WO2015033694A1 - バッテリパック冷却システム - Google Patents

バッテリパック冷却システム Download PDF

Info

Publication number
WO2015033694A1
WO2015033694A1 PCT/JP2014/069557 JP2014069557W WO2015033694A1 WO 2015033694 A1 WO2015033694 A1 WO 2015033694A1 JP 2014069557 W JP2014069557 W JP 2014069557W WO 2015033694 A1 WO2015033694 A1 WO 2015033694A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
thermistor
battery pack
cell module
cell
Prior art date
Application number
PCT/JP2014/069557
Other languages
English (en)
French (fr)
Inventor
井口 豊樹
浩明 橋本
正義 佐伯
弘明 斉藤
清田 茂之
良幸 田中
弘志 岩田
浩 星
彰 小滝
那由他 山地
吉田 敏之
生 吉川
武志 芳賀
Original Assignee
日産自動車株式会社
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 日立オートモティブシステムズ株式会社 filed Critical 日産自動車株式会社
Priority to CN201480048689.3A priority Critical patent/CN105518929B/zh
Priority to EP14842849.3A priority patent/EP3043417B1/en
Priority to US14/914,275 priority patent/US10249913B2/en
Priority to JP2015535377A priority patent/JP6173469B2/ja
Publication of WO2015033694A1 publication Critical patent/WO2015033694A1/ja
Priority to US16/269,631 priority patent/US10511066B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery pack cooling system that cools a cell module with cooling air flowing through a cooling passage in an internal space of a battery pack case.
  • a battery pack for storing a plurality of batteries for storing a plurality of batteries; a high-efficiency heat conduction member disposed between a position in the battery pack that has the lowest temperature during cooling and a position in the battery pack that has the highest temperature during cooling; Temperature measuring means for measuring the temperature of the efficient heat conducting member.
  • the temperature control apparatus of the battery pack which controls the temperature in a battery pack to the optimal temperature range based on the temperature measurement result of a temperature measurement means is known (for example, refer patent document 1).
  • the thermistor installed in the cooling passage is used as a temperature measuring means for measuring the temperature of the highly efficient heat conducting member. For this reason, although the temperature of the whole battery pack can be measured, there existed a problem that the temperature distribution of each cooling passage cannot be detected, and the clogging which inhibits the flow of cooling air cannot be detected. On the other hand, in order to be able to detect the temperature distribution and clogging of the cooling passages, a plurality of thermistors are required for each cooling passage, and there is a problem that the number of thermistors installed increases.
  • the present invention has been made paying attention to the above problems, and is capable of performing battery temperature control, battery input / output control, and cell module clogging diagnosis while minimizing the number of temperature sensors installed.
  • the purpose is to provide a system.
  • the present invention sets a cell module including a plurality of cells with a cooling passage in an internal space of a battery pack case, and the cell module is configured by cooling air flowing through the cooling passage. Cooling.
  • the cooling passage includes a cooling air introduction passage, a cooling air discharge passage, and a plurality of cooling branch passages arranged by connecting the cooling air introduction passage and the cooling air discharge passage in parallel. Have and configure.
  • the cell module is set in each of the plurality of cooling branch passages.
  • temperature sensors are respectively installed at an upstream position and a downstream position of one cell module.
  • a cell module is set in each of the cooling branch passages that are arranged in plural by connecting the cooling air introduction passage and the cooling air discharge passage in parallel.
  • a temperature sensor is each installed in the upstream position and downstream position of one cell module among several cell modules.
  • the temperature sensor installed at the upstream position of the cell module where the introduction of cooling air is started provides the lowest temperature information and is installed at the downstream position of the cell module where the cooling air that has taken heat away is discharged.
  • the highest temperature information can be obtained from the temperature sensor. Therefore, the battery temperature can be controlled using the maximum temperature information, the battery input / output control can be performed using the minimum temperature information and the maximum temperature information, and the temperature difference information between the maximum temperature and the minimum temperature is used. Can diagnose clogging of cell modules. As a result, it is possible to perform battery temperature control, battery input / output control, and cell module clogging diagnosis while minimizing the number of temperature sensors installed.
  • FIG. 1 is an overall system diagram showing a battery pack cooling system of a first embodiment applied to a hybrid vehicle equipped with a battery pack. It is a perspective view which shows the cell module set to a battery pack case with the battery pack cooling system of Example 1.
  • FIG. It is a cell can perspective view which shows the flow direction and temperature relationship of the cooling wind in the cell module set to a battery pack case by the battery pack cooling system of Example 1.
  • FIG. It is a flowchart which shows the flow of the fan control process performed with the hybrid control module (HCM) of the battery pack cooling system of Example 1.
  • HCM hybrid control module
  • FIG. It is a flowchart which shows the flow of the battery input / output control processing performed with the lithium ion battery controller (LBC) and hybrid control module (HCM) of the battery pack cooling system of Example 1.
  • FIG. 3 is a flowchart illustrating a flow of a diagnostic process executed by a hybrid control module (HCM) of the battery pack cooling system according to the first embodiment.
  • FIG. 6 is an overall system diagram showing a battery pack cooling system showing another example in which fan control processing is directly executed by a lithium ion battery controller (LBC).
  • LBC lithium ion battery controller
  • Example 1 shown in the drawings.
  • the configuration of the battery pack cooling system in the first embodiment will be described by dividing it into [overall system configuration], [fan control configuration], [battery input / output control configuration], and [diagnostic processing configuration].
  • FIG. 1 shows a battery pack cooling system according to a first embodiment applied to a hybrid vehicle equipped with a battery pack
  • FIGS. 2 and 3 show a configuration of the cell module and a temperature change.
  • the overall system configuration will be described below with reference to FIGS.
  • the battery pack cooling system is a system in which a cell module composed of a plurality of cells is set with a cooling passage in the internal space of the battery pack case, and the cell module is cooled by cooling air flowing through the cooling passage.
  • the battery pack BP has a battery pack case 1, a first partition wall 21, a second partition wall 22, a third partition wall 23, a first cell module 31, and a second battery pack BP.
  • a cell module 32 and a third cell module 33 are provided.
  • the battery pack BP is a secondary battery (lithium ion battery) mounted as a power source for a motor / generator for traveling (not shown), and the battery pack case 1 includes a lower case and an upper case that are joined to each other.
  • the internal space of the case is defined in four chambers by the first partition wall 21, the second partition wall 22, and the third partition wall 23.
  • the first cell module 31, the second cell module 32, and the third cell module 33 are arranged in three of the four chambers defined in the battery pack case 1.
  • a junction box 8 J / B that consolidates relay circuits for supplying / cutting off / distributing high-voltage systems, and lithium for monitoring battery charge capacity (battery SOC), battery temperature, etc.
  • An ion battery controller 9 LBC is disposed.
  • a cooling fan 4 As the cooling configuration of the cell modules 31, 32, 33, as shown in FIG. 1, a cooling fan 4, a cooling air introduction duct 5, a cooling branch passage 6, and a cooling air discharge duct 7 are provided.
  • the cooling passages include a cooling air introduction passage 51, a cooling air discharge passage 71, a first cooling branch passage 61 arranged by connecting the cooling air introduction passage 51 and the cooling air discharge passage 71 in parallel, and a second cooling passage.
  • a branch passage 62 and a third cooling branch passage 63 are included.
  • the cooling fan 4 discharges the cabin air (cooling air) from the suction duct 41 whose one end is opened into the cabin to the cooling air introduction duct 5.
  • the cooling air introduction duct 5 is formed in a cylindrical shape from a synthetic resin material and is fixed to the long side surface of the battery pack case 1.
  • a cooling air introduction passage 51 is formed by the space in the duct of the cooling air introduction duct 5, and the cooling air introduction passage 51 is connected to the cooling branch passage 6 (the first cooling branch passage 61, the second cooling branch passage 62, and the third cooling branch). It communicates with each entrance of the passage 63).
  • the cooling branch passage 6 is constituted by three branch passages including a first cooling branch passage 61, a second cooling branch passage 62, and a third cooling branch passage 63.
  • the first cooling branch passage 61 is arranged at the most upstream position among the three branch passages arranged in parallel from the upstream side to the downstream side of the flow of the cooling air.
  • the first cell module 31 is set.
  • the second cooling branch passage 62 is arranged at an intermediate position among the three branch passages arranged in parallel from the upstream side to the downstream side of the flow of the cooling air.
  • the cell module 32 is set.
  • the third cooling branch passage 63 is arranged at the most downstream position among the three branch passages arranged in parallel from the upstream side to the downstream side of the flow of the cooling air.
  • the third cell module 33 is set.
  • the cooling air discharge duct 7 is formed in a cylindrical shape from a synthetic resin material, and is fixed to the long side surface of the battery pack case 1 facing the cooling air introduction duct 5.
  • a cooling air discharge passage 71 is formed by the space in the duct of the cooling air introduction duct 5, and the cooling air discharge passage 71 is formed in the cooling branch passage 6 (the first cooling branch passage 61, the second cooling branch passage 62, and the third cooling branch). It communicates with each outlet of the passage 63).
  • the cooled cooling air from the cooling air discharge duct 7 is discharged outside the vehicle.
  • the seven cylindrical cell cans 31a are defined as a first cell can row 31b and a second cell can row 31c arranged with their can axes parallel to each other. Then, the second cell can row 31c is overlapped with the first cell can row 31b by two-pitch with the can axis interval shifted by a half pitch, and the cold air passage gap t (for example, several mm) is placed between the can bodies adjacent to each other. ) Is secured by the module holder 31d. At this time, a cold air passage gap t is also secured between the module holder 31d and the cell can 31a. Therefore, as shown by the arrows in FIG. 2, the cooling air introduced in a direction orthogonal to the can axis of the cell can 31a flows while drawing a streamline that sews along the surface of the can body of the cell can 31a. .
  • the mounting configuration of the thermistor (temperature sensor) to each of the cell modules 31, 32, 33 will be described.
  • the thermistors for measuring the temperature by using the resistance change with respect to the temperature change four first thermistors 11h (first highest temperature sensor), second thermistor 12L (second lowest temperature sensor), and second thermistor 12h (second 2 highest temperature sensor) and a third thermistor 13L (third lowest temperature sensor).
  • the first thermistor 11h is installed at a downstream position of the first cell module 31 that is the highest temperature region in the entire battery pack.
  • the first thermistor 11 h is attached to the bottom surface of the cell can disposed at the end position on the most downstream side of the first cell module 31.
  • the reason why the downstream position of the first cell module 31 is the highest temperature region in the entire battery pack will be described. Due to the shape of the cooling air introduction duct 5, the cooling air amount to the first cell module 31 closest to the cooling fan 4 is small, and the cooling effect of the first cell module 31 among the three cell modules is reduced accordingly. It depends.
  • the second thermistor 12L is installed at the upstream position of the second cell module 32 where the lowest temperature is reached, and the second thermistor 12h is installed at the downstream position of the second cell module 32 where the highest temperature is reached.
  • the second thermistors 12L and 12h are respectively attached to the bottom surfaces of the cell cans arranged at both end positions of the second cell module 32.
  • the reason why the second thermistor 12L and the second thermistor 12h are arranged separately at both end positions of the second cell module 32 will be described.
  • the temperature of the upstream cell can cooled by the low-temperature cooling air discharged from the cooling fan 4 is the second cell module 32.
  • the temperature of the cell can at the downstream position cooled by the cooling air that has taken high heat from the plurality of cell cans through which the cooling air has passed becomes the highest temperature of the second cell modules 32. by.
  • the third thermistor 13L is installed at an upstream position of the third cell module 33 that is the lowest temperature region in the entire battery pack.
  • the third thermistor 13 ⁇ / b> L is attached to the bottom surface of the cell can disposed at the most end position on the upstream side of the third cell module 33.
  • the reason why the upstream position of the third cell module 33 is the lowest temperature region in the entire battery pack will be described. Due to the shape of the cooling air introduction duct 5, the cooling air amount to the third cell module 33 farthest from the cooling fan 4 is large, and the cooling effect of the third cell module 33 among the three cell modules is increased accordingly. It depends.
  • the lithium ion battery controller 9 is connected to the hybrid control module 14 (HCM) by a CAN communication line or the like.
  • the hybrid control module 14 inputs information from the lithium ion battery controller 9, vehicle speed information, engine ON / OFF information, and the like. Then, a fan control (battery temperature control) based on a fan drive instruction to the fan drive circuit 15, a battery input / output control based on an upper limit torque instruction to the motor controller 16 (MC), and a diagnostic process such as a clogging diagnosis of a cell module are performed.
  • MC motor controller 16
  • FIG. 4 shows the flow of fan control processing executed by the hybrid control module 14 (HCM).
  • HCM hybrid control module 14
  • step S1 it is determined whether or not the ignition switch is ON. If YES (IGN ON), the process proceeds to step S2 and step S5. If NO (IGN OFF), the determination in step S1 is repeated.
  • step S2 following the determination that IGN ON in step S1 or step S12, the thermistor temperatures Th1, TL2, Th2, from the first thermistor 11h, the second thermistor 12L, the second thermistor 12h, and the third thermistor 13L. Read TL3 and proceed to step S3.
  • step S3 following reading of the thermistor temperatures Th1, TL2, Th2, and TL3 in step S2, a battery FAN speed map representing the relationship of the fan speed to the thermistor temperature is read, and the process proceeds to step S4.
  • step S4 following the reading of the battery FAN speed map in step S3, the battery required FAN speed is calculated using the highest thermistor temperature Th1 and the battery FAN speed map in the entire battery pack, and the process proceeds to step S8.
  • step S5 following the determination that IGN is ON in step S1 or step S12, the vehicle speed and ENG are ON / OFF are read, and the process proceeds to step S6.
  • step S6 following the reading of the vehicle speed and ENG ON / OFF in step S5, a sound vibration FAN speed map representing the relationship between the vehicle speed and the fan speed with respect to ENG ON / OFF is read, and the process proceeds to step S7.
  • step S7 following the sound vibration FAN speed map read in step S6, the sound vibration required FAN speed is calculated using the vehicle speed, ENG ON / OFF, and sound vibration FAN speed map, and the process proceeds to step S8.
  • Steps S5 to S7 are processed in parallel with steps S2 to S4.
  • step S10 following the determination in step S8 that the battery required FAN speed ⁇ 6, the fan drive circuit 15 is instructed to obtain the duty to obtain the smaller one of the battery required FAN speed and the sound vibration required FAN speed. Then, the process proceeds to step S11.
  • Step S11 following the instruction to the fan drive circuit 15 in Step S9 or Step S10, an instruction to suppress the change in the FAN rotational speed is output when the FAN speed is changed, and the process proceeds to Step S12.
  • step S12 it is determined whether or not the ignition switch is OFF. If YES (IGN OFF), the process proceeds to the end. If NO (IGN ON), the process returns to step S2 and step S5.
  • FIG. 5 shows the flow of battery input / output control processing executed by the lithium ion battery controller 9 (LBC) and the hybrid control module 14 (HCM), and FIG. 6 shows the relationship of allowable input / output with respect to the cell temperature.
  • LBC lithium ion battery controller 9
  • HCM hybrid control module 14
  • step S21 when the input / output control is started, the thermistor temperature TL3 based on the lowest cell temperature is measured from the first thermistor 11h, the second thermistor 12L, the second thermistor 12h, and the third thermistor 13L, and the process proceeds to step S23.
  • step S22 when the input / output control is started, the thermistor temperature Th1 based on the highest cell temperature is measured from the first thermistor 11h, the second thermistor 12L, the second thermistor 12h, and the third thermistor 13L, and the process proceeds to step S23.
  • step S23 following the measurement of the thermistor temperature TL3 based on the minimum cell temperature in step S21 and the measurement of the thermistor temperature Th1 based on the maximum cell temperature in step S22, an input / output MAP (FIG. 6) is read, and the process proceeds to step S24.
  • the input / output MAP has a maximum allowable input / output torque when the battery temperature is between T1 and T2.
  • the allowable input / output torque is limited as the battery temperature decreases in the low temperature range of the battery temperature T1 or lower.
  • the allowable input / output torque is limited as the battery temperature increases in a high temperature range equal to or higher than the battery temperature T2.
  • step S24 following the reading of the input / output MAP in step S23, the allowable input / output torque is selected using the thermistor temperature TL3 (MIN) based on the lowest cell temperature, the thermistor temperature Th1 (MAX) based on the highest cell temperature, and the input / output MAP. Then, the allowable input / output torque information is transmitted to the hybrid control module 14 (HCM), and the process proceeds to step S25.
  • MIN thermistor temperature TL3
  • MAX thermistor temperature Th1
  • HCM hybrid control module 14
  • step S25 following the transmission of allowable input / output torque information to the HCM in step S24, an upper limit torque instruction is output from the hybrid control module 14 to the motor controller 16 (MC), and the process proceeds to the end.
  • FIG. 7 shows the flow of diagnostic processing executed by the hybrid control module 14 (HCM).
  • HCM hybrid control module 14
  • each step representing a diagnosis unit that performs a clogging diagnosis and a sensor locality diagnosis that causes a cooling air flow failure in each of the modules 31, 32, and 33 will be described.
  • This diagnostic process is performed when the cooling fan 4 is driven at a predetermined FAN speed after the ignition switch is turned on and the battery is cooled while maintaining the fan driving state.
  • TL2, Th2 and TL3 are executed in a situation where a predetermined change appears (diagnosis condition is established).
  • step S31 the diagnosis process is started after the ignition switch is turned on, and the thermistor temperatures Th1, TL2, Th2, TL3 from the first thermistor 11h, the second thermistor 12L, the second thermistor 12h, and the third thermistor 13L are set at a constant cycle. Read multiple times and proceed to step S32.
  • step S32 following the reading of the thermistor temperatures Th1, TL2, Th2, TL3 in step S31, the signal voltage Txv output from the first thermistor 11h, the second thermistor 12L, the second thermistor 12h, and the third thermistor 13L is obtained. It is determined whether or not it is out of the normal range (constant 1 ⁇ Txv ⁇ constant 2). If YES (Txv ⁇ constant 1 or Txv> constant 2), the process proceeds to step S34. If NO (constant 1 ⁇ Txv ⁇ constant 2), the process proceeds to step S33.
  • step S33 following the determination that constant 1 ⁇ Txv ⁇ constant 2 in step S32, the thermistor temperatures Th1, TL2, from the first thermistor 11h, the second thermistor 12L, the second thermistor 12h, and the third thermistor 13L. Based on Th2 and TL3, sensoriality diagnosis is performed to see if it is irrational. If YES (no rationality), the process proceeds to step S34. If NO (reasonable), the process proceeds to step S35.
  • Sensor rationality diagnosis is not rational when the value obtained by subtracting the decrease slope ⁇ TL3 of the low temperature side thermistor temperature TL3 from the decrease slope ⁇ TL2 of the low temperature side thermistor temperature TL2 is less than a constant ( ⁇ TL2 ⁇ TL3 ⁇ constant). Is diagnosed. This is because ⁇ TL2 (cooling air volume is small)> ⁇ TL3 (cooling air volume is large). Further, when the value obtained by subtracting the decrease gradient ⁇ Th2 of the high temperature side thermistor temperature Th2 from the decrease gradient ⁇ Th1 of the high temperature side thermistor temperature Th1 becomes less than a constant ( ⁇ Th1 ⁇ Th2 ⁇ constant), it is diagnosed that there is no rationality. This is because ⁇ Th1 (small amount of cooling air)> ⁇ Th2 (large amount of cooling air).
  • step S34 following the determination of YES in step S32 or the determination of YES in step S33, the diagnosis is that the first thermistor 11h, the second thermistor 12L, the second thermistor 12h, and the third thermistor 13L are abnormal. Results are given.
  • step S35 following the determination that there is reasonableness in step S33, the comparison value ⁇ of the thermistor temperatures Th1 and Th2 from the first thermistor 11h and the second thermistor 12h, which are the two high temperature side thermistors, is calculated. Proceed to S36.
  • step S36 following the high temperature side thermistor comparison in step S35, a comparison is made between the thermistor temperatures Th2 and TL2 from the second thermistor 12h and the second thermistor 12L, which are the low temperature high temperature thermistors attached to one second cell module 32.
  • the value ⁇ is calculated, and the process proceeds to step S37.
  • step S38 following the low temperature side thermistor comparison in step S37, it is diagnosed whether the first cell module 31 is clogged using the comparison value ⁇ and the comparison value ⁇ . If YES (MD1 clogged), proceed to step S39. If NO (MD1 is not clogged), the process proceeds to step S40.
  • the clogging of the first cell module 31 is diagnosed when the condition of ⁇ ⁇ threshold and ⁇ > threshold is satisfied. If clogging occurs due to an intrusion into the first cooling branch passage 61, the flow of cooling air in the first cooling branch passage 61 stagnate, and cooling in the second cooling branch passage 62 and the third cooling branch passage 63 occurs. Wind flow is also slowed by increasing resistance. For this reason, the temperature difference between the downstream side and the upstream side of the second cell module 32 is reduced ( ⁇ ⁇ threshold), and the thermistor temperature Th1 is increased ( ⁇ > threshold).
  • step S39 following the diagnosis that MD1 is clogged in step S38, a diagnosis result that the first cell module 31 set in the first cooling branch passage 61 is clogged is output.
  • step S40 following the diagnosis that there is no MD1 clogging in step S38, it is diagnosed whether the second cell module 32 is clogged using the comparison value ⁇ , the thermistor temperature Th1, and the thermistor temperature Th2. If YES (MD2 clogged), proceed to step S41. If NO (MD2 is not clogged), the process proceeds to step S42.
  • the clogging of the second cell module 32 is diagnosed when a condition of ⁇ ⁇ threshold and Th1 &Th2> threshold (or TL2 &TL3> threshold) is satisfied.
  • step S41 following the diagnosis that MD2 is clogged in step S40, a diagnosis result that the second cell module 32 set in the second cooling branch passage 62 is clogged is output.
  • step S42 following the diagnosis that there is no MD2 clogging in step S40, it is diagnosed whether the third cell module 33 is clogged using the comparison value ⁇ and the comparison value ⁇ . If YES (MD3 clogged), proceed to step S43. If NO (no MD3 clogging), the process proceeds to step S44.
  • the clogging of the third cell module 33 is diagnosed when the condition of ⁇ ⁇ threshold and ⁇ > threshold is satisfied. If clogging occurs due to intruders entering the third cooling branch passage 63, the flow of cooling air in the third cooling branch passage 63 stagnate, and cooling in the first cooling branch passage 61 and the second cooling branch passage 62 occurs. Wind flow is also slowed by increasing resistance. For this reason, the temperature difference between the downstream side and the upstream side of the second cell module 32 becomes smaller ( ⁇ ⁇ threshold), and the thermistor temperature TL2 becomes higher ( ⁇ > threshold).
  • step S43 following the diagnosis that the MD3 is clogged in step S42, a diagnosis result that the third cell module 33 set in the third cooling branch passage 63 is clogged is output.
  • step S44 following the diagnosis that MD3 is not clogged in step S42, it is diagnosed that the first thermistor 11h, the second thermistor 12L, the second thermistor 12h, and the third thermistor 13L that are temperature sensors are normal.
  • Thermistor mounting pattern 1 A pattern in which thermistors are installed at the upstream position and the downstream position of only one cell module among a plurality of cell modules.
  • Thermistor mounting pattern 2 Among the plurality of cell modules, the thermistors are respectively installed at the upstream position and the downstream position of one cell module.
  • a thermistor that measures either the maximum temperature or the minimum temperature is installed in another cell module.
  • Thermistor mounting pattern 3 Among the plurality of cell modules, the thermistors are respectively installed at the upstream position and the downstream position of one cell module. In addition, a thermistor that measures the maximum temperature is installed in another cell module, and a thermistor that measures the minimum temperature is installed in a cell module different from the two cell modules (pattern of the first embodiment).
  • the thermistor mounting pattern 1 is a pattern in which the second thermistor 12L is installed at the upstream position of the second cell module 32 and the second thermistor 12h is installed at the downstream position of the second cell module 32 in the first embodiment. That is, in the first embodiment, the first thermistor 11h and the third thermistor 13L are eliminated.
  • the lowest temperature information is obtained from the second thermistor 12L installed at the upstream position of the second cell module 32 where the introduction of the cooling air is started.
  • maximum temperature information is obtained from the second thermistor 12h installed at the downstream position of the second cell module 32 from which the cooling air deprived of heat is discharged.
  • fan control battery temperature control
  • the battery required FAN speed is calculated using the thermistor temperature Th1 from the first thermistor 11h and the battery FAN speed map.
  • the thermistor temperature Th1 is replaced with the thermistor temperature Th2, and the battery required FAN speed is calculated using the thermistor temperature Th2 and the battery FAN speed map.
  • the thermistor temperature Th2 is the second highest temperature after the thermistor temperature Th1, the battery required FAN speed can be calculated with sufficient accuracy.
  • battery input / output control can be performed using the lowest temperature information (thermistor temperature TL2) from the second thermistor 12L and the highest temperature information (thermistor temperature Th2) from the second thermistor 12h. That is, in Example 1, it has the 1st thermistor 11h which measures the highest temperature in the whole battery pack, and the 3rd thermistor 13L which measures the lowest temperature. Therefore, in the calculation of the allowable input / output torque in the battery input / output control shown in FIG. 5, the allowable input / output torque is calculated using the thermistor temperature Th1, the thermistor temperature TL3, and the input / output MAP.
  • the thermistor temperature Th1 is replaced with the thermistor temperature Th2
  • the thermistor temperature TL3 is replaced with the thermistor temperature TL2
  • the allowable input / output torque is calculated using the thermistor temperature Th2, the thermistor temperature TL2, and the input / output MAP.
  • the thermistor temperature Th2 is the second highest temperature after the thermistor temperature Th1
  • the thermistor temperature TL2 is the second lowest temperature after the thermistor temperature TL3
  • the allowable input / output torque with sufficient accuracy can be calculated.
  • Diagnosis of clogging can be performed. That is, in Example 1, it has the 1st thermistor 11h which measures the highest temperature in the whole battery pack, and the 3rd thermistor 13L which measures the lowest temperature. For this reason, in the diagnostic processing shown in FIG. 7, a clogging diagnosis that identifies which cell module among the cell modules 31, 32, and 33 is clogged can be performed.
  • thermoelectric mounting pattern 1 fan control (battery temperature control), battery input / output control, cell, while keeping the number of temperature sensors (second thermistor 12L, second thermistor 12h) to a minimum of two. Module clogging diagnosis can be performed.
  • the second thermistor 12L is installed at the upstream position of the second cell module 32 and the second thermistor 12h is installed at the downstream position of the second cell module 32 in the first embodiment.
  • it is a pattern 2-1 in which the first thermistor 11h is installed at the downstream position of the first cell module 31, or a pattern 2-2 in which the third thermistor 13L is installed at the upstream position of the third cell module 33. That is, this is a pattern in which either the first thermistor 11h or the third thermistor 13L is eliminated in the first embodiment.
  • the lowest temperature information is obtained from the second thermistor 12L
  • the highest temperature information is obtained from the second thermistor 12h
  • fan control battery temperature control
  • the thermistor temperature Th1 from the first thermistor 11h and the battery FAN speed map are used, and the battery required FAN speed with high accuracy is obtained as in the first embodiment. Can be calculated.
  • battery input / output control can be performed using the lowest temperature information (thermistor temperature TL2) from the second thermistor 12L and the highest temperature information (thermistor temperature Th1) from the first thermistor 11h. That is, in the calculation of the allowable input / output torque in the battery input / output control shown in FIG. 5, the thermistor temperature Th1, thermistor temperature TL2, and the input / output MAP are used, and the maximum temperature information can be obtained. Allowable input / output torque can be calculated.
  • the lowest temperature information is obtained from the second thermistor 12L
  • the highest temperature information is obtained from the second thermistor 12h
  • Minimum temperature information is obtained.
  • fan control battery temperature control
  • the maximum temperature information thermistor temperature Th2 from the second thermistor 12h. That is, in the calculation of the battery required FAN speed in the fan control shown in FIG. 4, the thermistor temperature Th2 from the second thermistor 12h and the battery FAN speed map are used, and the battery with sufficiently high accuracy as in the thermistor mounting pattern 1. The required FAN speed can be calculated.
  • battery input / output control can be performed using the minimum temperature information (thermistor temperature TL3) from the third thermistor 13L and the maximum temperature information (thermistor temperature Th2) from the second thermistor 12h. That is, the calculation of the allowable input / output torque in the battery input / output control shown in FIG. 5 uses the thermistor temperature Th2, the thermistor temperature TL3, and the input / output MAP, and the minimum temperature information can be obtained. Allowable input / output torque can be calculated.
  • the cell module clogging diagnosis and the sensor locality diagnosis can be performed. That is, in the diagnostic process shown in FIG. 7, the comparison value ⁇ of the high temperature side thermistor is not obtained, but either of the second cell module 32 and the third cell module 33 is used by using the comparison values ⁇ , ⁇ and the thermistor temperatures TL2, TL3. It can be identified that crab clogging has occurred. And when clogging is diagnosed other than that, it can identify that clogging has generate
  • fan control battery temperature control
  • battery input / output control battery input / output control
  • cell module clogging diagnosis cell module clogging diagnosis
  • sensor locality diagnosis is performed while the number of temperature sensors is limited to three. Can do.
  • the accuracy of fan control is improved by adding the first thermistor 11h that obtains the maximum temperature information to the thermistor mounting pattern 1.
  • the second thermistor 12L and the second thermistor 12h are installed at the upstream position and the downstream position of the second cell module 32.
  • the first thermistor 11h is installed at the downstream position of the first cell module 31
  • the third thermistor 13L is installed at the upstream position of the third cell module 33.
  • Thermistor mounting pattern 1 is a pattern that can grasp the cell temperature distribution of the cell module (second cell module 32) selected as a representative among the three cell modules 31, 32, and 33.
  • the thermistor attachment pattern 2 is a pattern that can be grasped by expanding the cell temperature distribution of the second cell module 32 to the high temperature side or to the low temperature side.
  • the thermistor mounting pattern 3 is a pattern that can be grasped by expanding the cell temperature distribution from the lowest temperature to the highest temperature on the basis of the cell temperature distribution of the second cell module 32.
  • fan control battery temperature control
  • the battery required FAN speed with high accuracy can be calculated using the thermistor temperature Th1 and the battery FAN speed map from the first thermistor 11h.
  • battery input / output control can be performed using the minimum temperature information (thermistor temperature TL3) from the third thermistor 13L and the maximum temperature information (thermistor temperature Th1) from the first thermistor 11h. That is, in the calculation of the allowable input / output torque in the battery input / output control shown in FIG. 5, the allowable input / output torque with high accuracy can be calculated using the thermistor temperature Th1, the thermistor temperature TL3, and the input / output MAP.
  • the comparison value ⁇ of the high temperature side thermistor, the comparison value ⁇ of the low temperature side thermistor, the comparison value ⁇ of the low temperature side thermistor, the two thermistor temperatures Th1, Th2 on the high temperature side, and the two thermistor temperatures TL2 on the low temperature side , TL3 can be used to perform clogging diagnosis of cell modules and sensor nationality diagnosis. That is, in the diagnostic process shown in FIG. 7, the comparison values ⁇ , ⁇ , ⁇ and the thermistor temperatures Th1, Th2, TL2, TL3 are used, and any of the first cell module 31, the second cell module 32, and the third cell module 33 is used. Diagnose clogging. Further, in the diagnostic processing shown in FIG. 7, the sensor locality diagnosis can be performed with high accuracy by using the two thermistor temperatures Th1 and Th2 on the high temperature side and the two thermistor temperatures TL2 and TL3 on the low temperature side. it can.
  • fan control battery temperature control
  • battery input / output control battery input / output control
  • cell module clogging diagnosis cell module clogging diagnosis
  • sensor locality diagnosis is all performed while the number of temperature sensors is limited to four. It can be performed with high accuracy.
  • the number of thermistors is six
  • the number of thermistors to be installed (four) and the number of parts related thereto are reduced. can do. For this reason, it becomes possible to reduce weight and cost. Further, the probability of failure can be reduced by reducing the number of thermistors.
  • sensor diagnosis of the four thermistors 11h, 12L, 12h, and 13L can be performed with high accuracy. For this reason, since battery cooling failure can be detected before battery failure occurs, battery repair costs and battery replacement costs can be reduced. Furthermore, by accurately diagnosing the abnormalities of the thermistors 11h, 12L, 12h, and 13L, the on-board diagnostic function can be improved so as to reduce misdiagnosis.
  • Cell modules 31, 32, and 33 constituted by a plurality of cells are set with cooling passages in the internal space of the battery pack case 1, and the cells are formed by cooling air flowing through the cooling passages.
  • the cooling passage has a cooling air introduction passage 51, a cooling air discharge passage 71, and a plurality of cooling branch passages 61, 62, 63 arranged by connecting the cooling air introduction passage 51 and the cooling air discharge passage 71 in parallel. And configure Cell modules 31, 32, and 33 are set in the plurality of cooling branch passages 61, 62, and 63, respectively.
  • temperature sensors (second thermistors 12L, 12h) were respectively installed at the upstream position and the downstream position of one cell module (second cell module 32) (FIG. 1). Therefore, it is possible to perform battery temperature control (fan control), battery input / output control, and cell module clogging diagnosis while minimizing the number of temperature sensors (second thermistors 12L and 12h) installed (two). it can.
  • a minimum temperature sensor (second thermistor 12L) is installed at an upstream position where the minimum temperature of one cell module (second cell module 32) is obtained.
  • the maximum temperature sensor (second thermistor 12h) is installed at the downstream position Among the plurality of cell modules 31, 32, 33, another one of the cell modules (first cell module 31 or third cell module 33) has a temperature sensor (first temperature) that measures either the highest temperature or the lowest temperature. 1 thermistor 11h or 3rd thermistor 13L) was installed (FIG. 1).
  • the battery temperature control (fan control), battery insertion Output control, cell module clogging diagnosis, and sensor locality diagnosis can be performed.
  • a minimum temperature sensor (second thermistor 12L) is installed at an upstream position where the minimum temperature of one cell module (second cell module 32) is obtained.
  • the maximum temperature sensor (second thermistor 12h) is installed at the downstream position
  • a maximum temperature sensor (first thermistor 11h) for measuring the maximum temperature is installed in another cell module (first cell module 31) among the plurality of cell modules 31, 32, 33
  • a minimum temperature sensor (third thermistor 13L) for measuring the minimum temperature is installed in a cell module (third cell module 33) different from the two cell modules among the plurality of cell modules 31, 32, 33 (FIG. 1). ).
  • thermosensor 11h, 12L, 12h, 13L the number of temperature sensors (thermistors 11h, 12L, 12h, 13L) is reduced to four while fan control (battery temperature control), battery input / output control, and cell module Both clogging diagnosis and sensor nationality diagnosis can be performed with high accuracy.
  • the temperature sensor (first thermistor 11h) that measures the maximum temperature is installed at the downstream position of the cell module (first cell module 31) that is the highest temperature region in the entire battery pack,
  • the temperature sensor (third thermistor 13L) for measuring the lowest temperature was installed at an upstream position of the cell module (third cell module 33) that is the lowest temperature region in the entire battery pack (FIG. 1).
  • the number of temperature sensors (thermistors 11h, 12L, 12h, 13L) is reduced to four while fan control (battery temperature control), battery input / output control, cell module It is possible to further improve the accuracy of clogging diagnosis and sensor nationality diagnosis.
  • the first cooling branch passage 61, the second cooling branch passage 62, and the third cooling branch passage 63 which are arranged in parallel from the upstream side to the downstream side of the flow of the cooling air, respectively, Set the cell module 31, the second cell module 32 and the third cell module 33,
  • the first highest temperature sensor (first thermistor 11h) is installed at the downstream position of the first cell module 31, and the second lowest temperature sensor (second thermistor 12L) and the second highest temperature sensor (second thermistor 12L) are respectively provided at the upstream position and the downstream position of the second cell module 32.
  • the highest temperature sensor (second thermistor 12h) was installed, and the third lowest temperature sensor (third thermistor 13L) was installed upstream of the third cell module 33 (FIG. 1). Therefore, in addition to the effects (1) to (4), in the battery pack BP in which the cell modules 31, 32, 33 are set in the three cooling branch passages 61, 62, 63, four temperature sensors (thermistors) are provided. 11h, 12L, 12h, 13L) can be used to perform highly accurate fan control (battery temperature control), battery input / output control, cell module clogging diagnosis, and sensor locality diagnosis.
  • the cell module 31 includes a plurality of cylindrical cell cans 31a and a first cell can row 31b and a second cell can row 31c in which the can shafts are arranged in parallel with each other by shifting the can shaft interval by a half pitch.
  • the layers were stacked and held in a state where a cold air passage gap t was secured between adjacent can bodies (FIG. 2). For this reason, in addition to the effects (1) to (5), the passage resistance of the cooling air passing through the cell module 31 from the upstream side to the downstream side is suppressed, and the cooling air can effectively cool the plurality of cell cans 31a. It can be performed.
  • the temperature sensors are thermistors 11h, 12L, 12h, and 13L that measure the temperature by using the resistance change with respect to the temperature change.
  • the thermistors 11h, 12L, 12h, and 13L were attached to the bottom surface of cylindrical cell cans arranged at the end positions of the cell modules 31, 32, and 33 (FIG. 3). For this reason, in addition to the effect of (6), the maximum cell temperature and the minimum cell temperature of each cell module 31, 32, 33 can be accurately obtained by detecting the temperature of the cell can itself, not the ambient temperature. it can.
  • a controller (hybrid control module 14) that performs arithmetic processing based on temperature information from the temperature sensors (thermistors 11h, 12L, 12h, 13L),
  • -TL2 has a diagnosis unit (FIG. 7) for diagnosing clogging that causes cooling air flow failure in each of the modules 31, 32, and 33.
  • the clogging diagnosis is performed by grasping the cell temperature distribution of one cell module (second cell module 32) among the cell modules 31, 32 and 33. It can be carried out.
  • the diagnostic unit displays the difference between the temperature change gradients ( ⁇ TL2- ⁇ TL3) from the two lowest temperature sensors (Thermistors 12L and 13L) that can compare the lowest temperatures, and the two highest temperatures that can be compared.
  • the difference in temperature gradient from the sensors (thermistors 11h, 12h) ( ⁇ Th1 ⁇ Th2) is used to make a diagnosis of the laterality of the temperature sensors (thermistors 11h, 12L, 12h, 13L). For this reason, in addition to the effect of (8), it is possible to perform a sensor nationality diagnosis with high accuracy using the temperature change gradient based on the two low temperature side temperature information and the temperature change gradient based on the two high temperature side temperature information. .
  • a controller (lithium ion battery controller 9 and hybrid control module 14) that performs arithmetic processing based on temperature information from the temperature sensors (thermistors 11h, 12L, 12h, and 13L) is provided.
  • the controller (lithium ion battery controller 9, hybrid control module 14) uses the minimum temperature information (thermistor temperature TL2 or TL3) and the maximum temperature information (thermistor temperature Th1 or Th2) to control the input / output of the battery (input / output control unit). 5 and 6). For this reason, in addition to the effects of (1) to (9), the battery input / output control that obtains the allowable input / output torque with high accuracy using the two temperature information of the minimum temperature information and the maximum temperature information regarding the battery temperature dependence. It can be carried out.
  • a controller (hybrid control module 14) that performs arithmetic processing based on temperature information from the temperature sensors (thermistors 11h, 12L, 12h, 13L),
  • the controller has a fan control unit (FIG. 4) that uses the maximum temperature information (thermistor temperature Th1 or Th2) to control the amount of battery cooling air. For this reason, in addition to the effects (1) to (10), it is possible to perform fan control for accurately reducing the battery temperature using the maximum temperature information.
  • Example 1 As mentioned above, although the battery pack cooling system of this invention has been demonstrated based on Example 1, it is not restricted to this Example 1 about a concrete structure, The summary of the invention which concerns on each claim of a claim Design changes and additions are permitted as long as they do not deviate from.
  • Example 1 an example in which the fan control process is executed by the hybrid control module 14 (HCM) is shown.
  • the fan control process may be directly executed by the lithium ion battery controller 9 (LBC) as shown in FIG.
  • the cell module may have two cell modules as long as it is a plurality of cell modules, or may have four or more cell modules.
  • the first thermistor 11h is installed at the downstream position of the first cell module 31, and the second thermistor 12L and the second thermistor 12h are installed at the upstream position and the downstream position of the second cell module 32, respectively.
  • the thermistor attachment pattern is not limited to the thermistor attachment pattern 3 of the first embodiment, and is a thermistor attachment pattern 1 in which a thermistor is installed at the upstream position and the downstream position of only one cell module among a plurality of cell modules. May be.
  • a thermistor is installed at each of the upstream and downstream positions of one of the cell modules, and in addition to this, the temperature of either the highest temperature or the lowest temperature is given to the other cell module.
  • the thermistor attachment pattern 2 which installs the thermistor to measure may be sufficient.
  • Example 1 an example in which a plurality of cylindrical cell cans 31a are used as the cell module 31 as shown in FIG.
  • the cell module for example, cells having different shapes such as a plurality of cell boxes may be used as long as the cooling air flow is ensured.
  • Example 1 shows an example in which the battery pack cooling system of the present invention is applied to a battery pack mounted on an FF hybrid vehicle or an FR hybrid vehicle.
  • the battery pack cooling system of the present invention can also be applied to a battery pack mounted on a plug-in hybrid vehicle or an electric vehicle.

Abstract

 温度センサの設置数を最小限に抑えながら、バッテリ温度制御、バッテリ入出力制御、セルモジュールの目詰まり診断を行うこと。 複数のセル缶(31a)により構成されるセルモジュール(31),(32),(33)を、バッテリパックケース(1)の内部空間に冷却通路を有して設定し、冷却通路を流れる冷却風によりセルモジュール(31),(32),(33)を冷却する。このバッテリパック冷却システムにおいて、冷却通路を、冷却風導入通路(51)と、冷却風排出通路(71)と、冷却風導入通路(51)と冷却風排出通路(71)を並列に繋いで配置される冷却分岐通路(61),(62),(63)と、を有して構成する。冷却分岐通路(61),(62),(63)のそれぞれにセルモジュール(31),(32),(33)を設定する。複数のセルモジュール(31),(32),(33)のうち、一つの第2セルモジュール(32)の上流位置と下流位置にそれぞれ第2サーミスタ(12L),(12h)を設置した。

Description

バッテリパック冷却システム
 本発明は、バッテリパックケースの内部空間に有する冷却通路を流れる冷却風によりセルモジュールを冷却するバッテリパック冷却システムに関する。
 複数の電池を収納する電池パックと、冷房時に最低温度となる電池パック内の位置と冷房時に最高温度となる電池パック内の位置との間に配設された高効率熱伝導部材と、該高効率熱伝導部材の温度を測定する温度測定手段と、を有する。そして、温度測定手段の温度測定結果に基づいて電池パック内の温度を最適温度範囲に制御する電池パックの温度制御装置が知られている(例えば、特許文献1参照)。
特開2013-30375号公報
 しかしながら、従来の電池パックの温度制御装置にあっては、冷却通路に設置するサーミスタを、高効率熱伝導部材の温度を測定する温度測定手段としている。このため、電池パック全体の温度を測定できるが、それぞれの冷却通路の温度分布を検出できないし、冷却風の流れを阻害する目詰まりの検出ができない、という問題があった。一方、冷却通路の温度分布や目詰まりの検出を可能にするには、それぞれの冷却通路に対して複数のサーミスタが必要になり、サーミスタの設置数が増大する、という問題があった。
 本発明は、上記問題に着目してなされたもので、温度センサの設置数を最小限に抑えながら、バッテリ温度制御、バッテリ入出力制御、セルモジュールの目詰まり診断を行うことができるバッテリパック冷却システムを提供することを目的とする。
 上記目的を達成するため、本発明は、複数のセルにより構成されるセルモジュールを、バッテリパックケースの内部空間に冷却通路を有して設定し、前記冷却通路を流れる冷却風により前記セルモジュールを冷却する。
このバッテリパック冷却システムにおいて、前記冷却通路を、冷却風導入通路と、冷却風排出通路と、前記冷却風導入通路と前記冷却風排出通路を並列に繋いで複数配置される冷却分岐通路と、を有して構成する。
前記複数の冷却分岐通路のそれぞれに前記セルモジュールを設定した。
前記複数のセルモジュールのうち、一つのセルモジュールの上流位置と下流位置にそれぞれ温度センサを設置した。
 よって、冷却風導入通路と冷却風排出通路を並列に繋いで複数配置される冷却分岐通路のそれぞれにセルモジュールが設定される。そして、複数のセルモジュールのうち、一つのセルモジュールの上流位置と下流位置にそれぞれ温度センサが設置される。
すなわち、冷却風の導入が開始されるセルモジュールの上流位置に設置された温度センサからは、最低域温度情報が得られ、熱を奪った冷却風が排出されるセルモジュールの下流位置に設置された温度センサからは、最高域温度情報が得られる。よって、最高域温度情報を用いてバッテリ温度制御が行えるし、最低域温度情報と最高域温度情報を用いてバッテリ入出力制御が行えるし、最高域温度と最低域温度の温度差情報を用いてセルモジュールの目詰まり診断が行える。
この結果、温度センサの設置数を最小限に抑えながら、バッテリ温度制御、バッテリ入出力制御、セルモジュールの目詰まり診断を行うことができる。
バッテリパックを搭載するハイブリッド車に適用された実施例1のバッテリパック冷却システムを示す全体システム図である。 実施例1のバッテリパック冷却システムでバッテリパックケースに設定されるセルモジュールを示す斜視図である。 実施例1のバッテリパック冷却システムでバッテリパックケースに設定されるセルモジュールでの冷却風の流れ方向と温度関係を示すセル缶斜視図である。 実施例1のバッテリパック冷却システムのハイブリッドコントロールモジュール(HCM)で実行されるファン制御処理の流れを示すフローチャートである。 実施例1のバッテリパック冷却システムのリチウムイオンバッテリコントローラ(LBC)及びハイブリッドコントロールモジュール(HCM)で実行されるバッテリ入出力制御処理の流れを示すフローチャートである。 セル温度に対する許容入出力の関係を示す許容入出力特性図である。 実施例1のバッテリパック冷却システムのハイブリッドコントロールモジュール(HCM)で実行される診断処理の流れを示すフローチャートである。 ファン制御処理をリチウムイオンバッテリコントローラ(LBC)で直接実行するようにした他の例を示すバッテリパック冷却システムを示す全体システム図である。
 以下、本発明のバッテリパック冷却システムを実現する最良の形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。
実施例1におけるバッテリパック冷却システムの構成を、[全体システム構成]、[ファン制御構成]、[バッテリ入出力制御構成]、[診断処理構成]に分けて説明する。
 [全体システム構成]
 図1は、バッテリパックを搭載するハイブリッド車に適用された実施例1のバッテリパック冷却システムを示し、図2及び図3は、セルモジュールの構成及び温度変化を示す。以下、図1~図3に基づき全体システム構成を説明する。
 前記バッテリパック冷却システムは、複数のセルにより構成されるセルモジュールを、バッテリパックケースの内部空間に冷却通路を有して設定し、冷却通路を流れる冷却風によりセルモジュールを冷却するシステムである。バッテリパックBPの構成として、図1に示すように、バッテリパックケース1と、第1仕切り壁21と、第2仕切り壁22と、第3仕切り壁23と、第1セルモジュール31と、第2セルモジュール32と、第3セルモジュール33と、を備えている。
 前記バッテリパックBPは、図外の走行用のモータ/ジェネレータの電源として搭載された二次電池(リチウムイオンバッテリ)であり、バッテリパックケース1は、互いに接合されるロアケースとアッパーケースにより構成され、ケースの内部空間を、第1仕切り壁21と第2仕切り壁22と第3仕切り壁23により4室に画成している。
 前記第1セルモジュール31と第2セルモジュール32と第3セルモジュール33は、バッテリパックケース1の内部に画成された4室のうち、3室のそれぞれに一つのモジュールが配置される。そして、残りの1室には、強電系の供給/遮断/分配を行うリレー回路を集約させたジャンクションボックス8(J/B)と、バッテリ充電容量(バッテリSOC)やバッテリ温度などを監視するリチウムイオンバッテリコントローラ9(LBC)と、が配置される。
 前記セルモジュール31,32,33の冷却構成として、図1に示すように、冷却ファン4と、冷却風導入ダクト5と、冷却分岐通路6と、冷却風排出ダクト7と、を備えている。
 前記冷却通路は、冷却風導入通路51と、冷却風排出通路71と、冷却風導入通路51と冷却風排出通路71を並列に繋いで3つ配置される第1冷却分岐通路61、第2冷却分岐通路62、第3冷却分岐通路63と、を有して構成される。
 前記冷却ファン4は、一端が車室内に開口された吸入ダクト41からの車室内空気(冷却空気)を、冷却風導入ダクト5へ吐出する。
 前記冷却風導入ダクト5は、合成樹脂材により筒状に構成され、バッテリパックケース1の長辺側面に固定される。この冷却風導入ダクト5のダクト内空間により冷却風導入通路51が形成され、冷却風導入通路51は、冷却分岐通路6(第1冷却分岐通路61と第2冷却分岐通路62と第3冷却分岐通路63)の各入口に連通する。
 前記冷却分岐通路6は、第1冷却分岐通路61と、第2冷却分岐通路62と、第3冷却分岐通路63と、の3つの分岐通路により構成される。
 前記第1冷却分岐通路61は、冷却風の流れの上流側から下流側に向かって並列に配置された3つの分岐通路のうち、最も上流側位置に配置され、この第1冷却分岐通路61に第1セルモジュール31が設定される。
 前記第2冷却分岐通路62は、冷却風の流れの上流側から下流側に向かって並列に配置された3つの分岐通路のうち、中間位置に配置され、この第2冷却分岐通路62に第2セルモジュール32が設定される。
 前記第3冷却分岐通路63は、冷却風の流れの上流側から下流側に向かって並列に配置された3つの分岐通路のうち、最も下流側位置に配置され、この第3冷却分岐通路63に第3セルモジュール33が設定される。
 前記冷却風排出ダクト7は、合成樹脂材により筒状に構成され、冷却風導入ダクト5とは対向するバッテリパックケース1の長辺側面に固定される。この冷却風導入ダクト5のダクト内空間により冷却風排出通路71が形成され、冷却風排出通路71は、冷却分岐通路6(第1冷却分岐通路61と第2冷却分岐通路62と第3冷却分岐通路63)の各出口に連通する。この冷却風排出ダクト7からの冷却後の冷却風は車外に排出される。
 前記各セルモジュール31,32,33は、同じ構成によるモジュールを用いているもので、その代表として第1セルモジュール31の構成を図2により説明する。7個の円筒状のセル缶31aを、缶軸を互いに平行として並べた第1セル缶列31bと第2セル缶列31cとする。そして、第1セル缶列31bに対し第2セル缶列31cを、缶軸間隔を半ピッチずらして二層重ね合わせ、かつ、互いに隣接する缶胴の間に冷風通過隙間t(例えば、数mm)を確保した状態でモジュールホルダ31dにより保持することにより構成される。このとき、モジュールホルダ31dとセル缶31aとの間にも冷風通過隙間tが確保される。このため、図2の矢印に示すように、セル缶31aの缶軸に対し直交方向に導入される冷却風は、セル缶31aの缶胴の表面に沿って縫うような流線を描きながら流れる。
 前記各セルモジュール31,32,33へのサーミスタ(温度センサ)の取り付け構成を説明する。温度変化に対する抵抗変化を利用して温度を計測するサーミスタとして、4つの第1サーミスタ11h(第1最高温度センサ)と、第2サーミスタ12L(第2最低温度センサ)と、第2サーミスタ12h(第2最高温度センサ)と、第3サーミスタ13L(第3最低温度センサ)を備えている。
 前記第1サーミスタ11hは、バッテリパック全体の中で最も高い温度領域となる第1セルモジュール31の下流位置に設置される。この第1サーミスタ11hは、第1セルモジュール31の下流側の最も端部位置に配置されるセル缶の缶底面に取り付けられる。ここで、第1セルモジュール31の下流位置が、バッテリパック全体の中で最も高い温度領域となる理由を説明する。冷却風導入ダクト5の形状により、冷却ファン4から最も近い側の第1セルモジュール31への冷却風量が小さく、その分、3つのセルモジュールの中で第1セルモジュール31の冷却効果が低くなることによる。
 前記第2サーミスタ12Lは、第2セルモジュール32のうち最低温度となる上流位置に設置され、前記第2サーミスタ12hは、第2セルモジュール32のうち最高温度となる下流位置に設置される。この第2サーミスタ12L,12hは、第2セルモジュール32の両端位置に配置されるセル缶の缶底面にそれぞれ取り付けられる。ここで、第2セルモジュール32の両端位置に分けて第2サーミスタ12Lと第2サーミスタ12hを配置する理由を説明する。一方向に流れる冷却風でセルモジュールを冷却する場合、図3に示すように、冷却ファン4から吐出された低温の冷却風で冷却される上流位置のセル缶の温度は、第2セルモジュール32のうち最も低い温度になる。これに対し、冷却風が通過した複数のセル缶から熱を奪って高温となった冷却風で冷却される下流位置のセル缶の温度は、第2セルモジュール32のうち最も高い温度になることによる。
 前記第3サーミスタ13Lは、バッテリパック全体の中で最も低い温度領域となる第3セルモジュール33の上流位置に設置される。この第3サーミスタ13Lは、第3セルモジュール33の上流側の最も端部位置に配置されるセル缶の缶底面に取り付けられる。ここで、第3セルモジュール33の上流位置が、バッテリパック全体の中で最も低い温度領域となる理由を説明する。冷却風導入ダクト5の形状により、冷却ファン4から最も遠い側の第3セルモジュール33への冷却風量が大きく、その分、3つのセルモジュールの中で第3セルモジュール33の冷却効果が高くなることによる。
 前記第1サーミスタ11h、第2サーミスタ12L、第2サーミスタ12h、第3サーミスタ13Lからの温度情報を用いた制御系の構成を説明する。
前記リチウムイオンバッテリコントローラ9は、CAN通信線などによりハイブリッドコントロールモジュール14(HCM)に接続される。このハイブリッドコントロールモジュール14は、リチウムイオンバッテリコントローラ9からの情報や車速情報やエンジンON/OFF情報などを入力する。そして、ファン駆動回路15へのファン駆動指示によるファン制御(バッテリ温度制御)、モータコントローラ16(MC)への上限トルク指示によるバッテリ入出力制御、セルモジュールの目詰まり診断などによる診断処理を行う。以下、ファン制御、バッテリ入出力制御、診断処理の詳しい内容を説明する。
 [ファン制御構成]
 図4は、ハイブリッドコントロールモジュール14(HCM)で実行されるファン制御処理の流れを示す。以下、図4に基づき、バッテリ冷却風量を制御するファン制御部の構成をあらわす各ステップについて説明する。
 ステップS1では、イグニッションスイッチがONであるか否かを判断する。YES(IGN ON)の場合はステップS2及びステップS5へ進み、NO(IGN OFF)の場合はステップS1の判断を繰り返す。
 ステップS2では、ステップS1或いはステップS12でのIGN ONであるとの判断に続き、第1サーミスタ11h、第2サーミスタ12L、第2サーミスタ12h、第3サーミスタ13Lからのサーミスタ温度Th1,TL2,Th2,TL3を読み込み、ステップS3へ進む。
 ステップS3では、ステップS2でのサーミスタ温度Th1,TL2,Th2,TL3の読み込みに続き、サーミスタ温度に対するFAN速の関係をあらわすバッテリFAN速マップを読み込み、ステップS4へ進む。
ここで、バッテリFAN速マップには、FAN速=0(ファン停止)~FAN速=6(ファン最大速)までの段階的なFAN速からバッテリ性能を確保するFAN速を選択するように設定されている。例えば、サーミスタ温度が高いほど高いFAN速とする。
 ステップS4では、ステップS3でのバッテリFAN速マップの読み込みに続き、バッテリパック全体の中で最も高いサーミスタ温度Th1とバッテリFAN速マップを用い、バッテリ要求FAN速を演算し、ステップS8へ進む。
 ステップS5では、ステップS1或いはステップS12でのIGN ONであるとの判断に続き、車速とENG ON/OFFが読み込まれ、ステップS6へ進む。
 ステップS6では、ステップS5での車速とENG ON/OFFの読み込みに続き、車速とENG ON/OFFに対するFAN速の関係をあらわす音振FAN速マップを読み込み、ステップS7へ進む。
ここで、音振FAN速マップには、FAN速=0(ファン停止)~FAN速=6(ファン最大速)までの段階的なFAN速から音振性能を確保するFAN速を選択するように設定されている。例えば、車速が高車速であるほど高FAN速を許容する。また、エンジンONのHEV走行ときはエンジンOFFのEV走行に比べ高FAN速を許容する。
 ステップS7では、ステップS6での音振FAN速マップ読み込みに続き、車速とENG ON/OFFと音振FAN速マップを用い、音振要求FAN速を演算し、ステップS8へ進む。
なお、ステップS5~S7は、ステップS2~S4と並行に処理される。
 ステップS8では、ステップS4でのバッテリ要求FAN速の演算及びステップS7での音振要求FAN速の演算に続き、バッテリ要求FAN速がFAN速=6(エマジェンシー)であるか否かを判断する。YES(バッテリ要求FAN速=6)の場合はステップS9へ進み、NO(バッテリ要求FAN速≠6)の場合はステップS10へ進む。
 ステップS9では、ステップS8でのバッテリ要求FAN速=6であるとの判断に続き、FAN速=6によるDutyをファン駆動回路15へ指示し、ステップS11へ進む。
 ステップS10では、ステップS8でのバッテリ要求FAN速≠6であるとの判断に続き、バッテリ要求FAN速と音振要求FAN速のうち、小さい方のFAN速を得るDutyをファン駆動回路15へ指示し、ステップS11へ進む。
 ステップS11では、ステップS9又はステップS10でのファン駆動回路15への指示に続き、FAN速が変更される場合にFAN回転数の変化を抑える指示を出力し、ステップS12へ進む。
 ステップS12では、イグニッションスイッチがOFFであるか否かを判断する。YES(IGN OFF)の場合はエンドへ進み、NO(IGN ON)の場合はステップS2とステップS5へ戻る。
 [バッテリ入出力制御構成]
 図5は、リチウムイオンバッテリコントローラ9(LBC)及びハイブリッドコントロールモジュール14(HCM)で実行されるバッテリ入出力制御処理の流れを示し、図6は、セル温度に対する許容入出力の関係を示す。以下、図5及び図6に基づき、バッテリ入出力を制御する入出力制御部の構成をあらわす各ステップについて説明する。
 ステップS21では、入出力制御が開始されると、第1サーミスタ11h、第2サーミスタ12L、第2サーミスタ12h、第3サーミスタ13Lからセル最低温度によるサーミスタ温度TL3が計測され、ステップS23へ進む。
 ステップS22では、入出力制御が開始されると、第1サーミスタ11h、第2サーミスタ12L、第2サーミスタ12h、第3サーミスタ13Lからセル最高温度によるサーミスタ温度Th1が計測され、ステップS23へ進む。
 ステップS23では、ステップS21でのセル最低温度によるサーミスタ温度TL3の計測とステップS22でのセル最高温度によるサーミスタ温度Th1の計測に続き、バッテリ温度に対する許容入出力トルクの関係を示す入出力MAP(図6)を読み込み、ステップS24へ進む。
ここで、入出力MAPは、図6に示すように、バッテリ温度がT1~T2の間は、許容入出力トルクが最大値である。しかし、バッテリ温度T1以下の低温域ではバッテリ温度が低くなるほど許容入出力トルクが制限される。また、バッテリ温度T2以上の高温域ではバッテリ温度が高くなるほど許容入出力トルクが制限される。
 ステップS24では、ステップS23での入出力MAPの読み込みに続き、セル最低温度によるサーミスタ温度TL3(MIN)とセル最高温度によるサーミスタ温度Th1(MAX)と入出力MAPを用い、許容入出力トルクをセレクトローにより決定し、ハイブリッドコントロールモジュール14(HCM)に許容入出力トルク情報を送信し、ステップS25へ進む。
 ステップS25では、ステップS24でのHCMへの許容入出力トルク情報送信に続き、ハイブリッドコントロールモジュール14からモータコントローラ16(MC)へ上限トルク指示を出力し、エンドへ進む。
 [診断処理構成]
 図7は、ハイブリッドコントロールモジュール14(HCM)で実行される診断処理の流れを示す。以下、図7に基づき、各モジュール31,32,33での冷却風流れ不良になる目詰まり診断及びセンサラショナリティ診断を行う診断部をあらわす各ステップについて説明する。なお、この診断処理は、イグニッションスイッチがONとされてから、冷却ファン4を所定のFAN速により駆動し、ファン駆動状態を維持しながらのバッテリ冷却時、温度センサが正常であればサーミスタ温度Th1,TL2,Th2,TL3に所定の変化があらわれている状況(診断条件の成立状況)にて実行される。
 ステップS31では、イグニッションスイッチのON後に診断処理が開始され、第1サーミスタ11h、第2サーミスタ12L、第2サーミスタ12h、第3サーミスタ13Lからのサーミスタ温度Th1,TL2,Th2,TL3を一定の周期にて複数回読み込み、ステップS32へ進む。
 ステップS32では、ステップS31でのサーミスタ温度Th1,TL2,Th2,TL3の読み込に続き、第1サーミスタ11h、第2サーミスタ12L、第2サーミスタ12h、第3サーミスタ13Lから出力される信号電圧Txvが正常レンジ(定数1≦Txv≦定数2)から外れているか否かを判断する。YES(Txv<定数1又はTxv>定数2)の場合はステップS34へ進み、NO(定数1≦Txv≦定数2)の場合はステップS33へ進む。
 ステップS33では、ステップS32での定数1≦Txv≦定数2であるとの判断に続き、第1サーミスタ11h、第2サーミスタ12L、第2サーミスタ12h、第3サーミスタ13Lからのサーミスタ温度Th1,TL2,Th2,TL3に基づき、不合理であるか否かのセンサラショナリティ診断を行う。YES(合理性無し)の場合はステップS34へ進み、NO(合理性有り)の場合はステップS35へ進む。
センサラショナリティ診断は、低温側のサーミスタ温度TL2の低下勾配ΔTL2から低温側のサーミスタ温度TL3の低下勾配ΔTL3を差し引いた値が定数未満になったとき(ΔTL2-ΔTL3<定数)、合理性無しと診断される。これは、本来、ΔTL2(冷却風量小)>ΔTL3(冷却風量大)となることによる。また、高温側のサーミスタ温度Th1の低下勾配ΔTh1から高温側のサーミスタ温度Th2の低下勾配ΔTh2を差し引いた値が定数未満になったとき(ΔTh1-ΔTh2<定数)、合理性無しと診断される。これは、本来、ΔTh1(冷却風量小)>ΔTh2(冷却風量大)となることによる。
 ステップS34では、ステップS32でのYESの判断、或いは、ステップS33でのYESの判断に続き、第1サーミスタ11h、第2サーミスタ12L、第2サーミスタ12h、第3サーミスタ13Lがセンサ異常であるという診断結果が出される。
 ステップS35では、ステップS33での合理性有りとの判断に続き、2個の高温側サーミスタである第1サーミスタ11hと第2サーミスタ12hからのサーミスタ温度Th1,Th2の比較値αを算出し、ステップS36へ進む。
ここで、比較値αは、サーミスタ温度Th1とサーミスタ温度Th2の差の絶対値(α=ABS(Th1-Th2))により算出される。
 ステップS36では、ステップS35での高温側サーミスタ比較に続き、一つの第2セルモジュール32に取り付けられた低高温側サーミスタである第2サーミスタ12hと第2サーミスタ12Lからのサーミスタ温度Th2,TL2の比較値βを算出し、ステップS37へ進む。
ここで、比較値βは、サーミスタ温度Th2とサーミスタ温度TL2の差(β=Th2-TL2))により算出される。
 ステップS37では、ステップS36での低高温側サーミスタ比較に続き、2個の低温側サーミスタである第2サーミスタ12Lと第3サーミスタ13Lからのサーミスタ温度TL2,TL3の比較値γを算出し、ステップS38へ進む。
ここで、比較値γは、サーミスタ温度TL2とサーミスタ温度TL3の差の絶対値(γ=ABS(TL2-TL3))により算出される。
 ステップS38では、ステップS37での低温側サーミスタ比較に続き、比較値αと比較値βを用いて第1セルモジュール31が目詰まりであるか否かを診断する。YES(MD1目詰まり有り)の場合はステップS39へ進み。NO(MD1目詰まり無し)の場合はステップS40へ進む。
第1セルモジュール31の目詰まりは、β<閾値、かつ、α>閾値による条件が成立したときに診断する。これは第1冷却分岐通路61への侵入物により目詰まりを発生すると、第1冷却分岐通路61での冷却風の流れが滞り、第2冷却分岐通路62と第3冷却分岐通路63での冷却風の流れも抵抗が増すことで遅くなる。このため、第2セルモジュール32の下流側と上流側の温度差が小さくなり(β<閾値)、サーミスタ温度Th1が高くなることによる(α>閾値)。
 ステップS39では、ステップS38でのMD1目詰まり有りとの診断に続き、第1冷却分岐通路61に設定される第1セルモジュール31が目詰まりであるという診断結果が出される。
 ステップS40では、ステップS38でのMD1目詰まり無しとの診断に続き、比較値βとサーミスタ温度Th1とサーミスタ温度Th2を用いて第2セルモジュール32が目詰まりであるか否かを診断する。YES(MD2目詰まり有り)の場合はステップS41へ進み。NO(MD2目詰まり無し)の場合はステップS42へ進む。
第2セルモジュール32の目詰まりは、β<閾値、かつ、Th1&Th2>閾値(又はTL2&TL3>閾値)による条件が成立したときに診断する。これは第2冷却分岐通路62への侵入物により目詰まりを発生すると、第2冷却分岐通路62での冷却風の流れが滞り、第1冷却分岐通路61と第3冷却分岐通路63での冷却風の流れも抵抗が増すことで遅くなる。このため、第2セルモジュール32の下流側と上流側の温度差が小さくなり(β<閾値)、サーミスタ温度Th1,Th2,TL2,TL3が高くなることによる(Th1&Th2>閾値、TL2&TL3>閾値)。
 ステップS41では、ステップS40でのMD2目詰まり有りとの診断に続き、第2冷却分岐通路62に設定される第2セルモジュール32が目詰まりであるという診断結果が出される。
 ステップS42では、ステップS40でのMD2目詰まり無しとの診断に続き、比較値βと比較値γを用いて第3セルモジュール33が目詰まりであるか否かを診断する。YES(MD3目詰まり有り)の場合はステップS43へ進み。NO(MD3目詰まり無し)の場合はステップS44へ進む。
第3セルモジュール33の目詰まりは、β<閾値、かつ、γ>閾値による条件が成立したときに診断する。これは第3冷却分岐通路63への侵入物により目詰まりを発生すると、第3冷却分岐通路63での冷却風の流れが滞り、第1冷却分岐通路61と第2冷却分岐通路62での冷却風の流れも抵抗が増すことで遅くなる。このため、第2セルモジュール32の下流側と上流側の温度差が小さくなり(β<閾値)、サーミスタ温度TL2が高くなることによる(γ>閾値)。
 ステップS43では、ステップS42でのMD3目詰まり有りとの診断に続き、第3冷却分岐通路63に設定される第3セルモジュール33が目詰まりであるという診断結果が出される。
 ステップS44では、ステップS42でのMD3目詰まり無しとの診断に続き、温度センサである第1サーミスタ11h、第2サーミスタ12L、第2サーミスタ12h、第3サーミスタ13Lが正常であると診断される。
 次に、作用を説明する。
冷却風導入通路と冷却風排出通路を並列に繋いで複数配置される冷却分岐通路のそれぞれにセルモジュールが設定されるバッテリパックにおいて、本発明のサーミスタ取り付け作用を説明するに際し、サーミスタ取り付けパターンを3つのパターンに分けると、下記の通りである。
・サーミスタ取り付けパターン1
 複数のセルモジュールのうち、一つのセルモジュールのみの上流位置と下流位置にそれぞれサーミスタを設置するパターン。
・サーミスタ取り付けパターン2
 複数のセルモジュールのうち、一つのセルモジュールの上流位置と下流位置にそれぞれサーミスタを設置する。加えて、他の一つのセルモジュールに、最高温度もしくは最低温度のどちらかの温度を計測するサーミスタを設置するパターン。
・サーミスタ取り付けパターン3
 複数のセルモジュールのうち、一つのセルモジュールの上流位置と下流位置にそれぞれサーミスタを設置する。加えて、他の一つのセルモジュールに、最高温度を計測するサーミスタを設置し、二つのセルモジュールとは異なるセルモジュールに、最低温度を計測するサーミスタを設置するパターン(実施例1のパターン)。
 以下、バッテリパック冷却システムにおける作用を、[サーミスタ取り付けパターン1による作用]、[サーミスタ取り付けパターン2による作用]、[サーミスタ取り付けパターン3による作用]に分けて説明する。
 [サーミスタ取り付けパターン1による作用]
 サーミスタ取り付けパターン1は、実施例1において、第2セルモジュール32の上流位置に第2サーミスタ12Lを設置し、第2セルモジュール32の下流位置に第2サーミスタ12hを設置したパターンである。つまり、実施例1にて第1サーミスタ11hと第3サーミスタ13Lを無くしたパターンである。
 このサーミスタ取り付けパターン1の場合は、冷却風の導入が開始される第2セルモジュール32の上流位置に設置された第2サーミスタ12Lからは、最低域温度情報が得られる。一方、熱を奪った冷却風が排出される第2セルモジュール32の下流位置に設置された第2サーミスタ12hからは、最高域温度情報が得られる。
 よって、第2サーミスタ12hからの最高域温度情報(サーミスタ温度Th2)を用いてファン制御(バッテリ温度制御)が行える。
すなわち、実施例1では、バッテリパック全体の中で最も高い温度を計測する第1サーミスタ11hを有している。このため、図4に示すファン制御でのバッテリ要求FAN速の演算にて、第1サーミスタ11hからのサーミスタ温度Th1とバッテリFAN速マップを用い、バッテリ要求FAN速を演算している。
これに対し、サーミスタ温度Th1をサーミスタ温度Th2に代え、サーミスタ温度Th2とバッテリFAN速マップを用い、バッテリ要求FAN速を演算することになる。しかし、サーミスタ温度Th2はサーミスタ温度Th1に次いで高い温度になるため、十分な精度によるバッテリ要求FAN速を演算できる。
 また、第2サーミスタ12Lからの最低域温度情報(サーミスタ温度TL2)と第2サーミスタ12hからの最高域温度情報(サーミスタ温度Th2)を用いてバッテリ入出力制御が行える。
すなわち、実施例1では、バッテリパック全体の中で最も高い温度を計測する第1サーミスタ11hと、最も低い温度を計測する第3サーミスタ13Lと、を有している。このため、図5に示すバッテリ入出力制御での許容入出力トルクの演算にて、サーミスタ温度Th1とサーミスタ温度TL3と入出力MAPを用い、許容入出力トルクを演算している。
これに対し、サーミスタ温度Th1をサーミスタ温度Th2に代え、サーミスタ温度TL3をサーミスタ温度TL2に代え、サーミスタ温度Th2とサーミスタ温度TL2と入出力MAPを用い、許容入出力トルクを演算することになる。しかし、サーミスタ温度Th2はサーミスタ温度Th1に次いで高い温度であり、サーミスタ温度TL2はサーミスタ温度TL3に次いで低い温度になるため、十分な精度による許容入出力トルクを演算できる。
 さらに、最高域温度(サーミスタ温度Th2)と最低域温度(サーミスタ温度TL2)の温度差情報(=比較値β)を用いて各セルモジュール31,32,33のうち、何れかのセルモジュールが目詰まりしているとの診断が行える。
すなわち、実施例1では、バッテリパック全体の中で最も高い温度を計測する第1サーミスタ11hと、最も低い温度を計測する第3サーミスタ13Lと、を有している。このため、図7に示す診断処理において、各セルモジュール31,32,33のうち、どのセルモジュールに目詰まりが発生しているかを特定する目詰まり診断ができる。
これに対し、図7に示すステップS38、ステップS40、ステップS42の各診断条件から明らかなように、全ての診断条件に共通してβ<閾値という条件が含まれる。このため、β<閾値という条件を診断できる以上、目詰まりが発生しているセルモジュールを特定することはできないものの、各セルモジュール31,32,33のうち、何れかのセルモジュールが目詰まりしているとの診断を行うことができる。
 この結果、サーミスタ取り付けパターン1の場合、温度センサの設置数(第2サーミスタ12L、第2サーミスタ12h)を最小限の2個に抑えながら、ファン制御(バッテリ温度制御)、バッテリ入出力制御、セルモジュールの目詰まり診断を行うことができる。
 [サーミスタ取り付けパターン2による作用]
 サーミスタ取り付けパターン2は、実施例1において、第2セルモジュール32の上流位置に第2サーミスタ12Lを設置し、第2セルモジュール32の下流位置に第2サーミスタ12hを設置する。加えて、第1セルモジュール31の下流位置に第1サーミスタ11hを設置するパターン2-1、又は、第3セルモジュール33の上流位置に第3サーミスタ13Lを設置するパターン2-2である。つまり、実施例1にて第1サーミスタ11h又は第3サーミスタ13Lの何れかを無くしたパターンである。
 上記サーミスタ取り付けパターン2-1の場合は、第2サーミスタ12Lから最低域温度情報が得られ、第2サーミスタ12hから最高域温度情報が得られ、第1サーミスタ11hからバッテリパック全体の中で最も高い最高温度情報が得られる。
 よって、第1サーミスタ11hからの最高温度情報(サーミスタ温度Th1)を用いてファン制御(バッテリ温度制御)が行える。
すなわち、図4に示すファン制御でのバッテリ要求FAN速の演算にて、第1サーミスタ11hからのサーミスタ温度Th1とバッテリFAN速マップを用い、実施例1と同様に、精度の高いバッテリ要求FAN速を演算できる。
 また、第2サーミスタ12Lからの最低域温度情報(サーミスタ温度TL2)と第1サーミスタ11hからの最高温度情報(サーミスタ温度Th1)を用いてバッテリ入出力制御が行える。
すなわち、図5に示すバッテリ入出力制御での許容入出力トルクの演算にて、サーミスタ温度Th1とサーミスタ温度TL2と入出力MAPを用い、最高温度情報が得られる分、サーミスタ取り付けパターン1より精度良く許容入出力トルクを演算できる。
 さらに、高温側サーミスタの比較値α(=ABS(Th1-Th2))と、低高温側サーミスタの比較値β(=Th2-TL2)と、高温側の2つのサーミスタ温度Th1,Th2と、を用い、セルモジュールの目詰まり診断と、センサラショナリティ診断と、が行える。
すなわち、図7に示す診断処理において、低温側サーミスタの比較値γ(=ABS(TL2-TL3))は得られないが、比較値α,βとサーミスタ温度Th1,Th2を用い、第1セルモジュール31と第2セルモジュール32の何れかに目詰まりが発生していることを特定できる。そして、それ以外で目詰まり診断されたとき、第3セルモジュール33に目詰まりが発生していることを特定できる。
 上記サーミスタ取り付けパターン2-2の場合は、第2サーミスタ12Lから最低域温度情報が得られ、第2サーミスタ12hから最高域温度情報が得られ、第3サーミスタ13Lからバッテリパック全体の中で最も低い最低温度情報が得られる。
 よって、第2サーミスタ12hからの最高域温度情報(サーミスタ温度Th2)を用いてファン制御(バッテリ温度制御)が行える。
すなわち、図4に示すファン制御でのバッテリ要求FAN速の演算にて、第2サーミスタ12hからのサーミスタ温度Th2とバッテリFAN速マップを用い、サーミスタ取り付けパターン1と同様に、十分に精度の高いバッテリ要求FAN速を演算できる。
 また、第3サーミスタ13Lからの最低温度情報(サーミスタ温度TL3)と第2サーミスタ12hからの最高域温度情報(サーミスタ温度Th2)を用いてバッテリ入出力制御が行える。
すなわち、図5に示すバッテリ入出力制御での許容入出力トルクの演算にて、サーミスタ温度Th2とサーミスタ温度TL3と入出力MAPを用い、最低温度情報が得られる分、サーミスタ取り付けパターン1より精度良く許容入出力トルクを演算できる。
 さらに、低高温側サーミスタの比較値β(=Th2-TL2)と、低温側サーミスタの比較値γ(=ABS(TL2-TL3))と、低温側の2つのサーミスタ温度TL2,TL3と、を用い、セルモジュールの目詰まり診断と、センサラショナリティ診断と、が行える。
すなわち、図7に示す診断処理において、高温側サーミスタの比較値αは得られないが、比較値α,γとサーミスタ温度TL2,TL3を用い、第2セルモジュール32と第3セルモジュール33の何れかに目詰まりが発生していることを特定できる。そして、それ以外で目詰まり診断されたとき、第1セルモジュール31に目詰まりが発生していることを特定できる。
 この結果、サーミスタ取り付けパターン2の場合、温度センサの設置数を3個に抑えながら、ファン制御(バッテリ温度制御)、バッテリ入出力制御、セルモジュールの目詰まり診断、センサラショナリティ診断を行うことができる。そして、サーミスタ取り付けパターン2-1の場合、サーミスタ取り付けパターン1に、最高温度情報を得る第1サーミスタ11hを追加したことで、ファン制御の制御精度が向上する。
 [サーミスタ取り付けパターン3による作用]
 サーミスタ取り付けパターン3は、第2セルモジュール32の上流位置と下流位置に第2サーミスタ12Lと第2サーミスタ12hを設置する。加えて、第1セルモジュール31の下流位置に第1サーミスタ11hを設置し、第3セルモジュール33の上流位置に第3サーミスタ13Lを設置した実施例1のパターンである。
 サーミスタ取り付けパターン1は、3個のセルモジュール31,32,33のうち、代表として選択したセルモジュール(第2セルモジュール32)のセル温度分布を把握することができるパターンである。サーミスタ取り付けパターン2は、第2セルモジュール32のセル温度分布を、高温側に拡大又は低温側に拡大して把握することができるパターンである。これに対し、サーミスタ取り付けパターン3は、第2セルモジュール32のセル温度分布を基準とし、最低温度から最高温度までセル温度分布を拡大して把握することができるパターンである。
 よって、第1サーミスタ11hからの最高温度情報(サーミスタ温度Th1)を用いてファン制御(バッテリ温度制御)が行える。
すなわち、図4に示すファン制御でのバッテリ要求FAN速の演算にて、第1サーミスタ11hからのサーミスタ温度Th1とバッテリFAN速マップを用い、精度の高いバッテリ要求FAN速を演算できる。
 また、第3サーミスタ13Lからの最低温度情報(サーミスタ温度TL3)と第1サーミスタ11hからの最高温度情報(サーミスタ温度Th1)を用いてバッテリ入出力制御が行える。
すなわち、図5に示すバッテリ入出力制御での許容入出力トルクの演算にて、サーミスタ温度Th1とサーミスタ温度TL3と入出力MAPを用い、精度の高い許容入出力トルクを演算できる。
 さらに、高温側サーミスタの比較値αと、低高温側サーミスタの比較値βと、低温側サーミスタの比較値γと、高温側の2つのサーミスタ温度Th1,Th2と、低温側の2つのサーミスタ温度TL2,TL3と、を用い、セルモジュールの目詰まり診断と、センサラショナリティ診断と、が行える。
すなわち、図7に示す診断処理において、比較値α,β,γとサーミスタ温度Th1,Th2, TL2,TL3を用い、第1セルモジュール31と第2セルモジュール32と第3セルモジュール33の何れに目詰まりが発生していることを診断できる。
また、図7に示す診断処理において、高温側の2つのサーミスタ温度Th1,Th2と、低温側の2つのサーミスタ温度TL2,TL3と、を用い、高い精度にてセンサラショナリティ診断を行うことができる。
 この結果、サーミスタ取り付けパターン3の場合、温度センサの設置数を4個に抑えながら、ファン制御(バッテリ温度制御)、バッテリ入出力制御、セルモジュールの目詰まり診断、センサラショナリティ診断を何れも高い精度にて行うことができる。
 さらに、例えば、3つのセルモジュール31,32,33に対しそれぞれ2個のサーミスタを設置する場合(サーミスタ数は6個)に比べ、設置するサーミスタ数(4個)とそれに関連する部品点数を低減することができる。このため、重量低減および原価低減することが可能となる。また、サーミスタ数の減少により、故障が発生する確率を低減することができる。
 その上、4個のサーミスタ11h,12L,12h,13Lのセンサ診断を高精度にて行うことができる。このため、バッテリ冷却不良をバッテリ不具合が発生する前に検出できることにより、バッテリ修理費用やバッテリ交換費用を低減できる。さらに、サーミスタ11h,12L,12h,13Lの異常を正確に診断することで、誤診断を低減するというように、オンボード診断機能を向上させることができる。
 次に、効果を説明する。
実施例1のバッテリパック冷却システムにあっては、下記に列挙する効果を得ることができる。
 (1) 複数のセル(セル缶31a)により構成されるセルモジュール31,32,33を、バッテリパックケース1の内部空間に冷却通路を有して設定し、冷却通路を流れる冷却風により前記セルモジュール31,32,33を冷却するバッテリパック冷却システムにおいて、
 冷却通路を、冷却風導入通路51と、冷却風排出通路71と、冷却風導入通路51と冷却風排出通路71を並列に繋いで複数配置される冷却分岐通路61,62,63と、を有して構成し、
 複数の冷却分岐通路61,62,63のそれぞれにセルモジュール31,32,33を設定し、
 複数のセルモジュール31,32,33のうち、一つのセルモジュール(第2セルモジュール32)の上流位置と下流位置にそれぞれ温度センサ(第2サーミスタ12L,12h)を設置した(図1)。
  このため、温度センサ(第2サーミスタ12L,12h)の設置数を最小限(2個)に抑えながら、バッテリ温度制御(ファン制御)、バッテリ入出力制御、セルモジュールの目詰まり診断を行うことができる。
 (2) 複数のセルモジュール31,32,33のうち、一つのセルモジュール(第2セルモジュール32)の最低温度となる上流位置に最低温度センサ(第2サーミスタ12L)を設置し、最高温度となる下流位置に最高温度センサ(第2サーミスタ12h)を設置し、
 複数のセルモジュール31,32,33のうち、他の一つのセルモジュール(第1セルモジュール31もしくは第3セルモジュール33)に、最高温度もしくは最低温度のどちらかの温度を計測する温度センサ(第1サーミスタ11hもしくは第3サーミスタ13L)を設置した(図1)。
  このため、(1)の効果に加え、温度センサ(第2サーミスタ12L,12h+第1サーミスタ11hもしくは第3サーミスタ13L)の設置数を3個に抑えながら、バッテリ温度制御(ファン制御)、バッテリ入出力制御、セルモジュールの目詰まり診断、センサラショナリティ診断を行うことができる。
 (3) 複数のセルモジュール31,32,33のうち、一つのセルモジュール(第2セルモジュール32)の最低温度となる上流位置に最低温度センサ(第2サーミスタ12L)を設置し、最高温度となる下流位置に最高温度センサ(第2サーミスタ12h)を設置し、
 複数のセルモジュール31,32,33のうち、他の一つのセルモジュール(第1セルモジュール31)に、最高温度を計測する最高温度センサ(第1サーミスタ11h)を設置し、
 複数のセルモジュール31,32,33のうち、二つのセルモジュールとは異なるセルモジュール(第3セルモジュール33)に、最低温度を計測する最低温度センサ(第3サーミスタ13L)を設置した(図1)。
  このため、(1)の効果に加え、温度センサ(サーミスタ11h,12L,12h,13L)の設置数を4個に抑えながら、ファン制御(バッテリ温度制御)、バッテリ入出力制御、セルモジュールの目詰まり診断、センサラショナリティ診断を何れも高い精度にて行うことができる。
 (4) 最高温度を計測する温度センサ(第1サーミスタ11h)は、バッテリパック全体の中で最も高い温度領域となるセルモジュール(第1セルモジュール31)の下流位置に設置し、
 最低温度を計測する温度センサ(第3サーミスタ13L)は、バッテリパック全体の中で最も低い温度領域となるセルモジュール(第3セルモジュール33)の上流位置に設置した(図1)。
  このため、(3)の効果に加え、温度センサ(サーミスタ11h,12L,12h,13L)の設置数を4個に抑えながら、ファン制御(バッテリ温度制御)、バッテリ入出力制御、セルモジュールの目詰まり診断、センサラショナリティ診断のさらなる精度向上を図ることができる。
 (5) セルモジュールとして、冷却風の流れの上流側から下流側に向かって並列に配置される第1冷却分岐通路61と第2冷却分岐通路62と第3冷却分岐通路63に、それぞれ第1セルモジュール31と第2セルモジュール32と第3セルモジュール33を設定し、
 第1セルモジュール31の下流位置に第1最高温度センサ(第1サーミスタ11h)を設置し、第2セルモジュール32の上流位置と下流位置にそれぞれ第2最低温度センサ(第2サーミスタ12L)と第2最高温度センサ(第2サーミスタ12h)を設置し、第3セルモジュール33の上流位置に第3最低温度センサ(第3サーミスタ13L)を設置した(図1)。
  このため、(1)~(4)の効果に加え、3つの冷却分岐通路61,62,63のそれぞれにセルモジュール31,32,33を設定したバッテリパックBPにおいて、4個の温度センサ(サーミスタ11h,12L,12h,13L)を用い、高精度のファン制御(バッテリ温度制御)、バッテリ入出力制御、セルモジュールの目詰まり診断、センサラショナリティ診断を行うことができる。
 (6) セルモジュール31は、複数の円筒状のセル缶31aを、缶軸を互いに平行として並べた第1セル缶列31bと第2セル缶列31cを、缶軸間隔を半ピッチずらして二層重ね合わせ、かつ、互いに隣接する缶胴の間に冷風通過隙間tを確保した状態で保持することにより構成した(図2)。
  このため、(1)~(5)の効果に加え、セルモジュール31を上流側から下流側へと通過する冷却風の通過抵抗を小さく抑え、冷却風により効果的に複数のセル缶31aの冷却を行うことができる。
 (7) 温度センサは、温度変化に対する抵抗変化を利用して温度を計測するサーミスタ11h,12L,12h,13Lであり、
 サーミスタ11h,12L,12h,13Lを、各セルモジュール31,32,33の端部位置に配置される円筒状のセル缶の缶底面に取り付けた(図3)。
  このため、(6)の効果に加え、雰囲気温度ではなく、セル缶そのものの温度を検出する構成により、各セルモジュール31,32,33の最高セル温度と最低セル温度を精度良く取得することができる。
 (8) 温度センサ(サーミスタ11h,12L,12h,13L)からの温度情報に基づく演算処理を行うコントローラ(ハイブリッドコントロールモジュール14)を設け、
 コントローラ(ハイブリッドコントロールモジュール14)は、一つのセルモジュール(第2セルモジュール32)からの最高温度情報(サーミスタ温度Th2)と最低温度情報(サーミスタ温度TL2)の差分値(比較値β:β=Th2-TL2)を用い、各モジュール31,32,33での冷却風流れ不良になる目詰まりを診断する診断部(図7)を有する。
  このため、(1)~(7)の効果に加え、セルモジュール31,32,33のうち、一つのセルモジュール(第2セルモジュール32)のセル温度分布を把握することにより、目詰まり診断を行うことができる。
 (9) 診断部(図7)は、最低温度を比較できる2つの最低温度センサ(サーミスタ12L,13L)からの温度変化勾配の差分(ΔTL2-ΔTL3)と、最高温度を比較できる2つの最高温度センサ(サーミスタ11h,12h)からの温度変化勾配の差分(ΔTh1-ΔTh2)と、を用い、温度センサ(サーミスタ11h,12L,12h,13L)のラショナリティ診断を行う。
  このため、(8)の効果に加え、2つの低温側温度情報による温度変化勾配と、2つの高温側温度情報による温度変化勾配と、を用い、精度良くセンサラショナリティ診断を行うことができる。
 (10) 温度センサ(サーミスタ11h,12L,12h,13L)からの温度情報に基づく演算処理を行うコントローラ(リチウムイオンバッテリコントローラ9、ハイブリッドコントロールモジュール14)を設け、
 コントローラ(リチウムイオンバッテリコントローラ9、ハイブリッドコントロールモジュール14)は、最低温度情報(サーミスタ温度TL2又はTL3)及び最高温度情報(サーミスタ温度Th1又はTh2)を用い、バッテリ入出力を制御する入出力制御部(図5,6)を有する。
  このため、(1)~(9)の効果に加え、バッテリの温度依存性に関し、最低温度情報と最高温度情報の2つの温度情報を用い、精度良く許容入出力トルクを得るバッテリ入出力制御を行うことができる。
 (11) 温度センサ(サーミスタ11h,12L,12h,13L)からの温度情報に基づく演算処理を行うコントローラ(ハイブリッドコントロールモジュール14)を設け、
 コントローラ(ハイブリッドコントロールモジュール14)は、最高温度情報(サーミスタ温度Th1又はTh2)を用い、バッテリ冷却風量を制御するファン制御部(図4)を有する。
  このため、(1)~(10)の効果に加え、最高温度情報を用い、精度良くバッテリ温度を低下させるファン制御を行うことができる。
 以上、本発明のバッテリパック冷却システムを実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加などは許容される。
 実施例1では、ファン制御処理をハイブリッドコントロールモジュール14(HCM)で実行する例を示した。しかし、ファン制御処理を、図8に示すように、リチウムイオンバッテリコントローラ9(LBC)で直接実行するようにしても良い。
 実施例1では、セルモジュールとして、3つのセルモジュール31,32,33を3つの冷却分岐通路61,62,63に設定する例を示した。しかし、セルモジュールとしては、複数のセルモジュールであれば、2つのセルモジュールを有するものであっても良いし、4つ以上のセルモジュールを有するものであっても良い。
 実施例1では、サーミスタ取り付けパターンとして、第1セルモジュール31の下流位置に第1サーミスタ11hを設置し、第2セルモジュール32の上流位置と下流位置にそれぞれ第2サーミスタ12Lと第2サーミスタ12hを設置し、第3セルモジュール33の上流位置に第3サーミスタ13Lを設置する例を示した。しかし、サーミスタ取り付けパターンとしては、実施例1のサーミスタ取り付けパターン3に限らず、複数のセルモジュールのうち、一つのセルモジュールのみの上流位置と下流位置にそれぞれサーミスタを設置するサーミスタ取り付けパターン1であっても良い。さらに、複数のセルモジュールのうち、一つのセルモジュールの上流位置と下流位置にそれぞれサーミスタを設置し、これに加えて、他の一つのセルモジュールに、最高温度もしくは最低温度のどちらかの温度を計測するサーミスタを設置するサーミスタ取り付けパターン2であっても良い。
 実施例1では、セルモジュール31として、図2に示すように、複数の円筒状のセル缶31aを用いる例を示した。しかし、セルモジュールとしては、冷却風の流れが確保される構成であれば、例えば、複数のセル箱などのように形状が異なるセルを用いたものとしても良い。
 実施例1では、本発明のバッテリパック冷却システムを、FFハイブリッド車やFRハイブリッド車に搭載されたバッテリパックに適用する例を示した。しかし、本発明のバッテリパック冷却システムは、プラグインハイブリッド車や電気自動車に搭載されるバッテリパックに対しても適用することができる。
関連出願の相互参照
 本出願は、2013年9月6日に日本国特許庁に出願された特願2013-184608に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。

Claims (11)

  1.  複数のセルにより構成されるセルモジュールを、バッテリパックケースの内部空間に冷却通路を有して設定し、前記冷却通路を流れる冷却風により前記セルモジュールを冷却するバッテリパック冷却システムにおいて、
     前記冷却通路を、冷却風導入通路と、冷却風排出通路と、前記冷却風導入通路と前記冷却風排出通路を並列に繋いで複数配置される冷却分岐通路と、を有して構成し、
     前記複数の冷却分岐通路のそれぞれに前記セルモジュールを設定し、
     前記複数のセルモジュールのうち、一つのセルモジュールの上流位置と下流位置にそれぞれ温度センサを設置した
     ことを特徴とするバッテリパック冷却システム。
  2.  請求項1に記載されたバッテリパック冷却システムにおいて、
     前記複数のセルモジュールのうち、一つのセルモジュールの最低温度となる上流位置に最低温度センサを設置し、最高温度となる下流位置に最高温度センサを設置し、
     前記複数のセルモジュールのうち、他の一つのセルモジュールに、最高温度もしくは最低温度のどちらかの温度を計測する温度センサを設置した
     ことを特徴とするバッテリパック冷却システム。
  3.  請求項1に記載されたバッテリパック冷却システムにおいて、
     前記複数のセルモジュールのうち、一つのセルモジュールの最低温度となる上流位置に最低温度センサを設置し、最高温度となる下流位置に最高温度センサを設置し、
     前記複数のセルモジュールのうち、他の一つのセルモジュールに、最高温度を計測する最高温度センサを設置し、
     前記複数のセルモジュールのうち、前記二つのセルモジュールとは異なるセルモジュールに、最低温度を計測する最低温度センサを設置した
     ことを特徴とするバッテリパック冷却システム。
  4.  請求項3に記載されたバッテリパック冷却システムにおいて、
     前記最高温度を計測する温度センサは、バッテリパック全体の中で最も高い温度領域となるセルモジュールの下流位置に設置し、
     前記最低温度を計測する温度センサは、バッテリパック全体の中で最も低い温度領域となるセルモジュールの上流位置に設置した
     ことを特徴とするバッテリパック冷却システム。
  5.  請求項1から4までの何れか一項に記載されたバッテリパック冷却システムにおいて、
     前記セルモジュールとして、冷却風の流れの上流側から下流側に向かって並列に配置される第1冷却分岐通路と第2冷却分岐通路と第3冷却分岐通路に、それぞれ第1セルモジュールと第2セルモジュールと第3セルモジュールを設定し、
     前記第1セルモジュールの下流位置に第1最高温度センサを設置し、前記第2セルモジュールの上流位置と下流位置にそれぞれ第2最低温度センサと第2最高温度センサを設置し、前記第3セルモジュールの上流位置に第3最低温度センサを設置した
     ことを特徴とするバッテリパック冷却システム。
  6.  請求項1から5までの何れか一項に記載されたバッテリパック冷却システムにおいて、
     前記セルモジュールは、複数の円筒状のセル缶を、缶軸を互いに平行として並べた第1セル缶列と第2セル缶列を、缶軸間隔を半ピッチずらして二層重ね合わせ、かつ、互いに隣接する缶胴の間に冷風通過隙間を確保した状態で保持することにより構成した
     ことを特徴とするバッテリパック冷却システム。
  7.  請求項6に記載されたバッテリパック冷却システムにおいて、
     前記温度センサは、温度変化に対する抵抗変化を利用して温度を計測するサーミスタであり、
     前記サーミスタを、各セルモジュールの端部位置に配置される円筒状のセル缶の缶底面に取り付けた
     ことを特徴とするバッテリパック冷却システム。
  8.  請求項1から7までの何れか一項に記載されたバッテリパック冷却システムにおいて、
     前記温度センサからの温度情報に基づく演算処理を行うコントローラを設け、
     前記コントローラは、一つのセルモジュールからの最高温度情報と最低温度情報の差分値を用い、各モジュールでの冷却風流れ不良になる目詰まりを診断する診断部を有する
     ことを特徴とするバッテリパック冷却システム。
  9.  請求項8に記載されたバッテリパック冷却システムにおいて、
     前記診断部は、最低温度を比較できる2つの最低温度センサからの温度変化勾配の差分と、最高温度を比較できる2つの最高温度センサからの温度変化勾配の差分と、を用い、温度センサのラショナリティ診断を行う
     ことを特徴とするバッテリパック冷却システム。
  10.  請求項1から9までの何れか一項に記載されたバッテリパック冷却システムにおいて、
     前記温度センサからの温度情報に基づく演算処理を行うコントローラを設け、
     前記コントローラは、最低温度情報及び最高温度情報を用い、バッテリ入出力を制御する入出力制御部を有する
     ことを特徴とするバッテリパック冷却システム。
  11.  請求項1から10までの何れか一項に記載されたバッテリパック冷却システムにおいて、
     前記温度センサからの温度情報に基づく演算処理を行うコントローラを設け、
     前記コントローラは、最高温度情報を用い、バッテリ冷却風量を制御するファン制御部を有する
     ことを特徴とするバッテリパック冷却システム。
PCT/JP2014/069557 2013-09-06 2014-07-24 バッテリパック冷却システム WO2015033694A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480048689.3A CN105518929B (zh) 2013-09-06 2014-07-24 电池组冷却系统
EP14842849.3A EP3043417B1 (en) 2013-09-06 2014-07-24 Battery pack cooling system
US14/914,275 US10249913B2 (en) 2013-09-06 2014-07-24 Battery pack cooling system
JP2015535377A JP6173469B2 (ja) 2013-09-06 2014-07-24 バッテリパック冷却システム
US16/269,631 US10511066B2 (en) 2013-09-06 2019-02-07 Battery pack cooling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013184608 2013-09-06
JP2013-184608 2013-09-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/914,275 A-371-Of-International US10249913B2 (en) 2013-09-06 2014-07-24 Battery pack cooling system
US16/269,631 Division US10511066B2 (en) 2013-09-06 2019-02-07 Battery pack cooling system

Publications (1)

Publication Number Publication Date
WO2015033694A1 true WO2015033694A1 (ja) 2015-03-12

Family

ID=52628180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069557 WO2015033694A1 (ja) 2013-09-06 2014-07-24 バッテリパック冷却システム

Country Status (5)

Country Link
US (2) US10249913B2 (ja)
EP (1) EP3043417B1 (ja)
JP (1) JP6173469B2 (ja)
CN (1) CN105518929B (ja)
WO (1) WO2015033694A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192353A (ja) * 2015-03-31 2016-11-10 日立工機株式会社 電池パック
JP2017004896A (ja) * 2015-06-15 2017-01-05 富士重工業株式会社 バッテリパックの冷却装置
CN107615565A (zh) * 2015-10-02 2018-01-19 株式会社Lg化学 具有改进的冷却管道密封特性的电池模块
CN108107940A (zh) * 2018-01-31 2018-06-01 北京国能电池科技股份有限公司 温度调控集成控制系统及电池组
JP2019029141A (ja) * 2017-07-27 2019-02-21 株式会社デンソーテン センサ選択装置およびセンサ選択方法
CN113013529A (zh) * 2021-02-18 2021-06-22 中国第一汽车股份有限公司 一种风冷电池冷却系统及冷却流道设计方法
US11056895B2 (en) * 2017-10-18 2021-07-06 Black & Decker Inc. Multi-port charger

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101628489B1 (ko) * 2014-09-25 2016-06-08 현대자동차주식회사 차량용 고전압 배터리 제어 장치 및 방법
JP6299549B2 (ja) * 2014-09-29 2018-03-28 トヨタ自動車株式会社 電池の冷却装置
KR101829093B1 (ko) * 2014-10-22 2018-03-29 주식회사 엘지화학 배터리 시스템의 냉각 공기 흐름 제어 시스템 및 방법
WO2017017922A1 (ja) * 2015-07-24 2017-02-02 パナソニックIpマネジメント株式会社 温度調和ユニット、温度調和システム、車両
US10322688B2 (en) 2016-12-30 2019-06-18 Textron Innovations Inc. Controlling electrical access to a lithium battery on a utility vehicle
US10195953B2 (en) 2016-12-30 2019-02-05 Textron Innovations Inc. Charging a lithium battery on a utility vehicle
US10109899B1 (en) * 2017-03-30 2018-10-23 GM Global Technology Operations LLC Control of current in parallel battery strings
KR102322856B1 (ko) * 2017-04-28 2021-11-08 현대자동차주식회사 배터리 냉각 제어 장치 및 방법, 그리고 차량 시스템
DE102017216161B4 (de) * 2017-09-13 2024-02-22 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum überwachen der funktionsfähigkeit des kühlsystems eines hochvoltspeichers
DE102018206487A1 (de) 2018-04-26 2019-10-31 Robert Bosch Gmbh Verfahren zur Ermittlung eines Zustandes der thermischen Anbindung mindestens einer Komponente innerhalb eines elektrischen Energiespeichersystems an eine Wärmequelle oder Wärmesenke
US10654372B2 (en) 2018-10-18 2020-05-19 Textron Innovations Inc. Controlling power to a utility vehicle
CN111361454B (zh) * 2020-03-18 2021-06-15 一汽解放汽车有限公司 动力电池热管理系统的诊断方法、装置、设备和存储介质
US11437665B2 (en) * 2020-06-29 2022-09-06 Rocky Research Battery thermal and power control system
DE102020130993A1 (de) * 2020-11-24 2022-05-25 Audi Aktiengesellschaft Verfahren zum Ermitteln eines Maximalwerts für einen Parameterbereich eines Fahrbetriebsparameters eines Kraftfahrzeugs und Kraftfahrzeug
KR20220100464A (ko) 2021-01-08 2022-07-15 주식회사 엘지에너지솔루션 배터리 팩 진단 장치 및 방법
CN114976372A (zh) * 2021-02-22 2022-08-30 华为数字能源技术有限公司 一种电池储能系统及电动汽车
CN113097605A (zh) * 2021-03-31 2021-07-09 阳光三星(合肥)储能电源有限公司 一种电池储能系统
CN217606896U (zh) * 2022-05-12 2022-10-18 江苏天合储能有限公司 用于储能系统的液冷管路、液冷系统以及储能设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311065A (ja) * 2006-05-16 2007-11-29 Toyota Motor Corp 電池装置、これを搭載した車両、および電池装置の異常判定方法
JP2008084625A (ja) * 2006-09-27 2008-04-10 Hitachi Vehicle Energy Ltd 蓄電装置
JP2009252460A (ja) * 2008-04-03 2009-10-29 Hitachi Ltd 電池モジュール及びそれを備えた蓄電装置並びに電機システム
JP2010244802A (ja) * 2009-04-03 2010-10-28 Honda Motor Co Ltd 組電池の冷却構造
JP2013030375A (ja) 2011-07-29 2013-02-07 Toyota Industries Corp 電池パックの温度制御装置
JP2013099167A (ja) * 2011-11-02 2013-05-20 Toyota Motor Corp 蓄電システムを搭載した車両の制御装置及び制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4813707B2 (ja) 2001-09-28 2011-11-09 本田技研工業株式会社 燃料電池スタック
JP2005011757A (ja) * 2003-06-20 2005-01-13 Toyota Motor Corp 二次電池の温度異常検知装置および異常検知方法
JP4899339B2 (ja) 2005-05-16 2012-03-21 トヨタ自動車株式会社 燃料電池のセパレータ
JP4781071B2 (ja) * 2005-09-28 2011-09-28 三洋電機株式会社 電源装置と電池の冷却方法
JP5343512B2 (ja) * 2008-10-30 2013-11-13 トヨタ自動車株式会社 電池パック入出力制御装置
JP5880822B2 (ja) 2011-10-31 2016-03-09 日産自動車株式会社 燃料電池スタック

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311065A (ja) * 2006-05-16 2007-11-29 Toyota Motor Corp 電池装置、これを搭載した車両、および電池装置の異常判定方法
JP2008084625A (ja) * 2006-09-27 2008-04-10 Hitachi Vehicle Energy Ltd 蓄電装置
JP2009252460A (ja) * 2008-04-03 2009-10-29 Hitachi Ltd 電池モジュール及びそれを備えた蓄電装置並びに電機システム
JP2010244802A (ja) * 2009-04-03 2010-10-28 Honda Motor Co Ltd 組電池の冷却構造
JP2013030375A (ja) 2011-07-29 2013-02-07 Toyota Industries Corp 電池パックの温度制御装置
JP2013099167A (ja) * 2011-11-02 2013-05-20 Toyota Motor Corp 蓄電システムを搭載した車両の制御装置及び制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3043417A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192353A (ja) * 2015-03-31 2016-11-10 日立工機株式会社 電池パック
JP2017004896A (ja) * 2015-06-15 2017-01-05 富士重工業株式会社 バッテリパックの冷却装置
CN107615565A (zh) * 2015-10-02 2018-01-19 株式会社Lg化学 具有改进的冷却管道密封特性的电池模块
EP3285328A4 (en) * 2015-10-02 2018-03-14 LG Chem, Ltd. Battery module having improved cooling duct sealing properties
US10637111B2 (en) 2015-10-02 2020-04-28 Lg Chem, Ltd. Battery module having improved cooling duct sealing properties
JP2019029141A (ja) * 2017-07-27 2019-02-21 株式会社デンソーテン センサ選択装置およびセンサ選択方法
US11056895B2 (en) * 2017-10-18 2021-07-06 Black & Decker Inc. Multi-port charger
CN108107940A (zh) * 2018-01-31 2018-06-01 北京国能电池科技股份有限公司 温度调控集成控制系统及电池组
CN113013529A (zh) * 2021-02-18 2021-06-22 中国第一汽车股份有限公司 一种风冷电池冷却系统及冷却流道设计方法

Also Published As

Publication number Publication date
CN105518929A (zh) 2016-04-20
EP3043417A4 (en) 2016-10-26
US20190173135A1 (en) 2019-06-06
EP3043417B1 (en) 2018-05-02
US10249913B2 (en) 2019-04-02
JP6173469B2 (ja) 2017-08-09
CN105518929B (zh) 2018-04-20
US10511066B2 (en) 2019-12-17
US20160204478A1 (en) 2016-07-14
JPWO2015033694A1 (ja) 2017-03-02
EP3043417A1 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
JP6173469B2 (ja) バッテリパック冷却システム
JP5015649B2 (ja) バッテリ及び電装機器の冷却構造
JP4078553B2 (ja) 車両用リチウム電池モジュール
JP4116609B2 (ja) 電源制御装置、電動車両および電池制御ユニット
US9415700B2 (en) Battery thermal system and diagnostic method
JP6210105B2 (ja) バッテリ装置
US20120109433A1 (en) Systems and methods for determining the target thermal conditioning value to control a rechargeable energy storage system
EP2907713B1 (en) System for cooling vehicle-mounted power control device and method for diagnosing abnormality
US20130274975A1 (en) Diversion of energy from regenerative braking
WO2007132729A1 (ja) 電池装置、これを搭載した車両、および電池装置の異常判定方法
US8150570B2 (en) Auto management system for air filter used in battery pack and auto management method for the same
US20150291054A1 (en) Traction Battery Air Thermal Management Control System
US11247583B2 (en) Battery thermal management systems for providing improved battery cooling as a function of vehicle speed
US11724619B2 (en) Vehicle
CN105301425A (zh) 线束异常检测系统和方法
JP5668672B2 (ja) 電池システムおよび電池システムの過放電検出方法
JP2014192124A (ja) 電池パック
US20230132434A1 (en) Deterioration diagnosis apparatus of assembled battery and deterioration diagnosis method of assembled battery
JP7206079B2 (ja) 蓄電池の冷却制御装置及び電動車両
JP2007198834A (ja) 異常検出装置および異常検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842849

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015535377

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14914275

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014842849

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842849

Country of ref document: EP