WO2015033831A1 - Dpp-4を標的とした糖尿病治療用ワクチン - Google Patents

Dpp-4を標的とした糖尿病治療用ワクチン Download PDF

Info

Publication number
WO2015033831A1
WO2015033831A1 PCT/JP2014/072403 JP2014072403W WO2015033831A1 WO 2015033831 A1 WO2015033831 A1 WO 2015033831A1 JP 2014072403 W JP2014072403 W JP 2014072403W WO 2015033831 A1 WO2015033831 A1 WO 2015033831A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
seq
polypeptide
vaccine
Prior art date
Application number
PCT/JP2014/072403
Other languages
English (en)
French (fr)
Inventor
啓徳 中神
森下 竜一
弘 郡山
Original Assignee
国立大学法人 大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 大阪大学 filed Critical 国立大学法人 大阪大学
Priority to US14/916,448 priority Critical patent/US20160193308A1/en
Priority to CN201480048995.7A priority patent/CN105722527A/zh
Priority to KR1020167007170A priority patent/KR20160068742A/ko
Priority to JP2015535438A priority patent/JPWO2015033831A1/ja
Priority to EP14842753.7A priority patent/EP3042667A4/en
Publication of WO2015033831A1 publication Critical patent/WO2015033831A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55588Adjuvants of undefined constitution
    • A61K2039/55594Adjuvants of undefined constitution from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/58Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance

Definitions

  • the present invention relates to a vaccine for preventing or treating diabetes containing a specific partial amino acid sequence of DPP-4 (dipeptidyl peptidase 4) as an immunogen, and a DPP-4 neutralizing antibody that recognizes the partial amino acid sequence of DPP-4.
  • the present invention relates to a preventive or therapeutic agent for diabetes.
  • Diabetes is caused by insufficient or quantitative action of insulin in the body, resulting in an increase in blood glucose compared to healthy individuals.
  • small blood vessel disorders in the kidney, retina, nerves, etc. and macrovascular disorders such as arteriosclerosis, etc. It is a metabolic disease that significantly impairs a healthy life.
  • hypoglycemic agents such as insulin, insulin secretagogues, insulin resistance improvers, ⁇ -glucosidase inhibitors have been widely applied as clinical treatment methods.
  • hypoglycemic agents have been widely applied as clinical treatment methods.
  • hypoglycemic agents have been widely applied as clinical treatment methods.
  • insulin may cause hypoglycemia when administered in an inappropriate usage or dose.
  • the effectiveness of insulin secretagogues and insulin resistance improvers is diminished in diabetic patients whose pancreatic insulin secretion ability is significantly reduced.
  • the effectiveness of insulin and insulin secretagogues is diminished in diabetic patients with marked insulin resistance.
  • GLP-1 glucose-like peptide-1
  • incretin of the digestive tract hormone is involved in glucose metabolism.
  • GLP-1 not only stimulates insulin secretion but also improves insulin sensitivity by controlling skeletal muscles, adipose tissue, and liver, and can control blood glucose levels. It is decomposed rapidly (Non-patent Document 1). Therefore, drug discovery targeting DPP-4 has been studied for the purpose of treating diabetes, and several DPP-4 inhibitors have been marketed so far. However, there has been a tendency that the number of administrations and doses tend to increase, and the economic burden on patients is large.
  • the present invention relates to a vaccine for preventing or treating diabetes comprising a specific partial amino acid sequence of DPP-4 for use in a method for preventing or treating diabetes that is superior to conventional DPP-4 inhibitors in dosage and administration frequency, Another object of the present invention is to provide a prophylactic or therapeutic agent for diabetes containing a DPP-4 neutralizing antibody that recognizes the partial amino acid sequence of DPP-4.
  • the present inventors inferred a plurality of amino acid sites important for binding and cleavage to GLP-1 from the three-dimensional structural information of DPP-4, and designed these sites as antigen candidates capable of inducing neutralizing activity against DPP-4. did.
  • a plurality of synthesized antigen candidates were conjugated with KLH and administered to mice together with Freund's adjuvant, two types of antigen candidates showing significant antibody elevation were identified.
  • mice immunized with one antigen candidate had a higher inhibition rate of DPP-4 activity than controls, and insulin secretion and An improvement in glucose tolerance was observed.
  • a vaccine for the prevention or treatment of diabetes comprising any of the following substances (1) to (3): (1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence corresponding to SEQ ID NO: 2 in a non-human mammal; (2) An amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence corresponding to SEQ ID NO: 2 in a non-human mammal And (3) an expression vector capable of expressing the polypeptide of (1) or (2) above; [2] The vaccine according to [1], comprising a carrier protein; [3] The vaccine of [1] or [2] containing an adjuvant; [4] A preventive or therapeutic agent for diabetes comprising an antibody that recognizes the following polypeptide (1) or (2) and inhibits the function of DPP-4: (1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence corresponding to SEQ
  • a neutralizing antibody that inhibits DPP-4 activity is induced, and the antibody inhibits degradation of GLP-1 and improves insulin secretion. it can. Further, by using a neutralizing antibody that recognizes a partial amino acid sequence of DPP-4, the above-mentioned effects can be obtained directly. Furthermore, since the half-life of neutralizing antibodies is longer than that of conventional DPP-4 inhibitors, it can be expected that the frequency of administration of vaccines and antibodies to patients will be lower than that of conventional DPP-4 inhibitors.
  • A A graph showing antibody titer against DPP-4 in mice immunized with E1, E2, E3 or KLH vaccine. *: P ⁇ 0.05, **: P ⁇ 0.01, ***: P ⁇ 0.001.
  • B Binding of antibodies derived from sera of E1 or E3 vaccine group to recombinant DPP-4 protein. A: Percent inhibition by anti-DPP-4 antibody induced with E1 or E3 vaccine on DPP-4 function in the plasma of mice immunized with E1 or E3 vaccine on day 56. *: P ⁇ 0.05.
  • B It is a figure which shows the in-vitro inhibition rate by the serum derived from the mouse
  • C GLP-1 levels in plasma after glucose administration in mice immunized with KLH, E1 or E3 vaccines. *: P ⁇ 0.05.
  • A It is a figure which shows the inhibition rate by the anti- DPP-4 antibody induced
  • B It is a figure which shows the in-vitro inhibition rate by the serum from the mouse
  • A Glucose levels after food load in mice immunized with E3 or KLH vaccine under normal diet conditions.
  • B Insulin levels after food load in mice immunized with E3 or KLH vaccine under normal diet conditions.
  • C It is a figure which shows the implementation plan of the oral food load test (MTT) in the mouse
  • MTT oral food load test
  • D Glucose level after food load in mice immunized with E3 or KLH vaccine under high fat diet conditions.
  • E Total glucose levels between 0 and 120 minutes after food challenge in mice immunized with E3 or KLH vaccine under high fat diet conditions. *: P ⁇ 0.05.
  • A Insulin levels in mice immunized with E3 or KLH vaccine under high fat diet conditions. *: P ⁇ 0.05.
  • B HOMA-IR in mice immunized with E3 or KLH vaccine under high fat diet conditions. *: P ⁇ 0.05.
  • C Glucose levels after intraperitoneal insulin administration in mice immunized with E3 or KLH vaccine under high fat diet conditions. The glucose level at the time of insulin administration was set to 100%.
  • D GLP-1 levels after intraperitoneal insulin administration in mice immunized with E3 or KLH vaccine under high fat diet conditions. *: P ⁇ 0.05.
  • A It is a figure which shows the time course of the antibody titer in the mouse
  • B DPP-4 levels in mice immunized with E3 or KLH vaccine under high fat diet conditions. ***: P ⁇ 0.001.
  • C Body weight in mice immunized with E3 or KLH vaccine under high fat diet conditions.
  • D Feed consumption in mice immunized with E3 or KLH vaccine under high fat diet conditions.
  • A It is a figure which shows the implementation plan of the oral food load test (MTT) in the diabetes model mouse
  • B Glucose level after food load in diabetic model mice immunized with E3 or KLH vaccine under high fat diet conditions. *: P ⁇ 0.05.
  • C Total glucose levels between 0 and 120 minutes after diet loading in diabetic model mice immunized with E3 or KLH vaccine under high fat diet conditions. *: P ⁇ 0.05.
  • A Glucose levels after food load in non-immunized db / db mice, db / db mice immunized with E3 or KLH vaccine. *: P ⁇ 0.05.
  • B Total glucose levels between 0-120 minutes after food challenge in non-immunized db / db mice, db / db mice immunized with E3 or KLH vaccine. *: P ⁇ 0.05.
  • C Insulin levels after food load in non-immunized db / db mice, db / db mice immunized with E3 or KLH vaccine. *: P ⁇ 0.05.
  • D It is a figure which shows the amount of pancreatic insulin after a food load in the non-immunized db / db mouse and the db / db mouse immunized with E3 or KLH vaccine. *: P ⁇ 0.05.
  • E It is a figure which shows the microscope image of the section
  • B DPP-4 levels in db / db mice immunized with E3 or KLH vaccine. *: P ⁇ 0.05.
  • FIG. 2 shows a microscopic image of Masson trichrome stained sections from mouse kidney, liver and jejunum immunized with E3 or KLH vaccine.
  • the present invention provides a diabetes preventive or therapeutic vaccine (hereinafter referred to as the vaccine of the present invention) comprising any of the following substances (1) to (3): (1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence corresponding to SEQ ID NO: 2 in a non-human mammal; (2) An amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence corresponding to SEQ ID NO: 2 in a non-human mammal And (3) an expression vector capable of expressing the polypeptide of (1) or (2) above.
  • diabetes includes diseases associated with diabetes in addition to diabetes (type 1 diabetes, type 2 diabetes).
  • diseases associated with diabetes include diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, hyperinsulinemia, obesity and the like.
  • the subject of administration of the vaccine of the present invention may be any mammal, but is a mammal that has developed diabetes or a mammal that has a risk of developing diabetes.
  • Mammals include, for example, rodents such as mice, rats, hamsters, guinea pigs, and laboratory animals such as rabbits, pets such as dogs and cats, livestock such as cows, pigs, goats, horses and sheep, humans, monkeys, Examples include primates such as orangutans and chimpanzees, and humans are particularly preferable.
  • the subject of administration may or may not be receiving treatment for diabetes.
  • the substance contained in the vaccine is a substance derived from the administration subject (that is, when administered to a human, the vaccine is a human-derived substance, and when administered to a mouse, The vaccine is preferably a mouse-derived substance).
  • Substances contained in the vaccine of the present invention are: (1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence corresponding to SEQ ID NO: 2 in a non-human mammal; (2) An amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence corresponding to SEQ ID NO: 2 in a non-human mammal And (3) a substance selected from the group consisting of expression vectors capable of expressing the polypeptide of (1) or (2) above.
  • the polypeptide of the above (1) contained in the vaccine of the present invention is a partial sequence of DPP-4 (dipeptidyl (peptidase 4) amino acid sequence.
  • DPP-4 is a known gene, and its nucleotide sequence and amino acid sequence are also known.
  • the specific amino acid sequence contained in the polypeptide of (1) above can include the amino acid sequence represented by SEQ ID NO: 2 in the case of humans.
  • the partial sequence is encoded by a nucleotide sequence represented by SEQ ID NO: 1, for example.
  • the polypeptide containing the amino acid sequence corresponding to sequence number: 2 in a non-human mammal can also be mentioned preferably.
  • an amino acid sequence corresponding to SEQ ID NO: 2 in a non-human mammal appropriate primers and probes using the information of the amino acid sequence disclosed in SEQ ID NO: 2 in the present specification and a known sequence database And can be easily obtained using ordinary genetic engineering techniques such as RT-PCR and plaque hybridization.
  • the partial sequence of the mouse DPP-4 amino acid sequence corresponding to SEQ ID NO: 2 which is a partial sequence of human DPP-4 can be exemplified as the amino acid sequence represented by SEQ ID NO: 4, For example, it is encoded by the nucleotide sequence represented by SEQ ID NO: 3.
  • the non-human mammal here is a mammal excluding humans from the above-mentioned mammals.
  • the polypeptide of (1) above contained in the vaccine of the present invention is preferably a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence corresponding to SEQ ID NO: 2 in non-human mammals.
  • polypeptide of (2) contained in the vaccine of the present invention one or several (preferably 1 to several (2 to 5)) amino acids are deleted from the partial sequence of the DPP-4 amino acid sequence. It is a substituted, inserted or added amino acid sequence.
  • one or several (preferably 1 to several (2 to 5)) amino acids are deleted, substituted, inserted or inserted in the amino acid sequence represented by SEQ ID NO: 2. Added amino acid sequences are also included.
  • amino acid sequence examples include (1) an amino acid sequence in which one or several (preferably 1 to several (2 to 5)) amino acids in the amino acid sequence shown in SEQ ID NO: 2 have been deleted, (2 ) An amino acid sequence in which one or several (preferably 1 to several (2 to 5)) amino acids are added to the amino acid sequence shown in SEQ ID NO: 2, and (3) an amino acid sequence shown in SEQ ID NO: 2.
  • the amino acid sequence contained in the polypeptide of (2) above is one or several (preferably 1 to several (2 to 5)) amino acid sequences corresponding to SEQ ID NO: 2 in non-human mammals.
  • An amino acid sequence in which amino acids are deleted, substituted, inserted or added can also be preferably exemplified.
  • amino acid sequence represented by SEQ ID NO: 4 examples include (1) an amino acid sequence in which one or several (preferably 1 to several (2 to 5)) amino acids are deleted from the amino acid sequence represented by SEQ ID NO: 4. ) An amino acid sequence in which one or several (preferably 1 to several (2 to 5)) amino acids are added to the amino acid sequence shown in SEQ ID NO: 4, and (3) an amino acid sequence shown in SEQ ID NO: 4.
  • amino acid residue substitution examples include conservative amino acid substitution.
  • Conservative amino acid substitution refers to substitution of a specific amino acid with an amino acid having a side chain having the same properties as the side chain of the amino acid. Specifically, in a conservative amino acid substitution, a particular amino acid is replaced with another amino acid belonging to the same group as the amino acid.
  • Groups of amino acids having side chains of similar nature are known in the art. For example, such amino acid groups include amino acids having basic side chains (eg, lysine, arginine, histidine), amino acids having acidic side chains (eg, aspartic acid, glutamic acid), amino acids having neutral side chains.
  • the amino acid having a neutral side chain further includes an amino acid having a polar side chain (for example, glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), and an amino acid having a nonpolar side chain (for example, alanine, Valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan).
  • an amino acid having a polar side chain for example, glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
  • an amino acid having a nonpolar side chain for example, alanine, Valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan.
  • amino acids having aromatic side chains for example, phenylalanine, tryptophan, tyrosine
  • amino acids having side chains including hydroxyl groups for example, alcoholic hydroxyl groups, phenolic hydroxyl groups) (for example, serine, threonine, Tyrosine).
  • deletion of amino acid residue include, for example, selecting and deleting an arbitrary amino acid residue from the amino acid sequence represented by SEQ ID NO: 2.
  • an amino acid residue is inserted or added into the amino acid sequence represented by SEQ ID NO: 2 at the N-terminal side or C-terminal side. Is given.
  • one or two residues of the basic amino acid arginine (Arg) or lysine (Lys) may be added to the N-terminal side or C-terminal side of the amino acid sequence.
  • the polypeptide of (2) contained in the vaccine of the present invention preferably has one or several amino acids in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence corresponding to SEQ ID NO: 2 in a non-human mammal.
  • a polypeptide comprising an amino acid sequence in which amino acid residues are substituted, deleted, inserted or added.
  • the polypeptide of the present invention may contain an additional amino acid. Such amino acid additions are permissible as long as the polypeptide induces a specific immune response against DPP-4.
  • the amino acid sequence to be added is not particularly limited, and examples thereof include a tag for facilitating detection and purification of the polypeptide. Tags include Flag tag, histidine tag, c-Myc tag, HA tag, AU1 tag, GST tag, MBP tag, fluorescent protein tag (eg GFP, YFP, RFP, CFP, BFP, etc.), immunoglobulin Fc tag, etc. It can be illustrated.
  • the position to which the amino acid sequence is added is the N-terminus and / or C-terminus of the polypeptide of the present invention.
  • the amino acids used in the polypeptide of the present invention include L-form, D-form and DL-form, but usually the L-form is preferred.
  • These polypeptides can be synthesized by a normal polypeptide synthesis method and used in the present invention. However, in the present invention, the production method, synthesis method, procurement method and the like are not particularly limited.
  • the polynucleotide (DNA or RNA, preferably DNA) encoding the polypeptide of (1) or (2) above has promoter activity in the cells of the mammal to be administered. Is operably linked downstream of a promoter capable of exhibiting That is, the expression vector (3) can express the polypeptide (1) or (2) as a transcription product under the control of a promoter.
  • the polypeptide of (1) or (2) is produced in the mammal, and the mammal is directed against the polypeptide of (1) or (2). A specific immune response is induced.
  • the promoter to be used is not particularly limited as long as it can function in mammalian cells to be administered.
  • a pol I promoter As the promoter, a pol I promoter, pol II promoter, pol III promoter, or the like can be used. Specifically, SV40-derived early promoters, viral promoters such as cytomegalovirus LTR, mammalian constituent protein gene promoters such as ⁇ -actin gene promoter, and the like are used.
  • the expression vector (3) preferably contains a transcription termination signal, that is, a terminator region downstream of the polynucleotide encoding the polypeptide (1) or (2). Furthermore, a selection marker gene for selecting transformed cells (a gene that imparts resistance to drugs such as tetracycline, ampicillin, and kanamycin, a gene that complements an auxotrophic mutation, and the like) can be further contained.
  • the type of vector used for the expression vector in the present invention is not particularly limited, and examples of vectors suitable for administration to mammals such as humans include viral vectors and plasmid vectors.
  • examples of viral vectors include retroviruses, adenoviruses, adeno-associated viruses, and the like.
  • a plasmid vector is preferably used.
  • the vaccine of the present invention can be provided as a pharmaceutical composition containing any carrier, for example, a pharmaceutically acceptable carrier, in addition to the polypeptide of (1) or (2) or the expression vector of (3).
  • Examples of pharmaceutically acceptable carriers include excipients such as sucrose and starch, binders such as cellulose and methylcellulose, disintegrants such as starch and carboxymethylcellulose, lubricants such as magnesium stearate and aerosil, citric acid, Fragrances such as menthol, preservatives such as sodium benzoate and sodium bisulfite, stabilizers such as citric acid and sodium citrate, suspensions such as methylcellulose and polyvinylpyrrolidone, dispersants such as surfactants, water, physiological Although diluents, such as salt solution, base wax, etc. are mentioned, it is not limited to them.
  • excipients such as sucrose and starch
  • binders such as cellulose and methylcellulose
  • disintegrants such as starch and carboxymethylcellulose
  • lubricants such as magnesium stearate and aerosil
  • citric acid Fragrances such as menthol
  • preservatives such as sodium benzoate and sodium bisulfite
  • stabilizers
  • the vaccine of the present invention may further contain a nucleic acid introduction reagent in order to promote introduction of the expression vector into cells.
  • a viral vector is used as an expression vector
  • retronectin, fibronectin, polybrene or the like can be used as a gene introduction reagent.
  • a plasmid vector is used as an expression vector, lipofectin, lipofectamine, DOGS (transfectum), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, poly (ethyleneimine) (PEI), etc. Cationic lipids can be used.
  • the vaccine of the present invention preferably further comprises a carrier protein in order to enhance the immunogenicity of the polypeptide encoded by the polypeptide of (1) or (2) or the expression vector of (3).
  • a carrier protein is a substance that imparts immunogenicity by binding to a molecule that is not immunogenic due to its low molecular weight, and is known in the art.
  • Preferred examples of the carrier protein include bovine serum albumin (BSA), rabbit serum albumin (RSA), ovalbumin (OVA), squash hemocyanin (KLH), thyroglobulin (TG), immunoglobulin and the like.
  • a particularly preferred carrier protein is mussel hemocyanin (KLH).
  • a polynucleotide encoding the carrier protein may be linked to the polynucleotide encoding the polypeptide (1) or (2).
  • the vaccine of the present invention preferably further contains an adjuvant that is pharmaceutically acceptable and compatible with the active ingredient.
  • adjuvants are generally substances that non-specifically enhance the host immune response, and a number of different adjuvants are known in the art. Examples of adjuvants include, but are not limited to: complete Freund's adjuvant, incomplete Freund's adjuvant, aluminum hydroxide, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP) N-acetyl-normuryl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2- (1'-2'-dipalmitoyl -Sn-glycero-3-hydroxyphosphoryloxy) -ethylamine (MTP-PE), Quill A (registered trademark), lysolecithin,
  • the vaccine of the present invention can be administered to mammals orally or parenterally. Since polypeptides and expression vectors can be degraded in the stomach, they are preferably administered parenterally.
  • preparation suitable for oral administration include liquids, capsules, sachets, tablets, suspensions, emulsions and the like.
  • Formulations suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions, which include antioxidants Further, a buffer solution, an antibacterial agent, an isotonic agent and the like may be contained.
  • Aqueous and non-aqueous sterile suspensions are also included, which may contain suspending agents, solubilizers, thickeners, stabilizers, preservatives and the like.
  • the preparation can be enclosed in a container in unit doses or multiple doses like ampoules and vials.
  • the active ingredient and a pharmaceutically acceptable carrier can be lyophilized and stored in a state that may be dissolved or suspended in a suitable sterile vehicle immediately before use.
  • the content of the active ingredient in the pharmaceutical composition is usually about 0.1 to 100% by weight, preferably about 1 to 99% by weight, and more preferably about 10 to 90% by weight of the whole pharmaceutical composition.
  • the dose of the vaccine of the present invention varies depending on the subject to be administered, the administration method, the dosage form, etc., but when the active ingredient is the polypeptide of (1) or (2) above, usually one polypeptide per adult is used. In the range of 1 ⁇ g to 1000 ⁇ g per dose, preferably in the range of 20 ⁇ g to 100 ⁇ g, usually 2 to 3 times over 4 to 12 weeks. If the antibody titer decreases, add once each time .
  • the expression vector per adult is usually in the range of 1 ⁇ g to 1000 ⁇ g, preferably in the range of 20 ⁇ g to 100 ⁇ g, usually for 4 to 12 weeks. Administer 2 to 3 times. If the antibody titer decreases, add 1 dose each time.
  • a specific immune response against DPP-4 (specific antibody production, specific T cell proliferation, etc.) is induced, and the mammal is neutralizing antibody against DPP-4 And the degradation of GLP-1 is suppressed by inhibiting the function of DPP-4, and as a result, the effect of preventing or treating diabetes is exhibited.
  • the present invention also provides a kit comprising one or more containers including one or more components of the vaccine of the present invention.
  • kit of the present invention diabetes can be prevented, or its symptoms can be treated or alleviated.
  • DPP-4 neutralizing antibody for preventing or treating diabetes also provides a preventive or therapeutic agent for diabetes comprising an antibody that recognizes the following polypeptide (1) or (2) and inhibits the function of DPP-4 (Preventive or therapeutic agent of the present invention): (1) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence corresponding to SEQ ID NO: 2 in a non-human mammal; (2) An amino acid sequence in which one or several amino acid residues are substituted, deleted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence corresponding to SEQ ID NO: 2 in a non-human mammal Is provided.
