WO2015033516A1 - 貼り合わせウェーハの製造方法 - Google Patents

貼り合わせウェーハの製造方法 Download PDF

Info

Publication number
WO2015033516A1
WO2015033516A1 PCT/JP2014/004038 JP2014004038W WO2015033516A1 WO 2015033516 A1 WO2015033516 A1 WO 2015033516A1 JP 2014004038 W JP2014004038 W JP 2014004038W WO 2015033516 A1 WO2015033516 A1 WO 2015033516A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
bond
bonded
thickness
base
Prior art date
Application number
PCT/JP2014/004038
Other languages
English (en)
French (fr)
Inventor
徳弘 小林
阿賀 浩司
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to EP14841954.2A priority Critical patent/EP3043374B1/en
Priority to US14/912,679 priority patent/US9679800B2/en
Priority to CN201480047111.6A priority patent/CN105493232B/zh
Priority to KR1020167005605A priority patent/KR102022507B1/ko
Publication of WO2015033516A1 publication Critical patent/WO2015033516A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking
    • H01L2924/35121Peeling or delaminating

Definitions

  • the present invention relates to a method for producing a bonded wafer using an ion implantation separation method, and in particular, a reproduction obtained by subjecting a separation wafer produced as a by-product when a bonded wafer is produced by an ion implantation separation method to a regeneration process.
  • the present invention relates to a method for manufacturing a bonded wafer by ion implantation separation using a wafer.
  • a method for manufacturing an SOI wafer is a method of manufacturing an SOI wafer by peeling an ion-implanted wafer after bonding (ion implantation separation method: smart).
  • ion implantation separation method smart
  • a technique called a cutting method is attracting attention.
  • an oxide film is formed on at least one of two silicon wafers, and gas ions such as hydrogen ions or rare gas ions are implanted from the upper surface of one silicon wafer (bond wafer),
  • An ion implantation layer (also referred to as a microbubble layer or an encapsulation layer) is formed inside the wafer.
  • the surface into which the ions are implanted is brought into close contact with the other silicon wafer (base wafer) through an oxide film, and then a heat treatment (peeling heat treatment) is applied to form a microbubble layer as a cleaved surface on one wafer (bond wafer). )
  • a heat treatment peeling heat treatment
  • This ion implantation separation method is not limited to the case of manufacturing a bonded SOI wafer through an insulating film, but is also applied to the case of manufacturing a bonded wafer by directly bonding two wafers.
  • the bond wafer after delamination (peeling wafer) is subjected to reprocessing (refresh processing) including surface treatment such as polishing and etching again, thereby causing a step generated in the unbonded portion, The surface roughness after peeling and the influence of the implanted residual layer are reduced or eliminated, and the wafer can be used repeatedly.
  • reprocessing fresh processing
  • surface treatment such as polishing and etching again
  • Patent Document 3 describes that the polishing margin of the peeled wafer surface is 2 ⁇ m or more, and that the peeled wafer is repeatedly reused as a bond wafer.
  • Patent Document 4 describes that polishing of about 5 ⁇ m can be repeated up to 10 times in repeated reuse of a peeled wafer.
  • Patent Document 5 describes that the polishing margin of the peeled wafer surface is set to 1 to 5 ⁇ m or more, and the peeled wafer is reprocessed many times.
  • the present invention has been made in view of the above-described problems, and suppresses unevenness in the thickness of a marble pattern generated in a thin film when a bonded wafer is manufactured by an ion implantation separation method.
  • the object is to produce a high bonded wafer.
  • an ion-implanted layer is formed by ion-implanting at least one kind of gas ions of hydrogen ions and rare gas ions on the surface of a bond wafer.
  • a part of the bond wafer is peeled off by the ion-implanted layer by applying a heat treatment on the base wafer.
  • the bonded wafer manufacturing method for producing a bonded wafer having a thin film before bonding the bond wafer and the base wafer, the thickness of the bond wafer and the base wafer is measured, and the difference between the thicknesses of the two wafers is measured.
  • Such a method for manufacturing a bonded wafer can suppress unevenness in the thickness of the thin film and can manufacture a bonded wafer having high film thickness uniformity.
  • the heat treatment is preferably performed at 350 ° C. or higher.
  • a reclaimed wafer that has been subjected to recycle processing accompanied by thickness reduction is applied to the peeled wafer produced as a by-product when the bonded wafer is produced in the method for producing a bonded wafer.
  • This reclaimed wafer can be one that has been subjected to reclaiming with the above-described thickness reduction twice or more, or one that has been subjected to a thickness reduction of 5 ⁇ m or more as the reclaiming with the above-mentioned thickness reduction.
  • the present invention can be suitably applied to such a regenerated wafer that tends to cause film thickness unevenness in particular, and a bonded wafer with high film thickness uniformity can be manufactured while reducing costs.
  • the bond wafer and the base wafer can be made of a silicon single crystal wafer
  • the insulating film can be made of a silicon oxide film
  • the thin film can be an SOI layer. In this way, it is possible to manufacture an SOI wafer with high uniformity of the thin film of the SOI layer.
  • the thickness of the bond wafer and the base wafer is measured before the bond wafer and the base wafer are bonded, and the difference between the thicknesses of the two wafers is 5 ⁇ m or more.
  • a combination of wafers is selected, and heat treatment is performed at 400 ° C. or less, and a part of the bond wafer is peeled off by the ion implantation layer, so that the film thickness unevenness of the thin film can be suppressed and the bonded wafer having high thin film thickness uniformity. Can be manufactured.
  • the present invention is not limited to this.
  • the regenerated processing with a reduction in thickness is performed on the separation wafer produced as a by-product when the bonded wafer is manufactured.
  • the wafer is often used as a bond wafer or a base wafer.
  • an unused wafer (a wafer that has not been reprocessed, hereinafter referred to as a prime wafer) may be used as the bond wafer and the base wafer.
  • the thickness of a silicon single crystal wafer used as a bond wafer and a base wafer is manufactured with a standard of ⁇ 15 ⁇ m.
  • the thickness variation between wafers is accurate to about ⁇ several ⁇ m. Therefore, the use of prime wafers manufactured in the same manufacturing lot is unlikely to cause film thickness unevenness.
  • the production lots are different and the median thickness of the wafers is shifted, even between prime wafers, the difference in thickness between both wafers may exceed 5 ⁇ m, resulting in film thickness unevenness. Increases frequency.
  • a recycled wafer When a recycled wafer is used as at least one of a bond wafer and a base wafer, the wafer is thinned by a thickness reduction process, so that the possibility that the thickness difference between both wafers exceeds 5 ⁇ m increases.
