WO2015032170A1 - 一种架空导线用中强度铝合金线 - Google Patents

一种架空导线用中强度铝合金线 Download PDF

Info

Publication number
WO2015032170A1
WO2015032170A1 PCT/CN2014/000802 CN2014000802W WO2015032170A1 WO 2015032170 A1 WO2015032170 A1 WO 2015032170A1 CN 2014000802 W CN2014000802 W CN 2014000802W WO 2015032170 A1 WO2015032170 A1 WO 2015032170A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
alloy
aluminum alloy
controlled
temperature
Prior art date
Application number
PCT/CN2014/000802
Other languages
English (en)
French (fr)
Inventor
吴细毛
李春和
党朋
王建东
王飞
张小辉
毛庆传
Original Assignee
国家电网公司
国网辽宁省电力有限公司电力科学研究院
国网辽宁省电力有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网辽宁省电力有限公司电力科学研究院, 国网辽宁省电力有限公司 filed Critical 国家电网公司
Publication of WO2015032170A1 publication Critical patent/WO2015032170A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium

Definitions

  • the invention belongs to the technical field of overhead wires for transmission lines, and in particular relates to a medium strength aluminum alloy wire for overhead wires.
  • the medium-strength aluminum alloy is mainly an aluminum-magnesium-silicon alloy system, and the method for manufacturing the alloy mainly has two different process routes, namely, an artificial aging heat treatment type and a natural aging heat treatment type.
  • Patent CN102041418A and patent CN102162050A respectively mention two manufacturing methods of medium-strength aluminum alloy wires with different electrical conductivity, which need to be solution treated and quenched after obtaining aluminum alloy rods, in aluminum alloy rods. After being drawn into an aluminum alloy wire, it needs to be artificially aged, that is, an artificial aging heat treatment type process route is adopted.
  • the properties of the obtained medium-strength aluminum alloy wire are: electrical conductivity of not less than 57% IACS, tensile strength of 245 MPa to 290 MPa, elongation of 1.8% to 3.0%; electrical conductivity of not less than 59% IACS, anti- The tensile strength is 230 MPa to 250 MPa, and the elongation is 2.0%; the patent CN102766788A refers to the preparation of the medium-strength aluminum alloy wire by the natural aging treatment process, that is, after the aluminum-magnesium-silicon alloy rod is obtained, and the alloy rod is drawn into the alloy wire. After the artificial aging treatment is not required, only natural aging treatment is required.
  • the properties of the obtained medium-strength aluminum alloy are: conductivity of not less than 57% IACS, tensile strength of not less than 250 MPa, elongation of not less than 2.0%; electrical conductivity of not less than 59% IACS, tensile strength not lower than 235 MPa, elongation is not less than 2.0%.
  • the present invention provides a medium strength aluminum alloy wire for overhead conductors.
  • the purpose is to understand the problem that the elongation of the medium-strength aluminum alloy wire is too small.
  • a medium-strength aluminum alloy wire for overhead conductors the specific steps of which are as follows:
  • On-line heating through the in-line heating device, the temperature of the slab is controlled at 520 ° C ⁇ 530 ° C when entering the rolling mill;
  • On-line quenching the medium-strength aluminum alloy rod after rolling is subsequently quenched in-line, the quenching water temperature is controlled at 28 ° C to 30 ° C, and the temperature of the medium-strength aluminum alloy rod after quenching is controlled at 45 ° C to 55 ° C;
  • Artificial aging treatment artificial aging treatment is applied to the single-strength aluminum alloy rod, the temperature is controlled at 180 °C ⁇ 200 °C, the time is controlled at 5 ⁇ 6 hours, and the finished single line is obtained after taking out.
  • the medium-strength aluminum alloy rod is a medium-strength aluminum alloy rod having a diameter of 9.5 mm.
  • the alloy composition is an aluminum ingot, an aluminum silicon alloy ingot, an aluminum-magnesium intermediate alloy, an aluminum-copper intermediate alloy, and an aluminum-niobium intermediate alloy.
  • composition requirements of the aluminum ingot are as follows: silicon ⁇ 0.07 wt%, iron ⁇ 0.23 wt%, magnesium ⁇ 0.02 wt%, manganese + titanium + chromium + vanadium ⁇ 0.02 wt%.
  • the other impurity elements are manganese, titanium, chromium, vanadium.
  • the aluminum-silicon intermediate alloy has a silicon content of 20% by weight, the aluminum-magnesium intermediate alloy has a magnesium content of 50% by weight, the aluminum-copper intermediate alloy has a copper content of 10% by weight, and the aluminum-bismuth intermediate alloy has a cerium content of 10% by weight.
  • the aluminum ingot is melted in the melting furnace, and then flows into the holding furnace for heat preservation; the amount of the intermediate alloy of aluminum silicon, aluminum magnesium, aluminum copper and aluminum bismuth required for adding the component according to the amount of aluminum liquid in the heat preservation; controlling the temperature of the aluminum liquid at 730 ° C Then, the mixture is uniformly treated by agitation, and the aluminum liquid is refined by a refining agent, and the surface of the aluminum liquid is covered with a solid covering agent and allowed to stand for not less than 45 minutes, and the refining agent is an aluminum alloy refining agent sold on the market;
  • the main elements in the aluminum liquid are detected by a high-speed direct reading spectrum analyzer, and according to the detection result, the corresponding alloy composition is adjusted to achieve the required alloy aluminum liquid composition;
  • the aluminum liquid in the holding furnace is discharged, flows through the launder, and passes through a ceramic filter plate filtering device, and the Al-Ti-B wire is automatically added in the launder according to the flow rate of the aluminum liquid for refining the crystal grains;
  • the aluminum liquid is cast into the aluminum alloy continuous casting machine through the ladle, and the casting temperature of the aluminum liquid is controlled at 700 ° C; the flow rate of the cooling water of the casting machine is controlled to ensure that the temperature of the slab from the casting machine is controlled at 480 ° C;
  • the in-line heating device After the slab emerges from the casting machine, after being straightened out, it enters the in-line heating device, so that the temperature of the slab is controlled at 520 ° C when entering the rolling mill; the in-line heating device is an intermediate frequency annealing furnace;
  • the slab After the slab is heated to the required temperature range by the heating device, it enters the aluminum alloy rolling mill for rolling, and controls the temperature and flow rate of the cooling emulsion to control the temperature of the aluminum alloy rod after the rolling is controlled at 370 ° C; the aluminum alloy continuous rolling mill
  • the rolled medium-strength aluminum alloy rod has a diameter of 9.5 mm;
  • the aluminum rod from the rolling mill immediately enters the in-line quenching device, and the quenching water temperature is controlled at 29 ° C; the temperature of the quenched aluminum alloy rod is controlled at 50 ° C; the quenched aluminum rod is wrapped around the disc;
  • the quenched aluminum alloy rod is drawn and drawn into a single line of aluminum alloy of the desired diameter;
  • the drawing device is a commonly used sliding type aluminum alloy wire drawing machine, each deformation rate is controlled at 1.25; the drawing speed is 10 m/s, When drawing, the lubricating oil is controlled below 40 °C;
  • the brushed aluminum alloy single wire is artificially aged, the temperature is controlled at 190 ° C, and the time is controlled at 5 hours; the space temperature range of the aging treatment furnace is controlled within ⁇ 3 ° C; after the aging treatment, the medium strength aluminum alloy single wire is obtained.
  • the strength aluminum alloy wire of the invention is controlled by a certain alloy composition, rolling and on-line quenching, so that the aluminum alloy rod is effectively solution treated, so that the subsequent aging treatment can achieve better effect, and finally the extension is obtained.
  • a medium-strength aluminum alloy wire having a length ratio of not less than 3.5%, a conductivity of not less than 58.5% IACS, and a tensile strength of not less than 245 MPa.
  • the elongation of the strength aluminum alloy wire in the present invention is significantly superior to the elongation of the aluminum alloy used in the prior art.
  • the medium-strength all-aluminum alloy wire is an aluminum alloy stranded wire made of a single-strength aluminum alloy single wire.
  • the use of medium-strength all-aluminum alloy wires on overhead transmission lines has the following advantages over the currently widely used steel-core aluminum stranded wires: (1) The wire has a large pulling ratio and good sag characteristics, which can increase the transmission tower tower pitch and reduce the line. Construction Investment. (2) The wire has good high temperature characteristics and operates at a higher temperature with less strength loss. (3) The wire surface is resistant to damage.
  • the hardness of the medium-strength aluminum alloy is twice that of the aluminum wire, but the weight is lighter than that of the steel-cored aluminum stranded wire, which can reduce the scratches on the wire surface during construction and improve the construction quality.
  • High surface quality wires reduce the amount of corona loss and radio interference during operation.
  • Figure 1 is a schematic view showing the manufacturing process of the present invention.
  • the invention relates to a medium-strength aluminum alloy wire for overhead wires, as shown in Fig. 1, the specific steps of the process flow are as follows
  • the aluminum alloy liquid enters the aluminum alloy continuous casting machine for casting, and the aluminum liquid casting temperature is controlled at 695 ° C to 705 ° C.
  • the temperature of the slab from the casting machine is controlled at 480 ° C to 490 ° C.
  • On-line heating Through the on-line heating device, the temperature of the slab is controlled at 520 ° C ⁇ 530 ° C when entering the rolling mill.
  • the medium-strength aluminum alloy rod with a diameter of 9.5 mm is rolled by an aluminum alloy continuous rolling mill, and the temperature of the medium-strength aluminum alloy rod after rolling is controlled at 365 ° C to 375 ° C.
  • On-line quenching The medium-strength aluminum alloy rod after rolling is subsequently quenched in-line, and the quenching water temperature is controlled at 28 ° C to 30 ° C. The temperature of the medium-strength aluminum alloy rod after quenching is controlled at 45 ° C to 55 ° C.
  • Artificial aging treatment artificial aging treatment is applied to the single-strength aluminum alloy rod single-wire, the temperature is controlled at 180 °C ⁇ 200 °C, and the time is controlled at 5-6 hours. After being taken out, a single-line of the medium-strength aluminum alloy rod which meets the performance requirements of the present invention is obtained.
  • Aluminum ingots, aluminum-silicon alloy ingots, aluminum-magnesium intermediate alloys, aluminum-copper intermediate alloys and aluminum-niobium intermediate alloys are used as raw materials.
  • composition requirements of the aluminum ingot are as follows: silicon ⁇ 0.07 wt%, iron ⁇ 0.23 wt%, magnesium ⁇ 0.02 wt%, (manganese + titanium + chromium + vanadium) ⁇ 0.02 wt%, and the content of each other impurity element is not more than 0.03 wt. %.
  • the content of silicon in the aluminum-silicon intermediate alloy is 20wt%, and the content of magnesium in the aluminum-magnesium intermediate alloy is 50wt%, aluminum-copper intermediate alloy
  • the content of copper in the aluminum alloy is 10% by weight, and the content of bismuth in the aluminum-bismuth intermediate alloy is 10% by weight.
  • the aluminum ingot is melted in a melting furnace and then poured into a holding furnace for heat preservation.
  • Control the temperature of the aluminum liquid at 730 °C.
  • the mixture is uniformly homogenized, the aluminum liquid is refined with a refining agent, and the surface of the aluminum liquid is covered with a solid covering agent and allowed to stand for not less than 45 minutes, and the refining agent is an aluminum alloy refining agent sold on the market.
  • the main elements in the aluminum liquid are detected by a high-speed direct reading spectrum analyzer, and according to the detection results, the corresponding alloy composition is adjusted to achieve the desired alloy aluminum liquid composition.
  • the content of each element was controlled as follows: silicon was 0.50 wt%, magnesium was 0.50 wt%, iron was 0.23 wt%, copper was 0.08 wt%, and rhodium was 0.2 wt%.
  • the aluminum liquid in the holding furnace is discharged, flows through the launder, and passes through a ceramic filter plate filtering device, and the Al-Ti-B wire is automatically added in the launder according to the flow rate of the aluminum liquid for refining the crystal grains.
  • the aluminum liquid is cast into the aluminum alloy continuous casting machine through the ladle, and the casting temperature of the aluminum liquid is controlled at 700 °C.
  • the flowmeter pressure of the casting machine cooling water it is ensured that the slab temperature at the time of exiting the casting machine is controlled at 480 °C.
  • the in-line heating device is an intermediate frequency annealing furnace.
  • the slab After the slab is heated to the required temperature range by the heating device, it is rolled into the aluminum alloy rolling mill to control the temperature and flow rate of the cooled emulsion, so that the temperature of the aluminum alloy rod after rolling is controlled at 370 °C.
  • the medium-strength aluminum alloy rod rolled by the aluminum alloy continuous rolling mill has a diameter of 9.5 mm.
  • the aluminum rod from the rolling mill immediately enters the in-line quenching device, and the quenching water temperature is controlled at 29 °C.
  • the temperature of the quenched aluminum alloy rod was controlled at 50 °C.
  • the quenched aluminum rod is wrapped around the disk.
  • the quenched aluminum alloy rod is drawn and drawn into a single wire of the desired diameter.
  • the wire drawing equipment is a commonly used sliding type aluminum alloy wire drawing machine, and the deformation rate is controlled at 1.25 per lane.
  • the drawing speed is 10 m/s, and the lubricating oil is controlled below 40 °C during drawing.
  • the brushed aluminum alloy single wire was subjected to artificial aging treatment, the temperature was controlled at 190 ° C, and the time was controlled at 5 hours.
  • the space temperature range of the aging furnace is controlled within ⁇ 3 °C.
  • a medium-strength aluminum alloy wire single wire having an elongation of not less than 3.5%, a conductivity of not less than 58.5% IACS, and a tensile strength of not less than 245 MPa can be obtained.
  • Aluminum ingots, aluminum-silicon alloy ingots, aluminum-magnesium intermediate alloys, aluminum-copper intermediate alloys and aluminum-niobium intermediate alloys are used as raw materials.
  • the composition requirements of the aluminum ingot are as follows: silicon ⁇ 0.40 wt%, iron ⁇ 0.18 wt%, magnesium ⁇ 0.48 wt%, (manganese + titanium + chromium + vanadium) ⁇ 0.02 wt%, the content of each of the other impurity elements is not more than 0.03 wt%.
  • the aluminum-silicon intermediate alloy has a silicon content of 20% by weight, the aluminum-magnesium intermediate alloy has a magnesium content of 50% by weight, the aluminum-copper intermediate alloy has a copper content of 10% by weight, and the aluminum-bismuth intermediate alloy has a cerium content of 10% by weight.
  • the aluminum ingot is melted in a melting furnace and then poured into a holding furnace for heat preservation.
  • Control the temperature of the aluminum liquid at 720 °C.
  • the mixture is uniformly homogenized, the aluminum liquid is refined with a refining agent, and the surface of the aluminum liquid is covered with a solid covering agent and allowed to stand for not less than 45 minutes, and the refining agent is an aluminum alloy refining agent sold on the market.
  • the main elements in the aluminum liquid are detected by a high-speed direct reading spectrum analyzer, and according to the detection results, the corresponding alloy composition is adjusted to achieve the desired alloy aluminum liquid composition.
  • the content of each element was controlled as follows: silicon was 0.40 wt%, magnesium was 0.45 wt%, iron was 0.18 wt%, copper was 0.04 wt%, and rhodium was 0.1 wt%.
  • the aluminum liquid in the holding furnace is discharged, flows through the launder, and passes through a ceramic filter plate filtering device, and the Al-Ti-B wire is automatically added in the launder according to the flow rate of the aluminum liquid for refining the crystal grains.
  • the aluminum liquid is cast into the aluminum alloy continuous casting machine through the ladle, and the casting temperature of the aluminum liquid is controlled at 695 °C.
  • the flowmeter pressure of the casting machine's cooling water it is ensured that the slab temperature at the time of exiting the casting machine is controlled at 485 °C.
  • the in-line heating device is an intermediate frequency annealing furnace.
  • the slab After the slab is heated to the required temperature range by the heating device, it is rolled into the aluminum alloy rolling mill to control the temperature and flow rate of the cooled emulsion, so that the temperature of the aluminum alloy rod after rolling is controlled at 365 °C.
  • the medium-strength aluminum alloy rod rolled by the aluminum alloy continuous rolling mill has a diameter of 9.5 mm.
  • the aluminum rod from the rolling mill immediately enters the in-line quenching device, and the quenching water temperature is controlled at 28 °C.
  • the temperature of the quenched aluminum alloy rod was controlled at 45 °C.
  • the quenched aluminum rod is wrapped around the disk.
  • the quenched aluminum alloy rod is drawn and drawn into a single wire of the desired diameter.
  • the wire drawing equipment is a commonly used sliding type aluminum alloy wire drawing machine, and the deformation rate is controlled at 1.25 per lane.
  • the drawing speed is 10 m/s, and the lubricating oil is controlled below 40 °C during drawing.
  • the brushed aluminum alloy single wire was subjected to artificial aging treatment, the temperature was controlled at 180 ° C, and the time was controlled at 5.5 hours.
  • the space temperature range of the aging furnace is controlled within ⁇ 3 °C.
  • a medium-strength aluminum alloy wire single wire having an elongation of not less than 3.5%, a conductivity of not less than 58.5% IACS, and a tensile strength of not less than 245 MPa can be obtained.
  • the alloy is used as a raw material.
  • the composition requirements of the aluminum ingot are as follows: silicon ⁇ 0.50wt%, iron ⁇ 0.20wt%, magnesium ⁇ 0.50wt%, (manganese + titanium + chromium + vanadium) ⁇ 0.02wt%, and the content of each other impurity element is not more than 0.03wt %.
  • the aluminum-silicon intermediate alloy has a silicon content of 20% by weight, the aluminum-magnesium intermediate alloy has a magnesium content of 50% by weight, the aluminum-copper intermediate alloy has a copper content of 10% by weight, and the aluminum-bismuth intermediate alloy has a cerium content of 10% by weight.
  • the aluminum ingot is melted in a melting furnace and then poured into a holding furnace for heat preservation.
  • Control the temperature of the aluminum liquid at 740 °C.
  • the mixture is uniformly homogenized, the aluminum liquid is refined with a refining agent, and the surface of the aluminum liquid is covered with a solid covering agent and allowed to stand for not less than 45 minutes, and the refining agent is an aluminum alloy refining agent sold on the market.
  • the main elements in the aluminum liquid are detected by a high-speed direct reading spectrum analyzer, and according to the detection results, the corresponding alloy composition is adjusted to achieve the desired alloy aluminum liquid composition.
  • the content of each element was controlled as follows: silicon was 0.45 wt%, magnesium was 0.48 wt%, iron was 0.20 wt%, copper was 0.05 wt%, and rhodium was 0.15 wt%.
  • the aluminum liquid in the holding furnace is discharged, flows through the launder, and passes through a ceramic filter plate filtering device, and the Al-Ti-B wire is automatically added in the launder according to the flow rate of the aluminum liquid for refining the crystal grains.
  • the aluminum liquid is cast into the aluminum alloy continuous casting machine through the ladle, and the casting temperature of the aluminum liquid is controlled at 705 °C.
  • the flowmeter pressure of the casting machine cooling water it is ensured that the slab temperature at the time of exiting the casting machine is controlled at 490 °C.
  • the in-line heating device is an intermediate frequency annealing furnace.
  • the slab After the slab is heated to the required temperature range by the heating device, it is rolled into the aluminum alloy rolling mill to control the temperature and flow rate of the cooling emulsion, so that the temperature of the aluminum alloy rod after rolling is controlled at 375 °C.
  • the medium-strength aluminum alloy rod rolled by the aluminum alloy continuous rolling mill has a diameter of 9.5 mm.
  • the aluminum rod from the rolling mill immediately enters the in-line quenching device, and the quenching water temperature is controlled at 30 °C.
  • the temperature of the quenched aluminum alloy rod was controlled at 55 °C.
  • the quenched aluminum rod is wrapped around the disk.
  • the quenched aluminum alloy rod is drawn and drawn into a single wire of the desired diameter.
  • the wire drawing equipment is a commonly used sliding type aluminum alloy wire drawing machine, and the deformation rate is controlled at 1.25 per lane.
  • the drawing speed is 10 m/s, and the lubricating oil is controlled below 40 °C during drawing.
  • the brushed aluminum alloy single wire was subjected to artificial aging treatment, the temperature was controlled at 180 ° C, and the time was controlled at 5.5 hours.
  • the space temperature range of the aging furnace is controlled within ⁇ 3 °C.
  • a medium-strength aluminum alloy or a single wire having an elongation of not less than 3.5%, a conductivity of not less than 58.5% IACS, and a tensile strength of not less than 245 MPa can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

一种架空导线用中强度铝合金线,通过合金成分调整、轧制及在线淬火的控制,使其铝合金杆得到有效的固溶处理,使后续的时效处理达到更好的效果,最终得到伸长率不小于3.5%,导电率不低于58.5%IACS,抗拉强度不低于245MPa的中强度铝合金线。

Description

一种架空导线用中强度铝合金线 技术领域
本发明属于输电线路架空导线的技术领域,尤其涉及一种架空导线用中强度铝合金线。
背景技术
目前,中强度铝合金主要为铝镁硅合金系,制造该类合金的方法主要有两条不同的工艺路线,即人工时效热处理型和自然时效热处理型。专利CN102041418A和专利CN102162050A中分别提到了两种不同导电率的中强度铝合金线的制造方法,这两种方法在制得铝合金杆后需对其进行固溶处理和淬火处理,在铝合金杆拉制成铝合金线后又需对其进行人工时效处理,即采用的是人工时效热处理型工艺路线。其所取得的中强度铝合金线性能分别为:导电率不低于57%IACS,抗拉强度为245MPa~290MPa,伸长率为1.8%~3.0%;导电率不低于59%IACS,抗拉强度为230MPa~250MPa,伸长率为2.0%;专利CN102766788A提到了采用自然时效处理工艺路线制备中强度铝合金线,即制得铝镁硅合金杆后,以及在合金杆拉制成合金线后不需要进行人工时效处理,只需要自然时效处理即可。所获得的中强度铝合金性能为:导电率不低于57%IACS,抗拉强度不低于250MPa,伸长率不小于2.0%;导电率不低于59%IACS,抗拉强度不低于235MPa,伸长率不小于2.0%。
由于架空输电线路的特性,对导线的延伸率有一定的要求,以便导线具有一定的抗过载能力和耐疲劳性能。已有的技术在中强度铝合金线伸长率方面明显过小。
发明内容
针对上述现有技术中存在的不足之处,本发明提供一种架空导线用中强度铝合金线。目的是为了解目前中强度铝合金线伸长率偏小不足的问题。
为了实现本发明目的,本发明是通过以下技术方案来实现的:
一种架空导线用中强度铝合金线,它的工艺流程具体步骤如下:
(1)熔炼及合金成分调整:铝锭熔化后进入保温炉中,控制铝液温度在720~740℃,加入铝硅合金锭、铝镁中间合金、铝铜中间合金及铝钇中间合金;搅拌均匀后获得合金铝液,使其各元素含量控制如下:硅为0.40~0.50wt%,镁为0.45~0.50wt%,铁为0.18~0.23wt%,铜为0.04~0.08wt%,钇为0.1~0.2wt%:其他杂质元素含量均不大 于0.03wt%:
(2)铸造:将保温炉中的铝合金熔液流经流槽,通过陶瓷过滤板过滤装置
Figure PCTCN2014000802-appb-000001
在线加入Al-Ti-B丝,细化晶粒;铝合金液进入铝合金连铸机进行浇铸,铝液浇铸温度控制在695℃~705℃;从铸机出来时的铸坯温度控制在480℃~490℃;
(3)在线加热:通过在线加热装置,使得铸坯温度在进入轧机控制在520℃~530℃;
(4)轧制:通过铝合金连轧机轧成中强度铝合金杆,轧制完成后的中强度铝合金杆温度控制在365℃~375℃;
(5)在线淬火:轧制完成后的中强度铝合金杆随后进行在线淬火,淬火水温控制在28℃~30℃,淬火后的中强度铝合金杆的温度控制在45℃~55℃;
(6)拉丝:对淬火处理过后的中强度铝合金杆进行拉丝,拉制成所需直径的铝合金单线;
(7)人工时效处理:对中强度铝合金杆单线进行人工时效处理,温度控制在180℃~200℃,时间控制在5~6小时,取出后即得到成品单线。
所述的中强度铝合金杆成直径为9.5mm的中强铝合金杆。
所述的合金成分为铝锭、铝硅合金锭、铝镁中间合金、铝铜中间合金及铝钇中间合金。
所述的铝锭的成分要求如下:硅≤0.07wt%,铁≤0.23wt%,镁≤0.02wt%,锰+钛+铬+钒≤0.02wt%。
所述的其他杂质元素为锰、钛、铬、钒。
所述的铝硅中间合金中硅含量为20wt%,铝镁中间合金中镁含量为50wt%,铝铜中间合金中铜含量为10wt%,铝钇中间合金中钇含量为10wt%。
所述的工艺流程具体步骤如下:
将铝锭在熔化炉进行熔化,随后流入保温炉进行保温;根据保温中的铝液量加入成分所需的铝硅、铝镁、铝铜及铝钇中间合金量;控制铝液温度在730℃;随后进行搅拌均匀处理,用精炼剂对铝液进行精炼,同时采用固体覆盖剂覆盖在铝液表面,并静置不小于45分钟,所述精炼剂为市场上所售的铝合金精炼剂;
铝液静置完后,采用高速直读光谱分析仪对铝液中的主要元素进行检测,并根据检测结果,进行相应的合金成分调整,达到要求的合金铝液成分;
随后将保温炉中的铝液放出,流经流槽,通过陶瓷过滤板过滤装置,在流槽中根据铝液的流量自动加入Al-Ti-B丝,用于细化晶粒;
铝液通过浇包进入铝合金连铸机进行浇铸,铝液浇铸温度控制在700℃;通过控制浇铸机冷却水的流量计压力,确保从铸机出来时的铸坯温度控制在480℃;
铸坯从铸机出来后,经过校直出来后,进入在线加热装置,使得铸坯温度在进入轧机时控制在520℃;所述在线加热装置为中频退火炉;
铸坯经加热装置加热到要求温度范围内后,进入铝合金轧机组进行轧制,控制冷却乳化液温度与流量,使其轧制完成后的铝合金杆温度控制在370℃;铝合金连轧机轧成的中强铝合金杆直径为9.5mm;
从轧机出来后的铝杆立刻进入在线淬火装置,淬火水温控制在29℃;淬火后的铝合金杆的温度控制在50℃;淬火后的铝杆进行绕盘包装;
对淬火处理过后的铝合金杆进行拉丝,拉制成所需直径的铝合金单线;拉丝设备为常用的滑动式铝合金拉丝机,每道变形率控制在1.25;拉丝速度在10米/秒,拉丝时润滑油控制在40℃以下;
将拉丝好的铝合金单线进行人工时效处理,温度控制在190℃,时间控制在5小时;时效处理炉的空间温度范围控制在±3℃以内;时效处理完后即得到中强度铝合金单线。
本发明的优点效果是:
本发明中强度铝合金线,是通过一定的合金成分调整、轧制及在线淬火的控制,使其铝合金杆得到有效的固溶处理,使后续的时效处理达到更好的效果,最终得到伸长率不小于3.5%,导电率不低于58.5%IACS,抗拉强度不低于245MPa的中强度铝合金线。本发明中强度铝合金线的伸长率明显优于现有技术中使用的铝合金钱的伸长率。
中强度全铝合金导线是一种由中强度铝合金单线绞制而成的铝合金绞线。在架空输电线路上采用中强度全铝合金导线较目前普遍采用的钢芯铝绞线具有以下优点:(1)导线拉重比大,弧垂特性好,可增大输电杆塔档距,降低线路建设投资。(2)导线高温特性好,在更高温度下运行,强度损失少。(3)导线表面耐损伤。中强度铝合金的硬度为铝线的2倍,但重量比钢芯铝绞线轻,施工放线时可减少导线表画擦伤,提高施工质量。高表面质量的导线可减少运行时电晕损失及无线电干扰水平。(4)由于没有钢芯,因此没有磁滞损失和涡流损失,在运行时,其交流电阻比钢芯铝绞线低,故电能损失减少。正由于这些优点,中强度全铝合金绞线在输电线路上使用越来越多。
下面结合附图和具体实施例对本发明作详细的描述。
附图说明
图1为本发明的制造工艺流程示意图。
具体实施方式
本发明是一种架空导线用中强度铝合金线,如图1所示,它的工艺流程具体步骤如下
1、熔炼及合金成分调整:铝锭熔化后进入保温炉中,控制铝液温度在720~740℃,加入铝硅合金锭、铝镁中间合金、铝铜中间合金及铝钇中间合金。搅拌均匀后获得合金铝液,使其各元素含量控制如下:硅为0.40~0.50wt%,镁为0.45~0.50wt%,铁为0.18~0.23wt%,铜为0.04~0.08wt%,钇为0.1~0.2wt%。
2、铸造:将保温炉中的铝合金熔液流经流槽,通过陶瓷过滤板过滤装置,在线加入Al-Ti-B丝,细化晶粒。铝合金液进入铝合金连铸机进行浇铸,铝液浇铸温度控制在695℃~705℃。从铸机出来时的铸坯温度控制在480℃~490℃。
3、在线加热:通过在线加热装置,使得铸坯温度在进入轧机控制在520℃~530℃。
4、轧制:通过铝合金连轧机轧成直径为9.5mm的中强度铝合金杆,轧制完成后的中强度铝合金杆温度控制在365℃~375℃。
5、在线淬火:轧制完成后的中强度铝合金杆随后进行在线淬火,淬火水温控制在28℃~30℃。淬火后的中强度铝合金杆的温度控制在45℃~55℃。
6、拉丝:对淬火处理过后的中强度铝合金杆进行拉丝,拉制成所需直径的铝合金单线。
7、人工时效处理:对中强度铝合金杆成品单线进行人工时效处理,温度控制在180℃~200℃,时间控制在5~6小时。取出后即得到达到本发明性能要求的中强度铝合金杆成品单线。
实施例1:
选用一定成分要求的铝锭、铝硅合金锭、铝镁中间合金、铝铜中间合金及铝钇中间合金作为原料。
铝锭的成分要求如下:硅≤0.07wt%,铁≤0.23wt%,镁≤0.02wt%,(锰+钛+铬+钒)≤0.02wt%,其他每种杂质元素含量均不大于0.03wt%。
铝硅中间合金中硅含量为20wt%,铝镁中间合金中镁含量为50wt%,铝铜中间合金 中铜含量为10wt%,铝钇中间合金中钇含量为10wt%。
按照图1所示工艺流程,将铝锭在熔化炉进行熔化,随后流入保温炉进行保温。根据保温中的铝液量加入成分所需的铝硅、铝镁、铝铜及铝钇中间合金量。控制铝液温度在730℃。随后进行搅拌均匀处理,用精炼剂对铝液进行精炼,同时采用固体覆盖剂覆盖在铝液表面,并静置不小于45分钟,所述精炼剂为市场上所售的铝合金精炼剂。
铝液静置完后,采用高速直读光谱分析仪对铝液中的主要元素进行检测,并根据检测结果,进行相应的合金成分调整,达到要求的合金铝液成分。使其各元素含量控制如下:硅为0.50wt%,镁为0.50wt%,铁为0.23wt%,铜为0.08wt%,钇为0.2wt%。
随后将保温炉中的铝液放出,流经流槽,通过陶瓷过滤板过滤装置,在流槽中根据铝液的流量自动加入Al-Ti-B丝,用于细化晶粒。
铝液通过浇包进入铝合金连铸机进行浇铸,铝液浇铸温度控制在700℃。通过控制浇铸机冷却水的流量计压力,确保从铸机出来时的铸坯温度控制在480℃。
铸坯从铸机出来后,经过校直出来后,进入在线加热装置使得铸坯温度在进入轧机时控制在520℃。所述在线加热装置为中频退火炉。
铸坯经加热装置加热到要求温度范围内后,进入铝合金轧机组进行轧制,控制冷却乳化液温度与流量,使其轧制完成后的铝合金杆温度控制在370℃。铝合金连轧机轧成的中强铝合金杆直径为9.5mm。
从轧机出来后的铝杆立刻进入在线淬火装置,淬火水温控制在29℃。淬火后的铝合金杆的温度控制在50℃。淬火后的铝杆进行绕盘包装。
对淬火处理过后的铝合金杆进行拉丝,拉制成所需直径的铝合金单线。拉丝设备为常用的滑动式铝合金拉丝机,每道变形率控制在1.25。拉丝速度在10米/秒,拉丝时润滑油控制在40℃以下。
将拉丝好的铝合金单线进行人工时效处理,温度控制在190℃,时间控制在5小时。时效处理炉的空间温度范围控制在±3℃以内。时效处理完后即可得到伸长率不小于3.5%,导电率不低于58.5%IACS,抗拉强度不低于245MPa的中强度铝合金线单线。
实施例2:
选用一定成分要求的铝锭、铝硅合金锭、铝镁中间合金、铝铜中间合金及铝钇中间合金作为原料。
铝锭的成分要求如下:硅≤0.40wt%,铁≤0.18wt%,镁≤0.48wt%,(锰+钛+铬+钒) ≤0.02wt%,其他每种杂质元素含量均不大于0.03wt%。铝硅中间合金中硅含量为20wt%,铝镁中间合金中镁含量为50wt%,铝铜中间合金中铜含量为10wt%,铝钇中间合金中钇含量为10wt%。
按照图1所示工艺流程,将铝锭在熔化炉进行熔化,随后流入保温炉进行保温。根据保温中的铝液量加入成分所需的铝硅、铝镁、铝铜及铝钇中间合金量。控制铝液温度在720℃。随后进行搅拌均匀处理,用精炼剂对铝液进行精炼,同时采用固体覆盖剂覆盖在铝液表面,并静置不小于45分钟,所述精炼剂为市场上所售的铝合金精炼剂。
铝液静置完后,采用高速直读光谱分析仪对铝液中的主要元素进行检测,并根据检测结果,进行相应的合金成分调整,达到要求的合金铝液成分。使其各元素含量控制如下:硅为0.40wt%,镁为0.45wt%,铁为0.18wt%,铜为0.04wt%,钇为0.1wt%。
随后将保温炉中的铝液放出,流经流槽,通过陶瓷过滤板过滤装置,在流槽中根据铝液的流量自动加入Al-Ti-B丝,用于细化晶粒。
铝液通过浇包进入铝合金连铸机进行浇铸,铝液浇铸温度控制在695℃。通过控制浇铸机冷却水的流量计压力,确保从铸机出来时的铸坯温度控制在485℃。
铸坯从铸机出来后,经过校直出来后,进入在线加热装置使得铸坯温度在进入轧机时控制在525℃。所述在线加热装置为中频退火炉。
铸坯经加热装置加热到要求温度范围内后,进入铝合金轧机组进行轧制,控制冷却乳化液温度与流量,使其轧制完成后的铝合金杆温度控制在365℃。铝合金连轧机轧成的中强铝合金杆直径为9.5mm。
从轧机出来后的铝杆立刻进入在线淬火装置,淬火水温控制在28℃。淬火后的铝合金杆的温度控制在45℃。淬火后的铝杆进行绕盘包装。
对淬火处理过后的铝合金杆进行拉丝,拉制成所需直径的铝合金单线。拉丝设备为常用的滑动式铝合金拉丝机,每道变形率控制在1.25。拉丝速度在10米/秒,拉丝时润滑油控制在40℃以下。
将拉丝好的铝合金单线进行人工时效处理,温度控制在180℃,时间控制在5.5小时。时效处理炉的空间温度范围控制在±3℃以内。时效处理完后即可得到伸长率不小于3.5%,导电率不低于58.5%IACS,抗拉强度不低于245MPa的中强度铝合金线单线。
实施例3:
选用一定成分要求的铝锭、铝硅合金锭、铝镁中间合金、铝铜中间合金及铝钇中间 合金作为原料。
铝锭的成分要求如下:硅≤0.50wt%,铁≤0.20wt%,镁≤0.50wt%,(锰+钛+铬+钒)≤0.02wt%,其他每种杂质元素含量均不大于0.03wt%。铝硅中间合金中硅含量为20wt%,铝镁中间合金中镁含量为50wt%,铝铜中间合金中铜含量为10wt%,铝钇中间合金中钇含量为10wt%。
按照图1所示工艺流程,将铝锭在熔化炉进行熔化,随后流入保温炉进行保温。根据保温中的铝液量加入成分所需的铝硅、铝镁、铝铜及铝钇中间合金量。控制铝液温度在740℃。随后进行搅拌均匀处理,用精炼剂对铝液进行精炼,同时采用固体覆盖剂覆盖在铝液表面,并静置不小于45分钟,所述精炼剂为市场上所售的铝合金精炼剂。
铝液静置完后,采用高速直读光谱分析仪对铝液中的主要元素进行检测,并根据检测结果,进行相应的合金成分调整,达到要求的合金铝液成分。使其各元素含量控制如下:硅为0.45wt%,镁为0.48wt%,铁为0.20wt%,铜为0.05wt%,钇为0.15wt%。
随后将保温炉中的铝液放出,流经流槽,通过陶瓷过滤板过滤装置,在流槽中根据铝液的流量自动加入Al-Ti-B丝,用于细化晶粒。
铝液通过浇包进入铝合金连铸机进行浇铸,铝液浇铸温度控制在705℃。通过控制浇铸机冷却水的流量计压力,确保从铸机出来时的铸坯温度控制在490℃。
铸坯从铸机出来后,经过校直出来后,进入在线加热装置,使得铸坯温度在进入轧机时控制在530℃。所述在线加热装置为中频退火炉。
铸坯经加热装置加热到要求温度范围内后,进入铝合金轧机组进行轧制,控制冷却乳化液温度与流量,使其轧制完成后的铝合金杆温度控制在375℃。铝合金连轧机轧成的中强铝合金杆直径为9.5mm。
从轧机出来后的铝杆立刻进入在线淬火装置,淬火水温控制在30℃。淬火后的铝合金杆的温度控制在55℃。淬火后的铝杆进行绕盘包装。
对淬火处理过后的铝合金杆进行拉丝,拉制成所需直径的铝合金单线。拉丝设备为常用的滑动式铝合金拉丝机,每道变形率控制在1.25。拉丝速度在10米/秒,拉丝时润滑油控制在40℃以下。
将拉丝好的铝合金单线进行人工时效处理,温度控制在180℃,时间控制在5.5小时。时效处理炉的空间温度范围控制在±3℃以内。时效处理完后即可得到伸长率不小于3.5%,导电率不低于58.5%IACS,抗拉强度不低于245MPa的中强度铝合金或单线。

Claims (7)

  1. 一种架空导线用中强度铝合金线,其特征是:它的工艺流程具体步骤如下:
    (1)熔炼及合金成分调整:铝锭熔化后进入保温炉中,控制铝液温度在720~740℃,加入铝硅合金锭、铝镁中间合金、铝铜中间合金及铝钇中间合金;搅拌均匀后获得合金铝液,使其各元素含量控制如下:硅为0.40~0.50wt%,镁为0.45~0.50wt%,铁为0.18~0.23wt%,铜为0.04~0.08wt%,钇为0.1~0.2wt%;其他杂质元素含量均不大于0.03wt%;
    (2)铸造:将保温炉中的铝合金熔液流经流槽,通过陶瓷过滤板过滤装置,在线加入Al-Ti-B丝,细化晶粒:铝合金液进入铝合金连铸机进行浇铸,铝液浇铸温度控制在695℃~705℃;从铸机出来时的铸坯温度控制在480℃~490℃:
    (3)在线加热:通过在线加热装置,使得铸坯温度在进入轧机控制在520℃~530℃;
    (4)轧制:通过铝合金连轧机轧成中强度铝合金杆,轧制完成后的中强度铝合金杆温度控制在365℃~376℃;
    (5)在线淬火:轧制完成后的中强度铝合金杆随后进行在线淬火,淬火水温控制在28℃~30℃,淬火后的中强度铝合金杆的温度控制在45℃~55℃;
    (6)拉丝:对淬火处理过后的中强度铝合金杆进行拉丝,拉制成所需直径的铝合金单线;
    (7)人工时效处理:对中强度铝合金杆单线进行人工时效处理,温度控制在180℃~200℃,时间控制在5~6小时,取出后即得到成品单线。
  2. 根据权利要求1所述的一种架空导线用中强度铝合金线,其特征是:所述的中强度铝合金杆成直径为9.5mm的中强铝合金杆。
  3. 根据权利要求1所述的一种架空导线用中强度铝合金线,其特征是:所述的合金成分为铝锭、铝硅合金锭、铝镁中间合金、铝铜中间合金及铝钇中间合金。
  4. 根据权利要求1所述的一种架空导线用中强度铝合金线,其特征是:所述的铝锭的成分要求如下:硅≤0.07wt%,铁≤0.23wt%,镁≤0.02wt%锰+钛+铬+钒≤0.02wt%.
  5. 根据权利要求1所述的一种架空导线用中强度铝合金线,其特征是:所述的其他杂质元素为锰、钛、铬、钒。
  6. 根据权利要求1所述的一种架空导线用中强度铝合金线,其特征是:所述的铝硅中间合金中硅含量为20wt%,铝镁中间合金中镁含量为50wt%,铝铜中间合金中铜含量为10wt%,铝钇中间合金中钇含量为10wt%。
  7. 根据权利要求1所述的一种架空导线用中强度铝合金线,其特征是:所述的工艺流程具体步骤如下:
    将铝锭在熔化炉进行熔化,随后流入保温炉进行保温:根据保温中的铝液量加入成分所需的铝硅、铝镁、铝铜及铝钇中间合金量:控制铝液温度在730℃;随后进行搅拌均匀处理,用精炼剂对铝液进行精炼,同时采用固体覆盖剂覆盖在铝液表面,并静置不小于45分钟,所述精炼剂为市场上所售的铝合金精炼剂;
    铝液静置完后,采用高速直读光谱分析仪对铝液中的主要元素进行检测,并根据检测结果,进行相应的合金成分调整,达到要求的合金铝液成分;
    随后将保温炉中的铝液放出,流经流槽,通过陶瓷过滤板过滤装置,在流槽中根据铝液的流量自动加入Al-Ti-B丝,用于细化晶粒;
    铝液通过浇包进入铝合金连铸机进行浇铸,铝液浇铸温度控制在700℃:通过控制浇铸机冷却水的流量计压力,确保从铸机出来时的铸坯温度控制在480℃;
    铸坯从铸机出来后,经过校直出来后,进入在线加热装置,使得铸坯温度在进入轧机时控制在520℃;所述在线加热装置为中频退火炉;
    铸坯经加热装置加热到要求温度范围内后,进入铝合金轧机组进行轧制,控制冷却乳化液温度与流量,使其轧制完成后的铝合金杆温度控制在370℃;铝合金连轧机轧成的中强铝合金杆直径为9.5mm;
    从轧机出来后的铝杆立刻进入在线淬火装置,淬火水温控制在29℃;淬火后的铝合金杆的温度控制在50℃;淬火后的铝杆进行绕盘包装;
    对淬火处理过后的铝合金杆进行拉丝,拉制成所需直径的铝合金单线,拉丝设备为常用的滑动式铝合金拉丝机,每道变形率控制在1.25;拉丝速度在10米/秒,拉丝时润滑油控制在40℃以下;
    将拉丝好的铝合金单线进行人工时效处理,温度控制在190℃,时间控制在5小时;时效处理炉的空间温度范围控制在±3℃以内;时效处理完后即得到中强度铝合金单线。
PCT/CN2014/000802 2013-09-06 2014-08-29 一种架空导线用中强度铝合金线 WO2015032170A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310401911.0A CN103451498B (zh) 2013-09-06 2013-09-06 一种架空导线用中强度铝合金线
CN201310401911.0 2013-09-06

Publications (1)

Publication Number Publication Date
WO2015032170A1 true WO2015032170A1 (zh) 2015-03-12

Family

ID=49734327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000802 WO2015032170A1 (zh) 2013-09-06 2014-08-29 一种架空导线用中强度铝合金线

Country Status (2)

Country Link
CN (1) CN103451498B (zh)
WO (1) WO2015032170A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572870A (zh) * 2022-10-25 2023-01-06 祁阳宏泰铝业有限公司 一种增强型606x系铝合金及其制备和型材加工方法
CN115948684A (zh) * 2022-12-21 2023-04-11 广东领胜新材料科技有限公司 一种高强度高导电率铝合金导线及其制造方法
CN116555643A (zh) * 2023-04-24 2023-08-08 长江师范学院 一种铝镁中间合金及其制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451498B (zh) * 2013-09-06 2015-06-10 国家电网公司 一种架空导线用中强度铝合金线
CN104715803B (zh) * 2013-12-17 2017-01-04 通用(天津)铝合金产品有限公司 一种铝合金细丝的制造方法
CN103924131B (zh) * 2014-04-28 2015-07-08 大明电缆有限公司 橡套软电缆铝合金导体材料及其制造方法
CN103952605B (zh) * 2014-04-30 2016-05-25 国家电网公司 一种中强度铝合金单丝的制备方法
CN104028961B (zh) * 2014-06-11 2017-12-22 远东电缆有限公司 一种中强度铝合金线及其生产工艺
CN104805334A (zh) * 2015-05-13 2015-07-29 江苏亨通电力特种导线有限公司 中强度高导电率铝合金材料
CN104975211B (zh) * 2015-07-30 2018-01-19 全球能源互联网研究院 一种高导电率热处理型中强铝合金导电单丝
CN105441736B (zh) * 2015-11-17 2017-08-01 国网河南省电力公司周口供电公司 一种超高压专用复合铝合金导线
CN106011507A (zh) * 2016-04-12 2016-10-12 江苏大学 一种Al-Mg-Si-Y稀土铝合金及其制备方法
CN106623478B (zh) * 2016-12-12 2018-08-31 远东电缆有限公司 一种智能电网用高导电高强度铝合金导线的制造方法
CN108754248B (zh) * 2018-04-26 2020-09-11 广东省工业分析检测中心 一种架空绞线用铝合金导线及其制造方法
CN110373575A (zh) * 2019-08-07 2019-10-25 安庆市泽烨新材料技术推广服务有限公司 一种电缆用铝合金及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243247A (ja) * 1987-03-30 1988-10-11 Furukawa Electric Co Ltd:The 導電用高強度アルミニウム複合線およびその製造方法
CN101423908A (zh) * 2008-12-05 2009-05-06 广东吉青电缆实业有限公司 高导电性高强度耐热铝合金导线及其制造方法、导线
CN102011035A (zh) * 2010-12-04 2011-04-13 江苏南瑞淮胜电缆有限公司 一种耐热全铝合金导线及其制造方法
CN102560297A (zh) * 2012-02-16 2012-07-11 上海电缆研究所 一种铝镁硅合金杆坯及一种高强度铝镁硅合金导体的制备方法
CN102766788A (zh) * 2012-08-09 2012-11-07 上海电缆研究所 自然时效处理的中强度铝镁硅合金杆和合金线的制备方法
CN103451498A (zh) * 2013-09-06 2013-12-18 国家电网公司 一种架空导线用中强度铝合金线

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941222A (zh) * 2006-09-07 2007-04-04 上海电缆研究所 一种制造高强度耐热铝合金线的方法
CN102456442B (zh) * 2010-10-26 2013-03-27 上海中天铝线有限公司 导电率为57%iacs的中强度铝合金线的制造方法
CN102162050B (zh) * 2011-01-28 2012-10-10 江苏中天科技股份有限公司 一种制造59%导电率的中强度铝合金线方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243247A (ja) * 1987-03-30 1988-10-11 Furukawa Electric Co Ltd:The 導電用高強度アルミニウム複合線およびその製造方法
CN101423908A (zh) * 2008-12-05 2009-05-06 广东吉青电缆实业有限公司 高导电性高强度耐热铝合金导线及其制造方法、导线
CN102011035A (zh) * 2010-12-04 2011-04-13 江苏南瑞淮胜电缆有限公司 一种耐热全铝合金导线及其制造方法
CN102560297A (zh) * 2012-02-16 2012-07-11 上海电缆研究所 一种铝镁硅合金杆坯及一种高强度铝镁硅合金导体的制备方法
CN102766788A (zh) * 2012-08-09 2012-11-07 上海电缆研究所 自然时效处理的中强度铝镁硅合金杆和合金线的制备方法
CN103451498A (zh) * 2013-09-06 2013-12-18 国家电网公司 一种架空导线用中强度铝合金线

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572870A (zh) * 2022-10-25 2023-01-06 祁阳宏泰铝业有限公司 一种增强型606x系铝合金及其制备和型材加工方法
CN115948684A (zh) * 2022-12-21 2023-04-11 广东领胜新材料科技有限公司 一种高强度高导电率铝合金导线及其制造方法
CN115948684B (zh) * 2022-12-21 2024-06-07 广东领胜新材料科技有限公司 一种高强度高导电率铝合金导线及其制造方法
CN116555643A (zh) * 2023-04-24 2023-08-08 长江师范学院 一种铝镁中间合金及其制备方法
CN116555643B (zh) * 2023-04-24 2023-12-12 长江师范学院 一种铝镁中间合金及其制备方法

Also Published As

Publication number Publication date
CN103451498A (zh) 2013-12-18
CN103451498B (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
WO2015032170A1 (zh) 一种架空导线用中强度铝合金线
CN104028961B (zh) 一种中强度铝合金线及其生产工艺
CN102162050B (zh) 一种制造59%导电率的中强度铝合金线方法
CN105296816B (zh) 高导电铝合金材料及其铝合金电缆导体的制备方法
CN102041418B (zh) 一种制造57%导电率的中强度铝合金线方法
CN106350716B (zh) 一种高强度外观件铝合金材料及其制备方法
Karabay Influence of AlB2 compound on elimination of incoherent precipitation in artificial aging of wires drawn from redraw rod extruded from billets cast of alloy AA-6101 by vertical direct chill casting
CN102453819B (zh) 导电率为59%的中强度铝合金线的制造方法
CN104975211B (zh) 一种高导电率热处理型中强铝合金导电单丝
JP2019512050A (ja) 高電気伝導性・耐熱性鉄含有軽質アルミワイヤー及びその製造プロセス
CN104372207B (zh) 一种钎焊用4004铝合金
JP2012524837A (ja) ケーブル用の高い延伸性を有するアルミニウム合金材料及びその製造方法
JP7159311B2 (ja) 磁気特性に優れる無方向性電磁鋼板およびその製造方法
CN107254608A (zh) 高强度耐高温合金线材
CN106119612A (zh) 一种中强度铝合金材料及其制备方法
CN107400796B (zh) 一种耐高温高强无铍铜导线及其制备方法
CN105274399A (zh) 一种电缆导体用铝合金材料及其应用
CN110453121A (zh) 一种高光亮度的7xxx系铝合金板材及其制备方法
CN1941222A (zh) 一种制造高强度耐热铝合金线的方法
CN113913642A (zh) 一种铜合金带材及其制备方法
CN102864334B (zh) 铜镍二硅铜合金板带的制备方法
CN110273115A (zh) 一种消除5182铝合金屈服平台的退火工艺
JP2001254160A (ja) アルミニウム合金線の製造方法およびアルミニウム合金
JP7352583B2 (ja) 高い強度および高い電気伝導率を有するアルミニウムストリップの製造方法
JP4166196B2 (ja) 曲げ加工性が優れたCu−Ni−Si系銅合金条

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841481

Country of ref document: EP

Kind code of ref document: A1