  • the polypeptide of (1) is preferably a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence corresponding to SEQ ID NO: 2 in non-human mammals.
  • the polypeptide (2) preferably, one or several amino acid residues are substituted in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence corresponding to SEQ ID NO: 2 in a non-human mammal.
  • the antibody that recognizes the polypeptide of (1) or (2) binds to DPP-4 and can inhibit its function, and thus can be an effective preventive and / or therapeutic means for diabetes. That is, administration of the antibody can be expected to have a therapeutic effect on patients who have developed diabetes and a preventive effect on subjects who are likely to develop diabetes. Moreover, since the antibody of the present invention is an antibody originally present in the human body, it is considered that there is no risk of side effects.
  • antibodies of the present invention natural antibodies such as polyclonal antibodies and monoclonal antibodies, chimeric mice that can be produced using transgenic mice and gene recombination techniques, humanized and single chain antibodies, and human antibody production genes are introduced.
  • the antibody of the present invention is not particularly limited as long as it recognizes the polypeptide of the present invention and inhibits the function of DPP-4, but is preferably a monoclonal antibody from the viewpoint of specificity for DPP-4.
  • the antibody of the present invention is preferably a humanized antibody or a human antibody.
  • the above antibody fragment means a partial region of the above-described antibody, specifically, for example, an antibody fragment containing F (ab ′) 2 , Fab ′, Fab, Fc region, Fv (variable fragment of antibody), sFv, dsFv (disulphide stabilized Fv), dAb (single domain antibody), etc. (Exp. Opin. Ther. Patents, Vol. 6, No. 5, p. 441-456, 1996).
  • the above-mentioned humanized antibody refers to an antibody produced using a gene recombination technique in which only the antigen recognition site is derived from a non-human gene and the remaining site is derived from a human gene.
  • the above human antibody refers to a human antibody produced by a transgenic mouse into which a human antibody-producing gene has been introduced (eg, TransChromo Mouse (trademark)), human B lymphocyte mRNA, genome-derived VH gene and VL gene, An antibody produced from a library constructed by randomly combining the antibodies, based on a human antibody library in which an antibody variable region is expressed by a display technique such as a phage display method.
  • the class of the antibody is not particularly limited, and the antibody of the present invention includes antibodies having any isotype such as IgG, IgM, IgA, IgD, or IgE. IgG or IgM is preferable, and IgG is more preferable in consideration of ease of purification of the antibody and the like.
  • a polyclonal antibody or a monoclonal antibody can be produced by a method known per se. That is, the immunogen (polypeptide of the present invention) is optionally combined with Freund's Adjuvant, in the case of mammals such as polyclonal antibodies, such as mice, rats, hamsters, guinea pigs, rabbits, cats, dogs, Immunize mice, rats, hamsters, guinea pigs, goats, horses or rabbits, such as pigs, goats, horses or cows. In the case of a monoclonal antibody, mice, rats, hamsters, etc. are immunized by the same method.
  • the polypeptide of the present invention can be used as an immunogen as it is, but it is desirable to immunize as a complex with a polymer compound having a molecular weight of 10,000 or more. Therefore, when the polypeptide of the present invention is used as an immunogen, it may be a complex with a polymer compound (eg, carrier protein) by a method known per se.
  • a polymer compound eg, carrier protein
  • a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is synthesized according to the method described above, and bovine serum albumin (BSA), rabbit serum albumin (RSA), ovalbumin (OVA), scallop hemocyanin (KLH) ), A complex with a carrier protein such as thyroglobulin (TG) or immunoglobulin.
  • BSA bovine serum albumin
  • RSA rabbit serum albumin
  • OVA ovalbumin
  • KLH scallop hemocyanin
  • the complex can then be used as a preferred immunogen.
  • 1 to 2 preferably 1 amino acid can be added to the polypeptide of the present invention.
  • the position of the added amino acid may be any position of the polypeptide, and is not particularly limited, but the N-terminal or C-terminal of the polypeptide is preferable.
  • a cysteine residue can be introduced into the polypeptide of the present invention and bound to the amino group of the polymer compound (carrier protein) via the SH group that is the side chain of the cysteine (MBS method).
  • amino groups such as ⁇ -amino group and ⁇ -amino group of lysine residues of proteins can be bonded to each other (glutaraldehyde method).
  • the polyclonal antibody can be produced as follows. That is, the immunogen is 1 to 3 in the mouse, rat, hamster, guinea pig, goat, horse or rabbit, preferably goat, horse or rabbit, more preferably rabbit subcutaneously, intramuscularly, intravenously, in a food pad or intraperitoneally. Immunization is given by several injections. Usually, immunization is performed 1 to 5 times about every 1 to 14 days from the initial immunization, and serum is obtained from the immunized mammal about 1 to 5 days after the final immunization.
  • serum itself can be used as a polyclonal antibody, ultrafiltration, ammonium sulfate fractionation, Euglobulin precipitation method, caproic acid method, caprylic acid method, ion exchange chromatography (DEAE or DE52, etc.), anti-immunoglobulin column
  • affinity column chromatography using a protein A / G column, a column with a cross-linked immunogen, or the like.
  • Examples of methods for producing monoclonal antibodies include the following methods. First, a hybridoma is prepared from the antibody-producing cell obtained from the immunized animal and a myeloma cell (myeloma cell) having no autoantibody-producing ability, and the hybridoma is cloned. That is, using a culture supernatant of a hybridoma as a specimen, a monoclonal antibody that exhibits specific affinity for the peptide of the present invention used for immunization of mammals and does not cross-react with a carrier protein is produced by immunological techniques. Select a clone. Next, the antibody can be produced from the hybridoma culture supernatant and the like by a method known per se.
  • a monoclonal antibody can be produced as follows. That is, the immunogen can be administered subcutaneously, intramuscularly, intravenously in mice, rats or hamsters (including transgenic animals created to produce antibodies from other animals such as human antibody-producing transgenic mice). Immunization is carried out by injection or transplantation into the food pad or peritoneal cavity one to several times. Usually, immunization is carried out 1 to 4 times about every 1 to 14 days from the initial immunization, and antibody-producing cells are obtained from the spleen of the mammal immunized about 1 to 5 days after the final immunization.
  • a hybridoma (fusion cell) secreting a monoclonal antibody can be prepared according to the method of Köhler and Milstein et al. (Nature, Vol. 256, p. 495-497, 1975) and a modification method according thereto. That is, antibody-producing cells contained in the spleen, lymph node, bone marrow, tonsil, etc., preferably from the spleen obtained from the immunized mammal as described above, and preferably mouse, rat, guinea pig, hamster, rabbit or human
  • a hybridoma is obtained by cell fusion with a myeloma cell having no autoantibody-producing ability derived from a mammal such as mouse, rat or human.
  • myeloma cells used for cell fusion include mouse-derived myeloma P3 / X63-AG8.653 (653; ATCC No. CRL1580), P3 / NSI / 1-Ag4-1 (NS-1), P3 / X63-Ag8 .
  • human-derived myeloma U-266AR1, GM1500-6TG-A1-2, UC729-6, CEM-AGR, D1R11 or CEM-T15 examples of myeloma cells used for cell fusion.
  • the hybridoma producing the monoclonal antibody is obtained by culturing the obtained hybridoma in, for example, a microtiter plate, and using the polypeptide of the present invention used in the above-described immunization of the culture supernatant of the well in which proliferation has been observed. And the reactivity of the supernatant with the carrier protein can be measured by, for example, an immunoassay such as ELISA and compared.
  • the hybridomas cloned by screening are cultured using a medium (for example, DMEM containing 10% fetal calf serum). And the centrifugation supernatant of the culture solution can be used as a monoclonal antibody solution.
  • a medium for example, DMEM containing 10% fetal calf serum
  • the centrifugation supernatant of the culture solution can be used as a monoclonal antibody solution.
  • ascites can be generated in the animal, and the ascites obtained from the animal can be used as a monoclonal antibody solution.
  • the monoclonal antibody is preferably isolated and / or purified in the same manner as the polyclonal antibody described above.
  • Chimeric antibodies are described in, for example, “Experimental Medicine (Special Issue), Vol. 6, No. 10, 1988”, Japanese Examined Patent Publication No. 3-73280, etc., and humanized antibodies are described in, for example, Japanese Patent Publication No. 4-506458.
  • human antibodies include, for example, “Nature Genetics, Vol. 15, p.146-156, 1997”, “Nature Genetics, Vol. 7, p.13-21, 1994”.
  • Japanese translation of PCT publication No. 4-504365 pamphlet of International Publication No. WO94 / 25585, “Nikkei Science, June, 40 to 50, 1995”, “Nature, Vol. 368, pp. 856-859”.
  • 1994 ", JP-A-6-500263, etc., respectively.
  • Antibody production by phage display can be performed, for example, by collecting and concentrating phage having affinity for an antigen by biopanning from a phage library prepared for human antibody screening. Can be easily obtained. In this case, it is preferable to screen an antibody library using the polypeptide of the present invention as an antigen.
  • an antibody library using the polypeptide of the present invention as an antigen.
  • the antibody can be prepared using the antibody fragment obtained by this, or using the DNA of the phage.
  • the polypeptide of the present invention was obtained as a result of examining the amino acid sequence around the active hole of DPP-4. Therefore, the antibody of the present invention is expected to promote insulin secretion by recognizing DPP-4 and inhibiting its function (GLP-1 degradation). Thereby, it becomes possible to prevent (prevent) or treat diabetes in advance.
  • the compounding amount of the antibody contained in the preventive or therapeutic agent of the present invention is not particularly limited as long as the above effects are exhibited, but usually 0.001 to 90% by weight of the entire preventive or therapeutic agent of the present invention. It is preferably 0.005 to 50% by weight, more preferably 0.01 to 10% by weight.
  • the preventive or therapeutic agent of the present invention may contain a pharmaceutically acceptable carrier in addition to the antibody as an active ingredient.
  • a carrier usually used in the pharmaceutical field can be used.
  • excipients such as sucrose, starch, mannitol, sorbit, lactose, glucose, calcium phosphate, calcium carbonate, sodium benzoate, sulfite Preservatives such as sodium hydrogen, methylparaben, propylparaben, stabilizers such as citric acid, sodium citrate, acetic acid, suspensions such as methylcellulose, polyvinylpyrrolidone, aluminum stearate, dispersants such as surfactants, water, physiological Examples thereof include, but are not limited to, diluents such as saline and base waxes such as glycerin and polyethylene glycol.
  • Examples of the dosage form of the preventive or therapeutic agent of the present invention include, but are not limited to, liquids and injection preparations.
  • the preventive or therapeutic agent of the present invention may be a controlled-release preparation such as an immediate-release preparation or a sustained-release preparation. Since an antibody is generally soluble in an aqueous solvent, it can be easily absorbed regardless of the dosage form. Furthermore, the solubility of the antibody can be increased by a method known per se.
  • the preventive or therapeutic agent of the present invention that can be used for the prevention, treatment or alleviation of diabetes can be produced by using the above-mentioned antibody as an active ingredient according to a method known per se as a pharmaceutical production method.
  • the prophylactic or therapeutic agent of the present invention suitable for systemic administration can be produced by dissolving an effective amount of the antibody of the present invention in an aqueous or non-aqueous isotonic sterile injection solution (eg, injection preparation). it can.
  • the antibody of the present invention may be produced by lyophilizing (eg, lyophilized preparation) and dissolving it in an aqueous or non-aqueous isotonic sterile diluent.
  • the prophylactic or therapeutic agent of the present invention suitable for local administration can be produced by dissolving the antibody of the present invention in a diluent such as water or physiological saline (eg, liquid).
  • the liquid can also be used by inhalation therapy to the bronchi or lungs using a nebulizer.
  • These agents may contain antioxidants, buffers, antibacterial agents, isotonic agents and the like.
  • These preventive or therapeutic agents of the present invention can be enclosed in a container in unit doses or multiple doses like ampoules and vials.
  • the dose of the prophylactic or therapeutic agent of the present invention can be appropriately determined depending on the activity, type or combination amount of the antibody contained as an active ingredient, administration subject, administration route, age and weight of the administration subject, etc.
  • the dose per day (body weight 60 kg) (effective dose) is 0.1 mg to 1000 mg, preferably 0.1 mg to 500 mg, more preferably 0.1 mg to 300 mg as the amount of antibody.
  • the prophylactic or therapeutic agent of the present invention can be administered once or divided into several times per day as necessary, or can be administered in several days.
  • the preventive or therapeutic agent of the present invention can be used in combination with known diabetes preventive / therapeutic agents effective for diabetes.
  • known diabetes preventive / therapeutic agents include sitagliptin, vildagliptin, alogliptin, linagliptin, teneligliptin, anagliptin and other DPP-4 inhibitors, insulin, tolbutamide, glyclopyramide, glibenclamide, metformin, epalrestat, voglibose, acarbose, And antidiabetic drugs such as troglitazone. These may use together only 1 type and may use multiple types together.
  • “combination” means that the preventive or therapeutic agent of the present invention and the known diabetes preventive / therapeutic agent are used in combination, and the use form is not particularly limited.
  • Vaccine design and synthesis For the production of neutralizing antibodies, two parts in the N-terminal sequence of DPP-4 (E1; SEQ ID NO: 5) and the periphery of the active hole of DPP-4 The sequence (E2; SEQ ID NO: 6, E3; SEQ ID NO: 4) was designed. Three candidates of mussel hemocyanin (KLH) (Wako Pure Chemical Industries) that can present various T cell epitopes necessary to increase immunogenicity and assist in loss of resistance to peptide sequences as vaccines Conjugated to the N-terminus of the peptide. High quality synthetic peptides were obtained (purity> 98%) and purified by reverse phase HPLC (Peptide Institute Inc.).
  • KLH mussel hemocyanin
  • a group of control mice was injected subcutaneously with an equal quality KLH mixed with an equal volume of Freund's adjuvant. Serum was collected from the tail vein, and the antibody titer against the immune peptide was measured by ELISA after each boost.
  • ELISA The ELISA plate was coated overnight at 4 ° C. with each candidate peptide (5 mg / ml) conjugated to the carrier protein BSA (Peptide Institute Inc.). All wells were blocked with PBS containing 3% skim milk. Serum was diluted with blocking buffer in a range of 100-325,000 times. Plates were incubated with serum (overnight at 4 ° C.), washed, and then incubated with mouse IgG-specific HRP-conjugated antibody (GE Healthcare) at room temperature for 3 hours. In the IgG subclass determination assay, anti-mouse Ig subclass-specific HRP-conjugated antibodies (IgG1, IgG2b and IgG2c) were used.
  • IgG1, IgG2b and IgG2c anti-mouse Ig subclass-specific HRP-conjugated antibodies
  • peroxidase chromogenic substrate 3,3 ′, 5,5′-tetramethylbenzidine (TMB; Sigma) was added to the plate and allowed to react. All plates were analyzed at a wavelength of 450 nm using a microplate reader (Bio-Rad Inc.). The half-maximal antibody titer was determined by the maximum OD450 value within the dilution range when each sample was present.
  • DPP-4 assay Plasma DPP-4 activity was measured 15 minutes after food loading on days 28, 42 and 56.
  • DPP4 activity 5 ⁇ l of serum was mixed with DPP4-Glo TM Reagent solution (Promega) and assay buffer (100 mM HEPES, pH 7.6, 0.1 mg / ml BSA) to make a total volume of 60 ⁇ l.
  • DPP4-Glo TM Reagent solution 100 mM HEPES, pH 7.6, 0.1 mg / ml BSA
  • assay buffer 100 mM HEPES, pH 7.6, 0.1 mg / ml BSA
  • 1 ⁇ l of serum was incubated with recombinant DPP-4 (R & D Systems, Inc.) at 4 ° C. for 1 hour, and then the above DPP4-Glo TM Reagent solution was added.
  • pancreatic insulin content and tissue analysis Whole pancreas was quickly removed without fat or other pancreatic tissues.
  • insulin content assay the wet weight of the excised pancreas was measured, frozen in liquid hydrogen, and stored at ⁇ 80 ° C. until use.
  • the pancreas was thawed and homogenized with PBS containing a protease inhibitor cocktail. The homogenate was centrifuged (1000 g, 10 min, 4 ° C.) and the supernatant was prepared for insulin assay (mouse ELISA insulin kit, Morinaga).
  • insulin assay mouse ELISA insulin kit, Morinaga
  • immunohistological staining analysis the excised pancreas was fixed in 4% paraformaldehyde for 24 hours, embedded in paraffin, and cut into 4 ⁇ m sections.
  • the sections were reacted with a primary antibody (guinea pig anti-insulin antibody, Dako) and a secondary antibody (biotinylated anti-guinea pig IgG antibody).
  • the slide was counterstained with hematoxylene and used for microscopic observation.
  • jejunum, liver and kidney were dissected and fixed overnight in 4% paraformaldehyde and embedded in paraffin. 4 ⁇ m sections of liver and kidney were stained with Masson trichrome.
  • T cell proliferation assay Immunized mice were sacrificed at the end of the experimental period, spleen cells (10 6 cells / well) were cultured in RPMI 1640, candidate peptides, KLH and phytohemagglutinin (PHA) (Wako Pure Chemical Industries) at 10 ⁇ g / ml Stimulated with. After incubation at 37 ° C. for 48 hours, 1 ⁇ Ci [3H] thymidine (Perkin Elmer) was added to each well and the plates were incubated for an additional 8 hours. [3H] thymidine incorporation was measured using a MicroBeta 1450 TriLux scintillation counter (Wallac Oy).
  • ELISPOT Assay A 96-well ELISPOT assay plate was coated overnight at 4 ° C. with anti-mouse IFN- ⁇ antibody and anti-mouse IL-4 capture antibody, respectively. After incubation, the plates were washed with PBS containing 0.05% Tween 20 (PBS-T) and blocked with PBS containing 1% BSA and 5% sucrose. Spleen cells from the immunized mice were then seeded in the wells (10 6 cells / well) and the candidate peptides, KLH and PHA were restimulated at 10 ⁇ g / ml at 37 ° C. for 48 hours. After incubation, the plate was washed with PBS-T.
  • Example 1 Selection and Screening of Appropriate Antigen Sequence for DPP-4 Vaccine Based on the three-dimensional structure, three peptides (part in the N-terminal sequence of DPP-4 (E1; SEQ ID NO: 5), and others (E2; SEQ ID NO: 6, E3; SEQ ID NO: 4) Since the induced antibody covers the active hole of DPP-4, it is used as a DPP-4 neutralizing antibody.
  • mice immunized with E1 or E3 vaccines (hereinafter, respectively)
  • the antibody titer increases significantly on the 28th day in a dose-dependent manner, further increases on the 42nd and 56th days, and on the 70th day.
  • KLH vaccine group and E2 vaccine group the mice immunized with KLH or E2 vaccine
  • the antibody did not increase.
  • the average half-life of anti-DPP-4 antibodies in the vaccine group is about 42 days, which exceeds the half-life of all current DPP-4 inhibitory compounds.
  • the antibody titer in the mouse (20 ⁇ g peptide / mouse) was about 6 times higher than the antibody titer in the mouse dosed with the low dose vaccine (2 ⁇ g peptide / mouse).
  • 4 recognized antigens From the results of Western blotting, antibodies derived from the sera of the E1 or E3 vaccine group recognized the recombinant DPP-4 protein in the same manner as the BSA conjugate E1 or E3 (FIG. 1B). . Furthermore, in order to evaluate the inhibitory function of anti-DPP-4 antibodies induced by E1 or E3 vaccine, DPP- in plasma at 28, 42 and 56 days after immunization of E1 or E3 vaccine group 4 The inhibition rate of activity was measured.
  • Antibodies induced with E3 vaccine (20 ⁇ g peptide / mouse, 2 ⁇ g peptide / mouse) decreased plasma DPP-4 activity in a dose-dependent manner (25% inhibition, 18% inhibition, P ⁇ 0.05, respectively) (FIG. 2A).
  • antibodies induced with E1 vaccine did not reduce plasma DPP-4 activity.
  • the DPP-4 neutralizing activity of the anti-DPP-4 antibody induced by the vaccine against DPP-4 was evaluated by in vitro neutralization assay. Sera from mice immunized with E3 vaccine showed neutralizing activity of DPP-4 (13% inhibition, P ⁇ 0.05), but hardly increased in the E1 vaccine group (FIG. 2B).
  • Example 2 Improvement of insulin resistance by E3 vaccine in high fat diet mice GLP-1 secretion has been reported by complex nutrients as well as glucose (Yamazaki K et al., J Pharmacol Sci. 2007 May; 104 (1): 29-38.), A food load test was conducted to evaluate the effect of E3 vaccine on glucose metabolism. As a result, male mice immunized with E3 vaccine (8 weeks old, n 6 / group) did not lower glucose and insulin levels compared to control mice immunized with KLH vaccine under normal diet conditions. (FIGS. 4A and B). These results suggested that the E3 vaccine did not induce hypoglycemia in mice under normal diet conditions.
  • Example 4 Delayed Diabetes Onset in db / db Mice
  • a food load test was carried out to confirm a decrease in postprandial blood glucose level (10% decrease in AUC 0-2h ) (FIGS. 8A and B).
  • plasma insulin levels and pancreatic insulin levels were measured to assess the level of blood glucose regulation.
  • E3 vaccine After oral diet loading, plasma insulin levels increased in the E3 vaccine group compared to the KLH vaccine group (5.18 ng / ml E3 vaccine, 3.77 ng / ml KLH) (FIG. 8C). Similarly, E3 vaccine immunization caused a significant increase in pancreatic insulin levels (12.71 ng / ml E3 vaccine, 10.81 ng / ml KLH) (FIG. 8D). These results suggest that E3 vaccine not only increases insulin secretion but also improves ⁇ -cell proliferation or replication in the pancreas. As a result of the morphological test, it was suggested that the E3 vaccine suppresses the decrease and destruction of the ⁇ cell mass compared to the KLH vaccine group (FIG.
  • T cells in immunized mice were analyzed using IgG subclass ELISA assay, T cell proliferation assay and ELISPOT assay. Activation was examined.
  • IgG subclass ELISA assay the ratio of IgG1 anti-DPP-4 antibody to IgG2b anti-DPP-4 antibody in E3 vaccine group was 1 or more (1: 500 dilution), indicating that E3 vaccine was against DPP-4 This shows that Th2-type antibodies are mainly induced (FIG. 10A).
  • DPP-4 of the present invention By using the partial amino acid sequence of DPP-4 of the present invention as a vaccine, a neutralizing antibody that inhibits DPP-4 activity is induced, and the antibody inhibits degradation of GLP-1 and improves insulin secretion. it can. Since antibodies induced by the vaccine have a long half-life, they do not require frequent administration like conventional antidiabetic drugs.
  • This application is based on Japanese Patent Application No. 2013-183390 filed in Japan (filing date: September 4, 2013), the contents of which are incorporated in full herein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Diabetes (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 本発明は、配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド等を免疫原として用いた、DPP-4に対する中和抗体を誘導する糖尿病の予防または治療用ワクチン、および前記DDP-4の部分アミノ酸配列を認識するDDP-4中和抗体を含む、糖尿病の予防または治療剤を提供する。

Description

DPP-4を標的とした糖尿病治療用ワクチン
 本発明は、DPP-4(dipeptidyl peptidase 4)の特定の部分アミノ酸配列を免疫原として含む糖尿病の予防または治療用ワクチン、および前記DPP-4の部分アミノ酸配列を認識するDPP-4中和抗体を含む、糖尿病の予防または治療剤に関する。
 糖尿病はインスリンの体内での量的不足あるいは作用不足に起因して、血糖が健常人に比べ上昇し、その結果として腎臓、網膜、神経などにおける細小血管障害や、動脈硬化などの大血管障害により著しく健康な生活が損なわれる代謝性疾患である。これまでインスリン、インスリン分泌促進剤、インスリン抵抗性改善剤、α-グルコシダーゼ阻害剤などの血糖降下剤が臨床治療法として広く適用されている。しかしこれらの血糖降下剤は有用性が認められているものの、それぞれが多くの問題点を抱えている。例えば、インスリンは不適切な用法、用量で投与した場合、低血糖を招く危険性がある。また、膵臓のインスリン分泌能が著しく低下した糖尿病患者ではインスリン分泌促進剤やインスリン抵抗性改善剤の有効性は減少する。あるいは、インスリン抵抗性が著しい糖尿病患者ではインスリンやインスリン分泌促進剤の有効性は減少する。
 糖尿病の原因として複数のファクターが関わっていることが知られている。その一つとして、消化管ホルモンのインクレチンとして知られるGLP-1(glucagon-like peptide-1)は、グルコース代謝に関与している。GLP-1は、インスリン分泌を刺激するだけでなく、骨格筋、脂肪組織、肝臓を刺激することによってインスリン感受性を改善し、血糖値をコントロールすることができるが、セリンプロテアーゼであるDPP-4によって急速に分解される(非特許文献1)。そこで、糖尿病の治療を目的として、DPP-4を標的とした創薬が研究され、これまでにいくつかのDPP-4阻害薬が上市されてきた。しかし、投与回数や投与量が多くなる傾向があり、患者の経済的負担も大きいことが問題であった。
J Biol Chem 1996; 271(38): 23222-23229
 本発明は、従来のDPP-4阻害薬よりも投与量や投与回数に優れる糖尿病の予防または治療方法に用いるための、DPP-4の特定の部分アミノ酸配列を含む糖尿病の予防または治療用ワクチン、および前記DPP-4の部分アミノ酸配列を認識するDPP-4中和抗体を含む、糖尿病の予防または治療剤を提供することを課題とする。
 本発明者らは、DPP-4の3次元構造情報からGLP-1への結合および切断に重要なアミノ酸部位を複数推測し、該部位をDPP-4に対する中和活性を誘導できる抗原候補として設計した。合成した複数の前記抗原候補をKLHとコンジュゲートし、フロイントアジュバントとともにマウスに投与したところ、有意な抗体上昇を認める抗原候補を2種類特定した。さらに、該2種類の抗原候補を投与したマウスに高脂肪食負荷を行ったところ、1種類の抗原候補で免疫したマウスはコントロールに比べて、DPP-4活性の阻害率が高く、インスリン分泌や耐糖能性の改善が見られた。また、該抗原候補を3回投与されたマウスで誘導される抗体価の上昇は約3か月間持続した。さらにその後、再度該抗原候補を再投与することにより、ブースター効果によって抗体価が容易に再上昇した。
 本発明者らは、これらの知見に基づいてさらに検討を重ねた結果、本発明を完成するに至った。
 すなわち、本発明は、
[1]以下の(1)~(3)のいずれかの物質を含む糖尿病予防または治療用ワクチン:
(1)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド;
(2)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド;および
(3)上記(1)または(2)のポリペプチドを発現し得る発現ベクター;
[2]キャリアタンパク質を含む、[1]のワクチン;
[3]アジュバントを含む、[1]または[2]のワクチン;
[4]以下の(1)または(2)のポリペプチドを認識し、DPP-4の機能を阻害する抗体を含む、糖尿病の予防または治療剤:
(1)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド;
(2)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド;
[5]以下の(1)~(3)のいずれかの物質の有効量を対象に投与することを含む、糖尿病の予防または治療方法:
(1)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド;
(2)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド;および
(3)上記(1)または(2)のポリペプチドを発現し得る発現ベクター;
[6]キャリアタンパク質を投与することを含む、[5]に記載の方法;
[7]アジュバントを投与することを含む、[5]または[6]に記載の方法;
[8]以下の(1)または(2)のポリペプチドを認識し、DPP-4の機能を阻害する抗体の有効量を対象に投与することを含む、糖尿病の予防または治療方法:
(1)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド;
(2)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド;
[9]糖尿病の予防または治療方法に使用のための、以下の(1)~(3)のいずれかの物質:
(1)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド;
(2)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド;および
(3)上記(1)または(2)のポリペプチドを発現し得る発現ベクター;
[10]キャリアタンパク質を含む、[9]に記載の物質;
[11]アジュバントを含む、[9]または[10]に記載の物質;
[12]糖尿病の予防または治療方法に使用のための、以下の(1)または(2)のポリペプチドを認識し、DPP-4の機能を阻害する抗体:
(1)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド;
(2)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド;
[13]配列番号:2に示されるアミノ酸配列からなるポリペプチド;
を提供する。
 本発明のDPP-4の部分アミノ酸配列をワクチンとして用いることにより、DPP-4活性を阻害する中和抗体を誘導し、該抗体によってGLP-1の分解を阻害し、インスリン分泌を改善することができる。また、DPP-4の部分アミノ酸配列を認識する中和抗体を用いることによって、直接的に上記の効果を得ることができる。さらに中和抗体の半減期は、従来のDPP-4阻害剤よりも長いため、患者へのワクチンや抗体の投与頻度を従来のDPP-4阻害剤よりも下げることを期待できる。
A:E1、E2、E3またはKLHワクチンで免疫したマウスにおける、DPP-4に対する抗体価を示すグラフである。*:P<0.05、**:P<0.01、***:P<0.001。B:組換えDPP-4タンパク質に対するE1またはE3ワクチン群の血清由来の抗体の結合を示す図である。 A: E1またはE3ワクチンで免疫された56日目のマウス血漿中のDPP-4機能に対する、E1またはE3ワクチンで誘導された抗DPP-4抗体による阻害率を示す図である。*:P<0.05。B:DPP-4機能に対する、E1ワクチン(20μg/マウス)またはE3ワクチン(20μg/マウス)で免疫された56日目のマウス由来血清によるin vitro阻害率を示す図である。*:P<0.05。C:KLH、E1またはE3ワクチンで免疫されたマウスにおける、グルコース投与後の血漿中のGLP-1レベルを示すグラフである。*:P<0.05。 A:E3ワクチンで免疫された28、42、56日目のマウス血漿中のDPP-4機能に対する、E3ワクチンで誘導された抗DPP-4抗体による阻害率を示す図である。*:P<0.05。B:DPP-4機能に対する、E3ワクチン(20μg/マウス)で免疫された28、42、56日目のマウス由来血清によるin vitro阻害率を示す図である。*:P<0.05。 A:通常食条件下、E3またはKLHワクチンで免疫されたマウスにおける食負荷後のグルコースレベルを示す図である。B:通常食条件下、E3またはKLHワクチンで免疫されたマウスにおける食負荷後のインスリンレベルを示す図である。C:高脂肪食条件下、E3またはKLHワクチンで免疫されたマウスにおける経口食負荷試験(MTT)の実施プランを示す図である。D:高脂肪食条件下、E3またはKLHワクチンで免疫されたマウスにおける食負荷後のグルコースレベルを示す図である。E:高脂肪食条件下、E3またはKLHワクチンで免疫されたマウスにおける、食負荷後0~120分の間の総グルコースレベルを示す図である。*:P<0.05。 A:高脂肪食条件下、E3またはKLHワクチンで免疫されたマウスにおけるインスリンレベルを示す図である。*:P<0.05。B:高脂肪食条件下、E3またはKLHワクチンで免疫されたマウスにおけるHOMA-IRを示す図である。*:P<0.05。C:高脂肪食条件下、E3またはKLHワクチンで免疫されたマウスにおける腹腔内インスリン投与後のグルコースレベルを示す図である。インスリン投与時のグルコースレベルを100%とした。*:P<0.05。D:高脂肪食条件下、E3またはKLHワクチンで免疫されたマウスにおける腹腔内インスリン投与後のGLP-1レベルを示す図である。*:P<0.05。 A:E3ワクチンで免疫されたマウスにおける抗体価のタイムコースを示す図である。B:高脂肪食条件下、E3またはKLHワクチンで免疫されたマウスにおけるDPP-4レベルを示す図である。***:P<0.001。C:高脂肪食条件下、E3またはKLHワクチンで免疫されたマウスにおける体重を示す図である。D:高脂肪食条件下、E3またはKLHワクチンで免疫されたマウスにおける餌消費量を示す図である。 A:高脂肪食条件下、E3またはKLHワクチンで免疫された糖尿病モデルマウスにおける経口食負荷試験(MTT)の実施プランを示す図である。B:高脂肪食条件下、E3またはKLHワクチンで免疫された糖尿病モデルマウスにおける食負荷後のグルコースレベルを示す図である。*:P<0.05。C:高脂肪食条件下、E3またはKLHワクチンで免疫された糖尿病モデルマウスにおける、食負荷後0~120分の間の総グルコースレベルを示す図である。*:P<0.05。 A:非免疫db/dbマウス、E3またはKLHワクチンで免疫されたdb/dbマウスにおける食負荷後のグルコースレベルを示す図である。*:P<0.05。B:非免疫db/dbマウス、E3またはKLHワクチンで免疫されたdb/dbマウスにおける、食負荷後0~120分の間の総グルコースレベルを示す図である。*:P<0.05。C:非免疫db/dbマウス、E3またはKLHワクチンで免疫されたdb/dbマウスにおける食負荷後のインスリンレベルを示す図である。*:P<0.05。D:非免疫db/dbマウス、E3またはKLHワクチンで免疫されたdb/dbマウスにおける食負荷後の膵インスリン量を示す図である。*:P<0.05。E: E3またはKLHワクチンで免疫された食負荷後のdb/dbマウス膵臓由来の免疫組織染色された切片の顕微鏡像を示す図である。 A:非免疫db/dbマウス、E3またはKLHワクチンで免疫されたdb/dbマウスにおけるGLP-1レベルを示す図である。*:P<0.05。B: E3またはKLHワクチンで免疫されたdb/dbマウスにおけるDPP-4レベルを示す図である。*:P<0.05。 A: E3またはKLHワクチンで免疫したマウスにおける、誘導された各IgGサブクラスの抗体価を示すグラフである。**:P<0.01。B:E3またはKLHワクチンで免疫したマウス由来の脾細胞のT細胞増殖アッセイを示す図である。C:E3ワクチンで免疫したマウス由来の脾細胞のELISPOTアッセイを示す図である。D:E3ワクチンで免疫したマウス由来の脾細胞のELISPOTアッセイによる着色点の数を示す図である。 E3またはKLHワクチンで免疫されたマウス腎臓、肝臓および空腸由来のマッソントリクローム染色された切片の顕微鏡像を示す図である。
1.糖尿病予防または治療用ワクチン
 本発明は、以下の(1)~(3)のいずれかの物質を含む糖尿病予防または治療用ワクチン(以下、本発明のワクチン):
(1)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド;
(2)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド;および
(3)上記(1)または(2)のポリペプチドを発現し得る発現ベクター
を提供するものである。
 本明細書中、糖尿病は、糖尿病(1型糖尿病、2型糖尿病)に加えて、糖尿病が関連する疾患を含む。糖尿病が関連する疾患としては、例えば、糖尿病性神経障害、糖尿病性腎症、糖尿病性網膜症、高インスリン血症、肥満等が挙げられる。
 本発明のワクチンの投与対象は、任意の哺乳動物であってよいが、糖尿病を発症している哺乳動物または糖尿病を発症するおそれのある哺乳動物である。哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類及びウサギ等の実験動物、イヌ及びネコ等のペット、ウシ、ブタ、ヤギ、ウマ及びヒツジ等の家畜、ヒト、サル、オランウータン及びチンパンジー等の霊長類等が挙げられ、特にヒトが好ましい。投与対象は、糖尿病に対する治療を受けていても受けていなくてもよい。なお、本発明のワクチンが投与される場合、該ワクチンに含まれる物質は投与対象由来の物質(すなわち、ヒトに投与する場合、該ワクチンはヒト由来の物質であり、マウスに投与する場合、該ワクチンはマウス由来の物質である)であることが好ましい。
 本発明のワクチンに含まれる物質は、
(1)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド;
(2)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド;および
(3)上記(1)または(2)のポリペプチドを発現し得る発現ベクター
からなる群より選ばれる物質である。
 本発明のワクチンに含まれる上記(1)のポリペプチド(以下、上記(2)のポリペプチドと併せて、本発明のポリペプチド)は、DPP-4(dipeptidyl peptidase 4)アミノ酸配列の部分配列である。DPP-4は公知の遺伝子であり、そのヌクレオチド配列やアミノ酸配列も公知である。例えば、上記(1)のポリペプチドに含まれる具体的なアミノ酸配列としては、ヒトの場合、配列番号:2で表されるアミノ酸配列を挙げることができる。また、該部分配列は、例えば配列番号:1で表されるヌクレオチド配列によってコードされる。さらに、上記(1)のポリペプチドに含まれるアミノ酸配列としては、非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチドも好ましく挙げることができる。非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列としては、本明細書中の配列番号:2に開示されたアミノ酸配列の情報や、公知の配列データベースを利用して、適切なプライマーやプローブを設計し、RT-PCRやプラークハイブリダイゼーション等の通常の遺伝子工学的手法を用いて容易に取得することが出来る。例えば、ヒトDPP-4の部分配列である配列番号:2に対応する、マウスDPP-4アミノ酸配列の部分配列は、配列番号:4で表されるアミノ酸配列として挙げることができ、該部分配列は、例えば配列番号:3で表されるヌクレオチド配列にコードされる。また、ここで非ヒト哺乳動物とは上記した哺乳動物からヒトを除く哺乳動物である。
 本発明のワクチンに含まれる上記(1)のポリペプチドは、好ましくは、配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列からなるポリペプチドである。
