WO2015034096A1 - 羽根構造体及び発電システム - Google Patents

羽根構造体及び発電システム Download PDF

Info

Publication number
WO2015034096A1
WO2015034096A1 PCT/JP2014/073746 JP2014073746W WO2015034096A1 WO 2015034096 A1 WO2015034096 A1 WO 2015034096A1 JP 2014073746 W JP2014073746 W JP 2014073746W WO 2015034096 A1 WO2015034096 A1 WO 2015034096A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
rotation
force
fluid
blades
Prior art date
Application number
PCT/JP2014/073746
Other languages
English (en)
French (fr)
Inventor
英寿 中山
橋本 裕二
Original Assignee
株式会社New Act
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社New Act filed Critical 株式会社New Act
Publication of WO2015034096A1 publication Critical patent/WO2015034096A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/065Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having a cyclic movement relative to the rotor during its rotation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to, for example, a vane structure that can be rotated by hydraulic power, wind power, and the like, and a power generator using the vane structure.
  • a vertical axis wind turbine whose rotation axis extends in the vertical direction and a horizontal axis wind turbine whose rotation axis extends in the horizontal direction are known.
  • the vertical axis wind turbine includes a drag type in which a drag generated on a blade is a rotational force of the wind turbine (see, for example, Patent Document 1) and a lift type in which a lift generated on a blade is a rotational force of the wind turbine.
  • Resistance-type wind turbines such as saponius-type wind turbines and self-rotating blade-type wind turbines are simple in structure and easy to inspect and repair because mechanical parts such as the power generation unit are at low positions. With characteristics.
  • This invention is made in view of this point, The place made into the objective is to provide the blade structure and the electric power generation system which can increase a rotational force.
  • the vane structure of the present invention supports a plurality of vanes receiving a fluid force, which is a fluid force, and the vanes, and is rotatable around an axis of rotation extending perpendicularly to the fluid force. And a blade rotation mechanism for freely rotating the blades by a predetermined rotation angle around the rotation axis.
  • the blade structure can change the position of the blade so that the drag of the blade is increased by the fluid force, and the rotational force can be improved.
  • the power generation system of the present invention has a rotating shaft extending in a direction perpendicular to the fluid force, a plurality of blades receiving the fluid force, and supports the blades and extends in the direction perpendicular to the fluid force.
  • a blade structure having a support member rotatable around a rotation axis, and a blade rotation mechanism for freely rotating a blade by a predetermined rotation angle around the rotation axis, and rotation of the blade structure transmitted via the rotation axis It was made to have a power generator which converts power into electric power.
  • the rotational force can be improved by changing the position of the blade so that the drag of the blade is increased by the flow force.
  • the present invention can realize a blade structure and a power generation system capable of improving rotational force by changing the position of a blade so that the drag of the blade is increased by a fluid force.
  • FIG. 1 shows the power generation system 1 as a whole, for example, power generation is performed by fluid power, which is fluid flow power such as water power or wind power using tidal power or river water.
  • fluid power which is fluid flow power such as water power or wind power using tidal power or river water.
  • the vane structure 2 is connected to the power generation device 4 so as to be rotatable in the lateral direction by causing the central rotation axis 3 to penetrate in the longitudinal direction in the central hole 21 provided in the central portion.
  • the power generation device 4 includes an energy conversion mechanism that converts the rotational force transmitted from the blade structure 2 via the central rotation shaft 3 into electric power.
  • the blade structure 2 has a so-called vertical propeller structure that rotates in response to a force in a direction substantially perpendicular to the flow of fluid so that the fluid flows in the lateral direction in the figure, and in the lateral direction Rotate. Within this lateral direction, the vane structure 2 is rotatable regardless of the flow direction of the fluid.
  • the power generation device 4 may have a function according to the characteristics of the fluid, such as a waterproof function.
  • FIG. 2 is a view of the blade structure 2 in FIG. 1 as viewed from above in the longitudinal direction.
  • the blade structure 2 has a cylindrical center support 25 at the center, and a center hole 21 is provided at the center thereof.
  • Eight blade rotating shafts 23 are concentrically provided on the outer side of the center support 25, and eight blades 22 (22 a to 22 g) can be rotated from the blade rotating shafts 23 toward the outside. Is provided.
  • the blades 22 are curved so as to receive more flow in one direction. There is no particular limitation on the degree of curvature.
  • disc-like upper and lower surfaces 26 and 27 are provided in the vertical up and down direction of the center support 25.
  • the blade structure 2 is provided with eight rod-like angle adjustment parts 24 concentrically along the outer edges of the upper and lower surfaces 26 and 27.
  • FIG. 4 shows a layout of the blade rotation shaft 23 and the angle adjustment unit 24.
  • the blade rotation shafts 23 are arranged on the outside of the center support 25 at substantially equal intervals.
  • the angle adjusting portions 24 are arranged at substantially equal intervals along the inside of the outer edge of the upper and lower surfaces 26 and 27 so as to alternate with the blade rotation shaft 23.
  • the blade rotation shaft 23 and the angle adjustment unit 24 are disposed at an interval of 45 degrees.
  • the angle adjustment unit 24 is disposed at a position shifted by approximately 22.5 degrees in the rotational direction with reference to the blade rotation shaft 23.
  • the blade 22 d can freely rotate the region surrounded by the two angle adjustment units 24. That is, the angle adjustment unit 24 limits the rotation angle of the blade 22 d to a predetermined rotation angle.
  • the conventional blade structure P2 will be described with reference to FIG.
  • the conventional blade structure P2 will be described with P attached to the beginning of the same reference numerals as in FIGS.
  • the angle of the blade P22 is fixed without rotating.
  • the direction in which the fluid flows is taken as the X direction, and the direction in which the fluid flows (eg, windward) is taken as the Y direction.
  • the blades P22a to P22d positioned on the left side in the drawing can receive the fluid force in the rotational direction.
  • the blades P22e to P22h positioned on the right side in the drawing receive a fluid force in a direction opposite to the rotation direction (hereinafter, referred to as a reverse rotation direction). If the blades P22a to P22g are flat (not shown), the fluid forces received by the left blades P22a to P22d and the right blades P22e to P22h are balanced and do not rotate.
  • the blades P22a to P22g are curved so as to easily receive the fluid force in one direction, the fluid force received in the rotational direction exceeds the fluid force received in the anti-rotation direction by the amount of curvature, and as a result, The conventional blade structure P2 is to be rotated.
  • the flow force received by each blade P22 is examined.
  • the blade P22 located at the most perpendicular angle to the rotation direction that is, the blade P22c (FIG. 6) can efficiently convert the flow force into the rotation force.
  • the blade P22b positioned in the X direction receives much of the flow force. Since the blade P22b is inclined with respect to the fluid force, the rotational force is reduced accordingly, and the efficiency is poor.
  • the blade structure 2 in the present embodiment can freely rotate by the rotation angle TZ in the adjustment area surrounded by the two angle adjustment units 24. That is, the blades 22a to 22h tend to be positioned in the Y direction as much as possible due to the influence of the fluid force.
  • the rotational force in the rotational direction can greatly exceed the rotational force in the counter-rotation direction, and the rotational force can be significantly improved as compared with the conventional case.
  • the blade structure 2 according to the present embodiment is provided with the blades 22 so as to be able to freely rotate in the adjustment region, thereby eliminating symmetry between left and right and a blade that can receive fluid power most efficiently.
  • the fluid can be concentrated to 22b, and the energy conversion efficiency when converting the fluid into a rotational force can be improved.
  • the blade structure 2 of the present invention indirectly supports the blades 22 through the plurality of blades 22 that receive fluid force of air, water, or the like, and the blade rotation shaft 23. It has upper and lower surfaces 26 and 27 rotatable about a central rotational axis 3 as an axis of rotation extending perpendicularly to the flow force, and the vanes 22 are free by a predetermined rotational angle TZ around the central rotational axis 3 I was able to rotate.
  • the blade structure 2 can change the positional relationship of the blades 22a to 22h without artificial power by always positioning the blades 22 in the Y direction in which the fluid flows by the fluid force. It is possible to improve the conversion efficiency of force to torque.
  • the blade structure 2 is attached to the upper and lower surfaces 26 and 27 and includes a blade rotation shaft 23 for rotating the blade 22 around the central rotation axis 3 and an angle adjustment unit 24 for adjusting the rotation angle TZ of the blade 22. It has a blade rotation mechanism. Thereby, the blade structure 2 can adjust the rotation angle TZ of the blade 22 with a simple configuration.
  • the angle adjustment unit 24 is a rod that inhibits the rotational movement of the blade 22, and an elastic material is used in at least a part of a portion in contact with the blade 22. Thereby, the impact applied to the blade 22 is reduced, and the durability of the blade 22 is improved. Moreover, it is not necessary to increase the weight of the blade 22.
  • the power generation system 1 of the present invention includes the central rotation shaft 3, the blade structure 2, and the power generation device 4 for converting the rotational force of the blade structure 2 transmitted through the central rotation shaft 3 into electric power.
  • the rotational power can be improved to significantly improve the energy conversion efficiency in a power generation system such as wind power or water power.
  • the blade structure 102 is different from the first embodiment in the arrangement of the blade rotation shaft 123 and the angle adjustment portion 124 and the configuration of the center support 125.
  • the same components as those of the first embodiment are denoted by 100.
  • the configuration of the power generation system 1 is the same as that of the first embodiment except for the configuration of the blade structure 102.
  • FIG. 7 and 8 show the configuration of the blade structure 102 according to the second embodiment.
  • the diameter of the center support 125 is smaller than that of the center support 25 of the first embodiment, and the adjustment ring 130 for adjusting the direction of the flow outside the center support 125 is provided. It is provided.
  • the blade rotation shafts 123 are arranged concentrically equally, but the diameter of the concentric circle is larger than that of the first embodiment, and the blade rotational shafts 123 are arranged near the angle adjustment unit 124.
  • the ratio of the distance from the center of the blade structure 102 to the blade rotation axis 123 and the distance from the center of the blade structure 102 to the angle adjustment unit 124 is about 1: 2.
  • the rotation angle TZ is about 90 degrees, which is larger than that of the first embodiment.
  • the angle adjustment unit 124 (FIG. 7) is disposed at a position deviated by about 15 degrees in the rotational direction from the blade rotation shaft 123. That is, in the rotation angle TZ, the blade 122 has a small degree of inclination to the rotation direction side and a large degree of inclination to the opposite rotation direction side. As a result, when the blade 122 falls in the rotational direction, the blade 122 stands up, and when the blade 122 falls in the opposite rotational direction, the blade 122 is in a lying state.
  • stand up refers to a state with a smaller inclination (that is, closer to 0 degree) with respect to a straight line passing through the center of the blade structure 102 and the blade rotation axis 123 which is the rotation center of the blade 122.
  • “To go to sleep” refers to a state of being more inclined to the straight line. The greater the difference in the degree of inclination, the greater the effect. Preferably, the difference is 5 degrees or more, more preferably 15 degrees or more.
  • the vanes 122 receive the fluid force in the forward direction in the rotational direction, but on the left side in the figure, they can protrude from the upper and lower surfaces 126 and 127 and receive a large fluid force.
  • the blades 122 On the right side in the drawing, which receives the rotation direction in the opposite direction, the blades 122 hardly protrude from the upper and lower surfaces 126 and 127, and receive a small influence of the flow force.
  • the blades 122 are rotatably attached by the rotation angle TZ, whereby the blades 122 are displaced by the flow force,
  • the energy of the fluid can be efficiently converted to the rotational force by the vanes 122 of the portion receiving the fluid in the rotational direction opening largely in the direction in which the fluid comes.
  • blade rotation axis 123 and angle adjustment unit 124 so that blade structure 102 has a small degree of inclination of blade 122 in the rotational direction and a large degree of inclination in the opposite rotational direction of rotation angle TZ. The position of is adjusted.
  • the blade structure 102 is configured such that the blade 122 stands up when receiving the flow force in the forward direction in the rotation direction, and lays the blade 122 when the flow force is received in the reverse direction in the rotation direction.
  • the angle can be changed.
  • the difference between the fluid forces received in the forward direction and the reverse direction can be increased, and the energy of the fluid can be efficiently converted into the rotational force.
  • the diameter of the concentric circle on which the blade rotation shaft 123 is disposed is large, and the distance from the center of the blade structure 102 to the blade rotation shaft 123 and the center of the blade structure 102 to the angle adjustment portion 124
  • the ratio to the distance is set to about 1: 2.
  • the rotation angle TZ can be set large, and the difference in the inclination degree to the rotation direction side and the counter rotation direction side of the blade 122 can be enlarged.
  • wing 22 described the case where a rectangular flat plate becomes a shape curved toward one direction.
  • the present invention is not limited to this, and may have, for example, a free curve shape, and is the most suitable shape according to various factors such as the type of fluid, the number and size of blades 22, and the size of fluid. It is possible to select as appropriate.
  • the present invention is not limited thereto. It can select suitably according to various factors, such as a position to attach a sheath, and a size of fluid power.
  • the rotation angle TZ it is preferable to set the rotation angle TZ to 60 to 120 degrees, and it is preferable to have 6 to 12 blades 22. More preferably, there are 8 to 10 sheets. According to the positional relationship with the blade rotation shaft 23, the rotation angle between the blades 22 can be set near 90 degrees. As described above, it is preferable that an optimal angle be selected as the rotation angle TZ according to the shape of the blade and the positional relationship between the blade rotation shaft 23 and the angle adjustment unit 24.
  • the angle adjustment unit 24 is disposed at a position shifted 15 degrees from the blade rotation axis 23 .
  • the present invention is not limited to this, and the angle of the blade 122 is such that the blade 122 stands up when receiving the flow force in the forward direction in the rotation direction, and lays the blade 122 when receiving the flow force in the reverse direction in the rotation direction. It is good if it can be changed.
  • the angle adjustment unit 24 is deviated from the blade rotation axis 23 by 0 degrees to less than 22.5 degrees.
  • the angle adjustment unit 24 is disposed at a position from the reference position to less than half the angle between the blade rotation axes 23 It is possible to obtain the same effect by
  • the adjustment ring 130 for adjusting the flow of fluid is provided.
  • the present invention is not limited to this, and the adjustment ring 130 is not necessarily required.
  • the shape of the adjustment ring 130 is not limited, and may be, for example, a polygonal shape.
  • the present invention is not limited to this, and the present invention does not necessarily have to be arranged concentrically.
  • they may be alternately arranged (zigzag shape), and are preferably arranged according to various factors such as the configuration of the blade structure 2 and the type and size of the fluid.
  • the present invention is not limited to this.
  • only one of the upper and lower surfaces 26 and 27 may support the blade 22.
  • a rod extended from the center support 25 having the center hole 21 supports the blade 22 via the blade rotation shaft 23, and the angle adjustment is performed in the rod shape
  • the part 24 may be provided.
  • the central support 25 can also support the vanes 22 directly by rotatably attaching the vanes 22 to the central support 25.
  • the angle adjustment unit 24 is formed in a cylindrical rod shape.
  • the present invention is not limited to this, as long as the rotation angle of the blade 22 can be limited.
  • the protrusion protruding from the upper and lower surfaces 27 may be used, and the shape and arrangement thereof are not limited.
  • the blade rotation shaft 23 is disposed along the periphery of the central support 25 having a diameter much larger than that of the central hole 21, ie, concentrically on a diameter substantially larger than the central hole 21. Described the case where The present invention is not limited to this, and the central support 25 may be made smaller, and the blade rotation shaft 23 may be disposed on a concentric circle slightly larger in diameter than the central hole 21.
  • the rotation angle TZ changes according to the position at which the blade rotation shaft 23 is arranged and the positional relationship at which the angle adjustment unit 24 is arranged, so that the blade rotation shaft 23 and the rotation shaft 23 It is preferable that the angle adjustment unit 24 be disposed.
  • the distance from the center of the central hole 21 to the blade rotation axis 23 and the distance from the center of the central hole 21 to the tip of the blade 22 are preferably 1:20 to 1: 2, more preferably Is 1: 8 to 1: 2.
  • the blade structure of the present invention includes the blade 22 as a blade, the upper and lower surfaces 26 and 27 as a support member, and the blade rotating shaft 23 and the angle adjusting unit 24 as a blade rotating mechanism.
  • the case where the wing structure 2 of the present invention is configured is described.
  • the present invention is not limited to this, and the blade structure of the present invention may be configured by blades having other various configurations, a support member, and a blade rotation mechanism.
  • the present invention is not limited to this, and the power generation system of the present invention may be configured by the central rotary shaft 3, the blade structure 2 and the power generation device having various other configurations.
  • the third embodiment shown in FIGS. 9 to 11 is different from the second embodiment in that the blade structure 102X has a configuration of the blade 190 and an air tank 150.
  • the same components as those in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the configuration of the power generation system 1 is the same as that of the first embodiment except that the configuration of the blade structure 102 is different. The same applies to the following embodiments.
  • the blade structure 102 ⁇ / b> X has eight blades 190.
  • the blade 190 is connected to the blade rotation shaft 123 in a rotatable state by the blade rotation shaft 123 penetrating through a rotation hole 199 formed in the vicinity of the end on the base side. ing.
  • the vanes 190 receive the fluid force in the rotational direction on the fluid receiving surface 194, and receive the fluid force in the reverse rotational direction on the reaction force receiving surface 193.
  • the tip end 191 of the blade 190 is formed in a thin plate shape, while the body portion 192 is formed thicker toward the center of rotation.
  • the angle between the reaction force receiving surface 193 and the tip end 191 is made gentler and the flow force in the opposite rotational direction is released as compared with the case where the thickness of the body portion 192 is uniform (shown by the center line CT). be able to.
  • the blade 190 can make the angle between the fluid receiving surface 194 and the tip end 191 steep and firmly receive the fluid force in the rotational direction.
  • reaction force receiving surface 193 is surface-treated so as to increase the flow resistance while the flow resistance is suppressed.
  • the flow is carried out by adding unevenness that simulates the skin of marine animals such as fish, dolphins and sharks, or applying water repellent or hydrophilic processing with paint. It is possible to reduce the power.
  • the flow is wind power, it is possible to add unevenness that simulates the flight of an animal such as a bird or an insect, or to suppress the flow by a special paint.
  • the flow force in the reverse rotation direction can be released as much as possible while largely receiving the flow force in the rotation direction, and the rotation force of the blade structure 102X can be further increased.
  • the above-described processing may be performed on either the reaction force receiving surface 193 or the fluid receiving surface 194.
  • the point is that if the surface condition of the reaction force receiving surface 193 and the fluid receiving surface 194 is processed so that the fluid resistance at the reaction receiving surface 193 becomes smaller than the fluid resistance at the fluid receiving surface 194, the rotational force is correspondingly Can be improved.
  • an air tank 150 is provided outside the central rotation shaft 103.
  • the air tank 150 can be made to generate almost no buoyancy in water as a whole of the blade structure 102X.
  • the volume and weight of the vane structure 102X determine the amount of gas contained, and the gas is sealed so as not to leak to the outside.
  • the blade 190 by making the blade 190 thick and thin at the tip end, it is possible to efficiently receive the fluid force and improve the rotational force. Further, by adjusting the buoyancy with the air tank 150, the position of the blade structure 102 in water can be stabilized. Furthermore, by providing a difference in surface state between the reaction force receiving surface 193 and the fluid receiving surface 194 in the blade 190 so that the resistance of the fluid in the fluid receiving surface 194 becomes larger than that of the reaction receiving surface 193, the blade 190 The rotational force can be further improved by providing a difference in the flow force received from the fluid between the rotational direction and the anti-rotational direction.
  • the fourth embodiment shown in FIGS. 12 to 13 is different from the third embodiment in that the blade structure 102Y has angle adjusting units 124a and 124b as an angle adjusting unit.
  • the same components as those in the third embodiment are indicated by the same reference numerals and the explanation will be omitted.
  • the blade structure 102 ⁇ / b> Y includes a pair of angle adjustment units 124 a and 124 b as an angle adjustment unit.
  • the angle adjustment unit 124a adjusts the angle of the blade 190 when receiving the fluid force in the reverse rotational direction
  • the angle adjustment unit 124b adjusts the angle of the blade 190 when receiving the fluid force in the rotational direction.
  • the angle adjustment units 124 a and 124 b are alternately arranged at equal intervals on the same circumference.
  • the rotation angle TZ of the blade 190 is approximately half compared to the third embodiment.
  • rising distance the distance in which the blade 190 moves from the angle adjustment units 124a to 124b by receiving the flow force in the rotational direction, and the flow force via the angle adjustment unit 124b.
  • the fluid flow in the rotational direction is made quick by shortening the rising distance until the blade 190 moves from the angle adjustment units 124 a to 124 b to a position where torque can be transmitted. Can be transmitted to the blade structure 102Y to improve the rotational force.
  • the vane structure 202 is different from that of the third embodiment in the number of the vanes 290 and the configuration of the vane rotation mechanism.
  • the same components as those in the third embodiment are designated by the same reference numerals, and the description will be omitted.
  • the blade structure 202 has twelve blades 290.
  • the vanes 290 have a tapered shape that tapers toward the end while the reaction force receiving surface 293 and the fluid receiving surface 294 curve gently to draw a circular arc.
  • the radius of curvature of 294 is smaller than that of the reaction force receiving surface 293.
  • the tip end 291 of the blade 290 is slightly curved in the direction opposite to the arc of the reaction force receiving surface 293 and the fluid receiving surface 294.
  • An arc-shaped arc curve 294 a centered on the blade rotation axis 123 is formed on the root side of the fluid receiving surface 294, and the arc curve 294 a is connected to the gentle curve of the reaction force receiving surface 293. .
  • the connection portion is provided with a step to form a protrusion 295 projecting toward the root side.
  • the angle adjustment unit 224 has a flat hexagonal shape, and is disposed near the root of the blade 290. When the blade 290 stands perpendicular to the circumferential direction, the projection 295 is caught by the angle adjustment portion 224, and the position is fixed. That is, the angle adjustment unit 224 and the protrusion 295 form a pair to form an angle adjustment unit.
  • the blade 290 can be largely rotated, and as a result, it abuts on the adjacent blade 290 (FIG. 14). As a result, when fluid is received in the opposite direction, the vanes 290 prevent the fluid from entering, thereby preventing the occurrence of turbulent flow and reducing the fluid resistance.
  • the rotation angle TZ is increased by providing the angle adjustment unit 224 on the base side of the blade 290.
  • the projection 295 is locked to the angle adjusting portion 224 to receive the fluid force, while when receiving the fluid force in the reverse rotation direction, the blade 295 continues contact with the adjacent blade 290.
  • the 290 can be rotated to bring the vanes 290 adjacent and in contact, reducing the effects of flow forces.
  • the sixth embodiment shown in FIG. 16 is different from the fifth embodiment in that the wing structure 202X has a connection ring 280 for connecting the angle adjustment unit 224.
  • the same components as those in the fifth embodiment are indicated by the same reference numerals and the explanation will be omitted.
  • connection ring 280 is formed in a circumferential shape connecting the angle adjustment portion 224, and connects the upper and lower surfaces 126 and 127.
  • the connection ring 280 may seal the inside thereof, but it is not necessary to seal the inner space, as it is not necessary to generate turbulent flow, and holes and gaps may be provided as appropriate.
  • connection ring 280 immediately inside the blade 290, it is possible to prevent the turbulent flow generated inside the blade 290 and to improve the rotational force.
  • the number of blades 290 of the blade structure 202Y is different from that of the sixth embodiment.
  • the same components as those in the sixth embodiment are indicated by the same reference numerals and the explanation will be omitted.
  • the blade structure 202 ⁇ / b> Y has sixteen blades 290.
  • the optimum number of turbine blades is 32.
  • the number of blades 290 is preferably selected according to various factors such as the size of the blade structure 202Y, the type and strength of the fluid, and the relationship with the size of the blade structure 202Y.
  • the shape of the vanes 290Z is different from that of the seventh embodiment.
  • the same components as those in the seventh embodiment are indicated by the same reference numerals and the explanation will be omitted.
  • the blade 290 ⁇ / b> Z has two protrusions 295 a and 295 b protruding toward the base.
  • the protrusion 295a is provided on the side of the reaction force receiving surface 293, and when the blade 290Z protrusion base side stands vertically to the circumferential direction, the protrusion 295a is caught by the angle adjusting portion 224, and the position is fixed.
  • the projecting part 295b is provided on the fluid receiving surface 294 side, and when the blade 290Z projection base side becomes close to parallel to the circumferential direction and becomes lying down, it catches on the angle adjusting part 224, The position is fixed.
  • the rotation angle TZ can be kept within a certain angle, and the flow distance can be quickly transmitted to the blade structure 202Z by shortening the rising distance.
  • the rotational force can be increased.
  • the blade structure 302 is different from that of the third embodiment in the number and configuration of the blades 390.
  • the same components as those in the third embodiment are indicated by the same reference numerals and the explanation will be omitted.
  • the blade structure 302 has six blades 390 and is arranged at equal intervals on the circumference.
  • the vanes 390 are rotatably installed near circumferential ends of the upper and lower surfaces 126 and 127.
  • the blade 390 has a body portion 392, a tip 391 that curves in the opposite direction of rotation, and a root 396 that curves in the direction of rotation, and the reaction force receiving surface 393 and the fluid receiving surface 394 are S-shaped Or reverse S-shaped curve is drawn.
  • the blade 390 has a radius of curvature smaller than that of the reaction force receiving surface 393 on the tip end side than the blade rotation axis 123, and on the base side of the blade rotation axis 123 than on the reaction force receiving surface 393
  • the radius of curvature of the fluid receiving surface 394 is large, and as a whole, has a point-symmetrical structure with the blade rotation axis 123 as a center point.
  • Blade 390 is formed longer at the base side toward the center as compared to blade 290 (FIG. 14), and the tip of base 396 (FIG. 21) is the outer wall of air tank 150 when receiving fluid force in the rotational direction. The position is fixed by abutting on the That is, the root 396 and the air tank 150 function as an angle adjustment unit. Since the vanes 390 have a large area, they can be converted into rotational force without losing flow in the rotational direction.
  • the blade 390 since the blade 390 has a very large rotation angle TZ and is separated from the adjacent blades 390, the blade 390 has the least resistance to the flow in the reverse rotation direction, that is, almost parallel to the circumferential direction. You can stay in bed.
  • the blade 390 is greatly extended inward and locked by the air tank 150, whereby the area of the blade 390 is increased and the flow force in the rotational direction is largely received. While being able to do it, it is possible to improve the degree of freedom with respect to the fluid force in the reverse rotation direction, to minimize the fluid force resistance, and to improve the rotational force of the blade structure 302.
  • the blade 390 ⁇ / b> X has the blade rotation shaft 123 positioned on the base side of the center, and the rotation shaft of the blade 390 ⁇ / b> X is eccentric.
  • the blade 390X can concentrate the fluid on one side to make it easy to rotate the blade 390X, and can quickly switch the reaction force receiving surface 393 and the fluid receiving surface 394 to increase the rotational force of the blade structure 302X. be able to.
  • the direction of eccentricity may be either on the center side or on the circumferential side.
  • the flow force received by the blade 390X can be biased on the base side and the tip side.
  • the blade 390X can be quickly rotated to increase the rotational force of the blade structure 302X.
  • the blade structure 402 does not have the upper and lower surfaces 126 and 127, and is partially recessed from the outer wall of the air tank 450 to make the base of the blade 490 as an angle adjusting portion.
  • the point of having a function is different from the third embodiment.
  • the same components as those in the third embodiment are indicated by the same reference numerals and the explanation will be omitted.
  • the outer wall 451 of the air tank 450 is formed thick, and a recess 452 is formed.
  • the recess 452 has a function of locking the blade 490 and adjusting its angle, as in the angle adjusting unit 224 (FIG. 14).
  • the recess 452 is formed in an arc shape and has a locking portion 452 a protruding from the arc shape at the end on the fluid receiving surface 494 side.
  • the blade 490 is largely curved from the vicinity of the blade rotation shaft 123 to the fluid receiving surface 494 side from the vicinity of the blade rotation shaft 123 and receives the fluid force in the rotational direction.
  • the position is fixed by being locked by the locking portion 452 a formed in the recess 452.
  • wing structure 402 does not have upper and lower surfaces 126 and 127, and as shown in FIGS. 25 and 26 showing a partial cross section of recess 452, upper and lower surface portions 451x extended in the vertical direction from outer wall 451.
  • the blade rotation shaft 123 is connected to the outer wall 451 by having the shaft extension part 123 x fixed to the outer wall 451 or extended to the outer wall 451. That is, in the blade structure 402, the air tank 450 plays a role of a support member for supporting the blade 490.
  • the angle adjustment mechanism is configured by the recess 452 formed in the outer wall 451 of the air tank 450 and the base portion 496 of the blade 490.
  • the shape of the outer wall 451X is different from that of the eleventh embodiment.
  • the same components as those in the eleventh embodiment are indicated by the same reference numerals and the explanation will be omitted.
  • a protrusion 451Xa which is a protrusion in the vicinity of the locking portion 452a in the outer wall 451X, and a recess 452X are formed in a substantially linear shape.
  • the outer wall 451X as a whole has a substantially hexagonal shape, and the protruding portion 451Xa is formed at the corner portion, and the locking portion 452a is formed on the rotational direction side of the protruding portion 451Xa.
  • the outer wall 451 of the air tank 450 reduces the flow resistance in the reverse rotation direction by utilizing the shape of each side of the polygon, or in the rotation direction. Fluid force can be received, and the rotational force of the blade structure 402X can be increased.
  • the shape of each side of the outer wall 451 is not particularly limited, and various shapes can be used. Of course, depending on the number of blades 490, polygonal shapes other than hexagonal can also be used.
  • the wing structure 502 is different from the second embodiment in the shape of the wing 590, the arrangement of the angle adjusting portion 124, and the absence of the central support 125. ing.
  • the same components as those in the second embodiment are indicated by the same reference numerals and the explanation will be omitted.
  • the blade 590 is substantially flat except that the vicinity of the blade rotation shaft 123 is slightly expanded, and the long portion 592 x and the long portion 592 x are shorter around the blade rotation shaft 123. And a short portion 592y.
  • the blade rotation shaft 123 is disposed in the vicinity of the circumference of the upper and lower surfaces 126 and 127, and rotatably fixes the blade 590.
  • the blade rotation shaft 123 is positioned at a position deviated from the center, and a root portion 596 which is an end of the long portion 592x is locked to the angle adjustment unit 124 against the flow force in the rotation direction. And fix its position.
  • the blade 590 can be rotated without bringing the tip 591 which is the end of the short portion 592 y into contact with the angle adjustment unit 124. For this reason, the blade 590 directs the tip 591 to the upstream side of the flow of fluid so as to reduce the fluid resistance against the flow force in the reverse rotational direction.
  • the blade 590 has two tipped projections 591x whose tips 591 are rounded. It is preferable that the front protrusion 591x be formed in a shape corresponding to the fluid, and have a shape in which the fluid resistance is minimized. Of course, the number of the front protrusions 591x is not limited, and may be only one.
  • the blade 590 has a shape close to a flat plate, and the angle adjustment unit 124 is disposed on the base side, and only one end of the blade 590 is used in the angle adjustment unit 124.
  • the blade rotation shaft 123 is eccentrically arranged to abut. Thereby, the blade structure 502 can minimize the fluid resistance to the blade 590 with respect to the flow force in the reverse rotation direction, and can increase the rotational force.
  • the wing structure 602 has a point that the outer wall 651 has a triangular shape and has a reaction force hood 570 in a region to which the fluid force in the reverse rotational direction is applied. Is different from the eleventh embodiment. In the fourteenth embodiment, the same components as those in the eleventh embodiment are indicated by the same reference numerals and the explanation will be omitted.
  • the blade 690 is substantially flat and the tip 691 is slightly tapered.
  • a recess 652 is formed in the outer wall 651 of the air tank 650, and a locking portion 652a is formed on the reaction force receiving surface 693 side.
  • a gentle slope 652 b is formed on the fluid receiving surface 694 side in the recess 652, and the blade 690 can lie on the outer wall 651 along this slope.
  • the outer wall 651 has a generally triangular shape in which each side slightly swells as a whole, and each side plays a role of receiving fluid force.
  • Three wings 690 are disposed on each side.
  • the number of blades 690 arranged per side and the shape of each side are not limited, and can be appropriately changed according to the type and strength of the fluid.
  • the blade structure 602 has a reaction force hood 570 connecting the upper and lower surfaces 126 and 127 on the outermost side of a region (hereinafter referred to as a reaction force region, referred to as a left half in the drawing) to which a fluid force is applied in the reverse rotational direction. is set up.
  • the reaction force hood 570 may be formed in a semicircular shape, for example, over the entire reaction force area, or may be partially formed, for example, in the reaction force area.
  • the reaction force hood 570 is preferably formed to be half or more, more preferably 2/3 or more, of the reaction force area. Thereby, in the reaction force region, it is possible to minimize the force in the reverse rotation direction applied to the rotating body (the blades 690, the air tank 650, and the central rotation shaft 103).
  • the blade structure 602 is installed, for example, in a place where the flow direction is fixed, such as a river or a ditch.
  • the outer wall 651 has a polygonal shape, and the plurality of blades 690 are disposed on one side. Thereby, in the blade structure 602, regardless of the number of blades 690, the shape of the outer wall 651 can be optimized, and the rotational force can be increased.
  • the blade structure 602 the upper and lower surfaces 126 and 127 and the blade rotation shaft 123 are not connected, and only the rotating body is rotated, and the reaction force hood 570 is provided in the reaction force region. Thereby, the blade structure 602 can minimize the force in the reverse rotation direction applied to the rotating body, and can increase the rotational force.
  • the vane structure supports the plurality of vanes receiving the fluid force which is the force of the fluid, and the vanes, and around the rotation axis (vane rotation shaft 123) extending in the direction perpendicular to the fluid force.
  • Support members upper and lower surfaces 126 and 127, or air tanks 450 and 650
  • a blade rotation mechanism for freely rotating the blades by a predetermined rotation angle around the rotation axis.
  • the blade structure can increase the rotational force because the angle of the reaction force receiving surface receiving the flow force in the rotational direction and the reaction force receiving surface receiving the flow force in the opposite rotational direction can be made different. .
  • the blade rotation mechanism has a blade rotation shaft attached to the support member and configured to rotate the blade about the rotation axis, and an angle adjustment unit configured to adjust the rotation angle of the blade, and a part of the blade is brought into contact with the angle adjustment unit. Adjust the rotation angle of the blade.
  • the angle adjustment unit is a rod or a protrusion that suppresses the rotational movement of the blade, and an elastic material is used in at least a part of a portion in contact with the blade. As a result, it is possible to reduce the noise generated when the blade and the angle adjustment portion abut, and to prevent the damage of the abutted portion.
  • the angle adjustment unit adjusts the rotation angle of the blade so that the inclination degree of the blade in the rotation direction of the blade structure is smaller than the inclination degree of the blade in the opposite rotation direction opposite to the rotation direction.
  • the angle adjustment unit adjusts the rotation angle by locking the vicinity of the base end of the blade.
  • the angle adjustment unit can set the rotation angle of the blade to a large value, and abuts the base side of the blade having a small speed, thereby reducing the impact when the blade abuts.
  • the blades adjust the rotation angle by abutting on the adjacent blades. In this way, in the reaction force region in which the flow in the reverse rotational direction is applied, the gap generated between the blades can be reduced, and the turbulent flow generated by the blades can be reduced.
  • the angle adjustment unit is a protrusion provided on the outside of the ring (connection ring 280). Thereby, the strength of the angle adjusting unit can be increased as compared to the case where the angle adjusting unit is provided alone.
  • the blade has, as a part of the angle adjustment portion, a protrusion that abuts on the angle adjustment portion near the end on the base side. Thereby, the blade can lock the blade at a free angle regardless of the shape of the main body portion of the blade, and the degree of freedom in design can be improved.
  • the blade can freely adjust the rotation angle by having two protrusions.
  • the blade rotation axis is disposed at a position offset from the center of the blade. As a result, the blades can accelerate the rotation when receiving a fluid force, and can quickly switch the surfaces receiving the fluid force (a fluid force receiving surface and a reaction force receiving surface) to improve the rotational force.
  • the blade structure has a ring (an outer wall 451, 451X, and 651) on which an angle adjustment portion is formed on the center side of the blade, and the ring is selected in shape so as to rotate by receiving a fluid force. .
  • the blade structure can increase the rotational force also by the flow force on the ring in addition to the blade.
  • the vane structure has an air tank which is used in water and which is gas filled in a sealed manner.
  • the wing structure can adjust the specific gravity of the wing structure so that the buoyancy and gravity in water are hardly exerted, and the attitude in water can be stabilized.
  • the flow receiving surface receiving the flow in the rotational direction is subjected to surface processing to increase the fluid resistance. Thereby, the force received in the rotational direction can be increased.
  • a surface treatment for reducing the fluid resistance is applied to the reaction force receiving surface which receives the fluid force in the reverse rotation direction opposite to the rotation direction. Thereby, the force received in the reverse rotation direction can be reduced.
  • the present invention is not limited to the first to fourteenth embodiments, and the number and shape of each part, such as blades, support members, angle adjustment units, rotary shafts, air tanks, upper and lower surfaces, etc. may be combined appropriately and changed. It is possible. The point is that it is important to receive a large amount of flow in the rotational direction and to receive a small amount of flow in the opposite direction and to control the flow of the fluid, which is optimal depending on the type, directionality, and strength of the fluid. It is preferable to combine parts.
  • the present invention can be applied to, for example, power generation systems used for wind power, water power, and tidal power generation.
  • Power generation system 2 Blade structure 3: Center rotation shaft 4: Power generation device 21: Center holes 22, 122, 190, 290, 390, 490, 590, 690: Blades 23, 123: Blade rotation shaft 24, 124: Angle adjustment unit 25: center support 26: upper and lower surfaces 27: upper and lower surfaces 102, 102X, 102Y, 202, 202X, 202Y, 202Z: blade structure 103: central rotation shaft 123: blade rotation shaft 126, 127: upper and lower surfaces 130 : Adjustment ring 150: Air tank 193: Reaction force receiving surface 194: Fluid force receiving surface 295, 295 a, 295 b: Protruding part TZ: Rotation angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

 本発明の羽根構造体2は、流体の力である流力を受ける複数の羽根22と、羽根22を支持すると共に、流力に対して垂直方向に延びる回転軸周りに回転可能な支持部材と、回転軸周りに所定の回転角度TZだけ、羽根22を自由回転させる羽根回転機構とを有するようにした。これにより、流力を使って羽根を流力の方向へ傾斜させ、羽根の対称性を崩すことができ、羽根に発生する抗力を大きくできるため、羽根構造体2としての回転力を向上させ得る。

Description

羽根構造体及び発電システム
 本発明は、例えば水力、風力などによって回転可能な羽根構造体及び当該羽根構造体を用いた発電装置に関するものである。
 従来より、風力発電用の風車として、回転軸が垂直方向に延びる垂直軸風車や、回転軸が水平方向に延びる水平軸風車が知られている。また、垂直軸風車には、羽根に発生する抗力が風車の回転力となる抗力型(例えば、特許文献1参照) 、羽根に発生する揚力が風車の回転力となる揚力型が含まれる。サポニウス型風車や自転羽根式風車などの抗力型の風車は、構造が簡単で、発電装置部分などの機械部分が低位置にあるため点検や修理がしやすく、低風速から始動可能であるなどの特性を持つ。
 しかしながら、このような抗力型の風車では、風向に対して風車の回転軸を挟んだ一側では、羽根に発生する抗力によって回転力が生じるが、上記回転軸を挟んだ他側では、羽根に発生する抗力が回転力にならない上に、風車の回転力を減少させる力が働いてしまうことになり、このような抗力型の風車を備えた発電システムは、風力エネルギのエネルギ変換効率が悪い。
 そこで、特許文献1の風車では、羽根に向かって進行する風を増速させる増速部設けて、風力エネルギのエネルギ変換効率の向上を図っている。これは、上記増速部によって、羽根に発生する抗力を大きくし、通常よりも大きな回転力を得ようとしている。
特開平2001-211569号公報
 昨今では、自然エネルギを一段と活用する必要性が生じていることから、上述した抗力型の風車や水車よりも、さらに回転力を増大させたいという要望があった。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、回転力を増大させ得る羽根構造体及び発電システムを提供するものである。
 かかる課題を解決するため、本発明の羽根構造体は、流体の力である流力を受ける複数の羽根と、羽根を支持すると共に、流力に対して垂直方向に延びる回転軸周りに回転可能な支持部材と、回転軸周りに所定の回転角度だけ、羽根を自由回転させる羽根回転機構とを有するようにした。
 これにより、羽根構造体は、流力によって、羽根の抗力が大きくなるように羽根の位置を変化させることができ、回転力を向上させ得る。
 また、本発明の発電システムは、流体の力である流力に対して垂直方向に延びる回転軸と、流力を受ける複数の羽根と、羽根を支持すると共に流力に対して垂直方向に延びる回転軸周りに回転可能な支持部材と、回転軸周りに所定の回転角度だけ、羽根を自由回転させる羽根回転機構とを有する羽根構造体と、回転軸を介して伝達される羽根構造体の回転力を電力に変換する発電装置とを有するようにした。
 これにより、発電システムでは、流力によって、羽根の抗力が大きくなるように羽根の位置を変化させて回転力を向上させ得る。
 本発明は、流力によって、羽根の抗力が大きくなるように羽根の位置を変化させて回転力を向上させ得る羽根構造体及び発電システムを実現できる。
第1の実施の形態における発電システムの構成を示す略線図である。 第1の実施の形態における羽根構造体の構成(1)を示す略線図である。 第1の実施の形態における羽根構造体の構成(2)を示す略線図である。 第1の実施の形態における羽根構造体の構成(3)を示す略線図である。 従来の羽根構造体の回転の説明に供する略線図である。 第1の実施の形態における羽根構造体の回転の説明に供する略線図である。 第2の実施の形態における羽根構造体の構成を示す略線図である。 第2の実施の形態における羽根構造体の回転の説明に供する略線図である。 第3の実施の形態における羽根構造体の構成を示す略線図である。 第3の実施の形態における羽根の構成(1)を示す略線図である。 第3の実施の形態における羽根の構成(2)を示す略線図である。 第4の実施の形態における羽根構造体の構成を示す略線図である。 第4の実施の形態における羽根の回転の説明に供する略線図である。 第5の実施の形態における羽根構造体の構成を示す略線図である。 第5の実施の形態における羽根の回転の説明に供する略線図である。 第6の実施の形態における羽根構造体の構成を示す略線図である。 第7の実施の形態における羽根構造体の構成を示す略線図である。 第8の実施の形態における羽根構造体の構成を示す略線図である。 第8の実施の形態における羽根の回転の説明に供する略線図である。 第9の実施の形態における羽根構造体の構成を示す略線図である。 第9の実施の形態における羽根の回転の説明に供する略線図である。 第10の実施の形態における羽根構造体の構成を示す略線図である。 第11の実施の形態における羽根構造体の構成を示す略線図である。 第11の実施の形態における羽根の回転の説明に供する略線図である。 第11の実施の形態における羽根の配置(1)の説明に供する略線図である。 第11の実施の形態における羽根の配置(2)の説明に供する略線図である。 第12の実施の形態における羽根構造体の構成を示す略線図である。 第13の実施の形態における羽根構造体の構成を示す略線図である。 第13の実施の形態における羽根の構成を示す略線図である。 第14の実施の形態における羽根構造体の構成を示す略線図である。
 次に本発明を実施するための形態について図面を参照して説明する。
<第1の実施の形態>
[1-1.発電システムの構成]
 図1は全体として発電システム1を示しており、例えば潮力や河川の水などを利用した水力や風力など、流体の流れる力である流力で発電を行うようになされている。
 羽根構造体2は、中心部分に設けられた中心孔21に、縦方向に中心回転軸3を貫通させることにより、横方向に回転可能な状態で、発電装置4と接続されている。発電装置4は、羽根構造体2から中心回転軸3を介して伝達される回転力を電力に変換するエネルギ変換機構を備えている。
 羽根構造体2は、流体の流れに対してほぼ垂直方向に力を受けて回転する、いわゆる垂直型のプロペラ構造を有しており、図中の横方向に流体が流れ、当該横方向内で回転する。この横方向内において、羽根構造体2は、流体の流れ方向に関係なく回転可能である。なお、発電装置4は、例えば防水機能などのように、流体の特性に応じた機能を有していても良い。
[1-2.羽根構造体の構成]
 図2は、図1における羽根構造体2を縦方向の上から見た図である。羽根構造体2は、円柱状の中心支持体25を中心に有しており、その中央には中心孔21が設けられている。中心支持体25の外側には、8つの羽根回転軸23が同心円上に設けられており、各羽根回転軸23から外側に向けて、回転可能な状態で8枚の羽根22(22a~22g)が設けられている。
 この羽根22は、一方向へより多くの流力を受けられるように、湾曲している。この湾曲度合いについて、特に制限はない。
 図3に示すように、中心支持体25の縦上下方向には、円盤状の上下面26及び27が設けられている。羽根構造体2は、上下面26及び27の外縁に沿った同心円上に、棒状の角度調整部24が8つ設けられている。
 図4に、羽根回転軸23及び角度調整部24の配置図を示している。羽根回転軸23は、中心支持体25の外側にほぼ均等間隔で配置されている。角度調整部24は、羽根回転軸23と互い違いになるように、上下面26及び27の外縁内側に沿って、ほぼ均等間隔で配置されている。
 すなわち、羽根回転軸23及び角度調整部24は、45度置きに配置されている。また、角度調整部24は、羽根回転軸23を基準に、回転方向へ向けてほぼ22.5度だけずれた位置に配置されている。
 この結果、図2に示したように、例えば羽根22dは、2つの角度調整部24に囲まれた領域を自由に回転することが可能である。すなわち、角度調整部24は、羽根22dの回転角度を所定の回転角度に制限している。なお、角度調整部24は、流力によって羽根22と衝突したときの衝撃を小さくするため、羽根22と当接する部分の少なくとも一部に、弾性材を使用することが好ましい。
 ここで、従来の羽根構造体P2について、図5を用いて説明する。以下、従来の羽根構造体P2に関しては、図1~4と同一の符号の先頭にPを附して説明する。羽根構造体P2において、羽根P22は、回転することなく、その角度が固定されている。
 流体の流れてくる方向(例えば風上)をX方向、流れゆく方向(例えば風下)をY方向とする。このとき、図中左側に位置する羽根P22a~P22dは、回転方向に流力を受けることができる。
 一方、図中右側に位置する羽根P22e~P22hは、回転方向とは逆方向(以下、これを反回転方向と呼ぶ)に流力を受けることになる。仮に、羽根P22a~P22gが平板だった場合(図示せず)、左側の羽根P22a~P22dと右側の羽根P22e~P22hとが受ける流力は釣り合い、回転することはない。
 しかしながら、羽根P22a~P22gは一方向への流力を受けやすいように湾曲しているため、湾曲している分だけ回転方向に受ける流力が反回転方向に受ける流力を上回り、この結果、従来の羽根構造体P2が回転することになる。
 次に、各羽根P22が受ける流力について検討する。物理的法則によると、回転方向に対して最も垂直の角度で位置する羽根P22、すなわち羽根P22c(図6)が、効率よく流力を回転力へと変換できる。
 ところが、位置関係により、X方向に位置する羽根P22bが流力の多くを受けることになる。羽根P22bは、流力に対して傾斜しているため、その分回転力が小さくなり、効率が悪い。
 本実施の形態における羽根構造体2は、上述したように、2つの角度調整部24に囲まれた調整領域において回転角度TZだけ自由に回転することが可能である。すなわち、羽根22a~22hは、流力の影響により、なるべくY方向へ位置しようとする。
 この結果、最もX方向に位置する羽根22aと、2番目に位置する羽根22bとの間は開口し、流力の殆どが流力に対して最も垂直な角度で位置する羽根22bに集中し、当該はね22bが流力を非常に効率よく回転力へと変換することが可能となる。
 一方、右側に位置する羽根22e~22hは、従来の羽根構造体P2と同様、最も垂直でない羽根22hに流力が集中するため、反回転方向への回転力が小さくなる。このため、本発明の羽根構造体2は、回転方向への回転力が反回転方向への回転力を大きく上回ることができ、従来と比して回転力を著しく向上させ得る。
 このように、本実施の形態における羽根構造体2は、調整領域内を自由に回転できるように羽根22を設けたことにより、左右の対称性を無くし、最も効率よく流力を受けられ得る羽根22bに対して流力を集中させ、流力を回転力へ変換させるときのエネルギ変換効率を向上し得る。
 以上の構成によれば、本発明の羽根構造体2は、空気や水などの流体の流力を受ける複数の羽根22と、羽根回転軸23を介して羽根22を間接的に支持すると共に、流力に対して垂直方向に延びる回転軸としての中心回転軸3周りに回転可能な上下面26及び27とを有し、羽根22が、中心回転軸3周りに所定の回転角度TZだけ、自由回転できるようにした。
 これにより、羽根構造体2は、流力によって常に羽根22を流力の流れていくY方向へ位置させることにより、羽根22a~22hの位置関係を人工的な動力なく変化させることができ、流力の回転力への変換効率を向上し得る。
 また、羽根構造体2は、上下面26及び27に取り付けられ、羽根22を中心回転軸3周りに回転させる羽根回転軸23と、羽根22の回転角度TZを調整する角度調整部24とからなる羽根回転機構を有している。これにより、羽根構造体2は、簡易な構成で羽根22の回転角度TZを調整できる。
 角度調整部24は、羽根22の回転動作を抑止する棒であり、羽根22と当接する箇所の少なくとも一部分に、弾性材が用いられている。これにより、羽根22に加わる衝撃を減少させ、羽根22の耐久性を向上させる。また、羽根22の重量を増大させずに済む。
 本発明の発電システム1は、中心回転軸3と、羽根構造体2と、中心回転軸3を介して伝達される羽根構造体2の回転力を電力に変換する発電装置4とを有することにより、回転力を向上させて風力や水力などの発電システムにおけるエネルギ変換効率を著しく向上させることができる。
<第2の実施の形態>
[2-1.羽根構造体の構成]
 図7~8に示した第2の実施の形態において、羽根構造体102は、羽根回転軸123及び角度調整部124の配置と、中心支持体125の構成が第1の実施の形態と異なっている。なお、第2の実施の形態では、第1の実施の形態と同一構成の箇所に、100を附して示している。羽根構造体102の構成が相違するだけで、発電システム1としての構成は第1の実施の形態と同様である。
 図7及び図8に、第2の実施の形態における羽根構造体102の構成を示している。羽根構造体102は、中心支持体125の径が第1の実施の形態の中心支持体25と比して小さく、中心支持体125の外側に流力の方向を調整するための調整リング130が設けられている。
 羽根回転軸123は、同心円上に均等に配置されているが、第1の実施の形態よりも同心円の直径が大きく、角度調整部124に近い位置に配置されている。なお、羽根構造体102の中心から羽根回転軸123までの距離と、羽根構造体102の中心から角度調整部124までの距離との比率は、約1:2である。この結果、本実施の形態において、回転角度TZは約90度と、第1の実施の形態と比して大きくなっている。
 また、角度調整部124(図7)は、羽根回転軸123から、回転方向に向かって約15度ずれた位置に配置されている。すなわち、羽根122は、回転角度TZのうち、回転方向側への傾斜度合いが小さく、反回転方向側への傾斜度合いが大きくなる。この結果、回転方向側に羽根122が倒れたときには羽根122が立ち、反回転方向側に羽根122が倒れたときには寝た状態になる。なお、ここで「立つ」とは、羽根構造体102の中心と羽根122の回転中心となる羽根回転軸123を通る直線に対し、より傾斜の小さい状態(すなわち0度に近い)を言い、「寝る」とは当該直線に対してより大きく傾斜する状態を言う。この傾斜度合いの差異が大きい方が、より効果が大きくなる。好ましくは差異が5度以上、より好ましくは15度以上である。
 このため、図8に示したように、羽根122は、流力を回転方向に順方向で受ける図中左側において、上下面126及び127からはみ出て流力を大きく受けられるのに対し、流力を回転方向に逆方向で受ける図中右側において、羽根122が上下面126及び127からほとんどはみ出ず、流力の影響を小さく受けることになる。
 すなわち、第2の実施の形態における羽根構造体102では、第1の実施の形態と同様、羽根122が回転角度TZだけ回転可能に取り付けられていることにより、羽根122が流力によって変位し、回転方向に流力を受ける部分の羽根122が、流力がくる方向に大きく開口することにより、流力のエネルギを効率よく回転力へ変換することができる。
 さらに、羽根構造体102は、回転角度TZのうち、羽根122の回転方向側への傾斜度合いが小さく、反回転方向側への傾斜度合いが大きくなるように、羽根回転軸123と角度調整部124の位置を調整している。
 これにより、羽根構造体102は、流力を回転方向に順方向で受ける際には羽根122が立ち、流力を回転方向に逆方向で受ける際には羽根122を寝かせるように、羽根122の角度を変化させることができる。この結果、順方向と逆方向に受ける流力の差異を大きくすることができ、流力のエネルギを効率よく回転力へ変換することができる。
 また、羽根構造体102は、羽根回転軸123が配置された同心円の直径が大きく、羽根構造体102の中心から羽根回転軸123までの距離と、羽根構造体102の中心から角度調整部124までの距離との比率は、約1:2に設定されている。これにより、回転角度TZを大きく設定でき、羽根122の回転方向側及び反回転方向側への傾斜度合いの差異を大きくすることができる。
<他の実施の形態>
 なお上述した第1の実施の形態において、羽根22は、矩形の平板が一方向へ向けて湾曲した形状でなる場合について述べた。本発明はこれに限らず、例えば自由曲線形状を有していても良く、流力の種類や羽根22の枚数や大きさ、流力の大きさなど種々の要因に応じて、最も適した形状を適宜選択することが可能である。
 また、上述した第1の実施の形態において、羽根構造体2は、羽根22を8枚有するようにした場合について述べたが、本発明はこれに限らず、流力の種類や羽根22の大きさや取り付ける位置、流力の大きさなど種々の要因に応じて適宜選択することができる。なお、流力を効率よく受けるという本発明の効果を最も良く引き出すためには、回転角度TZを30~120度に設定することが好ましく、羽根22を6~12枚有することが好ましい。さらに好ましくは、8~10枚である。
 一方、第2の実施の形態においては、回転角度TZを60~120度に設定することが好ましく、羽根22を6~12枚有することが好ましい。さらに好ましくは、8~10枚である。羽根回転軸23との位置関係により、羽根22間の回転角度を90度近傍に設定することができる。このように、回転角度TZは、羽根の形状や羽根回転軸23と角度調整部24の位置関係に応じて、最適な角度が選択されることが好ましい。
 さらに、上述した第2の実施の形態においては、角度調整部24が羽根回転軸23から15度ずれた位置に配置されるようにした場合について述べた。本発明はこれに限らず、流力を回転方向に順方向で受ける際には羽根122が立ち、流力を回転方向に逆方向で受ける際には羽根122を寝かせるように、羽根122の角度を変化させられればよい。例えば、第2の実施の形態の場合、角度調整部24が羽根回転軸23から0度~22.5度未満だけずれていれば、同様の効果を得ることが可能である。言い換えると、羽根回転軸23と中心を通る同一線上にある位置を基準位置としたとき、角度調整部24を、当該基準位置から羽根回転軸23間の角度の半分未満までの位置に配置させることにより、同様の効果を得ることが可能である。
 さらに、上述した第2の実施の形態においては、流力の流れを調整する調整リング130を有するようにした場合について述べた。本発明はこれに限らず、必ずしも調整リング130は必要ではない。また、調整リング130の形状に制限はなく、例えば多角形状でも良い。
 さらに、上述した第1の実施の形態において、羽根回転軸23と角度調整部24とが同心円上に配置されるようにした場合につて述べた。本発明はこれに限らず、必ずしも同心円上に配置される必要はない。例えば一つ置きに互い違い(ジグザグ状)に配置されてもよく、羽根構造体2の構成や流体の種類及び大きさなど、種々の要因に応じて配置されることが好ましい。
 さらに、上述した第1の実施の形態において、上下面26及び27が羽根回転軸23を介して羽根22を支持するようにした場合について述べた。本発明はこれに限らず、例えば上下面26及び27の一方だけが羽根22を支持しても良い。また、上下面26及び27がなくても、例えば、中心孔21を有する中心支持体25から延接された棒が羽根回転軸23を介して羽根22を支持するようにし、当該棒状に角度調整部24が設けられても良い。さらに、中心支持体25に羽根22が回転可能に取り付けられることにより、中心支持体25が直接的に羽根22を支持することもできる。
 さらに、上述した第1の実施の形態において、角度調整部24は、円柱の棒状でなるようにした場合について述べた。本発明はこれに限らず、要は、羽根22の回転角度を制限できればよく、例えば上下面27から突出する突起であっても良く、その形状や配置に制限はない。
 さらに上述した第1の実施の形態においては、中心孔21よりかなり大きい直径を有する中心支持体25の周りに沿って、すなわち中心孔21よりかなり大きな直径の同心円上に羽根回転軸23が配置されるようにした場合について述べた。本発明はこれに限らず、中心支持体25を小さくし、中心孔21より僅かに大きな直径の同心円上に羽根回転軸23が配置されても良い。羽根回転軸23が配置される位置と、角度調整部24が配置される位置関係によって、回転角度TZは変化するため、流体や羽根22の形状に応じた最も適切な位置に羽根回転軸23及び角度調整部24が配置されることが好ましい。なお、中心孔21の中心から羽根回転軸23までの距離と、中心孔21の中心から羽根22の先端までの距離は、1:20~1:2までの間であることが好ましく、より好ましくは1:8~1:2である。
 さらに上述した実施の形態においては、羽根としての羽根22と、支持部材としての上下面26及び27と、羽根回転機構としての羽根回転軸23及び角度調整部24とによって本発明の羽根構造体としての羽根構造体2を構成するようにした場合について述べた。本発明はこれに限らず、その他種々の構成でなる羽根と、支持部材と、羽根回転機構とによって本発明の羽根構造体を構成するようにしても良い。
 さらに上述した実施の形態においては、回転軸としての中心回転軸3と、羽根構造体としての羽根構造体2と、発電装置としての発電装置4を構成するようにした場合について述べた。本発明はこれに限らず、その他種々の構成による中心回転軸3と、羽根構造体2と、発電装置とによって本発明の発電システムを構成するようにしても良い。
<第3の実施の形態>
 図9~11に示した第3の実施の形態において、羽根構造体102Xは、羽根190の構成、エアタンク150を有する点が第2の実施の形態と異なっている。なお、第3の実施の形態では、第2の実施の形態と同一構成の箇所に同一符号を附し、説明を省略する。なお、羽根構造体102の構成が相違するだけで、発電システム1としての構成は第1の実施の形態と同様である。以下の実施の形態についても同様である。
 図9に示すように、羽根構造体102Xは、羽根190を8枚有している。図10及び11に示すように、羽根190は、根本側の端部近傍に形成された回転孔199に羽根回転軸123が貫通されることにより、回転自在な状態で羽根回転軸123に接続している。
 羽根190は、流力受面194で回転方向への流力を受け、反力受面193で反回転方向への流力を受けることになる。羽根190は、先端191は薄い板状に形成されているのに対し、ボディ部192では、回転中心へ行くに従って厚く形成されている。羽根190では、ボディ部192の厚みが一律な場合(中心線CTで示す)と比較して、反力受面193と先端191との成す角度を緩やかにして反回転方向への流力を逃がすことができる。一方、羽根190は、流力受面194と先端191との成す角度を急峻にし、回転方向への流力をしっかりと受け止めることができる。
 また、反力受面193は、流力の抵抗を抑える一方、流力受面194は、流力の抵抗が増すよう、表面加工が施されている。
 流力の抵抗を抑える加工としては、例えば流力が水力である場合、魚やイルカ、サメなどの海洋動物の皮を模した凹凸を付けたり、塗料によって撥水又は親水加工を施すことで、流力を抑えることが可能である。また、流力が風力である場合、鳥や昆虫などの飛翔動物の羽根などを模した凹凸を付けたり、特殊な塗料によって流力を抑えることが可能である。
 流力の抵抗を増大させる加工としては、表面をできるだけ平滑にしたり、乱流を生じさせるような凹凸を付けるたり、特殊な塗料を塗布することにより、流力を増大させることが可能である。
 これにより、羽根190では、回転方向への流力を大きく受けながら、反回転方向への流力を極力逃がすことができ、羽根構造体102Xの回転力をより増大させることができる。
 なお、反力受面193及び流力受面194のいずれかにおいて上述した加工が行われても良い。要は、反力受面193における流体抵抗が流力受面194における流体抵抗よりも小さくなるように反力受面193及び流力受面194の表面状態を加工すれば、その分だけ回転力を向上させることができる。
 また、羽根構造体102Xでは、中心回転軸103の外側に、エアタンク150を有している。エアタンク150は、所定量の空気などのガスを含有することにより、羽根構造体102X全体として、水中においてほとんど浮力が生じないようにできる。具体的には、羽根構造体102Xの体積及び重量から、含有するガスの量が定められると共に、ガスが外部に漏れないように密封されている。
 これにより、羽根構造体102の水中での位置を安定させ、浮かんでしまって空気に露出したり、沈んでしまって水底に接触してしまうことを防止することができと共に、不要な力を排除できるため、水中での姿勢を安定化することができる。
 このように、第3の実施の形態では、羽根190をでは厚く、先端側では薄くすることにより、流力を効率良く受け止め、回転力を向上させることができる。また、エアタンク150によって浮力を調整することにより、羽根構造体102を水中における位置を安定させることができる。さらに、流力受面194における流体の抵抗が反力受面193よりも大きくなるように羽根190における反力受面193と流力受面194との表面状態に差異を設けることにより、羽根190において回転方向及び反回転方向間で流体から受ける流力に差異を設け、回転力を一段と向上させ得る。
<第4の実施の形態>
 図12~13に示した第4の実施の形態において、羽根構造体102Yは、角度調整部として、角度調整部124a及び124bを有する点が第3の実施の形態と異なっている。なお、第4の実施の形態では、第3の実施の形態と同一構成の箇所に同一符号を附し、説明を省略する。
 図12及び13に示すように、羽根構造体102Yは、角度調整部として、対の角度調整部124a及び124bを有している。角度調整部124aは、反回転方向の流力を受けたときの羽根190の角度を調整し、角度調整部124bは、回転方向への流力をうけたときの羽根190の角度を調整する。
 角度調整部124a及び124bは同一円周上に等間隔で交互に配置されている。この結果、羽根190の回転角度TZは、第3の実施の形態と比較して、約半分となる。この結果、回転方向の流力を受けて羽根190が角度調整部124aから124bまで移動する距離(以下、これを立上り距離と呼ぶ)を短くすることができ、角度調整部124bを介して流力を迅速に羽根構造体102Yに伝達することができる。なお、角度調整部124a及び124bが配置される間隔を等間隔にする必要性はなく、角度調整部124a及び124bの配置によって立上り距離を自由に設定し、立上り距離を任意に定めることができる。
 このように、第4の実施の形態では、角度調整部124aから124bまで羽根190が移動してトルクを伝達できる位置まで移動するまでの立上り距離を短くすることにより、回転方向の流力を迅速に羽根構造体102Yに伝達して回転力を向上させることができる。
<第5の実施の形態>
 図14~15に示した第5の実施の形態において、羽根構造体202は、羽根290の枚数及び羽根回転機構の構成が第3の実施の形態と異なっている。なお、第5の実施の形態では、第3の実施の形態と同一構成の箇所に同一符号を附し、説明を省略する。
 図14に示すように、羽根構造体202は、12枚の羽根290を有している。図15に示すように、羽根290は、反力受面293及び流力受面294が緩やかにカーブして円弧を描きながら、先に向かって細くなる先細り形状をしており、流力受面294の曲率半径が反力受面293よりも小さく形成されている。また、羽根290の先端291は、反力受面293及び流力受面294の円弧とは逆向きにわずかに湾曲している。
 流力受面294の根本側には、羽根回転軸123を中心とした円弧状の円弧カーブ294aが形成されており、当該円弧カーブ294aが反力受面293のなだらかなカーブと接続している。この接続部分は、段差が設けられており、根本側に向けて突出する突出部295を形成している。
 角度調整部224は、扁平な六角形形状をしており、羽根290の根本近傍に配置されている。羽根290が円周方向に対して垂直に立ったとき、突出部295が角度調整部224に引っかかり、その位置が固定される。すなわち、角度調整部224と突出部295とが対となって角度調整部を構成している。
 また、流力受面294の円弧カーブ294aは角度調整部224とは接触することがないため、羽根290は大きく回転可能であり、その結果、隣接する羽根290と当接する(図14)。この結果、反回転方向に流力を受けるときには、羽根290同士が流体の進入を防ぎ、乱流の発生を防止して流体抵抗を低減できる。
 このように、第5の実施の形態では、羽根290の根本側に角度調整部224を設けることにより、回転角度TZを大きくする。これにより、回転方向に流力を受けるときには、突出部295を角度調整部224に係止させて流力を受け止める一方、反回転方向に流力を受けるときには、隣接する羽根290と当接するまで羽根290を回転させて、羽根290同士を隣接及び接触させ、流力の影響を低減することができる。
<第6の実施の形態>
 図16に示した第6の実施の形態において、羽根構造体202Xは、角度調整部224を接続する接続リング280を有する点が第5の実施の形態と異なっている。なお、第6の実施の形態では、第5の実施の形態と同一構成の箇所に同一符号を附し、説明を省略する。
 図16に示すように、接続リング280は、角度調整部224を繋ぐ円周状に形成されており、上下面126及び127を接続している。これにより、角度調整部224及び羽根構造体202X全体の強度を向上させることができると共に、接続リング280の内部において乱流が発生することを防止することができる。なお、接続リング280は、その内部を密封しても良いが、要は乱流を発生させなければよいため、内部空間を密封する必要はなく、適宜孔や間隙を設けることができる。
 このように、第6の実施の形態では、羽根290のすぐ内側に接続リング280を設けることにより、羽根290の内側で生じる乱流を未然に防止でき、回転力を向上させることができる。
<第7の実施の形態>
 図17に示した第7の実施の形態において、羽根構造体202Yは、羽根290の枚数が第6の実施の形態と異なっている。なお、第7の実施の形態では、第6の実施の形態と同一構成の箇所に同一符号を附し、説明を省略する。
 図17に示すように、羽根構造体202Yでは、羽根290を16枚有している。一般的に、水車の羽根の数は32枚が最適ともいわれている。羽根290の枚数は、羽根構造体202Yのサイズや流体の種類や強さ、羽根構造体202Yのサイズとの関係など、種々の要因に応じて適宜選択することが好ましい。
 このように、第7の実施の形態では、羽根290を増やすことにより、流力を効率良く受けることができ、回転力を増大させることができる。
<第8の実施の形態>
 図18に示した第8の実施の形態において、羽根構造体202Zは、羽根290Zの形状が第7の実施の形態と異なっている。なお、第8の実施の形態では、第7の実施の形態と同一構成の箇所に同一符号を附し、説明を省略する。
 図19に示すように、羽根290Zは、根本側に向けて突出する2つの突出部295a及び295bを有している。突出部295aは、反力受面293側に設けられており、羽根290Z突起根本側が円周方向に対して垂直に立ったとき、角度調整部224に引っかかり、その位置が固定される。
 一方、突出部295bは、流力受面294側に設けられており、羽根290Z突起根本側が円周方向に対して平行に近くなり寝た状態になったとき、角度調整部224に引っかかり、その位置が固定される。
 これにより、羽根290Zでは、回転角度TZを一定の角度内に収めることができ、立上り距離を短くして流力を迅速に羽根構造体202Zに伝達することができる。
 このように、第8の実施の形態では、接続リング280によって乱流の発生を抑制しつつ、2つの突出部295a及び295bを設けて立上り距離を小さくしたため、回転力を増大することができる。
<第9の実施の形態>
 図20~21に示した第9の実施の形態において、羽根構造体302は、羽根390の枚数及び構成が第3の実施の形態と異なっている。なお、第9の実施の形態では、第3の実施の形態と同一構成の箇所に同一符号を附し、説明を省略する。
 図20及び図21に示すように、羽根構造体302は、羽根390を6枚有しており、円周上に等間隔に配置されている。羽根390は、上下面126及び127における円周方向の端部近傍において回転可能に設置されている。
 羽根390は、ボディ部392と、反回転方向に湾曲する先端391と、回転方向に湾曲する根本396とを有しており、反力受面393及び流力受面394が緩やかなS字(若しくは逆S字)カーブを描いている。言い換えると、羽根390は、羽根回転軸123より先端側において、反力受面393よりも流力受面394の曲率半径が小さく、羽根回転軸123より根本側において、反力受面393よりも流力受面394の曲率半径が大きく、全体として羽根回転軸123を中心点とした点対称構造を有する。
 羽根390は、羽根290(図14)と比較すると、中心側に向けて、根本側が長く形成されており、回転方向への流力を受けると根本396(図21)の先端がエアタンク150の外壁に当接することにより、その位置が固定される。すなわち、根本396及びエアタンク150が角度調整部として機能する。羽根390は、面積が大きいため、回転方向の流力を逃すことなく、回転力へと変換することができる。
 一方、羽根390は、回転角度TZが非常に大きく、隣接する羽根390とも離隔しているため、反回転方向への流力に対し、最も抵抗が小さい状態、すなわち円周方向に対してほぼ平行に寝るような状態を保つことができる。
 このように、第9の実施の形態では、羽根390を内側に大きく延ばし、エアタンク150によって係止させるようにしたことにより、羽根390の面積を大きくして回転方向の流力を大きく受けることができると共に、反回転方向への流力に対して自由度を向上させて流力抵抗を極力小さくでき、羽根構造体302の回転力を向上させることができる。
<第10の実施の形態>
 図22に示した第10の実施の形態において、羽根構造体302Xは、羽根回転軸123の位置が第9の実施の形態と異なっている。なお、第10の実施の形態では、第9の実施の形態と同一構成の箇所に同一符号を附し、説明を省略する。
 図22に示すように、羽根390Xは、中心よりも根本側に羽根回転軸123を位置させており、羽根390Xの回転軸が偏心している。これにより、羽根390Xは、流力を片側に集中させて羽根390Xを回転させ易くでき、反力受面393及び流力受面394の切り換えを迅速にして羽根構造体302Xの回転力を増大させることができる。なお、偏心の方向は中心側又は円周側のどちらでも良い。
 このように、第10の実施の形態では、面積の大きい羽根390Xの根本側及び先端側のバランスを敢えて崩すことにより、羽根390Xが受ける流力に根本側及び先端側で偏りを生じさせることができ、羽根390Xを迅速に回転させて、羽根構造体302Xの回転力を増大させることができる。
<第11の実施の形態>
 図23に示した第11の実施の形態において、羽根構造体402は、上下面126及び127を有さず、エアタンク450の外壁を一部窪ませて羽根490の根本側と共に角度調整部としての機能を有する点が第3の実施の形態と異なっている。なお、第11の実施の形態では、第3の実施の形態と同一構成の箇所に同一符号を附し、説明を省略する。
 図23に示すように、羽根構造体402では、エアタンク450の外壁451が厚く形成されており、窪み452が形成されている。窪み452は、角度調整部224(図14)と同様、羽根490を係止してその角度を調整する機能を有している。窪み452は、円弧状にえぐられたように形成されており、流力受面494側の端部に円弧状から突出する係止部452aを有している。
 図24に示すように、羽根490は、羽根回転軸123近傍から根本側が、流力受面494側へ大きく湾曲しており、回転方向の流力を受けたときに、根本部496の先端を窪み452に形成された係止部452aに係止されてその位置が固定される。
 また、羽根構造体402は、上下面126及び127を有しておらず、窪み452の部分断面を表す図25及び図26に示すように、外壁451から上下方向を延長された上下面部分451xに固定されたり、外壁451まで延設された軸延長部123xを有することにより、羽根回転軸123が外壁451に接続されている。すなわち、羽根構造体402では、エアタンク450が羽根490を支持する支持部材の役割を果たす。
 このように、第11の実施の形態では、エアタンク450の外壁451に形成された窪み452と、羽根490の根本部496によって角度調整機構を構成するようにした。これにより、羽根構造体402は、羽根490以外にエアタンク450の外側に突出するものが無いため、乱流の発生を防止すると共に、耐久性を向上させ得る。
<第12の実施の形態>
 図27に示した第12の実施の形態において、羽根構造体402Xは、外壁451Xの形状が第11の実施の形態と異なっている。なお、第12の実施の形態では、第11の実施の形態と同一構成の箇所に同一符号を附し、説明を省略する。
 図27に示すように、羽根構造体402Xは、外壁451Xにおける係止部452a近傍の突出部分である突出部451Xaと窪み452Xとが略直線状に形成されている。言い換えると、外壁451Xは、全体として略六角形状を有しており、角部分に突出部451Xaが形成され、突出部451Xaの回転方向側に係止部452aが形成されている。
 このように、エアタンク450の外壁451を多角形状に形成することにより、多角形の各辺の形状を利用して、外壁451によって反回転方向への流力抵抗を低減させたり、回転方向への流力を受けたりすることができ、羽根構造体402Xの回転力を増大させることができる。なお、外壁451の各辺の形状に特に制限はなく、様々な形状にすることが可能である。もちろん、羽根490の枚数に応じて六角形以外の多角形状にすることもできる。
<第13の実施の形態>
 図28~29に示した第13の実施の形態において、羽根構造体502は、羽根590の形状と、角度調整部124の配置及び中心支持体125がない点が第2の実施の形態と異なっている。なお、第13の実施の形態では、第2の実施の形態と同一構成の箇所に同一符号を附し、説明を省略する。
 図28に示すように、羽根590は、羽根回転軸123近傍が僅かに膨らんでいる以外はほぼ平板状であり、羽根回転軸123を中心に、長部分592xと、当該長部分592xよりも短い短部分592yとを有している。羽根回転軸123は、上下面126及び127の円周近傍に配置されており、羽根590を回転可能な状態で固定している。羽根590は、中心からずれた箇所に羽根回転軸123を位置させており、回転方向への流力に対し、長部分592xの端部である根本部596を角度調整部124に係止させることで、その位置を固定させる。
 また、羽根590は、短部分592yの端部である先端591を角度調整部124に接触させることなく回転することができる。このため、反回転方向への流力に対し、羽根590は、流体抵抗が小さくなるよう、先端591を流体の流れてくる上流側へ向けることになる。
 図29に示すように、羽根590は、先端591が丸みを帯びた2つの先突部591xを有している。この先突部591xは、流体に応じた形状に形成され、流体抵抗が極力小さくなる形状であることが好ましい。もちろん、先突部591xの数に制限はなく、1つのみであってもよい。
 このように、第13の実施の形態では、羽根590を平板に近い形状にし、角度調整部124を根本側に配置すると共に、羽根590の両端うち、一方の端部のみが角度調整部124に当接するように羽根回転軸123を偏心させるようにした。これにより、羽根構造体502は、反回転方向の流力に対する羽根590への流体抵抗を極力小さくすることができ、回転力を増大させることができる。
<第14の実施の形態>
 図30に示した第14の実施の形態において、羽根構造体602は、外壁651が三角形状をしており、反回転方向の流力が加わる領域において、反力フード570を有している点が第11の実施の形態と異なっている。なお、第14の実施の形態では、第11の実施の形態と同一構成の箇所に同一符号を附し、説明を省略する。
 図30に示すように、羽根690は、ほぼ平板状であり、先端691がわずかに先細っている。エアタンク650の外壁651には、窪み652が形成されており、反力受面693側に係止部652aが形成されている。窪み652における流力受面694側は、なだらかな傾斜652bが形成されており、この傾斜に沿って羽根690が外壁651に対して寝た状態にすることができる。
 外壁651は、全体として各辺が僅かに膨らむ略三角形状を有しており、各辺が流力を受ける役割を果たす。各辺には、各3枚の羽根690が配置されている。なお、一辺当たりに配置される羽根690の数や各辺の形状に制限はなく、流体の種類や強度などに応じて、適宜変更することができる。
 羽根構造体602は、反回転方向の流力が加わる領域(以下、これを反力領域と呼ぶ、図面左側半分を指す)の最外側に、上下面126及び127を接続する反力フード570が設置されている。反力フード570は、例えば反力領域全域に、半円状に形成されても良く、また、例えば反力領域において部分的に形成されても良い。反力フード570は、好ましくは反力領域の半分以上、より好ましくは2/3以上に形成される。これにより、反力領域において、回転体(羽根690、エアタンク650及び中心回転軸103)に加わる反回転方向の力を極力小さくすることができる。
 なお、羽根構造体602は、例えば川や溝などのように、流力の方向が定まっている箇所に設置されることが好ましい。
 このように、第14の実施の形態では、外壁651を多角形状にし、一辺に複数の羽根690を配置するようにした。これにより、羽根構造体602では、羽根690の枚数に拘わらず、外壁651の形状を最適化することができ、回転力を増大させることができる。
 また、羽根構造体602では、上下面126及び127と羽根回転軸123とを接続せず、回転体のみが回転するようにし、反力領域において反力フード570を設けるようにした。これにより、羽根構造体602は、回転体に加わる反回転方向の力を極力小さくすることができ、回転力を増大させることができる。
<動作及び効果>
 以上の構成によれば、羽根構造体は、流体の力である流力を受ける複数の羽根と、羽根を支持すると共に、流力に対して垂直方向に延びる回転軸(羽根回転軸123)周りに回転可能な支持部材(上下面126及び127、又はエアタンク450、650)と、回転軸周りに所定の回転角度だけ、羽根を自由回転させる羽根回転機構とを有する。
 これにより、羽根構造体は、回転方向の流力を受ける流力受面と反回転方向の流力を受ける反力受面の角度を相違させることができるため、回転力を増大させることができる。
 羽根回転機構は、支持部材に取り付けられ、羽根を回転軸周りに回転させる羽根回転軸と、羽根の回転角度を調整する角度調整部とを有し、羽根の一部分を角度調整部に当接させることにより、羽根の回転角度を調整する。
 角度調整部は、羽根の回転動作を抑止する棒又は突起であり、羽根と当接する箇所の少なくとも一部分に、弾性材が用いられている。これにより、羽根と角度調整部とが当接する際に発生する音を低減すると共に、当接箇所の破損を防止できる。
 角度調整部は、羽根構造体の回転方向への羽根の傾斜度合いが、回転方向の逆方向である反回転方向への羽根の傾斜度合いよりも小さくなるように、羽根の回転角度を調整する。
 角度調整部は、羽根における根本側の端部近傍を係止することにより、回転角度を調整する。これにより、角度調整部は、羽根の回転角度を大きく設定することができると共に、速度が小さい羽根の根本側を当接するため、当接するときの衝撃を小さくすることができる。
 羽根は、隣接する羽根に当接することにより、回転角度を調整する。これにより、反回転方向の流力が加わる反力領域において、羽根間に生じる間隙を小さくすることができ、羽根間によって生じる乱流を低減させることができる。
 角度調整部は、リング(接続リング280)の外側に設けられた突起である。これにより、単体で角度調整部が設けられている場合と比較して、角度調整部の強度を増大させることができる。
 羽根は、角度調整部の一部として、根本側の端部近傍に、角度調整部に当接する突出部を有する。これにより、羽根は、羽根の本体部分の形状に関係なく、自由な角度で羽根を係止させることができ、設計の自由度を向上させることができる。
 羽根は、2つの突出部を有することにより、回転角度を自由に調整することができる。
 羽根回転軸は、羽根の中心からずれた位置に配置されている。これにより、羽根は、流力を受けたときの回転を促進し、流力を受ける面(流力受面及び反力受面)の切替を迅速にし、回転力を向上できる。
 羽根構造体は、羽根より中心側において、角度調整部が形成されたリング(外壁451、451X、及び651)を有し、リングは、流力を受けて回転するように形状が選定されている。
 これにより、羽根構造体は、羽根に加えて、リングに対する流力によっても回転力を増大させることができる。
 羽根構造体は、水中で使用され、密閉状態でガスが充填されたエアタンクを有する。これにより、羽根構造体は、水中での浮力及び重力が殆どかからないように羽根構造体の比重を調整することができ、水中での姿勢を安定化させ得る。
 羽根において、回転方向の流力を受ける流力受面には、流体抵抗を増大させる表面加工が施されている。これにより、回転方向に受ける力を増大させることができる。
 羽根において、回転方向とは逆となる反回転方向の流力を受ける反力受面には、流体抵抗を低下させる表面加工が施されている。これにより、反回転方向に受ける力を低減することができる。
 本発明は、第1~第14の実施の形態に限られるものではなく、羽根、支持部材、角度調整部、回転軸、エアタンク、上下面など、各パーツの数や形状を適宜組み合わせて変更することが可能である。要は、回転方向の流力を大きく受ける一方、反回転方向の流力を小さく受けると共に、流体の流れを制御することが重要であり、流体の種類や方向性、強度などの要因によって最適なパーツを組み合わせることが好ましい。
 本発明は、例えば風力や水力、潮力発電に用いられる発電システムに適用することができる。
1     :発電システム
2     :羽根構造体
3     :中心回転軸
4     :発電装置
21    :中心孔
22、122、190、290、390、490、590、690:羽根
23、123:羽根回転軸
24、124:角度調整部
25    :中心支持体
26    :上下面
27    :上下面
102、102X、102Y、202、202X、202Y、202Z :羽根構造体
103   :中心回転軸
123   :羽根回転軸
126、127 :上下面
130   :調整リング
150   :エアタンク
193   :反力受面
194   :流力受面
295、295a、295b:突出部
TZ    :回転角度

 

Claims (15)

  1.  流体の力である流力を受ける複数の羽根と、
     前記羽根を支持すると共に、前記流力に対して垂直方向に延びる回転軸周りに回転可能な支持部材と、
     前記回転軸周りに所定の回転角度だけ、前記羽根を自由回転させる羽根回転機構と
    を有することを特徴とする羽根構造体。
  2.  前記羽根回転機構は、
     前記支持部材に取り付けられ、前記羽根を前記回転軸周りに回転させる羽根回転軸と、
    前記羽根の前記回転角度を調整する角度調整部とを有する
    ことを特徴とする請求項1に記載の羽根構造体。
  3.  前記角度調整部は、
     前記羽根の回転動作を抑止する棒又は突起であり、羽根と当接する箇所の少なくとも一部分に、弾性材が用いられている
     ことを特徴とする請求項1又は2に記載の羽根構造体。
  4.  前記角度調整部は、
     前記羽根構造体の回転方向への前記羽根の傾斜度合いが、前記回転方向の逆方向である反回転方向への前記羽根の傾斜度合いよりも小さくなるように、前記羽根の前記回転角度を調整する
    ことを特徴とする請求項2~4のいずれかに記載の羽根構造体。
  5.  前記角度調整部は、
     前記羽根における根本側の端部近傍を係止することにより、前記回転角度を調整する
     ことを特徴とする請求項2~4のいずれかに記載の羽根構造体。
  6.  前記羽根は、
     隣接する羽根に当接することにより、前記回転角度を調整する
     ことを特徴とする請求項2~5のいずれかに記載の羽根構造体。
  7.  前記角度調整部は、
     リングの外側に設けられた突起である
     ことを特徴とする請求項2に記載の羽根構造体。
  8.  前記羽根は、
     前記角度調整部の一部として、
     根本側の端部近傍に、前記角度調整部に当接する突出部を有する
     ことを特徴とする請求項2~7のいずれかに記載の羽根構造体。
  9.  前記羽根は、
     2つの前記突出部を有する
     ことを特徴とする請求項8に記載の羽根構造体。
  10.  前記羽根回転軸は、
     前記羽根の中心からずれた位置に配置されている
     ことを特徴とする請求項5に記載の羽根構造体。
  11.  前記羽根構造体は、
     前記羽根より中心側において、前記角度調整部が形成されたリングを有し、
     前記リングは、
     前記流力を受けて回転するように形状が選定されている
     ことを特徴とする請求項1~10のいずれかに記載の羽根構造体。
  12.  前記羽根構造体は、
     水中で使用され、
     密閉状態でガスが充填されたエアタンクを有する
     ことを特徴とする請求項1~11のいずれかに記載の羽根構造体。
  13.  前記羽根において、回転方向の流力を受ける流力受面には、
     流体抵抗を増大させる表面加工が施されている
     ことを特徴とする請求項1~12のいずれかに記載の羽根構造体。
  14.  前記羽根において、回転方向とは逆となる反回転方向の流力を受ける反力受面には、
     流体抵抗を低下させる表面加工が施されている
     ことを特徴とする請求項1~13のいずれかに記載の羽根構造体。
  15.  流体の力である流力に対して垂直方向に延びる回転軸と、
     前記流力を受ける複数の羽根と、前記羽根を支持すると共に前記流力に対して垂直方向に延びる回転軸周りに回転可能な支持部材と、前記回転軸周りに所定の回転角度だけ、前記羽根を自由回転させる羽根回転機構とを有する羽根構造体と、
     前記回転軸を介して伝達される前記羽根構造体の回転力を電力に変換する発電装置と
    を有することを特徴とする発電システム。
     

     
PCT/JP2014/073746 2013-09-09 2014-09-09 羽根構造体及び発電システム WO2015034096A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-185901 2013-09-09
JP2013185901 2013-09-09

Publications (1)

Publication Number Publication Date
WO2015034096A1 true WO2015034096A1 (ja) 2015-03-12

Family

ID=52628553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073746 WO2015034096A1 (ja) 2013-09-09 2014-09-09 羽根構造体及び発電システム

Country Status (2)

Country Link
JP (1) JP6443913B2 (ja)
WO (1) WO2015034096A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3726050A1 (en) 2019-04-16 2020-10-21 Mataro Holding BV Turbine system with guide strip
CN113931780A (zh) * 2021-11-15 2022-01-14 嵊泗县洋山镇陈久海洋科技发展有限公司 活叶式流体发电装置
CN114856885A (zh) * 2022-06-20 2022-08-05 南方电网调峰调频发电有限公司检修试验分公司 一种台阶式密封结构及水轮机

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6944750B2 (ja) * 2017-01-25 2021-10-06 Jr東日本コンサルタンツ株式会社 発電装置及び発電システム
KR101739257B1 (ko) 2017-03-17 2017-05-24 주양현 혈관의 판막 구조형 풍력 터빈 및 이를 이용한 풍력발전기
KR102026980B1 (ko) * 2017-11-29 2019-10-01 이재윤 풍력터빈발전기 바람 모음 장치
JP2019140785A (ja) * 2018-02-09 2019-08-22 あき電器株式会社 発電装置及び発電システム
JP7000392B2 (ja) * 2019-09-10 2022-01-19 有限会社ヤマシタシステム造作 横型風力発電装置
JP7537659B1 (ja) 2024-06-06 2024-08-21 株式会社Next Create 水平フローティングタービンシステム

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183981U (ja) * 1982-06-03 1983-12-07 三菱重工業株式会社 風車
JPH09280155A (ja) * 1996-04-16 1997-10-28 Matsushita Seiko Co Ltd 風 車
JP2002155849A (ja) * 2000-11-24 2002-05-31 Mitsubishi Electric Corp 回転型発電装置
JP2005315265A (ja) * 2005-04-05 2005-11-10 Yoshihiro Goto 風水力発電用羽根車
JP2007511709A (ja) * 2005-01-19 2007-05-10 リュー,ビョン−スー 風力タービン
JP2007285188A (ja) * 2006-04-14 2007-11-01 Techno Ryowa Ltd 人工気流を利用した風力発電装置
WO2008002149A1 (en) * 2006-06-30 2008-01-03 John Robert Skjelvan Turbine wheel
JP2009144695A (ja) * 2007-12-11 2009-07-02 Takashi Sugawara 開閉羽根板風車
JP2009264360A (ja) * 2008-04-24 2009-11-12 Toshihiro Niihara 弱風でも始動性よく、効率よく大きな回転力を得る垂直回転軸を持ち、可動式羽根を有する風車
JP2009543970A (ja) * 2006-07-14 2009-12-10 オープンハイドロ グループ リミテッド 浮力室を有する浸水式水力発電タービン
US20110140449A1 (en) * 2009-12-16 2011-06-16 Open Minder Group Limited Wind power device
JP2012163006A (ja) * 2011-02-04 2012-08-30 Masaru Suzuki 翼開閉式風車
JP2012202264A (ja) * 2011-03-24 2012-10-22 Nippon System Kikaku Kk 水車羽根型発電装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA726419B (en) * 1971-09-27 1973-07-25 Martin & Botting Dev Ltd Improvements in or relating to a turbine unit
US5051078A (en) * 1989-07-05 1991-09-24 Lew Hyok S Rotary pump-flowmeter
JP2003193955A (ja) * 2001-12-27 2003-07-09 Akihiro Hidaka 縦形風力発電装置
JP2003343415A (ja) * 2002-05-24 2003-12-03 Yasuyuki Kitano 垂直軸形風車および風力発電機
JP2006022937A (ja) * 2004-07-09 2006-01-26 Michio Sugawara 流体抵抗を解消する微細な円錐形突起
JP2007120393A (ja) * 2005-10-27 2007-05-17 Ebara Corp 風車、風力発電装置
JP2011225674A (ja) * 2010-04-16 2011-11-10 Asahi Glass Co Ltd 風力発電機のブレードに用いる表面塗布用塗料組成物、ならびに風力発電機のブレードおよびその製造方法
JP5131610B2 (ja) * 2011-04-18 2013-01-30 正 伊藤 水車発電装置
JP2013139761A (ja) * 2012-01-05 2013-07-18 Masahito Saito 笠被り水車

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183981U (ja) * 1982-06-03 1983-12-07 三菱重工業株式会社 風車
JPH09280155A (ja) * 1996-04-16 1997-10-28 Matsushita Seiko Co Ltd 風 車
JP2002155849A (ja) * 2000-11-24 2002-05-31 Mitsubishi Electric Corp 回転型発電装置
JP2007511709A (ja) * 2005-01-19 2007-05-10 リュー,ビョン−スー 風力タービン
JP2005315265A (ja) * 2005-04-05 2005-11-10 Yoshihiro Goto 風水力発電用羽根車
JP2007285188A (ja) * 2006-04-14 2007-11-01 Techno Ryowa Ltd 人工気流を利用した風力発電装置
WO2008002149A1 (en) * 2006-06-30 2008-01-03 John Robert Skjelvan Turbine wheel
JP2009543970A (ja) * 2006-07-14 2009-12-10 オープンハイドロ グループ リミテッド 浮力室を有する浸水式水力発電タービン
JP2009144695A (ja) * 2007-12-11 2009-07-02 Takashi Sugawara 開閉羽根板風車
JP2009264360A (ja) * 2008-04-24 2009-11-12 Toshihiro Niihara 弱風でも始動性よく、効率よく大きな回転力を得る垂直回転軸を持ち、可動式羽根を有する風車
US20110140449A1 (en) * 2009-12-16 2011-06-16 Open Minder Group Limited Wind power device
JP2012163006A (ja) * 2011-02-04 2012-08-30 Masaru Suzuki 翼開閉式風車
JP2012202264A (ja) * 2011-03-24 2012-10-22 Nippon System Kikaku Kk 水車羽根型発電装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3726050A1 (en) 2019-04-16 2020-10-21 Mataro Holding BV Turbine system with guide strip
BE1027193A1 (nl) 2019-04-16 2020-11-10 Mataro Holding Bv Turbinesysteem met leidband
CN113931780A (zh) * 2021-11-15 2022-01-14 嵊泗县洋山镇陈久海洋科技发展有限公司 活叶式流体发电装置
CN114856885A (zh) * 2022-06-20 2022-08-05 南方电网调峰调频发电有限公司检修试验分公司 一种台阶式密封结构及水轮机
CN114856885B (zh) * 2022-06-20 2024-03-29 南方电网调峰调频发电有限公司检修试验分公司 一种台阶式密封结构及水轮机

Also Published As

Publication number Publication date
JP2015072009A (ja) 2015-04-16
JP6443913B2 (ja) 2018-12-26

Similar Documents

Publication Publication Date Title
WO2015034096A1 (ja) 羽根構造体及び発電システム
JP6396427B2 (ja) 浮体式風力タービン構造体
US7726934B2 (en) Vertical axis wind turbine
ES2771523T3 (es) Aerogenerador flotante con turbinas gemelas de eje vertical con rendimiento mejorado
JP6014591B2 (ja) 流体の流動流から発電するシステムおよび方法
US9683547B2 (en) Wind turbine having nacelle fence
US20130266439A1 (en) Fluid turbine with vortex generators
JP6618920B2 (ja) 流体動力学的エネルギー変換システムおよびその使用
KR20060035626A (ko) 매그너스형 풍력 발전장치
ES2748702T3 (es) Pala de rotor para turbina eólica
BRPI0901809A2 (pt) pás de turbina eólica com ponteiras retorcidas e cÈnicas
BRPI0901706A2 (pt) pás de turbina eólica com ponteiras retorcidas
JP6759116B2 (ja) 水流発電装置
JP2017528649A (ja) 発電装置
GB2433554A (en) Transverse axis wind or water turbine
JP6126287B1 (ja) 垂直軸型螺旋タービン
JP6944750B2 (ja) 発電装置及び発電システム
ES2958089T3 (es) Máquina modular cinética para producir energía a partir de flujos de fluido
KR20230038558A (ko) 유니버셜 프로펠러, 작동 방법 및 선호하는 사용
WO2013057512A2 (en) A turbine
JP2019173636A (ja) 発電装置の出力増強デバイス及び自然エネルギ型発電装置
TW201210894A (en) Ship propulsion system and ship
KR20230039055A (ko) 스크류 구조를 갖는 모듈형 수력 발전장치
JP2017145791A (ja) 垂直軸型風力発電装置
SE540347C2 (sv) Metod att ändra storleken på en spiralformad rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842410

Country of ref document: EP

Kind code of ref document: A1