WO2015030235A1 - 電炉ダストを原料とする亜鉛製造方法 - Google Patents

電炉ダストを原料とする亜鉛製造方法 Download PDF

Info

Publication number
WO2015030235A1
WO2015030235A1 PCT/JP2014/072931 JP2014072931W WO2015030235A1 WO 2015030235 A1 WO2015030235 A1 WO 2015030235A1 JP 2014072931 W JP2014072931 W JP 2014072931W WO 2015030235 A1 WO2015030235 A1 WO 2015030235A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
zinc chloride
chloride
electric furnace
crude
Prior art date
Application number
PCT/JP2014/072931
Other languages
English (en)
French (fr)
Inventor
庵崎 雅章
修司 母里
讓 佐藤
Original Assignee
株式会社キノテック・ソーラーエナジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キノテック・ソーラーエナジー filed Critical 株式会社キノテック・ソーラーエナジー
Priority to EP14839327.5A priority Critical patent/EP3042970A4/en
Priority to US14/915,811 priority patent/US20160215407A1/en
Priority to CN201480055885.3A priority patent/CN105637105A/zh
Priority to JP2015534361A priority patent/JP6099167B2/ja
Publication of WO2015030235A1 publication Critical patent/WO2015030235A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/32Refining zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a zinc production method, and in particular, when recycling electric furnace dust generated during melting and smelting of scrap in an electric furnace method, which is one of iron making processes, or electric furnace dust as an iron making raw material, non-ferrous raw material, or cement extender.
  • the present invention relates to a zinc production method using dust generated in a reduction furnace (hereinafter referred to as secondary dust) as a raw material.
  • electric furnace dust is generated as industrial waste containing zinc oxide components, about 1.5% to 2.0% of the steelmaking amount during scrap smelting and refining. To do. It is said that electric furnace dust is generated 7 million tons in the world and 500,000 tons in Japan.
  • Examples of the main recycling technique for obtaining crude zinc oxide from electric furnace dust include the Wells furnace method, plasma method, electric smelting reduction method, MF furnace method, or rotating bed furnace method.
  • crude zinc oxide produced by these recycling technologies is a raw material for dry and wet zinc smelting.
  • Patent Document 1 discloses a method for recovering zinc metal from electric furnace dust containing zinc oxide generated from an electric furnace iron scrap smelting furnace, etc., regarding the zinc recovery method. Specifically, in Patent Document 1, electric furnace dust or secondary dust, metallic iron-containing powder, a reducing agent, a binder and water are mixed and kneaded, then molded, and further fired in a reducing furnace. Is disclosed. Thereby, in patent document 1, the zinc oxide in electric furnace dust or secondary dust is collect
  • the composition of the recovered metal zinc is limited to a purity of 3N, and there is room for improvement in purity.
  • the electric furnace dust can be used as an intermediate raw material called crude zinc oxide, but the crude zinc oxide is not carried into a large-scale zinc smelter at a cost of transportation. It can be said that there is no situation.
  • crude zinc oxide is produced as secondary dust from electric furnace dust using a large-scale facility and using a lot of energy.
  • electric furnace dust cannot be directly used in aqueous electrolysis, which is the mainstream of current zinc production methods, is that most zinc in the electric furnace dust is zinc ferrite that is hardly soluble in sulfuric acid. If it can be processed directly, a large energy saving can be realized.
  • the present inventor has found that the above-mentioned problems can be solved by extracting the zinc component in the electric furnace dust or the secondary dust by the chlorination step and then purifying it by the molten salt electrolysis method through the above examination.
  • the present invention has been found and completed.
  • the present invention has been made in view of such circumstances, and is suitable for the treatment of electric furnace dust containing a large amount of chlorine without the need for additional costs for dechlorination, and manufactures high purity zinc ingots having a purity of 4N or more.
  • An object of the present invention is to provide a zinc production method that can be operated with a compact apparatus.
  • electric furnace dust or secondary dust is brought into contact with a mixed gas containing chlorine gas and oxygen-containing gas, and the zinc oxide component in the electric furnace dust or secondary dust is converted into zinc chloride and vaporized.
  • the zinc oxide component in the electric furnace dust or secondary dust is converted into zinc chloride and vaporized.
  • extraction as crude zinc chloride vapor it is refined to form purified zinc chloride in the molten state, and this is further processed by molten salt electrolysis, thereby obtaining high purity zinc metal with a purity of 4N or more.
  • the basic content is to do.
  • the electric furnace dust or secondary dust containing zinc oxide and the mixed gas containing chlorine gas and oxygen-containing gas are brought into contact with each other, so that the iron component in the electric furnace dust or secondary dust is slightly increased.
  • the zinc component in the electric furnace dust or secondary dust can be selectively salified and vaporized.
  • chlorination of secondary dust consisting almost of crude zinc oxide
  • chlorination using either chlorine gas alone or mixed gas containing chlorine gas and oxygen-containing gas is possible, but in the case of electric furnace dust, zinc ferrite is used. It needs to be chlorinated.
  • thermodynamic examination it has been found by thermodynamic examination that this is possible if a mixed gas containing chlorine gas and oxygen-containing gas is used, and this has been confirmed by experiments.
  • the zinc chloride component contained in the crude zinc chloride vapor obtained in the chlorination step is separated from components other than zinc chloride contained in the crude zinc chloride vapor to obtain purified zinc chloride.
  • components other than zinc chloride iron chloride produced by chlorination of some iron oxides, lead chloride derived from raw materials, alkali chloride, and the like can be considered.
  • a distillation process or a reduction process it is preferable to employ a distillation process or a reduction process, and a combined purification process executed in this order by combining the distillation process and the reduction process may be employed.
  • purified zinc chloride is obtained by distilling the melt containing the zinc chloride component contained in the crude zinc chloride vapor.
  • the zinc chloride component in the crude zinc chloride vapor is separated from the metal chloride component other than zinc chloride by utilizing the vapor pressure difference, and as a result, the zinc chloride component can be purified. it can.
  • a reducing agent is added to a crude zinc chloride melt or a molten mixed salt of crude zinc chloride and an alkali chloride or alkaline earth chloride. It is possible to purify the zinc chloride component by reducing and precipitating noble metal impurity components.
  • the base metal component may be contained in it in zinc.
  • the molten salt electrolytic bath is a chloride, even if the raw material contains a chlorine component, no additional cost for dechlorination as in the conventional method is required. It is convenient for the treatment of electric furnace dust and the like that contain a lot.
  • the current density is about 500 A / m 2 in the existing aqueous solution electrolysis per 1 m 2 of the electrode surface area.
  • a productivity of 5000 A / m 2 or more and 10 times the productivity can be obtained, and the equipment can be made compact.
  • the temperature of the electrolytic bath is set to be equal to or higher than the melting point of metal zinc, zinc metal that is electrolytically deposited is melted from the bottom of the electrolytic cell by an inert gas such as nitrogen gas.
  • the zinc production method brings an electric furnace dust or secondary dust containing zinc oxide into contact with a mixed gas containing chlorine gas and oxygen-containing gas.
  • the zinc oxide component in the electric furnace dust or the secondary dust is converted into zinc chloride and vaporized to obtain a crude zinc chloride vapor, and the zinc chloride component contained in the crude zinc chloride vapor is converted into the crude zinc chloride.
  • a purification step for obtaining purified zinc chloride by separating from components other than zinc chloride contained in the vapor; and an electrolysis step for electrolyzing a molten salt electrolytic bath in which the purified zinc chloride is melted to obtain a zinc melt and chlorine gas; Have.
  • the crude zinc chloride vaporized and separated from the electric furnace dust in the chlorination process is condensed and liquefied at a specific condensation temperature, for example, a temperature range of about 380 ⁇ 5 ° C. near the melting point of zinc chloride. Is preferably used. Furthermore, a method of purifying a part or all of purified zinc chloride once condensed and liquefied in order to obtain high purity zinc chloride by repeating re-evaporation and condensation is also preferably used.
  • one or a plurality of cooling units for the purpose of liquefaction inside the chlorination reactor, or condensate liquefaction and reflux, and a liquid receiver arranged so as not to mix crude zinc chloride are used. May be.
  • different temperature settings can be made, and more accurate separation and purification can be achieved.
  • the crude zinc chloride vaporized and discharged from the chlorination reactor may be condensed and / or distilled in another device outside the chlorination reactor.
  • the purification step is a distillation in which the purified zinc chloride is obtained by distilling a melt containing the zinc chloride component contained in the crude zinc chloride vapor.
  • the second aspect includes a purification step. Distillation here can be implemented by the specific example etc. which were mentioned above.
  • the refining step includes the step of adding the reducing agent to the melt containing the zinc chloride component contained in the crude zinc chloride vapor. It is a third aspect to include a reductive purification step to obtain
  • the purification step obtains primary purified zinc chloride by distilling a melt containing a zinc chloride component contained in the crude zinc chloride vapor.
  • the present invention has a fifth aspect that the chlorine gas is obtained by electrolysis in the electrolysis step.
  • the present invention has a sixth aspect that air is used as the oxygen-containing gas.
  • the present invention has a seventh aspect in which the reducing agent is powdered metallic zinc.
  • the present invention provides the zinc chloride component contained in the crude zinc chloride vapor and the alkali chloride or alkaline earth in the reduction and purification step.
  • the eighth aspect is to add the reducing agent to a molten salt obtained by mixing and melting chloride.
  • the present invention provides the molten salt electrolytic bath in which the refined zinc chloride and an alkali chloride or an alkaline earth chloride are mixed and melted in the electrolysis step.
  • the ninth aspect is to electrolyze.
  • the zinc oxide component is preferentially used in the chlorination step without chlorinating most of the iron oxide component in the zinc ferrite and the free iron oxide present alone.
  • the zinc chloride component contained in the crude zinc chloride vapor obtained in the chlorination process is separated from components other than the zinc chloride contained in the crude zinc chloride vapor, and the purified zinc chloride melt is separated.
  • the molten salt electrolysis method can be performed using the purified zinc chloride melt obtained in the purification process, so that no additional cost for dechlorination is required and chlorine is removed. It is suitable for processing a large amount of electric furnace dust and the like, and can produce a zinc ingot having a purity of 4N or higher and a zinc production method that can be operated with a compact apparatus.
  • the vapor pressure difference between zinc chloride and other metal chlorides is separated to obtain crude zinc chloride vapor. Since the zinc chloride component contained therein can be purified, purified zinc chloride can be obtained simply and efficiently.
  • the metal impurity component nobler than zinc in the zinc chloride melt is reduced and precipitated as a solid in the reduction and purification step, and the crude zinc chloride vapor Since the contained zinc chloride component can be purified, purified zinc chloride can be obtained simply and efficiently.
  • the zinc production method of the fourth aspect of the present invention there is a reduction purification step after the distillation purification step and before the electrolysis step, and in the reduction purification step, the distillation purification in a molten state is performed.
  • the chlorine gas is obtained by electrolysis in the electrolysis step, whereby the zinc production method is closed to reduce the generation of waste. it can.
  • air is used as the oxygen-containing gas, thereby eliminating the necessity of separately providing an oxygen gas supply source and supplying the air present in the surroundings. It can be simply introduced into the chlorination step via a pump.
  • the reducing agent is powdery metallic zinc, so that the metal impurity component nobler than zinc in the zinc chloride melt can be reliably reduced and precipitated.
  • the zinc chloride component contained in the crude zinc chloride vapor can be purified.
  • the zinc chloride component contained in the crude zinc chloride vapor and the alkali chloride or alkaline earth chloride are mixed and melted in the reduction purification step.
  • the alkali chloride or alkaline earth chloride functions as a supporting salt in the molten salt electrolytic bath in the subsequent electrolysis step.
  • the molten salt electrolytic bath The viscosity, electrical resistance, and vapor pressure of can be optimized, and the electrolysis efficiency can be improved.
  • the zinc production method of the ninth aspect of the present invention in the electrolysis step, by using a molten salt electrolytic bath in which purified zinc chloride and alkali chloride or alkaline earth chloride are mixed and melted, a molten salt is obtained.
  • the alkali chloride or alkaline earth chloride functions as a supporting salt.
  • FIG. 1 is a diagram showing a process of a zinc production method according to an embodiment of the present invention.
  • a mixed gas containing chlorine gas 8 and oxygen-containing gas 10 is brought into contact with electric furnace dust 1 or secondary dust 1 in a chlorination furnace (not shown).
  • a chlorination furnace not shown
  • the zinc oxide component in the electric furnace dust 1 or the secondary dust 1 is obtained as the crude zinc chloride vapor 3
  • the iron component in the electric furnace dust 1 or the secondary dust 1 remains solid without being salified.
  • the chlorination step 101 is a reaction step for obtaining the crude zinc chloride vapor 3 from the zinc oxide component in the electric furnace dust 1 or the secondary dust 1. Table 1 below shows the composition of the secondary dust 1.
  • the chlorination step 101 powdered electric furnace dust 1 or powdered secondary dust 1 is accommodated in the chlorination furnace, and the accommodated powdered electric furnace dust 1 or powdery 2 is stored. From the bottom side of the next dust 1, chlorine gas 8 or a mixed gas containing chlorine gas 8 and oxygen-containing gas 10 is blown.
  • a reaction in which the oxygen component constituting the metal oxide in the electric furnace dust 1 or the secondary dust 1 is replaced with chlorine proceeds to obtain the crude zinc chloride vapor 3, and the oxygen gas 2 is added to the secondary gas.
  • Born Regarding the metal component such as iron contained in the electric furnace dust 1 or the secondary dust 1, a part of the metal component is extracted together with the zinc component and mixed in the crude zinc chloride vapor 3 as iron chloride gas, while the remainder is Isolated as residue 4.
  • Fe / Zn is 1.99, which almost coincides with the stoichiometric ratio of 2.0.
  • iron oxide was concentrated in the residue, and iron was about 0.3% of zinc in the collected salt. This revealed that zinc was selectively salified.
  • this iron-rich residue may be used as a raw material when producing pig iron. In this case, the waste can be effectively recycled.
  • the purification step (distillation purification step) 102 the crude zinc chloride vapor 3 obtained through the chlorination step 101 is distilled and purified to obtain a purified zinc chloride melt 6.
  • the crude zinc chloride vapor 3 is accommodated in a distillation apparatus that is lined with ceramics such as alumina and silicon carbide that are corrosion resistant to high-temperature metal chlorides and is not shown. Then, the purified zinc chloride melt 6 is separated using the difference in vapor pressure due to the difference in chloride. At this time, the metal chloride component 5 having a lower boiling point than that of zinc chloride and the metal chloride component 7 having a higher boiling point are separated from the zinc chloride vapor.
  • the purified zinc chloride melt 6 obtained through the distillation purification step 102 is accommodated in an electrolysis tank (not shown) and electrolyzed to obtain a metal zinc melt 9 and chlorine gas 8 As a by-product.
  • an electrolytic cell used in the electrolysis process 103 the electrolytic cell which accommodated the carbon electrode in the container lined with ceramics can be used as an example.
  • oxygen-containing gas 10 used in the chlorination step 101 air present in the surroundings that can be easily supplied by a pump or the like may be used instead of a special oxygen gas source.
  • a molten salt electrolytic bath obtained by mixing and melting the purified zinc chloride melt 6 and alkali chloride or alkaline earth chloride may be used.
  • the alkali chloride or alkaline earth chloride functions as a supporting salt, and the viscosity, electric resistance and vapor pressure of the molten salt electrolytic bath can be optimized, and the electrolytic efficiency Can be improved.
  • this alkali chloride or alkaline earth chloride it is more preferable to use sodium chloride from the viewpoint of the property and cost as the supporting salt.
  • the zinc production method of the present embodiment is suitable for the treatment of electric furnace dust containing a large amount of chlorine without the need for additional costs for dechlorination, and produces high purity zinc ingots having a purity of 4N or more.
  • a zinc production method that can be operated with a compact apparatus can be realized.
  • zinc oxide in zinc ferrite contained in the electric furnace dust 1 is also chlorinated by bringing the electric furnace dust 1 into contact with a mixed gas containing the chlorine gas 8 and the oxygen-containing gas 10. Can do. Therefore, most of the iron component 4 remains solid without being salified, and the zinc component can be selectively salified and vaporized.
  • FIG. 2 is a process diagram of a modification of the zinc production method according to the present embodiment.
  • the main difference is that the distillation purification step 102 in the above-described embodiment is replaced by a reduction purification step 104, and the remaining steps. Are the same.
  • the crude zinc chloride vapor 3 obtained through the chlorination step 101 is reduced and purified to obtain a purified zinc chloride melt 6 '.
  • the reducing agent 11 is added to the zinc chloride melt obtained from the crude zinc chloride vapor 3 obtained through the chlorination step 101, and the metal impurity component 12 that is nobler than zinc is added.
  • a purified zinc chloride melt 6 ′ is obtained by reducing and precipitating.
  • the reducing agent 11 is preferably powdered metallic zinc from the viewpoint of efficiently and reliably separating and separating the metal impurity component 12 that is nobler than zinc in the zinc chloride melt.
  • the purified zinc chloride melt 6 'obtained through the reduction and purification step 104 is electrolyzed to obtain the metal zinc melt 9, and the chlorine gas 8 is by-produced. Further, the zinc melt 9 was cooled and solidified to obtain metallic zinc having a purity of 4N or higher.
  • the reductive purification step 104 it is preferable to add a reducing agent to a molten salt obtained by mixing and melting an alkali chloride or an alkaline earth chloride in a zinc chloride melt.
  • the alkali chloride or alkaline earth chloride functions as a supporting salt to optimize the viscosity, electrical resistance and vapor pressure of the molten salt electrolytic bath. And the electrolytic efficiency can be improved.
  • this alkali chloride or alkaline earth chloride it is more preferable to use sodium chloride from the viewpoint of the property and cost as the supporting salt.
  • a mixed molten salt obtained by mixing the tail solution after the electrolysis step 103 with the zinc chloride melt may be used.
  • a reductive purification step 105 can be added after the distillation purification step 102.
  • a reductive purification step 105 can be added after the distillation purification step 102.
  • FIG. 3 is a process diagram of another modification of the zinc production method according to the present embodiment.
  • a reduction purification step 105 is provided between the distillation purification step 102 and the electrolysis step 103 in the above-described embodiment. And the remaining steps are the same.
  • the purified zinc chloride melt (primary purified zinc chloride melt) 6 obtained through the distillation purification step 102 is reduced and purified, and the purified zinc chloride melt 6 ′.
  • ' (Secondary purified zinc chloride melt) is obtained.
  • the reducing agent 11 is added to the primary purified zinc chloride melt 6 obtained through the distillation refining step 102 to precipitate and remove the metal impurity component 12 that is precious than zinc. As a result, a secondary purified zinc chloride melt 6 ′′ is obtained.
  • the reduction purification process 105 is the same as the reduction purification process 104 in the above-described modification.
  • the secondary purified zinc chloride melt 6 '' obtained through the reduction purification step 105 is electrolyzed to obtain the metal zinc melt 9, and the chlorine gas 8 is by-produced. Further, the zinc melt 9 was cooled and solidified to obtain metallic zinc having a purity of 4N or higher. Further, in this variation, the amount of heat consumed in each step of the distillation purification step 102 and the reduction purification step 105 and the consumption of the reducing agent can be complemented and optimized, so that the purity can be further reduced at a low cost. Highly purified zinc chloride can be obtained.
  • the electric furnace dust having the composition shown in Table 4 below is converted into chlorine gas 8 and oxygen-containing gas in a vertical tubular furnace which is a reaction tube maintained at a reaction temperature of 900 ° C. 10 was brought into contact with the mixed gas.
  • the zinc component is mainly extracted as zinc chloride from the electric furnace dust in the tubular furnace and evaporated and separated, and a residue mainly composed of non-volatile iron oxide remains in the lower part of the tubular furnace.
  • the steam mainly composed of zinc chloride obtained in the chlorination process 101 was controlled so that its temperature was maintained at 380 ° C. ⁇ 5 ° C. in the upper part of the tubular furnace.
  • the liquid was condensed and a primary purified zinc chloride melt 6 was obtained.
  • the composition of the primary purified zinc chloride melt 6 obtained in the distillation purification step 102 is shown in Table 5 below, and the residue mainly composed of non-volatile iron oxide remaining in the lower part of the tubular furnace in the chlorination step 101 The composition of is shown in Table 6 below.
  • the primary purified zinc chloride melt 6 obtained in the distillation purification step 102 is subjected to a gas phase pressure in the range of (atmospheric pressure ⁇ 10) Pa to (atmospheric pressure ⁇ 200) Pa.
  • a gas phase pressure in the range of (atmospheric pressure ⁇ 10) Pa to (atmospheric pressure ⁇ 200) Pa.
  • the temperature is maintained at 500 ° C. and kept in a heat-melted state, and about 1 weight with respect to the primary purified zinc chloride melt 6 in the heat-melted state.
  • % Zinc powder was added and stirred while blowing nitrogen gas. Then, the supernatant of the melt obtained at this time was collected as a secondary purified zinc chloride melt 6 ′′.
  • the composition of the secondary purified zinc chloride melt 6 '' is shown in Table 7 below.
  • the secondary purified zinc chloride melt 6 '' obtained through the reduction purification step 105 is electrolyzed in an electrolytic cell in which the bath temperature is set to 500 ° C. and the carbon electrode is housed, A metal zinc melt 9 having the composition shown in Table 8 below was obtained.
  • the electrolytic bath of the electrolytic cell is a mixed salt bath in which sodium chloride is added to the secondary purified zinc chloride melt 6 ′′, and the composition is shown in Table 9 below.
  • the shape, material, arrangement, number, and the like of the constituent elements are not limited to the above-described embodiments, and the constituent elements of the present invention such as appropriately replacing the constituent elements with those having equivalent operational effects, etc. Of course, it can be appropriately changed without departing from the above.
  • the present invention does not require additional cost for dechlorination and contains a lot of chlorine, and it is suitable for the treatment of electric furnace dust and the like in which zinc components are zinc ferrite which is difficult to be treated by a wet process, It is possible to produce high purity zinc ingots with a purity of 4N or more and to provide a zinc production method that can be operated with a compact device. It is expected that the present invention can be applied to an electric furnace dust generated during melting and smelting of scrap in a certain electric furnace method, or a zinc production method using secondary dust as a raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

