WO2015032232A1 - 柔性有机电致发光器件的封装结构及封装方法、柔性显示装置 - Google Patents

柔性有机电致发光器件的封装结构及封装方法、柔性显示装置 Download PDF

Info

Publication number
WO2015032232A1
WO2015032232A1 PCT/CN2014/079759 CN2014079759W WO2015032232A1 WO 2015032232 A1 WO2015032232 A1 WO 2015032232A1 CN 2014079759 W CN2014079759 W CN 2014079759W WO 2015032232 A1 WO2015032232 A1 WO 2015032232A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
substrate
water
transparent
oxygen barrier
Prior art date
Application number
PCT/CN2014/079759
Other languages
English (en)
French (fr)
Inventor
黄维
周伟峰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/415,509 priority Critical patent/US9431630B2/en
Publication of WO2015032232A1 publication Critical patent/WO2015032232A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • Packaging structure and packaging method of flexible organic electroluminescent device, flexible display device
  • OLEDs Organic Electroluminescent Diodes
  • TFT LCDs thin film transistor liquid crystal displays
  • the 0 LED device generally employs a rigid glass substrate or a flexible polymer substrate as a carrier, and is formed by depositing a transparent anode, a metal cathode, and two or more organic layers sandwiched therebetween. These organic layers generally include a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting layer, an electron injecting layer, and the like.
  • 0LED devices are very sensitive to oxygen and water vapor. If oxygen and moisture penetrate into the 0LED device, it may cause defects such as black spots, pinholes, electrode oxidation, and organic material chemical reactions, which seriously affect the lifetime of the 0LED device.
  • the OLED device needs to be packaged to inhibit the infiltration of moisture and oxygen. Faceseal is one of the commonly used OLED device packaging methods.
  • the surface encapsulation process is generally divided into two steps. First, an inorganic passivation layer was deposited on the OLED device, and then a glass substrate with a water-blocking oxygen-containing organic functional film was attached under the protection of nitrogen (N 2 ).
  • N 2 nitrogen
  • 1 is a schematic cross-sectional view of a conventional OLED device surface package structure. As shown in FIG. 1, the 0 LED device surface package structure is composed of a rigid glass substrate 1, an OLED device 2, a passivation layer 3, a resin layer 4 to be cured, and a binder 5. Since the rigid glass is used as a carrier on both sides of the OLED device surface package structure, flexibility and slimming cannot be achieved.
  • the technical problem to be solved by the present disclosure is to provide a package structure and a packaging method of a flexible organic electroluminescence device, and a flexible display device, thereby being capable of producing a flexible flexible 0LED product.
  • a package structure for a flexible organic electroluminescent 0 LED device comprising: ffi a flexible substrate supporting the 0 LED device;
  • An encapsulation layer disposed on the flexible substrate
  • the OLED device on the encapsulation layer
  • the package structure further includes: the flexible substrate disposed on the water blocking oxygen barrier transparent film.
  • the flexible substrate comprises: an ultra-thin glass having flexibility; and a water-blocking oxygen barrier resin layer covering the ultra-thin glass.
  • the size of the water blocking oxygen barrier resin layer is slightly larger than the ultrathin glass.
  • the length and width of the water-blocking oxygen barrier resin layer are more than 0.12 mm of the ultra-thin glass. Further, the thickness of the ultra-thin glass is 0. 05 0 réelle 2 mm, and the bendable radius is 40-80 mm. Further, the thickness of the water-blocking oxygen barrier resin layer is 0. 03 3 mm.
  • the flexible substrate comprises: a metal film; and a water-blocking oxygen barrier resin layer covering the metal film.
  • a flexible display device comprising the package structure of the flexible organic electroluminescent 0 LED device described above.
  • the flexible display device comprises: at least one of an electronic paper, a television, a display, a digital photo frame, a mobile phone, and a tablet.
  • a method for packaging a flexible organic electroluminescent 0 LED device comprising: providing a first transparent hard substrate to which a water blocking and oxygen barrier transparent film is attached;
  • the first transparent hard substrate and the second transparent hard substrate are removed.
  • the step of forming a flexible substrate on the second transparent hard substrate comprises: attaching an ultra-thin glass having flexibility on the second transparent hard substrate; and in the ultra-thin An ffi water-barrier resin layer covering the ultra-thin glass is formed on the glass.
  • the flexible substrate is further disposed between the water blocking and oxygen barrier transparent film and the first transparent hard substrate.
  • the step of forming a flexible substrate on the second transparent hard substrate comprises: attaching a metal film on the second transparent hard substrate;
  • a water-blocking oxygen barrier resin layer covering the metal thin film is formed on the metal thin film.
  • the first transparent hard substrate and the water blocking oxygen barrier transparent film, the second transparent hard substrate and the flexible substrate are connected by tape, the first transparent is mechanically removed.
  • a hard substrate and the second transparent hard substrate are connected by tape, the first transparent is mechanically removed.
  • the ultraviolet light is used to remove the The first transparent hard substrate and the second transparent hard substrate are described.
  • the package structure of the 0LED device adopts a 3 ⁇ 4 flexible substrate instead of the ordinary rigid glass in the conventional surface packaging technology to carry the 0LED device, and can manufacture a flexible flexible 0LED product.
  • FIG. 1 is a schematic cross-sectional view showing a 0 LED device surface package structure in the prior art
  • FIG. 2 is a schematic structural diagram of a flexible substrate according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of attaching a flexible substrate to a rigid glass according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of attaching an OLED device to a rigid glass according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing the structure of a resin layer to be cured formed on an OLED device according to an embodiment of the present invention
  • FIG. 6 is a schematic structural view of packaging two rigid glass-to-cassettes according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of removing two rigid glasses according to an embodiment of the present invention.
  • the embodiment of the present invention is directed to the problem that the ffi rigid glass is used as a carrier on both sides of the OLED device surface package structure in the prior art, so that the problem of flexibility and thinning can not be achieved, and the package structure and method of the flexible organic electroluminescent device are provided.
  • Flexible display device capable of preparing a flexible flexible OLED port
  • Embodiments of the present invention provide a package structure of a flexible OLED device, for example, comprising: ffi a flexible substrate supporting the OLED device;
  • An encapsulation layer disposed on the flexible substrate
  • the OLED device on the encapsulation layer
  • the package structure of the 0LED device replaces the conventional rigid glass in the conventional surface encapsulation technology with a flexible substrate to carry the 0LED device, thereby enabling the preparation of a flexible flexible 0LED.
  • the package structure may further include:
  • the flexible substrate disposed on the water blocking oxygen barrier transparent film.
  • the flexible substrate may be composed of an ultra-thin glass having flexibility and a water-blocking oxygen barrier resin layer covering the ultra-thin glass.
  • the thickness of the ultra-thin glass may be
  • the water blocking oxygen barrier resin layer may have a thickness of 0, 03 3 mm.
  • the flexible substrate may further be composed of a metal thin film and a water-blocking oxygen barrier resin layer covering the metal thin film. At this time, the flexible substrate is opaque, and the flexible substrate is located on a side where the OLED device does not emit light, so that the light output of the OLED device is not affected.
  • Embodiments of the present invention also provide a flexible display device including the package structure of the flexible OLED device as described above.
  • the package structure of the flexible OLED device is the same as the above embodiment, and details are not described herein again.
  • the structure of other parts of the display device can refer to the prior art, which is not detailed in this article. Description.
  • the display device can be: a product or a component having any display function such as an electronic paper, a television, a display, a digital photo frame, a mobile phone, a tablet, or the like.
  • the embodiment of the present invention further provides a packaging method for a flexible OLED device, for example, comprising: providing a first transparent hard substrate to which a water blocking and oxygen barrier transparent film is attached;
  • the first transparent hard substrate and the second transparent hard substrate are removed.
  • the step of forming a flexible substrate on the second transparent hard substrate may include: attaching an ultra-thin glass having flexibility to the second transparent hard substrate; A water-blocking oxygen barrier resin layer covering the ultra-thin glass is formed on the thin glass.
  • the flexible substrate may be disposed between the water blocking oxygen barrier transparent film and the first transparent hard substrate.
  • the step of forming a flexible substrate on the second transparent hard substrate may include: attaching a metal thin film on the second transparent hard substrate;
  • a water-blocking oxygen barrier resin layer covering the metal thin film is formed on the metal thin film.
  • the packaging method of the 0LED device provided by the present disclosure uses a flexible substrate to replace the ordinary rigid glass in the conventional surface encapsulation technology to carry the 0 LED device, thereby being able to prepare a flexible flexible 0 LED.
  • FIG. 1 is a schematic cross-sectional view showing a prior art OLED device surface package structure.
  • a water-blocking oxygen-blocking transparent film is first attached to the rigid glass substrate 1.
  • the water-blocking oxygen-blocking transparent film may be a plastic film, and then the OLED device 2 is attached to the plastic film.
  • a passivation layer 3 covering the OLED device 2 is then formed on the OLED device 2.
  • the passivation layer 3 may be made of an inorganic material such as silicon nitride. Then forming a layer to be cured on the passivation layer 3 Resin layer 4.
  • the other rigid glass substrate 1 is then packaged with the above-described structure formed by the adhesive 5 to form a final OLED device surface package structure. Since rigid glass is used as a carrier on both sides of the OLED device surface package structure, flexibility and thinning cannot be achieved.
  • the present embodiment provides a packaging method and structure of a flexible OLED device.
  • the packaging method of this embodiment includes the following steps:
  • Step al forming a flexible substrate.
  • the ultra-thin glass 6 covered with the water-blocking oxygen barrier resin layer 7 can be used as a flexible substrate.
  • the ultra-thin glass has a thickness of 0, 05 ⁇ . 2mm and a bendable radius of 40--80mm.
  • a water-blocking oxygen barrier resin layer covering the ultra-thin glass is formed on the ultra-thin glass.
  • the resin layer is formed of a polymer material having water-resistance ffi oxygen property, and has a thickness of between 0.03 and -3 mni, and the temperature resistance is at least not more than 100 degrees Celsius for at least two hours without deformation.
  • the flexible substrate composed of the ultra-thin glass and the water-blocking oxygen barrier resin layer has a certain flexibility and has both water and oxygen barrier properties.
  • the size of the water-blocking oxygen barrier resin layer 7 is preferably slightly larger than that of the ultra-thin glass 6 in view of processing loss. ⁇ 2 ⁇ Preferably, the length and width of the resin layer exceeds the ultra-thin glass 0. l 2mm.
  • Step b l providing a transparent hard substrate, attaching the flexible substrate formed in the step al to the transparent hard substrate, and attaching a sealing process to the flexible substrate to absorb moisture and oxygen to be cured.
  • the transparent hard substrate may be a rigid glass substrate 1, and the flexible substrate formed in the step al is attached to the rigid glass substrate 1.
  • the flexible substrate may be attached to the rigid glass substrate 1 with a tape, or a release layer may be formed on the rigid glass substrate 1, and the flexible substrate may be bonded to the rigid glass substrate 1 on which the release layer is formed.
  • the material of the release layer may be an ultraviolet light-decomposing material to which an inert substance is added. Then, on the water-blocking oxygen barrier resin layer 7, the resin layer 4 to be cured which absorbs moisture and oxygen is applied to the packaging process.
  • Step c l providing a transparent hard substrate, the transparent hard substrate is attached with a water blocking and oxygen barrier transparent film.
  • the transparent hard substrate may be a rigid glass substrate 1.
  • the water blocking oxygen barrier transparent film 8 may be a plastic film.
  • the water-blocking and oxygen-blocking transparent film 8 can be formed on the rigid glass substrate 1 by tape ffi, or a release layer can be formed on the rigid glass substrate 1, and the water-blocking oxygen-blocking transparent thin film
  • the film 8 is bonded to the rigid glass substrate 1 on which the release layer is formed.
  • the material of the release layer may be an ultraviolet light decomposition material to which an inert substance is added.
  • Step dl sequentially forming an OLED device, a passivation layer, and a resin layer to be cured on the water-blocking oxygen-blocking transparent film.
  • the 0 LED device 2 As shown in Fig. 5, in the same manner as the surface encapsulation process of the prior art, the 0 LED device 2, the passivation layer 3, and the resin layer 4 to be cured are sequentially formed on the water-blocking oxygen-blocking transparent film 8.
  • the 0LED device 2 can be a bottom emission 0 LED device or a top emission 0 LED device.
  • Step el, the structure formed in step bl and the structure formed in step dl are packaged together.
  • the surface forming apparatus of the prior art can be used to package the structure formed by the step bl by the structure formed by the adhesive 5 and the step dl to form a structure as shown in FIG.
  • Step fl remove the loaded ffi transparent hard substrate on both sides.
  • the mounting of the rigid organic electroluminescent device of the present embodiment is obtained by removing the load of the rigid glass substrate 1 on both sides.
  • the rigid glass substrate can be mechanically removed. Or if the rigid glass substrate and the flexible substrate, the rigid glass substrate and the water-blocking oxygen-blocking transparent film are connected by a release layer, the rigid glass substrate can be removed by ultraviolet irradiation.
  • the flexible substrate provided in this embodiment is composed of an ultra-thin glass and a transparent resin layer, so that the flexible substrate is also transparent and does not affect the light emission of the OLED device.
  • the technical solution of the present embodiment is applicable to a bottom emission 0 LED device and a top emission 0 LED device.
  • the flexible substrate is used to carry the OLED device, and the flexible substrate is composed of an ultra-thin glass and a water-blocking oxygen barrier resin layer, and the ultra-thin glass has a certain flexibility and a good water resistance.
  • Oxygen performance, its superimposed water-blocking oxygen barrier resin layer can better relieve stress and improve water-blocking and oxygen barrier properties.
  • the package structure of the prepared flexible 0LED device is bendable, and thus can be used to prepare a bendable flexible 0LED product.
  • the above-described packaging process can be completed by using a surface-mounting device of the prior art, which reduces investment in a film flexible packaging device which is expensive and low in productivity.
  • one side is a flexible base.
  • One side of the board is a water-blocking and oxygen-blocking transparent film.
  • both sides of the package structure of the flexible OLED device may be flexible substrates.
  • the packaging method of this embodiment includes the following steps: Step a2, forming a flexible substrate.
  • the ultra-thin glass 6 covered with the water-blocking oxygen barrier resin layer 7 can be used as a flexible substrate.
  • the ultra-thin glass has a thickness of 0, 05 ⁇ . 2mm and a bendable radius of 40--80mm.
  • the water-resistant oxygen barrier resin layer covering the ultra-thin glass is formed on the ultra-thin glass, and the resin layer is formed of a polymer material having a water-blocking ffi oxygen property, and the thickness is between 0.03 - 3 mni, and the temperature resistance is at least satisfied. Does not deform at least two hours above 100 degrees Celsius.
  • the flexible substrate composed of the ultra-thin glass and the water-blocking oxygen barrier resin layer has a certain flexibility and has both water and oxygen barrier properties.
  • the size of the water-blocking oxygen barrier resin layer 7 is preferably slightly larger than that of the ultra-thin glass 6 in view of processing loss. Preferably, the length and width of the resin layer exceeds that of the ultra-thin glass 0.11.
  • Step b2 providing a transparent hard substrate, attaching the flexible substrate formed in the step a2 to the transparent hard substrate, and attaching a sealing process to the flexible substrate to absorb moisture and oxygen to be cured.
  • the transparent hard substrate may be a rigid glass substrate 1, and the flexible substrate formed in the step a2 is attached to the rigid glass substrate 1.
  • the flexible substrate may be attached to the rigid glass substrate 1 with a tape, or a release layer may be formed on the rigid glass substrate 1, and the flexible substrate may be bonded to the rigid glass substrate 1 on which the release layer is formed.
  • the material of the release layer may be an ultraviolet light-decomposing material to which an inert substance is added. Then, on the water-blocking oxygen barrier resin layer 7, the resin layer 4 to be cured which absorbs moisture and oxygen is applied to the packaging process.
  • step c2 a transparent hard substrate is attached, and the flexible substrate formed by the step a2 is attached to the transparent hard substrate, and the water-blocking and oxygen-blocking transparent film is attached to the flexible substrate.
  • the transparent rigid substrate may be a rigid glass substrate.
  • the water blocking oxygen barrier transparent film can be a plastic film.
  • the flexible substrate may be adhered to the rigid glass substrate by tape, or a release layer may be formed on the rigid glass substrate, and the flexible substrate may be bonded to the rigid glass substrate on which the release layer is formed.
  • the material of the release layer may be an ultraviolet light decomposition material to which an inert substance is added.
  • step d2 an OLED device, a passivation layer and a resin layer to be cured are sequentially formed on the water-blocking and oxygen-blocking transparent film.
  • an OLED is sequentially formed on the water-blocking and oxygen-blocking transparent film.
  • the 0 LED device can be a bottom emission OLED device.
  • the ffi can be a top emission OLED device.
  • step e2 the structure formed in step b2 and the structure formed in step (12) are packaged together.
  • the structure formed in the step b2 can be packaged together by the structure formed by the agent 5 and the step d2 in the prior art surface encapsulation apparatus.
  • Step f2 removing the loaded transparent transparent substrate on both sides.
  • the rigid glass substrate for loading on both sides was removed, and the package structure of the flexible organic electroluminescent device of this example was obtained.
  • the rigid glass substrate can be mechanically removed.
  • the rigid glass substrate and the flexible substrate are connected by a release layer, the rigid glass substrate can be removed by ultraviolet radiation.
  • the flexible substrate of this embodiment is composed of an ultra-thin glass and a transparent resin layer, so that the flexible substrate is also transparent and does not affect the light emission of the OLED device.
  • the technical solution of this embodiment is applicable to a bottom emission 0 LED device and a top emission OLED device.
  • the flexible substrate carries the OLED device, and the flexible substrate is composed of an ultra-thin glass and a water-blocking oxygen barrier resin layer.
  • the ultra-thin glass has a certain flexibility and a good water-blocking oxygen barrier. Performance, its superimposed water-blocking oxygen barrier resin layer can better relieve stress and improve water-blocking and oxygen barrier properties.
  • the flexible substrate has a certain flexibility
  • the package structure of the prepared flexible OLED device is flexible and can be used to prepare a flexible flexible 0LED product.
  • the above-described packaging process can be completed by the prior art surface-encapsulated device, and the investment in the film flexible packaging device which is expensive and low in productivity is reduced.
  • the ultra-thin glass and the water-blocking oxygen barrier resin layer are used to form a flexible substrate.
  • a flexible film can also be formed by using a metal film and a water-blocking oxygen barrier resin layer.
  • the packaging method of this embodiment includes the following steps:
  • Step a3 forming a flexible substrate.
  • a metal thin film covered with a water blocking oxygen barrier resin layer can be used as the flexible substrate.
  • the metal film is covered with a water-blocking oxygen barrier resin layer, the resin layer is formed of a polymer material having water-blocking and oxygen barrier properties, and the thickness is between 0.03 3 ⁇ , and the temperature resistance is at least above 100 degrees Celsius. No deformation for two hours.
  • the size of the water-blocking oxygen barrier resin layer is preferably slightly larger than that of the metal film in view of processing loss. 01 ⁇
  • the length and width of the ffi water-resistant oxygen resin layer exceeds the metal film 0.12 mm.
  • Step b3 providing a transparent hard substrate, attaching the flexible substrate formed in the step a3 to the transparent hard substrate, and attaching the resin to be cured which absorbs moisture and oxygen on the flexible substrate.
  • the transparent rigid substrate may be a rigid glass substrate, and the flexible substrate formed in the step a3 is attached to the rigid glass substrate.
  • the flexible substrate may be attached to the rigid glass substrate with an adhesive tape, or a release layer may be formed on the rigid glass substrate, and the flexible substrate may be bonded to the rigid glass substrate on which the release layer is formed.
  • the material of the release layer may be an ultraviolet light-decomposing material to which an inert substance is added. Then, a layer of the resin to be cured which absorbs water vapor and oxygen is applied to the ffi water-blocking oxygen resin layer.
  • step c3 a transparent hard substrate is provided, and the water-blocking and oxygen-blocking transparent film is attached to the transparent hard substrate.
  • the transparent rigid substrate may be a rigid glass substrate.
  • the water blocking oxygen barrier transparent film can be a plastic film.
  • the water-blocking oxygen-blocking transparent film may be attached to the rigid glass substrate by a tape, or a release layer may be formed on the rigid glass substrate, and the water-blocking oxygen-blocking transparent film may be bonded to the rigid glass substrate on which the release layer is formed.
  • the village material of the release layer may be an ultraviolet light decomposition material to which an inert substance is added.
  • step d3 an OLED device, a passivation layer and a resin layer to be cured are sequentially formed on the water-blocking and oxygen-blocking transparent film.
  • the 0LED device is a bottom emission 0 LED device.
  • step e3 the structure formed in step b3 and the structure formed in step d3 are packaged together.
  • the surface-encapsulated device of the prior art can be packaged together with the structure formed by the step b3 by the adhesive and the structure formed by the step d3.
  • Step f3 removing the loaded ffi transparent hard substrate on both sides.
  • the rigid glass substrate for loading on both sides was removed, and the package structure of the flexible organic electroluminescent device of the present embodiment was obtained. If the rigid glass substrate and the flexible substrate, the rigid glass substrate, and the ffi water-blocking transparent film are connected by tape, the rigid glass substrate can be mechanically removed by ffi. Alternatively, if the rigid glass substrate and the flexible substrate, the rigid glass substrate, and the water-blocking ffi oxygen transparent film are connected to the ffi release layer, the rigid glass substrate can be removed by ultraviolet irradiation.
  • the flexible substrate of this embodiment is composed of a metal thin film and a transparent resin layer, and thus the flexible substrate is opaque.
  • the technical solution of the present embodiment is applicable to a bottom emission 0 LED device.
  • the flexible substrate is used to carry the OLED device, and the flexible substrate is composed of a metal film and a ffi water-resistance oxygen resin layer, and the metal film has a certain flexibility and good water and oxygen barrier properties.
  • the superimposed water-blocking oxygen barrier resin layer can better relieve stress and improve water-blocking and oxygen barrier properties. Since the water-blocking oxygen-blocking transparent film and the flexible substrate all have a certain flexibility, the prepared flexible 0LED device has a flexible package structure and can be used to prepare a flexible flexible 0LED product.
  • the above-described packaging process can be completed by using the surface-mounting device of the prior art, and the investment in the film flexible packaging device with high cost and low production efficiency is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种柔性有机电致发光(OLED)器件的封装结构,包括:用于承托该OLED器件(2)的柔性基板;设置在该柔性基板上的封装层;位于该封装层上的该OLED器件(2);以及覆盖该OLED器件(2)的阻水阻氧透明薄膜(8)。

Description

柔性有机电致发光器件的封装结构及封装方法、 柔性显示装置
本申请主张在 2013 年 09 月 09 日在中国提交的中国专利申请号 No. 201310407098, 8的优先权, 其全部内容通过引 ffi包含于此。
Figure imgf000002_0001
有机电致发光二极管(0LED)是一种全新的显示技术, 其显示质量可与薄 膜晶体管液晶显示器 (TFT LCD) 相比拟, 而价格远比其低廉。 0LED 因其发光 亮度高、 色彩丰富、 低压直流驱动、 制备工艺筒单等在平板显示中显著的优 点, 丛而日益成为国际研究的热点。 在不到 20年的时间内, 0LED 已经由研 究进入产业化阶段。
0LED器件一般采用刚性的玻璃基板或者柔性的聚合物基板作为载体, 通 过沉积透明阳极、 金属阴极以及夹在二者之间的两层以上有机层构成。 这些 有机层一般包括空穴注入层、 空穴传输层、 发光层、 电子传输层和电子注入 层等。 0LED器件对氧和水汽非常敏感, 如果氧和水汽渗入 0LED器件内部会 引起诸如黑点、 针孔、 电极氧化、 有机材料化学反应等不良, 从而严重影响 0LED器件寿命。
因此, 需要对 0LED 器件进行封装以抑制水汽和氧的渗入。 面封装 ( faceseal ) 是常用的 OLED器件封装方法之一。 面封装工艺一般分为两步。 首先在 0LED器件上沉积无机钝化层, 然后在氮气 (N2 ) 保护下再贴附带有隔 水隔氧有机功能薄膜的玻璃基板。图 1为现有 0LED器件面封装结构的截面示 意图。 如图 1所示, 0LED器件面封装结构由刚性玻璃基板 1、 0LED器件 2、 钝化层 3、 待固化树脂层 4和黏合剂 5组成。 由于 0LED器件面封装结构两面 都使 ^刚性玻璃作为载板, 因此无法实现柔性化和轻薄化。 (一) 要解决的技术问题
本公开文本要解决的技术问题是提供一种柔性有机电致发光器件的封装 结构及封装方法、 柔性显示装置, 从而能够制备可弯曲的柔性 0LED产品。
(二) 技术方案
为解决上述技术问题, 本发明的实施例提供技术方案如下:
一方面, 提供一种柔性有机电致发光 0LED器件的封装结构, 包括: ffi于承托所述 0LED器件的柔性基板;
设置在所述柔性基板上的封装层;
位于所述封装层上的所述 0LED器件; 以及
覆盖所述 0LED器件的阻水阻氧透明薄膜。
进一步的, 所述封装结构还包括: 设置在所述阻水阻氧透明薄膜上的所 述柔性基板。
进一步的, 所述柔性基板包括: 具有可挠曲性的超薄玻璃; 以及覆盖所 述超薄玻璃的阻水阻氧树脂层。
进一歩的, 所述阻水阻氧树脂层的尺寸略大于所述超薄玻璃。
进一步的, 所述阻水阻氧树脂层的长宽均超出所述超薄玻璃 0. 1 2mm。 进一歩的, 所述超薄玻璃的厚度为 0. 05 0„ 2mm, 可弯曲半径为 40- 80mm。 进一步的, 所述阻水阻氧树脂层的厚度为 0。 03 3mm。
进一步的, 所述柔性基板包括: 金属薄膜; 以及覆盖所述金属薄膜的阻 水阻氧树脂层。
另一方面, 提供一种柔性显示装置, 包括上述的柔性有机电致发光 0LED 器件的封装结构。
进一歩的, 所述柔性显示装置包括; 电子纸、 电视、 显示器、 数码相框、 手机和平板电脑中的至少一个。
再一方面, 提供一种柔性有机电致发光 0LED器件的封装方法, 包括: 提供一贴附有阻水阻氧透明薄膜的第一透明硬质基板;
在所述阻水阻氧透明薄膜上贴附所述 0LED器件; 在所述 OLED器件上形成封装层;
提供一第二透明硬质基板;
在所述第二透明硬质基板上形成柔性基板;
将形成有所述柔性基板的第二透明硬质基板与形成有所述封装层的第一 透明基板对盒并封装在一起; 以及
去除所述第一透明硬质基板和所述第二透明硬质基板。
进一步的, 所述在所述第二透明硬质基板上形成柔性基板的步骤包括: 在所述第二透明硬质基板上贴附具有可挠曲性的超薄玻璃; 以及 在所述超薄玻璃上形成覆盖所述超薄玻璃的 ffi水阻氧树脂层。
进一步的, 所述阻水阻氧透明薄膜和所述第一透明硬质基板之间还设置 有所述柔性基板。
进一步的, 所述在所述第二透明硬质基板上形成柔性基板的步骤包括: 在所述第二透明硬质基板上贴附金属薄膜; 以及
在所述金属薄膜上形成覆盖所述金属薄膜的阻水阻氧树脂层。
进一步的, 如果是采用胶带连接所述第一透明硬质基板和所述阻水阻氧 透明薄膜、 所述第二透明硬质基板和所述柔性基板, 则采用机械方式去除所 述第一透明硬质基板和所述第二透明硬质基板。
进一步的, 如果是采用离型层连接所述第一透明硬质基板和所述阻水阻 氧透明薄膜、 所述第二透明硬质基板和所述柔性基板, 则采用紫外线照射的 方式去除所述第一透明硬质基板和所述第二透明硬质基板。
(三) 有益效果
本发明实施例至少具有如下有益效果:
在上述各个技术方案中, 0LED器件的封装结构采) ¾柔性基板取代常规面 封装技术中的普通刚性玻璃来承载 0LED 器件, 丛而能够制备可弯曲的柔性 0LED产品。
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 描述中所需要使] ¾的附图作筒单地介绍, 显而易见地, 下面描述中的附 图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不^出创 造性劳动的前提下, 还可以根据这些 图获得其他的 图。
图 1为现有技术中 0LED器件面封装结构的截面示意图;
图 2为本发明实施例所提供的柔性基板的结构示意图;
图 3为本发明实施例所提供的将柔性基板贴附在刚性玻璃上的结构示意 图;
图 4为本发明实施例所提供的在刚性玻璃上贴附 0LED器件的结构示意 图;
图 5为本发明实施例所提供的在 0LED器件上形成待固化树脂层的结构示 意 fSh
图 6为本发明实施例所提供的将两个刚性玻璃对盒进行封装的结构示意 图;
图 7为本发明实施例所提供的去除两个刚性玻璃后的结构示意图; 附图标记说明
1 刚性玻璃基板 2 0LED器件 3 钝化层
4 待固化树脂层 5黏合剂 6 超薄玻璃
7 阻水阻氧树脂层 8 阻水阻氧透明薄膜
下面结合附图和实施例, 对本发明的具体实施方式做进一步描述。 以下 实施例仅用于说明本公开文本, 但不 来限制本公开文本的范围。
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图, 对本发明实施例的技术方案进行清楚、 完整地描述。 显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员所获得的所有其他实施例, 都属 于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利中请说明书以及权 利要求书中使用的 "第一 "、 "第二" 以及类似的词语并不表示任何顺序、 数 量或者重要性, 而只是用来区分不同的组成部分。 同样, "一个"或者 "一" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "连接"或者"相连" 等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接, 不管是直接的还是间接的。 "上"、 "下"、 "左"、 "右"等仅用于表示相对位置 关系, 当被描述对象的绝对位置改变后, 则该相对位置关系 ffi相应地改变。
本发明的实施例针对现有技术中 0LED 器件面封装结构两面都使 ffi刚性 玻璃作为载板, 因此无法实现柔性化和轻薄化的问题, 提供一种柔性有机电 致发光器件的封装结构、 方法、 柔性显示装置, 能够制备可弯曲的柔性 0LED 口
/ ΠΠ
本发明实施例提供了一种柔性 0LED器件的封装结构, 例如包括: ffi于承托所述 0LED器件的柔性基板;
设置在所述柔性基板上的封装层;
位于所述封装层上的所述 0LED器件; 以及
覆盖所述 0LED器件的阻水阻氧透明薄膜。
本公开文本所提供的 0LED 器件的封装结构采用柔性基板取代常规面封 装技术中的普通刚性玻璃来承载 0LED器件,从而能够制备可弯曲的柔性 0LED
/ ΠΡ
进一步地, 所述封装结构还可以包括:
设置在所述阻水阻氧透明薄膜上的所述柔性基板。
具体地, 所述柔性基板可以由具有可挠曲性的超薄玻璃以及覆盖所述超 薄玻璃的阻水阻氧树脂层组成。 其中, 所述超薄玻璃的厚度可以为
0. 05 0。 2腿, 可弯曲半径为 40 80mm。 所述阻水阻氧树脂层的厚度可以为 0, 03 3mm。
进一步地, 所述柔性基板还可以由金属薄膜以及覆盖所述金属薄膜的阻 水阻氧树脂层组成。 此时, 该柔性基板为不透明的, 所述柔性基板位于所述 0LED器件不发射光线的一侧, 这样不会影响到 0LED器件的出光。
本发明实施例还提供了一种柔性显示装置,包括如上所述的柔性 0LED器 件的封装结构。 其中, 柔性 0LED器件的封装结构同上述实施例, 在此不再赘 述。 另外, 显示装置其他部分的结构可以参考现有技术, 对此本文不再详细 描述。 该显示装置可以为: 电子纸、 电视、 显示器、 数码相框、 手机、 平板 电脑等具有任何显示功能的产品或部件。
本发明实施例还提供了一种柔性 0LED器件的封装方法, 例如包括: 提供一贴附有阻水阻氧透明薄膜的第一透明硬质基板;
在所述阻水 ffi氧透明薄膜上贴附所述 0LED器件;
在所述 0LED器件上形成封装层;
提供一第二透明硬质基板;
在所述第二透明硬质基板上形成柔性基板;
将形成有所述柔性基板的第二透明硬质基板与形成有所述封装层的第一 透明基板对盒并封装在一起; 以及
去除所述第一透明硬质基板和所述第二透明硬质基板。
具体地,所述在所述第二透明硬质基板上形成柔性基板的步骤可以包括: 在所述第二透明硬质基板上贴附具有可挠曲性的超薄玻璃; 以及 在所述超薄玻璃上形成覆盖所述超薄玻璃的阻水阻氧树脂层。
进一步地, 所述阻水阻氧透明薄膜和所述第一透明硬质基板之间还可以 设置有所述柔性基板。
具体地,所述在所述第二透明硬质基板上形成柔性基板的步骤可以包括: 在所述第二透明硬质基板上贴附金属薄膜; 以及
在所述金属薄膜上形成覆盖所述金属薄膜的阻水阻氧树脂层。
本公开文本所提供的 0LED 器件的封装方法采用柔性基板取代常规面封 装技术中的普通刚性玻璃来承载 0LED器件,从而能够制备可弯曲的柔性 0LED
) ^ m口 下面结合 图以及具体的实施例对本公开文本所提供的柔性 0LED 器件 的封装结构及封装方法进行详细介绍:
如图 1所示为现有技术中 0LED器件面封装结构的截面示意图。在采用现 有技术的面封装工艺时,首先在刚性玻璃基板 1上贴 一阻水阻氧透明薄膜。 具体地, 该阻水阻氧透明薄膜可以为塑料薄膜, 之后在塑料薄膜上贴附 0LED 器件 2。 之后在 0LED器件 2上形成一覆盖 0LED器件 2的钝化层 3。 具体地, 钝化层 3可以采用无机材料比如氮化硅制成。 之后在钝化层 3上形成待固化 树脂层 4。 再利用黏合剂 5将另一刚性玻璃基板 1与形成的上述结构封装在 一起, 从而形成最终的 0LED器件面封装结构。 由于 0LED器件面封装结构两 面都使用刚性玻璃作为载板, 因此无法实现柔性化和轻薄化。
实施例一
为了解决上述问题,本实施例提供了一种柔性 0LED器件的封装方法及结 构, 如图 2 图 7所示, 本实施例的封装方法包括以下步骤:
步骤 al, 形成柔性基板。
具体地, 如图 2所示, 可以釆 ^覆盖有阻水阻氧树脂层 7的超薄玻璃 6 来作为柔性基板。 超薄玻璃的厚度为 0, 05 Ό. 2mm, 可弯曲半径在 40- - 80mm。 在超薄玻璃上形成覆盖超薄玻璃的阻水阻氧树脂层。 该树脂层采用具有阻水 ffi氧性能的高分子材料形成, 厚度在 0. 03- - 3mni之间, 耐温性至少满足在 100 摄氏度以上至少两小时不变形。 以超薄玻璃和阻水阻氧树脂层组成的柔性基 板具有一定的可挠曲性并兼具阻水阻氧性能。
考虑到加工损耗, 阻水阻氧树脂层 7 的尺寸最好略大于超薄玻璃 6。 优 选地, 树脂层的长宽均超出超薄玻璃 0. l 2mm。
步骤 b l, 提供一透明硬质基板, 将步骤 al 形成的柔性基板贴附在该透 明硬质基板上, 并在柔性基板上贴附封装工艺所) ¾的吸收水汽和氧的待固化 树脂。
如图 3所示, 具体地, 该透明硬质基板可以为刚性玻璃基板 1, 将步骤 al形成的柔性基板贴 在刚性玻璃基板 1上。 具体地, 可以利用胶带将柔性 基板贴 在刚性玻璃基板 1上, 或者在刚性玻璃基板 1上形成离型层, 将柔 性基板结合到形成有离型层的刚性玻璃基板 1上。 离型层的材料可以为添加 有惰性物质的紫外光分解材料。 之后在阻水阻氧树脂层 7上贴險封装工艺所 的吸收水汽和氧的待固化树脂层 4。
步骤 c l, 提供一透明硬质基板, 该透明硬质基板上贴附有阻水阻氧透明 薄膜。
如图 4所示, 具体地, 该透明硬质基板可以为刚性玻璃基板 1。 阻水阻 氧透明薄膜 8可以为塑料薄膜。 阻水阻氧透明薄膜 8可以通过胶带贴 ffi在刚 性玻璃基板 1上, 或者在刚性玻璃基板 1上形成离型层, 将阻水阻氧透明薄 膜 8结合到形成有离型层的刚性玻璃基板 1上。 离型层的材料可以为添加有 惰性物质的紫外光分解材料。
步骤 dl, 在阻水阻氧透明薄膜上依次形成 OLED器件、 钝化层和待固化 树脂层。
如图 5所示, 与现有技术的面封装工艺相同, 在阻水阻氧透明薄膜 8上 依次形成 0LED器件 2、 钝化层 3和待固化树脂层 4。 这里, 0LED器件 2可以 为底发射 0LED器件, 也可以为顶发射 0LED器件。
步骤 el, 将步骤 bl形成的结构和步骤 dl形成的结构封装在一起。
具体地, 可以利 现有技术的面封装设备, 将步骤 bl形成的结构通过黏 合剂 5和步骤 dl形成的结构封装在一起, 形成如图 6所示的结构。
步骤 fl, 去除两侧的装载 ffi透明硬质基板。
如图 7所示, 去除两侧的装载^刚性玻璃基板 1, 得到本实施例的柔性 有机电致发光器件的封装结构。
如果是采用胶带连接刚性玻璃基板和柔性基板、 刚性玻璃基板和阻水阻 氧透明薄膜, 可以采) ¾机械方式去除刚性玻璃基板。 或者如果是采用离型层 连接刚性玻璃基板和柔性基板、 刚性玻璃基板和阻水阻氧透明薄膜, 可以采 )¾紫外线照射的方式去除刚性玻璃基板。
本实施例所提供的柔性基板由超薄玻璃和透明树脂层组成, 因此柔性基 板也是透明的, 不会影响 0LED器件的发光。 另外, 本实施例的技术方案适用 于底发射 0LED器件和顶发射 0LED器件。
在本实施例的柔性 0LED器件的封装结构中, 采用柔性基板承载 0LED器 件, 柔性基板由超薄玻璃和阻水阻氧树脂层组成, 超薄玻璃具备一定的挠曲 性及良好的阻水阻氧性能, 其叠合的阻水阻氧树脂层可更好地缓解应力及提 高阻水阻氧性能。由于阻水阻氧透明薄膜和柔性基板都具有一定的可挠曲性, 因此, 制备的柔性 0LED器件的封装结构为可弯曲的, 从而能够用以制备可弯 曲的柔性 0LED产品。另外, 可以利用现有技术的面封装设备完成上述封装工 艺, 减少了在昂贵成本、 低生产效率的薄膜柔性封装设备上的投资。
实施例二
在实施例一中, 最终形成的柔性 0LED器件的封装结构中, 一侧为柔性基 板, 一侧为阻水阻氧透明薄膜。 为了进一步提高封装效果, 柔性 0LED器件的 封装结构的两侧可以均为柔性基板。 本实施例的封装方法包括以下步骤: 步骤 a2, 形成柔性基板。
具体地, 如图 2所示, 可以釆 ^覆盖有阻水阻氧树脂层 7的超薄玻璃 6 来作为柔性基板。 超薄玻璃的厚度为 0, 05 Ό. 2mm, 可弯曲半径在 40- - 80mm。 在超薄玻璃上形成覆盖超薄玻璃的阻水阻氧树脂层, 该树脂层采用具有阻水 ffi氧性能的高分子材料形成, 厚度在 0. 03- - 3mni之间, 耐温性至少满足在 100 摄氏度以上至少两小时不变形。 以超薄玻璃和阻水阻氧树脂层组成的柔性基 板具有一定的可挠曲性并兼具阻水阻氧性能。
考虑到加工损耗, 阻水阻氧树脂层 7 的尺寸最好略大于超薄玻璃 6。 优 选地, 树脂层的长宽均超出超薄玻璃 0. 1 2墜。
步骤 b2 , 提供一透明硬质基板, 将步骤 a2形成的柔性基板贴附在该透 明硬质基板上, 并在柔性基板上贴附封装工艺所) ¾的吸收水汽和氧的待固化 树脂。
如图 3所示, 具体地, 该透明硬质基板可以为刚性玻璃基板 1, 将步骤 a2形成的柔性基板贴 在刚性玻璃基板 1上。 具体地, 可以利用胶带将柔性 基板贴 在刚性玻璃基板 1上, 或者在刚性玻璃基板 1上形成离型层, 将柔 性基板结合到形成有离型层的刚性玻璃基板 1上。 离型层的材料可以为添加 有惰性物质的紫外光分解材料。 之后在阻水阻氧树脂层 7上贴險封装工艺所 的吸收水汽和氧的待固化树脂层 4。
步骤 c2, 提供一透明硬质基板, 该透明硬质基板上贴附有步骤 a2形成 的柔性基板, 柔性基板上贴 有阻水阻氧透明薄膜。
具体地, 该透明硬质基板可以为刚性玻璃基板。 阻水阻氧透明薄膜可以 为塑料薄膜。 柔性基板可以通过胶带贴險在刚性玻璃基板上, 或者在刚性玻 璃基板上形成离型层, 将柔性基板结合到形成有离型层的刚性玻璃基板上。 离型层的材料可以为添加有惰性物质的紫外光分解材料。
步骤 d2 , 在阻水阻氧透明薄膜上依次形成 0LED器件、 钝化层和待固化 树脂层。
与现有技术的面封装工艺相同,在阻水阻氧透明薄膜上依次形成 0LED器 件、 钝化层和待固化树脂层。 0LED器件可以为底发射 0LED器件 ffi可以为顶 发射 0LED器件。
步骤 e2, 将步骤 b2形成的结构和步骤 (12形成的结构封装在一起。
具体地, 可以利 ^现有技术的面封装设备, 将步骤 b2形成的结构通过翁 合剂 5和步骤 d2形成的结构封装在一起。
步骤 f2, 去除两侧的装载^透明硬质基板。
去除两侧的装载用刚性玻璃基板, 得到本实施例的柔性有机电致发光器 件的封装结构。
如果是采用胶带连接刚性玻璃基板和柔性基板, 可以采用机械方式去除 刚性玻璃基板。 或者, 如果是釆用离型层连接刚性玻璃基板和柔性基板, 可 以采 ffi紫外线照射的方式去除刚性玻璃基板。
本实施例的柔性基板由超薄玻璃和透明树脂层组成, 因此柔性基板也是 透明的,不会影响 0LED器件的发光。本实施例的技术方案适用于底发射 0LED 器件和顶发射 OLED器件。
本实施例的柔性 0LED器件的封装结构中,采 柔性基板承载 0LED器件, 柔性基板由超薄玻璃和阻水阻氧树脂层组成, 超薄玻璃具备一定的挠曲性及 良好的阻水阻氧性能, 其叠合的阻水阻氧树脂层可更好地缓解应力及提高阻 水阻氧性能。 由于柔性基板具有一定的可挠曲性, 因此, 制备的柔性 0LED器 件的封装结构为可弯曲的,丛而能够用以制备可弯曲的柔性 0LED产品。另外, 可以利 现有技术的面封装设备完成上述封装工艺, 减少了在昂贵成本、 低 生产效率的薄膜柔性封装设备上的投资。 在实施例一和实施例二中, 采) ¾超薄玻璃和阻水阻氧树脂层组成柔性基 板。 在本实施例中, 还可以采用金属薄膜和阻水阻氧树脂层组成柔性基板。 本实施例的封装方法包括以下步骤:
步骤 a3, 形成柔性基板。
具体地, 可以采用覆盖有阻水阻氧树脂层的金属薄膜来作为柔性基板。 在金属薄膜上覆盖有阻水阻氧树脂层, 该树脂层采用具有阻水阻氧性能的高 分子材料形成, 厚度在 0. 03 3«πιι之间, 耐温性至少满足在 100摄氏度以上至 少两小时不变形。
考虑到加工损耗, 阻水阻氧树脂层的尺寸最好略大于金属薄膜。优选地, ffi水阻氧树脂层的长宽均超出金属薄膜 0. 1 2mm。
步骤 b3 , 提供一透明硬质基板, 将步骤 a3形成的柔性基板贴附在该透 明硬质基板上, 并在柔性基板上贴 封装工艺所^的吸收水汽和氧的待固化 树脂。
具体地, 该透明硬质基板可以为刚性玻璃基板, 将步骤 a3形成的柔性基 板贴 i†在刚性玻璃基板上。 具体地, 可以利用胶带将柔性基板贴附在刚性玻 璃基板上, 或者在刚性玻璃基板上形成离型层, 将柔性基板结合到形成有离 型层的刚性玻璃基板上。 离型层的材料可以为添加有惰性物质的紫外光分解 材料。 之后在 ffi水阻氧树脂层上贴 封装工艺所^的吸收水汽和氧的待固化 树脂层。
步骤 c3, 提供一透明硬质基板, 该透明硬质基板上贴附有阻水阻氧透明 薄膜。
具体地, 该透明硬质基板可以为刚性玻璃基板。 阻水阻氧透明薄膜可以 为塑料薄膜。 阻水阻氧透明薄膜可以通过胶带贴 在刚性玻璃基板上, 或者 在刚性玻璃基板上形成离型层, 将阻水阻氧透明薄膜结合到形成有离型层的 刚性玻璃基板上。 离型层的村料可以为添加有惰性物质的紫外光分解材料。
步骤 d3, 在阻水阻氧透明薄膜上依次形成 0LED器件、 钝化层和待固化 树脂层。
与现有技术的面封装工艺相同,在阻水阻氧透明薄膜上依次形成 0LED器 件、 钝化层和待固化树脂层, 因此柔性基板是不透明的。 因此 0LED器件为底 发射 0LED器件。
步骤 e3, 将步骤 b3形成的结构和步骤 d3形成的结构封装在一起。
具体地, 可以利 现有技术的面封装设备, 将歩骤 b3形成的结构通过黏 合剂和步骤 d3形成的结构封装在一起。
步骤 f3, 去除两侧的装载 ffi透明硬质基板。
去除两侧的装载用刚性玻璃基板, 得到本实施例的柔性有机电致发光器 件的封装结构。 如果是采用胶带连接刚性玻璃基板和柔性基板、 刚性玻璃基板和 ffi水阻 氧透明薄膜, 可以采 ffi机械方式去除刚性玻璃基板。 或者, 如果是采 ffi离型 层连接刚性玻璃基板和柔性基板、 刚性玻璃基板和阻水 ffi氧透明薄膜, 可以 采用紫外线照射的方式去除刚性玻璃基板。
本实施例的柔性基板由金属薄膜和透明树脂层组成, 因此柔性基板是不 透明的。 为了不影响 0LED 器件的发光, 本实施例的技术方案适用于底发射 0LED器件。
在本实施例的柔性 0LED器件的封装结构中, 采用柔性基板承载 0LED器 件, 柔性基板由金属薄膜和 ffi水阻氧树脂层组成, 金属薄膜具备一定的挠曲 性及良好的阻水阻氧性能, 其叠合的阻水阻氧树脂层可更好地缓解应力及提 高阻水阻氧性能。由于阻水阻氧透明薄膜和柔性基板都具有一定的可挠曲性, 因此, 制备的柔性 0LED器件的封装结构为可弯曲的, 能够用以制备可弯曲的 柔性 0LED产品。 另外, 可以利用现有技术的面封装设备完成上述封装工艺, 减少了在昂贵成本、 低生产效率的薄膜柔性封装设备上的投资。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明所述原理的前提下, 还可以作出若干改进和 润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

1 . 一种柔性有机电致发光 (0LED) 器件的封装结构, 包括: ^于承托所述 0LED器件的柔性基板;
设置在所述柔性基板上的封装层;
位于所述封装层上的所述 0LED器件; 以及
覆盖所述 0LED器件的阻水阻氧透明薄膜。
2. 根据权利要求 1所述的柔性 0LED器件的封装结构, 还包括: 设置在所述 ffi水阻氧透明薄膜上的所述柔性基板。
3. 根据权利要求 1或 2所述的柔性 0LED器件的封装结构, 其中, 所述 柔性基板包括:
具有可挠曲性的超薄玻璃; 以及
覆盖所述超薄玻璃的阻水阻氧树脂层。
4. 根据权利要求 3所述的柔性 0LED器件的封装结构, 其中,
所述阻水阻氧树脂层的尺寸略大于所述超薄玻璃。
5. 根据权利要求 4所述的柔性 0LED器件的封装结构, 其中, 所述阻水 阻氧树脂层的长宽均超出所述超薄玻璃 0. l 2mm。
6. 根据权利要求 3 5中任一项所述的柔性 0LED器件的封装结构, 其中, 所述超薄玻璃的厚度为 0. 05-0。 2mm, 可弯曲半径为 40- 80mm。
7. 根据权利要求 3 6中任一项所述的柔性 OLED器件的封装结构, 其中, 所述阻水阻氧树脂层的厚度为 0. 03 3mm。
8. 根据权利要求 1或 2所述的柔性 OLED器件的封装结构, 其中, 所述 柔性基板包括:
金属薄膜; 以及
覆盖所述金属薄膜的阻水阻氧树脂层。
9. 一种柔性显示装置, 包括如权利要求 1 8中任一项所述的柔性有机电 致发光 0LED器件的封装结构。
10. 根据权利要求 9所述的柔性显示装置, 其中,
所述柔性显示装置包括: 电子纸、 电视、 显示器、 数码相框、 手机和平 板电脑中的至少一个。
11. 一种柔性有机电致发光 0LED器件的封装方法, 包括:
提供一贴附有阻水阻氧透明薄膜的第一透明硬质基板;
在所述阻水阻氧透明薄膜上贴附所述 0LED器件;
在所述 0LED器件上形成封装层;
提供一第二透明硬质基板;
在所述第二透明硬质基板上形成柔性基板;
将形成有所述柔性基板的第二透明硬质基板与形成有所述封装层的第一 透明基板对盒并封装在一起; 以及
去除所述第一透明硬质基板和所述第二透明硬质基板。
12. 根据权利要求 11所述的柔性 0LED器件的封装方法, 其中, 所述在 所述第二透明硬质基板上形成柔性基板的步骤包括:
在所述第二透明硬质基板上贴附具有可挠曲性的超薄玻璃; 以及 在所述超薄玻璃上形成覆盖所述超薄玻璃的阻水阻氧树脂层。
13. 根据权利要求 11或 12所述的柔性 0LED器件的封装方法, 其中, 所 述阻水阻氧透明薄膜和所述第一透明硬质基板之间还设置有所述柔性基板。
14. 根据权利要求 11 13中任一项所述的柔性 0LED器件的封装方法, 其 中, 所述在所述第二透明硬质基板上形成柔性基板的步骤包括:
在所述第二透明硬质基板上贴附金属薄膜; 以及
在所述金属薄膜上形成覆盖所述金属薄膜的阻水阻氧树脂层。
15. 根据权利要求 11 14中任一项所述的柔性 0LED器件的封装方法, 其 中,
如果是采用胶带连接所述第一透明硬质基板和所述阻水阻氧透明薄膜、 所述第二透明硬质基板和所述柔性基板, 则采用机械方式去除所述第一透明 硬质基板和所述第二透明硬质基板。
16. 根据权利要求 11 14中任一项所述的柔性 0LED器件的封装方法, 其 中,
如果是采用离型层连接所述第一透明硬质基板和所述阻水阻氧透明薄 膜、 所述第二透明硬质基板和所述柔性基板, 则采用紫外线照射的方式去除
15
PCT/CN2014/079759 2013-09-09 2014-06-12 柔性有机电致发光器件的封装结构及封装方法、柔性显示装置 WO2015032232A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/415,509 US9431630B2 (en) 2013-09-09 2014-06-12 Package structure for flexible organic light emitting diode device, method for packaging the same and flexible display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310407098.8 2013-09-09
CN2013104070988A CN103474580A (zh) 2013-09-09 2013-09-09 柔性有机电致发光器件的封装结构、方法、柔性显示装置

Publications (1)

Publication Number Publication Date
WO2015032232A1 true WO2015032232A1 (zh) 2015-03-12

Family

ID=49799337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079759 WO2015032232A1 (zh) 2013-09-09 2014-06-12 柔性有机电致发光器件的封装结构及封装方法、柔性显示装置

Country Status (3)

Country Link
US (1) US9431630B2 (zh)
CN (1) CN103474580A (zh)
WO (1) WO2015032232A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474580A (zh) * 2013-09-09 2013-12-25 京东方科技集团股份有限公司 柔性有机电致发光器件的封装结构、方法、柔性显示装置
US9321677B2 (en) 2014-01-29 2016-04-26 Corning Incorporated Bendable glass stack assemblies, articles and methods of making the same
CN103943788B (zh) * 2014-04-02 2016-04-06 京东方科技集团股份有限公司 柔性显示装置及其封装方法
CN103985826A (zh) * 2014-05-30 2014-08-13 深圳市华星光电技术有限公司 Oled基板的封装方法及oled结构
EP3183116B1 (en) 2014-08-19 2022-05-04 Corning Incorporated Bendable glass stack assemblies and methods of making the same
US11078102B2 (en) 2014-11-26 2021-08-03 Corning Incorporated Thin glass sheet and system and method for forming the same
US9276236B1 (en) * 2015-02-08 2016-03-01 Shenzhen China Star Optoelectronics Technology Co., Ltd OLED element
CN104733507B (zh) * 2015-04-09 2018-05-01 京东方科技集团股份有限公司 柔性显示装置和柔性显示装置的封装方法
CN105098090A (zh) * 2015-06-15 2015-11-25 深圳市华星光电技术有限公司 Oled器件的封装结构及其封装方法
KR102438786B1 (ko) 2015-10-13 2022-08-31 코닝 인코포레이티드 가요성 전자 장치 모듈들, 물품들 및 그의 제조 방법들
CN108475692B (zh) * 2015-12-28 2022-07-22 3M创新有限公司 具有流体腔设计的柔性电子设备
KR102248593B1 (ko) * 2016-01-06 2021-05-06 삼성전자 주식회사 플렉서블 디스플레이 윈도우 및 그를 구비하는 전자 장치
HUE062156T2 (hu) * 2016-01-06 2023-09-28 Samsung Electronics Co Ltd Elektronikus berendezés hajlékony kijelzõablakkal
KR102233720B1 (ko) 2016-03-17 2021-03-30 코닝 인코포레이티드 굽힘 가능한 전자 소자 모듈들, 물품들 및 이를 형성하는 본딩 방법들
WO2018083801A1 (ja) * 2016-11-07 2018-05-11 日立化成株式会社 有機エレクトロニクス材料、有機層、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
CN107579088B (zh) * 2016-07-11 2021-02-26 京东方科技集团股份有限公司 一种柔性oled显示面板及其制备方法
CN106129258A (zh) * 2016-08-30 2016-11-16 中国乐凯集团有限公司 柔性太阳能电池封装用多层复合薄膜及其应用
KR20190125348A (ko) 2017-03-02 2019-11-06 히타치가세이가부시끼가이샤 유기 일렉트로닉스 재료 및 그의 이용
EP3694708A1 (en) * 2017-10-11 2020-08-19 Corning Incorporated Display modules with quasi-static and dynamic impact resistance
WO2019074932A1 (en) 2017-10-11 2019-04-18 Corning Incorporated FOLDABLE ELECTRONIC DEVICE MODULES HAVING SHOCK RESISTANCE AND FLEXIBILITY
CN107871453A (zh) 2017-10-31 2018-04-03 云谷(固安)科技有限公司 一种柔性显示模组及其制备方法
WO2020041032A1 (en) 2018-08-24 2020-02-27 Corning Incorporated Article comprising puncture resistant laminate with ultra-thin glass layer
WO2020061808A1 (en) * 2018-09-26 2020-04-02 Boe Technology Group Co., Ltd. Flexible display apparatus and hardness-enhancing layer for enhancing surface hardness and mechanical strength of flexible display panel
WO2020112433A1 (en) 2018-11-29 2020-06-04 Corning Incorporated Dynamically adjustable display system and methods of dynamically adjusting a display
CN110707125A (zh) * 2019-09-02 2020-01-17 武汉华星光电半导体显示技术有限公司 柔性发光面板、柔性发光面板的制备方法及显示设备
CN110767730A (zh) * 2019-10-31 2020-02-07 云谷(固安)科技有限公司 显示面板及其制备方法、显示装置
CN112786802A (zh) * 2020-12-23 2021-05-11 乐金显示光电科技(中国)有限公司 一种显示设备封装结构及封装板的制造方法
EP4383691A1 (en) 2021-11-10 2024-06-12 Samsung Electronics Co., Ltd. Electronic device comprising adhesive member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1870844A (zh) * 2005-05-27 2006-11-29 悠景科技股份有限公司 可挠式有机电激发光面板的制作方法及其显示模块
US20120100647A1 (en) * 2010-10-22 2012-04-26 Samsung Mobile Display Co., Ltd. Method of manufacturing flexible display device
CN102636898A (zh) * 2012-03-14 2012-08-15 京东方科技集团股份有限公司 一种柔性显示装置的制备方法
US20120305981A1 (en) * 2011-06-01 2012-12-06 Samsung Mobile Display Co., Ltd. Organic light emitting diode display and method for manufacturing organic light emitting diode display
CN103474580A (zh) * 2013-09-09 2013-12-25 京东方科技集团股份有限公司 柔性有机电致发光器件的封装结构、方法、柔性显示装置
CN203406334U (zh) * 2013-09-09 2014-01-22 京东方科技集团股份有限公司 柔性有机电致发光器件的封装结构、柔性显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1150927B1 (de) * 1999-01-11 2003-09-03 Schott Displayglas GmbH Polymerbeschichtete dünnglasfoliensubstrate
JP2004050565A (ja) * 2002-07-18 2004-02-19 Kri Inc 薄膜シート状基板
JP2005297498A (ja) * 2004-04-16 2005-10-27 Dainippon Printing Co Ltd 可撓性基板およびそれを用いた有機デバイス
US20050269943A1 (en) * 2004-06-04 2005-12-08 Michael Hack Protected organic electronic devices and methods for making the same
JP4845129B2 (ja) * 2007-03-28 2011-12-28 国立大学法人京都大学 フレキシブル基板およびその製造方法
CN101916022B (zh) * 2010-07-06 2012-10-10 友达光电股份有限公司 可挠性显示面板及其制造方法
US20120280368A1 (en) * 2011-05-06 2012-11-08 Sean Matthew Garner Laminated structure for semiconductor devices
TWI450650B (zh) * 2011-05-16 2014-08-21 Ind Tech Res Inst 可撓式基材及可撓式電子裝置
KR101774278B1 (ko) * 2011-07-18 2017-09-04 엘지디스플레이 주식회사 플렉서블 표시장치의 제조방법
CN103325953B (zh) * 2012-03-19 2016-02-10 瀚宇彩晶股份有限公司 有机发光二极管封装及其封装方法
TW201943069A (zh) * 2013-09-06 2019-11-01 日商半導體能源研究所股份有限公司 發光裝置以及發光裝置的製造方法
KR102107109B1 (ko) * 2013-10-17 2020-05-29 삼성디스플레이 주식회사 유기 발광 장치 및 이의 제조 방법
US9937698B2 (en) * 2013-11-06 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Peeling method and light-emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1870844A (zh) * 2005-05-27 2006-11-29 悠景科技股份有限公司 可挠式有机电激发光面板的制作方法及其显示模块
US20120100647A1 (en) * 2010-10-22 2012-04-26 Samsung Mobile Display Co., Ltd. Method of manufacturing flexible display device
US20120305981A1 (en) * 2011-06-01 2012-12-06 Samsung Mobile Display Co., Ltd. Organic light emitting diode display and method for manufacturing organic light emitting diode display
CN102636898A (zh) * 2012-03-14 2012-08-15 京东方科技集团股份有限公司 一种柔性显示装置的制备方法
CN103474580A (zh) * 2013-09-09 2013-12-25 京东方科技集团股份有限公司 柔性有机电致发光器件的封装结构、方法、柔性显示装置
CN203406334U (zh) * 2013-09-09 2014-01-22 京东方科技集团股份有限公司 柔性有机电致发光器件的封装结构、柔性显示装置

Also Published As

Publication number Publication date
US20150364718A1 (en) 2015-12-17
US9431630B2 (en) 2016-08-30
CN103474580A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2015032232A1 (zh) 柔性有机电致发光器件的封装结构及封装方法、柔性显示装置
US10079353B2 (en) Light-emitting device with flexible substrates
TWI688089B (zh) 有機發光二極體顯示器、包含該有機發光二極體顯示器之電子裝置、及製造該有機發光二極體顯示器之方法
KR101445044B1 (ko) 플렉서블 기판을 포함하는 유기 발광 소자 및 이의 제조방법
TWI755000B (zh) 發光裝置、模組、電子裝置和製造發光裝置的方法
US9770894B2 (en) Peeling apparatus and stack manufacturing apparatus
WO2019144452A1 (zh) 柔性显示装置的制作方法及柔性显示装置
JP6577069B2 (ja) フレキシブル有機電子デバイスの製造
KR101375334B1 (ko) 유기 발광 디스플레이 장치 및 그 제조 방법
JP4391301B2 (ja) 有機電界発光表示装置の製造方法
KR101717472B1 (ko) 봉지용 적층체, 유기발광장치 및 이들의 제조방법
WO2016015421A1 (zh) 阵列基板、有机发光二极管显示面板和显示装置
JP2015053479A (ja) 剥離方法
US10243163B2 (en) Flexible OLED display and manufacturing method thereof
JP2010027596A (ja) 有機発光ディスプレイ装置及びその製造方法
KR20190035103A (ko) 플렉시블 전계발광 표시장치
KR102693569B1 (ko) 표시 장치
KR102009889B1 (ko) 표시장치 및 그 제조방법
WO2020228491A1 (zh) Oled显示屏、显示面板及其制作方法
KR20170003298A (ko) 유기 발광 디스플레이 장치 및 이의 제조 방법
KR20190060275A (ko) 플렉시블 전계발광 표시장치
EP3316307A1 (en) Method for manufacturing touchscreen display
TWI488349B (zh) 複合阻障層結構及包括此結構之封裝結構
KR20150035262A (ko) 유기 발광 소자 및 이의 제조방법
KR20150024189A (ko) 플렉서블 기판의 제조방법 및 이를 포함하는 유기 발광 소자의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14415509

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/07/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14841493

Country of ref document: EP

Kind code of ref document: A1