 また、本発明のワクチンに含まれる上記(2)のポリペプチドは、DPP-4アミノ酸配列の部分配列において1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列である。そのようなポリペプチドとしては、ヒトの場合、配列番号:2で表されるアミノ酸配列において1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列も含まれる。該アミノ酸配列としては、例えば、(1)配列番号:2に示されるアミノ酸配列中の1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失したアミノ酸配列、(2)配列番号:2に示されるアミノ酸配列に1又は数個(好ましくは1~数(2~5)個)のアミノ酸が付加されたアミノ酸配列、(3)配列番号:2に示されるアミノ酸配列に1又は数個(好ましくは1~数(2~5)個)のアミノ酸が挿入されたアミノ酸配列、(4)配列番号:2に示されるアミノ酸配列中の1又は数個(好ましくは1~数(2~5)個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、または(5)上記(1)~(4)の変異が組み合わせられたアミノ酸配列(この場合、変異したアミノ酸の総和が、1又は数個(好ましくは1~数(2~5)個))が含まれる。また、上記(2)のポリペプチドに含まれるアミノ酸配列としては、非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列も好ましく挙げることができる。そのようなポリペプチドとしては、マウスの場合、配列番号:4で表されるアミノ酸配列において1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失、置換、挿入又は付加されたアミノ酸配列も含まれる。該アミノ酸配列としては、例えば、(1)配列番号:4に示されるアミノ酸配列中の1又は数個(好ましくは1~数(2~5)個)のアミノ酸が欠失したアミノ酸配列、(2)配列番号:4に示されるアミノ酸配列に1又は数個(好ましくは1~数(2~5)個)のアミノ酸が付加されたアミノ酸配列、(3)配列番号:4に示されるアミノ酸配列に1又は数個(好ましくは1~数(2~5)個)のアミノ酸が挿入されたアミノ酸配列、(4)配列番号:4に示されるアミノ酸配列中の1又は数個(好ましくは1~数(2~5)個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、または(5)上記(1)~(4)の変異が組み合わせられたアミノ酸配列(この場合、変異したアミノ酸の総和が、1又は数個(好ましくは1~数(2~5)個))が含まれる。
 「アミノ酸残基の置換」としては、例えば保存的アミノ酸置換があげられる。保存的アミノ酸置換とは、特定のアミノ酸を、そのアミノ酸の側鎖と同様の性質の側鎖を有するアミノ酸で置換することをいう。具体的には、保存的アミノ酸置換では、特定のアミノ酸は、そのアミノ酸と同じグループに属する他のアミノ酸により置換される。同様の性質の側鎖を有するアミノ酸のグループは、当該分野で公知である。例えば、このようなアミノ酸のグループとしては、塩基性側鎖を有するアミノ酸(例えば、リジン、アルギニン、ヒスチジン)、酸性側鎖を有するアミノ酸(例えば、アスパラギン酸、グルタミン酸)、中性側鎖を有するアミノ酸(例えば、グリシン、アスパラギン、グルタミン、セリン、トレオニン、チロシン、システイン、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)があげられる。また、中性側鎖を有するアミノ酸は、さらに、極性側鎖を有するアミノ酸(例えば、グリシン、アスパラギン、グルタミン、セリン、トレオニン、チロシン、システイン)、および非極性側鎖を有するアミノ酸(例えば、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)に分類することもできる。また、他のグループとして、例えば、芳香族側鎖を有するアミノ酸(例えば、フェニルアラニン、トリプトファン、チロシン)、水酸基(アルコール性水酸基、フェノール性水酸基)を含む側鎖を有するアミノ酸(例えば、セリン、トレオニン、チロシン)などもあげることができる。
 「アミノ酸残基の欠失」としては、例えば配列番号:2で表されるアミノ酸配列の中から、任意のアミノ酸残基を選択して欠失させることがあげられる。
 「アミノ酸残基の挿入」または「アミノ酸残基の付加」としては、例えば配列番号:2で表されるアミノ酸配列の内部、N末端側またはC末端側に、アミノ酸残基を挿入または付加させることがあげられる。ペプチドの水溶解性を増強するため、アミノ酸配列のN末端側またはC末端側に塩基性アミノ酸であるアルギニン(Arg)またはリジン(Lys)を1ないし2残基付加してもよい。
 本発明のワクチンに含まれる上記(2)のポリペプチドは、好ましくは、配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列からなるポリペプチドである。
 本発明のポリペプチドは、付加的なアミノ酸を含んでいてもよい。このようなアミノ酸付加は、該ポリペプチドがDPP-4に対する特異的免疫反応を誘導する限り許容される。付加されるアミノ酸配列は、特に限定されないが、例えばポリペプチドの検出や精製等を容易にならしめるためのタグを挙げることが出来る。タグとしては、Flagタグ、ヒスチジンタグ、c-Mycタグ、HAタグ、AU1タグ、GSTタグ、MBPタグ、蛍光タンパク質タグ(例えばGFP、YFP、RFP、CFP、BFP等)、イムノグロブリンFcタグ等を例示することが出来る。アミノ酸配列が付加される位置は、本発明のポリペプチドのN末端及び/又はC末端である。
 本発明のポリペプチドに用いられるアミノ酸はL体、D体およびDL体を包含するものであるが、通常、L体であることが好ましい。これらのポリペプチドは、通常のポリペプチド合成法によって合成され本発明に供することが出来るが、本発明においては製造方法・合成方法、調達方法等については、特に限定されない。
 上記(3)の発現ベクターにおいては、上述の(1)又は(2)のポリペプチドをコードするポリヌクレオチド(DNA又はRNA、好ましくはDNA)が、投与対象である哺乳動物の細胞内でプロモーター活性を発揮し得るプロモーターの下流に機能的に連結されている。即ち、(3)の発現ベクターは、プロモーターの制御下で、転写産物として(1)又は(2)のポリペプチドを発現し得る。(3)の発現ベクターを哺乳動物に投与することにより、該哺乳動物の体内において(1)又は(2)のポリペプチドが産生され、該哺乳動物に(1)又は(2)のポリペプチドに対する特異的免疫反応が誘導される。
 使用されるプロモーターは、投与対象である哺乳動物の細胞内で機能し得るものであれば特に制限はない。プロモーターとしては、polI系プロモーター、polII系プロモーター、polIII系プロモーター等を使用することができる。具体的には、SV40由来初期プロモーター、サイトメガロウイルスLTR等のウイルスプロモーター、β-アクチン遺伝子プロモーター等の哺乳動物の構成蛋白質遺伝子プロモーター等が用いられる。
 上記(3)の発現ベクターは、好ましくは上述の(1)又は(2)のポリペプチドをコードするポリヌクレオチドの下流に転写終結シグナル、すなわちターミネーター領域を含有する。さらに、形質転換細胞選択のための選択マーカー遺伝子(テトラサイクリン、アンピシリン、カナマイシン等の薬剤に対する抵抗性を付与する遺伝子、栄養要求性変異を相補する遺伝子等)をさらに含有することもできる。
 本発明において発現ベクターに使用されるベクターの種類は特に制限されないが、ヒト等の哺乳動物への投与に好適なベクターとしては、ウイルスベクター、プラスミドベクター等を挙げることが出来る。ウイルスベクターとしては、レトロウイルス、アデノウイルス、アデノ随伴ウイルス等が挙げられる。製造及び取り扱いの容易性や経済性を考慮すると、プラスミドベクターが好ましく用いられる。
 本発明のワクチンは、上記(1)若しくは(2)のポリペプチド又は(3)の発現ベクターに加え、任意の担体、例えば医薬上許容される担体を含む医薬組成物として提供され得る。
 医薬上許容される担体としては、例えば、ショ糖、デンプン等の賦形剤、セルロース、メチルセルロース等の結合剤、デンプン、カルボキシメチルセルロース等の崩壊剤、ステアリン酸マグネシウム、エアロジル等の滑剤、クエン酸、メントール等の芳香剤、安息香酸ナトリウム、亜硫酸水素ナトリウム等の保存剤、クエン酸、クエン酸ナトリウム等の安定剤、メチルセルロース、ポリビニルピロリドン等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水等の希釈剤、ベースワックス等が挙げられるが、それらに限定されるものではない。
 さらに、本発明のワクチンが上記(3)の発現ベクターの場合、該発現ベクターの細胞内への導入を促進するために、本発明のワクチンは更に核酸導入用試薬を含むことができる。発現ベクターとしてウイルスベクターを使用する場合には、遺伝子導入試薬としてはレトロネクチン、ファイブロネクチン、ポリブレン等を用いることができる。また、発現ベクターとしてプラスミドベクターを使用する場合には、リポフェクチン、リポフェクタミン(lipofectamine)、DOGS(トランスフェクタム)、DOPE、DOTAP、DDAB、DHDEAB、HDEAB、ポリブレン、あるいはポリ(エチレンイミン)(PEI)等の陽イオン性脂質を用いることが出来る。
 本発明のワクチンは、上記(1)若しくは(2)のポリペプチド又は(3)の発現ベクターによってコードされるポリペプチドの免疫原性を高めるために、キャリアタンパク質をさらに含むことが好ましい。キャリアタンパク質は、一般には、分子量が小さいために免疫原性を有さない分子に結合して免疫原性を付与する物質であり、当技術分野で公知である。キャリアタンパク質の例としては、牛血清アルブミン(BSA)、ウサギ血清アルブミン(RSA)、オボアルブミン(OVA)、スカシ貝ヘモシアニン(KLH)、チログロブリン(TG)、免疫グロブリン等などが好ましく挙げられる。特に好ましいキャリアタンパク質は、スカシ貝ヘモシアニン(KLH)である。上記(3)の発現ベクターの場合は、上記(1)または(2)のポリペプチドをコードするポリヌクレオチドに、該キャリアタンパク質をコードするポリヌクレオチドが連結されていてよい。
 本発明のワクチンはまた、製薬上許容可能で且つ活性成分と相溶性であるアジュバントをさらに含有することが好ましい。アジュバントは、一般には、宿主の免疫応答を非特異的に増強する物質であり、多数の種々のアジュバントが当技術分野で公知である。アジュバントの例としては以下のものが挙げられるが、これらに限定されない:完全フロイントアジュバント、不完全フロイントアジュバント、水酸化アルミニウム、N-アセチル-ムラミル-L-トレオニル-D-イソグルタミン(thr-MDP)、N-アセチル-ノルムラミル-L-アラニル-D-イソグルタミン(nor-MDP)、N-アセチルムラミル-L-アラニル-D-イソグルタミニル-L-アラニン-2-(1’-2’-ジパルミトイル-sn-グリセロ-3-ヒドロキシホスホリルオキシ)-エチルアミン(MTP-PE)、Quill A(登録商標)、リゾレシチン、サポニン誘導体、プルロニックポリオール、モンタニドISA-50(Seppic,Paris,France)、Bayol(登録商標)およびMarkol(登録商標)。
 本発明のワクチンは、経口又は非経口的に哺乳動物に対して投与することが出来る。ポリペプチドや発現ベクターは、胃の中で分解され得るので、非経口的に投与することが好ましい。経口投与に好適な製剤としては、液剤、カプセル剤、サシェ剤、錠剤、懸濁液剤、乳剤等を挙げることができる。非経口的な投与(例えば、皮下注射、筋肉注射、局所注入、腹腔内投与など)に好適な製剤としては、水性および非水性の等張な無菌の注射液剤があり、これには抗酸化剤、緩衝液、制菌剤、等張化剤等が含まれていてもよい。また、水性および非水性の無菌の懸濁液剤が挙げられ、これには懸濁剤、可溶化剤、増粘剤、安定化剤、防腐剤等が含まれていてもよい。当該製剤は、アンプルやバイアルのように単位投与量あるいは複数回投与量ずつ容器に封入することができる。また、有効成分および医薬上許容される担体を凍結乾燥し、使用直前に適当な無菌のビヒクルに溶解または懸濁すればよい状態で保存することもできる。
 医薬組成物中の有効成分の含有量は、通常、医薬組成物全体の約0.1~100重量%、好ましくは約1~99重量%、さらに好ましくは約10~90重量%程度である。
 本発明のワクチンの投与量は、投与する対象、投与方法、投与形態等によって異なるが、有効成分が上記(1)又は(2)のポリペプチドの場合は、通常成人1人当たりポリペプチドを、一回当たり1μg~1000μgの範囲、好ましくは20μg~100μgの範囲で、通常4週間から12週間に亘って、2回から3回投与し、抗体価が低下した場合にはその都度1回追加投与する。有効成分が上記(3)の発現ベクターの場合は、通常成人1人当たり発現ベクターを、一回当たり1μg~1000μgの範囲、好ましくは20μg~100μgの範囲で、通常4週間から12週間に亘って、2回から3回投与し、抗体価が低下した場合にはその都度1回追加投与する。
 本発明のワクチンを哺乳動物へ投与することにより、DPP-4に対する特異的免疫応答(特異的抗体産生、特異的T細胞の増殖等)が誘導され、該哺乳動物がDPP-4に対する中和抗体を獲得し、DPP-4の機能が阻害されることによってGLP-1の分解が抑制され、結果として糖尿病に対する予防または治療効果が発揮される。
 また本発明は、本発明のワクチンの1または2以上の成分を包含する、1または2以上の容器からなるキットを提供する。本発明のキットを用いることによっても、糖尿病を予防することができ、またはその症状を治療もしくは軽減することができる。
2.糖尿病予防または治療用DPP-4中和抗体
 本発明はまた、以下の(1)または(2)のポリペプチドを認識し、DPP-4の機能を阻害する抗体を含む、糖尿病の予防または治療剤(本発明の予防または治療剤):
(1)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド;
(2)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド
を提供するものである。
 前記(1)のポリペプチドは、好ましくは、配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列からなるポリペプチドである。また、前記(2)のポリペプチドは、好ましくは、配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列からなるポリペプチドである。
 前記(1)または(2)のポリペプチドを認識する抗体は、DPP-4に結合し、その機能を阻害することができるので、糖尿病に対する有効な予防および/または治療手段となり得る。すなわち、該抗体を投与することにより、糖尿病を発症した患者に対する治療効果、および発症のおそれのある対象に対する予防効果が期待できる。しかも、本発明の抗体は、元々ヒト体内に存在した抗体であるため、副作用の危険がまずないと考えられる。
 本発明の抗体としては、ポリクローナル抗体、モノクローナル抗体等の天然型抗体、トランスジェニックマウスや遺伝子組換え技術を用いて製造され得るキメラ抗体、ヒト化抗体および一本鎖抗体、ヒト抗体産生遺伝子を導入したマウスやファージディスプレイなどによって作製したヒト抗体ならびにこれらの断片などが含まれる。本発明の抗体は、それぞれ本発明のポリペプチドを認識し、DPP-4の機能を阻害する抗体である限り特に限定されないが、DPP-4に対する特異性の点からモノクローナル抗体であることが好ましい。あるいはヒトへの臨床応用の点から、本発明の抗体はヒト化抗体またはヒト抗体であることが好ましい。
 上記抗体断片とは、前述した抗体の一部分の領域を意味し、具体的には、例えばF(ab’)、Fab’、Fab、Fc領域を含む抗体断片、Fv(variable fragment of antibody)、sFv、dsFv(disulphide stabilised Fv)、dAb(single domain antibody)等が挙げられる(Exp.Opin.Ther.Patents,Vol.6,No.5,p.441-456,1996)。
 上記ヒト化抗体とは、抗原認識部位のみヒト以外の遺伝子を由来とし、かつ残りの部位をヒト遺伝子由来として、遺伝子組換え技術を用いて製造された抗体のことをいう。また上記ヒト抗体とは、ヒト抗体産生遺伝子を導入したトランスジェニックマウス(例、TransChromo Mouse(商標))が産生するヒト抗体や、ヒトのBリンパ球のmRNAやゲノム由来のVH遺伝子とVL遺伝子とをランダムに組み合わせて構築したライブラリーから、ファージディスプレイ法などのディスプレイ技術によって抗体可変領域を発現させたヒト抗体ライブラリーを基に作製した抗体のことをいう。
 また抗体のクラスも特に限定されず、本発明の抗体は、IgG、IgM、IgA、IgDまたはIgE等のいずれのアイソタイプを有する抗体をも包含する。好ましくはIgGまたはIgMであり、抗体の精製の容易性等を考慮すると、より好ましくはIgGである。
 次に、抗体の製造方法について説明する。
 ポリクローナル抗体またはモノクローナル抗体は、自体公知の方法によって製造することができる。すなわち、免疫原(本発明のポリペプチド)を、必要に応じてフロイントアジュバント(Freund’s Adjuvant)と共に、哺乳動物、例えばポリクローナル抗体の場合、マウス、ラット、ハムスター、モルモット、ウサギ、ネコ、イヌ、ブタ、ヤギ、ウマまたはウシなど、好ましくはマウス、ラット、ハムスター、モルモット、ヤギ、ウマまたはウサギに免疫する。モノクローナル抗体の場合は、同様の方法で、マウス、ラット、ハムスターなどに免疫する。
 本発明のポリペプチドは、そのまま免疫原として用いることも可能であるが、分子量1万以上の高分子化合物との複合体として免疫することが望ましい。従って、本発明のポリペプチドは、免疫原として使用するとき、自体公知の方法により高分子化合物(例、キャリアタンパク質など)との複合体としてもよい。例えば、配列番号:2で表されるアミノ酸配列からなるポリペプチドを上記記載の方法に従って合成し、牛血清アルブミン(BSA)、ウサギ血清アルブミン(RSA)、オボアルブミン(OVA)、スカシ貝ヘモシアニン(KLH)、チログロブリン(TG)、免疫グロブリン等のキャリアタンパク質との複合体を形成させる。当該複合体は、その後好ましい免疫原として用いることができる。複合体としては、スカシ貝ヘモシアニンとの複合体が好ましく用いられる。
 前記ポリペプチドとキャリアタンパク質との複合体を形成させるなどの目的で、本発明のポリペプチドには1~2個、好ましくは1個のアミノ酸を付加することが出来る。付加されるアミノ酸の位置はポリペプチドのいずれの位置でもよく、特に限定されないが、ポリペプチドのN末端またはC末端が好ましい。
 複合体の形成においては、本発明のポリペプチドの抗原性を維持することができる限り、限定なく公知の方法を適用することができる。例えば、本発明のポリペプチドにシステイン残基を導入し、当該システインの側鎖であるSH基を介して前記高分子化合物(キャリアタンパク質)のアミノ基と結合させることもできる(MBS法)。また、タンパク質のリジン残基のεアミノ基や、αアミノ基などのアミノ基同士を結合させることもできる(グルタルアルデヒド法)。
 ポリクローナル抗体は、具体的には下記のようにして製造することができる。すなわち、免疫原をマウス、ラット、ハムスター、モルモット、ヤギ、ウマまたはウサギ、好ましくはヤギ、ウマまたはウサギ、より好ましくはウサギの皮下内、筋肉内、静脈内、フッドパッド内あるいは腹腔内に1~数回注射することにより免疫感作を施す。通常、初回免疫から約1~14日毎に1~5回免疫を行って、最終免疫より約1~5日後に免疫感作された該哺乳動物から血清を取得する。
 血清そのものをポリクローナル抗体として用いることも可能であるが、限外ろ過、硫安分画、ユーグロブリン沈澱法、カプロイン酸法、カプリル酸法、イオン交換クロマトグラフィー(DEAEまたはDE52等)、抗イムノグロブリンカラムもしくはプロテインA/Gカラム、免疫原を架橋させたカラム等を用いたアフィニティカラムクロマトグラフィーにより、該抗体を単離および/または精製し、得られた精製抗体を用いることも可能である。
 モノクローナル抗体の製造方法としては、例えば下記の方法が挙げられる。まず上記免疫感作動物から得た該抗体産生細胞と自己抗体産生能のない骨髄腫系細胞(ミエローマ細胞)からハイブリドーマを調製し、該ハイブリドーマをクローン化する。すなわち、ハイブリドーマの培養上清を検体として、免疫学的手法により、哺乳動物の免疫に用いた本発明のペプチドに対する特異的親和性を示しかつキャリアタンパク質と交差反応性を示さないモノクローナル抗体を産生するクローンを選択する。次いで、当該ハイブリドーマの培養上清などから、自体公知の方法によって抗体を製造することができる。
 具体的には、下記のようにしてモノクローナル抗体を製造することができる。すなわち、免疫原を、マウス、ラットまたはハムスター(ヒト抗体産生トランスジェニックマウスのような他の動物由来の抗体を産生するように作出されたトランスジェニック動物を含む)の皮下内、筋肉内、静脈内、フッドパッド内もしくは腹腔内に1~数回注射するか、または移植することにより免疫感作を施す。通常、初回免疫から約1~14日毎に1~4回免疫を行って、最終免疫より約1~5日後に免疫感作された該哺乳動物の脾臓などから抗体産生細胞を取得する。
 モノクローナル抗体を分泌するハイブリドーマ(融合細胞)の調製は、ケーラーおよびミルシュタインらの方法(Nature,Vol.256,p.495-497,1975)ならびにそれらに準じる修飾方法に従って行うことができる。すなわち、前述の如く免疫感作された哺乳動物から取得される脾臓、リンパ節、骨髄または扁桃等、好ましくは脾臓に含まれる抗体産生細胞と、好ましくはマウス、ラット、モルモット、ハムスター、ウサギまたはヒト等の哺乳動物、より好ましくはマウス、ラットまたはヒト由来の自己抗体産生能のないミエローマ細胞との細胞融合により、ハイブリドーマを得る。
 細胞融合に用いられるミエローマ細胞としては、例えばマウス由来ミエローマP3/X63-AG8.653(653;ATCC No.CRL1580)、P3/NSI/1-Ag4-1(NS-1)、P3/X63-Ag8.U1(P3U1)、SP2/0-Ag14(Sp2/0、Sp2)、PAI、F0またはBW5147、ラット由来ミエローマ210RCY3-Ag.2.3.、ヒト由来ミエローマU-266AR1、GM1500-6TG-A1-2、UC729-6、CEM-AGR、D1R11またはCEM-T15が挙げられる。
 モノクローナル抗体を産生するハイブリドーマのスクリーニングは、得られたハイブリドーマを、例えばマイクロタイタープレート内で培養し、増殖の見られたウェルの培養上清の、前述の免疫感作で用いた本発明のポリペプチドに対する反応性および前記上清のキャリアタンパク質に対する反応性を、例えばELISA等の免疫測定法によって測定し、比較することによって行うことができる。
 スクリーニングによりクローン化されたハイブリドーマは、培地(例えば、10%牛胎仔血清を含むDMEM)を用いて培養される。そして、その培養液の遠心上清をモノクローナル抗体溶液とすることができる。また、該ハイブリドーマを、該ハイブリドーマに由来する動物の腹腔に注入することにより、動物に腹水を生成させ、該動物から得られた腹水をモノクローナル抗体溶液とすることができる。モノクローナル抗体は、上述のポリクローナル抗体と同様の方法で、単離および/または精製されることが好ましい。
 また、キメラ抗体は、例えば「実験医学(臨時増刊号),Vol.6,No.10,1988」、特公平3-73280号公報等を、ヒト化抗体は、例えば特表平4-506458号公報、特開昭62-296890号公報等を、ヒト抗体は、例えば「Nature Genetics,Vol.15,p.146-156,1997」、「Nature Genetics,Vol.7,p.13-21,1994」、特表平4-504365号公報、国際公開WO94/25585号パンフレット、「日経サイエンス、6月号、第40~第50頁、1995年」、「Nature,Vol.368,p.856-859,1994」、特表平6-500233号公報等を参考にそれぞれ製造することができる。
 ファージディスプレイによる抗体作製は、例えばヒト抗体スクリーニング用に作製されたファージライブラリーから、バイオパニングにより抗原に親和性を有するファージを回収、濃縮することにより行うことができ、これによりFab等の抗体等を容易に得ることができる。この場合、本発明のポリペプチドを抗原として用いて、抗体ライブラリーをスクリーニングすることが好ましい。好ましい抗体ライブラリーおよび抗体のスクリーニング方法については、「Science,228:4075 p.1315-1317(1985)」、「Nature,348:p.552-554(1990)」、「Curr.Protein Pept.Sci.,Sep;1(2):155-169(2000)」、国際公開WO01/062907号パンフレットなどを参照のこと。これにより得られた抗体断片を用いたり、ファージが有するDNAを利用して抗体を調製することができる。
 本発明のポリペプチドは、DPP-4のアクティブホール(active hole)の周辺部のアミノ酸配列を検討した結果、得られたものである。従って、本発明の抗体は、DPP-4を認識し、その機能(GLP-1分解)を阻害することによって、インスリン分泌の促進効果が期待される。これにより、糖尿病を未然に防止(予防)したり、治療することが可能となる。
 本発明の予防または治療剤中に含まれる前記抗体の配合量は、上記効果を奏する限り特に限定されるものではないが、通常、本発明の予防または治療剤全体の0.001~90重量%であり、好ましくは0.005~50重量%であり、より好ましくは0.01~10重量%である。
 本発明の予防または治療剤は、有効成分である前記抗体以外に医薬的に許容される担体を含有していてもよい。かかる担体としては、製剤分野において通常用いられる担体を使用することができ、例えば、ショ糖、デンプン、マンニット、ソルビット、乳糖、グルコース、リン酸カルシウム、炭酸カルシウム等の賦形剤、安息香酸ナトリウム、亜硫酸水素ナトリウム、メチルパラベン、プロピルパラベン等の保存剤、クエン酸、クエン酸ナトリウム、酢酸等の安定剤、メチルセルロース、ポリビニルピロリドン、ステアリン酸アルミニウム等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水等の希釈剤、グリセリン、ポリエチレングリコール等のベースワックスなどが挙げられるが、それらに限定されない。
 本発明の予防または治療剤の投与剤形としては、例えば液剤、注射製剤などが挙げられるが、それらに限定されない。また本発明の予防または治療剤は、その剤形が速放性製剤または徐放性製剤などの放出制御製剤であってもよい。抗体は一般に水性溶媒に可溶であるため、上記いずれの剤形を採っても容易に吸収される。さらに自体公知の方法により抗体の溶解性を上昇させることも可能である。
 糖尿病の予防、治療または軽減のために用いることができる本発明の予防または治療剤は、製剤製法として自体公知である手段に従って、上記抗体を有効成分として使用することで製造することができる。
 例えば、全身投与に好適な本発明の予防または治療剤は、水性または非水性の等張な無菌の注射液に有効量の本発明の抗体を溶解させて製造(例、注射製剤)することができる。本発明の抗体を凍結乾燥させ(例、凍結乾燥製剤)これを水性または非水性の等張な無菌の希釈液に溶解させることで製造してもよい。また、局所投与に好適な本発明の予防または治療剤は、水または生理食塩水のような希釈液に本発明の抗体を溶解させて製造することができる(例、液剤)。液剤は、噴霧器を用いた気管支や肺などへの吸入療法によって使用することも可能である。なお、これらの剤には抗酸化剤、緩衝液、制菌剤、等張化剤等が含まれていてもよい。これらの本発明の予防または治療剤は、アンプル及びバイアルのように、単位投与量あるいは複数回投与量ずつ容器に封入することができる。
 本発明の予防または治療剤の投与量は、有効成分として含有する抗体の活性、種類もしくは配合量、投与対象、投与ルート、投与対象の年齢及び体重等により適宜設定することができるが、例えば成人(体重60kg)1日あたりの投与量(有効量)としては、抗体量として0.1mg~1000mg、好ましくは0.1mg~500mg、さらに好ましくは0.1mg~300mgである。本発明の予防または治療剤は、1日あたり、必要に応じて一度又は数回に分割して投与することができ、また数日に分けて投与することもできる。
 本発明の予防または治療剤は、糖尿病に有効な公知の糖尿病予防・治療剤と併用することができる。そのような公知の糖尿病予防・治療剤としては、シタグリプチン、ビルダグリプチン、アログリプチン、リナグリプチン、テネリグリプチン、アナグリプチンなどのDPP-4阻害薬、インシュリン、トルブタミド、グリクロピラミド、グリベンクラミド、メトホルミン、エパルレスタット、ボグリボース、アカルボース、トログリタゾン等の抗糖尿病薬などが挙げられる。これらは1種類のみを併用してもよいし、複数の種類を併用してもよい。本明細書中、「併用」とは、本発明の予防または治療剤と該公知の糖尿病予防・治療剤とを組み合わせて使用することを意味し、その使用形態は特に限定されない。例えば、本発明の予防または治療剤と該公知の糖尿病予防・治療剤とを共に含有した医薬組成物としての投与、または混合することなく別途製剤し、同時若しくは時間差をあけての投与の両方を含む。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明がこれらに限定されないことは言うまでもない。
ワクチンの設計と合成
 中和抗体の産生のため、DPP-4のN末端配列中の一部(E1;配列番号:5)、およびDPP-4のアクティブホール(active hole)の周辺部の2つの配列(E2; 配列番号:6、E3; 配列番号:4)を設計した。免疫原性を増加させるのに必要な種々のT細胞エピトープを提示することができ、またワクチンとしてのペプチド配列に対する耐性喪失を補佐するスカシ貝ヘモシアニン(KLH)(Wako Pure Chemical Industries)を3つの候補ペプチドのN末端にコンジュゲートした。高品質の合成ペプチドを取得し(純度>98%)、逆相HPLC(Peptide Institute Inc.)で精製した。
動物研究と免疫
 8週齢のオスC57BL/6Jマウスと6週齢のオスdb/dbマウスを購入(Oriental Yeast Company)し、温度および光サイクル調節施設で飼育し、自由に餌と水を摂取させた。高脂肪食マウスモデルでは、8週齢のオスC57BL/6Jマウスに高脂肪食(HFD60:18.2%タンパク質、62.2%脂肪、19.6%炭水化物;Oriental Yeast Company)をさせた。免疫前に、ペプチド溶液を等量のフロイントアジュバント(CFA/IFA, Wako Pure Chemical Industries)と混合した。マウス群(n=6)に、2μgまたは20μgの候補ペプチドで、0,14,28,84または119日目に皮下注射した。対照マウス群は、等量のフロイントアジュバントと混合した等品質のKLHを皮下注射した。尾静脈から血清を回収し、それぞれブースト後にELISAで免疫ペプチドに対する抗体価を測定した。
ELISA
 ELISAプレートをキャリアタンパク質BSA(Peptide Institute Inc.)にコンジュゲートした各候補ペプチド(5mg/ml)で4℃、一晩コートした。全ウェルを3%スキムミルク含有PBSでブロッキングした。血清はブロッキングバッファーで100倍~325,000倍の範囲で希釈した。プレートを血清と共にインキュベーション(4℃一晩)し、洗浄した後、マウスIgG特異的HRPコンジュゲート抗体(GE Healthcare)で室温、3時間培養した。なお、IgGサブクラス決定アッセイでは、抗マウスIgサブクラス特異的HRPコンジュゲート抗体(IgG1, IgG2b およびIgG2c)を用いた。プレートを洗浄後、パーオキシダーゼ発色基質である、3,3',5,5'-テトラメチルベンジジン(TMB; Sigma)をプレートに添加し、反応させた。全プレートをマイクロプレートリーダー(Bio-Rad Inc.)を用いて450nmの波長で解析した。最大半量抗体価は、それぞれの試料がある場合、希釈範囲内で最大のOD450値によって決定した。
DPP-4アッセイ
 28,42および56日目に食負荷15分後に、血漿中のDPP-4活性を測定した。DPP-4活性測定のため、5μl血清をDPP4-GloTM Reagent溶液(Promega) およびアッセイバッファー(100 mM HEPES, pH 7.6, 0.1 mg/ml BSA)と混合し、全量60μlとした。DPP-4中和抗体の中和活性測定のため、1μl血清を組換えDPP-4(R&D Systems, Inc.)で4℃1時間インキュベートし、次いで、上記のDPP4-GloTM Reagent溶液を加えた。SpectraFluorを用いて30分間、1分毎に放出された蛍光を測定した。データは以下のように計算し、%阻害として表現した:%阻害=100(1-(Vi/Vc)); Viは、免疫された試料の反応速度であり、Vcは、コントロール試料の反応速度である。血漿中のDPP-4抗原測定では、マウスDPP-4 ELISAキットに添付の方法に従い、血清をELISAプレート中でインキュベートし(R&D Systems, Inc.)、マイクロプレートリーダー(Bio-Rad Inc.)で測定した。
ウェスタンブロットアッセイ
 組換えDPP-4およびBSAコンジュゲートDPP-4は、SDS-PAGEで電気泳動的に分離し、PVDF膜に転写した。転写膜を血清および市販のDPP-4抗体(CD26 (T-19): sc-7044, Santa Cruz Biotechnology, Inc.)でそれぞれインキュベートした。さらに、マウスIgG特異的HRPコンジュゲート抗体でインキュベートした後、転写膜を視覚化し、電気化学発光シグナルを定量化した。
食負荷試験と血漿パラメーター
 マウスを一晩絶食させ、流動餌(14%タンパク質、31.5%脂肪、54.5%CHO;EnsureH, Meiji)を2g CHO/Kgの用量で経口的に投与した。血漿中のインスリン濃度(マウスELISAインスリンキット, Morinaga)、血漿中の活性GLP-1(EMD Millipore, Inc.)、および血中のグルコースレベルは各時点において測定した。血中グルコースは、食負荷後0,30,60,90及び120分後に採取した尾の血液からグルコーメーターを用いて決定した。t=0分からt=120分までの血中グルコースエクスカーション(excursion)分析結果は、曲線下の面積の積分に用いた(AUC 0-2h)。各処置に対する%阻害値は、食負荷された絶食マウスに対して標準化されたAUCデータから計算した。
膵インスリン量および組織解析
 全膵を脂肪やほかの膵組織が付かないように素早く摘出した。インスリン量アッセイでは、摘出した膵臓の湿重量を計測後、液体水素中で凍結させ、-80℃で使用するまで保存した。膵臓を解凍し、プロテアーゼ阻害剤カクテルを含有するPBSでホモジナイズした。ホモジネートを遠心分離(1000g, 10分, 4℃)し、インスリンアッセイ(マウスELISAインスリンキット, Morinaga)用に上清を調製した。免疫組織染色解析では、摘出した膵臓を4%パラホルムアルデヒド中で24時間固定し、パラフィン中に埋包し、4μmの切片に切り出した。切片を1次抗体(テンジクネズミ抗インスリン抗体、Dako)および2次抗体(ビオチン化抗テンジクネズミIgG抗体)で反応させた。スライドをヘマトオキシレンで対比染色し、顕微鏡観察に用いた。組織検査アッセイでは、空腸、肝臓および腎臓を解剖し、4%パラホルムアルデヒド中で一晩固定し、パラフィン中に埋包した。肝臓および腎臓の4μm切片をマッソントリクロームで染色した。
T細胞増殖アッセイ
 免疫したマウスを実験期間の最後に殺し、脾細胞(106 細胞/ウェル)をRPMI1640で培養し、候補ペプチド、KLHおよびフィトヘマグルチニン(PHA) (Wako Pure Chemical Industries)を10μg/mlで刺激した。37℃、48時間でインキュベーション後、1μCiの[3H]チミジン(Perkin Elmer)を各ウェルに添加し、プレートをさらに8時間インキュベートした。MicroBeta 1450 TriLux シンチレーションカウンター(Wallac Oy)を用いて、[3H]チミジン取り込みを測定した。
ELISPOTアッセイ
 96ウェルELISPOTアッセイプレートを抗マウスIFN-α抗体および抗マウスIL-4キャプチャー抗体それぞれで4℃、一晩コートした。インキュベーション後、プレートを0.05% Tween 20含有PBS(PBS-T)で洗浄し、1%BSAおよび5%スクロースを含むPBSでブロッキングした。次いで、免疫したマウス由来の脾細胞をウェルに播種し(106 細胞/ウェル)、候補ペプチド、KLHおよびPHAを10μg/mlで37℃、48時間、再刺激した。インキュベーション後、プレートをPBS-Tで洗浄した。ウェルをビオチン化抗マウスIFN-α抗体またはビオチン化抗マウスIL-4抗体で4℃、一晩インキュベートし、PBS-Tで洗浄した。ストレプトアビジン-APを各ウェルに添加し、室温で2時間インキュベートした。PBS-Tで洗浄後、プレートをBCIP/NBT溶液で30分間、室温でインキュベートした。最後に、プレートを水で洗浄し、室温で風乾させ、着色点の数を解剖顕微鏡(Olympus)を用いて計算した。
統計解析
 全データは、平均値±標準誤差として表した。統計解析はPrism GraphPadバージョン5.01(GraphPad Software Inc.)を用いて行った。統計的差異は、P<0.05の時に有意であるとみなした。
実施例1 DPP-4ワクチンのための適切な抗原配列の選定とスクリーニング
 三次元構造に基づき、3つのペプチド(DPP-4のN末端配列中の一部(E1;配列番号:5)、およびその他の2つの配列(E2; 配列番号:6、E3; 配列番号:4)を設計した。誘導された抗体は、DPP-4のアクティブホール(active hole)を覆うので、DPP-4中和抗体として機能することが期待された。3つの候補ペプチド(E1, E2またはE3)をKLHにコンジュゲートし、オスC57BL/6Jマウス(8週齢, n=6/群)に低用量(2μgペプチド/マウス)および高用量(20μgペプチド/マウス)で2週間のインターバルを置いて3回注射した(図1A)。DPP-4に対する抗体価(最大半量で示した)は、最初の免疫後の14日目には上昇しなかった。しかし、E1またはE3ワクチンで免疫されたマウス(以下、それぞれE1ワクチン群、E3ワクチン群と記載する場合がある)では、28日目に投与量依存的に抗体価が著明に上昇し、42日目、56日目にさらに上昇し、70日目に次第に減少した。一方、KLHまたはE2ワクチンで免疫したマウス(以下、それぞれKLHワクチン群、E2ワクチン群と記載する場合がある)では抗体は増加しなかった。これらの結果は、E1ワクチン群およびE3ワクチン群における抗DPP-4抗体の平均半減期は約42日であり、これは現行のすべてのDPP-4阻害化合物の半減期を上回る。免疫開始後56日目において、高用量ワクチンを投与されたマウス(20μgペプチド/マウス)における抗体価は、低用量ワクチンを投与されたマウス(2μgペプチド/マウス)における抗体価よりも約6倍高かった。E1またはE3ワクチンで誘導された抗体がDPP-4抗原を認識し、結合できるかどうか評価した。ウェスタンブロットによる結果から、E1またはE3ワクチン群の血清由来の抗体は、BSAコンジュゲートE1またはE3と同様に、組換えDPP-4タンパク質を認識した(図1B)。
 さらに、E1またはE3ワクチンによって誘導された抗DPP-4抗体の阻害機能を評価するために、E1またはE3ワクチン群の免疫後28日目、42日目および56日目における、血漿中のDPP-4活性の阻害率を測定した。E3ワクチン(20μgペプチド/マウス, 2μgペプチド/マウス)で誘導された抗体は、ワクチン投与量依存的に、血漿中のDPP-4活性を下げた(それぞれ25%阻害, 18%阻害, P<0.05)(図2A)。しかし、E1ワクチンで誘導された抗体は血漿中のDPP-4活性を下げなかった。また、DPP-4に対するワクチンによって誘導された抗DPP-4抗体のDPP-4中和活性をin vitro中和アッセイによって評価した。E3ワクチンで免疫したマウス由来の血清は、DPP-4の中和活性を示した(13%阻害, P<0.05)が、E1ワクチン群ではほとんど上昇しなかった(図2B)。さらに、E3ワクチンで誘導された抗体の抗体価の上昇に伴い、時間依存的(28日目、42日目、56日目)に血漿中のDPP-4活性の阻害率が上昇し(図3A)、抗体の中和活性が上昇した(図3B)。従って、この結果から、E3ワクチンで誘導された抗体はin vivoおよびin vitroにおいて効率的にDPP-4活性を阻害することが分かった。
 DPP-4活性阻害作用を確認するために、KLH、E1またはE3ワクチンで免疫されたマウスにおける血漿中のGLP-1レベルを測定した。経口グルコース投与後5分で血漿中のGLP-1レベルは最大に達することは周知であった。測定の結果、E3ワクチン群においてのみ、血漿中のGLP-1レベルが著明に増大したが、E1ワクチン群およびKLHワクチン群は、絶食マウスと同様に、低レベルであった(図2C)。
実施例2 高脂肪食マウスにおけるE3ワクチンによるインスリン抵抗性の改善
 グルコースと同様に複合栄養素によってもGLP-1の分泌が報告されていることから(Yamazaki K et al., J Pharmacol Sci. 2007 May;104(1):29-38.)、グルコース代謝におけるE3ワクチンの効果を評価するため、食負荷試験を実施した。その結果、E3ワクチンで免疫された雄マウス(8週齢, n=6/群)は、通常食条件下、KLHワクチンで免疫された対照マウスと比較してもグルコースレベルやインスリンレベルを下げなかった(図4A、B)。これらの結果は、E3ワクチンは、通常食条件下のマウスにおいて低血糖症を誘導しないことを示唆した。
 E3ワクチンの効果をさらに評価するため、免疫開始時点から、C57BL/6Jマウス(8週齢, n=6/群)を高脂肪食(60%脂肪)させて(図4C)、105日目に経口食負荷試験(MTT)を実施し、E3ワクチンの耐糖能異常を改善する効果を調べた。E3ワクチン免疫後、高用量(20μgペプチド/マウス)で免疫されたマウスにおける血漿中のグルコースレベルは、KLHワクチン群より低かった(図4D、E)。また、高用量のE3ワクチンで免疫されたマウスにおいて、高脂肪食マウスにおける血漿中の上昇したインスリンレベルの明らかな減少が確認できた(図5A)。さらに、KLHワクチン群と比較して、高用量のE3ワクチンで免疫されたマウスにおいて、インスリン感受性を評価するために有用なパラメーターであるHOMA-IRの有意な改善が確認された(図5B)。腹腔内インスリン負荷試験(IPITT)においては、高用量のE3ワクチンは、インスリン投与後の高脂肪食マウスの血中グルコースの減少速度を顕著に改善し(図5C)、インスリン抵抗性の改善が認められた。このときの血漿中のGLP-1レベルを測定したところ、ワクチン投与量依存的に血漿中のGLP-1レベルが著明に上昇した(図5D)。
 E3ワクチンの3回投与により抗体価の上昇は約3か月間持続した。さらに再度E3ワクチンを投与することにより、ブースター効果により抗体価が再上昇することを確認した(図6A)。 E3ワクチンを投与された高脂肪食マウスにおいて、血漿中のDPP-4レベルが減少した(20%減少 vs KLHワクチン群)(図6B)。
 さらに、E3ワクチン群とKLHワクチン群の間には、体重増加や餌消費の顕著な変化はなかった(図6C、D)。
実施例3 高脂肪食誘導性初期2型糖尿病モデルマウスの評価
 糖尿病モデルにおけるE3ワクチンの有効性をさらに調べるために、これまでに報告されている高脂肪食誘導性初期2型糖尿病モデルマウス(Guim K et al., Diabetes December 2004 53:S225-S232)を用いた。該マウス(8週齢, n=6/群)には、最初のE3ワクチン(20μg/マウス)投与前に、5週間高脂肪食を負荷した(図7A)。KLHワクチン群に比べて、E3ワクチン群ではDPP-4活性の阻害率が上昇していた(22%, p<0.05)。さらに、E3ワクチンは、56日目の食負荷試験において、グルコースエクスカーション(excursion)を改善した(図7B、C)。これらの結果は、E3ワクチンが、インスリン抵抗性を改善するだけでなく、2型糖尿病の初期症状を改善することを示唆する。
実施例4 db/dbマウスにおける糖尿病発症の遅延
 糖尿病の進行におけるE3ワクチンの効果を調べるために、若齢db/dbマウス(6週齢, n=5/群)をE3ワクチン(20μg/マウス)で免疫した。免疫開始から28日目に食負荷試験を実施し、食後血中グルコースレベルの減少を確認した(AUC0-2hにおいて10%減少)(図8A、B)。また、血中グルコース調節のレベルを評価するために、血漿中のインスリンレベルおよび膵インスリン量を測定した。経口食負荷後、KLHワクチン群に比べて、E3ワクチン群では血漿中のインスリンレベルは上昇した(5.18ng/ml E3ワクチン、3.77ng/ml KLH)(図8C)。同様に、E3ワクチン免疫は、膵インスリン量の著明な増加の原因となった(12.71ng/ml E3ワクチン、10.81ng/ml KLH)(図8D)。これらの結果は、E3ワクチンが、インスリン分泌を増大させるだけでなく、膵臓におけるβ細胞の増殖または複製を改善することを示唆する。また、形態試験を実施した結果、KLHワクチン群に比べて、E3ワクチンはβ細胞塊の減少や破壊を抑制することが示唆された(図8E)。
 さらに、db/dbマウスにおいて、インスリン分泌に対するE3ワクチンのメカニズムを調べるため、血漿中の活性GLP-1レベルと血漿中のDPP-4レベルを調べた(図9A、B)。E3ワクチン群では、KLHワクチン群に比べて、血漿中のDPP-4が中和され、一方で、血漿活性GLP-1レベルが上昇した(38%上昇 vs KLHワクチン群, p<0.05)。これらの結果は、E3ワクチンによる誘導抗体が、膵インスリン分泌を刺激する内在性GLP-1レベルを上昇させ、最終的に血中グルコースレベルを減少させることを示唆する。
実施例5 免疫におけるT細胞活性化の評価
 E3ワクチンで免疫したマウスにおけるT細胞応答を分析するために、IgGサブクラスELISAアッセイ、T細胞増殖アッセイおよびELISPOTアッセイを用いて、免疫後のマウスにおけるT細胞活性化を調べた。IgGサブクラスELISAアッセイでは、E3ワクチン群におけるIgG2b抗DPP-4抗体に対するIgG1抗DPP-4抗体の割合が1以上であり(1:500希釈)、このことは、E3ワクチンはDPP-4に対して主にTh2型抗体を誘導していることを示している(図10A)。 T細胞応答のTh1型およびTh2型をさらに検出するために、ELISPOTアッセイによって脾細胞中のIFN-α(Th1)およびIL-4(Th2)の産生を調べた。KLHによる刺激は、IFN-αおよびIL-4の産生を誘導し、さらに、IL-4を産生する脾細胞の数を顕著に増加させたが、DPP-4ペプチドとコントロールはなにも誘導しなかった(図10C、D)。 T細胞増殖アッセイでは、E3ワクチンで免疫したマウス由来の脾細胞は、E3ペプチドによる刺激後も著明なT細胞増殖を誘導しなかった(図10B)。これらの結果は、KLHはT細胞活性化を誘導するための適切なT細胞エピトープを有するが、DPP-4はそれを持っていないことを示唆する。さらに、E3ワクチン刺激後は、T細胞の大部分が抗体産生を促進し、自己免疫応答を誘導する危険性を減少させるTh2型に分化した。
 また、内皮DPP-4が高レベルで発現している空腸、肝臓および腎臓などの組織における免疫調節ダメージを評価した。E3ワクチンでマウスを免疫後、コントロール群と比較して、明らかな組織損傷や白血球蓄積は見られなかった(図11)。この結果は、E3ワクチンは抗原-抗体作用を刺激しなかったことを示唆する。
 本発明のDPP-4の部分アミノ酸配列をワクチンとして用いることにより、DPP-4活性を阻害する中和抗体を誘導し、該抗体によってGLP-1の分解を阻害し、インスリン分泌を改善することができる。該ワクチンによって誘導される抗体は半減期が長いため、従来の糖尿病治療薬のような頻回投与を必要としない。
 本出願は、日本で出願された特願2013-183390(出願日:平成25年9月4日)を基礎としており、その内容はすべて本明細書に包含されるものとする。

Claims (13)

  1.  以下の(1)~(3)のいずれかの物質を含む糖尿病予防または治療用ワクチン:
    (1)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド;
    (2)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド;および
    (3)上記(1)または(2)のポリペプチドを発現し得る発現ベクター。
  2.  キャリアタンパク質を含む、請求項1に記載のワクチン。
  3.  アジュバントを含む、請求項1または2に記載のワクチン。
  4.  以下の(1)または(2)のポリペプチドを認識し、DPP-4の機能を阻害する抗体を含む、糖尿病の予防または治療剤:
    (1)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド;
    (2)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド。
  5.  以下の(1)~(3)のいずれかの物質の有効量を対象に投与することを含む、糖尿病の予防または治療方法:
    (1)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド;
    (2)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド;および
    (3)上記(1)または(2)のポリペプチドを発現し得る発現ベクター。
  6.  キャリアタンパク質を投与することを含む、請求項5に記載の方法。
  7.  アジュバントを投与することを含む、請求項5または6に記載の方法。
  8.  以下の(1)または(2)のポリペプチドを認識し、DPP-4の機能を阻害する抗体の有効量を対象に投与することを含む、糖尿病の予防または治療方法:
    (1)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド;
    (2)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド。
  9.  糖尿病の予防または治療方法に使用のための、以下の(1)~(3)のいずれかの物質:
    (1)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド;
    (2)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド;および
    (3)上記(1)または(2)のポリペプチドを発現し得る発現ベクター。
  10.  キャリアタンパク質を含む、請求項9に記載の物質。
  11.  アジュバントを含む、請求項9または10に記載の物質。
  12.  糖尿病の予防または治療方法に使用のための、以下の(1)または(2)のポリペプチドを認識し、DPP-4の機能を阻害する抗体:
    (1)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列を含むポリペプチド;
    (2)配列番号:2に示されるアミノ酸配列または非ヒト哺乳動物において配列番号:2に対応するアミノ酸配列において、1または数個のアミノ酸残基が置換、欠失、挿入または付加されたアミノ酸配列を含むポリペプチド。
  13.  配列番号:2に示されるアミノ酸配列からなるポリペプチド。
PCT/JP2014/072403 2013-09-04 2014-08-27 Dpp-4を標的とした糖尿病治療用ワクチン WO2015033831A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/916,448 US20160193308A1 (en) 2013-09-04 2014-08-27 Dpp-4-targeting vaccine for treating diabetes
CN201480048995.7A CN105722527A (zh) 2013-09-04 2014-08-27 用于治疗糖尿病的靶向dpp-4疫苗
KR1020167007170A KR20160068742A (ko) 2013-09-04 2014-08-27 Dpp-4를 표적으로 하는 당뇨병 치료용 백신
JP2015535438A JPWO2015033831A1 (ja) 2013-09-04 2014-08-27 Dpp−4を標的とした糖尿病治療用ワクチン
EP14842753.7A EP3042667A4 (en) 2013-09-04 2014-08-27 Dpp-4-targeting vaccine for treating diabetes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013183390 2013-09-04
JP2013-183390 2013-09-04

Publications (1)

Publication Number Publication Date
WO2015033831A1 true WO2015033831A1 (ja) 2015-03-12

Family

ID=52628307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072403 WO2015033831A1 (ja) 2013-09-04 2014-08-27 Dpp-4を標的とした糖尿病治療用ワクチン

Country Status (6)

Country Link
US (1) US20160193308A1 (ja)
EP (1) EP3042667A4 (ja)
JP (1) JPWO2015033831A1 (ja)
KR (1) KR20160068742A (ja)
CN (1) CN105722527A (ja)
WO (1) WO2015033831A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164409A1 (ja) 2016-03-25 2017-09-28 国立大学法人大阪大学 疾患の要因となる生体内タンパク質を標的とするコンジュゲートワクチン
JP2021038159A (ja) * 2019-09-02 2021-03-11 学校法人慶應義塾 Rage由来ペプチドおよびその使用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296890A (ja) 1986-03-27 1987-12-24 メディカル リサーチ カウンスル 組換えdna生産物及び製造法
JPH0373280B2 (ja) 1984-08-15 1991-11-21 Shingijutsu Kaihatsu Jigyodan
JPH04504365A (ja) 1990-01-12 1992-08-06 アブジェニックス インコーポレイテッド 異種抗体の生成
JPH04506458A (ja) 1989-12-21 1992-11-12 セルテック リミテッド Cd3特異的組換え抗体
JPH06500233A (ja) 1990-08-29 1994-01-13 ジェンファーム インターナショナル,インコーポレイティド 異種免疫グロブリンを作る方法及びトランスジェニックマウス
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO2001062907A1 (en) 2000-02-22 2001-08-30 Medical & Biological Laboratories Co., Ltd. Antibody library
JP2009502139A (ja) * 2005-07-22 2009-01-29 ワイズセラピューティックス株式会社 抗cd26抗体およびその使用方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373280B2 (ja) 1984-08-15 1991-11-21 Shingijutsu Kaihatsu Jigyodan
JPS62296890A (ja) 1986-03-27 1987-12-24 メディカル リサーチ カウンスル 組換えdna生産物及び製造法
JPH04506458A (ja) 1989-12-21 1992-11-12 セルテック リミテッド Cd3特異的組換え抗体
JPH04504365A (ja) 1990-01-12 1992-08-06 アブジェニックス インコーポレイテッド 異種抗体の生成
JPH06500233A (ja) 1990-08-29 1994-01-13 ジェンファーム インターナショナル,インコーポレイティド 異種免疫グロブリンを作る方法及びトランスジェニックマウス
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO2001062907A1 (en) 2000-02-22 2001-08-30 Medical & Biological Laboratories Co., Ltd. Antibody library
JP2009502139A (ja) * 2005-07-22 2009-01-29 ワイズセラピューティックス株式会社 抗cd26抗体およびその使用方法

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
CURR. PROTEIN PEPT. SCI., vol. 1, no. 2, September 2000 (2000-09-01), pages 155 - 169
EXP. OPIN. THER. PATENTS, vol. 6, no. 5, 1996, pages 441 - 456
EXPERIMENTAL MEDICINE, vol. 6, no. 10, 1988
GUIM K ET AL., DIABETES, vol. 53, December 2004 (2004-12-01), pages S225 - S232
J BIOL CHEM, vol. 271, no. 38, 1996, pages 23222 - 23229
KOHLER; MILSTEIN ET AL., NATURE, vol. 256, 1975, pages 495 - 497
NATURE GENETICS, vol. 15, 1997, pages 146 - 156
NATURE GENETICS, vol. 7, 1994, pages 13 - 21
NATURE, vol. 348, 1990, pages 552 - 554
NATURE, vol. 368, 1994, pages 856 - 859
NIKKEI SCIENCE, June 1995 (1995-06-01), pages 40 - 50
SCIENCE, vol. 228, no. 4075, 1985, pages 1315 - 1317
See also references of EP3042667A4 *
TANG J. ET AL.: "An inhibitory antibody against dipeptidyl peptidase IV improves glucose tolerance in vivo.", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 288, no. 2, January 2013 (2013-01-01), pages 1307 - 1316, XP055322478 *
YAMAZAKI K ET AL., J PHARMACOL SCI., vol. 104, no. 1, May 2007 (2007-05-01), pages 29 - 38

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164409A1 (ja) 2016-03-25 2017-09-28 国立大学法人大阪大学 疾患の要因となる生体内タンパク質を標的とするコンジュゲートワクチン
KR20180123064A (ko) 2016-03-25 2018-11-14 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 질환의 요인이 되는 생체내 단백질을 표적으로 하는 컨쥬게이트 백신
CN108883166A (zh) * 2016-03-25 2018-11-23 国立大学法人大阪大学 以成为疾病主要原因的生物体内蛋白质为靶标的结合疫苗
US10980876B2 (en) 2016-03-25 2021-04-20 Osaka University Conjugate vaccine targeting a disease-causing biological protein
EP4194007A1 (en) 2016-03-25 2023-06-14 Osaka University Conjugate vaccine targeting disorder-causing in vivo protein
US12070498B2 (en) 2016-03-25 2024-08-27 Osaka University Conjugate vaccine targeting a disease-causing biological protein
JP2021038159A (ja) * 2019-09-02 2021-03-11 学校法人慶應義塾 Rage由来ペプチドおよびその使用

Also Published As

Publication number Publication date
KR20160068742A (ko) 2016-06-15
US20160193308A1 (en) 2016-07-07
EP3042667A4 (en) 2017-04-05
EP3042667A1 (en) 2016-07-13
CN105722527A (zh) 2016-06-29
JPWO2015033831A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
TWI845803B (zh) 抗ccr8抗體及其用途
US20210032318A1 (en) Prevention and treatment of synucleinopathic and amyloidogenic disease
RU2729161C2 (ru) Фармацевтические композиции, содержащие варианты пептидов, и способы их применения
CN105601748B (zh) 用于代谢病症和疾病治疗的组合物、应用和方法
US20190062428A1 (en) Combination of anti-cd47 antibodies and cell death-inducing agents, and uses thereof
JP5823663B2 (ja) ミスフォールドsod1媒介疾患を処置および検出するための方法および組成物
EP1910829B1 (en) Prevention and treatment of synucleinopathic and amyloidogenic disease
EP1578253B2 (en) Prevention and treatment of synucleinopathic disease
EP2583978B1 (en) Prevention and treatment of synucleinopathic and amyloidogenic disease
JP2021185178A (ja) 胆汁酸に関係した障害の治療方法
US20080182258A1 (en) Q3 sparc deletion mutant and uses thereof
EA007218B1 (ru) Предотвращение и лечение амилоидогенного заболевания
AU2010220781A1 (en) Antibodies and epitopes specific to misfolded prion protein
EP3067066B1 (en) Prevention and treatment of synucleinopathic and amyloidogenic disease
US20160184416A1 (en) Prevention and Treatment of Synucleinopathic and Amyloidogenic Disease
US10821159B2 (en) Target for diabetes treatment and prevention
WO2015033831A1 (ja) Dpp-4を標的とした糖尿病治療用ワクチン
WO2020096046A1 (ja) 老化関連t細胞を標的とした糖代謝異常の予防または治療用ワクチン
JP2007129942A (ja) SARSコロナウイルスのmembrane(M)蛋白質に結合し、M蛋白質とnucleocapsid(N)蛋白質の結合を阻害するペプチド、およびM蛋白質とN蛋白質との相互作用解析システム
US11712466B2 (en) Vaccine composition
JP6164593B2 (ja) Il−17aを標的とするワクチン
TW202438531A (zh) 抗ccr8抗體及其用途
Rudofsky et al. TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling
JPWO2005014809A1 (ja) 肝臓ガン特異的ポリペプチド、該ポリペプチドをコードするポリヌクレオチド、及び該ポリペプチドの発現を抑制するrna分子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535438

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14916448

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167007170

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014842753

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842753

Country of ref document: EP