WO2015033659A1 - 二次電池の充電方法及び充電装置 - Google Patents

二次電池の充電方法及び充電装置 Download PDF

Info

Publication number
WO2015033659A1
WO2015033659A1 PCT/JP2014/067919 JP2014067919W WO2015033659A1 WO 2015033659 A1 WO2015033659 A1 WO 2015033659A1 JP 2014067919 W JP2014067919 W JP 2014067919W WO 2015033659 A1 WO2015033659 A1 WO 2015033659A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
secondary battery
voltage
constant current
positive electrode
Prior art date
Application number
PCT/JP2014/067919
Other languages
English (en)
French (fr)
Inventor
秀行 小松
荻原 航
山本 伸司
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2015033659A1 publication Critical patent/WO2015033659A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery charging method and a charging device.
  • Patent Document 1 As a method of charging a secondary battery such as a lithium secondary battery, a method of charging at a constant voltage after charging at a constant current is known (Patent Document 1).
  • the problem to be solved by the present invention is to provide a charging method and a charging device for a secondary battery capable of suppressing deterioration of cycle characteristics.
  • the present invention in the high-voltage charging region after charging to the first predetermined voltage, constant current charging is performed while relaxing the battery voltage without passing current through the secondary battery. As a result, it is possible to shorten the time for which the high voltage is maintained while securing the charge amount, so that elution of the transition metal can be suppressed and deterioration of the cycle characteristics can be suppressed.
  • FIG. (1) explaining the subject of the secondary battery using a solid solution positive electrode.
  • FIG. (2) explaining the subject of the secondary battery using a solid solution positive electrode.
  • FIG. (3) explaining the subject of the secondary battery using a solid solution positive electrode.
  • FIG. (4) explaining the subject of the secondary battery using a solid solution positive electrode.
  • FIG. 1 is a plan view showing an example of a secondary battery to be charged by the charging method and the charging device of the present invention
  • FIG. 2 is a sectional view taken along the line II-II in FIG.
  • the secondary battery 10 to be charged include a lithium secondary battery such as a lithium ion secondary battery.
  • the secondary battery shown below is an example of a charging target of the charging method and the charging device of the present invention, and a secondary battery having a structure other than this is also included in the charging target of the present invention.
  • the secondary battery 10 shown in FIGS. 1 and 2 is connected to an electrode laminate 101 having three positive plates 102, seven separators 103, and three negative plates 104, and the electrode laminate 101, respectively.
  • the number of constituents of the positive electrode plate 102, the separator 103, and the negative electrode plate 104 is not particularly limited, and the electrode laminate 101 is configured by one positive electrode plate 102, three separators 103, and one negative electrode plate 104.
  • the number of the positive electrode plate 102, the separator 103, and the negative electrode plate 104 may be appropriately selected as necessary.
  • the positive electrode plate 102 constituting the electrode laminate 101 includes a positive electrode side current collector 102a extending to the positive electrode tab 105 and a positive electrode active material layer formed on both main surfaces of a part of the positive electrode side current collector 102a. And have.
  • the positive electrode side current collector 102a constituting the positive electrode plate 102 can be formed of an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper titanium foil, or a stainless steel foil having a thickness of about 20 ⁇ m.
  • the positive electrode active material layer constituting the positive electrode plate 102 is a mixture of a positive electrode active material, a conductive agent such as carbon black, and a binder such as an aqueous dispersion of polyvinylidene fluoride or polytetrafluoroethylene, It is formed by applying to a part of the main surface of the positive electrode side current collector 102a, drying and pressing.
  • the positive electrode active material layer is formed of a positive electrode active material made of a solid solution material.
  • a solid solution material used for such a positive electrode active material For example, the solid solution lithium containing transition metal oxide represented by following General formula (1) is mentioned.
  • Li Li 1.5 [Ni a Co b Mn c [Li] d ] O 3 (1)
  • the solid solution lithium-containing transition metal oxide of this example has a layered structure part and a part (a layered structure Li 2 MnO 3 ) that changes to a spinel structure by charging or charging / discharging in a predetermined potential range.
  • the layered structure Li 2 MnO 3 was changed to the spinel structure LiMn 2 O 4 , and the portions that changed to the spinel structure were all changed to the spinel structure LiMn 2 O 4 .
  • the spinel structure change ratio of the solid solution lithium-containing transition metal oxide is 0.25 or more and less than 1.0.
  • “Spinel structure change ratio” means that Li 2 MnO 3 having a layered structure in the solid solution lithium-containing transition metal oxide is changed to LiMn 2 O 4 having a spinel structure by charging or charging / discharging in a predetermined potential range.
  • the ratio of the spinel structure when the layered structure Li 2 MnO 3 in the solid solution lithium-containing transition metal oxide is all changed to the spinel structure LiMn 2 O 4 is defined as 1. . Specifically, it is defined by the following formula.
  • spinel structure change ratio for a battery assembled using a positive electrode in which the solid solution lithium-containing transition metal oxide is used as a positive electrode active material, a charge charged from initial state A before charging to 4.5 V A case as shown in FIG. 3 will be described as an example, in which the state is set to state B, further passed through a plateau region, overcharged state C charged to 4.8V, and discharged state D further discharged to 2.0V. To do.
  • the “actual capacity of the plateau region” in the above formula is the plateau region in FIG. 3 (specifically, the region from 4.5 V to 4.8 V (the actual capacity V BC of the region BC from the charged state B to the overcharged state C) The actual capacity of the plateau region), which is the region resulting from the change in the crystal structure.
  • the practical amount V AB in the region AB from the initial state A to the charged state B charged to 4.5 V is a layered structure part. It corresponds to the composition (y) and the theoretical capacity (V L ) of LiMO 2 , and the actual capacity V BC of the region BC in the overcharged state C charged from 4.5 to 4.8 V is charged to spinel.
  • composition ratio of Li 2 MnO 3 in the solid solution can be calculated from the composition formula of the solid solution lithium-containing transition metal oxide.
  • the presence or absence of the layered structure site and the spinel structure site in the solid solution lithium-containing transition metal oxide can be determined by the presence of a peculiar peak in the layered structure and the spinel structure by X-ray diffraction analysis (XRD), and the ratio is It can be determined from the measurement and calculation of the capacity as described above.
  • the spinel structure change ratio does not become 1.0, and when it is less than 0.25, a discharge capacity and capacity retention comparable to those of a conventional solid solution lithium-containing transition metal oxide can be realized even if high. Only a solid solution lithium-containing transition metal oxide is obtained.
  • the spinel structure change ratio of the solid solution lithium-containing transition metal oxide is more preferably 0.4 or more and less than 0.9.
  • the spinel structure change ratio of the solid solution lithium-containing transition metal oxide is 0.6 or more and 0.8 or less.
  • Such a solid solution lithium-containing transition metal oxide can achieve a high discharge capacity and capacity retention when used as a positive electrode active material of a lithium ion secondary battery. It is suitably used for secondary batteries. As a result, it can be suitably used as a lithium-ion secondary battery for vehicle drive power or auxiliary power. In addition to this, the present invention can be sufficiently applied to lithium ion secondary batteries for home use and portable devices.
  • the production method of the solid solution lithium-containing transition metal oxide of this example will be described.
  • lithium compounds such as sulfates and nitrates, nickel compounds, cobalt compounds And a raw material containing a manganese compound are mixed to obtain a mixture, and then the resulting mixture is baked in an inert gas atmosphere at 800 ° C. to 1000 ° C. for 6 hours to 24 hours.
  • inert gas atmosphere 800 ° C. to 1000 ° C. for 6 hours to 24 hours.
  • a mixture is obtained by mixing raw materials including lithium compounds such as sulfates and nitrates, nickel compounds, cobalt compounds and manganese compounds, The obtained mixture is fired at 800 ° C. or higher and 1000 ° C. or lower for 6 hours or longer and 24 hours or shorter to obtain a fired product, and then the obtained fired product is heated at 600 ° C. or higher and 800 ° C. or lower in an inert gas atmosphere.
  • the manufacturing method of the solid solution lithium containing transition metal oxide to heat-process can be mentioned.
  • the binder (binder) to be added to the positive electrode active material layer as necessary is not particularly limited.
  • polyvinylidene fluoride, polyimide, styrene / butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, and polyamide are more preferable.
  • These suitable binders are excellent in heat resistance, have a very wide potential window, are stable at both the positive electrode potential and the negative electrode potential, and can be used for the positive electrode (and negative electrode) active material layer.
  • the material is not limited to these, and a known material conventionally used as a binder for a lithium ion secondary battery can be used. These binders may be used alone or in combination of two or more.
  • the amount of the binder contained in the positive electrode active material layer is not particularly limited as long as it can bind the positive electrode active material, but preferably 0.5 to 15 mass with respect to the positive electrode active material layer. %, More preferably 1 to 10% by mass.
  • the conductive auxiliary agent added to the positive electrode active material layer as necessary is blended to improve the conductivity of the positive electrode active material layer.
  • a conductive support agent carbon materials, such as carbon black, such as acetylene black, a graphite, and a vapor growth carbon fiber, can be mentioned, for example.
  • carbon black such as acetylene black, a graphite, and a vapor growth carbon fiber
  • an electronic network inside the positive electrode active material layer is effectively formed, which can contribute to improvement of the output characteristics of the battery.
  • the conventionally well-known material used as a conductive support agent for lithium ion secondary batteries can be used. These conductive assistants may be used alone or in combination of two or more.
  • the conductive binder having the functions of the conductive assistant and the binder may be used in place of the conductive assistant and the binder, or one or both of the conductive assistant and the binder. You may use together.
  • the conductive binder for example, commercially available TAB-2 (manufactured by Hosen Co., Ltd.) can be used.
  • the density of the positive electrode active material layer is preferably 2.5 g / cm 3 or more and 3.0 g / cm 3 or less.
  • the density of the positive electrode active material layer is less than 2.5 g / cm 3 , it is difficult to improve the discharge capacity because the weight (filling amount) per unit volume cannot be improved.
  • the density of the positive electrode active material layer exceeds 3.0 g / cm 3 , the amount of voids in the positive electrode active material layer is remarkably reduced, and the permeability of the non-aqueous electrolyte and the lithium ion diffusibility may be reduced. is there.
  • each positive electrode side current collector 102 a constituting the three positive electrode plates 102 having such a solid solution positive electrode active material layer is joined to the positive electrode tab 105.
  • the positive electrode tab 105 for example, an aluminum foil having a thickness of about 0.2 mm, an aluminum alloy foil, a copper foil, or a nickel foil can be used.
  • the negative electrode plate 104 constituting the electrode laminate 101 includes a negative electrode current collector 104a extending to the negative electrode tab 106, and a negative electrode active material layer formed on both main surfaces of a part of the negative electrode current collector 104a. And have.
  • the negative electrode side current collector 104a of the negative electrode plate 104 is an electrochemically stable metal foil such as a nickel foil, a copper foil, a stainless steel foil, or an iron foil having a thickness of about 10 ⁇ m.
  • the negative electrode active material layer constituting the negative electrode plate 104 includes, as the negative electrode active material, lithium, a lithium alloy, or a negative electrode material capable of occluding and releasing lithium, and if necessary, a binder or a conductive material.
  • An auxiliary agent may be included.
  • the negative electrode active material layer is prepared, for example, by adding a binder such as polyvinylidene fluoride and a solvent such as N-2-methylpyrrolidone to a negative electrode active material such as non-graphitizable carbon, graphitizable carbon, or graphite.
  • each negative electrode plate 104 is configured to be joined to a single negative electrode tab 106.
  • Examples of the negative electrode material capable of inserting and extracting lithium include graphite (natural graphite, artificial graphite, etc.), which is highly crystalline carbon, low crystalline carbon (soft carbon, hard carbon), carbon black (Ketjen) Carbon materials such as black, acetylene black, channel black, lamp black, oil furnace black, thermal black), fullerenes, carbon nanotubes, carbon nanofibers, carbon nanohorns, carbon fibrils (containing 10% by mass or less of silicon nanoparticles) Silicon (Si), germanium (Ge), tin (Sn), lead (Pb), aluminum (Al), indium (In), zinc (Zn), hydrogen (H), calcium (Ca), strontium( r), barium (Ba), ruthenium (Ru), rhodium (Rh), iridium (Ir), palladium (Pd), platinum (Pt), silver (Ag), gold (Au), cadmium (Cd), mercury ( Hg), gallium (Ga), thallium (T
  • Lithium - can be exemplified transition metal composite oxide. However, it is not limited to these, The conventionally well-known material used as a negative electrode active material for lithium ion secondary batteries can be used. These negative electrode active materials may be used alone or in combination of two or more.
  • the carbon material is made of a graphite material that is coated with an amorphous carbon layer and is not scaly, and the BET specific surface area of the carbon material is 0.8 m 2 / g or more and 1.5 m 2. It is preferable that the tap density is 0.9 g / cm 3 or more and 1.2 g / cm 3 or less.
  • a carbon material made of a graphite material that is coated with an amorphous carbon layer and is not scale-like is preferable because of its high lithium ion diffusibility into the graphite layered structure.
  • the BET specific surface area of such a carbon material is 0.8 m 2 / g or more and 1.5 m 2 / g or less because the capacity retention can be further improved. Furthermore, when the tap density of such a carbon material is 0.9 g / cm 3 or more and 1.2 g / cm 3 or less, the weight (filling amount) per unit volume can be improved, and the discharge capacity is improved. be able to.
  • the negative electrode active material layer containing at least the carbon material and the binder has a BET specific surface area of 2.0 m 2 / g or more and 3.0 m 2 / g or less.
  • the BET specific surface area of the negative electrode active material layer is 2.0 m 2 / g or more and 3.0 m 2 / g or less, the permeability of the non-aqueous electrolyte can be improved, and the capacity retention is further improved. Gas generation due to decomposition of the non-aqueous electrolyte can be suppressed.
  • the BET specific surface area of the negative electrode active material layer containing at least a carbon material and a binder after pressure molding is preferably 2.01 m 2 / g or more and 3.5 m 2 / g or less. is there.
  • the BET specific surface area of the negative electrode active material layer after pressure molding is set to 2.01 m 2 / g or more and 3.5 m 2 / g or less.
  • the increase in the BET specific surface area before and after pressure press molding of the negative electrode active material layer containing at least the carbon material and the binder is 0.01 m 2 / g or more and 0.5 m 2 / g or less. Is preferred. Since the BET specific surface area after pressure forming of the negative electrode active material layer can be 2.01 m 2 / g or more and 3.5 m 2 / g or less, the permeability of the non-aqueous electrolyte can be improved. Capacity retention can be improved and gas generation due to decomposition of the non-aqueous electrolyte can be suppressed.
  • each active material layer active material layer on one side of the current collector
  • the thickness of each active material layer is not particularly limited, and conventionally known knowledge about the battery can be referred to as appropriate.
  • the thickness of each active material layer is usually about 1 to 500 ⁇ m, preferably 2 to 100 ⁇ m, taking into consideration the intended use of the battery (emphasis on output, energy, etc.) and ion conductivity.
  • the optimum particle size is different for expressing the unique effect of each active material, the optimum particle size for expressing each unique effect may be mixed and used. There is no need to make the particle size of the material uniform.
  • the average particle size of the oxide may be approximately the same as the average particle size of the positive electrode active material included in the existing positive electrode active material layer, and is not particularly limited. . From the viewpoint of higher output, it is preferably in the range of 1 to 20 ⁇ m.
  • the “particle diameter” refers to the outline of active material particles (observation surface) observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It means the maximum distance among any two points.
  • the value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
  • the particle diameters and average particle diameters of other components can be defined in the same manner. However, it is not limited to such a range at all, and it goes without saying that it may be outside this range as long as the effects of the present embodiment can be expressed effectively.
  • the separator 103 of the electrode laminate 101 prevents the short circuit between the positive electrode plate 102 and the negative electrode plate 104 described above, and may have a function of holding an electrolyte.
  • the separator 103 is a microporous film made of, for example, a polyolefin such as polyethylene (PE) or polypropylene (PP) having a thickness of about 25 ⁇ m. When an overcurrent flows, the pores of the layer are generated by the heat generation. It is also blocked and has a function of cutting off current.
  • the positive electrode plates 102 and the negative electrode plates 104 are alternately stacked via the separators 103, and the separators 103 are stacked on the uppermost layer and the lowermost layer. Is formed.
  • the electrolyte contained in the secondary battery 10 includes an electrolyte solution held in the separator 103, a polymer gel electrolyte, a solid polymer electrolyte, and a layer structure, and further includes a polymer gel electrolyte and a solid polymer.
  • the electrolyte solution is preferably one that is usually used in a lithium ion secondary battery, and specifically has a form in which a supporting salt (lithium salt) is dissolved in an organic solvent.
  • lithium salt examples include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), six Inorganic acid anion salts such as lithium fluorotantalate (LiTaF 6 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium decachlorodecaborate (Li 2 B 10 Cl 10 ), lithium trifluoromethanesulfonate (LiCF 3) Organic acids such as SO 3 ), lithium bis (trifluoromethanesulfonyl) imide (Li (CF 3 SO 2 ) 2 N), lithium bis (pentafluoroethanesulfonyl) imide (Li (C 2 F 5 SO 2 ) 2 N) List at least one lithium salt selected from anionic salts Can.
  • LiPF 6 lithium
  • organic solvent examples include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC); chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (EMC), and diethyl carbonate (DEC).
  • cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC)
  • chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (EMC), and diethyl carbonate (DEC).
  • Ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-dibutoxyethane; lactones such as ⁇ -butyrolactone; nitriles such as acetonitrile; methyl propionate Esters such as amides; Amides such as dimethylformamide; One using at least one selected from methyl acetate and methyl formate, or a mixture using an organic solvent such as an aprotic solvent can be used. .
  • polymer gel electrolyte examples include those containing a polymer constituting the polymer gel electrolyte and an electrolytic solution in a conventionally known ratio. For example, from the viewpoint of ionic conductivity, it is desirable that the content be about several mass% to 98 mass%.
  • the polymer gel electrolyte is a solid polymer electrolyte having ion conductivity containing the above-described electrolytic solution usually used in a lithium ion secondary battery.
  • the present invention is not limited to this, and includes a structure in which a similar electrolyte solution is held in a polymer skeleton having no lithium ion conductivity.
  • Examples of the polymer having no lithium ion conductivity used for the polymer gel electrolyte include polyvinylidene fluoride (PVdF), polyvinyl chloride (PVC), polyacrylonitrile (PAN), and polymethyl methacrylate (PMMA). Can be used. However, it is not necessarily limited to these. In addition, since polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), and the like are in a class that has almost no ionic conductivity, it can be a polymer having the ionic conductivity.
  • the polymer used for the polymer gel electrolyte is exemplified as a polymer having no lithium ion conductivity.
  • the solid polymer electrolyte examples include a structure in which the lithium salt is dissolved in polyethylene oxide (PEO), polypropylene oxide (PPO), and the like, and does not contain an organic solvent. Therefore, when the electrolyte layer is composed of a solid polymer electrolyte, there is no fear of liquid leakage from the battery, and the battery reliability can be improved.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • the thickness of the electrolyte layer of the secondary battery 10 is preferably thin from the viewpoint of reducing internal resistance.
  • the thickness of the electrolyte layer is usually 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • a polymer gel electrolyte or a solid polymer electrolyte matrix polymer can exhibit excellent mechanical strength by forming a cross-linked structure.
  • a suitable polymerization initiator is used to polymerize a polymer for forming a polymer electrolyte (for example, polyethylene oxide (PEO) or polypropylene oxide (PPO)) by thermal polymerization, ultraviolet polymerization, A polymerization treatment such as radiation polymerization or electron beam polymerization may be performed.
  • the electrode laminate 101 configured as described above is housed and sealed in the upper exterior member 107 and the lower exterior member 108.
  • the upper exterior member 107 and the lower exterior member 108 for sealing the electrode laminate 101 are laminated with a resin film such as polyethylene or polypropylene or a metal foil such as aluminum laminated with a resin such as polyethylene or polypropylene. It is made of a material having flexibility such as a resin-metal thin film laminate material, and the upper exterior member 107 and the lower exterior member 108 are heat-sealed to lead the positive electrode tab 105 and the negative electrode tab 106 to the outside. In this state, the electrode laminate 101 is sealed.
  • the positive electrode tab 105 and the negative electrode tab 106 are provided with a seal film 109 in order to ensure adhesion between the upper exterior member 107 and the lower exterior member 108 at a portion in contact with the upper exterior member 107 and the lower exterior member 108.
  • a seal film 109 in order to ensure adhesion between the upper exterior member 107 and the lower exterior member 108 at a portion in contact with the upper exterior member 107 and the lower exterior member 108.
  • the sealing film 109 can comprise from the synthetic resin material excellent in electrolyte solution resistance and heat-fusion properties, such as polyethylene, modified polyethylene, a polypropylene, a modified polypropylene, or an ionomer.
  • the secondary battery using the solid solution positive electrode such as Li 2 MnO 3 described above has a technical problem that although it has a large discharge capacity, it has poor cycle characteristics and is likely to deteriorate when repeated charging and discharging at a high potential. .
  • the cause of such deterioration of cycle characteristics is considered as follows. That is, in a secondary battery using a solid solution positive electrode, when a constant voltage charge is performed for a long time at a high voltage as shown in FIG. 6A, transition metal ions such as Mn ions and Ni ions are eluted from the positive electrode.
  • Mn ions and Ni ions eluted from the positive electrode are electrodeposited on the negative electrode as shown in FIG. 6B.
  • the electrolytic solution is decomposed by Mn or Ni electrodeposited on the negative electrode, and the decomposition product is deposited on the negative electrode.
  • the deposit causes the movement of Li ions as shown in FIG. 6D. This causes inhibition of the battery (which increases internal resistance).
  • FIG. 4 is a block diagram showing a charging apparatus according to an embodiment of the present invention
  • FIG. 5 is a flowchart showing a charging method according to an embodiment of the present invention.
  • the charging device of this example includes the secondary battery 10, the battery control device 20, the power supply 30, the current sensor 40, and the voltage sensor 50 described above.
  • the power source 30 of this example is composed of a commercial power source and / or a motor generator that supplies charging power to the secondary battery 10.
  • the power source 30 can be configured from a power plug for connecting to a commercial power source, an inverter, and a motor generator.
  • the power supply 30 is composed of an inverter and a motor generator, regenerative AC power generated by the rotation of the motor generator is converted into DC power via the inverter and used for charging the secondary battery 10.
  • the power source 30 may be any one that supplies at least the charging power to the secondary battery 10.
  • the battery control device 20 of this example is a control device for controlling charging / discharging of the secondary battery 10, and is detected by the charge / discharge current flowing in the secondary battery 10 detected by the current sensor 40 or the voltage sensor 50. Based on the terminal voltage of the secondary battery 10, the charging and discharging of the secondary battery 10 are controlled and the SOC (State of Charge) of the secondary battery 10 is calculated.
  • the current flowing through the secondary battery 10 is detected by the current sensor 40, the terminal voltage of the secondary battery 10 is detected by the voltage sensor 50, the power supply 30 and the secondary battery The battery 10 is controlled.
  • step S ⁇ b> 1 when the battery control device 20 receives a charge command for the secondary battery 10, the battery control device 20 starts detecting the value of the current flowing through the secondary battery 10 by the current sensor 40, while Detection of the voltage value applied to both terminals is started.
  • control of the power supply 30 is started so that the constant current I 0 flows through the secondary battery 10 in step S2.
  • the first charging step by the constant current charging, the current value detected by the current sensor 40 is performed by controlling the power supply 30 so as to maintain a predetermined value I 0.
  • the power supply 30 is composed of an inverter and a motor generator, constant current charging is executed by controlling the switching drive of the inverter by the battery control device 20.
  • step S3 it is determined whether or not reached a first predetermined voltage value greater than or equal to V 0 that is the voltage between the two terminals (the applied voltage) V of the secondary battery 10 detected by the voltage sensor 50 is set in advance, it has been reached If not, the process returns to step S1, and the current value and voltage value are read again and constant current charging is continued.
  • the secondary battery 10 is charged to the first predetermined voltage value V 0 to ensure a sufficient charge capacity. can do.
  • the battery capacity at time T 1 corresponds to C 1 .
  • the first charging step is set to constant current charging, so that the charging time to the first predetermined voltage value V 0 is shortened.
  • the first charging step in the charging method of the present invention uses a constant voltage.
  • the charging method may be a constant voltage charging to be applied or a combination of constant current charging and constant voltage charging.
  • the first predetermined voltage V 0 is not particularly limited, but in the lithium ion secondary battery represented by Li 1.5 [Ni a Co b Mn c [Li] d ] O 3 described above, one secondary battery is included. On the other hand, it is preferably 4.3 to 4.8V.
  • step S3 When the voltage between the two terminals V of the secondary battery 10 detected reaches equal to or more than the first predetermined voltage value V 0 by a voltage sensor 50, the process proceeds to step S4, the power source 30 so as to interrupt the constant current charging The power supply to the secondary battery 10 is interrupted.
  • the power supply from the power source 30 and the discharge of the secondary battery 10 are temporarily stopped so that no current flows through the secondary battery 10, and the time T 1 to T 2 in FIG. leaving the only rechargeable battery 10 a predetermined time t 0 in step S5 as.
  • the battery voltage relaxation process of this example is performed in order to suppress the concentration distribution of the electrolytic solution inside the battery and the uneven charging state of lithium ions in the electrode in the charging process performed in the first charging process of step S2.
  • This battery voltage relaxation step is particularly effective when relatively rapid charging (constant current charging) is executed in the first charging step.
  • the end of the battery voltage relaxation step from end T1 of the first charging step is started, the end of the battery voltage relaxation step, the end T 1 of the first charging step, for example, when a predetermined time has elapsed, such as 600 seconds or more (FIG. 7B T 2 , time t 0 ).
  • a predetermined time such as 600 seconds or more
  • V between the terminals of the secondary battery 10 has decreased by a predetermined voltage such as 30 to 50 mV or more from the first predetermined voltage V 0 (V 1 in FIG. 7B). Is preferred.
  • transition metal ions such as manganese ions and nickel ions shown in FIG. This is because elution cannot be effectively suppressed.
  • step S6 If a battery voltage relaxation process is complete
  • constant voltage charging is executed with the same upper limit voltage V 0 as the first predetermined voltage value V 0 that is the target voltage in the first charging process.
  • the upper limit voltage of the constant current charging step is desirably the first predetermined voltage value V 0 , but may be an upper limit voltage lower than this.
  • the constant current charging process is continuously performed until the open circuit voltage V of the secondary battery 10 (the voltage between both terminals of the secondary battery 10 in the no-load state) reaches, for example, a fully-charged voltage V SOC100 that is known in advance.
  • V SOC100 a fully-charged voltage
  • the charging process of this example is terminated.
  • the secondary battery 10 is charged to the fully charged battery capacity C 2 .
  • step S7 when the open circuit voltage of the secondary battery 10 does not reach the full charge voltage in step S7, the process returns to step S4 to execute the second battery voltage relaxation step.
  • this second battery voltage relaxation step instead of from the first constant current charging step at the end T 3, for example, when the predetermined time has elapsed, such as 600 seconds or more (T 4, time t 0 in FIG. 7B), or to When the voltage (open circuit voltage) V between the terminals of the secondary battery 10 decreases by a predetermined voltage such as 30 to 50 mV or more from the first predetermined voltage V 0 that is the upper limit voltage of the first constant current charging step (see FIG. 7B V 1 ) is preferred.
  • step S6 If the 2nd battery voltage relaxation process is complete
  • the second constant current charging step as in the first constant current charging step, constant voltage charging is performed with the same upper limit voltage V 0 as the first predetermined voltage value V 0 that is the target voltage in the first charging step. To do.
  • the upper limit voltage of the constant current charging step is the first predetermined voltage value V 0 , but when the upper limit voltage of the first constant current charging step is an upper limit voltage lower than this, the upper limit voltage May be set equal to.
  • step S7 it is determined again whether or not the open circuit voltage V of the secondary battery 10 has reached the full charge voltage V SOC100.
  • step S4 If not, the process returns to step S4 and the third battery voltage relaxation step is performed.
  • the third constant current charging step is executed.
  • the graphs shown in FIGS. 7A and 7B show the case where the open circuit voltage V of the secondary battery 10 reaches the full charge voltage V SOC100 in the fourth battery voltage relaxation step and the constant current charging step, that is, the fourth second charging step. Is shown.
  • Example 1 (Preparation of negative electrode) Graphite powder, acetylene black as a conductive additive, and polyvinylidene fluoride PVDF as a binder are blended in a mass ratio of 90: 5: 5, and N-methylpyrrolidone is added as a solvent and mixed. A negative electrode slurry was prepared. A copper foil was used as a current collector, and the negative electrode slurry obtained above was applied to the current collector to a thickness of 70 ⁇ m and dried under vacuum for 8 hours to obtain a target negative electrode.
  • Mixing was performed to prepare a positive electrode slurry.
  • An aluminum foil was used as a current collector, and the positive electrode slurry obtained above was applied to a thickness of 50 ⁇ m and dried under vacuum for 8 hours to obtain a target positive electrode.
  • Capacity retention characteristic evaluation test The lithium ion secondary battery produced as described above was subjected to a charge / discharge test to verify the discharge capacity retention rate. That is, in an atmosphere of 25 ° C., after carrying out constant current charging in the first charging step with an upper limit voltage of 4.35 V corresponding to a current density of 1 C, an intermittent charging step (battery voltage relaxation step and constant step) is performed with an upper limit voltage of 4.35 V. Voltage charging step) was carried out.
  • the battery capacity before the start of charging / discharging and the capacity after charging / discharging were measured, and the capacity retention rate was calculated to be 99.03%.
  • Example 1 the capacity retention rate was calculated when charging was performed under the same conditions as in Example 1 except that 4.35V constant voltage charging was performed instead of the intermittent charging process, and discharging was performed under the same conditions. , 98.53%.
  • the charging method and the charging device of the present example after charging up to the first predetermined voltage value V 0 in the first charging step, intermittent combination of a no-load state in which no current flows and constant current charging are combined.
  • constant current charging while maintaining the amount of charge, the time during which the high voltage is maintained is shortened.
  • the charging method and the charging device of this example since the first charging step is charged to the first predetermined voltage value by constant current charging, the charging can be performed in a short time.
  • the upper limit voltage of the constant current charging process in the intermittent charging process is set to the same voltage as the first predetermined voltage value of the first charging process, so that the capacity can be increased in a short time. Can be charged.
  • the constant current charging step performed in the first charging step. It is possible to suppress the concentration distribution of the electrolytic solution inside the battery and the uneven charging state of lithium ions in the electrode during the charging process by current charging. Thereby, elution of transition metals, such as manganese and nickel, can be suppressed by suppressing a potential difference between the positive electrode and the negative electrode and normalizing the battery voltage.
  • the intermittent charging process includes a plurality of processes combining the battery voltage relaxation process and the constant current charging process, so that the time during which the high voltage is maintained can be further shortened. This can suppress the elution of the transition metal, thereby further suppressing the deterioration of the cycle characteristics.
  • the solid solution material is a solid solution lithium-containing transition metal oxide represented by Li 1.5 [Ni a Co b Mn c [Li] d ] O 3 , as the positive electrode active material. Since it uses, the secondary battery which can implement
  • the battery control device 20 corresponds to the control means according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 正極材料として固溶体材料からなる正極活物質を用いた二次電池(10)の充電方法において、第1の所定電圧まで充電する第1充電工程と、前記第1充電工程の後に、前記二次電池に電流を流さない無負荷の状態とする電池電圧緩和工程と定電流で充電する定電流充電工程とを組み合わせた間欠充電工程と、を有する。第1充電工程は、定電流で充電する。間欠充電工程の定電流充電工程は、前記第1の所定電圧を上限電圧として充電する。

Description

二次電池の充電方法及び充電装置
 本発明は、二次電池の充電方法及び充電装置に関するものである。
 リチウム二次電池などの二次電池を充電する方法として、定電流充電したのち定電圧充電するものが知られている(特許文献1)。
特開平3-251054号公報
 しかしながら、たとえばLiMnOを母構造とする固溶体正極を用いたリチウムイオン二次電池では高電圧で定電圧充電することになるので、充電時に正極から遷移金属が溶出し、サイクル特性が劣るという問題がある。
 本発明が解決しようとする課題は、サイクル特性の劣化を抑制できる二次電池の充電方法及び充電装置を提供することである。
 本発明は、固溶体材料からなる正極活物質を用いた二次電池に対し、第1の所定電圧まで充電した後に、電流を流さない無負荷状態と定電流充電とを組み合わせた間欠定電流充電を実行することによって上記課題を解決する。
 本発明によれば、第1の所定電圧まで充電した後の高電圧の充電領域においては、二次電池に電流を流さずに電池電圧を緩和しつつ定電流充電する。これにより、充電量を確保しつつ高電圧に保持される時間を短縮することができるので、遷移金属の溶出を抑制でき、サイクル特性の劣化を抑制することができる。
本発明の充電方法及び充電装置の充電対象である二次電池の一例を示す平面図である。 図1のII-II線に沿う断面図である。 スピネル構造変化割合の定義を説明するグラフ図である。 本発明の一実施の形態に係る充電装置を示すブロック図である。 本発明の一実施の形態に係る充電方法を示すフローチャートである。 固溶体正極を用いた二次電池の課題を説明する図(その1)である。 固溶体正極を用いた二次電池の課題を説明する図(その2)である。 固溶体正極を用いた二次電池の課題を説明する図(その3)である。 固溶体正極を用いた二次電池の課題を説明する図(その4)である。 図5の充電方法により充電した場合の電池容量と印加電圧/電流の関係を示すグラフである。 図5の充電方法により充電した場合の充電時間と印加電圧/電流の関係を示すグラフである。
 以下、本発明の一実施の形態を図面に基づいて説明する。初めに充電対象である二次電池の一例を説明したのち、本発明の一実施の形態に係る充電方法及び充電装置を説明する。
《二次電池の構成例》
 図1は本発明の充電方法及び充電装置の充電対象である二次電池の一例を示す平面図、図2は図1のII-II線に沿う断面図である。充電対象となる二次電池10としては、たとえば、リチウムイオン二次電池などのリチウム系二次電池などが挙げられる。ただし、以下に示す二次電池は本発明の充電方法及び充電装置の充電対象の一例であって、これ以外の構造を有する二次電池も本発明の充電対象に含まれる。
 図1及び図2に示す二次電池10は、3枚の正極板102、7枚のセパレータ103及び3枚の負極板104を有する電極積層体101と、当該電極積層体101にそれぞれ接続された正極タブ105及び負極タブ106と、これら電極積層体101及び正極タブ105、負極タブ106を収容して封止する上部外装部材107及び下部外装部材108と、特に図示しない電解液とから構成されている。なお、正極板102、セパレータ103及び負極板104の各構成枚数は特に限定されず、1枚の正極板102、3枚のセパレータ103及び1枚の負極板104で電極積層体101を構成してもよく、また必要に応じて正極板102、セパレータ103及び負極板104の枚数を適宜選択してもよい。
 電極積層体101を構成する正極板102は、正極タブ105まで伸びている正極側集電体102aと、この正極側集電体102aの一部の両主面にそれぞれ形成された正極活物質層とを有する。正極板102を構成する正極側集電体102aは、たとえば厚さ20μm程度のアルミニウム箔、アルミニウム合金箔、銅チタン箔又はステンレス箔等の電気化学的に安定した金属箔で構成することができる。
 正極板102を構成する正極活物質層は、正極活物質と、カーボンブラック等の導電剤と、ポリフッ化ビニリデンやポリ四フッ化エチレンの水性ディスパージョン等の結着剤とを混合したものを、正極側集電体102aの一部の主面に塗布し、乾燥及びプレスすることにより形成されている。特に本例に係る二次電池10は、固溶体材料からなる正極活物質により正極活物質層が構成されている。このような正極活物質に用いられる固溶体材料としては、特に限定されないが、たとえば、下記一般式(1)で表される固溶体リチウム含有遷移金属酸化物が挙げられる。
 Li1.5[NiCoMn[Li]]O…(1)
(式(1)中、Liはリチウム、Niはニッケル、Coはコバルト、Mnはマンガン、Oは酸素を示し、a、b、c及びdは、0<a<1.4、0≦b<1.4、0<c<1.4、0.1<d≦0.4、a+b+c+d=1.5、1.1≦a+b+c<1.4の関係を満足する。)
 そして、本例の固溶体リチウム含有遷移金属酸化物は、層状構造部位と、所定の電位範囲における充電又は充放電を行うことによりスピネル構造に変化する部位(層状構造のLiMnO)とを有し、当該固溶体リチウム含有遷移金属酸化物における層状構造のLiMnOがスピネル構造のLiMnに変化し、且つ、スピネル構造に変化する部位がスピネル構造のLiMnに全て変化した場合の割合を1としたとき、当該固溶体リチウム含有遷移金属酸化物のスピネル構造変化割合が0.25以上1.0未満である。
 「スピネル構造変化割合」とは、所定の電位範囲における充電又は充放電を行うことにより、当該固溶体リチウム含有遷移金属酸化物における層状構造のLiMnOがスピネル構造のLiMnに変化した割合を規定するものであって、当該固溶体リチウム含有遷移金属酸化物における層状構造のLiMnOがスピネル構造のLiMnに全て変化した場合のスピネル構造変化割合を1としたものである。具体的には、下記式にて定義される。
Figure JPOXMLDOC01-appb-M000001
 「スピネル構造変化割合」の定義について、当該固溶体リチウム含有遷移金属酸化物を正極活物質とした正極を用いて組み立てた電池について、充電開始前の初期状態Aから、4.5Vまで充電された充電状態Bとし、更にプラトー領域を経て、4.8Vまで充電された過充電状態Cとし、更に2.0Vまで放電された放電状態Dとする、図3に示すような場合を例に挙げて説明する。上記式における「プラトー領域の実容量」は、図3におけるプラトー領域(具体的には4.5Vから4.8Vまでの領域(充電状態Bから過充電状態Cまでの領域BCの実容量VBC;プラトー領域の実容量)であり、結晶構造が変化していることに起因する領域である。)の実容量を計測すればよい。
 また、実際には、組成式(1)の固溶体リチウム含有遷移金属酸化物において、初期状態Aから4.5Vまで充電された充電状態Bまでの領域ABの実用量VABは層状構造部位であるLiMOの組成(y)と理論容量(V)に相当し、4.5Vまで充電された充電状態Bから4.8Vまで充電された過充電状態Cの領域BCの実容量VBCはスピネル構造部位であるLiMnOの組成比(x)と理論容量(V)に相当することから、初期状態Aから所定のプラトー領域までに計測した実容量(V)を(V=VAB+VBC)とすると、VAB=y(V)、VBC=x(V)Kであるので、下記式を用いて計算することもできる(Mは、ニッケル(Ni)、コバルト(Co)及びマンガン(Mn)からなる群より選ばれる少なくとも1種を示す。)。
Figure JPOXMLDOC01-appb-M000002
 さらに、「固溶体中のLiMnOの組成比」は、固溶体リチウム含有遷移金属酸化物の組成式から算出することができる。なお、固溶体リチウム含有遷移金属酸化物における層状構造部位とスピネル構造部位の有無は、X線回折分析(XRD)よる層状構造及びスピネル構造に特異なピークの存在により判定することができ、その割合は、上述したような容量の計測・計算から判定することができる。
 また、スピネル構造変化割合が1.0となることはなく、0.25未満の場合は、高くても従来の固溶体リチウム含有遷移金属酸化物と同程度の放電容量や容量保持率を実現し得る固溶体リチウム含有遷移金属酸化物が得られるだけである。
 本例の固溶体リチウム含有遷移金属酸化物は、組成式(1)において、a、b、c及びdが0<a<1.4、0≦b<1.4、0<c<1.4、0.1<d≦0.4、a+b+c+d=1.5、1.1≦a+b+c<1.4の関係を満足しない場合は、固溶体における構造が安定化しない。
 また、本例の固溶体リチウム含有遷移金属酸化物は、組成式(1)において、a、b、c及びdは、0<a<1.35、0≦b<1.35、0<c<1.35、0.15<d≦0.35、a+b+c+d=1.5、1.15≦a+b+c<1.35の関係を満足し、所定の電位範囲における充電又は充放電を行うことにより、当該固溶体リチウム含有遷移金属酸化物のスピネル構造変化割合が0.4以上0.9未満であることがより好適である。
 さらに、本例の固溶体リチウム含有遷移金属酸化物は、組成式(1)において、a、b、c及びdは、0<a<1.3、0≦b<1.3、0<c<1.3、0.15<d≦0.35、a+b+c+d=1.5、1.2≦a+b+c<1.3の関係を満足し、所定の電位範囲における充電又は充放電を行うことにより、当該固溶体リチウム含有遷移金属酸化物のスピネル構造変化割合が0.6以上0.8以下であることが最も好適である。
 このような固溶体リチウム含有遷移金属酸化物は、リチウムイオン二次電池の正極活物質として用いた場合、高い放電容量及び容量保持率を実現し得るため、リチウムイオン二次電池用正極やリチウムイオン二次電池に好適に用いられる。その結果、車両の駆動電源用や補助電源用のリチウムイオン二次電池として好適に利用できる。このほかにも、家庭用や携帯機器用のリチウムイオン二次電池にも十分に適用可能である。
 本例の固溶体リチウム含有遷移金属酸化物の製造方法について説明すると、まず、固溶体リチウム含有遷移金属酸化物前駆体の製造方法の一例としては、硫酸塩や硝酸塩などのリチウム化合物、ニッケル化合物、コバルト化合物及びマンガン化合物を含む原料を混合して混合物を得、次いで、得られた混合物を不活性ガス雰囲気下、800℃以上1000℃以下、6時間以上24時間以下で焼成する固溶体リチウム含有遷移金属酸化物の製法方法を挙げることができる。
 また、固溶体リチウム含有遷移金属酸化物前駆体の製造方法の他の一例としては、硫酸塩や硝酸塩などのリチウム化合物、ニッケル化合物、コバルト化合物及びマンガン化合物を含む原料を混合して混合物を得、次いで、得られた混合物を800℃以上1000℃以下、6時間以上24時間以下で焼成して焼成物を得、しかる後、得られた焼成物を不活性ガス雰囲気下、600℃以上800℃以下で熱処理する固溶体リチウム含有遷移金属酸化物の製法方法を挙げることができる。
 正極活物質層に必要に応じて添加する結着剤(バインダー)としては、特に限定されるものではないが、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル(PAN)、ポリイミド(PI)、ポリアミド(PA)、セルロース、カルボキシメチルセルロース(CMC)、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル(PVC)、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。なかでも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミドであることがより好ましい。これらの好適なバインダーは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり正極(及び負極)活物質層に使用が可能である。
 ただしこれらに限定されるものではなく、リチウムイオン二次電池用の結着剤として従来用いられている公知の材料を用いることができる。これらの結着剤は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 正極活物質層に含まれるバインダー量は、正極活物質を結着することができる量であれば特に限定されるものではないが、好ましくは正極活物質層に対して、0.5~15質量%であり、より好ましくは1~10質量%である。
 正極活物質層に必要に応じて添加する導電助剤とは、正極活物質層の導電性を向上させるために配合されるものである。導電助剤としては、例えば、アセチレンブラック等のカーボンブラック、グラファイト、気相成長炭素繊維などの炭素材料を挙げることができる。正極活物質層が導電助剤を含むと、正極活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与し得る。ただし、これらに限定されるものではなく、リチウムイオン二次電池用の導電助剤として用いられている従来公知の材料を用いることができる。これらの導電助剤は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 また、上記導電助剤と結着剤の機能を併せ持つ導電性結着剤をこれら導電助剤と結着剤に代えて用いてもよいし、又はこれら導電助剤と結着剤の一方若しくは双方と併用してもよい。導電性結着剤としては、例えば、既に市販のTAB-2(宝泉株式会社製)を用いることができる。
 さらに、正極活物質層の密度は、2.5g/cm以上3.0g/cm以下であることが好適である。正極活物質層の密度が2.5g/cm未満である場合には、単位体積当たりの重量(充填量)を向上させることができないため、放電容量を向上させることが難しい。また、正極活物質層の密度が3.0g/cmを超える場合には、正極活物質層の空隙量が著しく減少し、非水電解液の浸透性やリチウムイオン拡散性が低下することがある。
 図1及び図2に戻り、このような固溶体正極活物質層を有する、3枚の正極板102を構成する各正極側集電体102aが、正極タブ105に接合されている。正極タブ105としては、たとえば、厚さ0.2mm程度のアルミニウム箔、アルミニウム合金箔、銅箔、又はニッケル箔等を用いることができる。
 電極積層体101を構成する負極板104は、負極タブ106まで伸びている負極側集電体104aと、当該負極側集電体104aの一部の両主面にそれぞれ形成された負極活物質層とを有する。負極板104の負極側集電体104aは、例えば、厚さ10μm程度のニッケル箔、銅箔、ステンレス箔又は、鉄箔等の電気化学的に安定した金属箔である。
 負極板104を構成する負極活物質層は、負極活物質として、リチウム、リチウム合金、又はリチウムを吸蔵及び放出することが可能な負極材料を含んでおり、必要に応じて、結着剤や導電助剤を含んでいてもよい。なお、結着剤や導電助剤は上記説明したものを用いることができる。負極活物質層は、たとえば、難黒鉛化炭素、易黒鉛化炭素又は黒鉛等の負極活物質に、ポリフッ化ビニリデン等の結着剤とN-2-メチルピロリドン等の溶剤を加えてスラリーを調製して負極側集電体104aの一部の両主面に塗布し、乾燥及びプレスすることにより形成されている。なお、本例の二次電池10では、3枚の負極板104は、負極板104を構成する各負極側集電体104aが、単一の負極タブ106に接合されるような構成となっている。すなわち、本実施形態の二次電池10では、各負極板104は、単一の共通の負極タブ106に接合された構成となっている。
 リチウムを吸蔵及び放出することが可能な負極材料としては、例えば、高結晶性カーボンであるグラファイト(天然グラファイト、人造グラファイト等)、低結晶性カーボン(ソフトカーボン、ハードカーボン)、カーボンブラック(ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラック等)、フラーレン、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボンフィブリルなどの炭素材料(10質量%以下のケイ素ナノ粒子を含むものを含む。);ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、アルミニウム(Al)、インジウム(In)、亜鉛(Zn)、水素(H)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ルテニウム(Ru)、ロジウム(Rh)、イリジウム(Ir)、パラジウム(Pd)、白金(Pt)、銀(Ag)、金(Au)、カドミウム(Cd)、水銀(Hg)、ガリウム(Ga)、タリウム(Tl)、炭素(C)、窒素(N)、アンチモン(Sb)、ビスマス(Bi)、酸素(O)、硫黄(S)、セレン(Se)、テルル(Te)、塩素(Cl)等のリチウムと合金化する元素の単体、及びこれらの元素を含む酸化物(一酸化ケイ素(SiO)、SiO(0<x<2)、二酸化スズ(SnO)、SnO(0<x<2)、SnSiOなど)及び炭化物(炭化ケイ素(SiC)など)等;リチウム金属等の金属材料;リチウム-チタン複合酸化物(チタン酸リチウム:LiTi12)等のリチウム-遷移金属複合酸化物を挙げることができる。しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用の負極活物質として用いられている従来公知の材料を用いることができる。これらの負極活物質は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 また、本例においては、炭素材料が、非晶質炭素層で表面が被覆され、且つ鱗片状ではない黒鉛材料からなり、炭素材料のBET比表面積が0.8m/g以上1.5m/g以下であり且つタップ密度が0.9g/cm以上1.2g/cm以下であることが好適である。非晶質炭素層で表面が被覆され、且つ鱗片状ではない黒鉛材料からなる炭素材料は、黒鉛層状構造へのリチウムイオン拡散性が高く好ましい。また、このような炭素材料のBET比表面積が0.8m/g以上1.5m/g以下であると、更に容量保持率を向上させることができるため、好ましい。更に、このような炭素材料のタップ密度が0.9g/cm以上1.2g/cm以下であると、単位体積当たりの重量(充填量)を向上させることができ、放電容量を向上させることができる。
 さらに、本例においては、炭素材料及び結着剤を少なくとも含む負極活物質層のBET比表面積が2.0m/g以上3.0m/g以下であることが好適である。負極活物質層のBET比表面積が2.0m/g以上3.0m/g以下であることにより、非水電解液の浸透性を向上させることができ、更に容量保持率を向上させ、非水電解液の分解によるガス発生を抑制できる。また、本例においては、炭素材料及び結着剤を少なくとも含む負極活物質層の加圧成型後のBET比表面積が2.01m/g以上3.5m/g以下であることが好適である。負極活物質層の加圧成形後のBET比表面積が2.01m/g以上3.5m/g以下とすることにより、非水電解液の浸透性を向上させることができ、更に容量保持率を向上させ、非水電解液の分解によるガス発生を抑制できる。さらに、本例においては、炭素材料及び結着剤を少なくとも含む負極活物質層の加圧プレス成型前後のBET比表面積の増加分が0.01m/g以上0.5m/g以下であることが好適である。負極活物質層の加圧成形後のBET比表面積が2.01m/g以上3.5m/g以下とすることができるため、非水電解液の浸透性を向上させることができ、更に容量保持率を向上させ、非水電解液の分解によるガス発生を抑制できる。
 また、各活物質層(集電体片面の活物質層)の厚さについても特に限定されるものではなく、電池についての従来公知の知見を適宜参照することができる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1~500μm程度、好ましくは2~100μmである。さらに、活物質それぞれ固有の効果を発現する上で、最適な粒径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒径同士を混合して用いればよく、全ての活物質の粒径を均一化させる必要はない。例えば、正極活物質として粒子形態の酸化物を用いる場合、酸化物の平均粒子径は、既存の正極活物質層に含まれる正極活物質の平均粒子径と同程度であればよく、特に制限されない。高出力化の観点からは、好ましくは1~20μmの範囲であればよい。なお、本明細中において、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される活物質粒子(観察面)の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の粒子径や平均粒子径も同様に定義することができる。ただし、このような範囲に何ら制限されるものではなく、本実施形態の作用効果を有効に発現できるものであれば、この範囲を外れていてもよいことは言うまでもない。
 電極積層体101のセパレータ103は、上述した正極板102と負極板104との短絡を防止するもので、電解質を保持する機能を備えてもよい。このセパレータ103は、例えば、厚さ25μm程度のポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって層の空孔が閉塞され、電流を遮断する機能をも有するものである。そして、図2に示すように、正極板102と負極板104とは、セパレータ103を介して交互に積層され、さらにその最上層及び最下層にセパレータ103がそれぞれ積層され、これにより電極積層体101が形成されている。
 二次電池10に含有される電解質は、セパレータ103に保持させた電解液、高分子ゲル電解質、固体高分子電解質を用いて層構造を形成したもの、更には、高分子ゲル電解質や固体高分子電解質を用いて積層構造を形成したものなどを挙げることができる。ここで、電解液としては、例えば、通常リチウムイオン二次電池で用いられるものであることが好ましく、具体的には、有機溶媒に支持塩(リチウム塩)が溶解した形態を有する。リチウム塩としては、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化ヒ酸リチウム(LiAsF)、六フッ化タンタル酸リチウム(LiTaF)、四塩化アルミニウム酸リチウム(LiAlCl)、リチウムデカクロロデカホウ素酸(Li10Cl10)等の無機酸陰イオン塩、トリフルオロメタンスルホン酸リチウム(LiCFSO)、リチウムビス(トリフルオロメタンスルホニル)イミド(Li(CFSON)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(Li(CSON)等の有機酸陰イオン塩の中から選ばれる、少なくとも1種類のリチウム塩等を挙げることができる。また、有機溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等の環状カーボネート類;ジメチルカーボネート(DMC)、メチルエチルカーボネート(EMC)、ジエチルカーボネート(DEC)等の鎖状カーボネート類;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジブトキシエタン等のエーテル類;γ-ブチロラクトン等のラクトン類;アセトニトリル等のニトリル類;プロピオン酸メチル等のエステル類;ジメチルホルムアミド等のアミド類;酢酸メチル、蟻酸メチルの中から選ばれる少なくともから1種類又は2種以上を混合した、非プロトン性溶媒等の有機溶媒を用いたものなどが使用できる。
 高分子ゲル電解質としては、高分子ゲル電解質を構成するポリマーと電解液を従来公知の比率で含有したものを挙げることができる。例えば、イオン伝導度などの観点から、数質量%~98質量%程度とするのが望ましい。高分子ゲル電解質は、イオン導伝性を有する固体高分子電解質に、通常リチウムイオン二次電池で用いられる上記電解液を含有させたものである。しかしながら、これに限定されるものではなく、リチウムイオン導伝性を持たない高分子の骨格中に、同様の電解液を保持させたものも含まれる。高分子ゲル電解質に用いられるリチウムイオン導伝性を持たない高分子としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリ塩化ビニル(PVC)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)などが使用できる。ただし、これらに限られるわけではない。なお、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)などは、どちらかと言うとイオン伝導性がほとんどない部類に入るものであるため、上記イオン伝導性を有する高分子とすることもできるが、ここでは高分子ゲル電解質に用いられるリチウムイオン導伝性を持たない高分子として例示したものである。
 固体高分子電解質は、例えばポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)などに上記リチウム塩が溶解して成る構成を有し、有機溶媒を含まないものを挙げることができる。したがって、電解質層が固体高分子電解質から構成される場合には電池からの液漏れの心配がなく、電池の信頼性が向上させることができる。
 二次電池10の電解質層の厚みは、内部抵抗を低減させるという観点からは薄い方が好ましい。電解質層の厚みは、通常1~100μmであり、好ましくは5~50μmである。なお、高分子ゲル電解質や固体高分子電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現させることができる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、ポリエチレンオキシド(PEO)やポリプロピレンオキシド(PPO))に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
 以上のように構成されている電極積層体101は、上部外装部材107及び下部外装部材108に収容されて封止されている。電極積層体101を封止するための上部外装部材107及び下部外装部材108は、たとえば、ポリエチレンやポリプロピレンなどの樹脂フィルムや、アルミニウムなどの金属箔の両面をポリエチレンやポリプロピレンなどの樹脂でラミネートした、樹脂-金属薄膜ラミネート材など、柔軟性を有する材料で形成されており、これら上部外装部材107及び下部外装部材108を熱融着することにより、正極タブ105及び負極タブ106を外部に導出させた状態で、電極積層体101が封止されることとなる。
 なお、正極タブ105及び負極タブ106には、上部外装部材107及び下部外装部材108と接触する部分に、上部外装部材107及び下部外装部材108との密着性を確保するために、シールフィルム109が設けられている。シールフィルム109としては、特に限定されないが、たとえば、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又は、アイオノマー等の耐電解液性及び熱融着性に優れた合成樹脂材料から構成することができる。
《充電方法及び充電装置》
 さて、上述したLiMnOなどの固溶体系の正極を用いた二次電池は、放電容量は大きいものの、サイクル特性が悪く、高電位で充放電を繰り返すと劣化し易いという技術的課題がある。こうしたサイクル特性の劣化の原因は次のように考えられる。すなわち、固溶体正極を用いた二次電池において、図6Aに示すように高電圧にて長時間定電圧充電を施すと、正極からMnイオンやNiイオンなどの遷移金属イオンが溶出する。これらMnイオンやNiイオンの析出電位はLiイオンよりも高いことから、正極から溶出したMnイオンやNiイオンは図6Bに示すように負極に電析する。そして、図6Cに示すように負極に電析したMnやNiによって電解液が分解し、その分解物が負極上に堆積し、その結果、図6Dに示すように堆積物がLiイオンの移動を阻害することになり、これが電池の劣化(内部抵抗が高くなる)の原因となる。
 このため、本例の充電方法及び充電装置では、二次電池を充電するにあたり、第1の所定電圧まで充電し(第1充電工程)、この後に、二次電池に電流を流さない無負荷の状態とする電池電圧緩和工程と定電流で充電する定電流充電工程とを組み合わせた充電(間欠充電工程)を行う。図4は本発明の一実施の形態に係る充電装置を示すブロック図、図5は本発明の一実施の形態に係る充電方法を示すフローチャートである。
 本例の充電装置は、図4に示すように、上述した二次電池10と、電池制御装置20と、電源30と、電流センサ40と、電圧センサ50と、を備える。本例の電源30は、二次電池10に充電用電力を供給する商用電源及び/又はモータジェネレータで構成されている。たとえば、本例の二次電池が電気自動車やハイブリッド自動車に適用される場合には、電源30は、商用電源に接続するための電源プラグや、インバータおよびモータジェネレータから構成することができる。電源30がインバータおよびモータジェネレータから構成される場合には、モータジェネレータの回転により発生した回生交流電力が、インバータを介して直流電力に変換され、二次電池10の充電に用いられる。また二次電池10から供給される直流電力が、インバータにより交流電力に変換されてモータジェネレータに供給される。したがって、電源30がインバータ及びモータジェネレータで構成される場合には本例の電源30は二次電池10の負荷としても機能する。ただし、本発明の充電方法及び充電装置においては、電源30は少なくとも二次電池10に充電用電力を供給するものであればよい。
 本例の電池制御装置20は、二次電池10の充放電を制御するための制御装置であり、電流センサ40により検出される二次電池10に流れる充放電電流や、電圧センサ50により検出される二次電池10の端子電圧に基づいて、二次電池10の充電および放電の制御や二次電池10のSOC(State of Charge)の算出を行なう。本例では次に説明する充電方法を実行するために、二次電池10に流れる電流を電流センサ40で検出するとともに二次電池10の端子電圧を電圧センサ50で検出し、電源30及び二次電池10を制御する。
 次に、図5を参照しながら本発明の一実施の形態に係る充電方法を説明する。まずステップS1にて、電池制御装置20は、二次電池10の充電指令を受け取ると電流センサ40により二次電池10に流れる電流値の検出を開始するとともに、電圧センサ50により二次電池10の両端子に印加される電圧値の検出を開始する。次いで、ステップS2にて二次電池10に定電流Iが流れるように電源30の制御を開始する。この定電流充電による第1充電工程は、電流センサ40により検出される電流値が所定値Iに維持されるように電源30を制御することによって実行される。たとえば、電源30がインバータとモータジェネレータで構成される場合は、電池制御装置20によってインバータのスイッチング駆動を制御することにより定電流充電を実行する。
 ステップS3では、電圧センサ50により検出した二次電池10の両端子間電圧(印加電圧)Vが予め設定された第1の所定電圧値V以上に達したか否かを判定し、達していない場合はステップS1へ戻って電流値及び電圧値を再度読み込むとともに定電流充電を継続する。これにより、図7Aの容量C~C及び図7Bの時間T~Tに示すように二次電池10は、第1の所定電圧値Vまで充電され、十分な充電容量を確保することができる。なお、図7A及び図7Bにおいて、時間Tにおける電池容量はCに対応する。また、本例では第1充電工程を定電流充電とすることで第1の所定電圧値Vまでの充電時間が短縮されるが、本発明の充電方法における第1充電工程は、定電圧を印加する定電圧充電又は定電流充電と定電圧充電を組み合わせた充電方法であってもよい。第1の所定電圧Vは特に限定されないが、上述したLi1.5[NiCoMn[Li]]Oで表されるリチウムイオン二次電池では、1つの二次電池に対して4.3~4.8Vとすることが好ましい。
 ステップS3において、電圧センサ50により検出された二次電池10の両端子間電圧Vが第1の所定電圧値V以上に達したら、ステップS4へ進み、定電流充電を中断すべく電源30から二次電池10への電力供給を中断する。この電池電圧緩和工程においては、二次電池10に電流が流れないように電源30からの電力供給や二次電池10の放電を一時的に停止し、図7Bの時間T~Tに示すようにステップS5において所定時間tだけ二次電池10を放置する。本例の電池電圧緩和工程は、ステップS2の第1充電工程で実施した充電過程における電池内部での電解液の濃度分布や電極中のリチウムイオンの充電状態の偏りを抑制するために行われる。これにより、正極と負極との間に電位差が生じるのを抑制して電池電圧を正常化することで、マンガンやニッケルなどの遷移金属の溶出を抑制することができる。なお、この電池電圧緩和工程は、第1充電工程にて比較的急速な充電(定電流充電)を実行した場合に特に有効である。
 第1充電工程の終了時T1から電池電圧緩和工程が開始されるが、電池電圧緩和工程の終了は、第1充電工程の終了時Tから、たとえば600秒以上など所定時間経過したとき(図7BのT,時間t)とすることが好ましい。またはこれに代えて、二次電池10の両端子間電圧(開路電圧)Vが、第1の所定電圧Vから30~50mV以上など所定電圧低下したとき(図7BのV)とすることが好ましい。電池電圧緩和工程が600秒未満又は第1の所定電圧から30~50mV未満など、十分な時間又は十分な電圧降下がなされていないと、図6Aに示すマンガンイオンやニッケルイオンなどの遷移金属イオンの溶出を効果的に抑制できないからである。
 電池電圧緩和工程を終了したら、ステップS6へ進んで定電流充電工程を実施する。本例の定電流充電工程では、第1充電工程における目標電圧である第1の所定電圧値Vと同じ上限電圧Vとする定電圧充電を実行する。ここで、定電流充電工程の上限電圧は第1の所定電圧値Vとすることが望ましいが、これより低い上限電圧であってもよい。
 定電流充電工程は、二次電池10の開路電圧V(無負荷状態における二次電池10の両端子間電圧)が、たとえば予め既知とされた満充電電圧VSOC100に達するまで継続して実施され、ステップS7にて開路電圧Vが満充電電圧VSOC100に達したら本例の充電処理を終了する。これにより、図7Aの容量C~C及び図7Bの時間T~Tに示すように、二次電池10は、満充電となる電池容量Cまで充電されることになる。
 ちなみに、ステップS7にて二次電池10の開路電圧が満充電電圧に達していない場合はステップS4に戻り、2回目の電池電圧緩和工程を実行する。この2回目の電池電圧緩和工程では、1回目の定電流充電工程の終了時Tから、たとえば600秒以上など所定時間経過したとき(図7BのT,時間t)、またはこれに代えて、二次電池10の両端子間電圧(開路電圧)Vが、1回目の定電流充電工程の上限電圧である第1の所定電圧Vから30~50mV以上など所定電圧低下したとき(図7BのV)とすることが好ましい。
 2回目の電池電圧緩和工程を終了したら、ステップS6へ進んで2回目の定電流充電工程を実施する。2回目の定電流充電工程では、1回目の定電流充電工程と同様に、第1充電工程における目標電圧である第1の所定電圧値Vと同じ上限電圧Vとする定電圧充電を実行する。ここで、定電流充電工程の上限電圧は第1の所定電圧値Vとすることが望ましいが、1回目の定電流充電工程の上限電圧がこれより低い上限電圧である場合にはこの上限電圧に等しく設定してもよい。そして、ステップS7にて再び二次電池10の開路電圧Vが満充電電圧VSOC100に達したか否かを判定し、達していない場合はステップS4へ再び戻って3回目の電池電圧緩和工程と3回目の定電流充電工程を実行する。図7A及び図7Bに示すグラフは4回目の電池電圧緩和工程及び定電流充電工程、すなわち4回の第2充電工程にて二次電池10の開路電圧Vが満充電電圧VSOC100に達した場合を示している。
 以下、本発明をより具体化した実施例及び比較例でさらに詳細に説明する。
《実施例1》
(負極の作製)
 グラファイト粉末と、導電助剤としてのアセチレンブラックと、バインダーとしてポリフッ化ビニリデンPVDFをそれぞれ90:5:5の質量比となるように配合し、これにN-メチルピロリドンを溶媒として添加して混合し、負極スラリーを作製した。集電体として銅箔を使用し、上記で得られた負極スラリーを集電体にそれぞれ70μmの厚さとなるように塗布し、真空下において8時間乾燥し、目的の負極を得た。
(正極の作製)
 正極活物質として、Li1.85Ni0.18Co0.10Mn0.87(上記(1)式において、a=0.18,b=0.10,c=0.87,d=0.35)と、導電助剤としてのアセチレンブラックと、バインダーとしてポリフッ化ビニリデンPVDFを90:5:5の質量比になるように配合し、これにN-メチルピロリドンを溶媒として添加して混合し、正極スラリーを作製した。集電体としてアルミ箔を使用し、上記で得られた正極スラリーをそれぞれ50μmの厚さとなるように塗布し、真空下において8時間乾燥し、目的の正極を得た。
(電池の作製)
 上記で作製した負極と正極をそれぞれ対向させ、この間に厚さ25μmのポリオレフィン製セパレータを配置した。この負極・セパレータ・正極の積層体をアルミラミネート製セルに配し、電解液として、リチウム塩として1Mの六フッ化リン酸リチウムLiPFをエチレンカーボネートEC及びジエチルカーボネートDECからなる有機溶媒に1:2で混合したものをセル内に注入して密閉し、リチウムイオン二次電池を得た。
(容量保持率特性評価試験)
 上記のようにして作製したリチウムイオン二次電池について、充放電試験を行い、放電容量保持率について検証した。すなわち、25℃の雰囲気下において、電流密度1C相当にて上限電圧4.35Vとして第1充電工程の定電流充電を実施したのち、上限電圧4.35Vとして間欠充電工程(電池電圧緩和工程及び定電圧充電工程)を実施した。その後、10分間休止させた後、定電流放電方式にて電流密度1C相当(1Cとは公称容量値a[Ah]のセルを1時間定電流放電すると放電終了となる電流値,1C=a[A])にて2Vまで放電した。この充放電を開始する前の電池容量と充放電を実施した後の容量をそれぞれ測定し、容量保持率を算出したところ、99.03%であった。
《比較例1》
 実施例1において、間欠充電工程に代えて4.35Vの定電圧充電を実施したこと以外は実施例1と同じ条件で充電し、同じ条件の放電を行ったときの容量保持率を算出したところ、98.53%であった。
《考察》
 間欠充電工程を有する実施例1の二次電池においては、第1充電工程で定電流充電を行い、続いて定電圧充電を行う比較例1に比べて、容量保持率が0.5%向上することが確認された。
 以上のとおり、本例の充電方法及び充電装置によれば、第1充電工程により第1の所定電圧値Vまで充電したのち、電流を流さない無負荷状態と定電流充電とを組み合わせた間欠定電流充電を実行することで、充電量を確保する一方において高電圧に保持される時間を短縮する。これにより遷移金属の溶出を抑制できるので、サイクル特性の劣化を抑制することができるという効果を奏する。また本例の充電方法及び充電装置によれば、第1充電工程を定電流充電により第1の所定電圧値まで充電するので短時間で充電することができる。
 また本例の充電方法及び充電装置によれば、間欠充電工程における定電流充電工程の上限電圧を第1充電工程の第1の所定電圧値と同じ電圧に設定するので、短時間で高容量に充電することができる。
 また本例の充電方法及び充電装置によれば、定電流充電工程の前に二次電池に充電電流を流さないで充電を中断する電池電圧緩和工程を有するので、第1充電工程で実施した定電流充電による充電過程における電池内部での電解液の濃度分布や電極中のリチウムイオンの充電状態の偏りを抑制することができる。これにより、正極と負極との間に電位差が生じるのを抑制して電池電圧を正常化することで、マンガンやニッケルなどの遷移金属の溶出を抑制することができる。
 また本例の充電方法及び充電装置によれば、間欠充電工程は、電池電圧緩和工程と定電流充電工程とを組み合わせた工程を複数有するので、高電圧に保持される時間をより短縮することができ、これにより遷移金属の溶出を抑制できるので、サイクル特性の劣化をより一層抑制することができる。
 また本例の充電方法及び充電装置によれば、固溶体材料がLi1.5[NiCoMn[Li]]Oで表される固溶体リチウム含有遷移金属酸化物を正極活物質に用いるので、高い放電容量及び容量保持率を実現し得る二次電池を提供することができる。
 上記電池制御装置20は本発明に係る制御手段に相当する。
10…二次電池
 101…電極積層体
 102…正極板
 102a…正極側集電体
 103…セパレータ
 104…負極板
 104a…負極側集電体
 105…正極タブ
 106…負極タブ
 107…上部外装部材
 108…下部外装部材
 109…シールフィルム
20…電池制御装置
30…電源
40…電流センサ
50…電圧センサ

Claims (11)

  1.  正極材料として固溶体材料からなる正極活物質を用いた二次電池の充電方法において、
     第1の所定電圧まで充電する第1充電工程と、
     前記第1充電工程の後に、前記二次電池に電流を流さない無負荷の状態とする電池電圧緩和工程と定電流で充電する定電流充電工程とを組み合わせた間欠充電工程と、を有する二次電池の充電方法。
  2.  前記第1充電工程は、定電流で充電する請求項1に記載の二次電池の充電方法。
  3.  前記定電流充電工程は、前記第1の所定電圧を上限電圧として充電する請求項1又は2に記載の二次電池の充電方法。
  4.  前記電池電圧緩和工程は、前記二次電池の開路電圧が前記第1の所定電圧から30~50mV以上低下したとき又は前記第1充電工程の終了から600秒以上経過したときに終了する請求項1~3のいずれか一項に記載の二次電池の充電方法。
  5.  前記間欠充電工程は、前記電池電圧緩和工程と前記定電流充電工程とを組み合わせた工程を複数有する請求項1~4のいずれか一項に記載の二次電池の充電方法。
  6.  前記複数の定電流充電工程は、互いに同じ上限電圧で充電する請求項5に記載の二次電池の充電方法。
  7.  前記間欠充電工程に含まれる2番目以降の電池電圧緩和工程は、前記二次電池の開路電圧が直前の定電流充電工程の上限電圧から30~50mV以上低下したとき又は直前の定電流充電工程の終了から600秒以上経過したときに終了する請求項5又は6に記載の二次電池の充電方法。
  8.  前記第1の所定電圧は、1つの二次電池に対して4.3~4.8Vである請求項1~7のいずれか一項に記載の二次電池の充電方法。
  9.  前記定電流充電工程の上限電圧は、1つの二次電池に対して4.3~4.8Vである請求項1~8のいずれか一項に記載の二次電池の充電方法。
  10.  前記固溶体材料が、
     組成式Li1.5[NiCoMn[Li]]O
    (組成式中、Liはリチウム、Niはニッケル、Coはコバルト、Mnはマンガン、Oは酸素を示し、a、b、c及びdは、0<a<1.4、0≦b<1.4、0<c<1.4、0.1<d≦0.4、a+b+c+d=1.5、1.1≦a+b+c<1.4の関係を満足する。)で表される固溶体リチウム含有遷移金属酸化物であって、
     層状構造部位と、所定の電位範囲における充電又は充放電を行うことによりスピネル構造に変化する部位とを有し、
     当該固溶体リチウム含有遷移金属酸化物における層状構造のLiMnOがスピネル構造のLiMnに全て変化した場合のスピネル構造変化割合を1としたとき、当該固溶体リチウム含有遷移金属酸化物のスピネル構造変化割合が0.25以上1.0未満である請求項1~9のいずれか一項に記載の二次電池の充電方法。
  11.  正極材料として固溶体材料からなる正極活物質を用いた二次電池を充電する充電装置において、
     第1の所定電圧まで充電する第1充電ステップと、
     前記第1充電ステップの後に、前記二次電池に電流を流さない無負荷の状態とする電池電圧緩和ステップと定電流で充電する定電流充電ステップとを組み合わせた間欠充電ステップと、を実行する制御手段を備える二次電池の充電装置。
PCT/JP2014/067919 2013-09-06 2014-07-04 二次電池の充電方法及び充電装置 WO2015033659A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-184876 2013-09-06
JP2013184876 2013-09-06

Publications (1)

Publication Number Publication Date
WO2015033659A1 true WO2015033659A1 (ja) 2015-03-12

Family

ID=52628148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067919 WO2015033659A1 (ja) 2013-09-06 2014-07-04 二次電池の充電方法及び充電装置

Country Status (1)

Country Link
WO (1) WO2015033659A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041686A (ja) * 2016-09-09 2018-03-15 日産自動車株式会社 電気デバイス用正極及びそれを用いたリチウムイオン電池
GB2613207A (en) * 2021-11-29 2023-05-31 Cirrus Logic Int Semiconductor Ltd Charging cells in a battery pack

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023382A (ja) * 1998-06-30 2000-01-21 Sanyo Electric Co Ltd 二次電池の充電方法
WO2013115390A1 (ja) * 2012-02-01 2013-08-08 日産自動車株式会社 固溶体リチウム含有遷移金属酸化物、非水電解質二次電池用正極及び非水電解質二次電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023382A (ja) * 1998-06-30 2000-01-21 Sanyo Electric Co Ltd 二次電池の充電方法
WO2013115390A1 (ja) * 2012-02-01 2013-08-08 日産自動車株式会社 固溶体リチウム含有遷移金属酸化物、非水電解質二次電池用正極及び非水電解質二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041686A (ja) * 2016-09-09 2018-03-15 日産自動車株式会社 電気デバイス用正極及びそれを用いたリチウムイオン電池
GB2613207A (en) * 2021-11-29 2023-05-31 Cirrus Logic Int Semiconductor Ltd Charging cells in a battery pack
GB2613207B (en) * 2021-11-29 2024-05-22 Cirrus Logic Int Semiconductor Ltd Charging cells in a battery pack

Similar Documents

Publication Publication Date Title
JP6128225B2 (ja) 二次電池の制御装置及び制御方法
KR101649808B1 (ko) 고용체 리튬 함유 전이 금속 산화물, 비수전해질 이차 전지용 정극 및 비수전해질 이차 전지
WO2015033666A1 (ja) 二次電池の充電方法及び充電装置
JP6032457B2 (ja) 固溶体リチウム含有遷移金属酸化物及びリチウムイオン二次電池
JP5975024B2 (ja) 負極にリチウムをドープ及び脱ドープする方法及びリチウム二次電池用負極の製造方法
KR101704157B1 (ko) 고용체 리튬 함유 전이 금속 산화물 및 리튬 이온 이차 전지
KR101665217B1 (ko) 정극 활물질, 전기 디바이스용 정극 및 전기 디바이스
KR20140116549A (ko) 정극 활물질, 전기 디바이스용 정극 및 전기 디바이스
US20150132652A1 (en) Positive electrode active material, positive electrode for electrical device, and electrical device
JP6187601B2 (ja) リチウムイオン二次電池の製造方法
KR20160039664A (ko) 고용체 리튬 함유 전이 금속 산화물 및 상기 고용체 리튬 함유 전이 금속 산화물을 정극에 사용한 비수 전해질 이차 전지
JP2017010716A (ja) リチウムイオン電池及びリチウムイオン電池システム
JP5626035B2 (ja) リチウムイオン二次電池の前処理方法及び使用方法
JP6406267B2 (ja) リチウムイオン電池システム
WO2015033659A1 (ja) 二次電池の充電方法及び充電装置
US11251627B2 (en) Charge and discharge control device for preventing battery deterioration, battery pack, vehicle, and charge and discharge control method
JP2014127239A (ja) 電極用組成物、電極及び電池
JP6167775B2 (ja) 二次電池の制御装置及び制御方法
JP2017168258A (ja) リチウムイオン二次電池
JP2016177867A (ja) 固溶体リチウム含有遷移金属酸化物、及び該固溶体リチウム含有遷移金属酸化物を正極に用いた非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP