WO2015032320A1 - 混合动力汽车的控制系统和控制方法 - Google Patents

混合动力汽车的控制系统和控制方法 Download PDF

Info

Publication number
WO2015032320A1
WO2015032320A1 PCT/CN2014/085825 CN2014085825W WO2015032320A1 WO 2015032320 A1 WO2015032320 A1 WO 2015032320A1 CN 2014085825 W CN2014085825 W CN 2014085825W WO 2015032320 A1 WO2015032320 A1 WO 2015032320A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid
power
mode
engine
vehicle
Prior art date
Application number
PCT/CN2014/085825
Other languages
English (en)
French (fr)
Inventor
陈昊
阮鸥
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2015032320A1 publication Critical patent/WO2015032320A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to the field of automotive technology, and in particular to a control system for a hybrid vehicle and a control method for the hybrid vehicle. Background technique
  • Hybrid Electrical Vehicle refers to a vehicle that is equipped with two sources of power, namely a thermal power source (produced by a conventional gasoline engine or a diesel engine) and an electric power source (generated by a battery and a motor).
  • a thermal power source produced by a conventional gasoline engine or a diesel engine
  • an electric power source generated by a battery and a motor.
  • hybrid hybrid system which is characterized in that the internal combustion engine system and the motor drive system each have a mechanical shifting mechanism, and the two mechanisms are combined by a planetary wheel structure to comprehensively adjust the internal combustion engine and the electric motor. Direct speed relationship.
  • the conventional hybrid vehicle has a single driving mode, and the driver cannot select the driving mode through personal driving habits and long-term fixed driving conditions.
  • the driving route to and from work every day is relatively fixed, and the distance is mostly within 50km.
  • This special working condition is suitable for medium and short distance pure electric driving.
  • the design concept of the traditional hybrid vehicle is to reduce the fuel consumption by the motor to adjust the engine instead of completely eliminating the fuel consumption. Therefore, the manual EV (electrical vehicle) mode switching function is often not available, even if it is due to the battery capacity limitation.
  • the electric driving range is short.
  • hybrid vehicles do not use high-power, high-torque motors and engines for the purpose of reducing fuel consumption.
  • the power of the vehicle is not strong and the driving pleasure is greatly reduced.
  • some hybrid vehicles have an acceleration time of more than 10 s per 100 km and high speed performance.
  • some hybrid vehicles use a hybrid structure and its control method.
  • the battery is charged by the first motor MG1.
  • the engine has a part of the power to drive MG1 to generate electricity, and the battery can jointly provide electric power to the second motor MG2, both of which are Reduced engine drive efficiency.
  • the set demand power and the vehicle speed limit are too small, and the vehicle speed switching condition is set to a point rather than an interval, which may cause the engine to start too early.
  • the present invention is based on the following findings and findings by the inventors:
  • the powertrain control strategy of a typical hybrid vehicle in PWR (power-enhanced) mode is generally as follows:
  • the throttle response sensitivity is improved, and the torque output of the powertrain can be quickly responded in advance to improve the starting performance.
  • SOC State Of Charge
  • the ECU Electronic Control Unit
  • the actual demand power of the vehicle and other information flexible adjustment of the engine start and stop; when the SOC of the power battery is low, generally less than 45%, does not allow pure electric driving; when the hybrid car is stationary, the engine starts to warm The machine will stop automatically for a period of time, and the idle speed is 1200 rpm.
  • the engine will decide whether to turn off the fire according to the SOC value of the power battery and the engine water temperature. When the SOC value is low or the engine water temperature is low, the engine will idle to generate power until the SOC value.
  • the SOC of the power battery will return to the equilibrium position (56%) and remain unchanged at this position.
  • planetary gears are used to achieve no Level shifting, comprehensively adjusting the speed relationship between the engine and the motor.
  • the hybrid car has two motors, MG1 performs speed control, adjusts the engine to wheel end speed ratio, MG2 performs torque control, provides torque and responds to driver and battery charging. demand.
  • the output capacity of the power source has not changed, the front power is increased, and the power performance is not reduced in all working conditions. Increased;
  • the starting condition, the starting condition and the low speed working condition adopt pure electric motor, the motor is driven separately, the engine torque can not respond quickly and affect the dynamics of the above three working conditions;
  • the hybrid vehicle is powered on at rest
  • the engine starts to idle for a period of time and judges the SOC value of the power battery and the engine water temperature to control the engine to start and stop, which causes the engine to start and stop multiple times if the P-stop is stopped for a long time;
  • the shifting mechanism adopts ECVT, and the engine idle speed is high, idle noise
  • the fuel consumption and emissions are both high.
  • the MG1 is used to adjust the engine speed, increase the motor cost, and the ECVT structure is complex, the process requirements are high, the matching is difficult, and the hardware and software costs of the shifting mechanism are greatly increased. , limited by battery capacity, part of the engine MG2 and the battery can together to provide the rate to drive MG1 is driven by electric energy, increase energy conversions, reduced efficiency
  • the object of the present invention is to at least solve one of the above technical drawbacks.
  • an object of the present invention is to provide a control system for a hybrid vehicle in which the engine power subsystem and the motor power subsystem are connected in parallel, the power is easily matched, and the conversion efficiency is high, and The engine is always in operation, which improves the power of the hybrid vehicle and reduces the frequent start and stop of the engine, thereby improving the life of the starter and maximizing the user's acceleration.
  • Another object of the present invention is to provide a control method for a hybrid vehicle.
  • a control system for a hybrid vehicle includes: a transmission device for driving a wheel of a hybrid vehicle; an engine power subsystem, the engine power a subsystem connected to the transmission; a motor power subsystem, the motor power subsystem being coupled to the transmission; and a controller controlling the engine power subsystem and the motor power subsystem to control
  • the hybrid vehicle enters a corresponding operational mode, wherein the operational mode includes a purely electric motion mode and a hybrid motion mode, and the controller, after receiving a switching instruction to switch to the purely electric motion mode, if When it is determined that the SOC of the power battery in the motor power subsystem is greater than or equal to the second power threshold and the vehicle speed of the hybrid vehicle is less than or equal to the first speed threshold, controlling the hybrid vehicle to switch from the hybrid motion mode to The pure electric motion mode.
  • the engine power subsystem and the motor power subsystem are connected in parallel, and the power system of the existing hybrid vehicle is connected in series, which can effectively improve the energy utilization rate.
  • the parallel structure is relatively simple, avoiding the complicated ECVT matching of the hybrid mode, and reducing the risk of unevenness caused by poor matching, so the economic performance is greatly improved under the premise of ensuring the dynamic performance of the whole vehicle.
  • the engine is always in the running state in the hybrid sport mode, which reduces the frequent start and stop of the engine, thereby improving the life of the starter and maximizing the user's acceleration.
  • another embodiment of the present invention provides a control method of a hybrid vehicle, wherein the hybrid vehicle includes a transmission device, an engine power subsystem, and a motor power subsystem, and the transmission device and the transmission device
  • the engine power subsystem and the motor power subsystem are respectively connected
  • the control method comprises the following steps: controlling the hybrid power by controlling the engine power subsystem and the motor power subsystem when the hybrid vehicle is in operation
  • the vehicle enters a corresponding working mode, wherein the working mode includes a pure electric motion mode and a hybrid motion mode; detecting an operating state of the power battery in the motor power subsystem, and detecting a vehicle speed of the hybrid vehicle;
  • After receiving the switching instruction to switch to the pure electric motion mode if the SOC of the power battery is greater than or equal to the second power threshold and the vehicle speed of the hybrid vehicle is less than or equal to the first speed threshold, then controlling the hybrid The car switches from the hybrid sport mode The Pure electric motion mode.
  • the selectable working mode can satisfy the driving demand of the user under different working conditions, and can meet the power demand of the urban working condition and the power of the suburban working condition.
  • sexual demand truly the vehicle drive is guided by the user's subjective operational intentions, to improve driving pleasure.
  • the engine is always in the running state in the hybrid sport mode, which reduces the frequent start and stop of the engine, thereby improving the life of the starter and maximizing the user's acceleration.
  • FIG. 1A is a block schematic diagram of a control system of a hybrid vehicle in accordance with an embodiment of the present invention
  • FIG. 1B is a block schematic diagram of a control system of a hybrid vehicle according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of signal flow of a hybrid vehicle according to an embodiment of the present invention
  • FIG. 3 is a flow chart showing a control method of a hybrid vehicle when the hybrid vehicle is in a pure electric economy mode according to an embodiment of the present invention
  • FIG. 4 is a flow chart showing a control method of a hybrid vehicle when the hybrid vehicle is in a pure electric motion mode according to another embodiment of the present invention
  • FIG. 5 is a flow chart showing a control method of a hybrid vehicle when the hybrid vehicle is in a hybrid economy mode according to still another embodiment of the present invention.
  • FIG. 6 is a flow chart showing a control method when a hybrid vehicle is operated in an economical manner when the hybrid vehicle is in a hybrid economy mode according to still another embodiment of the present invention
  • FIG. 7 is a schematic view showing a working area of an engine when a hybrid vehicle is in a hybrid economy mode according to still another embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a relationship between a power generation power of a motor and a SOC value of a power battery according to an embodiment of the present invention
  • FIG. 9 is a flow chart showing a control method when a hybrid vehicle is operated in a low-power mode when the hybrid vehicle is in a hybrid economy mode according to still another embodiment of the present invention.
  • FIG. 10 is a diagram showing a hybrid vehicle operating in a hybrid sport mode in accordance with still another embodiment of the present invention. Flow chart of a control method for a hybrid vehicle;
  • Figure 11 is a graph showing the inherent characteristics of the engine
  • FIG. 12 is a flow chart of a control method of a hybrid vehicle according to an embodiment of the present invention. detailed description
  • the following disclosure provides many different embodiments or examples for implementing different structures of the present invention.
  • the components and settings of the specific examples are described below. Of course, they are merely examples and are not intended to limit the invention.
  • the present invention may repeat reference numerals and/or letters in different examples. This repetition is for the purpose of simplification and clarity, and does not in itself indicate the relationship between the various embodiments and/or arrangements discussed.
  • the present invention provides examples of various specific processes and materials, but one of ordinary skill in the art will recognize the applicability of other processes and/or the use of other materials.
  • the structure of the first feature described below "on" the second feature may include embodiments in which the first and second features are formed in direct contact, and may include additional features formed between the first and second features. The embodiment, such that the first and second features may not be in direct contact.
  • the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be, for example, mechanical or electrical, or both.
  • the internal communication of the components may be directly connected or indirectly connected through an intermediate medium.
  • the specific meanings of the above terms may be understood according to specific situations.
  • FIG. 1A is a block schematic diagram of a control system of a hybrid vehicle in accordance with an embodiment of the invention.
  • the control system of the hybrid vehicle includes a transmission 10, an engine power subsystem 20, and a motor power subsystem. 30 and controller 40.
  • the transmission device 10 is used to drive the wheels 2a and 2b of the hybrid vehicle, the engine power subsystem 20 is connected to the transmission device 10, and the motor power subsystem 30 is connected to the transmission device 10.
  • the controller 40 controls the hybrid vehicle to enter a corresponding operational mode by controlling the engine power subsystem 20 and the motor power subsystem 30, wherein the operational modes include a purely electric motion mode and a hybrid motion mode, and the controller 40 After receiving the switching instruction to switch to the purely electric motion mode, if it is determined that the SOC of the power battery in the motor power subsystem 30 is greater than or equal to the second power threshold and the vehicle speed of the hybrid vehicle is less than or equal to the first speed threshold And controlling the hybrid vehicle to switch from the hybrid motion mode to the purely electric motion mode.
  • engine power subsystem 20 includes an engine 3, a transmission 4 that includes a motor 5, a retarder 6, a power battery 7, and an inverter 8.
  • the engine 3 is connected to the transmission 10 via a transmission 4, and the motor 5 is connected to the transmission 10 via a speed reducer 6 to supply a power battery 7 for the motor 5.
  • the hybrid vehicle is a pluggable dual-mode hybrid vehicle, wherein the engine 3 is a high-efficiency turbocharged direct-injection engine capable of outputting driving power, and the transmission 4 is capable of transmitting
  • the engine 3 outputs a dual clutch transmission
  • the power battery 7 is connected to the power electronic unit inverter 8 through a DC bus
  • the inverter 8 is connected to the motor 5 through an AC three-phase line
  • the electric power and the fuel power are coupled at the transmission 10 and It is transmitted to the wheels 2a and 2b.
  • the user can select the working mode of the hybrid car through the EV mode selection button, the HEV mode selection button and the operation mode selection knob button.
  • the operating modes of the hybrid vehicle include a pure electric mode and a hybrid mode, wherein the pure electric mode includes a pure electric economy mode (EV-eco mode) and a pure electric motion mode (EV-s mode).
  • Hybrid modes include hybrid economy mode (HEV-eco mode) and hybrid sport mode (HEV-s mode).
  • the EV mode selection button is used to manually select the EV mode
  • the HEV mode selection button is used to manually select the HEV mode
  • the operation mode selection knob button is used to manually switch between the eco mode or the Sport mode.
  • the manually switchable EV, HEV working mode, the manually switchable eco, Sport sport mode, the working mode state EV, and the HEV are both taken, and the sport mode states eco and sport are both taken.
  • the four drive modes namely EV-eco, EV-s, HEV-eco, HEV-s 0 , can be obtained by switching between modes.
  • the EV mode keeps the vehicle in pure electric energy consumption mode and keeps the engine from working.
  • the HEV mode allows the vehicle to be in a hybrid energy consumption mode, with the motor or engine or auxiliary drive or engine to keep it in the best overall performance area; eco mode limits the maximum output of the motor, engine and power battery, guaranteed The motor, engine and power battery work in the most economical area; the Sport mode gives priority to the vehicle's power demand.
  • the maximum output of the motor, engine, and power battery is not limited, and the entire energy of the power system can be obtained.
  • the gear unit controller SCU (Shift Control Unit) is responsible for collecting gear position signals and EV/HEV/eco/Sport mode signals, and transmitting these two signals to the motor controller ECN (Electromotor-Controller), motor control
  • ECN Electric-Controller
  • the ECN verifies the received EV/HEV/eco/Sport mode signal and forwards it to the battery manager BMS, the engine controller ECM (Engine Control Module), the transmission controller TCU (Transmission Control Unit), the combination meter, and itself.
  • the corresponding power system control scheme is executed according to different mode strategies, and the engine start and stop command and the engine target torque signal are sent to the engine controller ECM; the battery management system BMS (Battery Management System) receives the EV/HEV/eco/Sport mode. The signal is verified and an energy management strategy is executed; the engine controller ECM executes an engine system control scheme and transmits the engine current indicated torque to the transmission controller TCU; the transmission controller ECN collects the throttle, brake, vehicle speed signals, and executes according to the transmission shift strategy Shift; combination meter for displaying current EV/HEV/eco/Sp Ort mode.
  • BMS Battery Management System
  • the controller controls the hybrid vehicle in a pure electric economy mode, a pure electric motion mode, a hybrid economic mode, and a hybrid motion according to an operating state of the hybrid vehicle and/or an operating state of the power battery. Switch between modes.
  • the controller 40 controls the hybrid vehicle to switch to the hybrid economy. mode.
  • the power battery is used to power the motor to drive the vehicle without triggering the mode switching condition, and Keep the engine out of operation.
  • the HEV button is manually pressed, the working mode of the hybrid vehicle is switched to the HEV-eco mode; when the button is manually rotated to the Sport, the working mode of the hybrid vehicle is switched to the EV-s mode; when the mode button is not manually input, If the power storage SOC of the power battery is less than or equal to the lower SOC threshold, for example, 20%, or the maximum allowable discharge power of the power battery is less than or equal to the lower power threshold, for example, 12 KW, or the gradient signal is greater than the upper threshold of the slope, for example, 15%, the controller 40 automatically controls the hybrid.
  • the car switches to HEV-eco mode.
  • the maximum output power of the motor in order to improve the power consumption efficiency to extend the driving range, the maximum output power of the motor is limited, and the overall vehicle acceleration performance in this mode is considered, and the maximum output torque of the motor is not limited, that is, When the hybrid vehicle is in the pure electric economy mode, the controller 40 controls the limited power operation of the hybrid vehicle.
  • the controller 40 controls the hybrid vehicle to switch to the hybrid motion mode.
  • the power battery is used to power the motor to drive the vehicle without triggering the mode switching condition, and Keep the engine out of operation.
  • the HEV button is manually pressed, the working mode of the hybrid vehicle is switched to the HEV-s mode; when the button is manually rotated to eco, the working mode of the hybrid vehicle is switched to the EV-eco mode; when the mode button is not manually input, If the battery charge SOC of the power is less than or equal to the lower SOC threshold, for example, 20%, or the maximum allowable discharge power of the power battery is less than or equal to the lower power threshold, for example, 12 KW, or the gradient signal is greater than the upper threshold of the slope, for example, 15%, the controller 40 automatically controls the mixing.
  • the power car switches to the HEV-s mode.
  • the first task is to obtain better power, so the motor output power is not limited.
  • the controller controls the hybrid vehicle to switch to the user.
  • the target mode corresponding to the mode switching instruction.
  • the control system of the hybrid vehicle in which the hybrid vehicle is in the EV-eco working mode or E ensures the pure electric vehicle of the hybrid vehicle.
  • the operating mode of the Vs is running. Since the hybrid vehicle adopts a pluggable power battery charging structure, the power battery capacity is increased, and a motor with a large power and torque is selected, so that the hybrid vehicle can obtain strong power in the EV mode, and can cope with all urban workers. And most suburban conditions without automatic mode switching, only when the slope signal is greater than the upper slope threshold, such as 15% (the maximum grade of EV mode), it will automatically switch to HEV mode, unless it is manually switched, it will keep HEV mode running. .
  • the maximum output power of the motor is limited, and the maximum output torque of the motor is not limited, ensuring low-speed gradeability and high-speed economic performance.
  • the maximum output power and maximum output torque of the motor are not limited, ensuring the strongest power in the EV mode.
  • the long-term high-power power consumption is avoided to improve the power consumption efficiency.
  • the hybrid vehicle has the ability to continue normal operation when the charge is low or the maximum allowable discharge power of the battery is insufficient or the slope is large, and the power performance is degraded due to some factors.
  • only one automatic mode switching is performed to avoid frequent engine start and stop, which plays an important role in improving the life of the starter, reducing noise and improving driving comfort.
  • the controller determines the power battery after receiving the switching command to switch to the pure electric economy mode.
  • the SOC is greater than or equal to the second power threshold, for example, 30% and the current vehicle speed of the hybrid vehicle is less than or equal to the first speed threshold, for example, 150 km/h, the controller controls the hybrid vehicle to switch to the pure electric economy mode.
  • the controller controls the hybrid vehicle to operate in an economical manner; if the current gradient signal detected by the hybrid vehicle is less than or equal to a lower gradient threshold, for example, 5% and the SOC of the power battery is less than or equal to A power threshold is, for example, 20%, or the current gradient signal detected by the hybrid vehicle is less than or equal to a lower gradient threshold, for example, 5%, and the maximum allowable discharge power of the power battery is less than or equal to a first power threshold, for example, 12 KW, and the controller controls the hybrid vehicle to be low.
  • the mode runs, where the second power threshold is greater than the first power threshold, and the second power threshold is greater than the first power threshold.
  • the low-power mode means that the engine drives the motor to generate electricity quickly, thereby getting rid of the low-power state, and the motor has the ability to adjust the working range of the engine, thereby ensuring the economy of the whole vehicle.
  • the controller controls the hybrid vehicle to perform pure electric driving.
  • the vehicle speed of the hybrid vehicle is greater than or equal to a third speed threshold, for example, 30 km/h, wherein, when the vehicle is in a normal vehicle, the vehicle is in the current state.
  • the controller controls the engine to perform torque output with a preset torque upper limit curve and controls the motor to perform torque compensation; when the hybrid vehicle's overall vehicle torque demand is less than the engine's preload When the torque lower limit curve is set, the controller controls the engine to perform torque output with the preset torque lower limit curve and controls the motor to generate electricity; when the hybrid vehicle's vehicle torque demand is less than or equal to the engine preset torque upper limit curve and greater than or equal to the engine pre-control When the torque lower limit curve is set, the controller controls the engine to meet the torque requirement of the vehicle for torque output, and controls the motor to generate electricity.
  • the preset torque upper limit curve of the engine and the preset torque lower limit curve of the engine are as shown in FIG. 7, when the vehicle total torque demand of the hybrid vehicle is between the preset torque limit curve of the engine and the preset of the engine.
  • the torque lower limit curve is between, the relationship between the power generation of the motor and the SOC value of the power battery is as shown in Fig. 8.
  • the controller controls the engine to perform torque output with a preset torque upper limit curve, and controls the motor to perform torque compensation; when the hybrid vehicle's overall vehicle torque demand is less than the engine's preset torque lower limit curve, the controller Control the engine to output torque with a preset torque lower limit curve and control the motor to generate electricity; when the hybrid vehicle's vehicle torque demand is less than or equal to the engine's preset torque upper limit curve and greater than or equal to the engine
  • the controller controls the engine to meet the vehicle torque demand for torque output, and controls the motor to generate electricity.
  • the controller controls the hybrid vehicle to enter the idle start/stop mode.
  • the controller further determines whether the hybrid vehicle meets an idle start/stop condition, and if the hybrid vehicle meets the idle start and stop condition, for example, the vehicle speed is 0,
  • the controller controls the engine in the engine power subsystem to be turned off.
  • the working mode of the hybrid vehicle is allowed to switch to the EV-eco mode, otherwise the working mode is not switched; when the button is manually rotated to the sport, the hybrid vehicle The working mode is switched to the HEV-s mode; when the mode button has no manual input, the working mode of the hybrid vehicle keeps the HEV-eco mode unchanged, according to the power consumption of the power battery and the area of the maximum allowable discharge power of the power battery, the engine The motor is dynamically matched according to economic strategy and low power strategy. As shown in Figure 6, the economic strategy requires that the current speed of the hybrid vehicle is less than or equal to 15km/h, pure electric drive hybrid vehicle.
  • the low-power strategy cancels the low-speed pure electric and increases the start-stop function of the P-block engine. That is to say, the low-power strategy is used to define the SOC value of the vehicle's power battery to be below a certain level (for example, 20%).
  • the motor assists the engine, it can quickly replenish the power while ensuring that the engine is running in the economic zone.
  • the low-power strategy requires that the engine keep running without extinguishing when the OK is not in the P-block state.
  • the vehicle speed is 0, the P gear is blocked,
  • the SOC value is not less than 20% and enters the P-block idle speed start-stop strategy, and the engine is turned off.
  • the low-power strategy and the economic strategy are consistent in the control method after the engine is started, and the upper limit curve and the lower limit curve of the output torque of the engine are set, as shown in Fig. 7, the principle of the curve design is that the area between the upper and lower limit curves is It may contain more economical areas of the engine. Due to the poor economy of the engine outside the upper and lower limits, the motor is assisted by the engine in this area.
  • the engine Under the condition of small load operation, the engine is pressed to the limit curve output, and the excess torque is used. Power generation, the engine is output according to the upper limit curve during heavy load operation, and the insufficient torque is supplemented by the motor. If the motor is limited by its own or the power battery, the motor will charge and discharge according to its maximum allowable capacity of the power battery, and cancel the engine output.
  • the upper and lower limits the engine is output according to the vehicle demand; between the upper and lower limit curves, the motor mainly participates in power generation, and the power generation has a certain function relationship with the current SOC value, as shown in Figure 8, but the total output torque of the engine does not exceed the upper limit curve.
  • the above-mentioned HEV-eco mode driving strategy is executed when the gradient signal does not exceed the upper gradient threshold, for example, 15%.
  • the gradient signal exceeds the upper gradient threshold, for example, 15%, in order to meet the vehicle climbing performance requirement, this is specified.
  • the engine must be started and the upper and lower engine limit limits of the engine and the power limit of the motor are canceled until the slope signal is less than the lower gradient threshold, for example 5%, and the original execution strategy is restored.
  • the control system of the hybrid vehicle of the embodiment of the present invention adopts one engine and one motor through the dual clutch transmission in parallel, and the hybrid in the related art.
  • the power system of the power car adopts one engine, one MG1 and one MG2 to be mixed by the planetary wheels.
  • the control system of the hybrid vehicle of the embodiment of the invention does not consider the power requirement of the whole vehicle, and only considers within a certain gradient.
  • the vehicle speed starts and stops the engine and the vehicle speed switching point is relatively high. When the slope is large, the engine runs all the time.
  • the hybrid vehicle's power system considers the vehicle speed, the battery charging power demand, the vehicle driving power demand, and the vehicle speed switching point.
  • the control system of the hybrid vehicle of the embodiment of the present invention defines a SOC of less than 20% to enter a low-power strategy, and the power system of the hybrid vehicle in the related art defines less than 45%; From the point of view of the idling speed stop and stop strategy
  • the control system of the hybrid vehicle according to the embodiment of the present invention has an engine speed as long as the vehicle speed is 0, the gear is in the P range, and the SOC value is not less than 20%, and the engine water temperature is also considered in the power system of the hybrid vehicle in the related art.
  • the SOC value is at a high level; during the operation of the whole vehicle, the control system of the hybrid vehicle of the embodiment of the present invention switches back and forth between the economic strategy and the low-power strategy more than the actual road condition, instead of maintaining the battery balance all the time.
  • the SOC of the power battery of the hybrid vehicle in the related art enters the equilibrium state after running for a short period of time; during the operation of the engine, the difference in the structure of the assembly determines the greater difference of the control strategy, and related technologies
  • the MG1 of the power system of the hybrid vehicle is to be speed-adjusted to adjust the engine speed, and the engine idle speed is up to 1200 rpm, and the engine idle speed in the control system of the hybrid vehicle according to the embodiment of the present invention is about 800 rpm, and only Control double clutch 6 gears, shift matching is relatively simple;
  • the power of the engine in the control system of the hybrid vehicle of the embodiment is either fully driven or partially driven to generate power to the battery, and the power system of the hybrid vehicle of the related art always has a part of energy during medium and large load operation. First, power is generated by MG1 and then given to the MG2 to drive the hybrid car.
  • the power system of the hybrid vehicle in the related art has a limited capacity of the battery and the motor, and the vehicle power and the vehicle speed switching point are set to be low, which may cause the engine to start prematurely and over frequency, and the proportion of the engine operation.
  • the increase of the fuel consumption of the hybrid vehicle in the embodiment of the present invention has a strong pure electric driving capability, and can satisfy most driving demands, so the engine starting point is relatively high, and The proportion of engine participation in driving in urban working conditions is reduced, and the purpose of reducing fuel consumption in urban working conditions is achieved.
  • the user operates the throttle to make the power demand of the vehicle change more frequently, so as to avoid the judgment of the power of the whole vehicle.
  • the power system of the hybrid vehicle is stationary and the P-speed idle start-stop engine needs to consider the SOC value of the power battery and the engine water temperature factor, and is not directly controlled by the person, which is disadvantageous for the customer to grasp the operation law and is limited by the battery capacity.
  • the influence makes the SOC value too large, and it is easy to cause the red light to hang the P-block engine without stalling.
  • the parking noise is increased, and the comfort is greatly reduced.
  • the engine idling speed is limited by the shifting mechanism.
  • the function of the work area is to further reduce the fuel consumption of the exhaust, and the transmission mechanism of the control system of the hybrid vehicle of the embodiment of the invention adopts the dual clutch transmission, has a simple structure, and has a short shift matching period, thereby greatly reducing the cost; the engine is driven by the hybrid power.
  • the motor adopts parallel mode, the control strategy is easier to match, and the conversion efficiency between powers is high.
  • the power generation strategy of the control system of the hybrid vehicle of the embodiment of the present invention adopts a dynamic change associated with the power battery SOC, so that the vehicle can maintain a relatively high power when driving under normal low and medium loads.
  • the controller determines the power battery after receiving the switching command to switch to the pure electric motion mode.
  • the controller controls the hybrid vehicle to switch to the pure electric motion mode.
  • the controller controls the hybrid vehicle to enter the idle start/stop mode.
  • the hybrid vehicle is in the hybrid motion mode, if the current gear position of the hybrid vehicle is in the non-P gear, wherein when the vehicle torque demand of the hybrid vehicle is greater than the preset peak torque of the engine, the controller controls the engine according to The preset peak torque is used for torque output, and the motor is controlled to perform torque compensation.
  • the controller controls the engine to meet the torque requirement of the vehicle for torque output, and controls the motor. Power generation.
  • the controller controls the hybrid vehicle to switch from the hybrid sport mode to the switch when receiving a switch command to switch to the hybrid economy mode The hybrid economic model.
  • the operation mode of the hybrid vehicle is allowed to switch to the EV-s mode, otherwise the operation mode switching is not performed; when the button is manually rotated to the eco, the hybrid vehicle is The working mode is switched to HEV-eco mode; when the mode button has no manual input, the working mode of the hybrid vehicle keeps the HEV-s mode unchanged, and the HEV-s mode strategy is similar to the low-power strategy of HEV-eco, canceling the low-speed pure Electric, and increase the P-block engine start and stop function, cancel the motor power limit, cancel the upper and lower limits of the engine torque, the engine and motor can peak output, this working mode can get the best dynamic performance.
  • the first speed threshold for example, 150km/h
  • the HEV-s mode control strategy requires that the engine does not stall when the OK is not in the P-block state, the vehicle speed is 0, the P-speed is blocked, the SOC value is not less than 20%, the P-speed idle start-stop strategy is entered, and the engine is turned off. There is no pure electric running condition in the HEV-s mode control strategy.
  • the engine participates in the drive at all times, does not limit the torque and power of the motor and engine, and the motor and engine can peak output; when the vehicle demand torque exceeds the upper limit of the engine capacity , motor-assisted drive, when the vehicle demand torque does not exceed the upper limit of the engine capacity, the motor generates electricity and the generated power is a function of the current SOC value and is limited by the upper limit of the engine torque and the upper limit of the motor power generation torque (60Nm).
  • the battery limit causes insufficient charge and discharge capability, the motor charges and discharges according to its own and the maximum allowable capacity of the battery.
  • the dual clutch transmission is used to transfer engine power and perform shifting when the engine is started.
  • the two sets of shifting strategies are matched respectively.
  • the HEV-eco mode focuses on fuel consumption.
  • the matching principle of the shifting strategy is to make the engine work in the high-efficiency area as much as possible.
  • the shift point will be slightly advanced.
  • the engine is mostly operated at 1500 ⁇ 2000rpm.
  • the HEV-s mode focuses on the power.
  • the matching principle of the shift strategy is to make the torque transmitted to the wheel end as large as possible to get better.
  • the control system of the hybrid vehicle of the embodiment of the present invention adopts one engine and one motor through the dual clutch transmission in parallel, and the hybrid in the related art.
  • the power system of the power car adopts an engine, an MG1, and an MG2 to be mixed by the planetary wheels. From the state of the engine and the motor power output, the control system of the hybrid vehicle of the embodiment of the present invention limits the engine and the motor in the eco mode. Torque, power release, improve power from the perspective of the power source, and correspondingly increase the throttle sensitivity to achieve the fast response of the starting power.
  • the power system of the hybrid vehicle in the related art only increases the throttle sensitivity, and the power source capability is not improved;
  • the control system of the hybrid vehicle of the embodiment of the present invention requires that the power system of the hybrid vehicle in the related art defines a low vehicle speed when the SOC is high as long as the gear is in a non-P-block engine.
  • Low power demand status When driving with pure electric power, the engine starts to participate in the driving when the customer has strong power demand; from the point of view of the idling start and stop strategy of the P-speed, the control system of the hybrid vehicle of the embodiment of the present invention is only at the speed of 0 and the gear is P.
  • the power system of the hybrid vehicle in the related art also considers that the engine water temperature and the SOC value are at a high level; during the operation of the engine, due to the structure of the assembly The difference determines the big difference of the control strategy.
  • the MG1 of the power system of the hybrid vehicle in the related art needs to adjust the speed of the engine to adjust the engine speed, and the engine idle speed is up to 1200 rpm, and the control of the hybrid vehicle according to the embodiment of the present invention
  • the engine idle speed is about 800 rpm, and only two gears are controlled to control the two clutches, and the shift matching is relatively simple;
  • the power of the engine in the control system of the hybrid vehicle of the embodiment of the invention is either fully driven or partially driven.
  • Power generation to the battery, and the power system of the hybrid vehicle in the related art is at Zhongda When the load is running, the engine always has a part of the energy first generated by the MG1 and then sent to the MG2 to drive the hybrid car.
  • the control system of the hybrid vehicle of the embodiment of the present invention can improve the power performance under various working conditions, instead of improving the starting power by sacrificing the driving dynamics;
  • the power system of the hybrid vehicle in the related art is in the power battery.
  • the SOC is high
  • the low vehicle speed and low power demand state adopt pure electric driving.
  • the engine has to undergo starting, speed increasing, speed stabilization process, engine power output delay, and the mixing of the embodiment of the present invention.
  • the engine in the control system of the power car is always in operation, and the power can achieve zero-delay output.
  • the power system of the hybrid vehicle is statically suspended.
  • the P-speed idle start-stop engine needs to consider the SOC value of the power battery, the engine.
  • the water temperature factor is not directly controlled by people, which is not conducive to the customer to master the operating law, and the SOC value is too large due to the small battery capacity, which is easy to cause the red light to hang the P-block engine without stalling.
  • Noise, comfort is greatly reduced; at the same time limited by the shifting mechanism Motivation idle speed up to 1200rpm, then the engine noise and fuel consumption compared with ordinary fuel vehicles are higher.
  • the control system of the hybrid vehicle according to the embodiment of the present invention will be turned off in most cases, and the user will grasp the running law, reduce the noise during parking, improve the parking comfort, and the engine idle speed and the traditional fuel. The car is quite.
  • the battery power in the control system of the hybrid vehicle of the embodiment of the present invention is not made into a balancing strategy, and the vehicle operating state is automatically switched between the economic strategy and the low power strategy according to the actual working condition, and the motor regulating engine is further highlighted.
  • the function of the work area is to further reduce the fuel consumption of the exhaust, and the transmission mechanism of the control system of the hybrid vehicle of the embodiment of the invention adopts the dual clutch transmission, has a simple structure, and has a short shift matching period, thereby greatly reducing the cost; the engine is driven by the hybrid power.
  • the motor adopts parallel mode, the control strategy is easier to match, and the conversion efficiency between powers is high.
  • the power generation strategy of the control system of the hybrid vehicle of the embodiment of the present invention adopts a dynamic change associated with the power battery SOC, so that the vehicle can maintain a relatively high power during normal low and medium load driving.
  • the current output power upper limit of the power battery is less than the first preset power; when the hybrid vehicle is in the pure electric motion mode, the current output power upper limit of the power battery is less than the second preset power, wherein The second preset power is greater than the first preset power; when the hybrid vehicle is in the hybrid economy mode, the current output power upper limit of the power battery and the current output power upper limit of the engine are both smaller than Determining a first preset power, and an upper limit of a current output torque of the engine is less than a first torque threshold; when the hybrid vehicle is in the hybrid motion mode, an upper limit of a current output power of the power battery is less than the first Two preset powers, and the engine allows the current output torque upper limit and the current output power upper limit to be output.
  • the first preset power may be 70 KW
  • the second preset power may be 110 KW
  • the first torque threshold may be 185 ⁇ .
  • the pure electric economy mode is that the hybrid vehicle is in the pure electric energy consumption mode, the current output power upper limit of the power battery is less than the economic mode power upper limit, for example, 70 KW, and the power battery is operated in the most economical region;
  • the pure electric motion mode is that the hybrid vehicle is in the pure electric energy consumption mode, and the current output power upper limit of the power battery is smaller than the sports mode power upper limit, for example, 110 KW;
  • the hybrid economic mode is that the hybrid vehicle is in the hybrid energy consumption mode.
  • the current output power upper limit of the power battery is less than the economic mode power upper limit, for example, 70 KW, and the current output power upper limit of the engine is also less than the economic mode power upper limit, for example, 70 KW, and the current output torque upper limit of the engine is less than the economic mode torque upper limit, for example, 185 ⁇ , the engine and the power battery work in the most economical area;
  • the hybrid motion mode is, the hybrid vehicle is in the hybrid energy consumption mode
  • the current output power limit of the power battery is less than the motion mode work
  • the upper limit e.g. 110KW, allowing engine torque upper limit and the current engine power output.
  • the most economical area in the pure electric mode means that as the power output of the power battery increases, the working efficiency of the power battery decreases correspondingly, so that the vehicle power is satisfied (operational performance and Under the premise of acceleration performance, the power battery is preferably operated with a lower discharge power.
  • the power battery In the most economical mode, in the hybrid mode, as the power output of the power battery increases, the operating efficiency of the power battery decreases accordingly. Therefore, under the premise of satisfying the vehicle dynamic performance (operating performance and acceleration performance), the power battery is preferred. Low discharge power is used for operation.
  • the most economical area of the engine is determined by the torque and speed of the engine. As shown in Figure 7, the abscissa indicates the engine speed and the ordinate indicates the engine torque.
  • the economic mode power cap can be understood as the most economical area in which the power battery or engine remains in operation.
  • the sport mode power cap is its own characteristic.
  • the power battery or engine output is output according to the current maximum engine torque or power or the current maximum power of the power battery. At this time, the power system supplies power or torque output to the vehicle with maximum energy.
  • the working mode when the hybrid vehicle is started is still the working mode when the hybrid vehicle is last turned off.
  • the hybrid vehicle also has a pure fuel mode, and the pure fuel mode is a failure mode.
  • the engine power subsystem and the motor power subsystem are connected in parallel, and the power system of the existing hybrid vehicle is connected in series, which can effectively improve the energy utilization rate.
  • the parallel structure is relatively simple, avoiding the complicated ECVT matching of the hybrid mode, and reducing the risk of unevenness caused by poor matching, so the economic performance is greatly improved under the premise of ensuring the dynamic performance of the whole vehicle. Moreover, it ensures the power and driving range of the pure electric operation of the whole vehicle, and avoids the long-term high-power electricity to improve the power efficiency under the premise of meeting the power demand of the whole vehicle.
  • the engine is always in the running mode, which reduces the frequent start and stop of the engine, thus improving the life of the starter and maximizing the user's acceleration.
  • the proportion of the engine participating in the driving in the urban working conditions is reduced, the fuel consumption is reduced, and the energy saving and environmental protection are further improved.
  • the hybrid vehicle comprises a transmission device, an engine power subsystem and a motor power subsystem, and the transmission device is respectively connected to the engine power subsystem and the motor power subsystem.
  • control method of the hybrid vehicle includes the following steps:
  • the hybrid vehicle When the hybrid vehicle is running, the hybrid vehicle is controlled to enter a corresponding working mode by controlling the engine power subsystem and the motor power subsystem, wherein the working modes include a pure electric motion mode and a hybrid motion mode.
  • the working mode of the hybrid vehicle includes a pure electric mode and a hybrid mode, wherein the pure electric mode includes a pure electric economy mode and a pure electric motion mode, and the hybrid mode includes a hybrid economic mode and a hybrid power Sports mode.
  • manual mode button switching information which may be an HEV mode button switching operation, or a Sport mode button switching operation, or a modeless button switching operation, that is, determining whether to perform manual switching, and if yes, proceeding to step S102; if not, Then, the process proceeds to step S103.
  • the threshold values are compared, that is, the SOC lower limit threshold SOC d .
  • Wn for example 20%
  • the maximum allowable discharge power lower limit threshold Pb d of the power battery for example, 12 KW
  • the upper limit threshold i up, for example, 15%, and judge whether the SOC is satisfied.
  • the working mode of the hybrid vehicle is automatically switched to the HEV-eco mode, that is, if the SOC of the power battery is less than or equal to the first power threshold, for example, 20%, or power
  • the maximum allowable discharge power of the battery is less than or equal to the first power threshold, for example, 12 KW, or the current gradient signal detected by the hybrid vehicle is greater than or equal to the upper threshold of the gradient, for example, 15%, the hybrid vehicle is controlled to automatically switch to the hybrid economy mode.
  • step S103 If the three conditions are not satisfied in step S103, the automatic switching of the HEV-eco mode is not performed, and the hybrid vehicle maintains the EV-eco mode operation.
  • the motor When the hybrid vehicle is driven in the EV-eco mode, the motor is always driven as a single power source without manual or automatic mode switching.
  • the main purpose of this working mode is to save power while meeting the power demand of the whole vehicle.
  • the maximum output power of the motor is limited to Pm max, for example 70KW, and at the same time
  • the climbing performance of the whole vehicle therefore, does not limit the maximum output torque of the motor. That is to say, when the hybrid vehicle is in the pure electric economy mode, the hybrid vehicle is controlled to operate at a limited power.
  • the hybrid vehicle is automatically switched to the HEV-eco mode by judging the SOC value of the power battery, the maximum allowable discharge power of the power battery, and the gradient value.
  • the strategy ensures the ability of the vehicle to continue to operate normally, avoiding the possibility of degrading power performance due to certain factors.
  • the control method of the above-mentioned hybrid vehicle in the EV-eco mode ensures that the motor battery always operates in the high-efficiency zone under the premise of satisfying the vehicle power, thereby realizing the long-lasting pure electric vehicle mileage, low operating cost, and emission of the hybrid vehicle. dramatically drop.
  • the control method of the hybrid vehicle when the hybrid vehicle is in the pure electric motion mode includes the following steps:
  • the manual mode button switching information which may be an HEV mode button switching operation, or an eco mode button switching operation, or a modeless button switching operation, that is, determining whether to perform manual switching, and if yes, proceeding to step S202; if not, then Go to step S203.
  • the threshold values are compared, that is, the SOC lower limit threshold SOC d .
  • Wn for example 20%
  • the maximum allowable discharge power lower limit threshold Pb d of the power battery for example, 12 KW
  • the upper limit threshold i up, for example, 15%, and judge whether the SOC is satisfied.
  • the working mode of the hybrid vehicle is automatically switched to the HEV-s mode, that is, if the SOC of the power battery is less than or equal to the first power threshold, for example, 20%, or the power battery
  • the maximum allowable discharge power is less than or equal to the first power threshold, for example, 12 KW, or the hybrid vehicle is automatically switched to the hybrid motion mode when the current gradient signal detected by the hybrid vehicle is greater than or equal to the upper gradient threshold, for example, 15%.
  • step S203 If the three conditions are not satisfied in step S203, the automatic switching of the HEV-s mode is not performed, and the hybrid vehicle maintains the EV-s mode operation.
  • the motor When the hybrid vehicle is driven in the EV-s mode, the motor is always driven as a single power source without manual or automatic mode switching. This mode of operation does not limit the maximum output torque and power of the motor, and can be driven by the maximum capacity of the motor to meet the higher power requirements of the user in the EV mode (such as overtaking acceleration, rapid climbing, etc.).
  • the hybrid vehicle when the hybrid vehicle is in the EV-s mode, it can be seen that the hybrid vehicle is automatically switched to the HEV-s mode by judging the SOC value of the power battery, the maximum allowable discharge power of the power battery, and the gradient value.
  • the strategy ensures the ability of the vehicle to continue to operate normally, avoiding the possibility of degrading power performance due to certain factors.
  • the control method of the above-mentioned hybrid vehicle in the EV-s mode is suitable for users who want pure electric operation and desire to obtain a better power sense, and the working mode is more flexible and changeable, so that the user can obtain more driving pleasure. .
  • the control method of the hybrid vehicle when the hybrid vehicle is in the hybrid economy mode operation includes the following steps:
  • step S301 Acquire EV mode button switching information, determine whether to manually switch the EV mode, if yes, go to step S302 or step S303; if no, go to step S306.
  • step S302 when receiving the EV mode button switching operation, comparing the current SOC value of the power battery with the set SOC upper limit threshold SOC up, for example, 30%, determining whether the SOC up SOC is satisfied, and if yes, proceeding to step S303; Otherwise, the process proceeds to step S305.
  • step S305 comparing the current vehicle speed with the set vehicle speed threshold V max, for example, 150 km/h, that is, the maximum vehicle speed that allows the HEV mode to switch to the EV mode, determining whether v V max is satisfied, and if yes, proceeding to step S304; if not, then Go to step S305.
  • V max for example, 150 km/h
  • controlling the hybrid vehicle to switch to the EV-eco mode and executing the corresponding powertrain control strategy controlling the hybrid vehicle to switch to the EV-eco mode and executing the corresponding powertrain control strategy. That is, when the hybrid vehicle is in the hybrid economy mode, after receiving the switching command to switch to the pure electric economy mode, the controller determines that the SOC of the power battery is greater than or equal to the second power threshold, for example, 30%, and the hybrid When the current vehicle speed of the automobile is less than or equal to the first speed threshold, for example, 150 km/h, the controller controls the hybrid vehicle to switch to the pure electric economy mode.
  • the second power threshold for example, 30%
  • the hybrid When the current vehicle speed of the automobile is less than or equal to the first speed threshold, for example, 150 km/h, the controller controls the hybrid vehicle to switch to the pure electric economy mode.
  • Hybrid cars operate in HEV-eco mode.
  • step S308 after receiving the EV mode button switching operation, acquiring the Sport mode button switching information, determining whether to manually switch the Sport mode, and if yes, proceeding to step S307; if not, proceeding to step S308.
  • the hybrid vehicle After receiving the Sport mode button switching operation, the hybrid vehicle is controlled to switch to the HEV-s mode and the corresponding power system control strategy is executed.
  • the working mode of the hybrid vehicle is not switched, and the gradient information is acquired, and the current gradient value i and the set gradient upper and lower threshold i up are, for example, 15%, i d . Wn, for example, 5% is compared to determine the interval in which the value of i is located.
  • the maximum allowed current SOC value of the battery, the battery discharge power Pb for setting the threshold of the two were compared, i.e. the lower limit threshold SOCup S0C e.g. 30%, S0C d. Wn, for example, 20%, the maximum allowable discharge power upper and lower threshold Pb up of the power battery, for example, 30 KW, Pb d . wn e.g. 12KW, determination S0C, Pb where the interval.
  • Hybrid vehicles are controlled according to economic strategy workflow.
  • the controller controls the hybrid vehicle to Economic mode of operation.
  • step S313 determining 30 ⁇ >300>30 ⁇ 11 and Pb up Pb, or SOC up SOC and Pb up >Pb>Pb down to step S314
  • Hybrid vehicles are controlled according to the original strategy workflow, that is, the original economic operation is still carried out according to the economic strategy process. The original operation is still in the low-power mode.
  • Hybrid vehicles are controlled according to the low-power strategy workflow.
  • the hybrid vehicle when the hybrid vehicle is in the hybrid economy mode, if the current gradient signal detected by the hybrid vehicle is less than or equal to the lower gradient threshold, for example, 5% and the SOC of the power battery is less than or equal to the first power threshold, for example, 20%, or hybrid
  • the current slope signal detected by the automobile is less than or equal to the lower limit threshold value, for example, 5%
  • the maximum allowable discharge power of the power battery is less than or equal to the first power threshold, for example, 12 KW
  • the controller controls the hybrid vehicle to operate in a low power mode, wherein the second power threshold is greater than The first power threshold, the second power threshold being greater than the first power threshold.
  • Hybrid vehicles are controlled according to the original strategy workflow, that is, ii d is maintained separately. Or i up i ⁇ control strategy.
  • the low-power mode means that the engine drives the motor to generate electricity quickly, thereby getting rid of the low-electric state, and the motor has the ability to adjust the working range of the engine, thereby ensuring the economy of the whole vehicle.
  • control method of the hybrid vehicle when the hybrid vehicle is operated in an economical manner includes the following steps:
  • step S404 When it is determined that the torque demand of the entire vehicle is greater than the torque upper limit curve as shown in FIG. 7, the process proceeds to step S404.
  • step S405 determining whether the power system of the hybrid vehicle is faulty, and if yes, performing step S406; If no, step S405 is performed.
  • the engine is controlled to output according to the upper torque limit curve, and the remaining torque demand is supplemented by the motor, that is, when the hybrid vehicle is operated in an economical manner, if the speed of the hybrid vehicle is greater than or equal to a third speed threshold, for example, 30 km. /h, wherein, when the vehicle torque demand of the hybrid vehicle is greater than the preset torque upper limit curve of the engine, the controller controls the engine to perform torque output with a preset torque upper limit curve, and controls the motor to perform torque compensation.
  • a third speed threshold for example, 30 km. /h
  • step S408 when it is determined that the vehicle torque demand is smaller than the torque lower limit curve as shown in FIG. 7, the process proceeds to step S408.
  • step S410 determines whether the power system of the hybrid vehicle is faulty, if yes, executing step S410; if not, executing step S409.
  • the controller controls the engine to perform torque output with a preset torque lower limit curve and controls the motor to generate electricity.
  • step S414 Determine whether the power system of the hybrid vehicle is faulty. If yes, go to step S414; if no, go to step S413.
  • the engine preferentially meets the vehicle torque demand, and outputs a part of the torque for power generation. That is, when the hybrid vehicle is operating economically, if the vehicle speed of the hybrid vehicle is greater than or equal to a third speed threshold, for example, 30 km/h,
  • a third speed threshold for example, 30 km/h
  • the controller controls the engine to meet the vehicle torque demand for torque output, and controls the motor to generate power.
  • the power generation principle follows the relationship between the power generation power and the SOC value as shown in Figure 8.
  • step S416 determines whether the power system of the hybrid vehicle is faulty, if yes, executing step S418; if not, executing step S417.
  • the power system is controlled according to the original strategy workflow. That is, if the original motor is driven separately, it will still operate according to this mode. If the original motor assists the engine to drive or generate electricity, it will still operate in this way.
  • step S422 determines whether the power system of the hybrid vehicle is faulty, if yes, executing step S422; if not, executing step S421.
  • Hybrid vehicles are purely electric, that is, hybrid electric vehicles operate purely electric.
  • control method of the hybrid vehicle when the hybrid vehicle is operated in a low-power mode includes the following steps:
  • step S506 Determine whether the power system of the hybrid vehicle is faulty. If yes, go to step S506; if no, go to step S505.
  • the controller controls the engine to perform torque output with a preset torque upper limit curve, and controls the motor to perform torque compensation.
  • step S508 when it is determined that the vehicle torque demand is smaller than the torque lower limit curve as shown in FIG. 7, the process proceeds to step S508.
  • step S510 determines whether the power system of the hybrid vehicle is faulty, if yes, executing step S510; if not, executing step S509.
  • the controller controls the engine to perform torque output with a preset torque lower limit curve, and controls the motor to generate electricity. 5510, If the power system fails, perform troubleshooting.
  • step S512 it is determined that the torque requirement of the whole vehicle is between the upper and lower torque curves shown in FIG. 7, and the process proceeds to step S512.
  • step S514 determining whether the power system of the hybrid vehicle is faulty, if yes, executing step S514; if not, executing step S513.
  • the engine preferentially meets the vehicle torque demand, and outputs a part of the torque for power generation. That is, when the hybrid vehicle is running in a low-power mode, if the current gear of the hybrid vehicle is in the non-P gear, when the hybrid
  • the controller controls the engine to meet the vehicle torque demand for torque output, and controls the motor to generate electricity.
  • the power generation principle follows the relationship between the power generation power and the SOC value as shown in Figure 8.
  • step S516 When it is determined that the hybrid vehicle performs the P range, the process proceeds to step S516.
  • the P-speed idling start-stop strategy is executed. That is, when the hybrid vehicle is running in a low-power mode, if the current gear of the hybrid vehicle is in the P-range, the controller controls the hybrid vehicle to enter the idle start-stop mode. In this mode, when the hybrid vehicle meets the idle start and stop conditions, the engine is turned off. That is, when the hybrid vehicle enters the idle start/stop mode, it is further determined whether the hybrid vehicle meets an idle start/stop condition; when the hybrid vehicle meets the idle start and stop condition, for example, the vehicle speed is 0. When the gear position is the P range and the SOC of the power battery is not less than 20%, the engine in the engine power subsystem is controlled to be turned off.
  • the motor and the engine cooperate to improve the energy utilization.
  • the general direction is that when the whole vehicle is working in the non-economic area of the engine, the proportion of the motor is greatly increased, and when the whole vehicle works.
  • the engine will send a part of the electricity to charge the battery, and the lower the power, the higher the power will be generated.
  • the whole strategy of this mode limits the output power of the motor to Pm max to avoid long-term high power. Electricity, thus ensuring that the battery power is always maintained at a high level, prompting the motor to have electric energy to adjust the engine to work in the high efficiency zone, so that the final effect is that the oil consumption during hybrid driving may be reduced, ensuring economy. Performance and emissions performance.
  • the control method of the hybrid vehicle when the hybrid vehicle is in the hybrid motion mode operation includes the following steps:
  • step S601 Acquire EV mode button switching information, determine whether to manually switch the EV mode, if yes, go to step S602 or step S603; if no, go to step S606.
  • step S602 when receiving the EV mode button switching operation, comparing the current SOC value of the power battery with the set SOC upper limit threshold SOC up, for example, 30%, determining whether the SOC up SOC is satisfied, and if yes, proceeding to step S603; Otherwise, the process proceeds to step S605.
  • SOC upper limit threshold SOC for example, 30%
  • step S605 comparing the current vehicle speed with the set vehicle speed threshold V max, for example, 150 km/h, that is, the maximum vehicle speed that allows the HEV mode to switch to the EV mode, determining whether v V max is satisfied, and if yes, proceeding to step S604; if not, then Go to step S605.
  • V max for example, 150 km/h
  • the controller determines that the SOC of the power battery is greater than or equal to the second power threshold, for example, 30%, and the hybrid
  • the controller controls the hybrid vehicle to switch to the pure electric motion mode.
  • Hybrid vehicles maintain HEV-s mode operation.
  • the eco mode button switching information is acquired, and it is determined whether the eco mode is manually switched. If yes, the process goes to step S607; if not, the process goes to step S608.
  • step S610 when it is determined that the hybrid vehicle performs the P range, the process proceeds to step S610.
  • the P-speed idle start-stop strategy is executed. That is, when the hybrid vehicle is in the hybrid motion mode, if the current gear of the hybrid vehicle is in the P-range, the controller controls the hybrid vehicle to enter the idle start-stop mode. Wherein, when the hybrid vehicle enters the idle start/stop mode, it is further determined whether the hybrid vehicle meets an idle start/stop condition; when the hybrid vehicle meets the idle start and stop condition, for example, the vehicle speed is 0, When the position is the P range and the SOC of the power battery is not less than 20%, the engine in the engine power subsystem is controlled to be turned off. S611. When it is determined that the hybrid vehicle performs the non-P range, the process proceeds to step S612.
  • step S613 if not, executing step S614.
  • the engine is output according to the peak torque, and the residual torque demand is supplemented by the motor.
  • the motor is limited by its own or the current capacity of the power battery, it is driven by the current maximum capacity of the motor and power battery. That is, when the hybrid vehicle is in the hybrid motion mode, if the current gear position of the hybrid vehicle is in the non-P gear, wherein when the vehicle torque demand of the hybrid vehicle is greater than the preset peak torque of the engine, the control The controller controls the engine to perform torque output according to the preset peak torque and controls the motor to perform torque compensation.
  • the engine preferentially meets the vehicle torque demand, and outputs a part of the torque for power generation. That is, when the hybrid vehicle is in the hybrid motion mode, if the current position of the hybrid vehicle is in the non-P range, when the hybrid
  • the controller controls the engine to meet the vehicle torque demand for torque output, and controls the motor to generate electricity.
  • the power generation principle follows the relationship between the power generation power and the SOC value as shown in Figure 8. At the same time, the following two preconditions must be met: 1 The power generation torque converted to the motor end does not exceed Tm max; 2 The total output torque of the engine does not exceed the figure.
  • the engine torque peak shown in Fig. 7 is that if the engine torque calculated from the power generation power curve exceeds any of the above two conditions, the above two conditions are used as the upper limit to jointly control the portion of the engine torque for power generation.
  • the hybrid vehicle When the hybrid vehicle is running in the HEV-s mode, when the shift mode is non-P gear, the engine is always in the starting state. Only when the shift mode is P gear and the P gear idle start and stop conditions are met, the engine will only be in the engine. Turn off the fire.
  • the entire strategy of the HEV-s mode no longer limits the maximum output torque and power of the engine and the motor, and can exert the maximum driving capacity of the power system. It is the best in the four driving modes, but the engine is in the process of driving. It is always running, either with the motor or the side drive motor with power generation (when the power battery is lower than a certain value), so the fuel consumption is relatively high, and the economic performance cannot be guaranteed.
  • the HEV-s mode is suitable for users who have high requirements on driving dynamics, and can have sufficient power equivalent to large-displacement luxury fuel vehicles to maximize the user's acceleration pleasure.
  • four different working modes of EV-eco, EV-s, HEV-eco, and HEV-s can be obtained by switching four buttons of EV, HEV, eco, and Sport, according to the vehicle power.
  • sexuality and economy The different definitions of the four working modes, the focus of the power system driving strategy are different.
  • the hybrid vehicle's powertrain is connected in parallel rather than in series or hybrid.
  • the engine starting point is optimized in the driving strategy, the vehicle speed judgment point is increased, the slope judgment is increased, and the judgment of the required power is canceled.
  • the engine working area is limited between the upper and lower limit torque curves, and the power generation power adopts a dynamic curve with the SOC value as an independent variable.
  • a plurality of selectable working modes can satisfy the driving demand of the user under different working conditions, and can meet the electricity demand of the urban working condition and satisfy the suburban working condition.
  • the dynamic demand, the real vehicle drive is guided by the user's subjective operation intention, to improve driving pleasure.
  • the control system of the hybrid vehicle adopts the parallel mode, which can effectively improve the energy utilization rate compared with the multi-step energy conversion in the series mode.
  • the parallel structure is relatively simple, avoiding the complicated ECVT matching of the hybrid mode, and reducing the poor matching result.
  • the risk of irregularity Moreover, the optimization of the engine starting point in the driving strategy avoids the engine's premature over-frequency starting, which can effectively reduce the starting noise, improve the life of the starting system, and the risk of frequent low-voltage power generation due to frequent starting, and ensure the normality of other low-voltage electrical equipment.
  • the engine working area is optimized to ensure that the engine always works in the high efficiency zone, and the power generation is optimized to ensure a high power balance point during the driving process, which is beneficial to the entire vehicle in the economic strategy. , can effectively reduce fuel consumption and reduce emissions.
  • control method can ensure the power and driving range of the pure electric operation of the whole vehicle, avoid the long-term high-power electricity to improve the power consumption efficiency while satisfying the power demand of the whole vehicle, and avoid the frequent starting of the engine.
  • the stop phenomenon increases the life of the starter, reduces driving noise and improves driving comfort.
  • the engine is always running in the hybrid sport mode, which reduces the frequent start and stop of the engine, thereby improving the life of the starter and maximizing the user's acceleration.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport the program for use by the instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read-only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may, for example, be The program is electronically obtained by optically scanning paper or other media, followed by editing, interpretation or, if necessary, processing in other suitable manner, and then storing it in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented with any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the description of the terms “one embodiment”, “some embodiments”, “example”, “specific example”, or “some examples” and the like means a specific feature described in connection with the embodiment or example.
  • a structure, material or feature is included in at least one embodiment or example of the invention.
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种混合动力汽车的控制系统和控制方法。控制系统包括传动装置(10)、发动机动力子系统(20)、电机动力子系统(30)和控制器(40)。控制器(40)控制发动机动力子系统(20)和电机动力子系统(30)以控制混合动力汽车进入混合动力运动模式,控制器(40)在接收到切换至纯电动运动模式的切换指令之后,如果判断动力电池的SOC大于等于第二电量阈值且混合动力汽车的车速小于等于第一速度阈值时,控制混合动力汽车从混合动力运动模式切换至纯电动运动模式。该控制系统采用并联方式,动力容易匹配,转化效率高,并且发动机一直处于运行状态,提高了混合动力汽车的动力性,减少了发动机频繁启停程度。

Description

混合动力汽车的控制系统和控制方法
技术领域
本发明涉及汽车技术领域, 特别涉及一种混合动力汽车的控制系统以及一种混合 动力汽车的控制方法。 背景技术
混合动力汽车 (Hybrid Electrical Vehicle, 简称 HEV) 是指同时装备两种动力来源 即热动力源 (由传统的汽油机或者柴油机产生) 与电动力源 (由电池与电机产生) 的 汽车。 通过在混合动力汽车上使用电机, 使得动力系统可以按照整车的实际运行工况 要求灵活调控, 而发动机保持在综合性能最佳的区域内工作, 从而降低油耗与排放。
现有的混合动力汽车有些是采用混联式混合动力系统, 其特点在于内燃机系统和 电机驱动系统各有一套机械变速机构, 两套机构采用行星轮式结构结合在一起, 从而 综合调节内燃机和电动机直接的转速关系。
但是, 传统的混合动力汽车的驱动模式单一, 驾驶员无法通过个人驾驶习惯以及 长期固定的行车工况来进行驱动模式选择。 例如, 以亚洲人的习惯, 居住较集中, 每 天上下班的行车路线较固定, 路程大多在 50km以内, 这种特殊的工况很适合中短距离 纯电动行驶。 而传统的混合动力汽车的设计理念是通过电机辅助调节发动机降低油耗 而不是彻底消除油耗, 因此往往不具备手动 EV ( Electrical Vehicle, 纯电动)模式切换 功能, 即使有也因为电池容量限制而导致纯电动续驶里程偏短。
同时, 传统的混合动力汽车由于以降油耗为目的, 不会选用大功率、 大扭矩的电 机和发动机, 因此会导致整车动力性不强, 驾驶乐趣大大降低。 例如有些混合动力汽 车的百公里加速时间超过 10s, 而且高速性能也较差。
再者, 有些混合动力汽车采用的是混联式结构及其的控制方法, 不存在发动机单 独驱动的策略, 即使在发动机处于相当经济的工作区域也会通过第一电机 MG1给电池 充电, 同时要通过 MG1调节发动机转速来实现换挡; 而且在大负荷加速工况时, 受电 池容量限制, 发动机有一部分功率要带动 MG1 发电后才能和蓄电池共同给第二电机 MG2提供电能驱动, 以上两点均降低了发动机的驱动效率。 并且, 在发动机启动关闭 策略上, 设定的需求功率和车速限值偏小, 且车速切换条件设置为点而非区间, 会造 成发动机过早过频起动。 此外, 现有的有些混合动力汽车由于电池容量小未采用可插电式结构, 电池电量 均由汽油转化而来, 提高了使用成本, 同时混联结构比较复杂, 采用 ECVT ( Electronic Continuously Variable Transmission, 电控无级式自动变速器) 匹配难度大, 成本较高。 发明内容
本发明是发明人基于以下认识和发现的:
相关技术中, 典型的混合动力汽车在 PWR (动力增强) 模式下的动力总成控制策 略大体为: 提高了油门的反应灵敏度, 动力总成的扭矩输出能提前快速响应, 以提高 起步的动力性能; 当动力电池的 SOC (State Of Charge,荷电状态)较高时, 启动工况、 起步工况以及低速工况下整车以纯电动运行, ECU (电子控制单元) 实时监测动力电 池的 SOC值、 整车实际需求功率等信息, 灵活地调整发动机的启动和停止; 当动力电 池的 SOC较低时, 一般为 45%以下, 不允许纯电动行驶; 混合动力汽车静止起动时, 发动机起动怠速暖机一段时间才自行停机, 怠速转速 1200rpm; 混合动力汽车静止挂 P 挡时, 发动机会根据动力电池的 SOC值及发动机水温决定是否熄火, SOC值低或发动 机水温低时发动机会怠速发电直至 SOC值处于某一较高水平或发动机水温处于某一较 高水平; 无论起始 SOC如何, 发动机工作一段时间(大概 15min)后, 动力电池的 SOC 会回到平衡位置 (56% ) 附近, 并始终保持这一位置不变; 发动机起动过程中, 采用行 星齿轮实现无级变速, 综合调节发动机和电动机之间的转速关系, 该混合动力汽车具 备两个电机, MG1进行转速控制, 调节发动机到车轮端速比, MG2进行扭矩控制, 提 供扭矩并响应驾驶员和蓄电池充电需求。
然而, 仅仅通过改变油门灵敏度来使动力提前输出以达到提高起步动力性的目的, 其动力源的输出能力并未改变, 前面动力提高了后面必然会相应降低, 动力性能并不 能在所有工况都有所提高; 电量充足时启动工况、起步工况以及低速工况采用纯电动, 电 机单独驱动, 发动机扭矩不能快速响应以致影响上述三个工况的动力性; 混合动力汽车静 止上电起动时, 发动机先起动怠速一段时间并判断动力电池的 SOC值及发动机水温控 制发动机起停, 导致若长时间 P挡停车发动机会多次起停; 变速机构采用 ECVT, 其 发动机怠速转速偏高, 怠速噪声、油耗及排放均偏高,增加 MG1用于调节发动机转速, 增加电机成本, 且 ECVT结构复杂, 工艺要求高, 匹配难度大, 也大大增加了变速机 构软硬件成本; 在大负荷加速工况时, 受电池容量限制, 发动机有一部分功率要带动 MG1 发电后才能和蓄电池共同给 MG2提供电能驱动, 能量转化次数增加, 降低了效 本发明的目的旨在至少解决上述的技术缺陷之一。
为此, 本发明的一个目的在于提出一种混合动力汽车的控制系统, 该混合动力汽 车的控制系统中的发动机动力子系统和电机动力子系统采用并联方式, 动力容易匹配, 转化效率高, 并且发动机一直处于运行状态, 提高了混合动力汽车的动力性, 减少发 动机频繁启停程度, 从而提高了起动机的寿命, 最大程度地提高用户加速的快感。
本发明的另一个目的在于提出一种混合动力汽车的控制方法。
为达到上述目的, 本发明一方面的实施例提出的一种混合动力汽车的控制系统, 包括: 传动装置, 所述传动装置用于驱动混合动力汽车的车轮; 发动机动力子系统, 所述发动机动力子系统与所述传动装置相连; 电机动力子系统, 所述电机动力子系统 与所述传动装置相连; 以及控制器, 所述控制器通过控制所述发动机动力子系统和电 机动力子系统以控制所述混合动力汽车进入相应的工作模式, 其中, 所述工作模式包 括纯电动运动模式和混合动力运动模式, 并且所述控制器在接收到切换至所述纯电动 运动模式的切换指令之后, 如果判断所述电机动力子系统中的动力电池的 SOC大于等 于第二电量阈值且所述混合动力汽车的车速小于等于第一速度阈值时, 控制所述混合 动力汽车从所述混合动力运动模式切换至所述纯电动运动模式。
根据本发明实施例的混合动力汽车的控制系统, 发动机动力子系统和电机动力子 系统采用并联方式, 相比于现有的混合动力汽车的动力系统采用串联方式, 能有效提 高能量利用率, 同时并联结构相对简单, 避免混联方式繁琐的 ECVT匹配, 降低因匹 配不良造成的不平顺性风险, 因此在保证整车动力性的前提下经济性能得到大幅提高。 并且, 发动机在混合动力运动模式下一直处于运行状态, 减少发动机频繁启停现象, 从而提高了起动机的寿命, 最大程度地提高用户加速的快感。
为达到上述目的, 本发明另一方面实施例提出了一种混合动力汽车的控制方法, 其中, 所述混合动力汽车包括传动装置、 发动机动力子系统和电机动力子系统, 所述 传动装置与所述发动机动力子系统和所述电机动力子系统分别相连, 所述控制方法包 括以下步骤: 所述混合动力汽车运行时, 通过控制所述发动机动力子系统和电机动力 子系统以控制所述混合动力汽车进入相应的工作模式, 其中, 所述工作模式包括纯电 动运动模式和混合动力运动模式; 检测所述电机动力子系统中的动力电池的工作状态, 并检测所述混合动力汽车的车速; 在接收到切换至所述纯电动运动模式的切换指令之 后, 如果所述动力电池的 SOC大于等于第二电量阈值且所述混合动力汽车的车速小于 等于第一速度阈值时, 则控制所述混合动力汽车从所述混合动力运动模式切换至所述 纯电动运动模式。
根据本发明实施例的混合动力汽车的控制方法, 可选择的工作模式能满足用户在 不同工况下的驾驶需求, 即可满足城市工况的只用电需求, 又可满足郊区工况的动力 性需求, 真正做到整车驱动以用户的主观操作意图为导向, 提高驾驶乐趣。 并且, 发 动机在混合动力运动模式下一直处于运行状态, 减少发动机频繁启停现象, 从而提高 了起动机的寿命, 最大程度地提高用户加速的快感。
本发明附加的方面和优点将在下面的描述中部分给出, 部分将从下面的描述中变 得明显, 或通过本发明的实践了解到。 附图说明
本发明上述的和 /或附加的方面和优点从下面结合附图对实施例的描述中将变得明 显和容易理解, 其中:
图 1A为根据本发明实施例的混合动力汽车的控制系统的方框示意图;
图 1B为根据本发明一个实施例的混合动力汽车的控制系统的方框示意图; 图 2为根据本发明一个实施例的混合动力汽车的信号流示意图;
图 3 为根据本发明一个实施例的当混合动力汽车处于纯电动经济模式运行时的混 合动力汽车的控制方法的流程图;
图 4 为根据本发明另一个实施例的当混合动力汽车处于纯电动运动模式运行时的 混合动力汽车的控制方法的流程图;
图 5 为根据本发明又一个实施例的当混合动力汽车处于混合动力经济模式运行时 的混合动力汽车的控制方法的流程图;
图 6 为根据本发明又一个实施例的当混合动力汽车处于混合动力经济模式时的混 合动力汽车以经济方式运行时的控制方法的流程图;
图 7 为根据本发明又一个实施例的当混合动力汽车处于混合动力经济模式时发动 机的工作区域示意图;
图 8为根据本发明一个实施例的电机的发电功率与动力电池的 SOC值对应曲线关 系示意图;
图 9 为根据本发明又一个实施例的当混合动力汽车处于混合动力经济模式时的混 合动力汽车以低电方式运行时的控制方法的流程图;
图 10为根据本发明再一个实施例的当混合动力汽车处于混合动力运动模式运行时 的混合动力汽车的控制方法的流程图;
图 11为发动机的固有特性曲线图; 以及
图 12为根据本发明实施例的混合动力汽车的控制方法的流程图。 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终 相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下面通过参 考附图描述的实施例是示例性的, 仅用于解释本发明, 而不能解释为对本发明的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。 为了简 化本发明的公开, 下文中对特定例子的部件和设置进行描述。 当然, 它们仅仅为示例, 并且目的不在于限制本发明。此外, 本发明可以在不同例子中重复参考数字和 /或字母。 这种重复是为了简化和清楚的目的, 其本身不指示所讨论各种实施例和 /或设置之间的 关系。 此外, 本发明提供了的各种特定的工艺和材料的例子, 但是本领域普通技术人 员可以意识到其他工艺的可应用于性和 /或其他材料的使用。 另外, 以下描述的第一特 征在第二特征之"上"的结构可以包括第一和第二特征形成为直接接触的实施例, 也可 以包括另外的特征形成在第一和第二特征之间的实施例, 这样第一和第二特征可能不 是直接接触。
在本发明的描述中, 需要说明的是, 除非另有规定和限定, 术语"安装"、 "相连"、 "连接 "应做广义理解, 例如, 可以是机械连接或电连接, 也可以是两个元件内部的连 通, 可以是直接相连, 也可以通过中间媒介间接相连, 对于本领域的普通技术人员而 言, 可以根据具体情况理解上述术语的具体含义。
参照下面的描述和附图, 将清楚本发明的实施例的这些和其他方面。 在这些描述 和附图中, 具体公开了本发明的实施例中的一些特定实施方式, 来表示实施本发明的 实施例的原理的一些方式, 但是应当理解, 本发明的实施例的范围不受此限制。 相反, 本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、 修改和 等同物。
下面参照附图来描述根据本发明实施例提出的混合动力汽车的控制系统和控制方 法。
图 1A为根据发明实施例的混合动力汽车的控制系统的方框示意图。如图 1A所示, 该混合动力汽车的控制系统包括传动装置 10、 发动机动力子系统 20、 电机动力子系统 30和控制器 40。
其中, 传动装置 10用于驱动混合动力汽车的车轮 2a和 2b, 发动机动力子系统 20 与传动装置 10相连, 电机动力子系统 30与传动装置 10相连。 控制器 40通过控制发 动机动力子系统 20和电机动力子系统 30以控制所述混合动力汽车进入相应的工作模 式, 其中, 所述工作模式包括纯电动运动模式和混合动力运动模式, 并且控制器 40在 接收到切换至所述纯电动运动模式的切换指令之后, 如果判断电机动力子系统 30中的 动力电池的 SOC大于等于第二电量阈值且所述混合动力汽车的车速小于等于第一速度 阈值时, 控制所述混合动力汽车从所述混合动力运动模式切换至所述纯电动运动模式。
根据本发明的一个实施例, 如图 1B所示, 发动机动力子系统 20包括发动机 3、 变速器 4, 电机动力子系统 30包括电机 5、 减速器 6、 动力电池 7和逆变器 8。 其中, 发动机 3通过变速器 4与传动装置 10相连, 电机 5通过减速器 6与传动装置 10相连, 为电机 5供电的动力电池 7。
在本发明的一个实施例中, 上述的混合动力汽车为可插电式双模混合动力汽车, 其中, 发动机 3为能够输出行驶用的动力的高效涡轮增压直喷发动机, 变速器 4为能 够传递发动机 3输出动力的双离合变速器, 动力电池 7通过直流母线连接电力电子单 元逆变器 8, 逆变器 8通过交流三相线连接电机 5, 电动力与燃油动力在传动装置 10 处进行耦合并传递到车轮 2a和 2b。并且用户可以通过 EV模式选择按键、 HEV模式选 择按键和运行模式选择旋钮按键选择混合动力汽车的工作模式。
根据本发明的一个实施例, 混合动力汽车的工作模式包括纯电动模式和混合动力 模式, 其中, 纯电动模式包括纯电动经济模式(EV-eco模式)和纯电动运动模式(EV-s 模式) , 混合动力模式包括混合动力经济模式 (HEV-eco 模式) 和混合动力运动模式 ( HEV-s模式) 。 其中, EV模式选择按键用于手动选择 EV模式, HEV模式选择按键 用于手动选择 HEV模式, 运行模式选择旋钮按键用于手动旋转切换 eco模式或 Sport 模式。
在本发明的实施例中,可手动切换的 EV、 HEV工作模式,可手动切换的 eco、 Sport 运动模式, 工作模式状态 EV、 HEV两者取其一, 运动模式状态 eco、 Sport两者取其 一, 利用模式间的相互切换可获得四种驱动模式即 EV-eco、 EV-s, HEV-eco, HEV-s 0 其中, EV 模式使整车处于纯电动能量消耗模式下, 保持发动机不工作; HEV 模式使 整车处于混合动力的能量消耗模式下, 电机配合发动机或辅助驱动或调节发动机使其 保持在综合性能最佳的区域内工作; eco模式限制电机、 发动机、 动力电池最大输出, 保证电机、发动机、动力电池工作于最经济区域; Sport模式优先满足整车动力性需求, 不限制电机、 发动机、 动力电池最大输出, 能获得动力系统的全部能量。
图 2为根据本发明一个实施例的混合动力汽车的信号流示意图。参照图 2, 档位控 制器 SCU ( Shift Control Unit)负责采集档位信号和 EV/HEV/eco/Sport模式信号, 并将 这两种信号发送给电机控制器 ECN ( Electromotor-Controller) , 电机控制器 ECN对接 收到的 EV/HEV/eco/Sport模式信号进行核实并转发给电池管理器 BMS、发动机控制器 ECM (Engine Control Module) 传动控制器 TCU (Transmission Control Unit)、组合仪表, 同时其自身按不同的模式策略执行相应的动力系统控制方案,给发动机控制器 ECM发 送发动机起停命令和发动机目标扭矩信号; 电池管理器 BMS ( Battery Management System) 对接收到的 EV/HEV/eco/Sport模式信号进行核实并执行能量管理策略; 发动 机控制器 ECM 执行发动机系统控制方案并将发动机当前指示扭矩发送给传动控制器 TCU; 传动控制器 ECN采集油门、 刹车、 车速信号, 并根据变速器换挡策略执行换挡; 组合仪表用于显示当前的 EV/HEV/eco/Sport模式。
在本发明的一个实施例中, 控制器根据混合动力汽车的运行状态和 /或动力电池的 工作状态, 控制混合动力汽车在纯电动经济模式、 纯电动运动模式、 混合动力经济模 式和混合动力运动模式之间进行切换。
具体而言, 在本发明的一个实施例中, 如图 3 所示, 当混合动力汽车处于纯电动 经济模式时, 如果判断所述动力电池的 SOC小于等于第一电量阈值例如 20%, 或者所 述动力电池的最大允许放电功率小于等于第一功率阈值例如 12KW, 或者所述混合动 力汽车检测的当前坡度信号大于等于坡度上限阈值例如 15%时, 控制器 40控制混合动 力汽车切换至混合动力经济模式。
也就是说,在本实施例中, 如图 3所示, 驱动以 EV-eco模式行驶的混合动力汽车, 在不触发模式切换条件的情况下, 由动力电池为电机供电以驱动车辆行驶, 并且保持 发动机不工作。 当手动按下 HEV 按键, 则混合动力汽车的工作模式切换至 HEV-eco 模式; 当手动旋转按键至 Sport, 则混合动力汽车的工作模式切换至 EV-s模式; 当模 式按键无手动输入时, 若动力电池的荷电量 SOC小于等于 SOC下限阈值例如 20%, 或动力电池最大允许放电功率小于等于功率下限阈值例如 12KW , 或坡度信号大于坡 度上限阈值例如 15%,控制器 40则自动控制混合动力汽车切换至 HEV-eco模式。其中, 在 EV-eco模式下,为提高电能消耗效率以延长续驶里程,限制了电机的最大输出功率, 同时考虑该模式下的整车加速性能, 不限制电机的最大输出扭矩, 即言, 当混合动力 汽车处于纯电动经济模式时, 控制器 40控制混合动力汽车限功率运行。
在本发明的另一个实施例中, 如图 4所示, 当混合动力汽车处于纯电动运动模式 时, 如果判断动力电池的 SOC小于等于第一电量阈值例如 20%, 或者动力电池的最大 允许放电功率小于等于第一功率阈值 12KW, 或者混合动力汽车检测的当前坡度信号 大于等于坡度上限阈值例如 15%时,控制器 40控制混合动力汽车切换至混合动力运动 模式。
也就是说, 在本实施例中, 如图 4所示, 驱动以 EV-s模式行驶的混合动力汽车, 在不触发模式切换条件的情况下, 由动力电池为电机供电以驱动车辆行驶, 并且保持 发动机不工作。当手动按下 HEV按键,则混合动力汽车的工作模式切换至 HEV-s模式; 当手动旋转按键至 eco, 则混合动力汽车的工作模式切换至 EV-eco模式; 当模式按键 无手动输入时, 若动力的电池荷电量 SOC小于等于 SOC下限阈值例如 20%, 或动力 电池的最大允许放电功率小于等于功率下限阈值例如 12KW, 或坡度信号大于坡度上 限阈值例如 15%, 控制器 40则自动控制混合动力汽车切换至 HEV-s模式。 其中, 在 EV-s模式下, 首要任务是获得更优的动力性, 因此不对电机输出功率进行限制。
如图 3和图 4所示, 当混合动力汽车处于纯电动经济模式或纯电动运动模式时, 如果接收到用户的模式切换指令即触发模式切换条件, 则控制器控制混合动力汽车切 换至与用户的模式切换指令对应的目标模式。
因此, 在本发明的实施例中, 通过选择 EV工作模式及 eco/Sport运行模式, 即可 以使混合动力汽车处于 EV-eco工作模式或 E的混合动力汽车的控制系统保证了混合动 力汽车纯电动运行的 V-s 工作模式。 由于混合动力汽车采用了可插电式动力电池充电 结构, 加大了动力电池容量, 选用功率和扭矩均较大的电机, 故混合动力汽车在 EV模 式下能够获得强劲动力, 能够应付所有城市工况以及绝大多数城郊工况而不进行自动 模式切换, 只有当坡度信号大于坡度上限阈值例如 15% ( EV模式最大爬坡度) 时才自 动切换至 HEV模式, 除非手动切换否则一直保持 HEV模式运行。 在 EV-eco工作模式 下限制电机的最大输出功率、 不限电机的最大输出扭矩, 保证低速爬坡性能以及高速 经济性能。在 EV-s工作模式下不限制电机的最大输出功率和最大输出扭矩,保证 EV模 式下的最强动力。 本发明实施例动力性和续驶里程, 同时满足整车动力性需求的前提 下, 避免长期大功率的用电以提高用电效率。 并且保证混合动力汽车在电荷量低或者 电池最大允许放电功率不足或者坡度大时, 整车持续正常运行的能力, 避免因为某些 因素而导致动力性能下降的情况。 同时只进行一次自动模式切换, 避免发动机频繁起 停现象, 对于提高起动机寿命, 降低噪声, 提高驾驶舒适性起到重要作用。
在本发明的又一个实施例中, 如图 5 所示, 当混合动力汽车处于混合动力经济模 式时, 控制器在接收到切换至纯电动经济模式的切换指令之后, 如果判断动力电池的 SOC大于等于第二电量阈值例如 30%且混合动力汽车的当前车速小于等于第一速度阈 值例如 150km/h时, 控制器控制混合动力汽车切换至纯电动经济模式。
并且, 当混合动力汽车处于混合动力经济模式时, 其中, 如果混合动力汽车检测 的当前坡度信号小于等于坡度下限阈值例如 5%, 且动力电池的 SOC大于等于第二电 量阈值例如 30%、 动力电池的最大允许放电功率大于等于第二功率阈值例如 30KW, 控制器控制混合动力汽车以经济方式运行; 如果混合动力汽车检测的当前坡度信号小 于等于坡度下限阈值例如 5%且动力电池的 SOC小于等于第一电量阈值例如 20%, 或 者混合动力汽车检测的当前坡度信号小于等于坡度下限阈值例如 5%且动力电池的最 大允许放电功率小于等于第一功率阈值例如 12KW , 控制器控制混合动力汽车以低电 方式运行, 其中, 第二电量阈值大于第一电量阈值, 第二功率阈值大于第一功率阈值。 需要说明的是, 在本发明的实施例中, 低电方式是指发动机带动电机快速发电, 从而 摆脱低电状态, 使电机重新具备调节发动机工作区间的能力, 从而保障整车经济性。
在本实施例中, 如图 6所示, 当混合动力汽车以经济方式运行时, 如果混合动力 汽车的车速小于等于第二速度阈值例如 15km/h时, 控制器控制混合动力汽车纯电动行 驶。 并且, 当混合动力汽车以经济方式运行时, 如果混合动力汽车的车速大于等于第 三速度阈值例如 30km/h时, 其中, 当混合动力汽车的整车扭矩需求 (整车在当前状态 下正常行驶所需求的扭矩大小) 大于发动机的预设扭矩上限曲线时, 控制器控制发动 机以预设扭矩上限曲线进行扭矩输出, 并控制电机进行扭矩补足; 当混合动力汽车的 整车扭矩需求小于发动机的预设扭矩下限曲线时, 控制器控制发动机以预设扭矩下限 曲线进行扭矩输出, 并控制电机进行发电; 当混合动力汽车的整车扭矩需求小于等于 发动机的预设扭矩上限曲线且大于等于发动机的预设扭矩下限曲线时, 控制器控制发 动机满足整车扭矩需求进行扭矩输出, 并控制电机进行发电。 在本实施例中, 发动机 的预设扭矩上限曲线和发动机的预设扭矩下限曲线如图 7所示, 当混合动力汽车的整 车扭矩需求介于发动机的预设扭矩上限曲线和发动机的预设扭矩下限曲线之间时, 电 机的发电功率与动力电池的 SOC值对应曲线关系如图 8所示。
在本实施例中, 如图 9所示, 当混合动力汽车以低电方式运行时, 如果混合动力 汽车的当前档位处于非 P挡时, 其中, 当混合动力汽车的整车扭矩需求大于发动机的 预设扭矩上限曲线时, 控制器控制发动机以预设扭矩上限曲线进行扭矩输出, 并控制 电机进行扭矩补足; 当混合动力汽车的整车扭矩需求小于发动机的预设扭矩下限曲线 时, 控制器控制发动机以预设扭矩下限曲线进行扭矩输出, 并控制电机进行发电; 当 混合动力汽车的整车扭矩需求小于等于发动机的预设扭矩上限曲线且大于等于发动机 的预设扭矩下限曲线时, 控制器控制发动机满足整车扭矩需求进行扭矩输出, 并控制 电机进行发电。 并且, 当混合动力汽车以低电方式运行时, 如果混合动力汽车的当前 档位处于 P挡时, 控制器控制混合动力汽车进入怠速启停模式。 当所述混合动力汽车 进入所述怠速启停模式时, 控制器还判断所述混合动力汽车是否满足怠速启停条件, 并在所述混合动力汽车满足所述怠速启停条件例如车速为 0、档位为 P挡、动力电池的 SOC不低于 20%时, 控制器控制发动机动力子系统中的发动机熄火。
也就是说, 在本实施例中, 如图 5所示, 驱动以 HEV-eco模式行驶的混合动力汽 车时, 当手动按下 EV按键, 只有当动力电池的荷电量 SOC大于等于 SOC上限阈值例 如 30%且当前车速小于等于第一速度阈值例如 150km/h时, 才允许混合动力汽车的工 作模式切换至 EV-eco模式, 否则不进行工作模式切换; 当手动旋转按键至 Sport, 则 混合动力汽车的工作模式切换至 HEV-s模式; 当模式按键无手动输入时, 混合动力汽 车的工作模式保持 HEV-eco模式不变, 根据动力电池的荷电量以及动力电池最大允许 放电功率的区域划分, 发动机、 电机分别按经济策略和低电策略进行动力匹配。 如图 6 所示, 经济策略要求混合动力汽车的当前车速小于等于 15km/h时, 纯电动驱动混合动 力汽车, 当混合动力汽车的当前车速大于等于 30km/h时发动机参与驱动, 直至车速降 至 15km/h时才重新恢复至纯电动驱动, 若该阶段电机报警导致驱动能力不够时启动发 动机。 如图 9所示, 低电策略取消了低速纯电动, 并增加挂 P挡发动机启停功能, 即 言, 低电策略用于定义整车动力电池的 SOC值处于一定水平之下 (例如 20% ) 时电机 辅助匹配发动机, 在保证发动机运行在经济区的前提下快速补电, 并且低电策略要求 在 OK挡电非 P挡状态下时发动机持续运行不熄火, 车速为 0、 挂 P挡、 SOC值不低 于 20%进入 P挡怠速起停策略, 发动机熄火。 低电策略中不存在纯电动运行的工况, 发动机时刻参与驱动。 其中, 低电策略和经济策略在发动机启动后的控制方法一致, 设定了发动机的输出扭矩上限曲线和下限曲线, 具体如图 7 所示, 曲线设计的原则是 上下限曲线之间的区域尽可能多的包含发动机最经济区域, 由于发动机在上下限曲线 之外经济性差, 该区域内电机辅助发动机驱动, 小负荷运行时在满足整车需求的前提 下发动机按下限曲线输出, 多余扭矩用于发电, 大负荷运行时发动机按上限曲线输出, 不足扭矩由电机补足, 若电机受自身或动力电池限制导致充放电能力不足时, 电机按 自身和动力电池的最大允许能力充放电, 同时取消发动机输出上下限值, 发动机按整 车需求输出; 在上下限曲线之间电机主要参与发电, 发电功率与当前 SOC值成一定函 数关系, 具体如图 8所示, 但发动机总的输出扭矩不超出上限曲线的限值, 若电机受 自身或电池限制导致充电能力不足时, 电机按自身和电池的最大允许能力充电; 并且 以上所述的 HEV-eco模式驱动策略是在坡度信号不超过坡度上限阈值例如 15%的情况 下执行, 当坡度信号超过坡度上限阈值例如 15%时, 为满足整车爬坡性能要求, 规定 此时发动机必须启动, 且取消发动机上下限曲线限制以及电机的功率限制, 直至坡度 信号小于坡度下限阈值例如 5%, 重新恢复原执行策略。
在本发明的实施例中, 从混合动力汽车的控制系统的总成结构上来说, 本发明实 施例的混合动力汽车的控制系统采用一个发动机一个电机通过双离合变速器并联, 而 相关技术中的混合动力汽车的动力系统采用一个发动机、 一个 MG1、 一个 MG2通过 行星轮混联; 在发动机起停上, 本发明实施例的混合动力汽车的控制系统不考虑整车 功率需求, 在一定坡度以内只考虑车速起停发动机且车速切换点相对较高, 在坡度较 大时发动机一直运行, 而相关技术中的混合动力汽车的动力系统同时考虑车速、 蓄电 池充电功率需求、 整车驱动功率需求, 车速切换点较低; 从低电策略的 SOC值定义上 来看, 本发明实施例的混合动力汽车的控制系统定义 SOC20%以下进入低电策略, 而 相关技术中的混合动力汽车的动力系统定义 45%以下;从挂 P挡怠速启停策略上来看, 本发明实施例的混合动力汽车的控制系统只要车速为 0、 挡位为 P挡、 SOC值不低于 20%则发动机熄火, 而相关技术中的混合动力汽车的动力系统还要考虑发动机水温、 SOC值处于一个较高水平; 在整车运行过程中, 本发明实施例的混合动力汽车的控制 系统会更具实际路况在经济策略、 低电策略间来回切换, 而不是一直保持电量平衡, 而相关技术中的混合动力汽车的动力系统在运行很短一段时间后动力电池的 SOC即进 入平衡状态; 在发动机运行过程中, 由于总成结构的差异决定了控制策略的较大区别, 相关技术中的混合动力汽车的动力系统的 MG1要进行时刻调速以调节发动机转速, 且 发动机怠速转速高达 1200rpm, 而本发明实施例的混合动力汽车的控制系统中发动机 怠速转速为 800rpm左右, 且只用控制双离合 6个挡位, 换挡匹配相对简单; 本发明实 施例的混合动力汽车的控制系统中的发动机的动力要么全部驱动、 要么部分驱动部分 发电给电池, 而相关技术中的混合动力汽车的动力系统在中大负荷运行时, 发动机总 有一部分能量先通过 MG1发电再给到 MG2驱动混合动力汽车。
因此说, 相关技术中的混合动力汽车的动力系统由于电池、 电机能力有限, 发动 机起停的整车功率、 车速切换点设置偏低, 会造成发动机过早过频起停, 发动机运行 所占比例增加不利于城市工况降油耗排放, 而本发明实施例的混合动力汽车的控制系 统本身具有较强的纯电动行驶能力, 能满足绝大部分驱动需求, 因此发动机起动点相 对设置较高, 能使城市工况中发动机参与驱动的比重下降, 达到城市工况降低油耗排 放的目的。 同时用户操作油门使整车功率需求变化多而频, 从而规避整车功率的判断, 减少了发动机频繁起停程度, 有利于延长起动电机寿命, 降低噪声, 提高舒适性, 同 时也降低了大油门加速、 爬坡时发动机起动瞬间的动力冲击, 提高了驾驶安全性及舒 适性。 相关技术中的混合动力汽车的动力系统静止挂 P挡怠速起停发动机时需要考虑 动力电池的 SOC值、 发动机水温因素, 不受人直接控制, 不利于客户掌握运行规律, 且受电池容量小的影响使得该 SOC值偏大, 很容易造成等红灯挂 P挡发动机不熄火的 情况, 此时增大停车噪声, 舒适感大大降低; 同时受变速机构限制发动机怠速转速达
1200rpm, 此时发动机噪声和油耗较普通燃油车都高。 而本发明实施例的混合动力汽车 的控制系统在大部分情况下静止挂 P挡发动机均会熄火, 利于用户掌握运行规律, 降 低停车时的噪声, 提高停车舒适性, 且发动机怠速转速与传统燃油车相当。 另外, 本 发明实施例的混合动力汽车的控制系统中的电池电量并未做成平衡策略, 整车运行状 态会根据实际工况在经济策略和低电策略间自动切换, 更能突显电机调节发动机工作 区的功能, 利于进一步降低排放油耗, 并且本发明实施例的混合动力汽车的控制系统 的传动机构采用双离合变速器, 结构简单, 变速匹配周期短, 从而大大降低成本; 在 混合动力驱动时发动机电机采用并联方式, 控制策略较易匹配, 且动力间的转化效率 高。 最后, 本发明实施例的混合动力汽车的控制系统的发电策略采用与动力电池 SOC 相关联的动态变化, 使整车在正常中低负荷行驶时能保持较高的电量。
在本发明的再一个实施例中, 如图 10所示, 当混合动力汽车处于混合动力运动模 式时, 控制器在接收到切换至纯电动运动模式的切换指令之后, 如果判断动力电池的
SOC大于等于第二电量阈值例如 30%, 且混合动力汽车的当前车速小于等于第一速度 阈值例如 150km/h时, 控制器控制混合动力汽车切换至纯电动运动模式。
并且, 当混合动力汽车处于混合动力运动模式时, 如果混合动力汽车的当前档位 处于 P挡时, 控制器控制混合动力汽车进入怠速启停模式。 当混合动力汽车处于混合 动力运动模式时, 如果混合动力汽车的当前档位处于非 P挡时, 其中, 当混合动力汽 车的整车扭矩需求大于发动机的预设峰值扭矩时, 控制器控制发动机按照预设峰值扭 矩进行扭矩输出, 并控制电机进行扭矩补足; 当混合动力汽车的整车扭矩需求小于等 于发动机的预设峰值扭矩时, 控制器控制发动机满足整车扭矩需求进行扭矩输出, 并 控制电机进行发电。 此外, 当所述混合动力汽车处于所述混合动力运动模式时, 控制 器在接收到切换至所述混合动力经济模式的切换指令时控制所述混合动力汽车从所述 混合动力运动模式切换至所述混合动力经济模式。
也就是说, 在本实施例中, 如图 10所示, 驱动以 HEV-s模式行驶的混合动力汽车 时, 当手动按下 EV按键, 只有当动力电池的荷电量 SOC大于等于 SOC上限阈值例如 30%且车速小于等于第一速度阈值例如 150km/h 时, 才允许混合动力汽车的工作模式 切换至 EV-s模式, 否则不进行工作模式切换; 当手动旋转按键至 eco, 则混合动力汽 车的工作模式切换至 HEV-eco模式; 当模式按键无手动输入时, 混合动力汽车的工作 模式保持 HEV-s模式不变, HEV-s模式策略类似于 HEV-eco的低电策略, 取消了低速 纯电动, 并增加挂 P挡发动机启停功能, 取消电机的功率限制, 取消了发动机扭矩的 上下限限制, 发动机、 电机均可峰值输出, 该工作模式能够获得最好的动力性能。
其中, HEV-s模式控制策略要求在 OK挡电非 P挡状态下时发动机持续运行不熄 火,车速为 0、挂 P挡、 SOC值不低于 20%进入 P挡怠速起停策略,发动机熄火; HEV-s 模式控制策略中不存在纯电动运行的工况, 发动机时刻参与驱动, 不限制电机、 发动 机的扭矩、 功率, 电机、 发动机均可峰值输出; 当整车需求扭矩超出发动机能力上限 时, 电机辅助驱动, 当整车需求扭矩未超出发动机能力上限时, 电机发电且发电功率 与当前 SOC 值成一定函数关系并受发动机扭矩上限、 电机发电扭矩上限 (60Nm) 限 制, 若电机受自身或电池限制导致充放电能力不足时, 电机按自身和电池的最大允许 能力充放电。
在本发明的实施例中, 当发动机起动运行时, 采用双离合变速器传递发动机动力 并执行换挡。 当整车处于 HEV-eco 模式和 HEV-s 模式时, 分别匹配两套换挡策略, HEV-eco 模式侧重于降油耗, 换挡策略的匹配原则是使发动机尽量工作在高效区域, 各档位换挡点会稍提前, 行驶时发动机大多工作在 1500~2000rpm转速区域; HEV-s模 式侧重于动力性, 换挡策略的匹配原则是使发动机传递到车轮端的扭矩尽可能大以获 得更好的驱动性能, 各档位换挡点会稍滞后, 同时针对全油门急加速, 换挡点定在各 档位下标定的发动机固有特性的最大扭矩点, 加速性能能得到最大提高, 其中, 发动 机的固有特性曲线如图 1 1所示。
在本发明的实施例中, 从混合动力汽车的控制系统的总成结构上来说, 本发明实 施例的混合动力汽车的控制系统采用一个发动机一个电机通过双离合变速器并联, 而 相关技术中的混合动力汽车的动力系统采用一个发动机、 一个 MG1、 一个 MG2通过 行星轮混联; 从发动机、 电机动力输出状态来看, 本发明实施例的混合动力汽车的控 制系统将 eco模式下限制的发动机、 电机扭矩、 功率释放, 从动力源角度提高动力性, 并相应提高油门灵敏度以达到起步动力快速响应的目的, 相关技术中的混合动力汽车 的动力系统仅提高油门灵敏度, 而动力源的能力未提升; 从发动机何时运行上, 本发 明实施例的混合动力汽车的控制系统要求只要挡位为非 P挡发动机均处于运行状态, 相关技术中的混合动力汽车的动力系统定义 SOC较高时的低车速、 低功率需求状态采 用纯电动行驶, 当客户有强动力需求时发动机才起动参与驱动; 从挂 P挡怠速启停策 略上来看, 本发明实施例的混合动力汽车的控制系统只要在车速为 0、 挡位为 P挡、 SOC值不低于 20%时, 发动机熄火, 而相关技术中的混合动力汽车的动力系统还要考 虑发动机水温、 SOC值处于一个较高水平; 在发动机运行过程中, 由于总成结构的差 异决定了控制策略的较大区别,相关技术中的混合动力汽车的动力系统的 MG1要进行 时刻调速以调节发动机转速, 且发动机怠速转速高达 1200rpm, 而本发明实施例的混 合动力汽车的控制系统中发动机怠速转速为 800rpm左右,且只用控制双离合 6个挡位, 换挡匹配相对简单; 本发明实施例的混合动力汽车的控制系统中的发动机的动力要么 全部驱动、 要么部分驱动部分发电给电池, 而相关技术中的混合动力汽车的动力系统 在中大负荷运行时, 发动机总有一部分能量先通过 MG1发电再给到 MG2驱动混合动 力汽车。
因此说, 本发明实施例的混合动力汽车的控制系统可以提高各工况下的动力性能, 而不是通过牺牲行驶动力性来提高起步动力性; 相关技术中的混合动力汽车的动力系 统在动力电池的 SOC较高时的低车速、 低功率需求状态采用纯电动行驶, 当客户有强 动力需求时发动机要经过起动、 转速提升、 转速稳定过程, 发动机动力输出延时, 而 本发明实施例的混合动力汽车的控制系统中的发动机一直处于运行状态, 动力可做到 零延时输出; 相关技术中的混合动力汽车的动力系统静止挂 P挡怠速起停发动机时需 要考虑动力电池的 SOC值、 发动机水温因素, 不受人直接控制, 不利于客户掌握运行 规律, 且受电池容量小的影响使得该 SOC值偏大, 很容易造成等红灯挂 P挡发动机不 熄火的情况, 此时增大停车噪声, 舒适感大大降低; 同时受变速机构限制发动机怠速 转速达 1200rpm, 此时发动机噪声和油耗较普通燃油车都高。 而本发明实施例的混合 动力汽车的控制系统在大部分情况下静止挂 P挡发动机均会熄火, 利于用户掌握运行 规律, 降低停车时的噪声, 提高停车舒适性, 且发动机怠速转速与传统燃油车相当。 另外, 本发明实施例的混合动力汽车的控制系统中的电池电量并未做成平衡策略, 整 车运行状态会根据实际工况在经济策略和低电策略间自动切换, 更能突显电机调节发 动机工作区的功能, 利于进一步降低排放油耗, 并且本发明实施例的混合动力汽车的 控制系统的传动机构采用双离合变速器, 结构简单, 变速匹配周期短, 从而大大降低 成本; 在混合动力驱动时发动机电机采用并联方式, 控制策略较易匹配, 且动力间的 转化效率高。 最后, 本发明实施例的混合动力汽车的控制系统的发电策略采用与动力 电池 SOC相关联的动态变化, 使整车在正常中低负荷行驶时能保持较高的电量。
在本发明的一个实施例中, 当所述混合动力汽车处于所述纯电动经济模式时, 所 述动力电池的当前输出功率上限小于第一预设功率; 当所述混合动力汽车处于所述纯 电动运动模式时, 所述动力电池的当前输出功率上限小于第二预设功率, 其中, 所述 第二预设功率大于所述第一预设功率; 当所述混合动力汽车处于所述混合动力经济模 式时, 所述动力电池的当前输出功率上限和所述发动机的当前输出功率上限均小于所 述第一预设功率, 且所述发动机的当前输出扭矩上限小于第一扭矩阈值; 当所述混合 动力汽车处于所述混合动力运动模式时, 所述动力电池的当前输出功率上限小于所述 第二预设功率, 且所述发动机允许当前输出扭矩上限和当前输出功率上限进行输出。 在本发明的一个示例中, 所述第一预设功率可以为 70KW, 所述第二预设功率可以为 110KW, 所述第一扭矩阈值可以为 185Ν·Μ。
也就是说, 所述纯电动经济模式为, 混合动力汽车处于纯电动能量消耗模式下, 动力电池的当前的输出功率上限小于经济模式功率上限例如 70KW, 并且使动力电池 工作于最经济区域; 所述纯电动运动模式为, 混合动力汽车处于纯电动能量消耗模式 下, 动力电池的当前的输出功率上限小于运动模式功率上限例如 110KW; 混合动力经 济模式为, 混合动力汽车处于混合动力的能量消耗模式下, 动力电池的当前的输出功 率上限小于经济模式功率上限例如 70KW, 且发动机当前的输出功率上限也小于经济 模式功率上限例如 70KW, 以及发动机当前的输出扭矩上限小于经济模式扭矩上限例 如 185Ν·Μ, 使发动机和动力电池工作于最经济区域; 混合动力运动模式为, 混合动力 汽车处于混合动力的能量消耗模式下, 动力电池的当前的输出功率上限小于运动模式 功率上限例如 110KW, 发动机允许当前发动机的扭矩上限和功率上限进行输出。
需要说明的是, 在本发明的实施例中, 最经济区域在纯电动模式下是指, 随着动 力电池放电功率的增加, 动力电池工作效率相应下降, 所以在满足车辆动力性 (操作 性能和加速性能) 的前提下, 动力电池优先采用较低的放电功率进行工作。 最经济区 域在混合动力模式下是指, 随着动力电池放电功率的增加, 动力电池的工作效率相应 下降, 所以在满足车辆动力性 (操作性能和加速性能) 的前提下, 动力电池优先采用 较低的放电功率进行工作, 发动机的最经济区域由发动机的转矩和转速决定, 如图 7 所示, 横坐标表示发动机转速, 纵坐标表示发动机转矩, 由图可知, 在不同的转速下, 配合合适的转矩, 就可以获得当前发动机工作最经济区域, 如果此时发动机转矩过高, 则降低发动机转矩, 由电机提供转矩补入; 如果发动机转矩过低, 则相应增加发动机 转矩, 此时车辆并不需要增加的发动机转矩用来驱动, 因此将增加的发动机的转矩产 生的能量回收, 用于电机发电。
并且, 经济模式功率上限可以理解为动力电池或者发动机保持工作最经济区域内 的输出功率上限值。 运动模式功率上限属于自身特有性质, 动力电池或者发动机输出 按照当前最大的发动机的扭矩或功率或者动力电池的当前最大功率进行输出, 此时动 力系统以最大能量为车辆提供功率或扭矩输出。
此外, 可以理解的是, 混合动力汽车启动时的工作模式仍为所述混合动力汽车上 次熄火时的工作模式。 并且, 所述混合动力汽车还具有纯燃油模式, 纯燃油模式为故 障模式。
根据本发明实施例的混合动力汽车的控制系统, 发动机动力子系统和电机动力子 系统采用并联方式, 相比于现有的混合动力汽车的动力系统采用串联方式, 能有效提 高能量利用率, 同时并联结构相对简单, 避免混联方式繁琐的 ECVT匹配, 降低因匹 配不良造成的不平顺性风险, 因此在保证整车动力性的前提下经济性能得到大幅提高。 并且, 保证了整车纯电动运行的动力性和续驶里程, 在满足整车动力性需求的前提下 避免长期大功率的用电以提高用电效率。 此外发动机在混合动力运动模式下一直处于 运行状态, 减少发动机频繁启停现象, 从而提高了起动机的寿命, 最大程度地提高用 户加速的快感。 最后, 由于发动机起动点设置较高, 能使城市工况中发动机参与驱动 的比重下降, 降低油耗排放, 更加节能环保。
下面参照图 3至图 12来进一步描述根据本发明实施例提出的混合动力汽车的控制 方法。 其中, 该混合动力汽车包括传动装置、 发动机动力子系统和电机动力子系统, 所述传动装置与所述发动机动力子系统和所述电机动力子系统分别相连。
图 12为根据本发明实施例的混合动力汽车的控制方法的流程图。 如图 12所示, 该混合动力汽车的控制方法包括以下步骤:
51 , 混合动力汽车运行时, 通过控制发动机动力子系统和电机动力子系统以控制 混合动力汽车进入相应的工作模式, 其中, 工作模式包括纯电动运动模式和混合动力 运动模式。
根据本发明的一个实施例, 混合动力汽车的工作模式包括纯电动模式和混合动力 模式, 其中, 纯电动模式包括纯电动经济模式和纯电动运动模式, 混合动力模式包括 混合动力经济模式和混合动力运动模式。
52, 检测电机动力子系统中的动力电池的工作状态, 并检测混合动力汽车的车速。 S3, 在接收到切换至纯电动运动模式的切换指令之后, 如果动力电池的 SOC大于 等于第二电量阈值且混合动力汽车的车速小于等于第一速度阈值时, 则控制混合动力 汽车从混合动力运动模式切换至纯电动运动模式。
在本发明的一个实施例中, 如图 3 所示, 当混合动力汽车处于纯电动经济模式运 行时的混合动力汽车的控制方法包括如下步骤:
5101 , 获取手动模式按键切换信息, 可以是 HEV模式按键切换操作、 或 Sport模 式按键切换操作、 或无模式按键切换操作, 即判断是否进行手动切换, 如果是, 则进 入步骤 S 102; 如果否, 则进入步骤 S 103。
5102, 接收到有模式按键切换操作, 进行工作模式的切换, 切换到其他工作模式 并执行相应动力系统控制策略。 也就是说, 当混合动力汽车处于纯电动经济模式时, 如果接收到用户的模式切换指令, 则控制器控制混合动力汽车切换至与用户的模式切 换指令对应的目标模式。
5103 , 接收到无模式按键切换操作, 工作模式不切换, 此时将当前的动力电池的 SOC值、 动力电池的最大允许放电功率 Pb、 检测的混合动力汽车的坡度信号 i与三者 的设定阈值分别比较, 即 SOC下限阈值 SOCdwn例如 20%, 动力电池的最大允许放电 功率下限阈值 Pbdwn例如 12KW, 坡度上限阈值 iup例如 15%, 并判断是否满足 SOC
SOCdown Pbi¾Pbdown
Figure imgf000019_0001
i o
5104, 若至少满足步骤 S 103三个条件中的一个, 混合动力汽车的工作模式则自动 切换至 HEV-eco模式, 即言, 如果动力电池的 SOC小于等于第一电量阈值例如 20%, 或者动力电池的最大允许放电功率小于等于第一功率阈值例如 12KW, 或者混合动力 汽车检测的当前坡度信号大于等于坡度上限阈值例如 15%时, 控制混合动力汽车自动 切换至混合动力经济模式。
5105 , 若步骤 S 103三个条件均不满足, 则不进行 HEV-eco模式的自动切换, 混 合动力汽车保持 EV-eco模式运行。
在 EV-eco模式驱动混合动力汽车运行时, 在不进行手动或自动模式切换时电机作 为单动力源一直驱动。 该工作模式在满足整车动力性需求的前提下首要目的是节电, 要避免长期大功率的用电以提高用电效率, 因此限制电机的最大输出功率到 Pmmax例 如 70KW, 同时又要满足整车的爬坡性能, 因此又不对电机最大输出扭矩进行限制, 即言, 当混合动力汽车处于纯电动经济模式时, 控制混合动力汽车限功率运行。
从混合动力汽车处于 EV-eco模式时的控制方法实施例可以看出, 通过判断动力电 池的 SOC值、 动力电池的最大允许放电功率、 坡度值来控制混合动力汽车自动切换至 HEV-eco 模式的策略, 保证了整车持续正常运行的能力, 避免因为某些因素而导致动 力性能下降的可能。 综上可知, 上述混合动力汽车处于 EV-eco模式时的控制方法在满 足整车动力性前提下, 使电机电池始终工作在高效区, 实现混合动力汽车纯电续航里 程长、 运行成本低、 排放大幅下降。 在本发明的另一个实施例中, 如图 4所示, 当混合动力汽车处于纯电动运动模式 运行时的混合动力汽车的控制方法包括如下步骤:
5201 , 获取手动模式按键切换信息, 可以是 HEV模式按键切换操作、 或 eco模式 按键切换操作、 或无模式按键切换操作, 即判断是否进行手动切换, 如果是, 则进入 步骤 S202; 如果否, 则进入步骤 S203。
5202, 接收到有模式按键切换操作, 进行工作模式的切换, 切换到其他工作模式 并执行相应动力系统控制策略。 也就是说, 当混合动力汽车处于纯电动运动模式时, 如果接收到用户的模式切换指令, 则控制混合动力汽车切换至与用户的模式切换指令 对应的目标模式。
5203 , 接收到无模式按键切换操作, 工作模式不切换, 此时将当前的动力电池的 SOC值、 动力电池的最大允许放电功率 Pb、 检测的混合动力汽车的坡度信号 i与三者 的设定阈值分别比较, 即 SOC下限阈值 SOCdwn例如 20%, 动力电池的最大允许放电 功率下限阈值 Pbdwn例如 12KW, 坡度上限阈值 iup例如 15%, 并判断是否满足 SOC
S OCdown、 P down、 iup i。
5204, 若至少满足步骤 S203三个条件中的一个, 混合动力汽车的工作模式则自动 切换至 HEV-s模式, 即言, 如果动力电池的 SOC小于等于第一电量阈值例如 20%, 或 者动力电池的最大允许放电功率小于等于第一功率阈值例如 12KW, 或者混合动力汽 车检测的当前坡度信号大于等于坡度上限阈值例如 15%时, 控制混合动力汽车自动切 换至混合动力运动模式。
5205 , 若步骤 S203三个条件均不满足, 则不进行 HEV-s模式的自动切换, 混合 动力汽车保持 EV-s模式运行。
在 EV-s模式驱动混合动力汽车运行时, 在不进行手动或自动模式切换时电机作为 单动力源一直驱动。 该工作模式不对电机的最大输出扭矩、 功率进行限制, 能获得电 机的最大能力进行驱动, 满足用户在 EV模式下更高的动力性需求(如超车加速、 快速 爬坡等) 。
从混合动力汽车处于 EV-s模式时的控制方法实施例可以看出, 通过判断动力电池 的 SOC 值、 动力电池的最大允许放电功率、 坡度值来控制混合动力汽车自动切换至 HEV-s 模式的策略, 保证了整车持续正常运行的能力, 避免因为某些因素而导致动力 性能下降的可能。 综上可知, 上述混合动力汽车处于 EV-s模式时的控制方法适用于既 希望纯电动运行又希望获得更好动力感的用户, 工作模式更加灵活多变, 使用户能够 获得更多驾乘快感。 在本发明的又一个实施例中, 如图 5 所示, 当混合动力汽车处于混合动力经济模 式运行时的混合动力汽车的控制方法包括如下步骤:
S301 , 获取 EV模式按键切换信息, 判断是否进行手动切换 EV模式, 如果是, 则 进入步骤 S302或者步骤 S303 ; 如果否, 则进入步骤 S306。
S302,接收到有 EV模式按键切换操作,则将当前动力电池的 SOC值与设定的 SOC 上限阈值 SOCup例如 30%进行比较, 判断是否满足 SOCup SOC, 如果是, 则进入步 骤 S303 ; 如果否, 则进入步骤 S305。
5303 , 将当前车速与设定的车速阈值 Vmax例如 150km/h即允许 HEV模式切换至 EV模式的最高车速进行比较, 判断是否满足 v Vmax, 如果是, 则进入步骤 S304; 如 果否, 则进入步骤 S305。
5304, 控制混合动力汽车切换至 EV-eco模式并执行相应动力系统控制策略。 也就是说, 当混合动力汽车处于混合动力经济模式时, 控制器在接收到切换至纯 电动经济模式的切换指令之后, 如果判断动力电池的 SOC大于等于第二电量阈值例如 30% , 且混合动力汽车的当前车速小于等于第一速度阈值例如 150km/h 时, 控制器控 制混合动力汽车切换至纯电动经济模式。
5305 , 混合动力汽车保持 HEV-eco模式运行。
5306, 接收到无 EV模式按键切换操作, 则获取 Sport模式按键切换信息, 判断是 否进行手动切换 Sport模式, 如果是, 则进入步骤 S307 ; 如果否, 则进入步骤 S308。
5307 , 接收到有 Sport模式按键切换操作, 则控制混合动力汽车切换至 HEV-s模 式并执行相应动力系统控制策略。
5308 , 接收到无 Sport模式按键切换操作, 则混合动力汽车的工作模式不切换, 并 获取坡度信息, 将当前坡度值 i与设定的坡度上下限阈值 iup例如 15%、 idwn例如 5% 进行比较, 判断 i值所在区间。
5309, 判定 i idown, 进入下一步骤 S310。
5310, 将当前动力电池的 SOC值、 动力电池的最大允许放电功率 Pb与两者的设 定阈值分别比较, 即 S0C上下限阈值 SOCup例如 30%、 S0Cdwn例如 20%, 动力电池 的最大允许放电功率上下限阈值 Pbup例如 30KW、 Pbdwn例如 12KW, 判断 S0C、 Pb 所在区间。
5311 , 判定 S0Cup S0C且 Pbup Pb, 进入步骤 S312。
5312, 混合动力汽车按经济策略工作流程进行控制。
也就是说, 当混合动力汽车处于混合动力经济模式时, 如果混合动力汽车检测的 当前坡度信号小于等于坡度下限阈值例如 5%, 且动力电池的 SOC大于等于第二电量 阈值例如 30%、 动力电池的最大允许放电功率大于等于第二功率阈值例如 30KW, 控 制器控制混合动力汽车以经济方式运行。
S313,判定 30 叩>300>30^ 11且 Pbup Pb,或者 SOCup SOC且 Pbup>Pb>Pbdown 进入步骤 S314
5314, 混合动力汽车按原策略工作流程进行控制, 即原来是以经济方式运行则仍 按经济策略流程执行, 原来是以低电方式运行则仍按低电策略流程执行。
5315 , 判定 SOC SOCdown或者 Pb Pbdown, 进入步骤 S316
5316, 混合动力汽车按低电策略工作流程进行控制。
也就是说, 当混合动力汽车处于混合动力经济模式时, 如果混合动力汽车检测的 当前坡度信号小于等于坡度下限阈值例如 5%且动力电池的 SOC小于等于第一电量阈 值例如 20%,或者混合动力汽车检测的当前坡度信号小于等于坡度下限阈值例如 5%且 动力电池的最大允许放电功率小于等于第一功率阈值例如 12KW, 控制器控制混合动 力汽车以低电方式运行, 其中, 第二电量阈值大于第一电量阈值, 第二功率阈值大于 第一功率阈值。
5317 , 判定 iup>i>idwn, 进入步骤 S318
5318 , 混合动力汽车按原策略工作流程进行控制, 即分别保持 i id。 或 iupi ^时 的控制策略。
5319, 判定 iup i, 进入步骤 S320
5320, 控制混合动力汽车按照在经济方式运行的基础上取消低速纯电动、 取消发 动机上限并取消电机上限的工作流程执行。
需要说明的是, 在本发明的实施例中, 低电方式是指发动机带动电机快速发电, 从而摆脱低电状态, 使电机重新具备调节发动机工作区间的能力, 从而保障整车经济 性。
在本实施例中, 如图 6所示, 当混合动力汽车以经济方式运行时的混合动力汽车 的控制方法包括如下步骤:
5401 , 获取混合动力汽车的当前车速信息, 并将当前车速与设定的车速上下限阈 值 vup例如 30km/h vdown例如 15km/h进行比较, 判断 v值所在区间。
5402, 判定 vup v, 进入步骤 S403
5403 ,判定整车的扭矩需求大于如图 7中所示的扭矩上限曲线时,进入步骤 S404
5404, 判断混合动力汽车的动力系统是否有故障, 如果是, 则执行步骤 S406; 如 果否, 则执行步骤 S405。
5405 , 动力系统无故障, 则控制发动机按扭矩上限曲线输出, 剩余扭矩需求由电 机补足, 即言, 当混合动力汽车以经济方式运行时, 如果混合动力汽车的车速大于等 于第三速度阈值例如 30km/h时, 其中, 当混合动力汽车的整车扭矩需求大于发动机的 预设扭矩上限曲线时, 控制器控制发动机以预设扭矩上限曲线进行扭矩输出, 并控制 电机进行扭矩补足。
5406 , 动力系统出现故障, 则执行故障处理。
5407 , 判定整车扭矩需求小于如图 7中所示的扭矩下限曲线时, 进入步骤 S408。
5408 , 判断混合动力汽车的动力系统是否有故障, 如果是, 则执行步骤 S410; 如 果否, 则执行步骤 S409。
5409 , 若动力系统无故障, 则发动机按扭矩下限曲线输出, 多余动力用于电机发 电, 即言, 当混合动力汽车以经济方式运行时, 如果混合动力汽车的车速大于等于第 三速度阈值例如 30km/h时, 当混合动力汽车的整车扭矩需求小于发动机的预设扭矩下 限曲线时, 控制器控制发动机以预设扭矩下限曲线进行扭矩输出, 并控制电机进行发 电。
5410, 动力系统出现故障, 则执行故障处理。
5411 , 判定整车扭矩需求界于如图 7 中所示的扭矩上下限曲线之间, 进入步骤 S412。
5412, 判断混合动力汽车的动力系统是否有故障, 如果是, 则执行步骤 S414; 如 果否, 则执行步骤 S413。
5413 , 发动机优先满足整车扭矩需求, 并多输出一部分扭矩用于发电, 即言, 当 混合动力汽车以经济方式运行时, 如果混合动力汽车的车速大于等于第三速度阈值例 如 30km/h时, 当混合动力汽车的整车扭矩需求小于等于发动机的预设扭矩上限曲线且 大于等于发动机的预设扭矩下限曲线时, 控制器控制发动机满足整车扭矩需求进行扭 矩输出, 并控制电机进行发电。 其中, 发电原则遵循如图 8所示的发电功率与 SOC值 对应曲线关系, 同时要满足以下两个前提条件: ①折算到电机端的发电扭矩不超过 Tmmax; ②发动机总输出扭矩不超过如图 7所示的扭矩上限曲线, 若由发电功率曲线计 算得到的发动机扭矩超出了以上两个条件中的任何一个, 则按以上两个条件作为上限 共同制约用于发电的那部分发动机扭矩。
5414 , 动力系统出现故障, 则执行故障处理。
5415 , 判定 vup>v>Vdwn, 进入步骤 S416。 5416 , 判断混合动力汽车的动力系统是否有故障, 如果是, 则执行步骤 S418 ; 如 果否, 则执行步骤 S417。
5417 , 若动力系统无故障, 则动力系统按原策略工作流程进行控制, 即原来电机 单独驱动则仍按该方式运行, 若原来电机辅助发动机驱动或发电则仍按该方式运行。
5418 , 动力系统出现故障, 则执行故障处理。
5419 , 判定 v vdwn, 进入步骤 S420。
5420, 判断混合动力汽车的动力系统是否有故障, 如果是, 则执行步骤 S422; 如 果否, 则执行步骤 S421。
5421 , 若动力系统无故障, 则电机单独驱动, 发动机熄火, 即言, 当混合动力汽 车以经济方式运行时,如果混合动力汽车的车速小于等于第二速度阈值例如 15km/h时, 控制器控制混合动力汽车纯电动行驶, 即混合动力汽车纯电动运行。
5422, 动力系统出现故障, 则执行故障处理。
在本实施例中, 如图 9所示, 当混合动力汽车以低电方式运行时的混合动力汽车 的控制方法包括如下步骤:
5501 , 获取换挡模式信息, 判断混合动力汽车的当前执行档位。
5502, 判定混合动力汽车执行非 P挡时, 进入步骤 S503。
5503 , 判定整车扭矩需求大于如图 7中所示的扭矩上限曲线, 进入步骤 S504。
5504 , 判断混合动力汽车的动力系统是否有故障, 如果是, 则执行步骤 S506; 如 果否, 则执行步骤 S505。
5505 , 若动力系统无故障, 则发动机按扭矩上限曲线输出, 剩余扭矩需求由电机 补足, 即言, 当混合动力汽车以低电方式运行时, 如果混合动力汽车的当前档位处于 非 P挡时, 其中, 当混合动力汽车的整车扭矩需求大于发动机的预设扭矩上限曲线时, 控制器控制发动机以预设扭矩上限曲线进行扭矩输出, 并控制电机进行扭矩补足。
5506 , 若动力系统出现故障, 则执行故障处理。
5507 , 判定整车扭矩需求小于如图 7中所示的扭矩下限曲线时, 进入步骤 S508。
5508 , 判断混合动力汽车的动力系统是否有故障, 如果是, 则执行步骤 S510; 如 果否, 则执行步骤 S509。
5509 , 若动力系统无故障, 则发动机按扭矩下限曲线输出, 多余动力用于电机发 电, 即言, 当混合动力汽车以低电方式运行时, 如果混合动力汽车的当前档位处于非 P 挡时, 当混合动力汽车的整车扭矩需求小于发动机的预设扭矩下限曲线时, 控制器控 制发动机以预设扭矩下限曲线进行扭矩输出, 并控制电机进行发电。 5510, 若动力系统出现故障, 则执行故障处理。
5511 , 判定整车扭矩需求界于如图 7 中所示的扭矩上下限曲线之间, 进入步骤 S512。
5512, 判断混合动力汽车的动力系统是否有故障, 如果是, 则执行步骤 S514; 如 果否, 则执行步骤 S513。
5513 , 发动机优先满足整车扭矩需求, 并多输出一部分扭矩用于发电, 即言, 当 混合动力汽车以低电方式运行时, 如果混合动力汽车的当前档位处于非 P挡时, 当混 合动力汽车的整车扭矩需求小于等于发动机的预设扭矩上限曲线且大于等于发动机的 预设扭矩下限曲线时, 控制器控制发动机满足整车扭矩需求进行扭矩输出, 并控制电 机进行发电。 其中, 发电原则遵循如图 8所示的发电功率与 SOC值对应曲线关系, 同 时要满足以下两个前提条件: ①折算到电机端的发电扭矩不超过 Tmmax; ②发动机总输 出扭矩不超过如图 7所示的扭矩上限曲线, 若由发电功率曲线计算得到的发动机扭矩 超出了以上两个条件中的任何一个, 则按以上两个条件作为上限共同制约用于发电的 那部分发动机扭矩。
5514 , 若动力系统出现故障, 则执行故障处理。
5515 , 判定混合动力汽车执行 P挡时, 进入步骤 S516。
5516 , 执行 P挡怠速启停策略, 即言, 当混合动力汽车以低电方式运行时, 如果 混合动力汽车的当前档位处于 P挡时, 控制器控制混合动力汽车进入怠速启停模式, 在该模式下, 当混合动力汽车满足怠速启停条件, 发动机熄火。 也就是说, 当所述混 合动力汽车进入所述怠速启停模式时, 还判断所述混合动力汽车是否满足怠速启停条 件; 当所述混合动力汽车满足所述怠速启停条件例如车速为 0、档位为 P挡、 动力电池 的 SOC不低于 20%时, 控制所述发动机动力子系统中的发动机熄火。
在 HEV-eco模式驱动混合动力汽车运行时, 电机与发动机相互配合以提高能量利 用率, 大体方向是当整车工作在发动机非经济区域内时, 电机的使用比例大幅提高, 而当整车工作在发动机经济区域内时, 发动机又会发一部分电来给电池充电, 而且电 量越低发电功率会越高, 同时该模式的整个策略将电机的输出功率限制为 Pmmax以避 免长时间大功率用电, 从而保证了电池电量始终保持在一个较高的水平, 促使电机时 刻有电能去调节发动机使其工作在高效区, 这样最终的效果是使混合动力驱动时的油 耗尽可能降低, 保证了经济性能和排放性能。 而当整车需要大负荷输出时, 电机又可 辅助发动机共同驱动, 动力性能较 EV模式有大幅提升。 当用户需要长途行驶, 且希望 尽量降油耗的情况下可选用该模式。 在本发明的再一个实施例中, 如图 10所示, 当混合动力汽车处于混合动力运动模 式运行时的混合动力汽车的控制方法包括如下步骤:
S601 , 获取 EV模式按键切换信息, 判断是否进行手动切换 EV模式, 如果是, 则 进入步骤 S602或者步骤 S603 ; 如果否, 则进入步骤 S606。
S602,接收到有 EV模式按键切换操作,则将当前动力电池的 SOC值与设定的 SOC 上限阈值 SOCup例如 30%进行比较, 判断是否满足 SOCup SOC, 如果是, 则进入步 骤 S603 ; 如果否, 则进入步骤 S605。
5603 , 将当前车速与设定的车速阈值 Vmax例如 150km/h即允许 HEV模式切换至 EV模式的最高车速进行比较, 判断是否满足 v Vmax, 如果是, 则进入步骤 S604 ; 如 果否, 则进入步骤 S605。
5604 , 控制混合动力汽车切换至 EV-s模式并执行相应动力系统控制策略。
也就是说, 当混合动力汽车处于混合动力运动模式时, 控制器在接收到切换至纯 电动运动模式的切换指令之后, 如果判断动力电池的 SOC大于等于第二电量阈值例如 30% , 且混合动力汽车的当前车速小于等于第一速度阈值例如 150km/h 时, 控制器控 制混合动力汽车切换至纯电动运动模式。
5605 , 混合动力汽车保持 HEV-s模式运行。
5606 , 接收到无 EV模式按键切换操作, 则获取 eco模式按键切换信息, 判断是否 进行手动切换 eco模式, 如果是, 则进入步骤 S607 ; 如果否, 则进入步骤 S608。
5607 , 接收到有 eco模式按键切换操作, 则控制混合动力汽车切换至 HEV-eco模 式并执行相应动力系统控制策略。 即言, 当所述混合动力汽车处于所述混合动力运动 模式时, 在接收到切换至所述混合动力经济模式的切换指令时, 控制所述混合动力汽 车从所述混合动力运动模式切换至所述混合动力经济模式。
5608 , 接收到无 eco 模式按键切换操作, 则混合动力汽车的工作模式不切换, 获 取换挡模式信息, 判断混合动力汽车的当前执行档位。
5609 , 判定混合动力汽车执行 P挡时, 进入步骤 S610。
5610, 执行 P挡怠速启停策略, 即言, 当混合动力汽车处于混合动力运动模式时, 如果混合动力汽车的当前档位处于 P挡时, 控制器控制混合动力汽车进入怠速启停模 式。 其中, 当所述混合动力汽车进入所述怠速启停模式时, 还判断所述混合动力汽车 是否满足怠速启停条件; 当所述混合动力汽车满足所述怠速启停条件例如车速为 0、档 位为 P挡、 动力电池的 SOC不低于 20%时, 控制所述发动机动力子系统中的发动机熄 火。 S611, 判定混合动力汽车执行非 P挡时, 进入步骤 S612。
5612, 将整车需求扭矩与发动机峰值扭矩进行比较, 判断是否满足整车需求扭矩 > 发动机峰值扭矩, 如果是, 则执行步骤 S613 ; 如果否, 则执行步骤 S614。
5613 , 发动机按峰值扭矩输出, 剩余扭矩需求由电机补足, 当电机受自身或动力 电池当前能力限制时, 按电机、 动力电池当前的最大能力驱动。 也就是说, 当混合动 力汽车处于混合动力运动模式时, 如果混合动力汽车的当前档位处于非 P挡时, 其中, 当混合动力汽车的整车扭矩需求大于发动机的预设峰值扭矩时, 控制器控制发动机按 照预设峰值扭矩进行扭矩输出, 并控制电机进行扭矩补足。
5614, 发动机优先满足整车扭矩需求, 并多输出一部分扭矩用于发电, 即言, 当 混合动力汽车处于混合动力运动模式时, 如果混合动力汽车的当前档位处于非 P挡时, 当混合动力汽车的整车扭矩需求小于等于发动机的预设峰值扭矩时, 控制器控制发动 机满足整车扭矩需求进行扭矩输出, 并控制电机进行发电。 其中, 发电原则遵循如图 8 所示的发电功率与 SOC值对应曲线关系, 同时要满足以下两个前提条件: ①折算到电 机端的发电扭矩不超过 Tmmax ;②发动机总输出扭矩不超过如图 7所示的发动机扭矩峰 值, 若由发电功率曲线计算得到的发动机扭矩超出了以上两个条件中的任何一个, 则 按以上两个条件作为上限共同制约用于发电的那部分发动机扭矩。
在 HEV-s模式驱动混合动力汽车运行时, 当换挡模式为非 P挡时, 发动机一直处 于起动状态, 只有当换挡模式为 P挡, 且满足 P挡怠速启停条件时, 发动机才会熄火。 该 HEV-s模式的整个策略不再限制发动机、 电机的最大输出扭矩、 功率, 能发挥动力 系统的最大驱动能力, 是四种驱动模式中动力性能最好的一种, 但由于行车过程中发 动机是一直运行的, 要么与电机配合驱动要么边驱动边带电机发电 (动力电池的电量 低于一定值时) , 因此油耗相对较高, 经济性能无法保证。 该 HEV-s模式适用于对行 车动力性要求较高的用户, 能拥有等同于大排量豪华燃油车的充沛动力, 最大程度的 提高用户的加速快感。
在本发明的实施例中,通过 EV、HEV、 eco、 Sport四个按键的切换,可获得 EV-eco、 EV-s、 HEV-eco、 HEV-s四种不同的工作模式, 根据整车动力性、 经济性对于四种工作 模式的不同定义, 动力系统驱动策略的侧重点各不相同。 并且, 混合动力汽车的动力 系统采用并联方式, 而不是串联或者混联。 此外, 在驱动策略中对发动机启动点进行 了优化, 车速判断点提高, 增加了坡度判断, 取消了需求功率的判断。 在 HEV-eco模 式下的经济策略中将发动机工作区域限制在上下限扭矩曲线之间, 发电功率采用了以 SOC值为自变量的动态变化曲线。 根据本发明实施例的混合动力汽车的控制方法, 多种可选择的工作模式能满足用 户在不同工况下的驾驶需求, 即可满足城市工况的只用电需求, 又可满足郊区工况的 动力性需求, 真正做到整车驱动以用户的主观操作意图为导向, 提高驾驶乐趣。 其中, 混合动力汽车的控制系统采用并联方式, 相较于串联方式的能量多步转换, 能有效提 高能量利用率, 同时并联结构相对简单, 避免混联方式繁琐的 ECVT匹配, 降低因匹 配不良造成的不平顺性风险。 并且, 驱动策略中对发动机启动点的优化避免了发动机 过早过频启动, 可有效降低起动噪声提高启动系统寿命以及因频繁起动造成低压电频 繁拉低的风险, 保障其他低压用电设备的正常运行, 同时对发动机工作区域进行了优 化, 保证发动机始终工作在高效区, 以及对发电功率进行了优化, 保证行车过程中有 较高的电量均衡点, 有利于整车大多数时间处于经济策略中, 能有效降低油耗, 减少 排放。 此外, 该控制方法能够保证了整车纯电动运行的动力性和续驶里程, 在满足整 车动力性需求的前提下避免长期大功率的用电以提高用电效率, 同时还避免发动机频 繁启停现象, 从而提高了起动机的寿命, 减少了行车噪声, 提高了驾驶舒适性。 发动 机在混合动力运动模式下一直处于运行状态, 减少发动机频繁启停现象, 从而提高了 起动机的寿命, 最大程度地提高用户加速的快感。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为, 表示包括 一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、 片段 或部分, 并且本发明的优选实施方式的范围包括另外的实现, 其中可以不按所示出或 讨论的顺序, 包括根据所涉及的功能按基本同时的方式或按相反的顺序, 来执行功能, 这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和 /或步骤, 例如, 可以被认为是用 于实现逻辑功能的可执行指令的定序列表, 可以具体实现在任何计算机可读介质中, 以供指令执行系统、 装置或设备 (如基于计算机的系统、 包括处理器的系统或其他可 以从指令执行系统、 装置或设备取指令并执行指令的系统) 使用, 或结合这些指令执 行系统、装置或设备而使用。就本说明书而言, "计算机可读介质"可以是任何可以包含、 存储、 通信、 传播或传输程序以供指令执行系统、 装置或设备或结合这些指令执行系 统、 装置或设备而使用的装置。 计算机可读介质的更具体的示例 (非穷尽性列表) 包 括以下: 具有一个或多个布线的电连接部(电子装置), 便携式计算机盘盒(磁装置), 随机存取存储器 (RAM) , 只读存储器 (ROM) , 可擦除可编辑只读存储器 (EPROM 或闪速存储器) , 光纤装置, 以及便携式光盘只读存储器 (CDROM) 。 另外, 计算机 可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质, 因为可以例如通 过对纸或其他介质进行光学扫描, 接着进行编辑、 解译或必要时以其他合适方式进行 处理来以电子方式获得所述程序, 然后将其存储在计算机存储器中。
应当理解, 本发明的各部分可以用硬件、 软件、 固件或它们的组合来实现。 在上 述实施方式中, 多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行 的软件或固件来实现。 例如, 如果用硬件来实现, 和在另一实施方式中一样, 可用本 领域公知的下列技术中的任一项或他们的组合来实现: 具有用于对数据信号实现逻辑 功能的逻辑门电路的离散逻辑电路, 具有合适的组合逻辑门电路的专用集成电路, 可 编程门阵列 (PGA) , 现场可编程门阵列 (FPGA) 等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤 是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储 介质中, 该程序在执行时, 包括方法实施例的步骤之一或其组合。
此外, 在本发明各个实施例中的各功能单元可以集成在一个处理模块中, 也可以 是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个模块中。 上述集成 的模块既可以采用硬件的形式实现, 也可以采用软件功能模块的形式实现。 所述集成 的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时, 也可以存储 在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
在本说明书的描述中, 参考术语"一个实施例"、 "一些实施例"、 "示例"、 "具体示 例"、 或"一些示例"等的描述意指结合该实施例或示例描述的具体特征、 结构、 材料或 者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语的示意 性表述不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或者 特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例, 对于本领域的普通技术人员而言, 可以 理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发明的范围由所附权利要求及其等同限定。

Claims

权利要求书
1、 一种混合动力汽车的控制系统, 其特征在于, 包括:
传动装置, 所述传动装置用于驱动混合动力汽车的车轮;
发动机动力子系统, 所述发动机动力子系统与所述传动装置相连;
电机动力子系统, 所述电机动力子系统与所述传动装置相连; 以及
控制器, 所述控制器通过控制所述发动机动力子系统和电机动力子系统以控制所 述混合动力汽车进入相应的工作模式, 其中, 所述工作模式包括纯电动运动模式和混 合动力运动模式, 并且所述控制器在接收到切换至所述纯电动运动模式的切换指令之 后, 如果判断所述电机动力子系统中的动力电池的 SOC大于等于第二电量阈值且所述 混合动力汽车的车速小于等于第一速度阈值时, 控制所述混合动力汽车从所述混合动 力运动模式切换至所述纯电动运动模式。
2、 如权利要求 1所述的混合动力汽车的控制系统, 其特征在于, 所述工作模式还 包括纯电动经济模式和混合动力经济模式, 其中,
当所述混合动力汽车处于所述纯电动经济模式时, 所述动力电池的当前输出功率 上限小于第一预设功率;
当所述混合动力汽车处于所述纯电动运动模式时, 所述动力电池的当前输出功率 上限小于第二预设功率, 其中, 所述第二预设功率大于所述第一预设功率;
当所述混合动力汽车处于所述混合动力经济模式时, 所述动力电池的当前输出功 率上限和所述发动机动力子系统中的发动机的当前输出功率上限均小于所述第一预设 功率, 且所述发动机的当前输出扭矩上限小于第一扭矩阈值;
当所述混合动力汽车处于所述混合动力运动模式时, 所述动力电池的当前输出功 率上限小于所述第二预设功率, 且所述发动机允许当前输出扭矩上限和当前输出功率 上限进行输出。
3、 如权利要求 2所述的混合动力汽车的控制系统, 其特征在于, 所述第一预设功 率为 70KW, 所述第二预设功率为 110KW, 所述第一扭矩阈值为 185Ν·Μ。
4、 如权利要求 1所述的混合动力汽车的控制系统, 其特征在于, 当所述混合动力 汽车处于所述混合动力运动模式时, 如果所述混合动力汽车的当前档位处于 Ρ挡时, 所述控制器控制所述混合动力汽车进入怠速启停模式。
5、 如权利要求 1所述的混合动力汽车的控制系统, 其特征在于, 当所述混合动力 汽车处于所述混合动力运动模式时, 如果所述混合动力汽车的当前档位处于非 P挡时, 其中,
当所述混合动力汽车的整车扭矩需求大于所述发动机动力子系统中的发动机的预 设峰值扭矩时, 所述控制器控制所述发动机按照所述预设峰值扭矩进行扭矩输出, 并 控制所述电机动力子系统中的电机进行扭矩补足;
当所述混合动力汽车的整车扭矩需求小于等于所述发动机的预设峰值扭矩时, 所 述控制器控制所述发动机满足整车扭矩需求进行扭矩输出, 并控制所述电机进行发电。
6、 如权利要求 2所述的混合动力汽车的控制系统, 其特征在于, 当所述混合动力 汽车处于所述混合动力运动模式时, 所述控制器在接收到切换至所述混合动力经济模 式的切换指令时控制所述混合动力汽车从所述混合动力运动模式切换至所述混合动力 经济模式。
7、一种混合动力汽车的控制方法, 其特征在于, 所述混合动力汽车包括传动装置、 发动机动力子系统和电机动力子系统, 所述传动装置与所述发动机动力子系统和所述 电机动力子系统分别相连, 所述控制方法包括以下步骤:
所述混合动力汽车运行时, 通过控制所述发动机动力子系统和电机动力子系统以 控制所述混合动力汽车进入相应的工作模式, 其中, 所述工作模式包括纯电动运动模 式和混合动力运动模式;
检测所述电机动力子系统中的动力电池的工作状态, 并检测所述混合动力汽车的 车速;
在接收到切换至所述纯电动运动模式的切换指令之后, 如果所述动力电池的 SOC 大于等于第二电量阈值且所述混合动力汽车的车速小于等于第一速度阈值时, 则控制 所述混合动力汽车从所述混合动力运动模式切换至所述纯电动运动模式。
8、 如权利要求 7所述的混合动力汽车的控制方法, 其特征在于, 当所述混合动力 汽车处于所述混合动力运动模式时, 如果所述混合动力汽车的当前档位处于 P挡时, 则控制所述混合动力汽车进入怠速启停模式。
9、 如权利要求 7所述的混合动力汽车的控制方法, 其特征在于, 当所述混合动力 汽车处于所述混合动力运动模式时, 如果所述混合动力汽车的当前档位处于非 P挡时, 其中,
当所述混合动力汽车的整车扭矩需求大于所述发动机动力子系统中的发动机的预 设峰值扭矩时, 控制所述发动机按照所述预设峰值扭矩进行扭矩输出, 并控制所述电 机动力子系统中的电机进行扭矩补足; 当所述混合动力汽车的整车扭矩需求小于等于所述发动机的预设峰值扭矩时, 控 制所述发动机满足整车扭矩需求进行扭矩输出, 并控制所述电机进行发电。
10、 如权利要求 7 所述的混合动力汽车的控制方法, 其特征在于, 所述工作模式 还包括纯电动经济模式和混合动力经济模式, 其中, 当所述混合动力汽车处于所述混 合动力运动模式时, 还包括:
在接收到切换至所述混合动力经济模式的切换指令时, 控制所述混合动力汽车从 所述混合动力运动模式切换至所述混合动力经济模式。
PCT/CN2014/085825 2013-09-09 2014-09-03 混合动力汽车的控制系统和控制方法 WO2015032320A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310409911 2013-09-09
CN201310409911.5 2013-09-09
CN201310558065.3 2013-11-11
CN201310558065.3A CN104417523B (zh) 2013-09-09 2013-11-11 混合动力汽车的控制系统和控制方法

Publications (1)

Publication Number Publication Date
WO2015032320A1 true WO2015032320A1 (zh) 2015-03-12

Family

ID=52627805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085825 WO2015032320A1 (zh) 2013-09-09 2014-09-03 混合动力汽车的控制系统和控制方法

Country Status (2)

Country Link
CN (1) CN104417523B (zh)
WO (1) WO2015032320A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511516A (ja) * 2015-03-25 2018-04-26 ビーワイディー カンパニー リミテッド ハイブリッド電気自動車、ハイブリッド電気自動車の運転制御方法および装置
CN112124224A (zh) * 2020-08-28 2020-12-25 珠海格力电器股份有限公司 电动车辆控制系统及其控制方法、存储介质及电动车辆
CN113147357A (zh) * 2021-05-14 2021-07-23 三一汽车起重机械有限公司 作业机械的动力驱动系统、控制方法及作业机械
EP4056516A1 (fr) * 2021-03-10 2022-09-14 Manitowoc Crane Group France Procédé de gestion d'alimentation électrique d'une grue à partir d'une source primaire et d'une source secondaire rechargeable

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106143474B (zh) * 2015-03-25 2019-02-26 比亚迪股份有限公司 混合动力汽车及其驱动控制方法和装置
CN105128848B (zh) * 2015-09-15 2017-07-25 重庆长安汽车股份有限公司 一种行进间起动发动机的控制方法
KR101713734B1 (ko) * 2015-10-06 2017-03-08 현대자동차 주식회사 하이브리드 차량의 제어 방법 및 장치
US20170129475A1 (en) * 2015-11-05 2017-05-11 Ford Global Technologies, Llc Electrified vehicle powertrain mode selection system and method
CN107471995A (zh) * 2016-08-23 2017-12-15 宝沃汽车(中国)有限公司 插电式混合动力汽车的动力系统及其控制方法
CN111098856B (zh) * 2018-10-25 2021-05-14 本田技研工业(中国)投资有限公司 电动汽车的控制方法、控制装置及电动汽车
CN112406845B (zh) * 2019-08-23 2022-04-15 比亚迪股份有限公司 车辆及其发电控制方法和控制装置
CN111645666B (zh) * 2019-09-20 2021-07-23 长城汽车股份有限公司 发动机的扭矩控制方法及控制装置
CN111516670B (zh) * 2020-05-08 2020-12-15 南昌工程学院 一种单电机插电式混合动力车辆的能量控制方法
CN113715801B (zh) * 2020-05-22 2024-05-10 广州汽车集团股份有限公司 具有混合动力耦合系统的车辆的控制器、控制方法和车辆
CN112590766B (zh) * 2020-12-16 2022-04-12 北理慧动(常熟)车辆科技有限公司 一种混动汽车的模式切换方法
CN112706751B (zh) * 2021-01-13 2022-06-24 潍柴动力股份有限公司 混合动力车辆的扭矩分配方法及系统、混合动力车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528612A (zh) * 2003-10-17 2004-09-15 清华大学 混合动力轿车动力总成的动力输出切换方法及其控制系统
CN101618718A (zh) * 2008-06-30 2010-01-06 比亚迪股份有限公司 一种混合动力系统及其控制方法
CN102427980A (zh) * 2009-04-27 2012-04-25 丰田自动车株式会社 混合动力车及其控制方法
CN102612448A (zh) * 2010-11-10 2012-07-25 本田技研工业株式会社 电动车辆
CN102658817A (zh) * 2012-05-07 2012-09-12 奇瑞汽车股份有限公司 一种混合动力汽车实现纯电动功能的控制方法
CN102712313A (zh) * 2010-06-25 2012-10-03 丰田自动车株式会社 混合动力车辆及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528612A (zh) * 2003-10-17 2004-09-15 清华大学 混合动力轿车动力总成的动力输出切换方法及其控制系统
CN101618718A (zh) * 2008-06-30 2010-01-06 比亚迪股份有限公司 一种混合动力系统及其控制方法
CN102427980A (zh) * 2009-04-27 2012-04-25 丰田自动车株式会社 混合动力车及其控制方法
CN102712313A (zh) * 2010-06-25 2012-10-03 丰田自动车株式会社 混合动力车辆及其控制方法
CN102612448A (zh) * 2010-11-10 2012-07-25 本田技研工业株式会社 电动车辆
CN102658817A (zh) * 2012-05-07 2012-09-12 奇瑞汽车股份有限公司 一种混合动力汽车实现纯电动功能的控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511516A (ja) * 2015-03-25 2018-04-26 ビーワイディー カンパニー リミテッド ハイブリッド電気自動車、ハイブリッド電気自動車の運転制御方法および装置
CN112124224A (zh) * 2020-08-28 2020-12-25 珠海格力电器股份有限公司 电动车辆控制系统及其控制方法、存储介质及电动车辆
EP4056516A1 (fr) * 2021-03-10 2022-09-14 Manitowoc Crane Group France Procédé de gestion d'alimentation électrique d'une grue à partir d'une source primaire et d'une source secondaire rechargeable
FR3120618A1 (fr) * 2021-03-10 2022-09-16 Manitowoc Crane Group France Procédé de gestion d’alimentation électrique d’une grue à partir d’une source primaire et d’une source secondaire rechargeable
US11916433B2 (en) 2021-03-10 2024-02-27 Manitowoc Crane Group France Method for managing the electric power supply of a crane from a primary source and from a rechargeable secondary source
CN113147357A (zh) * 2021-05-14 2021-07-23 三一汽车起重机械有限公司 作业机械的动力驱动系统、控制方法及作业机械

Also Published As

Publication number Publication date
CN104417523B (zh) 2017-07-21
CN104417523A (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2015032321A1 (zh) 混合动力汽车的控制系统和控制方法
WO2015032322A1 (zh) 混合动力汽车的控制系统和控制方法
WO2015032320A1 (zh) 混合动力汽车的控制系统和控制方法
WO2015032323A1 (zh) 混合动力汽车的控制系统和控制方法
WO2015032347A1 (zh) 混合动力汽车的控制系统和控制方法
WO2015032324A1 (zh) 混合动力汽车的控制系统和控制方法
CN104417344B (zh) 混合动力汽车及其的驱动控制方法
CN108349488B (zh) 用于控制混合动力车辆的驱动装置的方法和混合动力车辆
CN108349484B (zh) 混合动力车辆的驱动装置的运行和混合动力车辆
US8370014B2 (en) Control apparatus and method for controlling a hybrid vehicle
KR101013838B1 (ko) 하이브리드 차량의 아이들 스탑 진입 제어 방법
JP5928576B2 (ja) ハイブリッド車両の制御装置
CN105292110A (zh) 汽车节能控制方法
KR20180055053A (ko) 하이브리드 차량의 오토 크루즈 제어 방법
KR101836692B1 (ko) 하이브리드 차량의 오토 크루즈 제어 방법
KR20090059175A (ko) 하이브리드 차량의 보조배터리 충전제어방법
CN109094564B (zh) 混合动力换挡控制系统
WO2016021018A1 (ja) 電動車両の発進制御装置
JP7137417B2 (ja) エンジン電気ハイブリッド車両の制御装置
KR20240003397A (ko) 하이브리드 차량, 그 주행모드 제어 방법 및 장치
KR20230028940A (ko) 복수의 모터를 장착한 하이브리드 차량 및 그 제어 방법
JP2011225077A (ja) ハイブリッド自動車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842540

Country of ref document: EP

Kind code of ref document: A1