  • a prime wafer is used as one of the bond wafer or the base wafer and a recycled wafer is used as the other, this possibility is very high. Therefore, the frequency of occurrence of film thickness unevenness is also increased.
  • the bonded SOI wafer manufacturing conditions at this time are shown below.
  • (Oxide film) A 55 nm thermal oxide film is formed on the bond wafer, the base wafer has no oxide film, (Hydrogen ion implantation conditions) Injection energy: 48.7 keV, dose amount: 5 ⁇ 10 16 / cm 2 , (Peeling heat treatment) At 350 ° C. for 4 hours + 500 ° C. for 30 minutes, Ar atmosphere, (Planarization heat treatment) Thickness of SOI layer to about 70 nm by sacrificial oxidation treatment at 1200 ° C for 1 hour in Ar atmosphere (SOI film thickness adjustment)
  • a bonded wafer having a thin film on a base wafer for example, an SOI wafer in which an SOI layer is formed on a silicon single crystal wafer via a silicon oxide film can be manufactured.
  • a bond wafer 10 and a base wafer 11 are prepared.
  • a combination of a bond wafer and a base wafer having a thickness difference of 5 ⁇ m or more is selected from a plurality of wafers whose thicknesses have been measured in advance.
  • This selection step may be performed before the step of bonding the bond wafer and the base wafer, and is not particularly limited in the order of execution with respect to other steps before the bonding step.
  • the selection step may be performed after the step of forming an ion implantation layer on the bond wafer described below.
  • a prime wafer or a recycled wafer can be used for both the bond wafer and the base wafer.
  • a prime wafer can be used for one of the bond wafer and the base wafer, and a recycled wafer can be used for the other.
  • the reclaimed wafer is a wafer obtained by subjecting the peeled wafer produced as a by-product when the bonded wafer is produced as described above to a rework process accompanied by a reduction in thickness. If the reclaimed wafer is used, the cost can be reduced. Therefore, it is preferable.
  • reclaimed processing with thickness reduction was performed twice or more, that is, reclaimed wafers that were reused twice or more, or reclaimed wafers with thickness reduction of 5 ⁇ m or more as reclaimed processing with thickness reduction,
  • reclaimed wafers that were reused twice or more or reclaimed wafers with thickness reduction of 5 ⁇ m or more as reclaimed processing with thickness reduction
  • the film thickness unevenness of the thin film can be suppressed according to the bonded wafer manufacturing method of the present invention.
  • an oxide film 12 to be a buried oxide film 16 is grown on the bond wafer 10 by, for example, thermal oxidation or CVD.
  • the oxide film 12 formed at this time may be formed only on the base wafer 11 or may be formed on both wafers. When manufacturing a directly bonded wafer, this oxide film does not need to be formed.
  • At least one kind of gas ion of hydrogen ions and rare gas ions is implanted into the bond wafer 10 from above the oxide film 12 by an ion implanter.
  • An ion implantation layer 13 is formed.
  • the ion implantation acceleration voltage is selected so that the target thickness of the peeled silicon (thin film 15) can be obtained.
  • the ion-implanted bond wafer 10 is adhered and bonded to the base wafer 11 so that the implantation surface is in contact.
  • the bonded wafer is held at a temperature of 400 ° C. or lower for a predetermined time, and a heat treatment (peeling heat treatment) is performed to generate a microbubble layer in the ion-implanted layer 13 and peel off at the microbubble layer.
  • a bonded wafer 14 in which a buried oxide film 16 and a thin film 15 are formed on a base wafer 11 as shown is produced.
  • the peeling heat treatment is performed at 400 ° C. or less, even if a combination of the bond wafer 10 and the base wafer 11 in which the difference in thickness between the two wafers is 5 ⁇ m or more is selected, the film thickness unevenness of the thin film 15 after peeling is selected.
  • the bonded wafer 14 having a high film thickness uniformity of the thin film 15 can be manufactured.
  • the temperature of the peeling heat treatment is preferably 350 ° C. or higher.
  • the bonding strength of the wafers closely attached at room temperature can be increased by performing a plasma treatment on the surfaces to be bonded in advance. Then, as shown in FIG. 1 (j), the bonded wafer 14 can be subjected to planarization heat treatment, bonding heat treatment, polishing, or the like to flatten the peeled surface or increase the bonding strength.
  • a peeled wafer 17 which is the bond wafer 10 after peeling is by-produced.
  • the separation wafer 17 has a step portion that has not been transferred to the base wafer 11 on the outer peripheral portion of the separation surface 18.
  • Such reclaimed processing for removing the stepped portion of the peeled wafer 17 can be used as a reclaimed wafer at the time of manufacturing the next bonded wafer.
  • the reclaiming process of the separation wafer 17 can be performed as follows, for example.
  • the oxide film other than the oxide film on the surface opposite to the peeled surface 18 is removed by cleaning with, for example, an HF aqueous solution.
  • the peeled surface is polished to flatten the peeled surface and remove the damage layer caused by ion implantation, as shown in FIG.
  • the back surface oxide film 12 is removed by performing HF cleaning such as a normal batch type HF liquid bath immersion method, and the same surface and back surface quality as the prime wafer are obtained.
  • HF cleaning such as a normal batch type HF liquid bath immersion method
  • Example 1-2 Comparative example 1-3
  • a bonded SOI wafer by an ion implantation delamination method is produced, and whether or not there is any unevenness in the thickness of the SOI layer evaluated.
  • a prime wafer (775 ⁇ m) was used as the base wafer, and a reclaimed wafer (765 ⁇ m) that had been subjected to regenerated polishing twice was used as the bond wafer.
  • the peeling heat treatment conditions were the conditions described in Table 3, and the other production conditions were the same as in the experimental example.
  • FIG. 2 shows the results (film thickness map) showing the occurrence of film thickness unevenness.
  • Table 3 shows the SOI film thickness range (a value obtained by subtracting the minimum value from the maximum value of the in-plane film thickness), while Comparative Example 1-3 was about 2.0 to 2.2 nm.
  • Examples 3 and 4 A bonded SOI wafer was prepared under the same conditions as in Examples 1 and 2 except that the peeling heat treatment was 380 ° C. for 12 hours (Example 3), 350 ° C. for 24 hours (Example 4), and the film thickness of the SOI layer was The presence or absence of unevenness was evaluated. As a result, no film thickness unevenness occurred, and the SOI film thickness range was equivalent to those in Examples 1 and 2.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects.
  • a case where a bonded SOI wafer is manufactured through an insulating film is described.
  • the present invention can also be applied to a case where a bonded wafer is manufactured by directly bonding two wafers. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Element Separation (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

 本発明は、ボンドウェーハの表面に、少なくとも一種類のガスイオンをイオン注入してイオン注入層を形成し、ボンドウェーハのイオン注入した表面と、ベースウェーハの表面とを貼り合わせた後、熱処理を加えてイオン注入層でボンドウェーハの一部を剥離させることにより、ベースウェーハ上に薄膜を有する貼り合わせウェーハを作製する貼り合わせウェーハの製造方法において、ボンドウェーハとベースウェーハを貼り合わせる前に、ボンドウェーハとベースウェーハの厚さを測定し、両ウェーハの厚さの差が5μm以上である組み合わせを選択し、熱処理を400℃以下で行ってイオン注入層でボンドウェーハの一部を剥離させることを特徴とする貼り合わせウェーハの製造方法である。これによりイオン注入剥離法により貼り合わせウェーハを製造する際に薄膜に発生するマーブル模様の膜厚ムラを抑制し、薄膜の膜厚均一性の高い貼り合わせウェーハを製造することができる。

Description

貼り合わせウェーハの製造方法
 本発明は、イオン注入剥離法を用いた貼り合わせウェーハの製造方法に関し、特に、イオン注入剥離法によって貼り合わせウェーハを製造した際に副生される剥離ウェーハに再生加工を施して得られた再生ウェーハを用いてイオン注入剥離法によって貼り合わせウェーハを製造する方法に関する。
 SOIウェーハの製造方法、特に先端集積回路の高性能化を可能とする薄膜SOIウェーハの製造方法として、イオン注入したウェーハを貼り合わせ後に剥離してSOIウェーハを製造する方法(イオン注入剥離法:スマートカット法(登録商標)とも呼ばれる技術)が注目されている。
 このイオン注入剥離法は、二枚のシリコンウェーハの内、少なくとも一方に酸化膜を形成すると共に、一方のシリコンウェーハ(ボンドウェーハ)の上面から水素イオンまたは希ガスイオン等のガスイオンを注入し、該ウェーハ内部にイオン注入層(微小気泡層又は封入層とも呼ぶ)を形成する。その後、イオンを注入した方の面を、酸化膜を介して他方のシリコンウェーハ(ベースウェーハ)と密着させ、その後熱処理(剥離熱処理)を加えて微小気泡層を劈開面として一方のウェーハ(ボンドウェーハ)を薄膜状に剥離する。さらに、熱処理(結合熱処理)を加えて強固に結合してSOIウェーハを製造する技術である(特許文献1参照)。この段階では、劈開面(剥離面)がSOI層の表面となっており、SOI膜厚が薄くてかつ均一性も高いSOIウェーハが比較的容易に得られている。
 このイオン注入剥離法は、絶縁膜を介して貼り合わせSOIウェーハを作製する場合に限らず、直接2枚のウェーハを貼り合わせて貼り合わせウェーハを作製する場合にも適用されている。
 このイオン注入剥離法では、剥離後のボンドウェーハ(剥離ウェーハ)に対して、再度、研磨やエッチングなどの表面処理を含む再生加工(リフレッシュ加工)を施すことにより、未結合部に生じる段差や、剥離後の面粗さ、注入残存層の影響を減少もしくは除去し、ウェーハを繰り返し使用することができる。この再生加工の方法に関しては、例えば、特許文献2のように、面取り加工と研磨を組み合わせ、面取り部に存在するイオン注入残存層の影響を取り除く方法が提案されている。
 剥離ウェーハに対して行う再生加工に関しては、特許文献3には、剥離ウェーハ表面の研磨代を2μm以上とすることや、剥離ウェーハを繰り返しボンドウェーハとして再利用することが記載されている。また、特許文献4には、剥離ウェーハの繰り返し再利用において、約5μmの研磨を最大10回繰り返すことができることが記載されている。更に、特許文献5には、剥離ウェーハ表面の研磨代を1~5μm以上とすることや、剥離ウェーハを何回も再生加工することが記載されている。
特開平5-211128号公報 特開2001-155978号公報 特開2008-21892号公報 特開2006-140445号公報 特開2007-149907号公報
 イオン注入剥離法により作製された貼り合わせSOIウェーハのSOI層の膜厚分布を測定すると、マーブル模様の膜厚ムラが見られる場合がある。この膜厚ムラは、ボンドウェーハ剥離後のSOI層表面の外観検査を行うと目視でも観察され、その膜厚ムラはmm単位のパターンを形成している。
 近年、SOI層の膜厚分布の規格が厳しくなっており、剥離時に発生する大きなパターンを持った膜厚ムラをなくすことが重要である。特に、ETSOI(Extremely Thin SOI、極めて薄いSOI)と呼ばれるSOI層膜厚が30nm以下の品種については、このような膜厚ムラは、製造歩留まりに大きな影響を与えるため、その発生を防止することが望まれている。
 本発明は前述のような問題に鑑みてなされたもので、イオン注入剥離法により貼り合わせウェーハを製造する際に薄膜に発生するマーブル模様の膜厚ムラを抑制し、薄膜の膜厚均一性の高い貼り合わせウェーハを製造することを目的とする。
 上記目的を達成するために、本発明によれば、ボンドウェーハの表面に、水素イオン、希ガスイオンのうち少なくとも一種類のガスイオンをイオン注入してイオン注入層を形成し、前記ボンドウェーハのイオン注入した表面と、ベースウェーハの表面とを直接または絶縁膜を介して貼り合わせた後、熱処理を加えて前記イオン注入層で前記ボンドウェーハの一部を剥離させることにより、前記ベースウェーハ上に薄膜を有する貼り合わせウェーハを作製する貼り合わせウェーハの製造方法において、前記ボンドウェーハとベースウェーハを貼り合わせる前に、前記ボンドウェーハと前記ベースウェーハの厚さを測定し、両ウェーハの厚さの差が5μm以上である前記ボンドウェーハと前記ベースウェーハとなる組み合わせを選択し、前記熱処理を400℃以下で行って前記イオン注入層で前記ボンドウェーハの一部を剥離させることを特徴とする貼り合わせウェーハの製造方法が提供される。
 このような貼り合わせウェーハの製造方法であれば、薄膜の膜厚ムラを抑制でき、薄膜の膜厚均一性の高い貼り合わせウェーハを製造できる。
 このとき、前記熱処理を350℃以上で行うことが好ましい。
 このように熱処理を350℃以上で行うことで、イオン注入層でボンドウェーハの一部を確実に剥離させることができる。
 このとき、前記ボンドウェーハおよび/または前記ベースウェーハとして、前記貼り合わせウェーハの製造方法において貼り合わせウェーハを作製する際に副生された剥離ウェーハに、減厚を伴う再生加工を行った再生ウェーハを用いることができる。この再生ウェーハは、前記減厚を伴う再生加工が2回以上行われたもの、或いは、前記減厚を伴う再生加工として5μm以上の減厚が行われたものとすることができる。
 このような、特に膜厚ムラが発生しやすい再生ウェーハを用いる場合に本発明を好適に適用でき、コストを低減しつつ、薄膜の膜厚均一性の高い貼り合わせウェーハを製造できる。
 また、前記ボンドウェーハおよび前記ベースウェーハがシリコン単結晶ウェーハからなり、前記絶縁膜がシリコン酸化膜からなり、前記薄膜がSOI層とすることができる。
 このようにすれば、SOI層の薄膜の膜厚均一性の高いSOIウェーハを製造できる。
 本発明の貼り合わせウェーハの製造方法では、ボンドウェーハとベースウェーハを貼り合わせる前に、ボンドウェーハとベースウェーハの厚さを測定し、両ウェーハの厚さの差が5μm以上であるボンドウェーハとベースウェーハとなる組み合わせを選択し、熱処理を400℃以下で行ってイオン注入層でボンドウェーハの一部を剥離させるので、薄膜の膜厚ムラを抑制でき、薄膜の膜厚均一性の高い貼り合わせウェーハを製造できる。
本発明の貼り合わせウェーハの製造方法の一例のフロー図である。 実施例1-2、比較例1-3のSOIウェーハの膜厚マップを示す図である。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 一般的に、イオン注入剥離法により貼り合わせSOIウェーハを作製する場合には、コスト削減のため、貼り合わせウェーハを作製する際に副生された剥離ウェーハに減厚を伴う再生加工を行った再生ウェーハをボンドウェーハまたはベースウェーハとして用いることが多い。或いは、ボンドウェーハおよびベースウェーハとして未使用のウェーハ(再生加工を行っていないウェーハ、以下、プライムウェーハと呼ぶ。)を用いる場合もある。
 上記したように、イオン注入剥離法により貼り合わせSOIウェーハを作製すると、貼り合わせSOIウェーハのSOI層にマーブル模様の膜厚ムラが発生するという問題があり、発明者らが詳細に調査したところ、以下のことが判明した。
 ボンドウェーハおよびベースウェーハとしてプライムウェーハを用いる場合、両ウェーハが異なる製造ロットで製造されたものである場合にSOI層の膜厚ムラの発生頻度が高くなる。ボンドウェーハおよびベースウェーハの少なくとも一方に再生ウェーハを用いる場合には膜厚ムラの発生頻度がより高くなり、また、その再生回数が多いほど発生頻度が増加する傾向がある。そこで、発明者は、プライムウェーハと再生ウェーハを用いた下記の実験を行い、この発生頻度が高くなる傾向について以下のように考察した。
 一般的に、ボンドウェーハとベースウェーハとして用いられるシリコン単結晶ウェーハのウェーハ厚は、±15μmの規格で製造される。実際には、同一の製造ロットであれば、ウェーハ間の厚さバラツキは±数μm程度の精度である。従って、特に同一の製造ロットで製造されたプライムウェーハを用いれば膜厚ムラが発生する可能性は低い。一方、製造ロットが異なり、ウェーハ厚の中央値がずれているような場合には、プライムウェーハ同士であっても両ウェーハの厚さの差が5μmを超える場合があり、膜厚ムラが発生する頻度が高くなる。
 ボンドウェーハおよびベースウェーハの少なくとも一方に再生ウェーハを用いる場合には、ウェーハが減厚加工で薄くなっているため、両ウェーハの厚さの差が5μmを超える可能性が高まる。特に、ボンドウェーハまたはベースウェーハの一方にプライムウェーハを用い、他方に再生ウェーハを用いた場合には、この可能性は非常に高い。そのため、膜厚ムラが発生する頻度もより高くなる。
(実験例)
 ボンドウェーハおよびベースウェーハとして、表1に示す厚さを有する直径300mm、結晶方位<100>のシリコン単結晶からなる4種類の鏡面研磨ウェーハを用意した。ウェーハ厚は、静電容量式の測定装置を用いてウェーハ全面を測定し、その平均値(小数点以下四捨五入)を採用した。
Figure JPOXMLDOC01-appb-T000001
 これら4種類のウェーハをそれぞれボンドウェーハ、ベースウェーハとして使用し、下記の製造条件でイオン注入剥離法によって貼り合わせSOIウェーハを作製した。その後、SOI層の膜厚測定(測定装置:KLA-Tencor社製Acumap)を行って膜厚ムラの有無を評価した。その結果を表2に示す。
 このときの貼り合わせSOIウェーハ製造条件を以下に示す。
[貼り合わせSOIウェーハ製造条件]
(酸化膜)ボンドウェーハには55nmの熱酸化膜を形成、ベースウェーハには酸化膜なし、
(水素イオン注入条件)注入エネルギー:48.7keV、ドーズ量:5×1016/cm
(剥離熱処理)350℃で4時間+500℃で30分、Ar雰囲気、
(平坦化熱処理)1200℃で1時間、Ar雰囲気
(SOI膜厚調整)犠牲酸化処理によりSOI層を70nm程度まで減厚
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、ボンドウェーハとベースウェーハの厚さの差が5μm以上あるとSOI層の膜厚ムラが発生することが明らかとなった。ここで、表2中の○は膜厚ムラが発生しなかったことを表し、×は膜厚ムラが発生したことを表す。
 ボンドウェーハとベースウェーハの厚さの差が膜厚ムラの発生にどのように関係しているかのメカニズムについては明らかではないが、厚さが異なると剥離熱処理で剥離する際に、剥離領域の固有振動数が異なることに起因するものと推定される。
 一方、上記製造条件のうち剥離熱処理のみを400℃、8時間に変更して同様の実験を行ったところ、表2のいずれの組み合わせにおいてもSOI層の膜厚ムラが発生しないという結果が得られた。
 以上のように、本発明者は、膜厚ムラの発生がボンドウェーハとベースウェーハの厚さの差が大きいことに起因していることを見出し、更に、厚さの差が大きい場合であっても、剥離熱処理を400℃以下で行えば、SOI層の膜厚ムラが発生しないことを見出し、本発明を完成させた。
 以下、本発明の貼り合わせウェーハの製造方法を図1を参照しながら説明する。
 本発明では、ベースウェーハ上に薄膜を有する貼り合わせウェーハとして、例えば、シリコン単結晶ウェーハ上にシリコン酸化膜を介してSOI層が形成されたSOIウェーハを作製することができる。
 まず、図1(a)に示すように、ボンドウェーハ10及びベースウェーハ11を準備する。このとき、事前に厚さを測定しておいた複数のウェーハの中から、両ウェーハの厚さの差が5μm以上であるボンドウェーハとベースウェーハとなる組み合わせを選択する。この選択工程は、ボンドウェーハとベースウェーハを貼り合わせる工程の前に行えば良く、その貼り合わせ工程の前の他の工程との間の実施順に特に限定されない。例えば、上記選択工程は、下記のボンドウェーハにイオン注入層を形成する工程の後に行っても良い。
 ここで、ボンドウェーハとベースウェーハの両方に、プライムウェーハ、または再生ウェーハを用いることができる。或いは、ボンドウェーハとベースウェーハのどちらか一方にプライムウェーハを、他方に再生ウェーハを用いることもできる。尚、再生ウェーハとは、上記のように、貼り合わせウェーハを作製する際に副生される剥離ウェーハに、減厚を伴う再生加工を行ったウェーハであり、再生ウェーハを用いればコストを削減できるので好ましい。特に、減厚を伴う再生加工が2回以上行われた、すなわち2回以上再利用された再生ウェーハや、減厚を伴う再生加工として5μm以上の減厚が行われた再生ウェーハのような、従来では薄膜の膜厚ムラが発生しやすい再生ウェーハを用いても、本発明の貼り合わせウェーハの製造方法によれば、薄膜の膜厚ムラを抑制できる。
 次に、図1(b)に示すように、例えば熱酸化やCVD等によって、ボンドウェーハ10に、埋め込み酸化膜16となる酸化膜12を成長させる。或いは、この際形成する酸化膜12は、ベースウェーハ11のみに形成しても良いし、両ウェーハに形成しても良い。直接貼り合わせウェーハを製造する場合には、この酸化膜は形成しなくとも良い。
 次に、図1(c)に示すように、その酸化膜12の上からイオン注入機により、水素イオンと希ガスイオンのうちの少なくとも一種類のガスイオンを注入して、ボンドウェーハ10内にイオン注入層13を形成する。この際、目標とする剥離シリコン(薄膜15)の厚さを得ることができるように、イオン注入加速電圧を選択する。
 次に、図1(d)に示すように、イオン注入したボンドウェーハ10を、注入面が接するように、ベースウェーハ11と密着させて貼り合わせる。
 そして、貼り合わせたウェーハを400℃以下で所定時間保持してイオン注入層13に微小気泡層を発生させて微小気泡層にて剥離する熱処理(剥離熱処理)を施して、図1(i)に示すようなベースウェーハ11上に埋め込み酸化膜16と薄膜15が形成された貼り合わせウェーハ14を作製する。
 このように、剥離熱処理を400℃以下で行えば、両ウェーハの厚さの差が5μm以上であるボンドウェーハ10とベースウェーハ11となる組み合わせを選択しても、剥離後に薄膜15の膜厚ムラの発生を抑制でき、薄膜15の膜厚均一性の高い貼り合わせウェーハ14を製造できる。
 また、剥離熱処理の温度は、350℃以上であることが好ましい。
 剥離熱処理を350℃以上で行うことで、イオン注入層13でボンドウェーハ10の一部を確実に剥離させることができる。なお、ドーズ量が同一であれば、剥離熱処理の温度が低いほど剥離に必要な時間が長くなる傾向があるので、熱処理時間はドーズ量と剥離熱処理温度を考慮して適宜設定することができる。
 なお、貼り合わせる面に予めプラズマ処理を施して貼り合わせることによって、室温で密着されたウェーハの結合強度を高めることもできる。
 そして、図1(j)に示すように、この貼り合わせウェーハ14に、平坦化熱処理、結合熱処理、研磨等を施して、剥離面を平坦化したり、結合強度を高めることもできる。
 上記の製造過程において、図1(e)に示すように、剥離後のボンドウェーハ10である剥離ウェーハ17が副生される。剥離ウェーハ17は、剥離面18の外周部に、ベースウェーハ11に移設されなかった段差部を有している。このような剥離ウェーハ17の段差部等を除去する再生加工して、次回の貼り合わせウェーハの製造時に再生ウェーハとして利用することができる。剥離ウェーハ17の再生加工は、例えば以下のように行うことができる。
 まず、図1(f)に示すように、例えばHF水溶液による洗浄を行うことにより、剥離面18とは反対の面の酸化膜以外の酸化膜を除去する。その後、剥離面を研磨することにより、図1(g)に示すように、剥離面を平坦化するとともに、イオン注入によるダメージ層を除去する。その後、図1(h)に示すように、通常のバッチ式HF液槽浸漬方式のようなHF洗浄を行うことで、裏面の酸化膜12を除去し、プライムウェーハと同等の表面および裏面品質を持つ再生ウェーハを作製することができる。この再生加工により再生ウェーハの厚さは当初のボンドウェーハの厚さより薄くなる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1-2、比較例1-3)
 直径300mm、結晶方位<100>のシリコン単結晶からなる鏡面研磨ウェーハをボンドウェーハおよびベースウェーハとして用いてイオン注入剥離法による貼り合わせSOIウェーハを作製し、SOI層の膜厚ムラの発生の有無を評価した。
 このとき実施例1-2、比較例1-3のいずれもベースウェーハとしてはプライムウェーハ(775μm)を用い、ボンドウェーハとしては、再生研磨加工を2回行った再生ウェーハ(765μm)を用いた。
 また、剥離熱処理条件は表3に記載された条件とし、その他の製造条件は実験例と同一とした。
 膜厚ムラの発生状況を示す結果(膜厚マップ)を図2に示す。図2を見ると、剥離熱処理を400℃で行った実施例1、2には膜厚ムラが発生しておらず、比較例1-3には膜厚ムラが発生していることがわかる。なお、比較例3は、400℃でのプレアニールの後に500℃で熱処理を行っているが、プレアニール時に剥離は発生せず、500℃の熱処理で剥離するため膜厚ムラが発生したものと考えられる。
 表3はSOI膜厚レンジ(面内膜厚の最大値から最小値を引いた値)を示しており、比較例1-3が2.0~2.2nm程度であったのに対し、膜厚ムラのない実施例1、2のSOI膜厚レンジは1.5~1.6nm程度と良好であった。
Figure JPOXMLDOC01-appb-T000003
(実施例3、4)
 剥離熱処理を380℃、12時間(実施例3)、350℃、24時間(実施例4)とした以外は実施例1、2と同一条件で貼り合わせSOIウェーハを作製し、SOI層の膜厚ムラの発生の有無を評価した。
その結果、膜厚ムラは発生せず、SOI膜厚レンジも実施例1、2と同等であった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 例えば、上記では、絶縁膜を介して貼り合わせSOIウェーハを作製する場合について説明しているが、直接2枚のウェーハを貼り合わせて貼り合わせウェーハを作製する場合にも本発明を適用可能である。

Claims (6)

  1.  ボンドウェーハの表面に、水素イオン、希ガスイオンのうち少なくとも一種類のガスイオンをイオン注入してイオン注入層を形成し、前記ボンドウェーハのイオン注入した表面と、ベースウェーハの表面とを直接または絶縁膜を介して貼り合わせた後、熱処理を加えて前記イオン注入層で前記ボンドウェーハの一部を剥離させることにより、前記ベースウェーハ上に薄膜を有する貼り合わせウェーハを作製する貼り合わせウェーハの製造方法において、
     前記ボンドウェーハとベースウェーハを貼り合わせる前に、前記ボンドウェーハと前記ベースウェーハの厚さを測定し、両ウェーハの厚さの差が5μm以上である前記ボンドウェーハと前記ベースウェーハとなる組み合わせを選択し、
     前記熱処理を400℃以下で行って前記イオン注入層で前記ボンドウェーハの一部を剥離させることを特徴とする貼り合わせウェーハの製造方法。
  2.  前記熱処理を350℃以上で行うことを特徴とする請求項1に記載された貼り合わせウェーハの製造方法。
  3.  前記ボンドウェーハおよび/または前記ベースウェーハとして、前記貼り合わせウェーハの製造方法において貼り合わせウェーハを作製する際に副生された剥離ウェーハに、減厚を伴う再生加工を行った再生ウェーハを用いることを特徴とする請求項1又は請求項2に記載された貼り合わせウェーハの製造方法。
  4.  前記再生ウェーハは、前記減厚を伴う再生加工が2回以上行われたものであることを特徴とする請求項3に記載された貼り合わせウェーハの製造方法。
  5.  前記再生ウェーハは、前記減厚を伴う再生加工として5μm以上の減厚が行われたものであることを特徴とする請求項3又は請求項4に記載された貼り合わせウェーハの製造方法。
  6.  前記ボンドウェーハおよび前記ベースウェーハがシリコン単結晶ウェーハからなり、前記絶縁膜がシリコン酸化膜からなり、前記薄膜がSOI層であることを特徴とする請求項1乃至請求項5のいずれか一項に記載された貼り合わせウェーハの製造方法。
PCT/JP2014/004038 2013-09-05 2014-08-01 貼り合わせウェーハの製造方法 WO2015033516A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14841954.2A EP3043374B1 (en) 2013-09-05 2014-08-01 Bonded wafer manufacturing method
US14/912,679 US9679800B2 (en) 2013-09-05 2014-08-01 Method for manufacturing bonded wafer
CN201480047111.6A CN105493232B (zh) 2013-09-05 2014-08-01 贴合晶圆的制造方法
KR1020167005605A KR102022507B1 (ko) 2013-09-05 2014-08-01 접합 웨이퍼의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013184209A JP6136786B2 (ja) 2013-09-05 2013-09-05 貼り合わせウェーハの製造方法
JP2013-184209 2013-09-05

Publications (1)

Publication Number Publication Date
WO2015033516A1 true WO2015033516A1 (ja) 2015-03-12

Family

ID=52628019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004038 WO2015033516A1 (ja) 2013-09-05 2014-08-01 貼り合わせウェーハの製造方法

Country Status (7)

Country Link
US (1) US9679800B2 (ja)
EP (1) EP3043374B1 (ja)
JP (1) JP6136786B2 (ja)
KR (1) KR102022507B1 (ja)
CN (1) CN105493232B (ja)
TW (1) TWI578402B (ja)
WO (1) WO2015033516A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107649785A (zh) * 2017-09-22 2018-02-02 北京世纪金光半导体有限公司 一种晶圆减薄方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211128A (ja) 1991-09-18 1993-08-20 Commiss Energ Atom 薄い半導体材料フィルムの製造方法
JP2001155978A (ja) 1999-11-29 2001-06-08 Shin Etsu Handotai Co Ltd 剥離ウエーハの再生処理方法及び再生処理された剥離ウエーハ
JP2003347526A (ja) * 2002-05-02 2003-12-05 Soi Tec Silicon On Insulator Technologies 材料の二層を剥離する方法
JP2006140445A (ja) 2004-11-09 2006-06-01 Soi Tec Silicon On Insulator Technologies Sa 複合材料ウェーハの製造方法
JP2007149907A (ja) 2005-11-28 2007-06-14 Sumco Corp 剥離ウェーハの再生加工方法及びこの方法により再生加工された剥離ウェーハ
JP2008021892A (ja) 2006-07-14 2008-01-31 Shin Etsu Handotai Co Ltd 剥離ウェーハを再利用する方法
WO2009141954A1 (ja) * 2008-05-21 2009-11-26 信越半導体株式会社 貼り合わせウェーハの製造方法及び貼り合わせウェーハ
JP2013089720A (ja) * 2011-10-17 2013-05-13 Shin Etsu Handotai Co Ltd 剥離ウェーハの再生加工方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839818B2 (ja) * 2005-12-16 2011-12-21 信越半導体株式会社 貼り合わせ基板の製造方法
JP5888286B2 (ja) * 2013-06-26 2016-03-16 信越半導体株式会社 貼り合わせウェーハの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211128A (ja) 1991-09-18 1993-08-20 Commiss Energ Atom 薄い半導体材料フィルムの製造方法
JP2001155978A (ja) 1999-11-29 2001-06-08 Shin Etsu Handotai Co Ltd 剥離ウエーハの再生処理方法及び再生処理された剥離ウエーハ
JP2003347526A (ja) * 2002-05-02 2003-12-05 Soi Tec Silicon On Insulator Technologies 材料の二層を剥離する方法
JP2006140445A (ja) 2004-11-09 2006-06-01 Soi Tec Silicon On Insulator Technologies Sa 複合材料ウェーハの製造方法
JP2007149907A (ja) 2005-11-28 2007-06-14 Sumco Corp 剥離ウェーハの再生加工方法及びこの方法により再生加工された剥離ウェーハ
JP2008021892A (ja) 2006-07-14 2008-01-31 Shin Etsu Handotai Co Ltd 剥離ウェーハを再利用する方法
WO2009141954A1 (ja) * 2008-05-21 2009-11-26 信越半導体株式会社 貼り合わせウェーハの製造方法及び貼り合わせウェーハ
JP2013089720A (ja) * 2011-10-17 2013-05-13 Shin Etsu Handotai Co Ltd 剥離ウェーハの再生加工方法

Also Published As

Publication number Publication date
TWI578402B (zh) 2017-04-11
JP6136786B2 (ja) 2017-05-31
EP3043374A1 (en) 2016-07-13
US9679800B2 (en) 2017-06-13
EP3043374A4 (en) 2017-04-05
CN105493232B (zh) 2018-12-28
CN105493232A (zh) 2016-04-13
JP2015053332A (ja) 2015-03-19
TW201528377A (zh) 2015-07-16
KR20160052551A (ko) 2016-05-12
EP3043374B1 (en) 2021-03-17
US20160204024A1 (en) 2016-07-14
KR102022507B1 (ko) 2019-09-18

Similar Documents

Publication Publication Date Title
JP5799740B2 (ja) 剥離ウェーハの再生加工方法
WO2013102968A1 (ja) 貼り合わせsoiウェーハの製造方法
KR101229760B1 (ko) Soi 웨이퍼의 제조방법 및 이 방법에 의해 제조된soi 웨이퍼
JP5888286B2 (ja) 貼り合わせウェーハの製造方法
JP2014120587A (ja) Soiウェーハの製造方法
EP2924736B1 (en) Method for manufacturing soi wafer
JP6136786B2 (ja) 貼り合わせウェーハの製造方法
WO2016059748A1 (ja) 貼り合わせウェーハの製造方法
JP2007317867A (ja) 半導体基板の製造方法
EP3029730B1 (en) Bonded wafer manufacturing method
JP5368000B2 (ja) Soi基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047111.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841954

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14912679

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014841954

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014841954

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167005605

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE