WO2015037029A1 - 負荷対象物のリモートハンドリング装置およびその補助装置 - Google Patents
負荷対象物のリモートハンドリング装置およびその補助装置 Download PDFInfo
- Publication number
- WO2015037029A1 WO2015037029A1 PCT/JP2013/005344 JP2013005344W WO2015037029A1 WO 2015037029 A1 WO2015037029 A1 WO 2015037029A1 JP 2013005344 W JP2013005344 W JP 2013005344W WO 2015037029 A1 WO2015037029 A1 WO 2015037029A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction force
- value
- load
- stick
- command signal
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66D—CAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
- B66D1/00—Rope, cable, or chain winding mechanisms; Capstans
- B66D1/28—Other constructional details
- B66D1/40—Control devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/016—Input arrangements with force or tactile feedback as computer generated output to the user
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/16—Applications of indicating, registering, or weighing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/18—Control systems or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0338—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of limited linear or angular displacement of an operating part of the device from a neutral position, e.g. isotonic or isometric joysticks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/01—Indexing scheme relating to G06F3/01
- G06F2203/015—Force feedback applied to a joystick
Definitions
- the present invention relates to a remote handling device for a load object and its auxiliary device. More particularly, the present invention relates to a remote handling device for a load object operated by a joystick and its auxiliary device.
- Patent Document 1 Japanese Patent Laid-Open No. 2003-107188 discloses a fuel exchange device for a nuclear power generation facility. Such a fuel exchange device is generally provided with a device for controlling the lifting and lowering of the operation target by manual operation.
- the handling device for the operation target operated by the operator from such a remote position is referred to as “remote handling device”, and the operation target is referred to as “load object”.
- the operation input devices that are directly touched by the operator for the remote handling device can be broadly classified into a switch input device that accepts a lifting operation by a switch such as a button and a joystick device that accepts the operation by a lever or a stick.
- a switch input device that accepts a lifting operation by a switch such as a button
- a joystick device that accepts the operation by a lever or a stick.
- an operator can use the operation input device by relying on an image obtained by photographing a load object with a camera and an instruction value of a load sensor that measures a load value of the load object that changes every moment. The load object is moved up and down manually.
- FIG. 1 is a schematic configuration diagram showing a configuration of a conventional remote handling device 7000 using a joystick device 710.
- the joystick device 710 includes a stick 712 that accepts a manual operation by an operator.
- the stick 712 includes a potentiometer 714 that serves as a position sensor that detects an input position coordinate value such as a tilt of the stick by the operator's operation. It is equipped.
- an intermediate position on one input shaft of the stick 712 is set as a neutral position. Then, across the neutral position, one is raised, the other is lowered, and the neutral position is associated with the stop.
- the input position coordinate value of the potentiometer 714 is converted into a command signal for the motor 732 of the lifting device 730 by the control unit 720 in accordance with this association.
- the operation of the motor 732 is converted for raising, stopping, or lowering the load object 500 through an increase / decrease mechanism such as an appropriate gear.
- the inclination of the joystick device 710 on the input axis of the stick 712 that is, the position of the input coordinates, is associated with the speed at which the load object 500 is raised, stopped, or lowered.
- the lifting device 730 is equipped with a load sensor 740 for measuring the dynamic load value of the load object 500, and the value indicated by the load sensor 740 is presented to an operator who operates the joystick device 710 by the display device 750.
- Non-Patent Document 1 reports that an operator can grasp the handling situation even when a load signal associated with a contact state with a peripheral object is detected as a reaction force to the joystick.
- the inventors of the present application analyzed the actual work of an operator who operates a remote handling device that employs a joystick device as an input device. Then, it has been found that the conventional remote handling device 7000 has room for improvement in terms of operator workload. For example, when the load target object 500 is lifted up and down while being suspended vertically from above, the load target object 500 and the surrounding image are displayed through the camera 760 facing the load target object 500 in the vicinity of the lifting device 730. Provided to apparatus 770.
- the indication value of the load sensor 740 is also provided to the operator by the indication device itself or a display that changes according to the indication value, such as a graph or bar display, usually by another display device 750 or a meter. The operator must operate the lifting device while observing and estimating the state of the load object 500 at a distant position from time to time based on the images and load values provided as the visual information.
- the actual camera 760 cannot always accurately capture a position around the load object 500 that requires attention. For example, a blind spot that cannot be photographed often occurs due to an object. Further, even if the value of the load sensor 740 becomes abnormal and the indicated value of the display device 750 or the meter changes, in order for the operator to notice it, it is necessary to keep the voluntary attention directed at the indicated value. As long as the situation around the load object 500 and the load value are provided to the operator through visual information, an excessive work load is applied to the operator.
- reaction force the state of contact with the surrounding object of the lifting device that lifts and lowers the load object by operating reaction force of the joystick
- reaction force we examined a method to let the operator perceive through tactile or force sense.
- the first consideration was bilateral control.
- a reaction force is fed back to an operating operator in a master / slave system in which an operation of a slave device (elevating device) is manually operated by inputting to a master device (for example, a joystick device).
- a signal is transmitted from the slave side to the master side through a signal path for transmitting a reaction force signal from the slave device (elevating device) to the master device (joystick device).
- the reaction force is transmitted to the operator as a force proportional to the load value of the load object.
- the inventors of the present application have studied the application of bilateral control. For example, even if conventional bilateral control is applied to a lifting device used in a nuclear power generation facility, the actual work load of the operator is sufficiently reduced. Turned out not to be. This problem is the same even when the bilateral control of the lifting device is not only in the lifting direction, but also in the lateral direction orthogonal to the lifting direction and the multi-degree-of-freedom that reproduces the reaction force up to the degree of freedom of torsion.
- An object of the present invention is to solve at least some of the above problems.
- the present invention allows the operator to perceive an appropriate reaction force based on appropriate information in the remote handling device of the load object, thereby reducing the work load caused by the remote handling device and contributing to the development of the remote handling device itself. To do.
- the inventors of the present invention have limited effects due to bilateral control because of the characteristics of the object in the case of the remote handling device of the nuclear power generation facility, that is, the characteristics of the load object and the work.
- the load object handled in the nuclear power generation facility is a load object that requires extremely careful and delicate handling, for example, when it includes a fuel assembly.
- the load object needs to be raised and lowered at a position where other objects exist around it. Therefore, a slight impact force such as a slight attack caused by the load object touching a surrounding object, or a slight friction force such as a squeeze that is raised or lowered while touching the surrounding object is applied. The operator must be sure to perceive.
- a characteristic of work in which a remote handling device of a nuclear power generation facility is used is that an operator is required to have high attention. The operator needs to perform work while contacting various pieces of information in addition to the above-described attrition and makeup (hereinafter referred to as “contact information”) of the load object.
- the inventors of the present application select contact information of a load object by signal processing, and express the contact information as a reaction force that emphasizes the contact information or a reaction force that becomes a warning, and makes the operator perceive with high certainty. I focused on these two.
- the invention of the present application has been completed by devising a configuration of a remote handling device and an auxiliary device for the remote handling device that can reduce the workload of the operator, and confirming its usefulness in the evaluation system.
- a reaction force generation device for generating a reaction force that is perceived by an operator through a stick for accepting a manual operation according to a reaction force command value indicated by the received reaction force command signal is connected to the stick.
- a joystick device that is installed and separated from the joystick device, the load object is raised or stopped in accordance with either the input coordinate value of the stick or the speed command value associated with the input coordinate value, Alternatively, a load elevating device for lowering and a reaction force command value for calculating a time change rate component of the dynamic load value of the load object and generating a pulse reaction force according to the presence of the time change rate component are shown.
- a remote handling device for a load object including a pulse reaction force control unit that outputs a force command signal to the reaction force generation device.
- a reaction force indicating a reaction force command value corresponding to the presence of the deviation amount component is calculated by calculating a deviation amount component as a difference from the static load value of the dynamic load value of the load object.
- the joystick device is, for example, an input device for manual operation input that is provided with a movable part (hereinafter referred to as “stick”) having a lever or a control stick and is operated by an operator directly touching with a palm.
- a movable part hereinafter referred to as “stick”
- the stick has a lever or a control stick and is operated by an operator directly touching with a palm.
- at least one angle of the stick serves as an input shaft, and an input coordinate value of the input shaft is transmitted as an electric signal.
- a load elevating device is capable of appropriately raising and lowering a load object by appropriately converting power from a power generation device such as an electric motor by an appropriate power mechanism such as a gear or hydraulic pressure, and is subject to load control at a controlled speed.
- a power generation device such as an electric motor
- an appropriate power mechanism such as a gear or hydraulic pressure
- the dynamic load value is a load value depending on time, and is the same as the static load value in the case of a stationary load object.
- the load value that changes with time includes not only the force that causes acceleration due to acceleration / deceleration, but also the amount of change in the load value due to attrition (impact) and surroundings (friction) with surrounding objects, which is a clue to contact information. It is out.
- the dynamic load value of the load object is the static load value itself if all of the load object and the surrounding objects are stationary.
- the force component caused by the impact increases at least at the moment from the static load value. Is detected.
- the frictional force component when a load object rising at a constant speed is rubbed against a stationary surrounding object, the frictional force component has a waveform that continuously increases the load value from the static load value. Detected. The opposite is true when the load object is descending.
- the dynamic load value in this application is concerned with the component in the direction of gravity.
- the expressions “atari (impact)” and “skin (friction)” are only for explaining typical phenomena that may occur in the lifting operation of the load object.
- Each aspect of the present invention can target any phenomenon detected based only on signal processing or data processing, regardless of how it is expressed.
- the time change rate component is simply a time differential value.
- this time change rate is a time change rate of the dynamic load value.
- a deviation amount component which is a difference from the static load value of the dynamic load value is once obtained and calculated as a time change rate of the deviation amount component.
- time change rate and deviation component means that these values have non-zero values.
- a typical example is that each value or the absolute value of each value is compared with an appropriate threshold value and determined to be a significant value.
- the present invention may be implemented by an aspect having a more detailed configuration or an aspect of an auxiliary device added to an existing remote handling device.
- a remote handling device or an auxiliary device thereof capable of reducing an operator's workload is provided.
- FIG. 2 is a schematic configuration diagram showing the configuration of the remote handling apparatus 1000 in the present embodiment.
- FIG. 3 is an explanatory diagram illustrating a change in the load value and a reaction force generated in the remote handling apparatus 1000 according to the change.
- the remote handling device 1000 according to the present embodiment includes a joystick device 110, a lifting control unit 120, a load lifting device 130, and a load sensor 140.
- the joystick device 110 has an input coordinate sensor 114 and a reaction force generator 116.
- the input coordinate sensor 114 detects the input coordinate value of one input axis in the stick 112 for accepting manual operation from the operator.
- the reaction force generator 116 generates a reaction force that the operator perceives through the stick 112 according to the reaction force command value indicated by the received reaction force command signal SRF or the corrected reaction force command signal SRF-M. Is connected to the stick.
- the typical joystick device 110 is provided with a mechanism (not shown) such as a spring that applies a force to return the stick 112 to the neutral position, and immediately after the operator releases the hand from the stick 112, the stick 112 returns to the neutral position.
- a joystick having a plurality of input shafts for example, front and rear input shafts and left and right input as viewed from the operator, it is usually any one of them associated with the lifting and lowering of the load object 500. Is the input axis.
- the elevation control unit 120 receives an input coordinate signal SP indicating an input coordinate value from the input coordinate sensor 114, and outputs a speed command signal SV indicating a speed command value associated with the input coordinate value.
- the elevation controller 120 is implemented as software for operating a programmable device capable of inputting and outputting signals, such as a PLC (programmable logic controller) or a computer.
- the load elevating device 130 is installed away from the joystick device 110.
- the load elevating device 130 receives the speed command signal SV and raises, stops, or descends the load object 500 using the power of the load motor 132, for example, according to the speed command value.
- This speed command value is the speed value itself on the axis for raising and lowering or a value that can be converted into the obtained value.
- the load sensor 140 is equipped to detect the dynamic load of the load object 500.
- the load sensor 140 has sufficient responsiveness to measure the load value every moment.
- the remote handling apparatus 1000 further includes a reaction force control unit 100.
- the reaction force control unit 100 receives a load signal SW indicating a dynamic load value and outputs a reaction force command signal SRF to be given to the reaction force generator 116.
- the load signal SW is a signal conventionally used as a signal indicating a dynamic load value in the display device 150.
- the reaction force control unit 100 uses at least one of the input coordinate signal SP from the input coordinate sensor 114 or the speed command signal SV from the elevation control unit 120 as an input. Either the input coordinate signal SP or the speed command signal SV is used for controlling the direction of the reaction force.
- the remote handling device 1000 is provided with visual confirmation means for the load object 500 by a video photographing / display device similar to the camera 760 and the display device 770 (not shown in FIG. 2). And the remote handling apparatus 1000 of this embodiment produces
- reaction force control unit 100 [1-2-1 Detection and Enhancement of Contact by Reaction Force Control Unit]
- attrition (impact) and cosmetics (friction) due to the load object 500 are detected by paying attention to the signal waveform of the load signal SW.
- the inventors of the present application have confirmed that Atari can be detected as a time change rate of the load signal SW, and that the cosmetic can be detected as a deviation component that is a difference from the static load value of the load signal SW. ing.
- FIG. 3A is an explanatory diagram showing the dynamic load W (t) during a certain period when the load object 500 is raised at a constant speed.
- the dynamic load value W (t) is a time-dependent waveform indicated by the load signal SW from the load sensor 140.
- the dynamic load value W (t) actually indicates the force acting on the load object 500 every moment.
- the dynamic load value W (t) is illustrated as a time-varying waveform corresponding to weak Atari A, strong Atari B, Kosle C, Atari and Kosle D.
- FIG. 3A is an explanatory diagram showing the dynamic load W (t) during a certain period when the load object 500 is raised at a constant speed.
- the dynamic load value W (t) is a time-dependent waveform indicated by the load signal SW from the load sensor 140.
- the dynamic load value W (t) actually indicates the force acting on the load object 500 every moment.
- the dynamic load value W (t) is illustrated as a time-varying waveform corresponding to weak Atari A,
- FIG. 3B shows a time change rate of the dynamic load value W (t), that is, a waveform of dW / dt obtained by differentiating the dynamic load value W (t) from the load object 500 with the time t.
- the dynamic load value W (t) is the value of the static load value W0.
- weak Atari A, strong Atari B, Atari, and Kosure D can be detected by comparing the size with an appropriate threshold value TH1, for example, based on the rate of change with time thereafter. If the time change rate is negative, a negative threshold TH2 is used.
- 3C shows a deviation amount component, that is, a difference ⁇ W (t) between the dynamic load value W (t) and the static load value W0.
- This difference ⁇ W is a non-zero value in all of weak Atari A, strong Atari B, Kosle C, Atari and Kosle D. From this difference ⁇ W, it is possible to detect the cosmetic C, the atari, and the cosmetic D, for example, by comparing the magnitude with an appropriate threshold value TH3. In this case as well, a negative threshold TH4 is used to detect a negative deviation.
- the reaction force control unit 100 performs control to generate separate reaction forces for each of the two contact states of Atari and Kosle. At this time, the reaction force control unit 100 according to the present embodiment also performs processing for emphasizing the attraction and the cosmetics so that the operator can easily perceive them, instead of reflecting each of the atari and the cosmetics as they are in the reaction force.
- the reaction force control unit 100 For the reaction force corresponding to the attack, the reaction force control unit 100 generates a pulsed reaction force that perceives an isolated reaction force called a pulse reaction force. The processing for this is performed by the pulse reaction force control unit 104 which is a part of the reaction force control unit 100.
- the trigger for generating this pulse reaction force is whether there is a time change rate of the dynamic load value W (t) indicated by the load signal SW, that is, dW / dt in FIG. Whether the threshold for detection is exceeded is used.
- FIG. 3D shows a state in which the pulse reaction force F1 is generated in response to the value exceeding the threshold value TH1 obtained in the time change rate of the dynamic load value W (t) (FIG.
- pulse reaction force F1A, F1B, and F1D are generated in accordance with the timing of each attack in the weak Atari A, strong Atari B, Atari, and Kosle D, respectively.
- the time change rate of the dynamic load value W (t) exceeds the threshold value TH1, but there is a certain time unrelated thereto.
- Vals reaction forces F1A, F1B, and F1D are generated as pulse-like forces having a width. Further, the heights of the pulse reaction forces F1A, F1B, and F1D are set to values corresponding to the time change rate components. These heights are, for example, values corresponding to the peak value of the time change rate of the dynamic load value W (t) and the area of the portion exceeding the threshold TH1 or below TH2. In any case, the reaction force is generated by the reaction force generator 116 only after the time change rate component corresponding to the threshold value TH1 or TH2 is detected. In other periods, the reaction force generator 116 does not generate any reaction force except when a later-described cosmetic is detected.
- the reaction force generation device 116 In the period when the reaction force generation device 116 does not generate a reaction force, the operator perceives only the minimum force from the stick 112 necessary for the operation. This force is usually a static force by a mechanism such as a spring that returns the stick 112 to the neutral position. For this reason, as long as the position of the stick 112 is fixed, a force of pressing with a constant spring force from the stick 112 acts on the palm of the operator all the time. The operator does not pay any attention to the spring force. In this state, the reaction force generator 116 generates a pulse reaction force according to the presence of the time rate of change of the dynamic load value W (T), so that the operator perceives that the attack has occurred by touch or force. Can do it.
- the process for controlling the reaction force generation device 116 described above is a warning process that combines the point of detecting atari based on the rate of change of time and the point of generating a pulse reaction force that is easy to perceive. I can say that. Furthermore, this process is also a process of emphasizing the operator in the sense that the detection of atari is conspicuous by masking or suppressing the generation of reaction force in a normal period in which no atari is detected.
- a reaction force command signal SRF for outputting a reaction force that does not vibrate and a reaction force called a vibration reaction force is output.
- the process for this is performed by the deviation reaction force control unit 106 which is a part of the reaction force control unit 100.
- the deviation amount component (FIG. 3C) of the load signal SW generated by the load object 500 rubbing against the surrounding object is used as a trigger for generating the reaction force that does not vibrate and the vibration reaction force.
- FIGS. 3E and 3F show how the reaction force F2 and the vibration reaction force F3 that do not vibrate are generated.
- the reaction force F2 and the vibration reaction force F3 that do not vibrate correspond to the fact that a value exceeding the threshold value TH3 is obtained in the difference ⁇ W (FIG. 3C) that is the deviation amount component of the dynamic load value W (t).
- ⁇ W (FIG. 3C) that is the deviation amount component of the dynamic load value W (t).
- the difference ⁇ W changes with time due to a change in the frictional force. This change is not necessarily large as a time change rate, and is, for example, a level that does not exceed the threshold value TH1 (FIG. 3B).
- the operator can perceive a change in the strength of the makeup.
- the reaction forces F2C and F2D that do not vibrate in FIG. 3E and the vibration reaction forces F3C and F3D in FIG. 3F are drawn as values corresponding to the value of the difference ⁇ W. That is, the reaction force F2 that does not vibrate (FIG. 3E) can correctly express the change in the difference ⁇ W. Even in this case, a value less than the threshold value TH3 in the difference ⁇ W is not reflected in the reaction force F2 that does not vibrate.
- the threshold TH3 is appropriately selected.
- the vibration reaction force F3 (FIG. 3 (f)) is perceived by the operator as vibration, it is possible to emphasize the occurrence of the cosmetic effect. That is, it can be said that the reaction force generated by the reaction force F2 that does not vibrate and the reaction force F3 that has been vibrated has been processed so as to ensure that the reaction force is perceived when a deviation corresponding to the threshold value TH3 occurs.
- this warning processing is also emphasis processing for the operator in the sense that masking the generation of reaction force during a normal period in which no makeup is detected makes the detection of the makeup stand out.
- the actual reaction force perceived by the operator is obtained by superimposing, for example, the pulse reaction force F1, the non-vibration reaction force F2, and the vibration reaction force F3 shown in FIGS. 3D to 3F at an appropriate ratio. Is. This ratio is determined so that the pulse reaction force F1, the reaction force F2 that does not vibrate, and the vibration reaction force F3 can be distinguished from each other as necessary. Furthermore, in the above-described example, the non-vibrating reaction force F2 shown in FIG. 3E and the vibration reaction force F3 shown in FIG. 3F are generated by the threshold values TH3 and TH4 common to both.
- the vibration reaction force F3 is generated at a small difference ⁇ W, and the specific strength of the cosmetics is perceived at a larger difference ⁇ W. It is also useful to superimpose a reaction force F2 that does not vibrate. On the contrary, when the strength of the cosmetic is small, it is useful to generate only the reaction force F2 that does not vibrate because the degree of the cosmetic is small, and to generate the vibration reaction force F3 only when the strength of the cosmetic is large. is there.
- the specific value of the threshold value for starting the generation of the ratio and reaction force can be determined as appropriate based on practical conditions such as what information is to be recognized by the operator.
- the reaction force control unit 100 is advantageously provided with a reaction force correction processing unit 108 different from the pulse reaction force control unit 104 and the deviation reaction force control unit 106.
- the reaction force correction processing unit 108 corrects the reaction force command value. This correction is mainly processing for limiting the direction of the reaction force. Further, the reaction force correction processing unit 108 corrects the reaction force command value as exception processing other than that.
- reaction force control unit 100 is also practically implemented as software on a programmable device such as a PLC or a computer.
- a programmable device such as a PLC or a computer.
- a typical operation of the pulse reaction force control unit 104 first receives a dynamic load signal SW indicating a dynamic load value from the load sensor 140. Next, a time change rate component of the dynamic load value is calculated.
- the time change rate component may be calculated directly from the dynamic load value of the load signal SW, or the difference from the static load value of the load object 500 among the dynamic load values indicated by the load signal SW.
- the deviation amount component may be calculated, and the time change rate component may be calculated therefrom.
- the reaction force command signal SRF which shows the reaction force command value for producing
- the pulse reaction force is an isolated pulse-like reaction force that generates a reaction force that can be perceived at a certain time (for example, 0.1 second) as illustrated in FIG.
- the reaction force command value for the pulse-like reaction force is given as a pulse-like time change waveform indicating the time change of the reaction force.
- the waveform can be an arbitrary waveform reaction force suitable for causing the operator to perceive the occurrence of hitting by touch or force through the stick 112. Typical examples of this waveform include, for example, a rectangular wave and a triangular wave.
- a reaction force command signal SRF indicating the reaction force command value of the pulse reaction force is output from the reaction force generator 116.
- the reaction force generator 116 controls the pulse reaction force control unit 104. It changes to the one that includes the pulse reaction force generated below. For this reason, the operator can recognize that the hit has occurred from the stick 112 as well.
- the pulse reaction force control unit 104 sets the value for designating the amplitude of the pulse reaction force in the reaction force command value to a value corresponding to the time change rate component of the load signal SW, and then the reaction force command signal SRF.
- the reaction force command signal SRF is advantageous.
- the operator can obtain more detailed information about the event that occurred in the lifting operation of the load object 500. it can.
- the pulse reaction force control unit 104 determines that the reaction force command value indicated by the reaction force command signal SRF is based on at least one of the input coordinate value and the speed command value. It is advantageous to make the value that does not generate a reaction force in the direction of moving 112 away. At this time, the pulse reaction force control unit 104 further receives at least one of the input coordinate signal SP and the speed command signal SV. Note that both the input coordinate signal SP and the speed command signal SV are signals related to the speed, and therefore may be referred to as a speed-related signal to indicate either the input coordinate signal SP or the speed command signal SV.
- the neutral position is the position of the stick 112 on one input shaft where the speed command value associated with the input coordinate value SP when the stick 112 is in the neutral position is a value at which the load object 500 should be stopped. It is. With this configuration, it is possible to generate a reaction force in a direction in which the stick 112 approaches the neutral position.
- the load elevating device 130 raises the load object 500.
- the load value of the load signal SW increases at that moment, and the time change rate component becomes a positive value.
- the pulse reaction force control unit 104 calculates a reaction force command value that causes the input coordinate sensor 114 to generate a reaction force in the negative direction of the stick 112.
- the reaction force is generated by simply inverting the sign when the time change rate component of the load value of the load signal SW becomes a negative value due to attrition on the load object 500 during ascending, the positive force of the stick 112 is generated.
- the reaction force command value that causes the input coordinate sensor 114 to generate a reaction force in the direction of is generated. However, in that case, the reaction force is directed to further increase the rising speed of the load object 500. If the operator operates the stick 112 accordingly or allows the stick 112 to move due to the reaction force, the reaction force will facilitate the manual operation by the operator from the neutral position. Therefore, it is preferable that the pulse reaction force control unit 104 of the present embodiment does not generate such a reaction force.
- the time change rate component of the load value of the load signal SW becomes a negative value due to attrition on the load object 500 during ascending, for example, as shown by the downward arrow in FIG. This is a scene in which the load value due to cosmetics decreases.
- the deviation reaction force control unit 106 receives the dynamic load signal SW indicating the dynamic load value from the load sensor 140, and calculates a deviation amount component that is a difference from the static load value of the load object 500 in the dynamic load value. Then, the deviation reaction force control unit 106 outputs a reaction force command signal SRF indicating a reaction force command value for generating a reaction force according to the presence of the deviation amount component to the reaction force generator 116.
- the deviation reaction force control unit 106 advantageously outputs a reaction force command signal SRF to the reaction force generator including a reaction force command value for generating a reaction force that does not vibrate according to the value of the deviation amount component. is there.
- the reaction force that does not vibrate here is caused by a deviation component of the dynamic load value corresponding to the increase or decrease of the dynamic load value compared to the static load value due to the occurrence of the thread. For this reason, for example, when a load object 500 that rises or descends at a constant speed is generated at a certain point for the first time, an operator who has not felt a reaction force through the stick 112 until that point. From that point on, the reaction force will be perceived.
- the deviation reaction force control unit 106 advantageously outputs a reaction force command signal SRF including a reaction force command value for generating a vibration reaction force according to the deviation amount component.
- the vibration reaction force is a reaction force for causing the operator to perceive vibration through the stick 112, and can be typically realized by intermittently repeating the pulse reaction force.
- the vibration reaction force is relatively easy to perceive even if the vibration amplitude is small, and is therefore useful as a technique for emphasizing the increment of the load value due to the frictional force caused by the rust.
- the deviation reaction force control unit 106 similarly to the pulse reaction force control unit 104, the deviation reaction force control unit 106 preferably restricts the direction of the reaction force. Therefore, the deviation reaction force control unit 106 further receives at least one of the input coordinate signal SP and the speed command signal SV, that is, a speed related signal. Further, the deviation reaction force control unit 106 generates a reaction force as a value that does not generate a reaction force in a direction to move the stick away from the neutral position of one input shaft of the stick 112 based on at least one of the input coordinate value SP and the speed command value SV. A reaction force command value indicated by the command signal SRF is calculated.
- the reaction force control unit 100 of this embodiment further includes the reaction force correction processing unit 108.
- the reaction force correction processing unit 108 receives at least one of the input coordinate signal SP and the speed command signal SV and the reaction force command signal SRF. Further, the reaction force correction processing unit 108 determines the stick from the neutral position on one input shaft of the stick 112 among the reaction force command values indicated by the reaction force command signal SRF based on at least one of the input coordinate value and the speed command value. A value that generates a reaction force in a direction away from 112 is determined. Therefore, as shown in FIG. 2, the input coordinate signal SP is input to the reaction force correction processing unit 108.
- the reaction force correction processing unit 108 selectively replaces the value with a value that does not generate a reaction force. Thus, a corrected reaction force command value is obtained, and a corrected reaction force command signal SRF-M indicating the corrected reaction force command value is output from the reaction force correction processing unit 108.
- the reaction force generation device 116 of the joystick device 110 receives the corrected reaction force command signal SRF-M from the reaction force correction processing unit 108 instead of the reaction force command signal SRF, and inputs one input shaft.
- a reaction force in a direction to change the coordinate value SP is generated according to the corrected reaction force command value.
- reaction force direction limiting process This configuration generates a reaction force in a direction that brings the stick 112 closer to the neutral position (hereinafter, referred to as “reaction force direction limiting process”).
- the reaction force correction by the reaction force correction processing unit 108 is limited in the normal operation. It is hardly executed. This is because the input coordinate value or speed of the input coordinate signal SP or the speed command signal SV is almost at the timing when the reaction force command signal SRF is calculated by the pulse reaction force control unit 104 and the deviation reaction force control unit 106. This is because the direction of the reaction force is determined based on the command value.
- the reaction force is directed in such a direction as to keep the stick 112 away from the neutral position if the reaction force command value from the pulse reaction force control unit 104 or the deviation reaction force control unit 106 remains unchanged. Since there is a possibility that it becomes force, a process for restricting the direction of the reaction force is adopted. As an example of such a case, it can be assumed that the stick 112 is operated oppositely across the neutral position during the period in which the pulse reaction force of the pulse reaction force control unit 104 is generated. Furthermore, for example, the calculation of the time change rate in the pulse reaction force control unit 104 is generally sensitive to noise and the like, and may be affected by errors in numerical calculation. Even in these cases, the reaction force correction processing unit 108 performs the reaction force direction limiting process, thereby preventing the generation of a reaction force having an orientation that moves the stick 112 away from the neutral position.
- the reaction force correction processing unit 108 sets the corrected reaction force command value when at least one of the input coordinate value and the speed command value is a value to stop the load object 500 to a value that does not generate a reaction force. It is advantageous to selectively further substitute. Accordingly, the reaction force correction processing unit 108 obtains a corrected reaction force command value and outputs a corrected reaction force command signal SRF-M. This process (hereinafter referred to as “stopping reaction force limiting process”) is because when a reaction force is generated, it becomes a reaction force that is contrary to the operator's intention to operate.
- the operation is that the operator returns the stick 112 to the neutral position with the intention of stopping, or the stick 112 Is returned to the neutral position by the force of the spring. For this reason, according to these situations, it is appropriate to limit the generation of reaction force.
- the pulse reaction force control unit 104 and the deviation reaction force control unit 106 of the reaction force control unit 100 have been described individually. From a practical point of view, it is also advantageous to employ a reaction force command value obtained by adding signals from both the pulse reaction force control unit 104 and the deviation reaction force control unit 106 shown in FIG. 2 as the reaction force command value.
- the pulse reaction force control unit 104 and the deviation reaction force control unit 106 perform pulses corresponding to the start of contact.
- the reaction force command value for the reaction force according to the reaction force and the cosmetic is calculated.
- the operator can determine whether the contact with the surrounding object of the load object 500 is temporary, or whether the contact with the object is friction or friction. It becomes possible to grasp through 112.
- the remote handling apparatus 1000 described above can be realized by adding some devices to an existing remote handling apparatus such as the conventional remote handling apparatus 7000 (FIG. 1).
- a second embodiment of the present invention will be described as an auxiliary device added to an existing remote handling device. Still referring to FIG.
- the auxiliary device 1200 is added to a remote handling device for a load object so that an operator who manually operates a load lifting device with a joystick device can perceive a reaction force through the stick.
- a remote handling device for a load object so that an operator who manually operates a load lifting device with a joystick device can perceive a reaction force through the stick.
- an auxiliary device 1200 having a reaction force control unit 100 and a reaction force generation device 116 is added, and a load signal SW and input coordinates as necessary signals are added.
- the remote handling apparatus 1000 can be substantially manufactured.
- the pulse reaction force control unit 104 and the deviation reaction force control unit 106 in the reaction force control unit 100 may be added individually or both at the same time as necessary. In some cases. Further, a reaction force correction processing unit 108 can be added as necessary.
- FIG. 4 is a block diagram showing the overall configuration of the remote handling device 1000A including the configuration of an example of the configuration of the reaction force control unit and the elevation control unit implemented by software in the remote handling device 1000 shown in FIG.
- FIG. 4 is a configuration example of software when the evaluation system according to the first embodiment of the present application is manufactured, and is also a configuration example of the evaluation system according to the second embodiment of the present application.
- the distinction between software and hardware is distinguished, and the software elements are indicated by solid lines and the hardware elements are indicated by chain lines.
- the description of the display device 150, the camera, and the video is omitted because of the video.
- elements that are not substantially different from the elements described in FIG. at this time, in order not to confuse the correspondence with the explained terms, the elements realized by the software module and the data exchanged between the elements will be described by the above-described processing units and the element names of the signals. Further, elements having a difference only for implementation by software will be described with an associated reference numeral added with an alphabet or a numerical value at the end. Techniques, processing contents, processing procedures, elements, specific processing, and the like shown in the following implementation examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the following specific examples.
- FIG. 120A An input coordinate signal SP from the joystick device 110 is input to the elevation control unit 120A.
- the elevation control unit 120A performs the same function as the elevation control unit 120 shown in FIG. That is, the lifting control unit 120A generates and outputs a speed command signal SV indicating a speed command value from the input coordinate value indicated by the input coordinate signal SP, and sends it to the load lifting device 130.
- an analog input coordinate value indicated by the input coordinate signal SP from the input coordinate sensor 114 connected to the stick 112 of the joystick device 110 is converted by the AD conversion unit 122 (similar processing). (Hereinafter referred to as “industrial value conversion”) to obtain a digital value.
- the input coordinate signal SP is changed to an input coordinate signal SP2 indicating an input coordinate value in a numerical range of, for example, minus 100 to plus 100%.
- the sign of the input coordinate value indicated by the input coordinate signal SP2 is assigned to, for example, ascending and descending of the load object 500, and 0 is stopped. Since the input coordinate value at this stage may contain noise, the appropriate filter processing unit 124 removes the noise.
- an input coordinate signal SP3 indicating an input coordinate value in a numerical range of minus 100 to 100% is converted into a speed command signal SV2 indicating a motor speed command value by the speed command converter 126.
- the speed command value indicated by the speed command signal SV2 is, for example, a value of minus 100 to plus 100%, and is a value proportional to the speed of the load motor 132.
- the correspondence relationship between the input coordinate value of the stick 112 and the speed of the load motor 132 is substantially determined by the speed command conversion unit 126.
- the speed command conversion unit 126 performs, for example, non-linear conversion that can be finely moved near the stop and can move at high speed.
- the speed command value indicated by the speed command signal SV2 is converted into an industrial value by the DA converter 128, for example, and is output as a speed command signal SV in an appropriate voltage range to the load motor 132.
- a load motor drive power source 134 is connected to the load motor 132 of the load lifting device 130, and an amplified current signal necessary for operating the load motor 132 at a speed proportional to the speed command signal SV is driven by the load motor. Output from the power supply 134.
- the load motor 132 is connected to an increase / decrease mechanism such as a gear (not shown).
- the load object 500 is directly raised, stopped, or lowered by the load motor 132 at a speed proportional to the speed command value indicated by the speed command signal SV.
- the An upper limit switch 138 ⁇ / b> L and a lower limit switch 138 ⁇ / b> U are attached to an elevating shaft 136 that is an axis for elevating the load target object 500 in order to detect the arrival of the limit of the moving amount.
- the load sensor 140 is mounted at an appropriate position and outputs a measurement signal of the dynamic load value of the load object 500.
- This measurement signal is converted into a load signal SW through the load cell converter 142 and input to the reaction force control unit 100A through the load cell interface 144.
- the load signal SW is converted into an industrial value at the time of input to the reaction force control unit 100A, and is used as the load signal SW2.
- the reaction force control unit 100A generates a reaction force command signal SRF for generating a reaction force.
- the load signal SW3 is generated by removing noise from the load value indicated by the load signal SW2 by an appropriate filter 1020.
- the static load value is determined from the load value when the load object 500 is stationary from the load signal SW3.
- the load signal SW3 when either the lower limit switch 138U or the upper limit switch 138L indicates that the load object 500 is at the upper end or the lower end of the lifting shaft 136 is sampled and the load value is calculated. It is stored in the static load storage unit 1026.
- the reaction force control unit 100 is provided with an upper end lower end input unit 1024 that receives inputs from the lower limit switch 138U and the upper limit switch 138L.
- Another purpose of the lower limit switch 138U and the upper limit switch 138L is to be input to a load motor drive power source 134 that controls the operation of the load motor 132, and to limit the operation of the load motor 132 to the upper end or lower end range. It is.
- the difference between the static load value of the static load storage unit 1026 and the dynamic load value of the load signal SW3 is calculated by the difference processing unit 1022, and is calculated as the deviation amount component ⁇ SW3.
- This deviation amount component ⁇ SW3 is input to the pulse reaction force control unit 104A and the deviation reaction force control unit 106A.
- the pulse reaction force control unit 104A when the time change rate component is calculated from the deviation amount component ⁇ SW3 and the absolute value of the time change rate component exceeds a certain threshold, that is, the time change rate threshold, the pulse reaction force control unit 104A Generate a reaction force value.
- the time change rate threshold value is selected to a value that exceeds the time change rate from the deviation amount component ⁇ SW3 when the load object 500 collides with a surrounding object and causes attrition. For example, if attrition occurs while the load object 500 is being raised, a load signal SW3 that increases from the static load value of the static load storage unit 1026 is obtained. Accordingly, the deviation amount component ⁇ SW3 exhibits a large positive time change rate.
- the pulse reaction force control unit 104A calculates a reaction force command value for generating an isolated pulse-like pulse reaction force for a certain period of time. Accordingly, the pulse reaction force is generated in response to the presence of the time change rate component.
- the origin of the time variation of the deviation amount component ⁇ SW3 is the time variation of the load signal SW.
- examples of the time change rate threshold values are the threshold values TH1 and TH2 shown in FIG.
- the reaction force command value for the pulse reaction force calculated by the pulse reaction force control unit 104A is for generating a pulse reaction force in a direction to return the stick 112 to the neutral position, and moves the stick 112 away from the neutral position.
- the direction reaction force is not generated.
- the pulse reaction force control unit 104A of the present implementation example is different from the pulse reaction force control unit 104 that receives the input coordinate signal SP in the remote handling apparatus 1000 shown in FIG.
- the speed command signal SV2 from is input.
- the pulse reaction force control unit 104A receives a deviation amount component ⁇ SW3 that is a difference from a static load, while the pulse reaction force control unit 104 in the remote handling apparatus 1000 receives the load signal SW.
- ⁇ SW3 deviation amount component
- the pulse reaction force control unit 104 in the remote handling apparatus 1000 receives the load signal SW.
- the pulse reaction force control unit 104A calculates a reaction force command value and outputs it as a reaction force command signal SRF2.
- the deviation reaction force control unit 106A calculates a reaction force command value for generating a vibration reaction force or a repeated pulse reaction force. Also at this time, no reaction force is generated in the direction to move the stick 112 away from the neutral position. Therefore, in addition to the deviation amount component ⁇ SW3, the speed command signal SV2 from the elevation control unit 120A is also input to the deviation reaction force control unit 106A.
- the present implementation example is different from the deviation reaction force control unit 106 of the remote handling apparatus 1000 of FIG. 2 that has input the input coordinate signal SP.
- the deviation reaction force control unit 106A receives the deviation amount component ⁇ SW3, which is a difference from the static load, while the deviation reaction force control unit 106 in the remote handling apparatus 1000 receives the load signal SW. Therefore, the operation of the deviation reaction force control unit 106 includes the operation of the deviation reaction force control unit 106A of the remote handling apparatus 1000A and the operations of the difference processing unit 1022, the upper and lower end input unit 1024, and the static load storage unit 1026.
- the deviation reaction force control unit 106A calculates the reaction force command value and outputs it as the reaction force command signal SRF3.
- the deviation reaction force control unit 106A when the absolute value of the deviation amount component ⁇ SW3 exceeds a certain threshold, that is, the deviation amount threshold, the reaction force that does not vibrate (FIG. 3E) or the vibration reaction force (FIG. 3F). ) To generate a reaction force value.
- the deviation amount threshold value is selected to a value that exceeds the deviation amount component ⁇ SW3 when the load object 500 is rubbed against a surrounding object. For example, when a cosmetic occurs when the load object 500 is raised, a load signal SW3 that increases from the static load value of the static load storage unit 1026 is obtained.
- the deviation amount component ⁇ SW3 indicates a positive deviation amount.
- the deviation reaction force control unit 106A calculates a reaction force that does not vibrate or a reaction force command value for the vibration reaction force. Accordingly, the pulse reaction force is generated in response to the presence of the time change rate component.
- the deviation amount threshold examples are the thresholds TH3 and TH4 shown in FIG.
- the reaction force command value indicated by the reaction force command signal SRF2 from the pulse reaction force control unit 104A and the reaction force command value indicated by the reaction force command signal SRF3 from the deviation reaction force control unit 106A are superimposed on each other by the addition processing unit 1028.
- the command signal SRF4 is input to the reaction force correction processing unit 108A.
- the reaction force correction processing unit 108A performs correction processing on the reaction force command value indicated by the reaction force command signal SRF4 in order to make the generated reaction force appropriate.
- the reaction force correction processing unit 108A also receives a speed command signal SV2 for the correction process.
- the reaction force correction processing unit 108A of the present implementation example is different from the reaction force correction processing unit 108 that has input the input coordinate signal SP shown in FIG.
- the reaction force correction processing unit 108A has four specific processes. First, (1) regardless of the reaction force command value of the reaction force command signal SRF4, the reaction force correction value is set to 0 when the speed command signal SV2 is 0. (2) When the direction of the reaction force indicated by the reaction force command signal SRF4 and the direction of the stick 112 are the same, the reaction force correction value is set to zero. Further, (3) when the reaction force command value of the reaction force command signal SRF4 exceeds the upper limit value of the reaction force command value, the reaction force command value is set as the upper limit value. Finally, in cases other than (4) (1) to (3), the reaction force command value of the reaction force command signal SRF4 is output as it is.
- the processes (1) and (2) are the reaction force limit process at the time of stop and the direction of the reaction force described above in the column “1-2-4 Detailed operation of the reaction force correction processing unit 108”, respectively. This is a restriction process.
- the output of the reaction force correction processing unit 108A becomes a reaction force command signal SRF5, which is converted into an industrial value and output to the motor drive power supply 118 as a reaction force command signal SRF.
- the reaction force generation device 116 is driven by an output current from the motor drive power supply 118 and generates a reaction force that the operator perceives through the stick 112 according to the control operation of the reaction force control unit 100. By such a control operation, the reaction force and the cosmetics with the surrounding objects of the load object 500 are appropriately detected, and the reaction force emphasized so that the operator can easily perceive the reaction force illustrated in FIG. Is generated.
- the inventors of the present application actually confirmed the usefulness of the remote handling apparatus 1000 of the first embodiment described above by adjusting various parameters in the evaluation system of the remote handling apparatus 1000A.
- the attrition and blurring between the load object 500 and the surrounding object are caused by the pulse reaction force F 1 through the stick 112, the reaction force F 2 that does not vibrate, and the vibration reaction force F 3.
- the operator can perceive even when the attention is not directed to the lifting operation of the load object 500. At that time, the operator could distinguish between Atari and Kosle. Further, when both Atari and Kosle D as shown in Atari and Kosle D (FIG. 3A) occurred, it was also possible to recognize that Atari and Kosle were continuous.
- the operator can also distinguish between the pulse reaction force F1A and the pulse reaction force F1B, and the situation in which the reaction force changes in each of the reaction forces F2C and F2D that do not vibrate and the vibration reaction forces F3C and F3D. It was.
- the above-mentioned parameters adjusted for these confirmations in the evaluation system of the remote handling device 1000A are at least one of the following parameter groups: threshold values TH1, TH2, TH3, TH4, pulse reaction force F1, and no vibration Respective strengths for reaction force F2 and vibration reaction force F3, their respective relative balance, period for pulse reaction force F1, alternating period and pulse period for vibration reaction force F3, and reaction
- the upper limit value of the reaction force command value in the force correction processing unit 108A is used.
- the remote handling device of the present invention or its auxiliary device can be used for any device that manually operates a load object from a remote position.
- Remote handling device 1200 Auxiliary device 500 Load object 100, 100A Reaction force control unit 1020 Filter 1022 Difference processing unit 1024 Upper end lower end input unit 1026 Static load storage unit 1028 Addition processing unit 104, 104A Pulse reaction force control unit 106, 106A Deviation Reaction force control unit 108, 108A Reaction force correction processing unit 110 Joystick device 112 Stick 114 Input coordinate sensor 116 Reaction force generation device 118 Motor drive power supply 120, 120A Lift control unit 122 AD conversion unit 124 Filter processing unit 126 Speed command conversion unit 128 DA converter 130 Load lifting device 132 Load motor 134 Load motor drive power source 136 Lifting shaft 138L Upper limit switch 138U Lower limit switch 1 0 load sensor 142 load cell transducer 144 load cell interface 150 display TH1 ⁇ TH4 threshold SP, SP2, SP3 input coordinate signal SV, SV2 speed command signal SW, SW2, SW3 load signal SRF, SRF2 ⁇ SRF5 reaction force command signal
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
- Position Input By Displaying (AREA)
Abstract
負荷対象物をハンドリングするオペレータの作業負荷を軽減する。リモートハンドリング装置(1000)は、ジョイスティック装置(110)、荷重昇降装置(130)、および反力制御部(100)を備えている。ジョイスティック装置(110)は手動操作受付用のスティック(112)を通じ操作反力を生成する反力生成装置(116)を有している。反力制御部(100)は、パルス反力制御部(104)および偏差反力制御部(106)のいずれかまたは双方を含んでいる。パルス反力制御部(104)は、負荷対象物(500)の動荷重値の時間変化率成分を算出し、パルス反力を生成するための反力指令値を示す反力指令信号SRFを出力する。また、偏差反力制御部(106)は、動荷重値の静荷重値からの偏差量成分を算出し、反力を生成するための反力指令値を示す反力指令信号SRFを出力する。本発明は既設のリモートハンドリング装置に追加する補助装置(1200)としても実施される。
Description
本発明は負荷対象物のリモートハンドリング装置およびその補助装置に関する。さらに詳細には本発明は、ジョイスティックにより操作する負荷対象物のリモートハンドリング装置およびその補助装置に関する。
近年、原子力発電設備などに利用される操作対象物を離れた位置からオペレータが操作するハンドリング装置が実用化されている。特許文献1(特開2003-107188号公報)には、原子力発電設備の燃料交換装置が開示されている。このような燃料交換装置には一般に、操作対象物の昇降を手動操作により制御する装置が備わっている。このような離れた位置からオペレータが操作する操作対象物のハンドリング装置を本出願において「リモートハンドリング装置」と呼び、操作対象物を「負荷対象物(load object)」と呼ぶ。
リモートハンドリング装置のためにオペレータが直接触れる操作入力装置を大別すると、昇降の操作をボタンなどのスイッチにより受け付けるスイッチ入力装置と、その操作をレバーまたはスティックにより受け付けるジョイスティック装置とに分けることができる。実際、既存の原子力発電設備においては、負荷対象物をカメラにより撮影した映像と負荷対象物の時々刻々変化する荷重値を測定する荷重センサーの指示値とを頼りに、上記操作入力装置をオペレータが手動操作して負荷対象物を昇降させている。
図1はジョイスティック装置710を用いる従来のリモートハンドリング装置7000の構成を示す概略構成図である。ジョイスティック装置710は、オペレータによる手動操作を受け付けるスティック712を有しており、そのスティック712には、オペレータの操作によるスティックの傾きなどの入力位置座標値を検知する位置センサーとなるボテンショメータ714が備わっている。例えば、ジョイスティック装置710では、スティック712の一つの入力軸における中間位置を中立位置とする。そして、その中立位置を挟んで、一方を上昇、他方を下降、そしてその中立位置を停止に対応付けしておく。ポテンショメータ714の入力位置座標値はこの対応付けに応じて制御部720により昇降装置730のモーター732に対する指令信号に変換されるのである。モーター732の動作は、適当なギアなどの増力減速機構を経て負荷対象物500の上昇、停止、または下降のために変換される。ジョイスティック装置710のスティック712のある入力軸における傾きすなわち入力座標の位置が、負荷対象物500を上昇、停止、または下降させる速度に対応付けられる。昇降装置730には、負荷対象物500の動荷重値を測定するための荷重センサー740が装着されており、その荷重センサー740の示す値が表示装置750によりジョイスティック装置710を操作するオペレータに提示される。そしてカメラ760により撮影している負荷対象物500およびその周囲の映像も、オペレータの眼前の表示装置770によりオペレータに提示される。
また、非特許文献1には、ジョイスティックに、周辺物との接触状態に伴う荷重信号を、その反力としてオペレータが触覚としてもハンドリング状況を把握することができることが報告されている。
また、非特許文献1には、ジョイスティックに、周辺物との接触状態に伴う荷重信号を、その反力としてオペレータが触覚としてもハンドリング状況を把握することができることが報告されている。
富士時報第85巻第1号2013年1月
本出願の発明者らは、入力装置としてジョイスティック装置を採用したリモートハンドリング装置を操作するオペレータの実際の作業を分析した。すると従来のリモートハンドリング装置7000にはオペレータの作業負荷の点で改善の余地があることに気づいた。負荷対象物500およびその周囲の映像は、例えば負荷対象物500を上方から鉛直下方につり下げながら昇降させるものである場合、昇降装置730の付近において下方の負荷対象物500を向くカメラ760を通じ表示装置770に提供される。また荷重センサー740の指示値も、その指示値そのものや指示値に応じ変化する表示、例えばグラフやバー表示などが、通常は別の表示装置750やメーター等によりそのオペレータに対して提供される。オペレータは、これらの視覚情報として提供される映像および荷重値を頼りに、離れた位置にある負荷対象物500の時々刻々の状態を観察しかつ推測しながら昇降装置を操作しなくてはならない。
ところが実際のカメラ760は、負荷対象物500の周囲の注意を要する位置を常に的確に撮影できるわけではない。例えば何らかの物体により撮影できない死角が生じることもしばしばである。また、荷重センサー740の値が異常となり表示装置750やメーターの指示値が変化したとしても、オペレータがそれに気づくためには、自発的な注意力をその指示値に向け続けていなくてはならない。負荷対象物500の周囲の状況や荷重値がオペレータに視覚情報を通じて提供される限り、過大な作業負荷がオペレータにかかることとなる。
この作業負荷を軽減すべく本出願の発明者らは、負荷対象物を昇降させる昇降装置の周囲の物体との接触の状況を、ジョイスティックの操作反力(以下、単に「反力」という)によりオペレータに触覚または力覚を通じて知覚させる手法を検討した。最初に検討したのはバイラテラル制御である。バイラテラル制御では、マスター機器(例えばジョイスティック装置)に入力を行なうことによりスレーブ機器(昇降装置)の動作を手動操作するマスター・スレーブ系において、操作中のオペレータに反力がフィードバックされる。このために、スレーブ機器(昇降装置)からマスター機器(ジョイスティック装置)に反力の信号を伝える信号経路を通じてスレーブ側からマスター側に信号が伝達される。典型的には、例えばオペレータには負荷対象物の荷重値に比例した力として上記反力が伝えられる。
しかしながら、本出願の発明者らがバイラテラル制御の適用を検討したところ、例えば原子力発電設備において用いられる昇降装置に従来のバイラテラル制御を適用してもオペレータの実際の作業負荷は十分には軽減されないことが判明した。この問題は、昇降装置のバイラテラル制御を、昇降方向だけではなく、昇降方向に直交する横方向や、ねじれの自由度まで反力を再現する多自由度のものとしても同様であった。
本発明は、上記問題の少なくともいくつかを解決することを課題とする。本発明は、負荷対象物のリモートハンドリング装置において適切な情報に基づく適切な反力をオペレータに知覚させることにより、リモートハンドリング装置による作業負荷を軽減させるとともに、当該リモートハンドリング装置それ自体の発展に寄与するものである。
本発明の発明者らは、原子力発電設備のリモートハンドリング装置の場合の対象物すなわち負荷対象物の特質と作業とのそれぞれの特質のために、バイラテラル制御による効果が限定的なものとなっていることに気づいた。つまり、まず負荷対象物の特質として、原子力発電設備にて扱われる負荷対象物は、例えば燃料集合体などを含む場合、極めて慎重かつ繊細な取り扱いを要する負荷対象物である。しかも、その負荷対象物は周囲に他の物体が存在する位置にて昇降させる必要がある。したがって、負荷対象物が周囲の物体に触れたことによる軽微なアタリといったわずかな衝撃力や、周囲の物体に触れたまま引き上げたり下降したりする昇降動作が乗じてしまうコスレといったわずかな摩擦力をオペレータに確実に知覚させなくてはならない。また、原子力発電設備のリモートハンドリング装置が利用される作業の特質は、オペレータには高い注意力が要求されることである。オペレータは、上述した負荷対象物のアタリやコスレ(以下、「接触情報」と呼ぶ)以外にも、時々刻々の様々な情報に接しながら作業を行なう必要がある。
バイラテラル制御により生成される反力の効果が限定的となるのは、これらの負荷対象物の特質および作業の特質のためである。つまり、原子力発電設備にて注意が向けられるべき負荷対象物の周囲の物体との接触情報の繊細さは、たとえバイラテラル制御を導入したとしても変わらず、僅かな反力を間違いなく知覚することができるような繊細な注意力がオペレータには常時要求される点も何ら改善されない。この事情は、たとえ荷重値に正確に比例した反力をすべての自由度で生成できたとしても大差ない。原子力発電設備におけるリモートハンドリング装置においてオペレータの作業負荷を軽減させる効果はバイラテラル制御のみでは不十分である。
そこで本出願の発明者らは、負荷対象物の接触情報を信号処理により選択すること、および、接触情報を強調した反力または警告となる反力として表現してオペレータに高い確実性をもって知覚させること、の二つに着目した。そしてオペレータの作業負荷を軽減させることが可能なリモートハンドリング装置およびリモートハンドリング装置の補助装置の構成を案出し、その評価システムにおける有用性を確認することにより、本出願の発明を完成した。
本出願のある態様においては、受信した反力指令信号の示す反力指令値に応じて手動操作受付用のスティックを通じオペレータに知覚させる反力を生成するための反力生成装置が前記スティックに接続されているジョイスティック装置と、該ジョイスティック装置から離して設置され、前記スティックの入力座標値、または該入力座標値に対応付けられている速度指令値のいずれかに応じ負荷対象物を上昇、停止、または下降させる荷重昇降装置と、該負荷対象物の動荷重値の時間変化率成分を算出し、該時間変化率成分の存在に応じたパルス反力を生成するための反力指令値を示す反力指令信号を前記反力生成装置に出力するパルス反力制御部とを備える負荷対象物のリモートハンドリング装置が提供される。
本出願のある態様においては、負荷対象物の動荷重値が静荷重値からのからの差分として示す偏差量成分を算出し、該偏差量成分の存在に応じた反力指令値を示す反力指令信号を前記反力生成装置に出力する偏差反力制御部を、上記パルス反力制御部に代え、または、上記パルス反力制御部とともに備える負荷対象物のリモートハンドリング装置も提供される。
本出願において、ジョイスティック装置とは、例えばレバーまたは操縦桿を有している可動部(以下「スティック」と呼ぶ)を備えている、オペレータが掌により直接触れて操作する手動操作入力用の入力装置をいう。通常は、スティックの少なくとも一つの角度が入力軸となって、その入力軸の入力座標値が電気信号として伝達される。
荷重昇降装置とは、電動モーター等の動力発生装置からの動力をギアまたは油圧などの適当な動力機構により適宜変換して負荷対象物を昇降させることが可能であり、制御された速度により負荷対象物を上昇、停止、または下降させることが可能な任意の装置を含んでいる。そして、本出願では負荷対象物の上昇、停止、または下降の速度を制御するために、ジョイスティック装置の入力座標値を直接または間接的に反映した速度指令値が参照される。
動荷重値とは時間に依存した荷重値であり、静止している負荷対象物の場合の静荷重値と同一となる。時間とともに変化する荷重値には、加減速に伴う加速度を生じさせる力に加え、接触情報の手がかりとなる、周囲の物体とのアタリ(衝撃)やコスレ(摩擦)による荷重値の変動量を含んでいる。例えば、負荷対象物の動荷重値は、負荷対象物と周囲の物体とのすべてが静止していれば静荷重値そのものである。また、一定の速度(等速)で上昇している負荷対象物が静止している周囲の物体に当たると、その衝撃による力の成分は、少なくともその瞬間においては静荷重値から増大させるような波形となって検知される。さらに、等速で上昇している負荷対象物が静止している周囲の物体に対しこすれると、その摩擦力の成分は、荷重値を静荷重値から継続的に増大させるような波形となって検知される。負荷対象物が下降している場合はこれらの逆である。なお、本出願における動荷重値は、重力方向の成分が関心の対象となっている。また、アタリ(衝撃)やコスレ(摩擦)との表現は、負荷対象物の昇降操作において生じうる典型的な現象を説明するためのものに過ぎない。本発明の各態様は、信号処理またはデータ処理のみに基づいて検知される任意の現象を、それをどのように表現するかを問わず、対象とすることができる。
時間変化率成分とは端的には時間微分値である。本出願においてこの時間変化率は、上記動荷重値の時間変化率である。実施上は、動荷重値の静荷重値からの差分である偏差量成分をいったん求め、その偏差量成分の時間変化率として算出される場合もある。
また、時間変化率や偏差量成分の存在とは、これらの値が非ゼロの値を有していることを意味している。その典型例は、各値または各値の絶対値が適当な閾値と比較されて有意な値といえると判定されることである。
本出願のある態様は、より詳細な構成を有する態様や、また、既設のリモートハンドリング装置に追加する補助装置の態様により本発明が実施されることもある。
本発明のいずれかの態様においては、オペレータの作業負荷を軽減させることが可能なリモートハンドリング装置またはその補助装置が提供される。
以下、本発明に係るリモートハンドリング装置およびその補助装置の実施形態を図面を参照して説明する。当該説明に際し特に言及がない限り、全図にわたり共通する部分または要素には共通する参照符号が付されている。また、図中、各実施形態の要素のそれぞれは、必ずしも互いの縮尺比を保って示してはいない。
[1 第1実施形態]
[1-1 リモートハンドリング装置の概略構成]
図2は、本実施形態におけるリモートハンドリング装置1000の構成を示す概略構成図である。また、図3は、荷重値の変化とそれに応じてリモートハンドリング装置1000において生成される反力を例示する説明図である。本実施形態のリモートハンドリング装置1000は、ジョイスティック装置110、昇降制御部120、荷重昇降装置130、および荷重センサー140を備えている。
[1-1 リモートハンドリング装置の概略構成]
図2は、本実施形態におけるリモートハンドリング装置1000の構成を示す概略構成図である。また、図3は、荷重値の変化とそれに応じてリモートハンドリング装置1000において生成される反力を例示する説明図である。本実施形態のリモートハンドリング装置1000は、ジョイスティック装置110、昇降制御部120、荷重昇降装置130、および荷重センサー140を備えている。
ジョイスティック装置110は、入力座標センサー114と反力生成装置116とを有している。入力座標センサー114は、オペレータからの手動操作受付用のスティック112における一の入力軸の入力座標値を検知する。また、反力生成装置116は、スティック112を通じオペレータに知覚させる反力を、受信した反力指令信号SRFまたは補正済反力指令信号SRF-Mの示す反力指令値に応じて生成するためのものであり、スティックに接続されている。なお、典型的なジョイスティック装置110には、スティック112を中立位置に対して戻す向きの力を作用させるバネなどの機構(図示しない)が備わっており、オペレータが手をスティック112から離すと直ちにスティック112が中立位置に戻るようになっている。また、オペレータから見て例えば前後の入力軸と左右の入力というように、複数の入力軸を有するジョイスティックを採用したとしても、負荷対象物500の昇降に対応付けされるのは通常はいずれか一の入力軸である。
昇降制御部120は、入力座標センサー114から入力座標値を示す入力座標信号SPを受信し、入力座標値に対応付けられている速度指令値を示す速度指令信号SVを出力する。昇降制御部120は例えばPLC(programmable logic controller)やコンピュータなど、信号の入出力が可能なブログラム可能機器を動作させるためのソフトウエアとして実装される。
荷重昇降装置130はジョイスティック装置110から離して設置されている。荷重昇降装置130は速度指令信号SVを受信し、速度指令値に応じ、例えば荷重モーター132等の動力を利用して負荷対象物500を上昇、停止、または下降させる。この速度指令値は昇降のための軸における速度値そのものまたは当該得度値に換算可能な値である。
そして荷重センサー140が負荷対象物500の動荷重を検知可能に装備されている。荷重センサー140は、時々刻々の荷重値を測定するための十分な応答性を備えている。
[1-2 反力制御部100(概要)]
リモートハンドリング装置1000にはさらに反力制御部100が備わっている。反力制御部100は、動荷重値を示す荷重信号SWを入力として、反力生成装置116に与える反力指令信号SRFを出力する。ここで、荷重信号SWは、表示装置150において動荷重値を示す信号として従来から利用されている信号である。反力制御部100は入力座標センサー114からの入力座標信号SPまたは昇降制御部120からの速度指令信号SVの少なくともいずれかを入力として利用する。入力座標信号SPまたは速度指令信号SVのうちのいずれかの信号は反力の向きを制御するために利用される。また、リモートハンドリング装置1000には、カメラ760および表示装置770と同様の映像撮影・表示装置による負荷対象物500の視覚的な確認手段が備わっている(図2には図示しない)。そして、本実施形態のリモートハンドリング装置1000は、荷重信号SWに基づいて負荷対象物500の二種類の接触状態に合わせて別々の反力を生成する。
リモートハンドリング装置1000にはさらに反力制御部100が備わっている。反力制御部100は、動荷重値を示す荷重信号SWを入力として、反力生成装置116に与える反力指令信号SRFを出力する。ここで、荷重信号SWは、表示装置150において動荷重値を示す信号として従来から利用されている信号である。反力制御部100は入力座標センサー114からの入力座標信号SPまたは昇降制御部120からの速度指令信号SVの少なくともいずれかを入力として利用する。入力座標信号SPまたは速度指令信号SVのうちのいずれかの信号は反力の向きを制御するために利用される。また、リモートハンドリング装置1000には、カメラ760および表示装置770と同様の映像撮影・表示装置による負荷対象物500の視覚的な確認手段が備わっている(図2には図示しない)。そして、本実施形態のリモートハンドリング装置1000は、荷重信号SWに基づいて負荷対象物500の二種類の接触状態に合わせて別々の反力を生成する。
[1-2-1 反力制御部による接触の検出と強調]
本実施形態における反力制御部100では、負荷対象物500によるアタリ(衝撃)とコスレ(摩擦)を、荷重信号SWの信号波形に着目して検出する。本出願の発明者らは、アタリが荷重信号SWの時間変化率として検知可能なこと、および、コスレが荷重信号SWの静荷重値からの差分である偏差量成分として検知可能なことを確認している。
本実施形態における反力制御部100では、負荷対象物500によるアタリ(衝撃)とコスレ(摩擦)を、荷重信号SWの信号波形に着目して検出する。本出願の発明者らは、アタリが荷重信号SWの時間変化率として検知可能なこと、および、コスレが荷重信号SWの静荷重値からの差分である偏差量成分として検知可能なことを確認している。
図3(a)は負荷対象物500を一定の速度で上昇させている場合のある期間の動荷重W(t)を示す説明図である。動荷重値W(t)は荷重センサー140からの荷重信号SWが示す時間依存波形である。動荷重値W(t)は実際には負荷対象物500に作用する力を時々刻々示す。図3(a)では、説明のための典型例として、弱いアタリA、強いアタリB、コスレC、アタリおよびコスレDに応じた時間変化波形として動荷重値W(t)を図示している。図3(b)は動荷重値W(t)の時間変化率、つまり負荷対象物500からの動荷重値W(t)を時間tにより微分したdW/dtの波形である。弱いアタリAの直前までは一定の速度で負荷対象物500が上昇しているため、動荷重値W(t)は静荷重値W0の値である。その後の時間変化率により、例えば適当な閾値TH1との大小比較を行なうことにより、弱いアタリA、強いアタリB、アタリおよびコスレDが検知可能である。時間変化率が負となる場合には、負の値の閾値TH2を利用する。また、図3(c)は、偏差量成分、つまり、動荷重値W(t)と静荷重値W0の差分ΔW(t)を示している。この差分ΔWは、弱いアタリA、強いアタリB、コスレC、アタリおよびコスレDのすべてにおいて0でない値となる。この差分ΔWからは、例えば適当な閾値TH3との大小比較をすることにより、コスレCやアタリおよびコスレDを検出することが可能である。この場合にも、負の偏差を検知するには負の値の閾値TH4を利用する。
図2に戻ると、反力制御部100は、アタリとコスレの二つの接触状態それぞれに対して別々の反力を生成する制御を行なう。その際、本実施形態における反力制御部100では、アタリとコスレのそれぞれをそのまま反力に反映させるのではなく、スティック112を通じてオペレータが知覚しやすいように強調する処理も行なう。
[1-2-1-1 時間変化率によるパルス反力の生成]
具体的には、アタリに対応させる反力のために、反力制御部100は、パルス反力と呼ぶ孤立した反力を知覚させるパルス状の反力を生成する。このための処理は、反力制御部100の一部であるパルス反力制御部104により行なわれる。このパルス反力を生成するためのきっかけには、荷重信号SWが示す動荷重値W(t)の時間変化率が存在するかどうかが、つまり、図3(b)のdW/dtが衝突を検知するための閾値を超えるかどうかが利用される。図3(d)は、動荷重値W(t)の時間変化率(図3(b))において閾値TH1を超えた値が得られたことに対応してパルス反力F1が生成される様子を示している。グラフの縦軸は力の向きと強さを示している。ここで、パルス反力F1を負の方向に描いているのは、上昇のために操作されているスティック112を中立位置に戻す向きの力を生成するためである。パルス反力F1においては、弱いアタリA、強いアタリB、アタリおよびコスレDにおける各アタリのタイミングに合わせて、それぞれパルス反力F1A、F1B、およびF1Dが生成される。なお、典型的には、弱いアタリA、強いアタリBにおいて見られるように、動荷重値W(t)の時間変化率が閾値TH1を超える期間はさまざまであるが、それとは無関係な一定の時間幅のパルス状の力としてバルス反力F1A、F1B、F1Dが生成される。また、パルス反力F1A、F1B、およびF1Dの波形の高さは、その時間変化率成分に応じた値とされる。これらの高さは、例えば、動荷重値W(t)の時間変化率のピーク値や、閾値TH1を超え、またはTH2を下回った部分の面積に応じた値とされる。いずれの場合であっても、閾値TH1またはTH2に相当する時間変化率成分が検出されて初めて反力が反力生成装置116により生成される。それ以外の期間において、反力生成装置116は、後述するコスレが検知された場合を除き特に反力を生成しない。
具体的には、アタリに対応させる反力のために、反力制御部100は、パルス反力と呼ぶ孤立した反力を知覚させるパルス状の反力を生成する。このための処理は、反力制御部100の一部であるパルス反力制御部104により行なわれる。このパルス反力を生成するためのきっかけには、荷重信号SWが示す動荷重値W(t)の時間変化率が存在するかどうかが、つまり、図3(b)のdW/dtが衝突を検知するための閾値を超えるかどうかが利用される。図3(d)は、動荷重値W(t)の時間変化率(図3(b))において閾値TH1を超えた値が得られたことに対応してパルス反力F1が生成される様子を示している。グラフの縦軸は力の向きと強さを示している。ここで、パルス反力F1を負の方向に描いているのは、上昇のために操作されているスティック112を中立位置に戻す向きの力を生成するためである。パルス反力F1においては、弱いアタリA、強いアタリB、アタリおよびコスレDにおける各アタリのタイミングに合わせて、それぞれパルス反力F1A、F1B、およびF1Dが生成される。なお、典型的には、弱いアタリA、強いアタリBにおいて見られるように、動荷重値W(t)の時間変化率が閾値TH1を超える期間はさまざまであるが、それとは無関係な一定の時間幅のパルス状の力としてバルス反力F1A、F1B、F1Dが生成される。また、パルス反力F1A、F1B、およびF1Dの波形の高さは、その時間変化率成分に応じた値とされる。これらの高さは、例えば、動荷重値W(t)の時間変化率のピーク値や、閾値TH1を超え、またはTH2を下回った部分の面積に応じた値とされる。いずれの場合であっても、閾値TH1またはTH2に相当する時間変化率成分が検出されて初めて反力が反力生成装置116により生成される。それ以外の期間において、反力生成装置116は、後述するコスレが検知された場合を除き特に反力を生成しない。
なお、反力生成装置116が反力を生成しない期間には、オペレータは操作に必要な最低限のスティック112からの力のみを知覚している状態である。この力は通常は、スティック112を中立位置に戻すバネなどの機構による静的な力である。このため、スティック112の位置を固定している限り、オペレータの掌にはスティック112から一定のバネの力で押しつける力が四六時中作用している。オペレータはそのバネの力に対して何ら意識を向けることはない。その状態で動荷重値W(T)の時間変化率の存在に応じて反力生成装置116がパルス反力を生成することにより、オペレータはアタリが生じたことを触覚または力覚により知覚することができるのである。したがって、上述した反力生成装置116を制御する処理は、時間変化率に基づいてアタリを検出するという点と、知覚が容易なパルス反力を生成する点とを組み合わせた警告のための処理といえる。さらにこの処理は、アタリを検出しない正常な期間における反力の生成をマスクつまり抑制することによりアタリの検出を際立たせるという意味において、オペレータに対する強調の処理ともなっている。
[1-2-1-2 偏差量成分からの反力の生成]
もう一つのコスレに対応して生成する反力のためには、振動しない反力および振動反力と呼ぶ反力を知覚させる反力指令信号SRFを出力する。このための処理は、反力制御部100の一部である偏差反力制御部106により行なわれる。この振動しない反力および振動反力を生成するきっかけとして、負荷対象物500がその周囲の物体と摩擦することにより生じた荷重信号SWの偏差量成分(図3(c))が利用される。図3(e)および(f)は、振動しない反力F2および振動反力F3が生成される様子を示している。振動しない反力F2および振動反力F3は、動荷重値W(t)の偏差量成分である差分ΔW(図3(c))において閾値TH3を超えた値が得られたことに対応して、それぞれ、コスレCとアタリおよびコスレDにおけるコスレのタイミングに合わせて生成される。また、コスレCとアタリおよびコスレDにおいては、摩擦力の変化により差分ΔWが時間的に変化している。この変化は、時間変化率としては必ずしも大きいとは限らず、例えば、閾値TH1(図3(b))を超えない程度である。しかし、振動しない反力F2または振動反力F3を、差分ΔWの値に応じたものとすることより、コスレの強さの変化をオペレータが知覚することができる。例えば図3(e)の振動しない反力F2C、F2D、および図3(f)の振動反力F3C、F3Dは、差分ΔWの値に応じた値として描いている。つまり、振動しない反力F2(図3(e))は差分ΔWの変化を正しく表現させることができる。なおこの場合であっても、差分ΔWのうち閾値TH3に満たない値は振動しない反力F2には反映されない。このため、閾値TH3を適切に選べば有意なコスレのみを強調することが可能である。また、振動反力F3(図3(f))は振動としてオペレータに知覚されるため、コスレの発生を強調して知覚させることが可能である。つまり、振動しない反力F2および振動反力F3により生成された反力は、ともに閾値TH3に相当する偏差が生じた場合に確実に反力が知覚されるような警告の処理されたものといえる。さらにこの警告処理も、コスレを検出しない正常な期間に反力の生成をマスクすることによりコスレの検出を際立たせるという意味において、オペレータに対する強調の処理となっている。
もう一つのコスレに対応して生成する反力のためには、振動しない反力および振動反力と呼ぶ反力を知覚させる反力指令信号SRFを出力する。このための処理は、反力制御部100の一部である偏差反力制御部106により行なわれる。この振動しない反力および振動反力を生成するきっかけとして、負荷対象物500がその周囲の物体と摩擦することにより生じた荷重信号SWの偏差量成分(図3(c))が利用される。図3(e)および(f)は、振動しない反力F2および振動反力F3が生成される様子を示している。振動しない反力F2および振動反力F3は、動荷重値W(t)の偏差量成分である差分ΔW(図3(c))において閾値TH3を超えた値が得られたことに対応して、それぞれ、コスレCとアタリおよびコスレDにおけるコスレのタイミングに合わせて生成される。また、コスレCとアタリおよびコスレDにおいては、摩擦力の変化により差分ΔWが時間的に変化している。この変化は、時間変化率としては必ずしも大きいとは限らず、例えば、閾値TH1(図3(b))を超えない程度である。しかし、振動しない反力F2または振動反力F3を、差分ΔWの値に応じたものとすることより、コスレの強さの変化をオペレータが知覚することができる。例えば図3(e)の振動しない反力F2C、F2D、および図3(f)の振動反力F3C、F3Dは、差分ΔWの値に応じた値として描いている。つまり、振動しない反力F2(図3(e))は差分ΔWの変化を正しく表現させることができる。なおこの場合であっても、差分ΔWのうち閾値TH3に満たない値は振動しない反力F2には反映されない。このため、閾値TH3を適切に選べば有意なコスレのみを強調することが可能である。また、振動反力F3(図3(f))は振動としてオペレータに知覚されるため、コスレの発生を強調して知覚させることが可能である。つまり、振動しない反力F2および振動反力F3により生成された反力は、ともに閾値TH3に相当する偏差が生じた場合に確実に反力が知覚されるような警告の処理されたものといえる。さらにこの警告処理も、コスレを検出しない正常な期間に反力の生成をマスクすることによりコスレの検出を際立たせるという意味において、オペレータに対する強調の処理となっている。
[1-2-1-3 反力の重畳]
なお、オペレータに知覚させる実際の反力は、例えば図3(d)~(f)に示したパルス反力F1、振動しない反力F2、そして振動反力F3を、適当な比率で重ね合わせたものである。この比率は、パルス反力F1、振動しない反力F2、および振動反力F3を、必要に応じて互いに区別できるように決められる。さらに、上述した例では、図3(e)に示した振動しない反力F2、そして図3(f)に示した振動反力F3を両者に共通の閾値TH3、TH4により生成させているが、本実施形態においては、振動しない反力F2と振動反力F3とのそれぞれを生成させるための閾値を変更することも有用である。例えば、コスレが生じていることを確実にオペレータに認識させるため、小さい差分ΔWにおいて振動反力F3を生成するとともに、それより大きな差分ΔWの場合にコスレの具体的な強さを知覚させるように振動しない反力F2を重畳することも有用である。それとは逆に、コスレの強さが小さい時点ではコスレの程度が小さいため振動しない反力F2のみを生成するとともに、コスレの強さが大きくなって初めて振動反力F3を生成することも有用である。上記比率や反力の生成の開始となる閾値の具体的な値は、オペレータに対してどのような情報をどのように認識させるかといった実施上の条件に基づき適宜に決定することができる。
なお、オペレータに知覚させる実際の反力は、例えば図3(d)~(f)に示したパルス反力F1、振動しない反力F2、そして振動反力F3を、適当な比率で重ね合わせたものである。この比率は、パルス反力F1、振動しない反力F2、および振動反力F3を、必要に応じて互いに区別できるように決められる。さらに、上述した例では、図3(e)に示した振動しない反力F2、そして図3(f)に示した振動反力F3を両者に共通の閾値TH3、TH4により生成させているが、本実施形態においては、振動しない反力F2と振動反力F3とのそれぞれを生成させるための閾値を変更することも有用である。例えば、コスレが生じていることを確実にオペレータに認識させるため、小さい差分ΔWにおいて振動反力F3を生成するとともに、それより大きな差分ΔWの場合にコスレの具体的な強さを知覚させるように振動しない反力F2を重畳することも有用である。それとは逆に、コスレの強さが小さい時点ではコスレの程度が小さいため振動しない反力F2のみを生成するとともに、コスレの強さが大きくなって初めて振動反力F3を生成することも有用である。上記比率や反力の生成の開始となる閾値の具体的な値は、オペレータに対してどのような情報をどのように認識させるかといった実施上の条件に基づき適宜に決定することができる。
[1-2-1-4 反力の補正]
そして反力制御部100には、パルス反力制御部104、偏差反力制御部106これらとは異なる反力補正処理部108も実装されると有利である。反力補正処理部108は反力指令値を補正するものである。この補正は、主として反力の向きを限定する処理である。また、反力補正処理部108はそれ以外の例外処理として反力指令値を補正する。
そして反力制御部100には、パルス反力制御部104、偏差反力制御部106これらとは異なる反力補正処理部108も実装されると有利である。反力補正処理部108は反力指令値を補正するものである。この補正は、主として反力の向きを限定する処理である。また、反力補正処理部108はそれ以外の例外処理として反力指令値を補正する。
なお、反力制御部100も、実用上は例えばPLCやコンピュータなどのブログラム可能機器上のソフトウエアとして実装される。次にパルス反力制御部104、偏差反力制御部106、および反力補正処理部108の詳細な動作についてさらに説明する。
[1-2-2 パルス反力制御部104の詳細な動作]
パルス反力制御部104の典型的な動作は、まず、荷重センサー140から動荷重値を示す動荷重信号SWを受信する。次いで動荷重値の時間変化率成分を算出する。このためには、荷重信号SWの動荷重値から直接時間変化率成分を算出してもよいし、また、荷重信号SWの示す動荷重値のうち、負荷対象物500の静荷重値からの差分である偏差量成分を算出してそこから時間変化率成分を算出してもよい。そして、その時間変化率成分の存在に応じたパルス反力を生成するための反力指令値を示す反力指令信号SRFを出力する。パルス反力とは、図3(d)に例示したような、ある時間(例えば0.1秒間)に知覚可能な反力を生成する孤立したパルス状の反力である。このパルス状の反力のための反力指令値は、その反力の時間変化を示すパルス状の時間変化波形として与えられる。そしてその波形は、アタリが生じたことをスティック112を通じてオペレータに触覚または力覚により知覚させるために適する任意の波形の反力とすることができ、この波形の典型例は、例えば矩形波、三角波などである。そしてパルス反力の反力指令値を示す反力指令信号SRFが、反力生成装置116から出力される。オペレータがスティック112から知覚している操作力は、例えば、スティック112を中立位置に戻すためのバネなどの特に時間変化を示さないものから、反力生成装置116がパルス反力制御部104の制御の下で生成するパルス反力を含むものに変化する。このため、オペレータは、スティック112からも当たりが生じたことを認知することが可能となる。
パルス反力制御部104の典型的な動作は、まず、荷重センサー140から動荷重値を示す動荷重信号SWを受信する。次いで動荷重値の時間変化率成分を算出する。このためには、荷重信号SWの動荷重値から直接時間変化率成分を算出してもよいし、また、荷重信号SWの示す動荷重値のうち、負荷対象物500の静荷重値からの差分である偏差量成分を算出してそこから時間変化率成分を算出してもよい。そして、その時間変化率成分の存在に応じたパルス反力を生成するための反力指令値を示す反力指令信号SRFを出力する。パルス反力とは、図3(d)に例示したような、ある時間(例えば0.1秒間)に知覚可能な反力を生成する孤立したパルス状の反力である。このパルス状の反力のための反力指令値は、その反力の時間変化を示すパルス状の時間変化波形として与えられる。そしてその波形は、アタリが生じたことをスティック112を通じてオペレータに触覚または力覚により知覚させるために適する任意の波形の反力とすることができ、この波形の典型例は、例えば矩形波、三角波などである。そしてパルス反力の反力指令値を示す反力指令信号SRFが、反力生成装置116から出力される。オペレータがスティック112から知覚している操作力は、例えば、スティック112を中立位置に戻すためのバネなどの特に時間変化を示さないものから、反力生成装置116がパルス反力制御部104の制御の下で生成するパルス反力を含むものに変化する。このため、オペレータは、スティック112からも当たりが生じたことを認知することが可能となる。
特に、パルス反力制御部104は、反力指令値のうちのパルス反力の振幅を指定するための値を荷重信号SWの時間変化率成分に応じた値にした上で反力指令信号SRFを出力すると有利である。アタリを強調した反力で知覚させることに加え、アタリの強弱も反力により知覚することができれば、オペレータは、負荷対象物500の昇降動作において生じた事象についての一層詳細な情報を得ることができる。
さらに、パルス反力制御部104を、反力指令信号SRFの示す反力指令値を、入力座標値または速度指令値の少なくともいずれかに基づいて、パルス反力制御部104が、中立位置からスティック112を遠ざける向きの反力を生成しない値とすると有利である。この際、パルス反力制御部104は、入力座標信号SPまたは速度指令信号SVの少なくともいずれかをさらに受信する。なお、入力座標信号SPおよび速度指令信号SVは、ともに速度に関連した信号であるため、入力座標信号SPまたは速度指令信号SVのいずれかを指すために速度関連信号ということもある。ここで中立位置は、スティック112がその中立位置であるときの入力座標値SPに対応付けられている速度指令値が負荷対象物500を停止させるべき値となる一の入力軸におけるスティック112の位置である。この構成により、スティック112を中立位置に近付ける向きに反力を生成することが可能となる。
これを具体例で説明すると、例えば、スティック112の入力座標値が正の時に荷重昇降装置130は負荷対象物500を上昇させるとする。このとき、上昇中に負荷対象物500にアタリが生じると、その瞬間に荷重信号SWの荷重値が増大しその時間変化率成分は正の値となる。この正の時間変化率に対して、パルス反力制御部104は、スティック112の負の方向に入力座標センサー114が反力を生成するような反力指令値を算出する。これに対し、上昇中に負荷対象物500にアタリによって荷重信号SWの荷重値の時間変化率成分が負の値となる場合に単純に符号を反転させて反力を生成すると、スティック112の正の方向に入力座標センサー114が反力を生成するような反力指令値を生成することとなる。ところがその場合、負荷対象物500の上昇速度をさらに増大させる向きの反力となる。もしオペレータがそれに応じてスティック112を操作したり、反力によるスティック112の動きを許容すると、中立位置からのオペレータによる手動操作を反力が助長することとなってしまう。したがって、本実施形態のパルス反力制御部104がそのような向きの反力を生成させないことが好適な構成となる。なお、上昇中に負荷対象物500にアタリによって荷重信号SWの荷重値の時間変化率成分が負の値となる場合は、例えば図3(b)にて下向き矢印により示したように、アタリやコスレによる荷重値が減少する場面である。
[1-2-3 偏差反力制御部106の詳細な動作]
次に、偏差反力制御部106について説明する。偏差反力制御部106は、荷重センサー140から動荷重値を示す動荷重信号SWを受信し、動荷重値における負荷対象物500の静荷重値からの差分である偏差量成分を算出する。そして、偏差反力制御部106は、偏差量成分の存在に応じた反力を生成するための反力指令値を示す反力指令信号SRFを反力生成装置116に出力する。
次に、偏差反力制御部106について説明する。偏差反力制御部106は、荷重センサー140から動荷重値を示す動荷重信号SWを受信し、動荷重値における負荷対象物500の静荷重値からの差分である偏差量成分を算出する。そして、偏差反力制御部106は、偏差量成分の存在に応じた反力を生成するための反力指令値を示す反力指令信号SRFを反力生成装置116に出力する。
偏差反力制御部106は振動しない反力を偏差量成分の値に応じて生成するための反力指令値を含めて反力指令信号SRFを反力生成装置に出力するものであると有利である。ここでの振動しない反力は、コスレが生じたことにより動荷重値が静荷重値に比べて増大または減少したことに応じた動荷重値の偏差量成分によりされる。このため、例えば一定の速度で上昇または下降している負荷対象物500がある時点になって初めて周囲の物体とコスレを生じた場合、その時点まではスティック112を通じて反力を感じなかったオペレータは、その時点から反力を知覚することとなる。
また偏差反力制御部106は、振動反力を上記偏差量成分に応じて生成するための反力指令値を含めて反力指令信号SRFを出力すると有利である。振動反力は、スティック112を通じてオペレータに振動を知覚させるための反力であり、典型的には、パルス反力を断続させて繰り返すことにより実現することができる。なお、振動反力は、振動の振幅が小さい力であっても、比較的知覚されやすいため、コスレによる摩擦力による荷重値の増分を強調する手法として有用である。この振動反力の振幅を、偏差量成分に応じたものとするために、例えば偏差量成分に例えば比例させたり、非線形に対応する振幅としたりすることも有利である。
本実施形態においては、パルス反力制御部104と同様に、偏差反力制御部106においても、反力の向きを制限することが好適である。そのために、偏差反力制御部106も、入力座標信号SPまたは速度指令信号SVの少なくともいずれかすなわち速度関連信号をさらに受信する。また偏差反力制御部106は、入力座標値SPまたは速度指令値SVの少なくともいずれかに基づいてスティック112の一の入力軸における中立位置からスティックを遠ざける向きの反力を生成しない値として反力指令信号SRFの示す反力指令値を算出する。
[1-2-4 反力補正処理部108の詳細な動作]
上述したように、本実施形態の反力制御部100には、反力補正処理部108がさらに備わっていると有利である。反力補正処理部108は、入力座標信号SPまたは速度指令信号SVの少なくともいずれかと反力指令信号SRFとを受信する。また反力補正処理部108は、入力座標値または速度指令値の少なくともいずれかに基づいて、反力指令信号SRFが示す反力指令値のうち、スティック112の一の入力軸における中立位置からスティック112を遠ざける向きの反力を生成する値を判定する。このため、図2に示すように、反力補正処理部108には、入力座標信号SPが入力される。そして反力補正処理部108は、当該値を、反力を生成しない値に選択的に置換する。これにより補正済反力指令値を得て、補正済反力指令値を示す補正済反力指令信号SRF-Mを反力補正処理部108から出力する。
上述したように、本実施形態の反力制御部100には、反力補正処理部108がさらに備わっていると有利である。反力補正処理部108は、入力座標信号SPまたは速度指令信号SVの少なくともいずれかと反力指令信号SRFとを受信する。また反力補正処理部108は、入力座標値または速度指令値の少なくともいずれかに基づいて、反力指令信号SRFが示す反力指令値のうち、スティック112の一の入力軸における中立位置からスティック112を遠ざける向きの反力を生成する値を判定する。このため、図2に示すように、反力補正処理部108には、入力座標信号SPが入力される。そして反力補正処理部108は、当該値を、反力を生成しない値に選択的に置換する。これにより補正済反力指令値を得て、補正済反力指令値を示す補正済反力指令信号SRF-Mを反力補正処理部108から出力する。
この場合、ジョイスティック装置110の反力生成装置116は、反力指令信号SRFに代えて反力補正処理部108からの補正済反力指令信号SRF-Mを受信して、一の入力軸の入力座標値SPを変化させる向きの反力を、補正済反力指令値に応じて生成する。
この構成により、スティック112を中立位置に近付ける向きの反力が生成される(以下、「反力の向きの制限処理」という)。ここで、実際には、パルス反力制御部104または偏差反力制御部106を上述した好適な構成とした場合には、反力補正処理部108による反力の向きの制限は通常の操作では殆ど実行されない。というのは、パルス反力制御部104と偏差反力制御部106により、反力指令信号SRFを算出する時点で殆どのタイミングでいずれも入力座標信号SPまたは速度指令信号SVの入力座標値または速度指令値に基づいて反力の向きが決定されるためである。それでもなお、反力生成装置116に反力を生成させるタイミングにおいて、パルス反力制御部104や偏差反力制御部106による反力指令値のままではスティック112を中立位置から遠ざけるような向きの反力となってしまう場合がありうるため、反力の向きの制限処理が採用されるのである。そのような場合の例としては、パルス反力制御部104のパルス反力が生成されている期間中にスティック112が中立位置を跨いで反対に操作される場合を想定することができる。さらに、例えばパルス反力制御部104における時間変化率の算出は、一般にノイズ等に敏感なものとなり、また数値計算の誤差の影響を受けることもある。これらの場合であっても、反力補正処理部108による反力の向きの制限処理を行なうことよって、スティック112を中立位置から遠ざけるような向きの反力の生成が防止される。
さらに、反力補正処理部108は、入力座標値または速度指令値の少なくともいずれかが負荷対象物500を停止させるべき値であるときの補正済反力指令値を、反力を生成しない値に選択的にさらに置換すると有利である。これにより反力補正処理部108は、補正済反力指令値を得て補正済反力指令信号SRF-Mを出力する。この処理(以下「停止時反力制限処理」という)は、反力を生成するとオペレータの操作意思と反する反力となるためである。つまり、入力座標信号SPまたは速度指令信号SVから得られるスティック112の位置が中立位置である場合は、停止させる意思によりオペレータがスティック112を中立位置に戻している操作であるか、または、スティック112がバネの力により中立位置に戻っている。このため、これらの状況に合わせれば、反力の生成を制限するのが適切となるのである。
[1-3 第1実施形態の変形例]
上述したリモートハンドリング装置1000においては、反力制御部100のパルス反力制御部104と偏差反力制御部106とを個別に説明した。実用面からは反力指令値として、図2に示したパルス反力制御部104と偏差反力制御部106の双方からの信号を加算処理した反力指令値を採用する構成も有利である。例えば負荷対象物500が最初に僅かな衝撃とともに接触してその後に摩擦を引き起こす場合には、パルス反力制御部104および偏差反力制御部106のそれぞれが、接触の開始のアタリに応じたパルス反力およびコスレに応じた反力のための反力指令値を算出する。これらが加算された反力指令信号SRFにより反力により、オペレータは、負荷対象物500の周囲の物体への接触が一時的なものであるか、コスレつまり摩擦を伴っているかといった状況を、スティック112を通じて把握することが可能となる。
上述したリモートハンドリング装置1000においては、反力制御部100のパルス反力制御部104と偏差反力制御部106とを個別に説明した。実用面からは反力指令値として、図2に示したパルス反力制御部104と偏差反力制御部106の双方からの信号を加算処理した反力指令値を採用する構成も有利である。例えば負荷対象物500が最初に僅かな衝撃とともに接触してその後に摩擦を引き起こす場合には、パルス反力制御部104および偏差反力制御部106のそれぞれが、接触の開始のアタリに応じたパルス反力およびコスレに応じた反力のための反力指令値を算出する。これらが加算された反力指令信号SRFにより反力により、オペレータは、負荷対象物500の周囲の物体への接触が一時的なものであるか、コスレつまり摩擦を伴っているかといった状況を、スティック112を通じて把握することが可能となる。
[2 第2実施形態]
[2-1 既設のリモートハンドリング装置への追加]
上述したリモートハンドリング装置1000は、従来のリモートハンドリング装置7000(図1)のような既設のリモートハンドリング装置に対していくつかの機器を追加することにより実現することができる。以下、既設のリモートハンドリング装置に対して追加される補助装置として本発明の第2実施形態を説明する。引き続き図2を参照する。
[2-1 既設のリモートハンドリング装置への追加]
上述したリモートハンドリング装置1000は、従来のリモートハンドリング装置7000(図1)のような既設のリモートハンドリング装置に対していくつかの機器を追加することにより実現することができる。以下、既設のリモートハンドリング装置に対して追加される補助装置として本発明の第2実施形態を説明する。引き続き図2を参照する。
本実施形態の補助装置1200は、離れている荷重昇降装置をジョイスティック装置により手動操作するオペレータに対し、スティックを通じ反力を知覚させるために負荷対象物のリモートハンドリング装置に付加される。例えば図1に示した従来のリモートハンドリング装置7000が設置されているとき、反力制御部100と反力生成装置116とを有する補助装置1200を追加し、必要な信号として荷重信号SWや入力座標信号SPを反力制御部100に入力するだけで、実質的にリモートハンドリング装置1000を作製することが可能となる。この際、反力制御部100におけるパルス反力制御部104と偏差反力制御部106とは、必要に応じて、それぞれが単独で追加されることも、また双方が同時に追加されることもどちらの場合もある。さらに、反力補正処理部108も必要に応じ追加することができる。
なお、既設のリモートハンドリング装置を改修することにより、補助装置1200の補助装置を追加してリモートハンドリング装置1000と同等の機能を追加する具体的な追加作業では、本実施形態を適用するために、公知の変形を行なうことができる。例えば、ジョイスティック装置710(図1)に反力生成装置116を追加してジョイスティック装置110の構成とすることに代え、反力生成装置116の機能を有するジョイスティック装置110を利用する可能性もある。また、昇降制御部120がすでにソフトウエアにより実装されている場合には、反力制御部100を追加する作業は、当該ソフトウエアのみの改修作業となるかもしれない。これらの現実の追加作業は、具体的なリモートハンドリング装置の構成に合わせて当業者により適宜に実施することが可能である。
[3 実装例]
[3-1 ソフトウエアにより実装される反力制御部100]
次に、反力制御部100のソフトウエアによる実装例について、図4を参照して説明する。図4は、図2に示したリモートハンドリング装置1000においてソフトウエアにより実装される反力制御部および昇降制御部の構成の一例の構成を含むリモートハンドリング装置1000A全体の構成を示すブロックダイヤグラムである。図4は、本出願の第1実施形態に従う評価システムを作製した際のソフトウエアの構成例であり、本出願の第2実施形態に従う評価システムとなる構成例でもある。ここでは、作製した評価システムの理解を容易にするため、ソフトウエアとハードウエアの区別を区別して、ソフトウエアの要素を実線により、ハードウエアの要素を鎖線により示している。本実装例では、表示装置150、カメラ、そして映像のため表示装置の説明は省略する。また、以下の説明において、図2に説明した要素と実質的な違いの無い要素には、同一の符号を付してその説明を省略する。この際、説明済の用語との対応を混乱させないため、ソフトウエアモジュールにより実現される要素や要素間でやりとりされるデータを、上述した処理部や信号の要素名により説明する。さらに、ソフトウエアによる実装のためのみの差異を有する要素には、アルファベットまたは数値を末尾に追加した関連する符号を付して説明する。以下の実装例に示す手法、処理内容、処理手順、要素や具体的処理等は本発明の趣旨を逸脱しない限り適宜変更することかできる。したがって、本発明の範囲は以下の具体例に限定されるものではない。
[3-1 ソフトウエアにより実装される反力制御部100]
次に、反力制御部100のソフトウエアによる実装例について、図4を参照して説明する。図4は、図2に示したリモートハンドリング装置1000においてソフトウエアにより実装される反力制御部および昇降制御部の構成の一例の構成を含むリモートハンドリング装置1000A全体の構成を示すブロックダイヤグラムである。図4は、本出願の第1実施形態に従う評価システムを作製した際のソフトウエアの構成例であり、本出願の第2実施形態に従う評価システムとなる構成例でもある。ここでは、作製した評価システムの理解を容易にするため、ソフトウエアとハードウエアの区別を区別して、ソフトウエアの要素を実線により、ハードウエアの要素を鎖線により示している。本実装例では、表示装置150、カメラ、そして映像のため表示装置の説明は省略する。また、以下の説明において、図2に説明した要素と実質的な違いの無い要素には、同一の符号を付してその説明を省略する。この際、説明済の用語との対応を混乱させないため、ソフトウエアモジュールにより実現される要素や要素間でやりとりされるデータを、上述した処理部や信号の要素名により説明する。さらに、ソフトウエアによる実装のためのみの差異を有する要素には、アルファベットまたは数値を末尾に追加した関連する符号を付して説明する。以下の実装例に示す手法、処理内容、処理手順、要素や具体的処理等は本発明の趣旨を逸脱しない限り適宜変更することかできる。したがって、本発明の範囲は以下の具体例に限定されるものではない。
[3-1-1 ソフトウエアによる昇降制御部120A]
ジョイスティック装置110からの入力座標信号SPは、昇降制御部120Aに入力される。昇降制御部120Aは図2に示した昇降制御部120と同等の機能を実行するものである。つまり、この昇降制御部120Aにより、入力座標信号SPにより示される入力座標値から速度指令値を示す速度指令信号SVが生成されて出力され、荷重昇降装置130に送られる。具体的には、ジョイスティック装置110のスティック112に接続されている入力座標センサー114からの入力座標信号SPの示すアナログ値の入力座標値が、AD変換部122によりスケールを調整する変換(同様の処理を以下「工業値変換」という)を施してデジタル値とされる。この変換により入力座標信号SPは、例えばマイナス100~プラス100%の数値範囲の入力座標値を示す入力座標信号SP2とされる。入力座標信号SP2が示す入力座標値の正負はそれぞれが例えば負荷対象物500の上昇と下降に割り当てられ、0は停止とされる。この段階の入力座標値には、ノイズが含まれている可能性があるため適当なフィルタ処理部124によりノイズが除去される。その後、マイナス100~100%の数値範囲の入力座標値を示す入力座標信号SP3となって、速度指令変換部126により、モーターの速度指令値を示す速度指令信号SV2に変換される。速度指令信号SV2が示す速度指令値は、例えばマイナス100~プラス100%の値であり、荷重モーター132の速度に比例した値である。こうして、速度指令変換部126により、スティック112の入力座標値と荷重モーター132の速度の対応関係が実質的に決定される。
ジョイスティック装置110からの入力座標信号SPは、昇降制御部120Aに入力される。昇降制御部120Aは図2に示した昇降制御部120と同等の機能を実行するものである。つまり、この昇降制御部120Aにより、入力座標信号SPにより示される入力座標値から速度指令値を示す速度指令信号SVが生成されて出力され、荷重昇降装置130に送られる。具体的には、ジョイスティック装置110のスティック112に接続されている入力座標センサー114からの入力座標信号SPの示すアナログ値の入力座標値が、AD変換部122によりスケールを調整する変換(同様の処理を以下「工業値変換」という)を施してデジタル値とされる。この変換により入力座標信号SPは、例えばマイナス100~プラス100%の数値範囲の入力座標値を示す入力座標信号SP2とされる。入力座標信号SP2が示す入力座標値の正負はそれぞれが例えば負荷対象物500の上昇と下降に割り当てられ、0は停止とされる。この段階の入力座標値には、ノイズが含まれている可能性があるため適当なフィルタ処理部124によりノイズが除去される。その後、マイナス100~100%の数値範囲の入力座標値を示す入力座標信号SP3となって、速度指令変換部126により、モーターの速度指令値を示す速度指令信号SV2に変換される。速度指令信号SV2が示す速度指令値は、例えばマイナス100~プラス100%の値であり、荷重モーター132の速度に比例した値である。こうして、速度指令変換部126により、スティック112の入力座標値と荷重モーター132の速度の対応関係が実質的に決定される。
速度指令変換部126は例えば、停止付近では微動が可能であるとともに、高速の移動を行ないうるような非線形変換を行なう。速度指令信号SV2の示す速度指令値は、例えばDA変換部128により、工業値変換されて荷重モーター132に対して適切な電圧レンジの速度指令信号SVとされ出力される。荷重昇降装置130の荷重モーター132には、荷重モーター駆動電源134が接続されており、速度指令信号SVに比例した速度で荷重モーター132を動作させるために必要な増幅された電流信号が荷重モーター駆動電源134から出力される。荷重モーター132には、図示しないギアなどの増力減速機構が接続されている。こうして、ジョイスティック装置110からの入力座標信号SPが示す入力座標値に応じ、速度指令信号SVが示す速度指令値に比例した速度で直接負荷対象物500が荷重モーター132により上昇、停止、または下降される。負荷対象物500を昇降させる軸である昇降軸136には、移動量の限界の到達を検知するために上端リミットスイッチ138Lと下端リミットスイッチ138Uが装着されている。
荷重センサー140は、適当な位置に装着されて負荷対象物500の動荷重値の計測信号を出力する。この計測信号は、ロードセル変換器142を経て荷重信号SWとされ、ロードセルインターフェース144を通じ反力制御部100Aに入力される。荷重信号SWは反力制御部100Aの入力時に工業値変換され、荷重信号SW2とされる。反力制御部100Aは、反力を生成するための反力指令信号SRFを生成する。
[3-1-2 ソフトウエアによる反力制御部100A]
反力制御部100Aでは、まず、荷重信号SW2の示す荷重値から、適当なフィルタ1020によりノイズを除去して荷重信号SW3を生成する。この荷重信号SW3から負荷対象物500が静止している際の荷重値により静荷重値を決定する。具体的には、下端リミットスイッチ138Uまたは上端リミットスイッチ138Lのいずれかが負荷対象物500が昇降軸136の上端または下端にあることを示しているときの荷重信号SW3がサンプリングされてその荷重値が静荷重記憶部1026に格納される。このような動作のため、反力制御部100には、下端リミットスイッチ138Uおよび上端リミットスイッチ138Lからの入力を受け付ける上端下端入力部1024が備わっている。なお、下端リミットスイッチ138U、上端リミットスイッチ138Lの他の目的は、荷重モーター132の動作を制御する荷重モーター駆動電源134に入力されて、荷重モーター132の動作を上端または下端の範囲に制限することである。
反力制御部100Aでは、まず、荷重信号SW2の示す荷重値から、適当なフィルタ1020によりノイズを除去して荷重信号SW3を生成する。この荷重信号SW3から負荷対象物500が静止している際の荷重値により静荷重値を決定する。具体的には、下端リミットスイッチ138Uまたは上端リミットスイッチ138Lのいずれかが負荷対象物500が昇降軸136の上端または下端にあることを示しているときの荷重信号SW3がサンプリングされてその荷重値が静荷重記憶部1026に格納される。このような動作のため、反力制御部100には、下端リミットスイッチ138Uおよび上端リミットスイッチ138Lからの入力を受け付ける上端下端入力部1024が備わっている。なお、下端リミットスイッチ138U、上端リミットスイッチ138Lの他の目的は、荷重モーター132の動作を制御する荷重モーター駆動電源134に入力されて、荷重モーター132の動作を上端または下端の範囲に制限することである。
次いで、静荷重記憶部1026の静荷重値と、荷重信号SW3の動荷重値との差分が差分処理部1022により算出されて、偏差量成分ΔSW3として算出される。この偏差量成分ΔSW3は、パルス反力制御部104Aと偏差反力制御部106Aに入力される。
パルス反力制御部104Aでは、偏差量成分ΔSW3から時間変化率成分が算出されて、時間変化率成分の絶対値がある閾値つまり時間変化率閾値を超えている場合に、パルス反力のための反力の値を生成する。ここで時間変化率閾値は、負荷対象物500が周囲の物体に衝突しアタリが生じる場合には、偏差量成分ΔSW3からの時間変化率が超えるような値に選択されている。例えば、負荷対象物500を上昇させているときにアタリが生じると、静荷重記憶部1026の静荷重値から増大する荷重信号SW3が得られる。従って、偏差量成分ΔSW3は、正の大きな時間変化率を示す。その際、孤立したパルス状のパルス反力がある時間だけ生成するための反力指令値をパルス反力制御部104Aが算出する。したがって、パルス反力は、時間変化率成分が存在することに応じて生成される。なお、偏差量成分ΔSW3の時間変化の起源は、荷重信号SWの時間変化である。また、時間変化率閾値の例が図3に示した閾値TH1、TH2である。
パルス反力制御部104Aにより算出されるパルス反力のための反力指令値は、スティック112を中立位置に戻す方向のパルス反力を生成するためのものであり、スティック112を中立位置から遠ざける向きの反力は生成されない。このような反力指令値を算出するためには、スティック112の入力座標値または速度指令値を利用する必要がある。この目的で、本実装例のパルス反力制御部104Aには、図2に示したリモートハンドリング装置1000において入力座標信号SPを入力していたパルス反力制御部104とは異なり、昇降制御部120Aからの速度指令信号SV2が入力される。また、パルス反力制御部104Aは、リモートハンドリング装置1000におけるパルス反力制御部104が荷重信号SWを入力としているのに対し、静荷重との差分である偏差量成分ΔSW3を入力としている点において実施上の差異を有している。ただしこの点は時間変化率の算出上において実質的相違点とはならない。
そして、パルス反力制御部104Aは反力指令値を算出して反力指令信号SRF2として出力する。
偏差反力制御部106Aは、振動反力または繰返パルス反力を生成するための反力指令値を算出する。この際にも、スティック112を中立位置から遠ざける向きの反力は生成されない。このため、偏差反力制御部106Aにも、偏差量成分ΔSW3に加え、昇降制御部120Aからの速度指令信号SV2も入力される。この点において、本実装例は入力座標信号SPを入力していた図2のリモートハンドリング装置1000の偏差反力制御部106と異なっている。また、偏差反力制御部106Aは、リモートハンドリング装置1000における偏差反力制御部106が荷重信号SWを入力としているのに対し、静荷重との差分である偏差量成分ΔSW3を入力としている。このため、偏差反力制御部106の動作は、リモートハンドリング装置1000Aの偏差反力制御部106Aの動作と差分処理部1022、上端下端入力部1024、静荷重記憶部1026の動作を含むものである。
そして、偏差反力制御部106Aは反力指令値を算出して反力指令信号SRF3として出力する。偏差反力制御部106Aでは、偏差量成分ΔSW3の絶対値がある閾値つまり偏差量閾値を超えている場合に、振動しない反力(図3(e))や振動反力(図3(f))のための反力の値を生成する。ここで偏差量閾値は、負荷対象物500が周囲の物体に摩擦して生じるコスレの際に、偏差量成分ΔSW3が超えるような値に選択されている。例えば、負荷対象物500を上昇させているときにコスレが生じると、静荷重記憶部1026の静荷重値から増大する荷重信号SW3が得られる。このとき、偏差量成分ΔSW3は、正の偏差量を示す。その際、上記偏差量閾値を偏差量成分ΔSW3が超えた場合には、振動しない反力や振動反力のための反力指令値を偏差反力制御部106Aが算出する。したがって、パルス反力は、時間変化率成分が存在することに応じて生成される。なお、偏差量閾値例が図3に示した閾値TH3、TH4である。
パルス反力制御部104Aからの反力指令信号SRF2が示す反力指令値と偏差反力制御部106Aからの反力指令信号SRF3が示す反力指令値は加算処理部1028により重畳され、反力指令信号SRF4として反力補正処理部108Aに入力される。反力補正処理部108Aは、生成される反力を適切なものにするために、反力指令信号SRF4が示す反力指令値を対象に補正処理を行なう。反力補正処理部108Aには、上記補正処理のために速度指令信号SV2も入力される。この点、本実装例の反力補正処理部108Aは図2に示した入力座標信号SPを入力していた反力補正処理部108とは異なっている。反力補正処理部108Aの具体的な処理は4つである。まず(1)反力指令信号SRF4の反力指令値にかかわらず、速度指令信号SV2が0であるときには反力補正値を0とする。また(2)反力指令信号SRF4の示す反力の向きとスティック112の向きが同一であるときには反力補正値を0とする。さらに(3)反力指令信号SRF4の反力指令値が反力指令値の上限値を超えるときには反力指令値を当該上限値とする。最後に、(4)(1)~(3)以外のときには反力指令信号SRF4の反力指令値をそのまま出力する。これらのうち(1)および(2)の処理はそれぞれ、「1-2-4 反力補正処理部108の詳細な動作」の欄にて上述した停止時反力制限処理、および反力の向きの制限処理である。
反力補正処理部108Aの出力は反力指令信号SRF5となり、工業値変換された上、モーター駆動電源118に反力指令信号SRFとして出力される。反力生成装置116は、モーター駆動電源118からの出力電流により駆動され、スティック112を通じてオペレータに知覚させる反力を反力制御部100の制御動作に従って生成する。このような制御動作により、負荷対象物500の周囲の物体とのアタリやコスレが適切に検出され、図3に例示した反力のようなオペレータにとって知覚が容易となるように強調された反力が生成される。
本出願の発明者らは、リモートハンドリング装置1000Aの評価システムにおいて各種のパラメータを調整することより、上述した第1実施形態のリモートハンドリング装置1000の有用性を実際に確認した。すなわち、図3に示した反力により説明すれば、負荷対象物500と周囲の物体とのアタリとコスレは、スティック112を通じたパルス反力F1、ならびに振動しない反力F2および振動反力F3により、オペレータは負荷対象物500の昇降操作に注意力を向けていないタイミングにおいても知覚することが可能であった。その際オペレータは、アタリとコスレを区別することも可能であった。さらに、アタリおよびコスレD(図3(a))のようなアタリとコスレが共に生じた場合には、そのアタリとコスレが連続していることについても認識することができた。そして、パルス反力F1Aとパルス反力F1Bとの区別や、振動しない反力F2C、F2D、振動反力F3C、F3Dそれぞれにおいて反力が変化している状況もオペレータが知覚することが可能であった。なお、リモートハンドリング装置1000Aの評価システムのこれらの確認のために調整した上記パラメータは次のパラメータ群のうち少なくとも一のパラメータとした:閾値TH1、TH2、TH3、TH4、パルス反力F1、振動しない反力F2、および振動反力F3についてのそれぞれの強さ、これらについてのそれぞれの相対的なバランス、パルス反力F1についての期間、振動反力F3についての交番周期およびパルスの期間、ならびに、反力補正処理部108Aにおける反力指令値の上限値、とした。
以上、本発明の実施形態を具体的に説明した。上述の各実施形態および実装例は、発明を説明するために記載されたものであり、本出願の発明の範囲は、特許請求の範囲の記載に基づいて定められるべきものである。また、各実施形態の他の組合せを含む本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。
本発明のリモートハンドリング装置またはその補助装置は、負荷対象物を離れた位置から手動操作する任意の装置に利用可能である。
1000 リモートハンドリング装置
1200 補助装置
500 負荷対象物
100、100A 反力制御部
1020 フィルタ
1022 差分処理部
1024 上端下端入力部
1026 静荷重記憶部
1028 加算処理部
104、104A パルス反力制御部
106、106A 偏差反力制御部
108、108A 反力補正処理部
110 ジョイスティック装置
112 スティック
114 入力座標センサー
116 反力生成装置
118 モーター駆動電源
120、120A 昇降制御部
122 AD変換部
124 フィルタ処理部
126 速度指令変換部
128 DA変換部
130 荷重昇降装置
132 荷重モーター
134 荷重モーター駆動電源
136 昇降軸
138L 上端リミットスイッチ
138U 下端リミットスイッチ
140 荷重センサー
142 ロードセル変換器
144 ロードセルインターフェース
150 表示装置
TH1~TH4 閾値
SP、SP2 、SP3 入力座標信号
SV、SV2 速度指令信号
SW、SW2、SW3 荷重信号
SRF、SRF2~SRF5 反力指令信号
1200 補助装置
500 負荷対象物
100、100A 反力制御部
1020 フィルタ
1022 差分処理部
1024 上端下端入力部
1026 静荷重記憶部
1028 加算処理部
104、104A パルス反力制御部
106、106A 偏差反力制御部
108、108A 反力補正処理部
110 ジョイスティック装置
112 スティック
114 入力座標センサー
116 反力生成装置
118 モーター駆動電源
120、120A 昇降制御部
122 AD変換部
124 フィルタ処理部
126 速度指令変換部
128 DA変換部
130 荷重昇降装置
132 荷重モーター
134 荷重モーター駆動電源
136 昇降軸
138L 上端リミットスイッチ
138U 下端リミットスイッチ
140 荷重センサー
142 ロードセル変換器
144 ロードセルインターフェース
150 表示装置
TH1~TH4 閾値
SP、SP2 、SP3 入力座標信号
SV、SV2 速度指令信号
SW、SW2、SW3 荷重信号
SRF、SRF2~SRF5 反力指令信号
Claims (17)
- 受信した反力指令信号の示す反力指令値に応じて手動操作受付用のスティックを通じオペレータに知覚させる反力を生成するための反力生成装置が前記スティックに接続されているジョイスティック装置と、
該ジョイスティック装置から離して設置され、前記スティックの入力座標値、または該入力座標値に対応付けられている速度指令値のいずれかに応じ負荷対象物を上昇、停止、または下降させる荷重昇降装置と、
該負荷対象物の動荷重値の時間変化率成分を算出し、該時間変化率成分の存在に応じたパルス反力を生成するための反力指令値を示す反力指令信号を前記反力生成装置に出力するパルス反力制御部と
を備える
負荷対象物のリモートハンドリング装置。 - 前記パルス反力制御部は、前記反力指令値のうちの前記パルス反力の振幅を指定するための値を前記時間変化率成分に応じた値にした上で、前記反力指令信号を出力するものである
請求項1に記載のリモートハンドリング装置。 - 前記パルス反力制御部は、前記入力座標値または前記速度指令値の少なくともいずれかを示す速度関連信号を受信するものであり、
前記反力指令信号の示す前記反力指令値は、前記パルス反力制御部が、該入力座標値または該速度指令値の前記少なくともいずれかに基づいて前記スティックをその中立位置から遠ざける向きの反力を生成しない値として算出したものである
請求項1に記載のリモートハンドリング装置。 - 前記時間変化率成分は、前記負荷対象物がその周囲の物体に衝突したことにより生じたものである
請求項1に記載のリモートハンドリング装置。 - 受信した反力指令信号の示す反力指令値に応じて手動操作受付用のスティックを通じオペレータに知覚させる反力を生成するための反力生成装置が前記スティックに接続されているジョイスティック装置と、
該ジョイスティック装置から離して設置され、前記スティックの入力座標値、または該入力座標値に対応付けられている速度指令値のいずれかに応じ負荷対象物を上昇、停止、または下降させる荷重昇降装置と、
該負荷対象物の動荷重値が静荷重値からのからの差分として示す偏差量成分を算出し、該偏差量成分の存在に応じた反力指令値を示す反力指令信号を前記反力生成装置に出力する偏差反力制御部と
を備える
負荷対象物のリモートハンドリング装置。 - 前記偏差反力制御部は、振動しない反力を前記偏差量成分の値に応じて生成するための反力指令値を含めて前記反力指令信号を前記反力生成装置に出力するものである
請求項5に記載のリモートハンドリング装置。 - 前記偏差反力制御部は、振動反力を前記偏差量成分の値に応じて生成するための反力指令値を含めて前記反力指令信号を前記反力生成装置に出力するものである
請求項5または請求項6に記載のリモートハンドリング装置。 - 前記偏差反力制御部は、前記入力座標値または前記速度指令値の少なくともいずれかを示す速度関連信号を受信するものであり、
前記反力指令信号の示す前記反力指令値は、前記偏差反力制御部が、該入力座標値または該速度指令値の該少なくともいずれかに基づいて前記スティックをその中立位置から遠ざける向きの反力を生成しない値として算出したものであり、
これにより、前記スティックを前記中立位置に近付ける向きに前記反力を生成する
請求項5に記載のリモートハンドリング装置。 - 前記偏差量成分は、前記負荷対象物がその周囲の物体と摩擦することにより生じたものである
請求項5に記載のリモートハンドリング装置。 - 前記入力座標値または前記速度指令値の少なくともいずれかを示す速度関連信号を受信し、該入力座標値または該速度指令値の該少なくともいずれかに基づいて、前記反力指令信号が示す前記反力指令値のうち、前記スティックをその中立位置から遠ざける向きの反力を生成する値を判定し、当該値を反力を生成しない値に選択的に置換することにより補正済反力指令値を得て、該補正済反力指令値を示す補正済反力指令信号を出力する反力補正処理部
をさらに備え、
前記ジョイスティック装置の前記反力生成装置は、前記反力指令信号に代えて前記反力補正処理部からの前記補正済反力指令信号を受信して、前記入力座標値を変化させる向きの反力を前記補正済反力指令値に応じて生成するものであり、
これにより、前記スティックを前記中立位置に近付ける向きに前記反力を生成するものである
請求項1乃至請求項9のいずれか1項に記載のリモートハンドリング装置。 - 前記反力補正処理部は、前記入力座標値または前記速度指令値の前記少なくともいずれかが前記負荷対象物を停止させるべき値であるときの前記補正済反力指令値を、反力を生成しない値に選択的にさらに置換することにより前記補正済反力指令値を得て前記補正済反力指令信号を出力するものである
請求項10に記載のリモートハンドリング装置。 - オペレータからの手動操作受付用のスティックにおける一の入力軸の入力座標値を検知する入力座標センサーと、受信した反力指令信号の示す反力指令値に応じて前記スティックを通じ前記オペレータに知覚させる反力を生成するための前記スティックに接続されている反力生成装置とを有するジョイスティック装置と、
前記入力座標センサーから前記入力座標値を示す入力座標信号を受信し、該入力座標値に対応付けられている速度指令値を示す速度指令信号を出力する昇降制御部と、
前記ジョイスティック装置から離して設置され、該速度指令信号を受信し、前記速度指令値に応じ負荷対象物を上昇、停止、または下降させる荷重昇降装置と、
前記負荷対象物の動荷重値を検知可能に装備されている荷重センサーと、
該荷重センサーから該動荷重値を示す動荷重信号を受信し、該動荷重値における前記負荷対象物の静荷重値からの差分である偏差量成分、または該動荷重値のうちのいずれかの時間変化率成分を算出し、該時間変化率成分の存在に応じたパルス反力を生成するための反力指令値を示す反力指令信号を前記反力生成装置に出力するパルス反力制御部と
を備える
負荷対象物のリモートハンドリング装置。 - オペレータからの手動操作受付用のスティックにおける一の入力軸の入力座標値を検知する入力座標センサーと、受信した反力指令信号の示す反力指令値に応じて前記スティックを通じ前記オペレータに知覚させる反力を生成するための前記スティックに接続されている反力生成装置とを有するジョイスティック装置と、
前記入力座標センサーから前記入力座標値を示す入力座標信号を受信し、該入力座標値に対応付けられている速度指令値を示す速度指令信号を出力する昇降制御部と、
前記ジョイスティック装置から離して設置され、該速度指令信号を受信し、前記速度指令値に応じ負荷対象物を上昇、停止、または下降させる荷重昇降装置と、
前記負荷対象物の動荷重値を検知可能に装備されている荷重センサーと、
該荷重センサーから該動荷重値を示す動荷重信号を受信し、該動荷重値における前記負荷対象物の静荷重値からの差分である偏差量成分を算出し、該偏差量成分の存在に応じた反力指令値を示す反力指令信号を前記反力生成装置に出力する偏差反力制御部と
を備える
負荷対象物のリモートハンドリング装置。 - 前記入力座標信号または前記速度指令信号の少なくともいずれかと前記反力指令信号とを受信し、前記入力座標値または前記速度指令値の少なくともいずれかに基づいて、前記反力指令信号が示す前記反力指令値のうち、前記一の入力軸における中立位置から前記スティックを遠ざける向きの反力を生成する値を判定し、当該値を反力を生成しない値に選択的に置換することにより補正済反力指令値を得て、該補正済反力指令値を示す補正済反力指令信号を出力する反力補正処理部
をさらに備え、
前記反力補正処理部は、前記入力座標値または前記速度指令値の前記少なくともいずれかが前記負荷対象物を停止させるべき値であるときの前記補正済反力指令値を、反力を生成しない値に選択的にさらに置換することにより前記補正済反力指令値を得て前記補正済反力指令信号を出力するものである
請求項12または請求項13に記載のリモートハンドリング装置。 - 離れている荷重昇降装置をジョイスティック装置により手動操作するオペレータにスティックを通じ反力を知覚させる、負荷対象物のリモートハンドリング装置の補助装置であって、
前記ジョイスティック装置の手動操作受付用のスティックに接続され、受信した反力指令信号の示す反力指令値に応じた前記反力を生成する反力生成装置と、
前記負荷対象物の動荷重値が静荷重値からの差分として示す偏差量成分、または該動荷重値のうちのいずれかの時間変化率成分を算出し、該時間変化率成分の存在に応じたパルス反力を生成するための反力指令値を示す反力指令信号を前記反力生成装置に出力するパルス反力制御部と
を備える
リモートハンドリング装置の補助装置。 - 離れている荷重昇降装置をジョイスティック装置により手動操作するオペレータにスティックを通じ反力を知覚させる、負荷対象物のリモートハンドリング装置のための補助装置であって、
前記ジョイスティック装置の手動操作受付用のスティックに接続され、受信した反力指令信号の示す反力指令値に応じた前記反力を生成する反力生成装置と、
前記負荷対象物の動荷重値が静荷重値からの差分として示す偏差量成分を算出し、該偏差量成分の存在に応じた反力指令値を示す反力指令信号を前記反力生成装置に出力する偏差反力制御部と
を備える
リモートハンドリング装置の補助装置。 - 前記スティックの入力座標値、または該入力座標値に対応付けられている速度指令値のいずれかに基づいて、前記反力指令信号が示す前記反力指令値のうち、前記スティックをその中立位置から遠ざける向きの反力を生成する値を判定し、当該値を反力を生成しない値に選択的に置換することにより補正済反力指令値を得て、該補正済反力指令値を示す補正済反力指令信号を出力する反力補正処理部
をさらに備え、
前記ジョイスティック装置の前記反力生成装置は、前記反力指令信号に代えて前記反力補正処理部からの前記補正済反力指令信号を受信して、前記一の入力軸の前記入力座標値を変化させる向きの反力を、前記補正済反力指令値に応じて生成するものであり、
これにより、前記スティックを前記中立位置に近付ける向きに前記反力を生成するものである
請求項15または請求項16に記載のリモートハンドリング装置の補助装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/005344 WO2015037029A1 (ja) | 2013-09-10 | 2013-09-10 | 負荷対象物のリモートハンドリング装置およびその補助装置 |
US14/536,833 US9260278B2 (en) | 2013-09-10 | 2014-11-10 | Remote handling apparatus for load object and auxiliary apparatus thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/005344 WO2015037029A1 (ja) | 2013-09-10 | 2013-09-10 | 負荷対象物のリモートハンドリング装置およびその補助装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/536,833 Continuation US9260278B2 (en) | 2013-09-10 | 2014-11-10 | Remote handling apparatus for load object and auxiliary apparatus thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015037029A1 true WO2015037029A1 (ja) | 2015-03-19 |
Family
ID=52665173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/005344 WO2015037029A1 (ja) | 2013-09-10 | 2013-09-10 | 負荷対象物のリモートハンドリング装置およびその補助装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9260278B2 (ja) |
WO (1) | WO2015037029A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016124493B3 (de) * | 2016-12-15 | 2017-12-28 | Elobau Gmbh & Co. Kg | Joystick mit Zustandsanzeige und Verfahren |
BR112024001199A2 (pt) * | 2021-07-22 | 2024-04-30 | Kernkraftwerk Goesgen Daeniken Ag | Método para, em função da carga, descarregar e/ou carregar um elemento combustível a partir de ou para o interior de um recipiente de elemento combustível |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02218566A (ja) * | 1989-02-17 | 1990-08-31 | Fuji Electric Co Ltd | 操作形マニピュレータ |
JPH04299714A (ja) * | 1991-03-28 | 1992-10-22 | Yanmar Diesel Engine Co Ltd | バイラテラル操縦装置 |
JPH04310381A (ja) * | 1991-04-08 | 1992-11-02 | Yaskawa Electric Corp | マスタ・スレーブロボットの制御方法 |
JPH05324076A (ja) * | 1992-05-20 | 1993-12-07 | Eiji Nakano | 速度制御バイラテラルサーボ制御方法及びその装置 |
JP2005014132A (ja) * | 2003-06-25 | 2005-01-20 | Honda Motor Co Ltd | アシスト搬送方法及びその装置 |
JP2005169561A (ja) * | 2003-12-11 | 2005-06-30 | Fuji Heavy Ind Ltd | 遠隔操作装置 |
JP2006000977A (ja) * | 2004-06-17 | 2006-01-05 | National Univ Corp Shizuoka Univ | ロボット環境間力作用状態呈示装置 |
JP2009028893A (ja) * | 2007-06-29 | 2009-02-12 | Shin Meiwa Ind Co Ltd | マニピュレータおよびそれを複数備えたパワーアシスト装置 |
JP2009208170A (ja) * | 2008-02-29 | 2009-09-17 | Toyota Motor Corp | パワーアシスト装置およびその制御方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6411276B1 (en) * | 1996-11-13 | 2002-06-25 | Immersion Corporation | Hybrid control of haptic feedback for host computer and interface device |
JP4000806B2 (ja) | 2001-10-01 | 2007-10-31 | 富士電機ホールディングス株式会社 | 原子力施設の燃料交換装置 |
EP1642693A1 (en) | 2003-06-25 | 2006-04-05 | HONDA MOTOR CO., Ltd. | Assist transportation method and device |
DE102007021499A1 (de) * | 2007-05-04 | 2008-11-06 | Deere & Company, Moline | Bedienvorrichtung |
-
2013
- 2013-09-10 WO PCT/JP2013/005344 patent/WO2015037029A1/ja active Application Filing
-
2014
- 2014-11-10 US US14/536,833 patent/US9260278B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02218566A (ja) * | 1989-02-17 | 1990-08-31 | Fuji Electric Co Ltd | 操作形マニピュレータ |
JPH04299714A (ja) * | 1991-03-28 | 1992-10-22 | Yanmar Diesel Engine Co Ltd | バイラテラル操縦装置 |
JPH04310381A (ja) * | 1991-04-08 | 1992-11-02 | Yaskawa Electric Corp | マスタ・スレーブロボットの制御方法 |
JPH05324076A (ja) * | 1992-05-20 | 1993-12-07 | Eiji Nakano | 速度制御バイラテラルサーボ制御方法及びその装置 |
JP2005014132A (ja) * | 2003-06-25 | 2005-01-20 | Honda Motor Co Ltd | アシスト搬送方法及びその装置 |
JP2005169561A (ja) * | 2003-12-11 | 2005-06-30 | Fuji Heavy Ind Ltd | 遠隔操作装置 |
JP2006000977A (ja) * | 2004-06-17 | 2006-01-05 | National Univ Corp Shizuoka Univ | ロボット環境間力作用状態呈示装置 |
JP2009028893A (ja) * | 2007-06-29 | 2009-02-12 | Shin Meiwa Ind Co Ltd | マニピュレータおよびそれを複数備えたパワーアシスト装置 |
JP2009208170A (ja) * | 2008-02-29 | 2009-09-17 | Toyota Motor Corp | パワーアシスト装置およびその制御方法 |
Also Published As
Publication number | Publication date |
---|---|
US20150100151A1 (en) | 2015-04-09 |
US9260278B2 (en) | 2016-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3342545A1 (en) | Robot system | |
CN105583826B (zh) | 工业机器人和用于控制工业机器人的方法 | |
JP5926346B2 (ja) | 人間協調ロボットシステム | |
TWI621004B (zh) | Robot system monitoring device | |
Huang et al. | Dynamics and swing control of double-pendulum bridge cranes with distributed-mass beams | |
JP5849451B2 (ja) | ロボットの故障検出方法、制御装置およびロボット | |
JP4335286B2 (ja) | 部品保護機能を備えたロボット制御装置及びロボット制御方法 | |
CN105643621B (zh) | 用于使机器人设备运行的方法和机器人设备 | |
US4640663A (en) | Balancer and controlling method thereof | |
KR20140147681A (ko) | 운동학적 리던던트 로봇의 감시 | |
JP2017100200A (ja) | ロボットの非常停止の発生状況を記録するロボット制御装置 | |
JP2017530020A (ja) | ロボット・マニピュレータを制御する方法及び装置 | |
US11897135B2 (en) | Human-cooperative robot system | |
CN111347416B (zh) | 一种无外部传感器的检查机器人碰撞检测方法 | |
CN109129417A (zh) | 基于压力传感器阵列的协作机器人系统及其实现方法 | |
WO2015037029A1 (ja) | 負荷対象物のリモートハンドリング装置およびその補助装置 | |
JP5962246B2 (ja) | 負荷対象物のリモートハンドリング装置およびその補助装置 | |
DE102008043360A1 (de) | Industrieroboter und Verfahren zum Programmieren eines Industrieroboters | |
JP2003245881A (ja) | ロボットの制御装置および制御方法 | |
Yusof et al. | Evaluation of Construction Robot Telegrasping Force Perception Using Visual, Auditory and Force Feedback Integration. | |
JP2018176398A (ja) | ロボットシステム | |
Kim et al. | Novel design of haptic devices for bilateral teleoperated excavators using the wave-variable method | |
JP2017019057A (ja) | ロボット制御装置、ロボットおよびロボットシステム | |
US20140172170A1 (en) | Method and system for extracting intended torque for wearable robot | |
JPH0878506A (ja) | 位置決め制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13893420 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13893420 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |