cored bar exposed portion 451a includes a coating region 43b in which the seating unit core metal member 451 is coated with a resin.
- Each support arm 11, 24 is formed with a pair of mounting recesses 11 a, 24 a that are recessed in the circumferential direction so as to accommodate the ends of the coil springs 31, 32 and the spring seats 41, 42. Yes.
- the attachment parts 11b and 24b which attach each spring seat 41 and 42 are provided in the part pinched
- flanges 11f and 24f extend in the circumferential direction on the outer diameter direction side of the mounting recesses 11a and 24a, respectively.
- Each of the spring seats 41 and 42 has a pair of holding parts for holding the attachment parts 11b and 24b of the support arms 11 and 24 in the axial direction on the outer surface of the seating part 43 opposite to the side where the guide protrusions 43c are provided. Protrusions 47 and 46 are provided.
- the clamping protrusion 47 provided on the first spring seat 41 is formed in a relatively small shape compared to the clamping protrusion 46 of the second spring seat 42.
- the hub plate side support arm 11 held by the holding protrusions 47 has the connecting portion 2b of the input / output plate 2 and the second plate 22 on both sides in the apparatus axial direction (arrow Ce direction).
- the connecting portion 22b is arranged. Therefore, as shown in FIG. 9, the pair of clamping protrusions 47 sandwich the attachment portion 11b and are further sandwiched by both the coupling portions 2b and 22b. Therefore, the attachment strength of the first spring seat 41 to the attachment portion 11b of the hub plate side support arm 11 can be sufficiently ensured even with the relatively small clamping protrusion 47.
- the connecting portions 2b and 22b do not exist in the axial direction of the intermediate plate-side support arm 24 of the intermediate plate 23, and the second spring seat 42 has only a pair of clamping projections 46, and the intermediate plate-side support arm. 24. Therefore, the pinching protrusions 46 of the second spring seat 42 are formed in a relatively larger shape than the pinching protrusions 47 of the first spring seat 41 in order to ensure the mounting strength.
- the distance between the pair of holding projections 46, 46 in the apparatus axis direction is an interval at which the mounting portion 24b can be clamped, and the second portion can be obtained by clamping the mounting portion 24b.
- the spring seat 42 is restricted from moving in the apparatus axial direction (arrow Ce direction). Further, since both clamping protrusions 46 and 46 only clamp the attachment portion 24b, the support projections 46 and 46 can be relatively rotated with respect to the attachment portion 24b in the apparatus outer diameter direction, which is the direction of the arrow R4b in FIG. 4B. It has become.
- the pinching protrusion 46 is formed in a semicircular shape that is an arc shape along the rotation path in the outer diameter direction when viewed from the apparatus axial direction.
- the sandwiching protrusion 46 includes a low rigidity portion 46a and a high rigidity portion 46b.
- the low-rigidity portion 46a is provided in a region closer to the flange portion 44 in the clamping protrusion 46 and in a region closer to the device outer diameter side than the spring center axis Sc.
- the spring center axis Sc in FIG. 7A indicates the center axis in a state where the coil springs 31 and 32 are not deformed in the apparatus outer diameter direction as shown in FIG. 4A.
- the low-rigidity portion 46a is set to a rigidity that allows the flange portion 44 to be elastically deformed in the apparatus outer diameter direction and the apparatus axial direction.
- centrifugal force acts on both coil springs 31 and 32 as both plates 1 and 2 rotate.
- the spring center axis Sc is substantially straight as shown in FIG. 4A, whereas when rotated, the centrifugal force causes the centrifugal force to be as shown in FIG. 4B.
- the intermediate portion is elastically deformed so as to swell in the outer diameter direction of the apparatus.
- both the spring sheets 41 and 42 are made of resin, so that the frictional resistance generated at the time of rubbing can be suppressed to be lower than that of metal.
- the coil springs 31 and 32 are displaced with respect to both the spring seats 41 and 42, or excessive deformation as shown in FIG. 8 occurs. Can be suppressed.
- the two coil springs 31 and 32 come into contact with the inner surface of the flange portion 44 when deformed in the device outer diameter direction (arrow OUT direction).
- this contact force is strong, wear occurs on the inner surface (surface on the inner diameter side of the apparatus) of the flange portion 44.
- the flange portion 44 exposes the flange core metal material 452 on the inner peripheral surface of the top portion in the apparatus outer diameter direction. For this reason, when the coil springs 31 and 32 are deformed in the outer diameter direction of the apparatus, the portions that come into strong contact with each other directly come into contact with the flange core metal material 452, thereby avoiding wear of the resin portion.
- the two coil springs 31 and 32 are devices indicated by circles P with respect to the seating portion 43 at both ends in the direction along the spring center axis Sc when deformed in the device outer diameter direction.
- the inner diameter direction side contacts more strongly than the apparatus outer diameter direction side. That is, in the portion where the guide protrusion 43c is inserted into each of the coil springs 31 and 32, the deformation in the apparatus outer diameter direction is restricted by the guide protrusion 43c.
- deformation at a position farther from the seating portion 43 than the tip of the guide projection 43c is larger than that of the portion regulated by the guide projection 43c.
- a semicircular cored bar exposed portion 451a along the arcs of both coil springs 31 and 32 is provided on the inner diameter side of the spring center surface Sc on the spring seating surface 43a of the seating portion 43. ing. Therefore, even when both the coil springs 31 and 32 and the device seating direction side of the spring seating surface 43a are in strong contact with each other, it is possible to prevent the resin from being worn.
- both the coil springs 31 and 32 are deformed in the outer diameter direction of the device, the input from the coil springs 31 and 32 is larger at the flange portion 44, and the deformation tends to occur. Therefore, when this deformation is repeated or the amount of deformation increases at the distal end portion of the flange portion 44, there is a possibility that a tip crack may occur at the distal end portion.
- the flange core metal material 452 in addition to providing the above-described flange core metal material 452 on the flange portion 44, the flange core metal material 452 is provided with a high-rigidity portion 452b on the distal end side of the flange portion 44. Is provided. For this reason, it is suppressed by the highly rigid part 452b that the front-end
- the collar metal member 452 is provided with a low-rigidity portion 452a on the side close to the seating portion 43. Therefore, when both of the coil springs 31 and 32 are deformed in the outer diameter direction of the device, the entire core metal member 452 is made to have a high rigidity capable of suppressing the tip crack. Therefore, the spring seats 41 and 42 are likely to be deformed in the direction of the arrow R4b in FIG. 4B. As a result, the input to both the coil springs 31 and 32 and the flange portion 44 can be moderated, and excessive deformation as shown in FIG. be able to. Therefore, it is possible to improve durability by suppressing breakage of both the coil springs 31 and 32 and the both spring seats 41 and 42.
- the low-rigidity portion 452a is provided to a position closer to the distal end side of the flange portion 44 than the distal end of the guide projection 43c. That is, in both the coil springs 31 and 32, deformation of the portion inserted into the guide protrusion 43c is restricted to some extent in the device outer diameter direction, and the device outer diameter direction is closer to the distal end side of the flange portion 44 than the guide protrusion 43c. The deformation of is easy to occur.
- the high-rigidity portion 452b is arranged from the tip position of the guide protrusion 43c to the base side of the flange portion 44, the deformation of both the coil springs 31 and 32 in the device outer diameter direction is suppressed by the high-rigidity portion 452b.
- the low-rigidity portion 452a is disposed from the distal end position of the guide projection 43c to the distal end side of the flange portion 44
- the high-rigidity portion 452b is disposed closer to the flange portion 44 than the distal end position of the guide projection 43c. Arranged on the tip side.
- the spring sheets 41 and 42 are easily deformed following the deformation of the coil springs 31 and 32 in the apparatus outer diameter direction. Therefore, it is possible to more reliably prevent the two coil springs 31 and 32 from being excessively deformed as shown in FIG. 8, and to prevent damage to both the coil springs 31 and 32 and the two spring seats 41 and 42. And durability can be improved.
- the pinching protrusion 47 has the connecting portions 2b and 22b and the mounting portion. Since it is pinched by 11b, relatively high attachment strength is obtained. For this reason, even if the first spring seat 41 is deformed and displaced in the apparatus outer diameter direction and the apparatus axial direction, it is unlikely that the first spring seat 41 is detached from the mounting portion 11b or damaged.
- the second spring seat 42 attached to the intermediate plate-side support arm 24 has a configuration in which the attachment portion 24b is clamped by the pair of clamping projections 46, 46, and the mounting strength is relatively low. Yes. Therefore, the second spring seat 42 performs different operations depending on the input positions from the coil springs 31 and 32. The difference in input position is caused by the presence or absence of displacement of the second spring seat 42 and the coil springs 31 and 32 in the device outer diameter direction.
- the second spring seat 42 Since the input is absorbed by the elastic deformation of the second spring seat 42, the input to both the clamping protrusions 46, 46 is small. Further, since both the pinching protrusions 46 and 46 receive this input by the low rigidity portion 46a at the position of the spring center axis Sc, the deformation of the seating portion 43 is also absorbed. Therefore, as shown in FIG. 7C, the second spring seat 42 is elastically deformed following the deformation of the seating portion 43 while maintaining the state in which the attachment portion 24b of the intermediate plate side support arm 24 is sandwiched. Thus, since the second spring seat 42 is deformed following the deformation of the coil springs 31 and 32, the coil springs 31 and 32 are hardly subjected to stress.
- the input to the pinching protrusion 46 from both the coil springs 31 and 32 is made from the inner diameter side where the contact pressure is strong toward the highly rigid portion 46b as shown by the arrow F in FIG. 7A. Further, when both plates 1 and 2 are relatively displaced in the apparatus axial direction, the flange portion 44 is separated from the input position from both the coil springs 31 and 32 in the outer diameter direction, and the input through the flange portion 44 is not received. Hard to occur.
- the second spring seat 42 changes the inclination with respect to the intermediate plate-side support arm 24 while maintaining the shape of the sandwiching protrusions 46, 46.
- the amount of deformation of the coil springs 31 and 32 in the apparatus axial direction is small, and the amount of deformation of the flange portion 44 is also small. Further, at this time, since the strength of the clamping protrusions 46 and 46 is ensured by the ribs 46a and 46a, damage is hardly caused.
- a hub plate 1 serving as a first rotating body and an input / output plate 2 serving as a second rotating body are interposed in the circumferential direction, and a direction along a spring central axis as a winding center is directed to the circumferential direction.
- a first coil spring 31 and a second coil spring 32 whose both ends are supported by the hub plate side support arm 11 and the intermediate plate side support arm 24 of the plates 1 and 2;
- a second spring seat 42 In the damper device with Both spring seats 41 and 42 are seat portions 43 on which end portions of the coil springs 31 and 32 in the direction along the spring center axis are seated, and end portions in the outer diameter direction of the plates 1 and 2 in the seat portion 43.
- the core metal member 45 Extending from the circumferential direction to cover the outer diameter direction of each of the coil springs 31, 32, and
- the core metal member 45 has a flange core metal member 452 extending in the circumferential direction at a position in the outer diameter direction of the spring central axis Sc in the flange portion 44,
- the flange core metal member 452 is provided on the side close to the seating portion 43 in the circumferential direction, and is provided on the side far from the seating portion 43 in the circumferential direction, and a low rigidity portion 452a having relatively low rigidity.
- a high-rigidity portion 452b having relatively high rigidity.
- a flange core metal member 452 is provided on the flange 44 that is pressed when both the coil springs 31 and 32 are deformed in the outer diameter direction of the apparatus along with the rotation of the damper device A.
- a highly rigid portion 452b is provided on the distal end side of the flange portion 44 to be pressed.
- the flange core metal member 452 is provided with a low rigidity portion 452 a on the side close to the seating portion 43. Therefore, when the flange portion 44 is pressed in the outer diameter direction by the coil springs 31 and 32 as described above, the flange portion 44 is low in spite of the provision of the flange core metal member 452.
- the rigid portion 452a By having the rigid portion 452a, it is possible to deform following the coil springs 31 and 32. Therefore, in each of the coil springs 31 and 32, an excessive amount as shown in FIG. 8 is present between a portion that is covered by the flange portion 44 and is in contact with the flange portion 44 and a portion that is not covered by the flange portion 44. The occurrence of various deformations is suppressed. Therefore, damage to both the coil springs 31 and 32 due to such excessive deformation can be suppressed.
- the damper device of the first embodiment is
- the flange core metal member 452 is formed of a thin metal plate, and the high-rigidity portion 452b is formed to be wider than the low-rigidity portion 452a. Processing to enhance is easy and excellent in manufacturability.
- the range reinforced by the cored bar material 45 at the distal end portion of the flange portion 44 that abuts is expanded in the circumferential direction of the flange portion 44. Therefore, it can suppress more reliably that a crack occurs in the collar part 44.
- the damper device of the first embodiment is The flange core metal member 452 is characterized in that the high rigidity portion 452b and the low rigidity portion 452a are formed in a T shape in a plan view. Therefore, it is possible to reliably set the regions having different rigidity between the high rigidity portion 452b and the low rigidity portion 452a. In addition, since the width of the low-rigidity portion 452a is constant, when the collar portion 44 is deformed, it is possible to prevent stress concentration from occurring particularly in a portion where the width is narrowed in the low-rigidity portion 452a, thereby ensuring durability. .
- the high-rigidity portion 452b since the high-rigidity range described in 2) above can be expanded in the circumferential direction of the flange portion 44, the effect of suppressing the occurrence of a tip crack in the flange portion 44 is reliably exhibited. be able to. Also in this case, by making the width of the high-rigidity portion 452b constant, it is possible to suppress the stress concentration at a specific location and ensure durability.
- the damper device of the first embodiment is The flange core metal member 452 is provided so as to be exposed in the inner diameter direction (device inner diameter direction) of the rotating body with respect to the flange portion 44. Therefore, the device inner diameter direction side of the flange portion 44 rubs when the coil springs 31 and 32 are deformed in the device outer diameter direction by centrifugal force. For this reason, it is possible to prevent the resin material from being worn by this rubbing by exposing the flange core metal material 452.
- the damper device of the first embodiment is A guide protrusion 43c is inserted into the seating portion 43 to restrict the movement of the coil springs 31 and 32 in the direction orthogonal to the spring center axis.
- the low-rigidity portion 452a is provided in the circumferential direction to a position in the distal direction side of the flange portion 44 rather than the distal end of the guide projection 43c. Therefore, when each of the coil springs 31 and 32 is deformed in the outer diameter direction of the apparatus by the centrifugal force, the flange portion 44 can surely follow and deform the deformation of the portion whose movement is not restricted by the guide protrusion 43c.
- FIG. 10A to FIG. 10H each show a modification of the flange cored bar material 452.
- the flanged core members 201 to 206 each have the low-rigidity portions 201a to 206a formed narrower than the high-rigidity portions 201b to 206b, and the width is constant. Is formed.
- the high-rigidity parts 201b to 206b are each provided with a portion that is wider than the low-rigidity parts 201a to 206a, but have different widths along the circumferential direction of the apparatus.
- 10G and 10H are each formed with a shape in which the width gradually increases from the low-rigidity portions 207a and 208a toward the tips of the high-rigidity portions 207b and 208b, respectively.
- the flange portion 44 becomes less rigid as it is closer to the seating portion 43, and is easily deformed.
- the damper device of the present invention is installed between the engine and the motor of the hybrid vehicle.
- the damper device can be mounted on a vehicle other than the hybrid vehicle. That is, it can also be provided between the engine and the transmission.
- variety of a metal plate material was shown in embodiment in the collar part metal core material, it is not limited to this.
- the plate thickness of the high-rigidity part may be made thicker than that of the low-rigidity part to make the rigidity different, or the rigidity may be made different by a combination of a difference in the plate thickness and a difference in the width of the plate material. Also good.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Operated Clutches (AREA)
- Springs (AREA)
- Fluid-Damping Devices (AREA)
Abstract
Description
この従来のダンパ装置は、第1の回転体と第2の回転体との間に周方向に複数のコイルスプリングが介在され、各コイルスプリングの両端部は、スプリングシートを介して各回転体に着座されている。
また、スプリングシートは、コイルスプリングの軸方向端部が着座される着座部と、このコイルスプリングの軸線の半径方向に設けられた庇部と、を備えている。
そして、ダンパ装置が回転するのに伴って、コイルスプリングに遠心力が作用した際に、庇部によりコイルスプリングが遠心力で外径方向に変形するのを抑制するようにしている。このため、芯金は、庇部およびコイルスプリングの変形を抑制するだけの強度を備えた構造となっている。
すなわち、上述の従来技術では、スプリングシートの庇部は、遠心力によるコイルスプリングの外径方向の変形を規制する構造であった。このため、コイルスプリングとして弾性率の低いものを用いた場合、コイルスプリングの装置外径方向への変形時に、庇部により変形を規制される部位と、この規制範囲外の部分との間で、過度な変形が生じ、コイルスプリングの耐久性低下を招くおそれがある。
一方、この問題を解決すべく、庇部を低剛性化した場合、コイルスプリングからの入力により庇部が破損するおそれがある。
第1の回転体と第2の回転体との間で周方向に介在されたコイルスプリングを支持した内部に芯金材を備えた樹脂製のスプリングシートが、前記コイルスプリングが着座された着座部と、この着座部における前記回転体の外径方向端部から周方向に延在された庇部と、を有し、
前記庇部において前記周方向に延在される庇部芯金材は、前記周方向で前記着座部に近い側に設けられて相対的に剛性が低い低剛性部と、前記周方向で前記着座部から遠い側に設けられて相対的に剛性が高い高剛性部と、を有することを特徴とするダンパ装置とした。
この場合に、庇部は、庇部芯金材において着座部に近い側に設けた低剛性部の剛性に基づいて、両コイルスプリングの変形に追従して変形することができる。したがって、各コイルスプリングにあっては、庇部に覆われて庇部に当接する部位と、庇部に覆われない部位と、の間で、過度な変形が生じるのが抑制され、過度な変形によるコイルスプリングの破損を抑制できる。
一方、各コイルスプリングにより相対的に強く押圧される庇部の着座部から遠い側である先端部側には、庇部芯金材に高剛性部を設けているため、この押圧力が繰り返し入力された場合の庇部の破損を抑制できる。
(実施の形態1)
<ダンパ装置の構成>
まず、実施の形態1のダンパ装置Aの構成を図1~図3に基づいて説明する。
なお、図1はダンパ装置Aの断面図であり、図2はダンパ装置Aの分解斜視図であり、図3はダンパ装置Aの主要部を示す断面図である。
なお、入出力プレート2の外周には、エンジン始動用のギヤ部材25が複数のリベット21により結合されている。
したがって、第2プレート22、中間プレート23、ギヤ部材25が、入出力プレート2と一体的に回転する。
次に、両コイルスプリング31,32の各支持アーム11,24に対する取付構造および両スプリングシート41,42の構成について説明する。
両コイルスプリング31,32は、それぞれ、ハブプレート側支持アーム11に対して、第1スプリングシート41を介して取り付けられ、中間プレート側支持アーム24に対して第2スプリングシート42を介して取り付けられている。
両スプリングシート41,42は、後述する芯金材45を摩擦抵抗の低い樹脂により覆うモールド成形を行なって形成したもので、図4A、図4Bに示すように、それぞれ、着座部43と庇部44とを備えている。
また、図5に示すように、庇部44には、周方向の中央と、周方向の両端部との3箇所に軸方向(図5において一点鎖線で示すスプリング中心軸Scに沿う方向)に延びるリブ44a,44b,44bを備えている。
着座部芯金材451は、着座部43内に埋め込まれており、着座部43よりも小径の円盤状に形成されている。
庇部芯金材452は、庇部44において装置外径方向の頂部分であって、リブ44aの内側に配置されている。
側縁部補強アーム部453は、庇部44の円弧の周方向両端縁部のリブ44bに沿って配置され、庇部芯金材452に比べて幅狭の棒状に形成されている。
本実施の形態1では、低剛性部452aと高剛性部452bとの剛性の違いは、庇部芯金材452を形成する金属板材の幅の違いにより設定されており、高剛性部452bは低剛性部452aよりも幅広に形成されている。そして、本実施の形態1では、この幅の差を付与するのにあたり、庇部芯金材452は、図6に示すように、平面視T字状に形成されている。
着座部43は、図5に示すように、スプリング着座面43aにおいて、各コイルスプリング31,32との当接部分に、着座部芯金材451を各コイルスプリング31,32と当接可能に露出させた芯金露出部451aが設けられている。
この芯金露出部451aは、本実施の形態1では、スプリング着座面43aにおいて各コイルスプリング31,32が強く接触する部位に設けられている。すなわち、芯金露出部451aは、スプリング着座面43aにて各コイルスプリング31,32のスプリング中心軸Scよりも装置内径方向(図4A、図4Bに示す矢印OUTに対して反対方向)側位置に配置されている。
さらに、芯金露出部451aは、本実施の形態1では、スプリング着座面43aにおける各コイルスプリング31,32の端部が当接する巻形状の円周状部分に沿って半円弧状に設けられている。
一方、スプリング着座面43aにおいて、スプリング中心軸Scよりも装置外径方向側の領域を含み、芯金露出部451a以外の領域は、着座部芯金材451が樹脂により被覆された被覆領域43bとされている。
次に、図3に示す、両スプリングシート41,42の、ハブプレート側支持アーム11および中間プレート側支持アーム24に対する取付構造について説明する。
各支持アーム11,24には、各コイルスプリング31,32の端部および各スプリングシート41,42を収容可能に、周方向に凹形状となった一対の取付用凹部11a,24aが形成されている。そして、一対の取付用凹部11a,24aにより周方向に挟まれた部分に、各スプリングシート41,42を取り付ける取付部11b,24bが設けられている。また、各取付用凹部11a,24aの外径方向側には、それぞれ、周方向にフランジ11f,24fが延在されている。
すなわち、挟持用突起47により挟持されるハブプレート側支持アーム11は、図2に示すように、装置軸方向(矢印Ce方向)の両側に、入出力プレート2の連結部2bおよび第2プレート22の連結部22bが配置されている。したがって、一対の挟持用突起47は、図9に示すように、取付部11bを挟持し、さらに、両連結部2b,22bにより挟持されている。よって、第1スプリングシート41のハブプレート側支持アーム11の取付部11bへの取付強度は、相対的に小さな挟持用突起47であっても十分に確保することができる。
図6に示すように、一対の挟持用突起46,46の装置軸方向の間隔は、取付部24bを挟持可能な間隔となっており、このように取付部24bを挟持することにより、第2スプリングシート42は、装置軸方向(矢印Ce方向)の移動が規制されている。また、両挟持用突起46,46は、取付部24bを挟持しているだけであるため、取付部24bに対して図4Bの矢印R4b方向である装置外径方向に相対回動可能な支持となっている。
そして、挟持用突起46は、図7Aに示すように、装置軸方向から見て、上記外径方向の回動軌跡に沿う円弧形状である半円形状に形成されている。
低剛性部46aは、挟持用突起46において庇部44に近い側であって、スプリング中心軸Scよりも装置外径方向側の領域に設けられている。なお、図7Aのスプリング中心軸Scは、各コイルスプリング31,32が図4Aに示すように、装置外径方向に変形していない状態における中心軸を示している。そして、この低剛性部46aは、庇部44が、装置外径方向および装置軸方向に弾性変形するのを許容可能な剛性に設定されている。
次に、実施の形態1の作用について説明する。
(両コイルスプリングの装置外径方向への変形時)
エンジンEngとモータMotとの間で駆動伝達がなされる場合、入出力プレート2とハブプレート1との一方の回転が両コイルスプリング31,32を介してもう一方に伝達される。
そして、各コイルスプリング31,32は、非回転時には、図4Aに示すようにスプリング中心軸Scが略一直線となっているのに対し、回転時には、上記遠心力により、図4Bに示すように、中間部が装置外径方向に膨らむように弾性変形する。
すなわち、両スプリングシート41,42は、庇部44が両コイルスプリング31,32により装置外径方向に押圧され、各プレート1,2に対して図4Bの矢印R4bに示す向きに回動しようとする。また、両スプリングシート41,42は、弾性を有した樹脂製であるため、矢印R4b方向への弾性変形が生じ、庇部44は、その先端を外径方向に変位させるように変形する。さらに、着座部43も、庇部44の変形に伴い、スプリング中心軸Scに対しスプリング外方へ弾性変形する。
上記のように両コイルスプリング31,32が装置外径方向へ変形した際に、樹脂製の両スプリングシート41,42に対して強く接触することを繰り返すと、樹脂部分に磨耗が生じるおそれがある。
1箇所は、庇部44の装置内径方向側の面であり、もう1箇所は、着座部43のスプリング着座面43aである。以下に、本実施の形態1における磨耗対策について説明する。
それに対し、本実施の形態1では、庇部44は、この装置外径方向の頂部分の内周面に、庇部芯金材452を露出させている。このため、両コイルスプリング31,32は、装置外径方向に変形した場合に、その強く接触する部分では、庇部芯金材452に直接接触し、樹脂部分の磨耗を回避できる。
すなわち、各コイルスプリング31,32にガイド突起43cが挿入されている部分では、装置外径方向への変形は、ガイド突起43cに規制される。一方、各コイルスプリング31,32において、ガイド突起43cの先端よりも着座部43から離れた位置では、ガイド突起43cに規制されている部分よりも大きな変形が生じる。このため、各スプリングシート41,42にあっては、庇部44が各コイルスプリング31,32に押されると、着座部43も庇部44と共に、装置外径方向に変位する向きの回動モーメントが生じる。
したがって、上記のように、両コイルスプリング31,32が図4Bに示すように装置外径方向に変形した際に、着座部43に対し、円Pにより示す装置内径方向側が、装置外径方向側よりも強く接触する。そして、この場合には、スプリング着座面43aでは、円Pにより示す装置内径方向側が装置外径方向側よりも樹脂の摩耗が生じるおそれがある。
両コイルスプリング31,32が装置外径方向へ変形した場合、庇部44では、先端側ほど両コイルスプリング31,32からの入力が大きく、変形が生じやすい。そこで、庇部44の先端部において、この変形が繰り返されたり、その変形量が大きくなったりした場合、先端部に先割れが生じるおそれがある。
それに対して、本実施の形態1では、庇部44に上述の庇部芯金材452を設けているのに加え、庇部芯金材452は、庇部44の先端側に高剛性部452bを設けている。このため、庇部44の先端が過度に変形するのが高剛性部452bにより抑制され、上述の先割れの発生が抑制される。
すなわち、両コイルスプリング31,32では、ガイド突起43cに挿入されている部分は、装置外径方向への変形がある程度規制され、ガイド突起43cよりも庇部44の先端側で装置外径方向への変形が生じやすくなっている。
そこで、ガイド突起43cの先端位置よりも庇部44の根元側まで高剛性部452bを配置した場合、両コイルスプリング31,32の装置外径方向の変形が、高剛性部452bにより抑制される。それに対し、本実施の形態1では、ガイド突起43cの先端位置よりも庇部44の先端側まで低剛性部452aを配置し、高剛性部452bをガイド突起43cの先端位置よりも庇部44の先端側に配置した。これにより、両コイルスプリング31,32の装置外径方向への変形に追従して両スプリングシート41,42の変形が生じ易くなる。よって、両コイルスプリング31,32に、図8に示すような過度の変形が生じるのを抑えることを、より確実に行い、両コイルスプリング31,32および両スプリングシート41,42の破損などを抑制して耐久性を向上できる。
次に、両コイルスプリング31,32が装置軸方向(図1、図2の矢印Ce方向)に変形した場合の作用について説明する。
中間プレート23は、図1により説明したように、エンジンEngに連結されているため、エンジンEngからの入力時に、エンジン振動による軸方向(図1、図2の矢印Ce方向)の入力を受ける場合がある。特に、入出力プレート2に、エンジン始動用のギヤ部材25を設けるとともに、両コイルスプリング31,32を保持した場合、エンジンEngからの入力が、入出力プレート2から直接、両コイルスプリング31,32に伝達されるため、この入力が大きくなる。
このように中間プレート23に振動入力が有った場合、両支持アーム11,24の間で軸方向に相対変位が生じ、この場合、両コイルスプリング31,32は、両支持アーム11,24の間で装置軸方向に相対変位する。
[装置外径方向への非変位時]
まず、両コイルスプリング31,32に装置外径方向の変形が生じていない場合について説明する。
この場合、両コイルスプリング31,32と着座部43との接触状態は、全周で略均一となっており、中間プレート側支持アーム24と両コイルスプリング31,32との入力は、スプリング中心軸Scの近傍でなされる。
そして、両プレート1,2間で軸方向の変位が生じた場合、第2スプリングシート42は、両コイルスプリング31,32から、庇部44を介して入力を受け、図7Cに示すように、庇部44および着座部43は、装置軸方向に弾性変形する。
したがって、第2スプリングシート42は、図7Cに示すように、中間プレート側支持アーム24の取付部24bを挟持した状態を維持したまま、着座部43の変形に追従して弾性変形する。
このように、第2スプリングシート42は、両コイルスプリング31,32の変形に追従して変形するため、両コイルスプリング31,32には、応力がかかりにくい。
次に、両コイルスプリング31,32が、図4Bに示すように、装置外径方向に変形するとともに、第2スプリングシート42も装置外径方向に変位している場合における装置軸方向入力時について説明する。
この両コイルスプリング31,32の装置外径方向への変形時には、前述したように、両コイルスプリング31,32は、着座部43の装置内径側との接触圧が強くなっている。
また、両プレート1,2が装置軸方向に相対変位した場合に、庇部44は、両コイルスプリング31,32からの入力位置から外径方向に離れており、庇部44を介した入力が生じにくい。
以下に、実施の形態1の制動制御装置の効果を列挙する。
1)第1の回転体としてのハブプレート1と第2の回転体としての入出力プレート2との間で周方向に介在され、巻き中心であるスプリング中心軸に沿う方向を前記周方向に向けて両端部を各プレート1,2のハブプレート側支持アーム11および中間プレート側支持アーム24に支持された第1コイルスプリング31および第2コイルスプリング32と、
両コイルスプリング31,32の前記スプリング中心軸Scに沿う方向の両端部を支持した状態で各支持アーム11,24に取り付けられ、内部に芯金材45を備えた樹脂製の第1スプリングシート41および第2スプリングシート42と、
を備えたダンパ装置において、
両スプリングシート41,42は、各コイルスプリング31,32の前記スプリング中心軸に沿う方向の端部が着座された着座部43と、この着座部43における各プレート1,2の外径方向端部から前記周方向に延在されて各コイルスプリング31,32の前記外径方向を覆う庇部44と、を有し、
前記芯金材45は、前記庇部44において前記スプリング中心軸Scの外径方向位置で前記周方向に延在される庇部芯金材452を有し、
前記庇部芯金材452は、前記周方向で前記着座部43に近い側に設けられて相対的に剛性が低い低剛性部452aと、前記周方向で前記着座部43から遠い側に設けられて相対的に剛性が高い高剛性部452bと、を有することを特徴とする。
したがって、ダンパ装置Aの回転時に、各コイルスプリング31,32が各スプリングシート41,42に相対変位した際には、各スプリングシート41,42が樹脂製であるため、金属製のものよりも安価に摩擦抵抗を抑えることができる。
また、ダンパ装置Aの回転に伴って、両コイルスプリング31,32が装置外径方向に変形した際に押圧される庇部44には庇部芯金材452を設けており、しかも、より強く押圧される庇部44の先端部側に、高剛性部452bを設けている。このため、両スプリングシート41,42を樹脂製としているにもかかわらず、上記押圧力が繰り返し入力された場合の破損発生を抑制できる。
さらに、庇部芯金材452は、着座部43に近い側に低剛性部452aを設けている。このため、上記のように庇部44が各コイルスプリング31,32により外径方向に押圧された場合には、庇部44は、庇部芯金材452を設けているにもかかわらず、低剛性部452aを有していることで、両コイルスプリング31,32に追従して変形することができる。したがって、各コイルスプリング31,32にあっては、庇部44に覆われて庇部44に当接する部位と、庇部44に覆われない部位と、の間で、図8に示すような過度な変形が生じるのが抑制される。よって、このような過度な変形による両コイルスプリング31,32の破損を抑制できる。
前記庇部芯金材452は、金属製の薄板により形成され、前記高剛性部452bは、前記低剛性部452aよりも幅広に形成することにより剛性を高めたことを特徴とする
したがって、剛性を高める加工が容易であり、製造性に優れる。
しかも、各コイルスプリング31,32が遠心力により装置外径方向に変形した際に、当接する庇部44の先端部において芯金材45により補強される範囲を、庇部44の周方向に拡大できるため、庇部44に先割れが生じるのを、より確実に抑制できる。
前記庇部芯金材452は、前記高剛性部452bと前記低剛性部452aとで平面視T字状に形成したことを特徴とする。
したがって、高剛性部452bと低剛性部452aとの剛性の異なる領域を確実に分けて設定することができる。加えて、低剛性部452aの幅を一定にしているため、庇部44の変形時に、低剛性部452aにおいて特に幅が狭まった箇所などに応力集中が生じるのを抑制し、耐久性を確保できる。
また、高剛性部452bにおいても、上記2)にて述べた、高剛性範囲を庇部44の周方向に拡大できるため、庇部44に先割れが生じるのを抑制できる効果を、確実に奏することができる。そして、この場合も、高剛性部452bの幅を一定にすることで、特定箇所に応力集中が生じるのを抑制して、耐久性を確保できる。
前記庇部芯金材452は、前記庇部44に対し回転体の内径方向(装置内径方向)に露出して設けたことを特徴とする。
したがって、庇部44の装置内径方向側は、各コイルスプリング31,32が遠心力により装置外径方向に変形した際に、擦れ合う。このため、庇部芯金材452を露出させることにより、この擦れ合いにより樹脂材が磨耗するのを抑制することができる。
前記着座部43に、各コイルスプリング31,32の内周に差し込まれて各コイルスプリング31,32が前記スプリング中心軸の直交方向へ移動するのを制限するガイド突起43cを突出し、
前記低剛性部452aを、前記周方向で、前記ガイド突起43cの先端よりも前記庇部44の先端方向側位置まで設けたことを特徴とする。
したがって、各コイルスプリング31,32が遠心力により装置外径方向に変形した際に、ガイド突起43cにより移動を規制されない部分の変形に、庇部44が確実に追従変形することが可能となる。
次に、本発明の他の実施の形態について説明する。
なお、他の実施の形態は、実施の形態1の変形例であるため、実施の形態1と共通する構成には実施の形態1と同じ符号を付して説明を省略し、実施の形態1との相違点のみ説明する。
図10A~図10Fに示す庇部芯金材201~206は、それぞれ、低剛性部201a~206aが全体で、高剛性部201b~206bよりも幅が狭く形成されているとともに、その幅が一定に形成されている。
一方、高剛性部201b~206bは、それぞれ、低剛性部201a~206aよりも幅が広い部分を備えているが、装置周方向に沿って、幅が異なる構成となっている。
この例では、庇部44は、着座部43に近いほど低剛性となって、変形し易い。
また、実施の形態では、庇部芯金材に、低剛性部と高剛性部との剛性の違いを、金属板材の幅の違いにより設定した例を示したが、これに限定されない。例えば、高剛性部の板厚を低剛性部の板厚よりも厚くして、剛性を異ならせてもよいし、板厚の違いと、板材の幅の違いとの組み合わせにより剛性を異ならせてもよい。
Claims (5)
- 第1の回転体と第2の回転体との間で周方向に介在され、巻き中心であるスプリング中心軸に沿う方向を前記周方向に向けて両端部を各回転体に支持されたコイルスプリングと、
このコイルスプリングの前記スプリング中心軸に沿う方向の両端部を支持した状態で各回転体に取り付けられ、内部に芯金材を備えた樹脂製のスプリングシートと、
を備えたダンパ装置において、
前記スプリングシートは、前記コイルスプリングの前記スプリング中心軸に沿う方向の端部が着座された着座部と、この着座部における前記回転体の外径方向端部から前記周方向に延在されて前記コイルスプリングの前記外径方向を覆う庇部と、を有し、
前記芯金材は、前記庇部において前記スプリング中心軸の前記外径方向位置で前記周方向に延在される庇部芯金材を有し、
前記庇部芯金材は、前記周方向で前記着座部に近い側に設けられて相対的に剛性が低い低剛性部と、前記周方向で前記着座部から遠い側に設けられて相対的に剛性が高い高剛性部と、を有することを特徴とするダンパ装置。 - 請求項1に記載のダンパ装置において、
前記庇部芯金材は、金属製の薄板により形成され、前記高剛性部は、前記低剛性部よりも幅広に形成することにより剛性を高めたことを特徴とするダンパ装置。 - 請求項2に記載のダンパ装置において、
前記庇部芯金材は、前記高剛性部と前記低剛性部とで平面視T字状に形成したことを特徴とするダンパ装置。 - 請求項1~請求項3のいずれか1項に記載のダンパ装置において、
前記庇部芯金材は、前記庇部に対し前記回転体の内径方向に露出して設けたことを特徴とするダンパ装置。 - 請求項1~請求項4のいずれか1項に記載のダンパ装置において、
前記着座部に、前記コイルスプリングの内周に差し込まれて前記コイルスプリングが前記スプリング中心軸の直交方向へ移動するのを制限するガイド突起を突出し、
前記低剛性部を、前記周方向で、前記ガイド突起の先端よりも前記庇部の先端方向側位置まで設けたことを特徴とするダンパ装置。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13893344.5A EP3045767B1 (en) | 2013-09-13 | 2013-09-13 | Damper device |
RU2016113962A RU2636844C2 (ru) | 2013-09-13 | 2013-09-13 | Демпфирующее устройство |
US14/914,834 US9909625B2 (en) | 2013-09-13 | 2013-09-13 | Damper device |
MYPI2016700820A MY188045A (en) | 2013-09-13 | 2013-09-13 | Damper device |
PCT/JP2013/074847 WO2015037125A1 (ja) | 2013-09-13 | 2013-09-13 | ダンパ装置 |
CN201380079560.4A CN105531501B (zh) | 2013-09-13 | 2013-09-13 | 减振器装置 |
MX2016003227A MX368828B (es) | 2013-09-13 | 2013-09-13 | Dispositivo amortiguador. |
JP2015536390A JP6028144B2 (ja) | 2013-09-13 | 2013-09-13 | ダンパ装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/074847 WO2015037125A1 (ja) | 2013-09-13 | 2013-09-13 | ダンパ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015037125A1 true WO2015037125A1 (ja) | 2015-03-19 |
Family
ID=52665267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/074847 WO2015037125A1 (ja) | 2013-09-13 | 2013-09-13 | ダンパ装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9909625B2 (ja) |
EP (1) | EP3045767B1 (ja) |
JP (1) | JP6028144B2 (ja) |
CN (1) | CN105531501B (ja) |
MX (1) | MX368828B (ja) |
MY (1) | MY188045A (ja) |
RU (1) | RU2636844C2 (ja) |
WO (1) | WO2015037125A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020537092A (ja) * | 2017-11-21 | 2020-12-17 | シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG | クラッチのアークスプリング用のスプリング保持器 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6028143B2 (ja) * | 2013-09-13 | 2016-11-16 | 日産自動車株式会社 | ダンパ装置 |
CN114599868B (zh) * | 2019-11-08 | 2023-11-28 | 日产自动车株式会社 | 车辆的发动机启动方法、串联混合动力车辆以及车辆的发动机启动装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008249008A (ja) * | 2007-03-30 | 2008-10-16 | Nissan Motor Co Ltd | スプリングシートおよびダンパーディスク組立体 |
JP2008249007A (ja) | 2007-03-30 | 2008-10-16 | Nissan Motor Co Ltd | スプリングシートおよびダンパーディスク組立体 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB473839A (en) * | 1936-04-17 | 1937-10-18 | English Electric Co Ltd | Improvements in flexible torque transmitting couplings |
DE1251095B (ja) * | 1961-06-24 | |||
DD130801B1 (de) * | 1977-04-12 | 1979-08-29 | Klaus Opelt | Drehschwingungsdaempfer,insbesondere fuer kraftfahrzeugkupplungen |
DE3618770C2 (de) * | 1986-06-04 | 1995-07-27 | Fichtel & Sachs Ag | Torsionsschwingungsdämpfer mit Federhalter |
JP2004183870A (ja) | 2002-12-06 | 2004-07-02 | Exedy Corp | スプリングシート、スプリング組立体 |
JP4625791B2 (ja) * | 2006-08-08 | 2011-02-02 | 株式会社エクセディ | スプリングシート及びスプリング組立体 |
WO2010010896A1 (ja) * | 2008-07-24 | 2010-01-28 | 株式会社エクセディ | 動力伝達部品、ダンパー機構およびフライホイール組立体 |
JP5764458B2 (ja) * | 2011-10-15 | 2015-08-19 | ジヤトコ株式会社 | 振動減衰装置 |
JP5844601B2 (ja) * | 2011-10-18 | 2016-01-20 | ジヤトコ株式会社 | 振動減衰装置 |
MY173179A (en) * | 2013-09-13 | 2020-01-02 | Nissan Motor | Damper device |
JP6028143B2 (ja) * | 2013-09-13 | 2016-11-16 | 日産自動車株式会社 | ダンパ装置 |
-
2013
- 2013-09-13 RU RU2016113962A patent/RU2636844C2/ru active
- 2013-09-13 JP JP2015536390A patent/JP6028144B2/ja active Active
- 2013-09-13 US US14/914,834 patent/US9909625B2/en active Active
- 2013-09-13 WO PCT/JP2013/074847 patent/WO2015037125A1/ja active Application Filing
- 2013-09-13 MX MX2016003227A patent/MX368828B/es active IP Right Grant
- 2013-09-13 EP EP13893344.5A patent/EP3045767B1/en active Active
- 2013-09-13 CN CN201380079560.4A patent/CN105531501B/zh active Active
- 2013-09-13 MY MYPI2016700820A patent/MY188045A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008249008A (ja) * | 2007-03-30 | 2008-10-16 | Nissan Motor Co Ltd | スプリングシートおよびダンパーディスク組立体 |
JP2008249007A (ja) | 2007-03-30 | 2008-10-16 | Nissan Motor Co Ltd | スプリングシートおよびダンパーディスク組立体 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020537092A (ja) * | 2017-11-21 | 2020-12-17 | シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG | クラッチのアークスプリング用のスプリング保持器 |
JP7050911B2 (ja) | 2017-11-21 | 2022-04-08 | シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー | クラッチのアークスプリング用のスプリング保持器 |
Also Published As
Publication number | Publication date |
---|---|
EP3045767A1 (en) | 2016-07-20 |
MX2016003227A (es) | 2016-06-07 |
RU2636844C2 (ru) | 2017-11-28 |
EP3045767B1 (en) | 2019-11-06 |
JP6028144B2 (ja) | 2016-11-16 |
MX368828B (es) | 2019-10-18 |
JPWO2015037125A1 (ja) | 2017-03-02 |
MY188045A (en) | 2021-11-11 |
CN105531501A (zh) | 2016-04-27 |
US9909625B2 (en) | 2018-03-06 |
RU2016113962A (ru) | 2017-10-18 |
EP3045767A4 (en) | 2016-11-16 |
US20160201729A1 (en) | 2016-07-14 |
CN105531501B (zh) | 2017-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5481897B2 (ja) | トルク変動吸収装置 | |
JP6028143B2 (ja) | ダンパ装置 | |
JP4978321B2 (ja) | トルク変動吸収装置 | |
JP6028145B2 (ja) | ダンパ装置 | |
JP6028144B2 (ja) | ダンパ装置 | |
JP6460950B2 (ja) | ダンパ装置 | |
JP3904849B2 (ja) | ダンパー機構 | |
KR20020087375A (ko) | 댐퍼 기구 | |
JP6945471B2 (ja) | 電磁連結装置 | |
JP4254380B2 (ja) | 操舵装置 | |
JP3777263B2 (ja) | ダンパーディスク組立体 | |
JP2000205295A (ja) | ダンパ―ディスク組立体 | |
JP2000205339A (ja) | 弾性フロ―ト体 | |
WO2024009735A1 (ja) | ダンパ装置 | |
CN111425556B (zh) | 减振装置 | |
JP2016142339A (ja) | トルク変動吸収装置 | |
KR101500445B1 (ko) | 클러치 디스크 어셈블리 | |
JP2001090780A (ja) | ダンパー機構 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380079560.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13893344 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015536390 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14914834 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/003227 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2016113962 Country of ref document: RU Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2013893344 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013893344 Country of ref document: EP |