 亜鉛製造方法は、酸化亜鉛を含む電炉ダスト1又は電炉ダストを還元炉で還元した際に発生する2次ダスト1と、塩素ガス8及び酸素含有ガス10を含む混合ガスと、を接触させ、電炉ダスト1又は2次ダスト1における酸化亜鉛成分を塩化亜鉛に転化すると共に気化させ、粗塩化亜鉛蒸気3と酸素ガス2とを得る塩化工程101と、粗塩化亜鉛蒸気3に含まれる塩化亜鉛成分を、粗塩化亜鉛蒸気3に含まれる塩化亜鉛以外の成分5、7から分離して、精製塩化亜鉛融液6を得る精製工程102、104、105と、精製塩化亜鉛融液6を電解して亜鉛融液9と塩素ガス8とを得る電解工程103と、を有する。

Description

電炉ダストを原料とする亜鉛製造方法
 本発明は、亜鉛製造方法に関し、特に、製鉄プロセスの一つである電炉法においてスクラップの溶解製錬時に発生する電炉ダスト、又は電炉ダストを製鉄原料、非鉄原料やセメント増量材としてリサイクルする際に還元炉で発生するダスト(以下、2次ダストという。)を原料とする亜鉛製造方法に関する。
 一般的に、製鉄プロセスの一つである電炉法では、スクラップの溶解製錬時に製鋼量の約1.5%から2.0%の、酸化亜鉛成分を含む産業廃棄物としての電炉ダストが発生する。電炉ダストは、世界では700万トン発生し、日本では50万トン発生するといわれている。
 鉄スクラップの多くは、廃家電又は廃自動車である。廃家電又は廃自動車の塗装下地には、亜鉛メッキが施されている。また、スクラップの中には、塗料、プラスチック及び油分等が含まれている。このため、電炉ダストには、亜鉛又は鉛等の重金属に加えて、塩化物及びダイオキシン類等の有害な有機物も含まれている。一方で、電炉ダストには、約20~30%の鉄と20~30%の亜鉛とが含まれている。従って、電炉ダストは、資源として非常に有用なものである。
 しかしながら、電炉ダストを直接的に現行の亜鉛製造法の主流である水溶液電解の原料とすることは困難である。というのは、まず、電炉ダスト中の亜鉛の多くは酸化亜鉛と酸化鉄との化合物であり硫酸に難溶なジンクフェライトになっている一方で、電炉ダストには硫酸に可溶な遊離の酸化鉄が多く含まれるからである。更に、これに加えて、電炉ダストには水溶液電解に有害な塩素などのハロゲンが含まれるからである。この様な理由から、電炉ダストを一旦還元処理して、粗酸化亜鉛として回収して電解処理しようとする亜鉛製造法が行われている。
 電炉ダストから粗酸化亜鉛を得るための主なリサイクル技術としては、ウエルズ炉法、プラズマ法、電気溶融還元法、MF炉法、又は回転床炉法等が挙げられる。現在、これらのリサイクル技術により生成される粗酸化亜鉛は、乾式及び湿式の亜鉛製錬用の原料となっている。
 かかる状況下で、特許文献1は、亜鉛回収法に関し、電炉法鉄くず製錬炉等から発生する酸化亜鉛を含有した電炉ダストからの金属亜鉛回収方法が開示されている。具体的には、特許文献1には、電炉ダスト又は2次ダストと、金属鉄含有粉末、還元剤、結合剤及び水とを、混合及び混練し、その後に成型し、更に、還元炉で焼成することが開示されている。これにより、特許文献1では、電炉ダスト中又は2次ダスト中の酸化亜鉛を金属亜鉛蒸気として回収する。
特開2002-105550号公報
 しかしながら、本発明者の検討によれば、特許文献1が開示する構成では、電炉ダスト中又は2次ダスト中の酸化亜鉛を金属亜鉛蒸気として回収するものであるが、粗酸化亜鉛には塩素成分が含有されているため、粗酸化亜鉛から亜鉛地金を生成する際には塩素成分の除去にコストがかかり、改良の余地がある。
 また、特許文献1が開示する構成では、回収される金属亜鉛の組成は純度3Nが限度であり、純度向上の余地がある。
 また、本発明者の更なる検討によれば、粗酸化亜鉛を原料とする湿式製練における電解方法においては、希硫酸水溶液電解を用いることとなり、その電流密度が500A/mと低く、また、陰極表面に成長した亜鉛地金を、陰極を着脱して回収する必要があるため、回収作業とそのための設備とを必要とし、改良の余地がある。よって、かかる湿式製錬における電解方法では、コスト低減のためには規模の利益を得るべく、大規模工場となる傾向にある。即ち、現状の電炉ダストを用いた亜鉛製造方法では、電炉ダストを粗酸化亜鉛という中間原料にすることはできるが、輸送コストを負担して粗酸化亜鉛を大規模亜鉛製錬所に搬入せざるを得ない状況にあるといえる。
 また、前述した通り、粗酸化亜鉛は、大規模設備を用い多くのエネルギーを使って、電炉ダストから2次ダストとして製造される。現行の亜鉛製造法の主流である水溶液電解において、電炉ダストを直接利用できない大きな理由の一つは、電炉ダスト中の亜鉛の多くが硫酸に難溶なジンクフェライトになっているからであり、これが直接処理できれば大きな省エネルギーが実現できる。
 本発明者は、以上の検討を経て、電炉ダスト中又は2次ダスト中の亜鉛成分を塩化工程により抽出した後に精製して溶融塩電解法で処理することにより、以上述べた課題を解決できることを見い出し、本発明を完成したものである。
 本発明は、かかる事情に鑑みてなされたもので、脱塩素のための追加コストを不要として塩素を多く含む電炉ダスト等の処理に好適であり、純度4N以上の高純度の亜鉛地金を製造できると共に、コンパクトな装置で操業できる亜鉛製造方法を提供することを目的とする。
 本発明は、電炉ダスト又は2次ダストと、塩素ガス及び酸素含有ガスを含む混合ガスと、を接触させて、電炉ダスト又は2次ダスト中の酸化亜鉛成分を塩化亜鉛に転化して気化させ、粗塩化亜鉛蒸気として抽出した後にこれを精製して溶融状態の精製塩化亜鉛とし、更にこれを溶融塩電解法で処理する構成を有し、これにより純度4N以上の高純度の亜鉛地金を取得することを基本的な内容とする。
 本発明の塩化工程においては、酸化亜鉛を含む電炉ダスト又は2次ダストと、塩素ガス及び酸素含有ガスを含む混合ガスと、を接触させることにより、電炉ダスト又は2次ダスト中の鉄成分は僅かしか塩化されずに大部分が固体のまま残るため、電炉ダスト又は2次ダスト中の亜鉛成分を選択的に塩化して気化させることができる。
 ほぼ粗酸化亜鉛からなる2次ダストの塩化においては塩素ガス単独、又は塩素ガス及び酸素含有ガスを含む混合ガスのいずれかを用いての塩化も可能であるが、電炉ダストの場合はジンクフェライトを塩化する必要がある。この場合、ジンクフェライト中の酸化鉄成分及び単独で存在する遊離酸化鉄の大部分を塩化することなく、酸化亜鉛成分を優先的に塩化することが望まれる。本発明においては、熱力学的検討により、塩素ガス及び酸素含有ガスを含む混合ガスを用いれば、これが可能であることを知見し、更に実験においてこれを確認したものである。
 また、本発明の精製工程においては、塩化工程で得られた粗塩化亜鉛蒸気に含まれる塩化亜鉛成分を、粗塩化亜鉛蒸気に含まれる塩化亜鉛以外の成分から分離して、精製塩化亜鉛を得ることができる。塩化亜鉛以外の成分としては、一部の酸化鉄が塩化して生成した塩化鉄及び原料由来の塩化鉛や塩化アルカリなどが考えられる。
 かかる精製工程としては、蒸留工程又は還元工程を採用することが好ましく、また、蒸留工程及び還元工程を組み合わせて、この順で実行する複合的な精製工程を採用してもよい。
 精製工程として蒸留工程を採用する場合には、粗塩化亜鉛蒸気に含まれていた塩化亜鉛成分を含む融液を蒸留することにより、精製塩化亜鉛を得ることになる。これにより、粗塩化亜鉛蒸気中の塩化亜鉛成分は、塩化亜鉛以外の金属塩化物成分と、その蒸気圧差を利用して相互に分離されていき、その結果、かかる塩化亜鉛成分を精製することができる。
 また、精製工程として還元工程を採用する場合には、粗塩化亜鉛融液、又は粗塩化亜鉛とアルカリ塩化物若しくはアルカリ土類塩化物との溶融混合塩に還元剤を添加することにより、亜鉛よりも貴な金属不純物成分を還元析出させて、かかる塩化亜鉛成分を精製することができる。なお、混合溶融塩を用いる場合には、その中に亜鉛よりも卑な金属成分が含まれていてもよい。
 また、蒸留工程及び還元工程を組み合わせて、この順で実行する複合的な精製工程を採用した場合には、それらの相乗的な作用により、粗塩化亜鉛蒸気中の塩化亜鉛成分をより純度を上げた態様で精製することができる。
 また、本発明の電解工程においては、その溶融塩電解浴は塩化物であるから、原料が塩素成分を含んでいても従来法のような脱塩素のための追加コストが不要であり、塩素を多く含む電炉ダスト等の処理に好都合である。
 更に、本発明の電解工程においては、塩化亜鉛の溶融塩電解法を用いるものであるため、電極の表面積の1m当たりにおいて、既存の水溶液電解では電流密度が約500A/mであるのと比較して、5000A/m以上と10倍の生産性が得られ、設備をコンパクト化できる。また、かかる溶融塩電解法では、電解浴の温度を金属亜鉛の融点以上に設定すれば、電解析出する亜鉛地金を、溶融状態で電解槽の底から、窒素ガス等の不活性ガスによるガスリフト式、真空吸引式、及び竪型遠心ポンプによる方式等の公知の方法を用いて抜き出すことができるので、水溶液電解のような陰極の着脱作業が不要となり省力化できる。従って、電炉ダストの発生場所において、ハロゲン成分を含む電炉ダストを原料とするオンサイト型亜鉛製錬所を実現することができることになる。
 つまり、前述の目的を達成すべく、本発明の第1の局面における亜鉛製造方法は、酸化亜鉛を含む電炉ダスト又は2次ダストと、塩素ガス及び酸素含有ガスを含む混合ガスと、を接触させ、前記電炉ダスト又は前記2次ダストにおける酸化亜鉛成分を塩化亜鉛に転化すると共に気化させ、粗塩化亜鉛蒸気を得る塩化工程と、前記粗塩化亜鉛蒸気に含まれる塩化亜鉛成分を、前記粗塩化亜鉛蒸気に含まれる塩化亜鉛以外の成分から分離して、精製塩化亜鉛を得る精製工程と、前記精製塩化亜鉛を溶融した溶融塩電解浴を電解して亜鉛融液と塩素ガスとを得る電解工程と、を有する。ここで、精製工程の具体例を挙げると、塩化工程において電炉ダスト等から気化分離した粗塩化亜鉛を、特定の凝縮温度、例えば塩化亜鉛の融点近傍の380±5℃程度の温度範囲で凝縮液化させる方法が好適に用いられる。更に、高純度の塩化亜鉛を得るために一度凝縮液化した精製塩化亜鉛の一部又は全部を、再蒸発及び凝縮を繰り返して精製する方法も好適に用いられる。なお、精製工程では、塩化反応装置の内部での凝縮液化、又は凝縮液化及び還流を目的とする1又は複数の冷却部と、粗塩化亜鉛が混入しないように配置された液受けと、を用いてもよい。複数の冷却部、及びそれらの冷却部の各々に対応して配置された液受けを用いる場合には、各々異なる温度設定ができ、より高精度の分離精製が可能となる。また、塩化反応装置から気化排出した粗塩化亜鉛を、塩化反応装置外の別の装置で凝縮及び/又は蒸留してもよい。
 また、本発明は、かかる第1の局面に加えて、前記精製工程は、前記粗塩化亜鉛蒸気に含まれていた塩化亜鉛成分を含む融液を蒸留することにより、前記精製塩化亜鉛を得る蒸留精製工程を含むことを第2の局面とする。ここでいう蒸留は、上述した具体例等により実施できる。
 また、本発明は、かかる第1の局面に加えて、前記精製工程は、前記粗塩化亜鉛蒸気に含まれていた塩化亜鉛成分を含む融液に還元剤を添加することにより、前記精製塩化亜鉛を得る還元精製工程を含むことを第3の局面とする。
 また、本発明は、かかる第1の局面に加えて、前記精製工程は、前記粗塩化亜鉛蒸気に含まれていた塩化亜鉛成分を含む融液を蒸留することにより、1次精製塩化亜鉛を得る蒸留精製工程、及び前記蒸留精製工程によって得た前記1次精製塩化亜鉛の融液に還元剤を添加することにより、2次精製塩化亜鉛を得る還元精製工程を含む還元精製工程を含むことを第4の局面とする。
 また、本発明は、かかる第1から第4のいずれかの局面に加えて、前記塩素ガスは、前記電解工程における電解により得たものであることを第5の局面とする。
 また、本発明は、かかる第1から第5のいずれかの局面に加えて、前記酸素含有ガスとして、空気を用いることを第6の局面とする。
 また、本発明は、かかる第3から第6のいずれかの局面に加えて、前記還元剤は、粉状の金属亜鉛であることを第7の局面とする。
 また、本発明は、かかる第3から第7のいずれかの局面に加えて、前記還元精製工程では、前記粗塩化亜鉛蒸気に含まれていた前記塩化亜鉛成分と、アルカリ塩化物又はアルカリ土類塩化物と、を混合溶融した溶融塩に、前記還元剤を添加することを第8の局面とする。
 また、本発明は、かかる第1から第8のいずれかの局面に加えて、前記電解工程では、前記精製塩化亜鉛とアルカリ塩化物又はアルカリ土類塩化物とを混合溶融した前記溶融塩電解浴を電解することを第9の局面とする。
 本発明の第1の局面における亜鉛製造方法によれば、塩化工程で、ジンクフェライト中の酸化鉄成分及び単独で存在する遊離酸化鉄の大部分を塩化することなく、酸化亜鉛成分を優先的に塩化することができ、蒸留精製工程では、塩化工程で得られた粗塩化亜鉛蒸気に含まれる塩化亜鉛成分を、粗塩化亜鉛蒸気に含まれる塩化亜鉛以外の成分から分離して、精製塩化亜鉛融液を得ることができ、かつ電解工程では、精製工程で得られた精製塩化亜鉛融液を用いて溶融塩電解法を実行することができるため、脱塩素のための追加コストを不要として塩素を多く含む電炉ダスト等の処理に好適であり、純度4N以上の高純度の亜鉛地金を製造できると共に、コンパクトな装置で操業できる亜鉛製造方法を実現することができる。
 また、本発明の第2の局面における亜鉛製造方法によれば、蒸留精製工程で、塩化亜鉛と他の金属塩化物との間の蒸気圧差を利用してこれらを分離して、粗塩化亜鉛蒸気中に含まれていた塩化亜鉛成分を精製することができるため、簡便かつ効率的に精製塩化亜鉛を得ることができる。
 また、本発明の第3の局面における亜鉛製造方法によれば、還元精製工程で、塩化亜鉛融液中の亜鉛よりも貴な金属不純物成分を固体として還元析出して、粗塩化亜鉛蒸気中に含まれていた塩化亜鉛成分を精製することができるため、簡便かつ効率的に精製塩化亜鉛を得ることができる。
 また、本発明の第4の局面における亜鉛製造方法によれば、蒸留精製工程の後段であって電解工程の前段に更に還元精製工程を有し、還元精製工程においては、溶融状態の、蒸留精製工程を経た塩化亜鉛に還元剤を添加することにより、各工程において消費する熱量及び還元剤の消費量などを相互に補完して最適化できるため、低いコストで更に純度の高い精製塩化亜鉛を得ることができる。
 また、本発明の第5の局面における亜鉛製造方法によれば、塩素ガスが、電解工程における電解により得たものであることにより、亜鉛製造方法をクローズド化して廃棄物の発生を低減することができる。
 また、本発明の第6の局面における亜鉛製造方法によれば、酸素含有ガスとして、空気を用いることにより、酸素ガス供給源を別途設ける必要性を排して、周囲に存在する空気を、供給ポンプを介して塩化工程に簡便に導入することができる。
 また、本発明の第7の局面における亜鉛製造方法によれば、還元剤が、粉状の金属亜鉛であることにより、塩化亜鉛融液中の亜鉛よりも貴な金属不純物成分を確実に還元析出させて分離し、粗塩化亜鉛蒸気中に含まれていた塩化亜鉛成分を精製することができる。
 また、本発明の第8の局面における亜鉛製造方法によれば、還元精製工程で、粗塩化亜鉛蒸気に含まれていた塩化亜鉛成分と、アルカリ塩化物又はアルカリ土類塩化物と、を混合溶融した溶融塩に、還元剤を添加することにより、その後段の電解工程における溶融塩電解浴中で、このアルカリ塩化物又はアルカリ土類塩化物が支持塩として機能し、この結果、溶融塩電解浴の粘度、電気抵抗及び蒸気圧を最適化することができ、電解効率を向上することができる。
 また、本発明の第9の局面における亜鉛製造方法によれば、電解工程で、精製塩化亜鉛とアルカリ塩化物又はアルカリ土類塩化物とを混合溶融した溶融塩電解浴を用いることにより、溶融塩電解浴中で、このアルカリ塩化物又はアルカリ土類塩化物が支持塩として機能し、この結果、溶融塩電解浴の粘度、電気抵抗及び蒸気圧を最適化することができ、電解効率を向上することができる。
本発明の実施の形態における亜鉛製造方法の工程図である。 本発明の実施の形態における亜鉛製造方法の変形例の工程図である。 本発明の実施の形態における亜鉛製造方法の別の変形例の工程図である。
 以下、図面を適宜参照して、本発明の実施の形態における亜鉛製造方法につき、詳細に説明する。
 まず、図1を参照して、本発明の実施の形態における亜鉛製造方法につき、詳細に説明する。
 図1は、本発明の実施の形態における亜鉛製造方法の工程を示す図である。
 図1に示すように、まず、塩化工程101では、塩素ガス8及び酸素含有ガス10を含む混合ガスと、電炉ダスト1又は2次ダスト1と、を、図示を省略する塩化炉内で接触させて、電炉ダスト1中又は2次ダスト1中の酸化亜鉛成分を、粗塩化亜鉛蒸気3として得る一方で、電炉ダスト1中又は2次ダスト1中の鉄成分は塩化されずに固体のまま残る。かかる塩化工程101は、電炉ダスト1又は2次ダスト1における酸化亜鉛成分から粗塩化亜鉛蒸気3を得る反応工程である。なお、以下の表1に、2次ダスト1の組成を示す。
Figure JPOXMLDOC01-appb-T000001
 具体的には、塩化工程101では、塩化炉内に粉体状の電炉ダスト1又は粉体状の2次ダスト1を収容し、その収容した粉体状の電炉ダスト1又は粉体状の2次ダスト1の底部側から、塩素ガス8、又は塩素ガス8及び酸素含有ガス10を含む混合ガスを吹き込む。かかる塩化工程101では、電炉ダスト1又は2次ダスト1中の金属酸化物を構成する酸素成分が塩素に置換される反応が進行して粗塩化亜鉛蒸気3が得られると共に、酸素ガス2が副生される。電炉ダスト1又は2次ダスト1に含まれる鉄等の金属成分に関しては、その一部は、亜鉛成分と共に抽出されて粗塩化亜鉛蒸気3中に塩化鉄ガスとして混入する一方で、その残部は、残渣4として分離される。
 塩化工程101の実験例として、酸化亜鉛と酸化第二鉄とから合成したジンクフェライト(化学組成式:ZnFe)を用いて塩化実験を行った。具体的には、この実験例では、合成したジンクフェライトを粉砕して試料とし、フィルター付き石英製反応管に収容して、フィルターを通して塩化ガスを送った。この際の温度は800℃で、塩化ガスは体積比で塩素3:空気10の組成であった。そして、この際の反応によって塩が蒸気として排出されたのでこれを捕集した。この際、固体の試料は、全部は反応せずにその一部が残った。この様にして得られた塩及び残った固体試料(残渣)をICP発光分析装置で分析して、鉄と亜鉛のモル比Fe/Znを決定し、この分析結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、合成フェライトでは、Fe/Znは1.99であり、これは化学量論比の2.0とほぼ一致している。一方で、残渣では、酸化鉄が濃縮されており、また捕集された塩では鉄は亜鉛の約0.3%であった。これより亜鉛が選択的に塩化されたことが明らかとなった。
 また、残渣及び塩の組成よりジンクフェライトの亜鉛成分の約84%が塩化されたことが計算より明らかとなった。この実験での塩化効率は必ずしも高くないが、粉砕された試料の粒度が粗かったこと、及び温度が比較的低かったことを考慮すれば、条件の最適化で100%近い塩化効率が得られるものと想定される。
 また、この鉄を多く含む残渣は銑鉄を製造する際の原料として使用できる可能性がある。この場合、廃棄物を有効にリサイクルすることができる。
 次に、精製工程(蒸留精製工程)102では、塩化工程101を経て得られた粗塩化亜鉛蒸気3を蒸留して精製し、精製塩化亜鉛融液6を得る。
 具体的には、蒸留精製工程102では、かかる粗塩化亜鉛蒸気3を、高温の金属塩化物に対して耐食性のあるアルミナ及び炭化ケイ素等のセラミクスで内張りされて図示を省略する蒸留装置内に収容し、塩化物の違いによる蒸気圧の差を利用して精製塩化亜鉛融液6を分離する。この際、塩化亜鉛より低沸点の金属塩化物成分5及び高沸点の金属塩化物成分7が、塩化亜鉛蒸気から分離される。
 次に、電解工程103では、蒸留精製工程102を経て得られた精製塩化亜鉛融液6を、図示を省略する電解槽内に収容して電解し、金属亜鉛融液9を得ると共に塩素ガス8を副生する。この様にして得た金属亜鉛を組成分析したところ、以下の表3に示す結果を得た。なお、電解工程103で用いる電解槽としては、一例として、セラミクスで内張りされた容器内に炭素電極を収納した電解槽を用いることができる。
Figure JPOXMLDOC01-appb-T000003
 なお、本実施形態においては、亜鉛製造方法をクローズドサイクル化して廃棄物の発生を低減する観点等からは、塩化工程101で用いる塩素ガス8として、電解工程103において陽極で副生されたものを用いてもよい。
 また、塩化工程101で用いる酸素含有ガス10としては、特別な酸素ガス源を設けることなく、ポンプ等で供給が容易な周囲に存在する空気を代用して用いてもよい。
 また、塩化工程101で用いる反応器及び蒸留精製工程102で用いる蒸留器を共通化した構成であって、段階的に内部のガス温度を変化させることができる加熱炉(反応蒸留器)を用いてもよい。かかる場合には、生成された粗塩化亜鉛蒸気3をその中に導入して、加熱炉の低温部には塩化鉄(FeCl)等の低沸点成分を液体又は固体として溜め、加熱炉の高温部には塩化ナトリウム、塩化カリウム及び塩化鉛(PbCl)等の高沸点成分を溜め、かつ、加熱炉の低温部と高温部との中間部分には塩化亜鉛を濃縮生成することができる。
 また、電解工程103では、精製塩化亜鉛融液6とアルカリ塩化物又はアルカリ土類塩化物とを混合溶融した溶融塩電解浴を用いてもよい。これにより、溶融塩電解浴中で、このアルカリ塩化物又はアルカリ土類塩化物が支持塩として機能して、溶融塩電解浴の粘度、電気抵抗及び蒸気圧を最適化することができ、電解効率を向上することができる。また、かかるアルカリ塩化物又はアルカリ土類塩化物としては、その支持塩としての性質やコストの面から、塩化ナトリウムを用いることがより好ましい。
 以上の本実施の形態の亜鉛製造方法によれば、脱塩素のための追加コストを不要として塩素を多く含む電炉ダスト等の処理に好適であり、純度4N以上の高純度の亜鉛地金を製造できると共に、コンパクトな装置で操業できる亜鉛製造方法を実現することができる。特に、塩化工程101においては、電炉ダスト1と、塩素ガス8及び酸素含有ガス10を含む混合ガスと、を接触させることにより、電炉ダスト1に含まれるジンクフェライト中の酸化亜鉛をも塩化することができる。このため鉄成分4の大部分は塩化されずに固体のまま残り、亜鉛成分を選択的に塩化して気化させることができる。
 さて、本実施の形態の亜鉛製造方法においては、種々の変形例が考えられ、特に、蒸留精製工程102を還元精製工程104に置換することもできる。以下、かかる変形例について、図2を参照して、詳細に説明する。
 図2は、本実施の形態における亜鉛製造方法の変形例の工程図である。
 図2に示すように、本変形例の亜鉛製造方法においては、前述した本実施の形態における蒸留精製工程102が、還元精製工程104に置き換えられていることが主たる相違点であり、残余の工程は同一である。
 つまり、本変形例の亜鉛製造方法においては、塩化工程101を経て得られた粗塩化亜鉛蒸気3を還元して精製し、精製塩化亜鉛融液6’を得る。
 具体的には、還元精製工程104では、塩化工程101を経て得られた粗塩化亜鉛蒸気3から得た塩化亜鉛融液に、還元剤11を加えて、亜鉛よりも貴な金属不純物成分12を還元析出して沈澱除去することにより、精製塩化亜鉛融液6’を得る。かかる還元剤11は、効率的かつ確実に、塩化亜鉛融液中の亜鉛よりも貴な金属不純物成分12を還元析出させて分離する観点からは、粉状の金属亜鉛であることが好ましい。
 そして、電解工程103では、還元精製工程104を経て得られた精製塩化亜鉛融液6’を電解し、金属亜鉛融液9を得ると共に塩素ガス8を副生する。そして、更に、かかる亜鉛融液9を冷却固化することにより、純度4N以上の金属亜鉛を得た。
 なお、還元精製工程104では、塩化亜鉛融液にアルカリ塩化物又はアルカリ土類塩化物を混合溶融した溶融塩に、還元剤を添加することが好ましい。これにより、その後段の電解工程103における溶融塩電解浴中で、このアルカリ塩化物又はアルカリ土類塩化物が支持塩として機能して、溶融塩電解浴の粘度、電気抵抗及び蒸気圧を最適化することができ、電解効率を向上することができる。また、かかるアルカリ塩化物又はアルカリ土類塩化物としては、その支持塩としての性質やコストの面から、塩化ナトリウムを用いることがより好ましい。
 また、亜鉛製造方法をクローズドサイクル化できる観点等からは、還元精製工程104では、塩化亜鉛融液に電解工程103実施後の尾液を混合した混合溶融塩を用いてもよい。
 また、本実施の形態の亜鉛製造方法における別の変形例として、蒸留精製工程102の後に還元精製工程105を付加することもできる。以下、かかる変形例について、図3を参照して、詳細に説明する。
 図3は、本実施の形態における亜鉛製造方法の別の変形例の工程図である。
 図3に示すように、本変形例の亜鉛製造方法においては、前述した本実施の形態における蒸留精製工程102と電解工程103との間に還元精製工程105が設けられていることが主たる相違点であり、残余の工程は同一である。
 つまり、本変形例の亜鉛製造方法においては、蒸留精製工程102を経て得られた精製塩化亜鉛融液(1次精製塩化亜鉛融液)6を還元して精製し、精製塩化亜鉛融液6’’(2次精製塩化亜鉛融液)を得る。
 具体的には、還元精製工程105では、蒸留精製工程102を経て得られた1次精製塩化亜鉛融液6に、還元剤11を加えて、亜鉛よりも貴な金属不純物成分12を沈澱除去することにより、2次精製塩化亜鉛融液6’’を得る。かかる還元精製工程105は、前述の変形例における還元精製工程104と同様である。
 そして、電解工程103では、還元精製工程105を経て得られた2次精製塩化亜鉛融液6’’を電解し、金属亜鉛融液9を得ると共に塩素ガス8を副生する。そして、更に、かかる亜鉛融液9を冷却固化することにより、純度4N以上の金属亜鉛を得た。また、本変形例では、蒸留精製工程102及び還元精製工程105の各工程において消費する熱量及び還元剤の消費量などを相互に補完して最適化することができるため、低いコストで更に純度の高い精製塩化亜鉛を得ることができる。
 ここで、本変形例における実験例について説明する。
 まず、本実験例における塩化工程101では、反応温度を900℃に維持した反応管である縦型の管状炉内で、以下の表4に組成を示す電気炉ダストを塩素ガス8及び酸素含有ガス10を含む混合ガスに接触させた。かかる塩化工程101では、管状炉内の電気炉ダストから主として亜鉛成分が塩化亜鉛として抽出されて蒸発分離され、不揮発性の酸化鉄を主成分とする残渣が管状炉の下部に残った。
Figure JPOXMLDOC01-appb-T000004
 次に、蒸留精製工程102では、塩化工程101で得られた塩化亜鉛を主成分とする蒸気を、管状炉内の上部で、その温度が380℃±5℃に維持されるように制御されたセラミックス製の多孔質体を通過させることにより凝縮液化して、1次精製塩化亜鉛融液6を得た。なお、蒸留精製工程102で得られた1次精製塩化亜鉛融液6の組成を以下の表5に示し、塩化工程101で管状炉の下部に残った不揮発性の酸化鉄を主成分とする残渣の組成を以下の表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 次に、還元精製工程105では、蒸留精製工程102で得られた1次精製塩化亜鉛融液6を、気相部の圧力が(大気圧-10)Paから(大気圧-200)Paの範囲内に設定されたマッフル炉内に収容したるつぼ内で、温度を500℃に維持して加熱溶融状態に保持し、この加熱溶融状態の1次精製塩化亜鉛融液6に対して、約1重量%相当の亜鉛紛末を添加すると共に窒素ガスを吹き込みながら撹拌した。そして、この際に得られている融液の上澄みを2次精製塩化亜鉛融液6’’として採取した。なお、2次精製塩化亜鉛融液6’’の組成を以下の表7に示す。
Figure JPOXMLDOC01-appb-T000007
 最後に、電解工程103では、還元精製工程105を経て得られた2次精製塩化亜鉛融液6’’を、浴温度が500℃に設定されると共に炭素電極を収納した電解槽で電解し、以下の表8に組成を示す金属亜鉛融液9を得た。
Figure JPOXMLDOC01-appb-T000008
 また、かかる電解槽の電解浴は、2次精製塩化亜鉛融液6’’に塩化ナトリウムを添加した混合塩浴とし、その組成を以下の表9に示す。
Figure JPOXMLDOC01-appb-T000009
 なお、本発明は、構成要素の形状、材質、配置、個数等は前述の実施形態に限定されるものではなく、かかる構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。
 以上のように、本発明においては、脱塩素のための追加コストを不要として塩素を多く含み、また亜鉛成分が湿式では処理困難なジンクフェライトになっている電炉ダスト等の処理に好適であり、純度4N以上の高純度の亜鉛地金を製造できると共に、コンパクトな装置で操業できる亜鉛製造方法を提供することができるものであるため、その汎用普遍的な性格から広範に製鉄プロセスの一つである電炉法においてスクラップの溶解製錬時に発生する電炉ダスト、又は2次ダストを原料とする亜鉛製造方法に適用され得るものと期待される。

Claims (9)

  1.  酸化亜鉛を含む電炉ダスト又は前記電炉ダストを還元炉で還元した際に発生する2次ダストと、塩素ガス及び酸素含有ガスを含む混合ガスと、を接触させ、前記電炉ダスト又は前記2次ダストにおける酸化亜鉛成分を塩化亜鉛に転化すると共に気化させ、粗塩化亜鉛蒸気を得る塩化工程と、
     前記粗塩化亜鉛蒸気に含まれる塩化亜鉛成分を、前記粗塩化亜鉛蒸気に含まれる塩化亜鉛以外の成分から分離して、精製塩化亜鉛を得る精製工程と、
     前記精製塩化亜鉛を溶融した溶融塩電解浴を電解して亜鉛融液と塩素ガスとを得る電解工程と、
     を備えた亜鉛製造方法。
  2.  前記精製工程は、前記粗塩化亜鉛蒸気に含まれていた塩化亜鉛成分を含む融液を蒸留することにより、前記精製塩化亜鉛を得る蒸留精製工程を含む請求項1に記載の亜鉛製造方法。
  3.  前記精製工程は、前記粗塩化亜鉛蒸気に含まれていた塩化亜鉛成分を含む融液に還元剤を添加することにより、前記精製塩化亜鉛を得る還元精製工程を含む請求項1に記載の亜鉛製造方法。
  4.  前記精製工程は、前記粗塩化亜鉛蒸気に含まれていた塩化亜鉛成分を含む融液を蒸留することにより、1次精製塩化亜鉛を得る蒸留精製工程、及び前記蒸留工程によって得た前記1次精製塩化亜鉛の融液に還元剤を添加することにより、2次精製塩化亜鉛を得る還元精製工程を含む還元精製工程を含む請求項1に記載の亜鉛製造方法。
  5.  前記塩素ガスは、前記電解工程における電解により得たものである請求項1から4のいずれかに記載の亜鉛製造方法。
  6.  前記酸素含有ガスとして、空気を用いる請求項1から5のいずれかに記載の亜鉛製造方法。
  7.  前記還元剤は、粉状の金属亜鉛である請求項3から6のいずれかに記載の亜鉛製造方法。
  8.  前記還元精製工程では、前記粗塩化亜鉛蒸気に含まれていた前記塩化亜鉛成分と、アルカリ塩化物又はアルカリ土類塩化物と、を混合溶融した溶融塩に、前記還元剤を添加する請求項3から7のいずれかに記載の亜鉛製造方法。
  9.  前記電解工程では、前記精製塩化亜鉛とアルカリ塩化物又はアルカリ土類塩化物とを混合溶融した前記溶融塩電解浴を電解する請求項1から8のいずれかに記載の亜鉛製造方法。
PCT/JP2014/072931 2013-09-02 2014-09-01 電炉ダストを原料とする亜鉛製造方法 WO2015030235A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14839327.5A EP3042970A4 (en) 2013-09-02 2014-09-01 PROCESS FOR PRODUCING ZINC USING ELECTRIC OVEN DUST AS A RAW MATERIAL
US14/915,811 US20160215407A1 (en) 2013-09-02 2014-09-01 Zinc production method using electric furnace dust as raw material
CN201480055885.3A CN105637105A (zh) 2013-09-02 2014-09-01 以电炉粉尘为原料的锌制造方法
JP2015534361A JP6099167B2 (ja) 2013-09-02 2014-09-01 電炉ダストを原料とする亜鉛製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-181287 2013-09-02
JP2013181287 2013-09-02

Publications (1)

Publication Number Publication Date
WO2015030235A1 true WO2015030235A1 (ja) 2015-03-05

Family

ID=52586779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072931 WO2015030235A1 (ja) 2013-09-02 2014-09-01 電炉ダストを原料とする亜鉛製造方法

Country Status (5)

Country Link
US (1) US20160215407A1 (ja)
EP (1) EP3042970A4 (ja)
JP (1) JP6099167B2 (ja)
CN (1) CN105637105A (ja)
WO (1) WO2015030235A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108866320A (zh) * 2018-07-16 2018-11-23 赫章县金川锌业有限公司 一种氯化联合工艺生产重质氧化锌和火法分离杂质的方法
CN113881975A (zh) * 2021-10-19 2022-01-04 杭州嘉悦智能设备有限公司 熔盐氯化电解炉及其控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019005510A1 (en) 2017-06-29 2019-01-03 Langley Justin OPERATION REFORMING NULL EMISSIONS
WO2020103366A1 (zh) * 2018-11-23 2020-05-28 北京科技大学 一种电解-氯化-电解制备纯钛的装置及方法
CN109267100B (zh) * 2018-11-23 2021-01-15 北京科技大学 一种电解-氯化-电解制备纯钛的装置及方法
CN110257634B (zh) * 2019-07-04 2021-04-02 湖南新威凌金属新材料科技股份有限公司 一种可回收氯化锌废液的锌粉生产装置
CN110938744B (zh) * 2019-11-25 2021-04-02 重庆科技学院 一种炼钢粉尘资源回收过程中铅锌氯化物分离方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290736A (ja) * 1999-02-05 2000-10-17 Nippon Magnetic Dressing Co Ltd 電気炉ダストの処理方法
JP2002105550A (ja) 2000-09-26 2002-04-10 Takeshi Azagami 亜鉛回収法
JP2009074132A (ja) * 2007-09-20 2009-04-09 Dowa Metals & Mining Co Ltd 亜鉛電解液の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8518746D0 (en) * 1985-07-24 1985-08-29 Fray D J Zinc recovery
GB9215034D0 (en) * 1992-07-15 1992-08-26 Fray Derek J Treatment of polyvinylchloride
JP2000301103A (ja) * 1999-04-21 2000-10-31 Shinsei Dental Laboratory:Kk 焼却灰または飛灰の無害化処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290736A (ja) * 1999-02-05 2000-10-17 Nippon Magnetic Dressing Co Ltd 電気炉ダストの処理方法
JP2002105550A (ja) 2000-09-26 2002-04-10 Takeshi Azagami 亜鉛回収法
JP2009074132A (ja) * 2007-09-20 2009-04-09 Dowa Metals & Mining Co Ltd 亜鉛電解液の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ABBOTT A. P. ET AL.: "Processing metal oxides using ionic liquids", TRANSACTIONS OF THE INSTITUTIONS OF MINING AND METALLURGY SECTION C, vol. 115, no. 1, 1 March 2006 (2006-03-01), pages 15 - 18, XP008117609, DOI: 10.1179/174328506X91293 *
MATSUURA HIROYUKI ET AL.: "Removal of Zn and Pb from Fe203-ZnFe204-ZnO-PbO Mixture by Selective Chlorination and Evaporation Reactions", ISIJ INTERNATIONAL, vol. 46, no. 8, 1 January 2006 (2006-01-01), pages 1113 - 1119, XP055269349, DOI: 10.2355/ISIJINTERNATIONAL.46.1113 *
See also references of EP3042970A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108866320A (zh) * 2018-07-16 2018-11-23 赫章县金川锌业有限公司 一种氯化联合工艺生产重质氧化锌和火法分离杂质的方法
CN113881975A (zh) * 2021-10-19 2022-01-04 杭州嘉悦智能设备有限公司 熔盐氯化电解炉及其控制方法

Also Published As

Publication number Publication date
JP6099167B2 (ja) 2017-03-22
JPWO2015030235A1 (ja) 2017-03-02
EP3042970A1 (en) 2016-07-13
CN105637105A (zh) 2016-06-01
EP3042970A4 (en) 2016-09-14
US20160215407A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
JP6099167B2 (ja) 電炉ダストを原料とする亜鉛製造方法
RU2626695C2 (ru) Способ получения алюминия из боксита или его шлама
US8221609B2 (en) Process for producing rare metal and production system thereof
Zhang et al. A perspective on thermochemical and electrochemical processes for titanium metal production
WO2014029031A1 (en) Process for treating magnesium-bearing ores
CN101525694A (zh) 含铅锑铜铋银物料的分离工艺
JP5370683B2 (ja) 銅硫化物からの銅の回収方法
JP5370777B2 (ja) 銅硫化物からの銅の回収方法
JP5935098B2 (ja) 亜鉛製造方法
US20180371577A1 (en) Arc furnace smeltering system & method
JP2017128808A (ja) 亜鉛含有廃棄物からの亜鉛の回収方法
JP6656709B2 (ja) 亜鉛地金の製造方法
Ling et al. A review of the technologies for antimony recovery from refractory ores and metallurgical residues
Free et al. Electrometallurgy‐Now and in the Future
JP2014218697A (ja) 亜鉛製造方法
CN109652645B (zh) 一种低品位碲铋矿中碲、铋的分离提取方法
CN109504854B (zh) 一种从低品位碲铋矿中富集碲铋的方法
KR20140140432A (ko) 제강슬래그의 팽창성 저감 방법
CN115948664A (zh) 一种磷化铟废料高效回收精铟的方法
Ranganathan Extraction of Magnesium, Titanium and Aluminium
Sahu Metallurgy of Light Metals
Ginattas et al. Michael Free ‘, Michael Moats ‘, Tim Robinsonz, Neale Neelameggham3, Georges Houlachi ‘l

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534361

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14915811

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014839327

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839327

Country of ref document: EP